Each of these compact, solid-state oscillators can be phase-locked to an external frequency source. Or, they can furnish synchronizing signals to other instruments. These capabilities permit many applications never before possible with a general-purpose laboratory oscillator.

For instance:

Several of these oscillators can be locked to a frequency standard to provide a highly stable signal for each station in a production setup. Thousands of dollars can be saved over current practices.

They can be used as frequency multipliers, since they can lock to a harmonic as well as to the fundamental frequency. Multiplying in this manner is more precise and more convenient than manually setting two different oscillators.

They can serve as high-Q filters. If a small signal (1 volt or less) with distortion, noise, and hum is applied at the SYNC jack, this signal will appear "cleaned up" and amplified at the oscillator output terminals.

The constant-amplitude signal available at the SYNC jack can be used as a separate output to trigger a counter, scope, or other oscillator.

Other features common to all three of these oscillators are: solid-state circuitry, flat output, low distortion, high accuracy, small size, internal power supply, and low cost. There is no better oscillator value on the market.

For complete information, write General Radio Company, 22 Baker Avenue, W. Concord, Massachusetts 01781; telephone: (617) 369-4400; TWX: 710 347-1051.

GENERAL RADIO
NEW

VERSATILITY

FOR FREQUENCY MEASUREMENTS TO 15 GHz WITH COUNTER ACCURACY

The improved Hewlett-Packard 2590B Microwave Frequency Converter, used with the hp 5245L Counter (with the 5253B or 5252A Plug-in) measures cw frequencies 0.5 Hz to 15 GHz with the accuracy of the counter time base... even on drifting signals. A 12.4-18 GHz range is optional. The 5252A Counter Plug-in with a modification to the counter itself permits direct readout of the frequency.

The 2590B phase-locks an internal transfer oscillator to the signal frequency. When used with the 5245L, accuracy is 5 parts in 10⁶ short term, 3 parts in 10¹¹/² day. Using an external quartz frequency standard for the counter reference provides even higher accuracy.

The 2590B provides pushbutton mode and range selection, front-panel indication of lock, agc to accommodate variations in signal level. The transfer oscillator can be externally modulated for dynamic measurements of signal generator modula-

tion linearity. Direct access to the transfer oscillator and harmonic mixer allow the 2590B to be used as a variable microwave frequency reference, for applications such as wave-meter calibration and frequency marker generation. Yet another way the 2590B can be used is as a 30 MHz receiver with AM and FM demodulating capability.

Here's an instrument that lets you make measurements never before possible... and improves on measurement capabilities previously available. Model 2590B, $1900. Complete specifications, indicating the versatility of this microwave converter, are available with a call to your Hewlett-Packard field engineer or by writing Hewlett-Packard's Dymec Division, 395 Page Mill Road, Palo Alto, Calif. 94306, Tel. (415) 326-1755, TWX 910-373-1296. Europe: 54 Route des Acacias, Geneva.

Here are some of the advantages offered by the 2590B

■ Wide phase-lock range for easy monitoring of drifting signals
■ Automatic search oscillator for easy synchronization to the signal
■ Continuous observation of jitter, FM and AM on drifting signal, with low-frequency scope
■ Accurate FM measurements at deviation rates to 1 MHz, using internal precision FM discriminator
■ Measurement of the carrier frequency of pulses as short as 0.5 µsec
■ Sensitivity better than —30 dbm at 0.5 GHz, —10 dbm at 14 GHz

HEWLETT PACKARD

DYMEC DIVISION

Electronics | January 23, 1967

Circle 1 on reader service card
to offer you harmonic distortion measurements 5 cps to 600 kc with 0.1% full-scale distortion sensitivity...plus these features:

"AUTOMATIC NULLING" for simple, fast measurements
0.3 v rms input sensitivity for 100% Set Level reference
300 µV rms voltmeter full-scale sensitivity (residual noise <25 µV)

Solid-state design in four Hewlett-Packard distortion analyzers offers you extended frequency range, greater Set Level sensitivity, improved selectivity, greater overall accuracy, unprecedented ease of use. All four measure total distortion down to 0.1% full scale, 5 cps to 600 kc, with harmonics indicated to 3 mc. They measure voltage 300 µV to 300 v full scale, have flat frequency response 5 cps to 3 mc. Distortion analyzer and voltmeter input terminals are the same. One-megohm input impedance. Floating input and floating, low-distortion output for scope or true rms voltmeter monitoring.

Two models feature automatic fundamental nulling (>80 db rejection): Manually null to less than 10% of the Set Level reference, flip a switch, and nulling is completed automatically. No more tedious tuning on the more sensitive ranges! Two other models employ high reduction gear drive to aid manual tuning.

Two of the analyzers provide a switchable high-pass filter which attenuates frequencies below 400 cps on signals greater than 1 kc...removes hum and gives you pure distortion measurements.

Two models incorporate an amplitude modulation detector that covers 500 kc to greater than 65 mc, measures distortion at carrier levels as low as 1 v. Options include an indicating meter with VU ballistic characteristics (01) and rear terminals in parallel with front input terminals (02).

Ask your Hewlett-Packard field engineer for a demonstration of the model incorporating features most useful to your application. Or write for technical data on all four models to Hewlett-Packard, Palo Alto, Calif. 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva; Canada: 8270 Mayrand St., Montreal.

<table>
<thead>
<tr>
<th>Model</th>
<th>Automatic Fundamental Nulling</th>
<th>High-Pass Filter</th>
<th>AM Detector</th>
<th>Gear Reduction Tuning</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>331A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$590</td>
</tr>
<tr>
<td>332A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$620</td>
</tr>
<tr>
<td>333A</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
<td>$760</td>
</tr>
<tr>
<td>334A</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
<td>$790</td>
</tr>
</tbody>
</table>

Data subject to change without notice. Prices f.o.b. factory.
News Features

Probing the News
137 Troubleshooting in trouble spots
142 Price slashes wound semiconductor makers
146 Aerospace skills brought down to earth
153 Jungle fighters on Chesapeake Bay

Electronics Review
37 Lasers: CO; in the spotlight; High power GaAs
38 Solid state: Through thick and thin
40 Reliability symposium: Unsafe at any bias; Pick a 2N number
41 Consumer electronics: IC's sound better; The electronic touch
44 Avionics: Put to the test
44 Communications: Table model
44 Computers: Teen time; Computer tutor; Second thought
48 Space electronics: Keeping in touch
52 For the record

Electronics Abroad
233 Great Britain: Bulk IC's; In the family; Edgewise entry
234 Japan: In the groove; Startling stripes
236 West Germany: The right sort
236 France: Atomic impetus
238 International: Satellite forecast
239 Around the world

Departments
4 Readers Comment
8 People
14 Meetings
16 Meetings Preview
23 Editorial
25 Electronics Newsletter
59 Washington Newsletter
163 New Products
164 New Products Index
218 New Books
220 Technical Abstracts
222 New Literature
227 Newsletter from Abroad

Technical Articles

I. Design

Microwave 76 Monolithic IC techniques produce first all-silicon X-band switch (cover)
Diodes integrated with microstrip line on silicon pave the way for microwave IC's
Alfred Ertel, Texas Instruments Incorporated

Design theory 82 Computer-aided design, part 5:
Doing a model job
Setting up active device models for computers is a complex but vital task in the CAD process
Cyrus O. Harbort, University of Texas

Circuit design 88 Designer's casebook
- Polarized light triggers remote control system
- Differential Schmitt trigger with 200-k input impedance
- Low voltage supply produces good regulation at low cost

II. Applications

Integrated electronics 92 Integrated circuits in action, part 4:
Postmortems prevent future failures
Failure analysis is an important tool for the IC designer in assuring reliability. It's essential to know the right methods for tracking down the causes of failure.
Seymour Schwartz, NASA Electronic Research Center

97 Instruments for failure analysis
A four-page gatefold lists equipment used to detect physical, chemical, mechanical and electrical abnormalities in integrated circuits.

Instrumentation 108 Chronometer expands pulses to measure nanosecond intervals
Literally stretching time resolves fast pulse measurements accurately.
George M. Ettinger, G. & E. Bradley, Ltd.

Space electronics 115 1. Apollo radar views the moon
Radar systems for the Lunar Module carry a heavy responsibility, serving the multiple complex tasks of rendezvous, landing and orbiting calculations.

119 2. New radar systems will map the planets and rescue astronauts
Looking beyond Apollo, radar is slated to play a big part in space exploration, space stationkeeping and rescue.
Richard F. Broderick, NASA Manned Spacecraft Center
Senior associate managing editors
News: Kemp Anderson
Design: Computers: Senior associate editors
Special Avionics: W. J. Evanizia
Instrumentation: Carl Moskowitz
Military electronics: John Mason
New products: William P. O'Brien
Staff writers: William Olcott, Paul Dickson, Jan Rahm

Regional bureaus
Domestic
Boston: Thomas Maguire, manager; Robin Carlson
Los Angeles: William B. Wallace, manager; June Ranill
San Francisco: Walter Barney, manager; Mary Jo Jadin
Washington: Robert W. Henkel, manager; William D. Hickman,
Patricia C. Hoehling, correspondents

Foreign
Bonn: John Gosch
London: Michael Payne
Tokyo: Charles Cohen

Copy editors
David Goller; Albert Tannenbaum, James Chang

Graphic design
Art director: Saul Sussman
Assistant art directors: Ann Mella, Valerie Betz
Production editor: Arthur C. Miller

Editorial secretaries: Marlene Angrist, Claire Benell, Lynn Emery, Lorraine Fabry,
Kay Fontana, Patricia Gardner, Lorraine Longo

McGraw-Hill News Service
Director: John Wilhelm;
Atlanta: Fran Ridgway;
Chicago: James Rubenstein;
Cleveland: Arthur Zimmerman;
Dallas: Marvin Reid;
Detroit: N. Hunter;
Houston: Robert E. Lee;
Los Angeles: Michael Murphy, Gerald Parkinson
San Francisco: Margaret Dressel
Seattle: Ray Bloom;
Washington: Herbert W. Cheshire, Beth Payne, Warren Burket

McGraw-Hill World News Service
Bonn: John Johnsrud;
London: John Shinn;
Mexico City: Bruce Cross;
Milan: Ronald Taggiasco;
Moscow: Howard Rausch;
Paris: Peter Kilborn;
Rio de Janeiro: Wes Perry;
Tokyo: Marvin Petal

Reprints: Susan Nugent

Publisher: Gordon Jones

Published at 99 North Broadway, Albany, N.Y. 12207; second class postage paid at Albany, N.Y.

Subscriptions are solicited only from those actively engaged in the field of the publication. Position and company connection must be indicated on orders. Subscription prices: United States and possessions and Canada, $8.00 one year, $12.00 two years. $16.00 three years; all other countries, $25.00 one year. Single copies, United States and possessions and Canada, $1.00; all other countries, $1.75.

Officers of McGraw-Hill Publications: Joseph H. Allen, President; Bayard E. Sawyer, Executive Vice President; Victor L. Slaughter, President-Financial Operations; John R. Callahan, Editorial; Donald C. McGraw, Jr., Marketing; John M. Holden, Marketing Services; Huber M. Kennivirus, Circulation; Angelo S. Renzoni, Production; Robert M. Wilhelmy, Controller.

Officers of the Corporation: Donald C. McGraw, Chairman of the Board; Shilton Fisher, President; L. Keith Goodrich, Hugh J. Kelly and Robert E. Slaughter, Executive Vice Presidents; John J. Croke, Vice President and Secretary; John L. McGraw, Treasurer.

Title registered in U.S. Patent Office; © Copyright 1967 by McGraw-Hill, Inc. All rights reserved. The contents of this publication may not be reproduced either in whole or in part without the consent of copyright owner.

Subscribers: The publisher, upon written request to our New York office from any subscriber, agrees to refund that part of the subscription price applying to copies not yet mailed.

Please send change of address notices or complaints to Fulfillment Manager; subscription orders to Circulation Manager, Electronics at address below. Change of address notices should provide old as well as new address, including postal zip code number. If possible, attach address label from recent issue. Allow one month for change to become effective.

Postmaster: Please send form 3579 to Fulfillment Manager, Electronics, P.O. Box 430, Hightstown, New Jersey 08520

Missing dot

To the Editor:
The circuit used to monitor under-voltage and over-voltage in the Designer's casebook [Dec. 12, p. 106] is wrong. The cathodes of scr_1 and scr_2 should be tied to the anode of D_3. Furthermore, D_2 is not shown and it is assumed to be the IN968D.

Barry A. Bertani
Motorola Semiconductor
Phoenix, Ariz.

- Reader Bertani is right. The connection dot between the cathodes of scr_1 and scr_2 and diode D_3 is missing.

Lobing technique not new...

To the Editor:
In Electronics [Oct. 17, p. 38], you described some of the work that Winston E. Kock initiated at NASA's Electronic Research Center. One item described as new technology was the use of sequential lobing techniques in radio astronomy observations to eliminate the effects of "radiation from the earth."

In 1960, the technique was used with a maser radiometer at the University of Michigan's Radio Astronomy Observatory and the university continues to use the technique successfully. Since that time it has also been used at a number of other observatories as well, most notably by Baars and Metzger at the National Radio Astronomy, Green Bank, W. Va.

In addition to reducing the effects of atmospheric noise, the technique approximately doubles the signal-to-noise ratio of a single observation when a scan of a radio source is made.

Theodore V. Seling
Associate research engineer
Radio Astronomy Observatory
Ann Arbor, Mich.

... but there were improvements

To the Editor:
In my brief discussion of the use of sequential lobing techniques employed by Haroulis and Brown at the NASA Electronics Research...
RESISTORS FOR PERSPICACIOUS DESIGN ENGINEERS

Extended-range Filmistor Resistors now give you dramatic space savings in all wattage ratings — 1/20, 1/10, 1/8, 1/4, 1/2, and 1 watt — with absolutely no sacrifice in stability!

Filmistors offer extended resistance values in size reductions previously unobtainable. For example, you can get a 4.5 MΩ resistor in the standard 1/4 watt size, which had conventionally been limited to 1 MΩ. Filmistor Metal-Film Resistors are now the ideal selection for "tight-spot" applications in high-impedance circuits, field-effect transistor circuits, etc.

Other key features are ±1% resistance tolerance, low and controlled temperature coefficients, low inherent noise level, negligible coefficient of resistance, and rugged molded case.

Filmistors surpass the performance requirements of MIL-R-10590E.

Write for Engineering Bulletin 7025C

ACRASIL® PRECISION/POWER WIREWOUND RESISTORS

These silicone-encapsulated resistors combine the best features of both precision and power wirewound types, giving them unusual stability and reliability.

Acrasil Resistors are available with tolerances as close as ±0.5%, in power ratings from 1 to 10 watts. Resistance values range from 0.5 ohm to 66,000 ohms.

Their tough silicone coating, with closely matched expansion coefficients, protects against shock, vibration, moisture, and fungus.

Acrasil Resistors meet or exceed the requirements of MIL-R-26C.

Write for Engineering Bulletin 7400B, 7401

BLUE JACKET® VITREOUS ENAMEL PRECISION/POWER WIREWOUND RESISTORS

Axial-lead resistors available in ratings from 1 to 11 watts, with resistance tolerances to ±1%. Non-inductive windings available to ±2% tolerance.

All welded end-cap construction securely anchors leads to resistor body. Vitreous coating and ceramic base have closely matched expansion coefficients.

Write for Engineering Bulletins 7410D, 7411A

KOLOOHM® CERAMIC-SHELL POWER WIREWOUND RESISTORS

Koolohm Resistors are furnished in axial-lead, axial-tab, and radial-tab styles, in a broad range of ratings from 2 to 120 watts. Both standard and non-inductive windings are available.

Exclusive ceramic-insulated resistance wire permits "short-proof" multilayer windings on a special ceramic center core for higher resistance values. The tough nonporous ceramic shell provides complete moisture protection and electrical insulation. Koolohms can be mounted in direct contact with chassis or "live" components.

Axial-lead Koolohm Resistors to MIL-R-26C are available in MIL-R-26C.

Write for Bulletins 7300, 7305, 7310

Sprague Stackohm Resistors are especially designed for equipment which requires power wirewound resistors of minimum height. Their flat silhouette permits stacking of resistor banks in close quarters.

Aluminum thru-bars with integral spacers act as mounting means and also conduct heat from within the resistance element. Resistance windings are welded to end terminations for maximum reliability. An outstanding vitreous coating protects the assembly against mechanical damage and moisture. Ceramic core, end terminations, and vitreous enamel are closely matched for coefficient of expansion.

Stackohm Resistors are available in both 10-watt and 20-watt ratings, and can be furnished with resistance tolerances as close as ±1%. Resistance values range from 1 ohm to 6000 ohms.

Both 10- and 20-watt types meet the stringent requirements of MIL-R-26C.

Write for Engineering Bulletin 7430

Send your request to Technical Literature Service, Sprague Electric Co., 35 Marshall St., North Adams, Mass. 01247, indicating the engineering bulletins in which you are interested.

ON READER-SERVICE CIRCLE 495
ON READER-SERVICE CIRCLE 496
ON READER-SERVICE CIRCLE 497
ON READER-SERVICE CIRCLE 498
ON READER-SERVICE CIRCLE 499

SPRAGUE COMPONENTS

RESISTORS PULSE TRANSFORMERS CERAMIC-BASE PRINTED NETWORKS
CAPACITORS INTERFERENCE FILTERS PACKAGED COMPONENT ASSEMBLIES
TRANSISTORS PULS-E FORMLING NETWORKS BOBBIN AND TAPE WOUND MAGNETIC CORES
THIN-FILM MICROCIRCUITS TOROIDAL INDUCTORS SILICON RECTIFIER GATE CONTROLS
INTEGRATED MICROCIRCUITS ELECTRIC WAVE FILTERS FUNCTIONAL DIGITAL CIRCUITS

Sprague Stackohm Resistors are especially designed for equipment which requires power wirewound resistors of minimum height. Their flat silhouette permits stacking of resistor banks in close quarters.

Aluminum thru-bars with integral spacers act as mounting means and also conduct heat from within the resistance element. Resistance windings are welded to end terminations for maximum reliability. An outstanding vitreous coating protects the assembly against mechanical damage and moisture. Ceramic core, end terminations, and vitreous enamel are closely matched for coefficient of expansion.

Stackohm Resistors are available in both 10-watt and 20-watt ratings, and can be furnished with resistance tolerances as close as ±1%. Resistance values range from 1 ohm to 6000 ohms.

Both 10- and 20-watt types meet the stringent requirements of MIL-R-26C.

Write for Engineering Bulletin 7430

Send your request to Technical Literature Service, Sprague Electric Co., 35 Marshall St., North Adams, Mass. 01247, indicating the engineering bulletins in which you are interested.

ON READER-SERVICE CIRCLE 495
ON READER-SERVICE CIRCLE 496
ON READER-SERVICE CIRCLE 497
ON READER-SERVICE CIRCLE 498
ON READER-SERVICE CIRCLE 499

SPRAGUE COMPONENTS

RESISTORS PULSE TRANSFORMERS CERAMIC-BASE PRINTED NETWORKS
CAPACITORS INTERFERENCE FILTERS PACKAGED COMPONENT ASSEMBLIES
TRANSISTORS PULS-E FORMLING NETWORKS BOBBIN AND TAPE WOUND MAGNETIC CORES
THIN-FILM MICROCIRCUITS TOROIDAL INDUCTORS SILICON RECTIFIER GATE CONTROLS
INTEGRATED MICROCIRCUITS ELECTRIC WAVE FILTERS FUNCTIONAL DIGITAL CIRCUITS

Sprague Stackohm Resistors are especially designed for equipment which requires power wirewound resistors of minimum height. Their flat silhouette permits stacking of resistor banks in close quarters.

Aluminum thru-bars with integral spacers act as mounting means and also conduct heat from within the resistance element. Resistance windings are welded to end terminations for maximum reliability. An outstanding vitreous coating protects the assembly against mechanical damage and moisture. Ceramic core, end terminations, and vitreous enamel are closely matched for coefficient of expansion.

Stackohm Resistors are available in both 10-watt and 20-watt ratings, and can be furnished with resistance tolerances as close as ±1%. Resistance values range from 1 ohm to 6000 ohms.

Both 10- and 20-watt types meet the stringent requirements of MIL-R-26C.

Write for Engineering Bulletin 7430
Introducing... RCA Solid-State GaAs Optical Devices

- Injection Lasers with 1- to 50-W outputs at room temperature and threshold currents below 15 A
- Miniature IR Diode Emitter with focused light output

RCA Electronic Components and Devices

<table>
<thead>
<tr>
<th>TA2628 laser</th>
<th>TA2930 laser</th>
<th>TA7008 IR diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Power Output (min) @ 27°C</td>
<td>1 W @ 30 A</td>
<td>50 W @ 30 A</td>
</tr>
<tr>
<td>Threshold Current</td>
<td>15 A</td>
<td>15 A</td>
</tr>
<tr>
<td>Output Wavelength</td>
<td>9050 Å ±50</td>
<td>9050 Å ±50</td>
</tr>
<tr>
<td>Line Width</td>
<td>5–10 Å</td>
<td>60–100 Å</td>
</tr>
<tr>
<td>Operating Temp.</td>
<td>−196 to 50°C</td>
<td>−196 to 50°C</td>
</tr>
<tr>
<td>Pulse Width / Repetition Rate</td>
<td>0.2 μs/1000 pps</td>
<td>0.2 μs/1000 pps</td>
</tr>
</tbody>
</table>

RCA's wealth of semiconductor experience introduces a new dimension of practicality to solid-state lasers and light diodes. Available now in sampling quantities, each of these optical devices represents an important new tool for the field of electro-optics.

Check these performance benefits of RCA's TA2628 and TA2930 laser diodes:

- **Practical Power Outputs**—conservative peak power rating from 1 to 50 W at room temperature.
- **Practical Pulse Currents**—lasing action begins with threshold currents below 15 A.
- **Practical Circuit Usage**—Inexpensive semiconductor pulse circuits can be used without cryogenic hardware.
- **Practical Size**—hermetically sealed in modified TO-5 and TO-46 packages.

RCA's new laser diodes are ready now for your evaluation in applications such as secure communications, intrusion alarms, traffic control, instrumentation, ranging and field illumination.

And RCA's new TA7008 IR emitter is equally exciting. Featuring a miniature but highly efficient parabolic reflection system, this tiny device provides a new source of focused light for applications such as card-reading.

Call your RCA representative today for more information on RCA's new family of developmental optical devices. For data sheets and application notes on laser power supplies, write RCA Commercial Engineering, Section 1N1-4, Harrison, N.J.

The availability of the TA2930 laser array is presently limited to qualified defense contractors.
Center, it was not possible to dwell upon the particular areas of advancement resulting from this work. These include improvements, through the use of sequential lobing, in: the angle boresighting performance of a radiometric antenna; the position determination measurements, particularly for low-angle refractive measurements; the determination of the spatial distribution of atmospheric inhomogeneities and the measurement of radio star flux density ratios. These will be discussed in forthcoming publications.

Winston E. Kock
Vice President, chief scientist
Bendix Corp.
Detroit

Up front
To the Editor:
If the zip code is so important [Newsletter, Dec. 26, p. 25], why isn’t it placed in an important position, instead of being tacked on the end? Why not this:
94002
F.E. Emerson
000 Main Street
Belmont, Calif.
Attn. Mr. Jojo, etc.

F.E. Emerson
Belmont, Calif.

State variable simplified
To the Editor:
Louis dePian’s article “Analyzing networks with state variables” [Dec. 26, 1966, p. 63] is slightly misleading because of the inference that the order of a network, in general, is the total number of inductors and capacitors, and that the state variables include all of the inductor currents and capacitor voltages.

The order of a passive network and hence the number of first-order, dynamically independent differential equations required to describe it is equal to the total number of inductors plus capacitors minus the number of capacitance loops and inductance cut-sets. (An inductance cut-set can be identified by locating a node to which only inductors are connected.) Thus the order of a realistic circuit with numerous reactive parasitic elements might be considerably less than the total number of capacitors and inductors. This point is important because one usually wants to obtain the minimum number of equations to describe a model, especially when setting up a problem for digital computation.

Robert B. Mangold
Pittsburgh

The author replies:
Robert Mangold is indeed correct in his comments. The order of a passive network and hence the number of first-order, dynamically independent differential equations required to describe them are equal to the total number of inductors plus capacitors, minus the number of capacitance loops and inductance cut-sets.

However, in the examples given in the article the number of capacitance loops and inductance cut-sets was equal to zero. This was intentionally done so that the examples would be simple and the theory would not be too complex for the reader to grasp.

Louis dePian
George Washington University
Washington

SUBSCRIPTION SERVICE
Please include an Electronics Magazine address label to insure prompt service whenever you write us about your subscription.

Mail to: Fulfillment Manager
Electronics
P.O. Box 430
Hightstown, N.J. 08520

To subscribe mail this form with your payment and check □ new subscription □ renew my present subscription

Subscription rates: in the U.S.: 1 year $8; two years, $12; three years, $16. Subscription rates for foreign countries available on request

CHANGE OF ADDRESS
ATTACH LABEL HERE
If you are moving, please let us know five weeks before changing your address. Place magazine address label here, print your new address below.

name
address
city state zip code
Did You Know Sprague Makes 32 Types of Foil Tantalum Capacitors?

125°C TUBULAR TANTALEX® CAPACITORS

- Type 120D polarized plain-foil
- Type 121D non-polarized plain-foil
- Type 122D polarized etched-foil
- Type 123D non-polarized etched-foil

ASK FOR BULLETIN 3602C

Circle 332 on readers service card

85°C TUBULAR TANTALEX® CAPACITORS

- Type 110D polarized plain-foil
- Type 111D non-polarized plain-foil
- Type 112D polarized etched-foil
- Type 113D non-polarized etched-foil

ASK FOR BULLETIN 3601C

Circle 333 on readers service card

RECTANGULAR TANTALEX® CAPACITORS TO MIL-C-3965C

- Type 300D polarized plain-foil
- Type 301D non-polarized plain-foil
- Type 302D polarized etched-foil
- Type 303D non-polarized etched-foil

ASK FOR BULLETIN 3650

Circle 334 on readers service card

TUBULAR TANTALUM CAPACITORS TO MIL-C-3965C

- CL20, CL21 125°C polarized etched-foil
- CL22, CL23 125°C non-polarized etched-foil
- CL24, CL25 85°C polarized etched-foil
- CL26, CL27 85°C non-polarized etched-foil
- CL30, CL31 125°C polarized plain-foil
- CL32, CL33 125°C non-polarized plain-foil
- CL34, CL35 85°C polarized plain-foil
- CL36, CL37 85°C non-polarized plain-foil

Circle 335 on readers service card

For comprehensive engineering bulletins on the capacitor types in which you are interested, write to:
Technical Literature Service
Sprague Electric Company
35 Marshall Street
North Adams, Mass. 01248

The Norden division of the United Aircraft Corp., which is producing custom linear integrated circuits for the Apollo, Minuteman and Poseidon programs, has now decided to produce IC's for the mass market. To lead the way, Norden has hired Bernard J. Rothlein as general manager of its newly created solid state department. The 47-year-old Rothlein has a doctorate in physics.

Signs of expansion appear everywhere at the company's sprawling facility in Norwalk, Conn. About 200 employees from another department have been moved to a different site to make room for the burgeoning solid state department, and more transfers are planned.

Reverse. In entering the mass market, Norden has reversed the...
Highest Power Level for RF operation at C-Band: MACHLETT miniature planar triodes

For comparable size and weight in the C-Band region, and higher, the Machlett miniature planar triode provides the highest plate dissipation capability with correspondingly high duty cycle and rf power output. 1 kW grid pulse operation is currently being achieved at 6 Gc with the ML-8630. From cathode rf heater contact to anode rf surface contact, these new tubes ML-8629, ML-8630 and ML-8631 measure only .565 inches high by .7 inch diameter. These "8600 series" tubes will dissipate 100 watts, or more, with suitable cooling devices. Frequency stable for quick on-frequency performance. Phormat cathode for high voltage stability.

For complete details, write The Machlett Laboratories, Inc., Springdale (Stamford), Conn. 06879.
How do you get a 1,200-ft. satellite antenna on an itty-bitty spool?

To provide improved radio communications with space satellites, a 1,200-ft. antenna is stored on a tiny reel in the capsule. The antenna itself is a strip of precision-rolled beryllium copper 2" wide by .002" thick. It is heat treated, then uniquely formed to become a self-supporting tube antenna when unreeled.

This precision-rolled, heat-treated strip is supplied by Hamilton Precision Metals—a prime source of rolled or drawn metals made to rigid tolerances in mass production quantities. With its expanded facilities, Hamilton is now producing 7 proprietary metals, 112 commercial alloys and 12 pure metals—*in quantity*.

Check with Hamilton Precision Metals on your electronic metals requirements for precision strip, foil or wire. Write today for a completely new brochure giving full information about our capabilities as well as detailed properties of over 100 metals.

HAMILTON PRECISION METALS

division of Hamilton Watch Company ■ Lancaster, Pa. 17604

People

Believers in a high degree of specialization in undergraduate engineering education, a viewpoint neither common nor popular in Britain these days, have a champion in **Emrys Williams**, the new president of Britain's Institution of Electronic and Radio Engineers. Williams, 56, a professor at the University of Wales, has devoted nearly all of his working life to teaching electronics engineering.

In his inaugural speech he attacked the prevalent view that a man will be a better engineer and engineering a better profession if undergraduate courses contain a fair dose of marginal studies like management techniques, languages and world affairs. Williams says that it is the beauty of pure engineering that attracts the young and induces them to go on to study technology.

Insisting that undergraduates study management may dissuade them completely. “Management, like whiskey, is an acquired taste, and neither has much drawing power for the schoolboy.”
The Sorensen QSB Series, medium range power supplies available in 25, 50, 100 watt models (6, 12, 18 and 28 Vdc nominal) provide laboratory performance in compact bench or rack packages that are ideally suited for budget-type OEM computer, communications and test instrumentation applications. Features such as: precise regulation (+-.005% line and load for most models), low ripple (250 µV rms, 1 mV peak to peak), response time (30 µs), all combined with prices starting at $115. Other features include: inputs 105-125/200-240/210-250 Vac, 47-420Hz; current regulation ±.01%; temp. range 0-71°C; temp. coefficient .015%/°C; stability .025%/h; remote programming and sensing; series/parallel operation. For additional QSB details, or for data on other standard/custom power supplies, AC line regulators or frequency changers, contact your local Sorensen representative, or Raytheon Company, Sorensen Operation, Richards Ave., Norwalk, Connecticut 06856. Telephone: 203-838-6571. TWX 710-468-2940.

Sorensen
OEM/Lab. Power Supply

New Sorensen QSB’s give you OEM prices with laboratory performance.
These solve most of your frequency synthesis problems.

20 µsec typical frequency switching time
- increments as small as 0.01 Hz
- digital push-button and remote frequency selection
- search oscillator for continuous tuning, sweep capability
- low spurious signals
- high stability
- spectral purity
- solid-state modular design
- direct synthesis for best stability, fast switching and fail-safe operation.

1. **NEW! A 500 MHz model**—the 5105A—100 kHz to 500 MHz in steps as small as 0.1 Hz. Spurious signals 70 dB down. Output: 0 dBm ±1 dB. Phase modulation capability: ±3 radians max. deviation, DC to 1 MHz rate. Price: $9150. Requires 5110B Driver (will operate up to four 5105A’s), $4350.

2. 5100A/5110A Synthesizer — 0.01 Hz to 50 MHz in steps as small as 0.01 Hz. Spurious signals 90 dB down. Output 1V rms ±1 dB, 100 kHz to 50 MHz; 1 V rms +2 dB, -4 dB, 50 Hz to 100 kHz. A dc to 100 kHz output (15 mV) is also supplied. Price: $8150. Requires 5110A Driver (will operate up to four 5100A’s), $4350.

3. 5102A Synthesizer — Dual-range 0.01 Hz to 100 kHz with increments as small as 0.01 Hz, and 0.1 Hz to 1 MHz with increments as small as 0.1 Hz. Spurious signals 90 dB down (70 dB down in 1 MHz range). Adjustable output 300 mV to 1 V rms (80 mV < 50 Hz); auxiliary outputs include a (dc to 1 MHz) + (30 MHz) signal. Price: $6500.

4. 5103A Synthesizer—Dual-range, 0.01 Hz to 1 MHz, increments as small as 0.1 Hz; and 0.1 Hz to 10 MHz, increments small as 1 Hz. Spurious signals 70 dB down (50 dB down in 10 MHz range). Output adjustable from 300 mV to 1 V rms (20 mV < 50 Hz); auxiliary outputs include a (dc to 1 MHz) + (30 MHz) signal. Price: $7100.

Also available: The **10514A Double-Balanced Mixer**, extracts the sum or difference of two input frequencies with low noise, high efficiency, low intermodulation; input 200 kHz to 500 MHz, output at to 1 MHz. Price $180 (less in quantity).

The **10515A Frequency Doubler**, extends the usable frequency range of synthesizers or other signal sources; input 500 kHz to 500 MHz, output 1 MHz to 1 GHz. Price $120.

The **10511A Spectrum Generator**, generates a train of 1 nsec pulses when driven by a sine wave; produces harmonics into the 1 GHz region. Price $150.
They solve the rest.

If a Hewlett-Packard standard model frequency synthesizer won't handle your requirements, don't worry. Our team of highly experienced synthesizer engineers can consult with you and build a special synthesizer if it's feasible. Frequency synthesizer design is their full-time job, not a sideline.

In most applications, though, you'll find that you can meet your "special" requirements with high-performance HP standard synthesizers. They're especially useful for their fast switching, and give you a remarkably broad source of spectrally pure, stable frequencies. Signals are derived from a stable internal frequency standard, (aging rate < ±3 x 10^-7/24 hours), or you can use an external 1 or 5 MHz standard. The instruments use a direct synthesizing technique (arithmetic operations instead of phase-locked oscillators) to preserve frequency standard stability and provide fast frequency selection and fail-safe operation. But if you do need a special, remember that we've got the specialists.

For more information, call your HP field engineer or write Hewlett-Packard, Palo Alto, California 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva.
Meetings

Ultrasonic Manufacturers Association Technical Symposium and Meeting, Ultrasonic Manufacturers Association; New York, Jan. 25.

Conference on Color Television Broadcasting, Society of Motion Picture and Television Engineers; Park Shelton Hotel, Detroit, Jan. 27-28.

Power Meeting, IEEE; Statler Hilton Hotel, New York, Jan. 29-Feb. 3.

Forum on Electromagnetics and Antennas, Electrical Engineering Department at the University of Illinois, Urbana, Ill., Jan. 30-Feb. 3.

Electronic Packaging Conference, Society of Automotive Engineers; Roosevelt Hotel, New York, Feb. 14-16.

Numerical Control Society Conference, Statler Hilton Hotel, Detroit, March 1-3.

Particle Accelerator Conference—Accelerator Engineering and Technology, IEEE; Shoreham Hotel, Washington, March 1-3.

Temperature Measurements Society Conference and Exhibit, Temperature Measurements Society; Hawthorne Memorial Center, Los Angeles, March 14-15.

Photovoltaic Specialists Conference, IEEE; Sheraton Cape Colony Inn, Cocoa Beach, Fla., March 28-30.

Symposium on Microwave Power, International Microwave Power Institute; Stanford University, Stanford, Calif., March 29-31.

Business Aircraft Conference and Engineering Display, Society of Automotive Engineers; Broadview Hotel, Wichita, Kan., April 5-7.

International Electronic Components Show, FNIE; Porte de Versailles, Paris, April 5-10.

Technical Meeting and Equipment Exposition, Institute of Environmental Sciences; Washington, April 10-12.

Call for papers

Association for Computing Machinery Conference, Association for Computing Machinery; Sheraton Park Hotel, Washington, Aug. 29-31. Feb. 20 is deadline for submission of abstracts to Jack Minker, program manager, Auerbach Corp., 1815 N. Fort Meyer Drive, Arlington, Va. 22209

* Meeting preview on page 16
In a crowd or all alone, the Fluke 332A DC Voltage Calibrator stands out. There isn’t another calibrator on the market at any price that offers all the advanced technical and user features. By any measure, it’s the leader!

This is the solid state 0.003% voltage calibrator with variable current limiting and overvoltage trip. □ Line and load regulation, 0.0005% of setting. □ Panel meter monitors either output voltage or current. □ No cooling fan is needed, so you can forget about damage from dirt and dust. □ All circuits are shielded and guarded. □ Resolution is 0.1 ppm. □ Only 7 inches high. □ Weighs 40 lbs. □ Price is $2490. □ For more information on the Fluke 332A Voltage Calibrator, call your full service Fluke sales engineer (listed in EEM) or write directly to the factory.
METFILM 'A' CAPACITORS . . .
dramatically smaller in size, yet more reliable than military-grade capacitors of the past!

Just a few years ago, the only $10 \mu F$ capacitor considered dependable enough for military applications was Type CP70 (to JAN-C-25), and was a block-busting $3\frac{3}{4}" \times 1\frac{3}{4}" \times 4"$ high. Today, you can get a military-quality $10 \mu F$ tubular capacitor measuring only $\frac{1}{2}"$ in diameter $\times 1\frac{1}{2}"$ long. And it's more reliable than any capacitor of the past!

Sprague Type 680P Metfilm 'A' Metallized Capacitors meet all environmental requirements of MIL-C-18312, yet they occupy only one third the volume of conventional metallized film capacitors of equivalent capacitance and voltage rating. Employing a new thin organic film dielectric system, Type 680P capacitors use a dual film totalling only 0.00008" thick, as compared to conventional polyester-film capacitors with a single film measuring 0.00015".

Another distinct advantage of the Metfilm 'A' dielectric system is minimum degradation of electrical properties during life.

Hermetically sealed in corrosion-resistant metal cases, capacitor sections are effectively of non-inductive construction, resulting in capacitors with performance characteristics superior to those of comparably-sized capacitors.

Type 680P Metfilm 'A' Capacitors are available with capacitance values to $10 \mu F$ in both 50 and 100 volt ratings.

*Trademark
First come first served.

You can have all the SDS T Series integrated circuit modules you want now. We're in full production.

All T Series active elements are integrated circuits and guarantee reliable operation at clock rates to 10 mc. Each circuit output drives 14 unit loads, even after generous allowances for wiring capacitance.

Outputs switch 60 ma (4 times more than standard IC's). Noise rejection is at least 1.5 volts at the 0 and 4-volt logic levels.

SDS Natural Logic gives you AND and OR as well as NAND and NOR — all at the same low integrated-circuit price.

We designed these modules for our new Sigma computers, but we also intend to become the largest manufacturer of logic modules for system designers.

We don't want to give away any of our Sigma secrets. But we'll sell them pretty cheap.

SDS Natural Logic gives you AND and OR as well as NAND and NOR — each card uniquely keyed for proper installation.

Test points.

Ground plane laminated through middle of entire glass-epoxy board.

Load resistors separate from IC's for heat isolation.

Discrete diode-resistor inputs for gating flexibility, high noise rejection.

Four pins reserved for ground lines.

Four integrated-circuit buffer amplifiers in each hermetically sealed TO-5 can.

52 ribbon connectors (26 each side) for easy access to all circuits.

All components clearly identified.

Individual power line filters.

Actual size 4¼ x 4¾.
As simple as this:
Swept swr measurements in coax from 2 to 18 GHz with slotted line accuracy and at low cost

From Hewlett-Packard: Fully compatible elements that answer your need for highest accuracy in wide-range swept swr measurements in coax.

Swept Slotted Line System

consisting of 816A Coax Slotted Section in 809C Universal Probe Carriage with 448A Slotted Line Sweep Adapter.

Frequency coverage is 2 to 18 GHz for either 7 mm connectors (Amphenol APC-7) or Type N (male and female).

Residual swr for APC-7: < 1.02 to 8 GHz, < 1.03 to 12.4 GHz, < 1.04 to 18 GHz.

Residual swr for Type N: < 1.03 to 8 GHz, < 1.04 to 12.4 GHz, < 1.06 to 18 GHz.

Prices: 816A, $250; 448A, $400; 809C, $200.

8690 Series Sweep Oscillator

with plug-in RF units for octave or waveguide-band frequency “plug-in” economy. Start-stop sweep, marker sweep, calibrated ∆f sweep, manual sweep; all with highest accuracy and linearity. PIN diode leveling and modulation.

Prices: 8690A Main Unit, $1550; RF Units for 1-40 GHz, from $1575.

141A Variable Persistence Oscilloscope

with 1416A Swept Frequency Indicator. Get and retain swr envelope quickly, easily. 1416A’s logarithmic display gives swr in dB with high, 0.5 dB/cm resolution. Sixteen other plug-ins for 140A/141A Scopes result in greatest flexibility.

Prices: 141A, $1275; 1416A, $675.

The technique for making these precision broadband measurements is described in detail in Hewlett-Packard Application Note 84, yours for the asking. Data sheets are available from your local Hewlett-Packard field engineer. Or get all the data by writing Hewlett-Packard, Palo Alto, Calif. 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva.

Swept swr envelope of coax device over full frequency range of 8690A/8694B Sweep Oscillator (8-12.4 GHz). Vertical calibration is 0.5 dB/cm. SWR at any frequency is simply the amplitude of the envelope.

HEWLETT PACKARD

An extra measure of quality
To get high energy circuitry at the lowest cost: start here.

Application of Delco high voltage silicon power transistors:
Start with circuit designs using Delco high voltage silicon power.

The simple switching regulator in the diagram at left turns out 200 watts (2 amps) output at efficiencies exceeding 85%. And it does it with just one series element working directly from rectified line voltage: the new Delco DTS-410 transistor at just $1.95 each*.

Or if you need regulation of 250 volts DC and 400 watts output, the DTS-411 may be your answer. Cost? Just $3.15 each*. And for extra-high voltage applications, there’s the DTS-423, now priced at $4.95 each*.

Now combine our new low prices with these other cost-cutting advantages of Delco high voltage silicon power transistors: you can reduce the number and complexity of input, output and filtering components. This means more compact circuitry, greater reliability and lower assembly costs.

These NPN silicon transistors are packaged in a rugged TO-3 case for low thermal resistance. Inside, they are mounted to withstand mechanical and thermal shock because of special bonding of the emitter to base contacts.

There’s no need to be concerned about delivery. They are available right now in production quantities. Call us. Or order samples from your Delco distributor.

For details on the switching regulator circuit ask for application note number 39.

*Prices shown are for quantities of 1,000 or more.
Security is having a module with a lot of compatible friends.

If you manufacture equipment, and price, delivery and reliability mean something to you, it's best to stay loose. Pick modules from a line that gives you options — so you can optimize the design for price, or speed, or ease of assembly, or something else that you're worried about.

DIGITAL'S module line is the broadest, most functional, most complete module line anywhere. Integrated circuits, discrete components, hybrids. More than 120 of them. And each is electrically, physically, and logically compatible with each and every other.

It takes 330 pages of our Digital Logic Handbook to describe our series of Flip Chip* modules, details of the logic, and applications. It's yours for the asking.

And here's some added security: each of our modules is guaranteed for 10 years.

*DIGITAL Equipment Corporation, Maynard, Massachusetts 01754. Telephone: (617) 897-8821 • Cambridge, Mass. • New Haven • Washington, D.C. • Parsippany, N.J. • Rochester, N.Y. • Philadelphia • Huntsville • Pittsburgh • Chicago • Denver • Ann Arbor • Houston • Los Angeles • Palo Alto • Seattle • Carleton Place and Toronto, Ont. • Reading, England • Paris, France • Munich and Cologne, Germany • Sydney and West Perth, Australia • Modules distributed also through Allied Radio
Editorial

Transferring technology

As the 90th Congress convened last week, a Senate subcommittee prepared to investigate an old subject: the transfer of technology from Government-sponsored research, mainly paid for by the Defense Department and NASA, to the civilian economy. Chances are that the subcommittee members, like other nontechnical people who have probed the subject before, will conclude that there has been practically no transfer.

But this conclusion would be wrong. Much of the technology used and polished in defense and space programs has spread and is spreading to civilian projects. Those who can’t see it happening have been looking in all the wrong places.

What’s wrong, of course, is that the investigators keep hunting for a transfer of hardware, rather than of techniques or knowledge. They conclude there hasn’t been much transfer of technology because they can’t report that the steering wheel developed for the Gemini space vehicle is being used on automobiles, or that the integrated circuits produced for the Minuteman missile are going into television sets, or that computers developed for a strategic bomber are flying commercial jets.

Yet there is plenty of evidence that Government-sponsored research and development has spurred technical progress in civilian areas. In fact, Government-sponsored R&D is the greatest single stimulus to technical progress today; nothing else is even a close second.

If the probers look for a transfer of techniques and knowledge in electronics, they’ll find examples galore. The rapid evolution of the entire semiconductor industry from junction transistors to large-scale integrated arrays can be attributed mainly to military and space programs, which sometimes demanded new devices even when there was no reliability data for them or any assurance they could be made. Device-design rules, materials-processing skills and packaging know-how accumulated by semiconductor engineers working on military projects are being applied to the design and mass production of semiconductor devices for industrial and consumer applications. Without the pressure from these Federal programs, the transistor might still be a laboratory curiosity about which prospective Ph.D.’s write doctoral dissertations. Western Electric, at whose research arm—the Bell Telephone Laboratories—the transistor was invented in 1947, began putting the device into telephone systems only a couple of years ago.

Unquestionably, the Minuteman missile project launched integrated-circuit technology, and at such a speed that civilian concerns were able to use IC’s only two or three years after the first circuits went into military hardware. Although none of the same circuits developed for the missile’s computers are being used in third-generation commercial computers, work on this program taught engineers and semiconductor firms how to design and build other circuits now in use in computers, instruments and consumer products. And what was learned about packaging IC’s for this pioneering project is the basis for a lot of today’s IC-packaging knowledge.

Military programs deserve the same kind of credit for the development of many of the more accurate instruments for higher frequencies. Once measuring techniques were perfected for high-performance military systems, commercial customers—mainly in the computer and communications fields—found they could use them too.

Government money played a starring role in the application and development of computers, too. As the biggest user of electronic data processing in the world, the U.S. Government has encouraged and paid for improvements in machines, new software and new ways to use data processing.

Probably the most valuable contribution Government programs have made has been an educational one: they have forced technical people to learn new developments, new techniques and new products. Since technology is transferred by people, the first step in a transfer has to be educational. Not until engineers know and understand the new technology can it be applied to civilian endeavors.

Thus, the fastest transfer in electronics takes place in companies that handle both Government and civilian projects. For example, work being done today to improve the resolution of tape recorders for military reconnaissance will soon affect the design of studio equipment for commercial telecasting. Development of high-frequency, high-power transistors for space communincations systems will eventually lead to lower-cost high-reliability devices for civilian communications systems. And many of the techniques of command and control pioneered by the Defense Department are just now trickling into civilian applications.

If all this is true, why have there been so many investigations of the transfer of technology? The reason is that even believers in Government sponsorship of R&D have a nagging feeling that the transfer ought to be faster. They feel intuitively that overclassification of technical information, secrecy about nonessential programs and too many “need-to-know” restrictions hamper the normal and natural flow of technology. Proprietary interests in Government-backed research by contractors have also slowed the transfer.

But, on balance, the civilian economy of the U.S. has benefited hugely from the Government’s giant expenditures for military and space programs. The clearest evidence of this is the fact that foreign concerns fear the technical repercussions of U.S. Government programs more than any other factor in their markets.
Clifton synchros and rotating components have the priceless ingredient of our long experience in the manufacture of an endless variety of standard and exotic units.

What do you need in the way of accuracy, size, type, temperature, radiation or corrosion resistance, terminals or leads, double ended shafts, tandems or BuWeps types?

We also specialize in the custom design and manufacture of gyro pickoffs, single and multispeed, beryllium, stainless or aluminum housings. (Our units were chosen for the Apollo program.)

Clifton Precision Products, Division of Litton Industries, Clifton Heights, Pa., 215 622-1000.

Take the Chance out of Electromechanical Design Problems
Layoffs and curtailed work schedules are hitting some segments of the electronics industry.

Texas Instruments last week curtailed production of all semiconductors other than integrated circuits. The reason for the cutback: longer delivery schedules and a slowdown in orders.

At General Electric, a slowdown has cut through several electronic-appliance and semiconductor product lines. GE plans to furlough several thousand production workers in the next month; 600 have already been laid off. The reason: a slump in sales of television sets, dishwashers, ranges, semiconductors.

The work curtailment at TI is to continue for four weeks. The cutback, some sources say, was made to avoid laying off possibly as many as 3,000 workers. The firm’s first two work shifts for semiconductor output have been cut back one-half hour, and the third shift has been reduced by 12 minutes.

Motorola last month laid off 75 to 100 semiconductor production workers. [For more on semiconductor producers’ problems with slumps and prices, see page 142.]

The layoffs and work-week cuts come at a critical time. At TI, the Teamsters Union is said to be pressing to sign up some 23,000 Dallas-based workers. Earlier efforts by the union were unsuccessful. And in northern Santa Clara County, Calif., where most of the San Francisco Bay area electronics companies are clustered, the International Association of Machinists is making an organizing attempt. Next month the union will again try to sign up 2,600 workers at Fairchild Semiconductor after two earlier failures.

The Justice Department has launched an investigation into the state of competition in the booming computer industry, and the probe centers on the International Business Machines Corp.

The Government’s antitrust lawyers are looking into complaints by IBM’s competitors that the industry’s undisputed giant has engaged in predatory pricing practices and unfair sales and patent-licensing tactics—all of which may violate the Sherman Antitrust Act.

So far, the Government hasn’t shown its hand—publicly. It has yet to file a civil investigative demand, which would amount to a subpoena and would require IBM to supply specified documents.

Although IBM declines to concede it, the company controls about two-thirds of the world’s computer market.

One charge made against IBM is that in attempting to keep a tight hold on the market it has signed cross-licensing agreements with the number two firm in the industry (in terms of unit sales), the Sperry Rand Corp.’s Univac division. Other competitors maintain that IBM won’t sign similar agreements with them because they haven’t enough to offer IBM in return.

Other complaints being investigated concern IBM’s pricing and sales policies. Competitors complain that IBM drops its prices on those computer lines meeting competition, but keeps prices up in other lines, and...
Electronics Newsletter

deliberately cools competitors' sales prospects by announcing the introduction of new computers long before they become available.

A Gunn-effect oscillator, a factor-of-three multiplier and a balanced mixer, all monolithically combined on a single gallium arsenide chip, are the basis of a 94-gigahertz microwave receiver being developed by Texas Instruments for the Air Force.

The Gunn device, which will oscillate at about 30 Ghz, and the other active devices, will be formed from epitaxial layers grown through holes etched in the semi-insulating gallium arsenide substrate. The substrate crystal has a resistivity of about 10^8 ohm-centimeter, imparted by doping it with chromium. Interconnections on the chip will be made by microstrip lines [See cover and page 76].

And in a program for the Army, TI is developing a technique for growing islands of germanium in a gallium arsenide substrate. If perfected, this could lead to integrated microwave circuits with extremely low noise, since active germanium devices have less noise than either silicon or gallium arsenide.

A new source of radar power, producing megawatts, has been developed by Ikor Inc., a small company in Burlington, Mass. Pentagon officials took a look at the system—reportedly based on plasma principles—earlier this month, and were briefed on the technique.

New York City's traffic control system, mired for months in a dispute over the radar sensors that keep tabs on the traffic, is moving along again. The Sperry Gyroscope Co. has a $10 million contract to develop and install computer traffic controls in selected areas of the city but ran into trouble when the city's traffic commissioner maintained that the sensors failed to operate within the required 2% error margin. For this reason the city refused to accept the entire package—computers, sensors and related equipment. Suddenly, without explanation, the city announced that the sensors met the specs; Sperry also refused to elaborate. But an engineer close to the project summed it up this way: "We're still working with a 2% margin of error, only it's a more liberal interpretation of 2%.”

For Sperry, a subsidiary of the Sperry Rand Corp., the contract is important both for the prestige and the money. After the initial $10 million of traffic control gear is installed, the city plans to spend another $100 million or so on more equipment.

Engineers at NASA's Goddard Space Flight Center plan to improve the nation's weather satellite system by using microwave radiometers to measure ground temperature through clouds. The currently used infrared systems cannot penetrate cloud formations. The sensors, being built by the Space-General Corp., will be tested aboard an aircraft in April. They operate at a wavelength of 1.6 centimeter...Comsat's second Intelsat 2, which was orbited this month, will start commercial service over the Pacific about Jan. 26. Requests for channel space have already exceeded the satellite's 240-circuit volume.
We've got a chip on our shoulder!

Not enough of you know that we are one of the industry's leading manufacturers of high-quality 930 DTL digital integrated circuits. Well, we are.

Who has a larger more modern facility devoted exclusively to the manufacture of these kinds of microcircuits? (We don't dilute our efforts with the manufacture of a thousand other semiconductor components.)

Who has better yields in this DTL line? (Our manufacturing capability is unsurpassed, and we invite you to inspect it for yourself.)

Who can give you better delivery on these products? (It's pretty hard to beat our immediate delivery!)

Who can offer you better prices? (Try us on a quantity bid.)

Who has a more substantial name behind them than the "Stewart-Warner" name—a name associated with the manufacture of quality products for more than 85 years? (We'll be around to keep you supplied with microcircuits for years to come.)

Why have we got a chip on our shoulder? Not enough of you have tried our 930 DTL monolithic circuits, and that's too bad. We know you'd like our product, available in all the standard packages. So why not help us take the "chip" off our shoulder and put it in your equipment. Send for our 20-page "Composite Data Book" for the industry's best coverage of the 930 DTL series.

730 EAST EVELYN AVENUE, SUNNYVALE, CALIFORNIA 94086 / TELEPHONE: (408) 245-9200

STEWART WHITAKER MICROCIRCUITS, INC.
Glass encapsulated or unencapsulated wafer uniceram monolithic High Q ceramic fixed capacitors—offer a high ratio of capacitance per unit volume. They combine exceptional stability and a guaranteed minimum Q in a smaller size package than competitive units.

Over 1,000 glass encapsulated models, with capacitance values from 0.5 to 3000 pf, provide the ultimate in High Q—proven reliability and stability. All models meet applicable requirements of MIL-C-11272B.

Uniceram High Q capacitors are also available as wafers with metalized edges. These lower-cost units in the same capacitance values offer the same outstanding electrical properties. These wafers, or chips, ideally suited for hybrid integrated circuits, can be soldered directly to printed circuit boards or used as discrete components.

A High K series of Uniceram ceramic fixed capacitors with up to 1 mfd capacitance is also available. These glass encapsulated units meet applicable requirements of MIL-C-11015C. Volumetric efficiency...up to 48 mfd/in³.

Write for Catalog UNM 65-2.
High Power Pulses

for non-destructive testing of semiconductors

You name your own pulse parameters; the rest is up to the Model 350. Anything up to and including 20KW is yours with continuous variability of all pulse parameters, plus impedance-matching, polarity-inverting plug-ins for almost any load between 1/10 Ω with 400 amperes and 20,000 Ω with 19 KV. And you'll find it easier to operate than most ordinary low-power lab pulse generators.

pulsing modulating microwave tubes

testing the magnetizing current of pulse transformers

We can have a data sheet in the mail to you within nanoseconds. Send your name today!

laboratory experimenting

Output to 2,000 volts neg.
10 amps at 200 ohms

Ripple negligible

Droop less than 0.05% per μsec

Pulse width 0.1 to 200 μsec

Pulse repetition rate 3 to 100,000 pps

Rise time < 35 nanosec

PRICE $3,990 plus plug-ins

Fall time < 50 nanosec

MODEL 350 HIGH POWER PULSE GENERATOR

velonex laboratory experimentation 560 Robert Ave., Santa Clara, Calif. 95050 • (408) 244-7370 • TWX 910-338-0114
Monsanto and you: silent
partners for 20 years

Monsanto’s vast knowledge of plastics technology, applied to polyvinyl chloride, transforms it into versatile, reliable insulation for wiring applications that are basic to the electronics industry.

Monsanto COUNTER/TIMER 1010

You won’t find our name on PVC wiring insulation, although Monsanto’s contributions to high quality, utterly reliable insulation span two decades. Monsanto is expert in the science and technology of plastics; application of this knowledge makes PVC perform in your electrical applications.

Our name does appear on the growing Monsanto line of new state-of-the-art instruments. Monsanto counter-timers, pulse generators, and digital voltmeters are applications-oriented, precisely accurate, and highly reliable. They are designed by Monsanto engineers whose depth of knowledge shows in the high performance characteristics of every design. Each instrument symbolizes a continuing Monsanto tradition: use of fundamental research disciplines to develop sophisticated products of extraordinary value and technical merit.

We’d like to tell you more. We now have 33 fully staffed field offices; call your nearest Monsanto Field Engineering Representative for a demonstration. Or write to Monsanto, Electronics Technical Center, 620 Passaic Avenue, West Caldwell, New Jersey 07006. Or telephone: (201) 228-3800, Extension 34.

Monsanto PVC compounds for electrical and communications wire and cable provide insulation that is strong, tough, and highly resistant to oil attack. Shown here is part of the wiring system of a new direct-dial telephone installation.
More than 1000 hours from d-c to 1.5 MHz

Now try to get that through your head

You can... with a CEC Magnetic Recording Head.

In fact, considering that these recording heads last up to five times longer than any others, the 1000 hour guarantee seems rather conservative. In virtually every case, a CEC head will surpass a thousand hours with little or no indication of wear.

The reason: CEC recording heads are of a unique material and solid metal pole-tip design which completely eliminates the weakness of conventional lamination and rotary head designs.

This has resulted in superior performance at frequencies to 2 MHz and a minimum of wear and cleaning.

There is a CEC head for every analog and digital recorder.

Whatever make or model recorder you may now be using, CEC has the head to make the most of it, irrespective of the interface parameters. The “family” consists of more than 100 different recording heads, all with the same design advantages. Consequently, it is now possible to obtain state-of-the-art recording without replacing the basic instrument.

How were we able to achieve this breakthrough in head design? Through experience. CEC has not only been making magnetic recording heads longer than anyone else, but was the first to produce them on a quantity basis. And — because CEC uses precision machine construction where others rely on hand assembly.

For complete specifications and all the facts about this complete line of recording heads, call or write your nearest CEC field office.

CEC/DATAAPE PRODUCTS
Pasadena, California 91109

Bell Howell
The Switch to IC's

A Package Deal

So you've decided that integrated circuits are here, and you're going to use them in your very next design. Now you have some basic problems to solve. First, of course, is the question of which family of integrated circuits you should use. This will depend largely on your requirements and will involve you in trade-offs between performance (speed, power, etc.), cost, and availability. (In future application notes in this series we'll attempt to lay down some guidelines you can follow in making your selection.) Next is the question of packaging. Most IC families are available in four basic package types: transistor packaging (metal), transistor packaging (epoxy), ceramic flatpak, and Fairchild's own Dual in-line package (DIP). See reverse side for illustrations.

TRANSISTOR PACKAGE (METAL): When integrated circuits first came out, manufacturers turned to the same packaging they had used all along. They simply added 5 more leads to conventional TO-5 or TO-18 cans and came up with a highly satisfactory and economical means of forming circuits. The metal can has some obvious advantages: it is hermetic, withstands heat, and is important, perhaps, it requires no new production techniques on the part of the user. If you are using transistors, you can use integrated circuits in transistor packages without having to make any significant changes on the production line. The main limitation of the transistor package is the number of leads. It is limited to 10, and consequently you will find that some of the more complex integrated circuit functions are not available in this type of packaging.

TRANSISTOR PACKAGE (EPoxy): The epoxy package, like the metal can, is an extension of transistor technology. Its primary and considerable advantage is low cost, and it is the most economical of all IC packages. For this reason, it is used extensively in many industrial and consumer applications. Like the metal can, the epoxy package is limited to 10 leads. Additionally, it can not pass hermeticity tests under the extreme temperature conditions required by mil-specs, and its operation is normally limited to the middle temperature range: 0 to 70°C. This is still a broad enough range for most industrial applications, however, and this form of packaging is highly popular.

CERAMIC FLATPAK: The ¼" x ¼" Cerpak® was specifically created for integrated circuits and is associated with their most exotic uses. It is the smallest of the IC packages and has 14 leads, thus permitting the most dense usage of components. In other words, it offers the most functions per square inch. It is also hermetic, heat resistant, and impervious to other environmental hazards. On the other hand, the Cerpak is expensive to buy and to use. It does not lend itself to mass production techniques such as flow soldering: leads have to be position welded. For these reasons the Cerpak is used where both small size and environmental resistance are required, as, for example, aircraft and satellite equipment.

DIP: The Dual in-line package is a Fairchild innovation, specifically designed to overcome the limitations of both transistor packaging and the ceramic Cerpak. It currently offers up to 16 leads, rugged construction, a true hermetic seal, and ease of handling. It can be machine inserted and flow soldered, and it lends itself to all the standard industrial production methods. The trade-off is space: the DIP occupies more space than the Cerpak; because of its 16 leads, however, it can accommodate dual functions as compared to transistor packages.

TO SUMMARIZE: If your equipment must be small and also withstand extreme environments, use the Cerpak. If you're not crowded for space, use the Dual in-line. And if your equipment operates in mild environments, you will benefit from the economy offered by the epoxy package. And don't forget the IC version of the TO-5 can: it is often the easiest way to make your transition from discrete components to integrated circuits.
Time Code Generator

In essence, a time code generator is a highly accurate clock. It produces time code signals which are used by data acquisition systems to correlate information received from multiple sources. For example, a system may receive inputs from cameras, recorders, test instruments, and computers, and record all these inputs for future analysis. The time code signal provides a reference scale against which the various inputs can be synchronized when they are retrieved.

Electronic Engineering Company of California (EECO) manufactures a time code generator known as the EECO 911. This precision instrument generates up to 5 codes simultaneously, and displays time in days, hours, minutes, and seconds. The display can be preset to a selected standard, such as local time, Greenwich mean time, or any other desired reference.

A 1MHz oscillator provides the internal frequency standard, which is divided by the logic and stored in a digital register which accumulates the time of year. The register is scanned periodically to produce a serial code representation of the accumulated time. The counting logic is implemented with Fairchild's Series 960 CIJL (Counting Micrologic) circuits, and these are driven by Series 990 RTJL (Resistor-Transistor Micrologic) circuits.

The modular design of the instrument permits changing codes by simply interchanging a circuit card. Thus it is possible to choose the five codes generated from a wide variety of standard time codes, as required by the individual application. The low power consumption permits complete backup, using a 12V battery which can operate the instrument for an extended period of time (from 8 to 75 hours, depending on battery size and operating conditions).

The use of integrated circuits in this application, according to EECO, has resulted in a smaller, more compact unit. It has been possible to reduce the instrument's height by 30%, its weight by 50%, and its power consumption by 40%.

These improvements in operating features, size and versatility were effected while manufacturing costs were reduced by 25% over previous EECO models.

Codes may be changed by simply changing plug-in circuit boards.
This stator costs less thanks to a more expensive insulation...

MYLAR®

Pound for pound, MYLAR® polyester film costs just a little more than most other materials. But stator for stator, it costs less.

<table>
<thead>
<tr>
<th>Motor Stators insulated with 7½-mil MYLAR compared with powdered-resin coating</th>
<th>Cost Per Pound</th>
<th>Cost Per Stator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Speed Washing Machine</td>
<td>($1.40)</td>
<td>($1.20) but</td>
</tr>
<tr>
<td>1/4 HP</td>
<td>($1.40)</td>
<td>($1.20) but</td>
</tr>
<tr>
<td>General-Purpose, 1/3 HP</td>
<td>($1.40)</td>
<td>($1.20) but</td>
</tr>
<tr>
<td>Two-Speed, General-Purpose</td>
<td>($1.40)</td>
<td>($1.20) but</td>
</tr>
<tr>
<td>1/4 HP</td>
<td>($1.40)</td>
<td>($1.20) but</td>
</tr>
</tbody>
</table>

With thinner, flexible MYLAR you can replace heavier, bulkier insulation materials such as rubber, paper and resins. You can save on the weight, size and cost of your components.

MYLAR has excellent resistance to most chemicals and moisture, and can withstand temperatures from -60°C to +150°C. In addition, many systems using MYLAR as electrical insulation have received full Underwriters' Laboratory approval for Class A and Class B applications.

Find out how you can save costs and improve reliability. Mail the coupon today for a complete Fact File on MYLAR.

*Du Pont's registered trademark for its polyester film.

The same is true for relays, bus-bars, ballast transformers, step-switches, and many other electrical/electronic applications.

It is possible for you, too, to lower your insulation costs because less MYLAR is required for a given insulation value. The high cut-through resistance and lasting durability of MYLAR enables you to use thinner gauges.
Just when we've solved your synchro problem, somebody comes up with a new one.

Designing and producing Autosyn® Synchros to fill the everyday needs of our customers isn't enough. We also specialize in meeting the unique need and solving your specific requirements.

Fact: engineers needed smaller, lighter-weight synchros for space-critical designs. Solution: the new series of 16 Size 08 Autosyn Synchros.

Fact: supersonic aircraft applications demanded synchros that could consistently operate at ultra-high temperatures. Solution: eleven different Autosyn Synchros will perform accurately at temperatures up to 800°F.

Fact: we've built many of them to be corrosion- and radiation-resistant.

And we're able to provide synchros with tolerances as close as 50 millionths of an inch.

Meeting all needs has been our way of business since we began business in the 1920's. That's why the Bendix line of Autosyn Synchros (and Mil-Spec synchros) is the most extensive you can find. And it's why we're ready to solve your synchro problem.

Try us. Phone (717) 278-1161, Montrose, Pennsylvania. Or write for our new 42-page catalog.

Autosyn® Synchros

<table>
<thead>
<tr>
<th>Size</th>
<th>Max. Diameter (In.)</th>
<th>Typical Weight (Oz.)</th>
<th>No. of Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>0.750</td>
<td>1.3</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>0.937</td>
<td>1.7</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>1.062</td>
<td>3.2</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>1.437</td>
<td>4.7</td>
<td>24</td>
</tr>
<tr>
<td>22</td>
<td>2.161</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>

Montrose Division

Circle 36 on reader service card

Electronics | January 23, 1967
Lasers

Carbon dioxide shows gains

With its enormous and growing power and ease of focusing, the carbon dioxide laser is emerging as the workhorse in industrial, military and research fields.

Next month, the Autonetics division of North American Aviation Inc. will complete a carbon dioxide laser with a continuous-wave output of 4,000 watts. And the Raytheon Co.'s research division has just announced that a CO₂ laser has produced 1,200 watts, c-w, at an efficiency of 17%. This laser has fractured granite and burned holes in bones, and Raytheon plans to produce even higher-output lasers in the next few months.

The radiant energy produced by these units, in watts per square centimeter, is much higher than that of the sun.

Far ahead, Gas lasers have generally outpaced solid state devices in c-w power, and the CO₂ laser is far more powerful than other gaseous types. With the exception of ionized argon lasers, which have achieved c-w outputs of 50 watts, the others produce beams in milliwatt ranges at efficiencies of less than 1%.

The CO₂ laser still presents problems in the areas of control, reliability, ease of operation and packaging, but it has so much promise that nearly every electronics company in the nation is working on it.

The Autonetics laser is being developed for radar applications, and the company says companion efforts are being directed toward receivers for 10.6-micron output.

Raytheon's 1,200-watt laser has a dual-tube or “folded” configuration. The 10-meter-long tubes are parallel and optically coupled, giving an effective lasing length of 20 meters.

Power packing. “The effort now is toward even higher power at higher efficiencies in a smaller package,” says David A. Whitehouse, a scientist at the Research division. Whitehouse's principal project at the moment is for the Army Missile Command, but the division is also developing CO₂ laser radar transmitters for the Defense Department's Advanced Research Projects Agency.

Unfocused beams from the 1,200-watt laser are being used to crumble rock and granite by civil engineering students at the Massachusetts Institute of Technology. The possible use of the CO₂ laser as a supplement to drilling and dynamiting is being investigated for the Commerce Department as part of the technical studies on a high-speed underground transportation system from Boston to Washington.

In recent weeks, the possibilities of the laser in excavation operations has attracted the attention of the Ingersoll-Rand Co., a maker of drilling equipment. And last week, Raytheon demonstrated the CO₂ laser's capabilities to the Joy Manufacturing Co., a producer of mining machinery.

Zap! It's clear from the contracts awarded by the military that the weapons potential of these devices is being explored. Says one research scientist: "Even if at this stage a field-type CO₂ laser couldn't kill a man at long range, it could set his clothes on fire—a serious
psychological hazard for enemy troops, particularly since the output is invisible."

To make the laser practical for land-mobile and airborne applications, several companies are working on techniques for "folding" or stacking the tubes. With such a technique a laser's effective length is maintained, although it can be contained in a small package.

One year ago this month, the Perkin-Elmer Corp. offered what was described as the first commercially available CO₂ laser, a unit putting out 10 watts c-w at 5% efficiency. That model now produces 50 to 60 watts at 8% to 10% efficiency. It weighs about 100 pounds and can fit on top of a desk.

Now Raytheon is offering a commercial CO₂ laser device with an output of 500-watts c-w. Possible applications include microwelding, glass cutting and crystal cutting. Also, Coherent Radiation Inc., Palo Alto, Calif., hopes to have by this summer a folded laser with 10-watt laser. "This is a search for techniques to achieve precision frequency stabilization of CO₂ lasers," says the researchers have achieved "true single-frequency and single-transition operation" of a 1-watt CO₂ laser, with all spurious frequencies and transitions eliminated.

High-power GaAs

Gallium arsenide (GaAs) lasers are gaining in power output and efficiency, too.

Scientists at the Air Force's Cambridge Research Laboratories at Bedford, Mass., report the development of a GaAs laser with a continuous output of nearly 3 watts at an efficiency of about 15% at liquid nitrogen temperature. This is far superior to the best previous level achieved, the 1 watt at 6% efficiency reported by the International Business Machines Corp. last year.

The laser, the product of a joint effort by the Air Force lab and Boston's Northeastern University, is fabricated by diffusing zinc into n-type GaAs to form a junction 5 to 8 microns deep. This step is followed by another diffusion stage lasting two hours, during which the source is removed and the material is kept at a temperature of 1000°C. A third diffusion may be performed—this time again with a source of zinc—if a deeper junction is desired.

Solid state

Through thick and thin

For almost a year, General Instrument Corp. has been quietly producing its metal oxide semiconductor (MOS) integrated circuits with a new process that the company claims greatly reduces one of the major causes of MOS device failure—pinholes in the oxide layer that result in short circuits between interconnection crossover points.

At the same time, the process—called MTOS (metal thick oxide silicon)—produces additional benefits by increasing the yield during manufacture, boosting the frequency of operation of MOS IC's by a factor of about 4 or 5, and permitting bigger, more complex circuits to be made.

Channel insulator. Pinholes are a big problem in conventional MOS technology, particularly in the more complex arrays, where the need for metal interconnections between many devices inevitably requires crossovers. In a conventional MOS array, a thin oxide layer—typically 1.200 angstroms thick—insulates the channel areas of the devices from the metallic gate. The same oxide serves to insulate metallic interconnecting lines from the active p-regions, where required. In complex arrays, where interconnection lines must cross one another, the usual procedure is to cut a hole in the oxide and continue under the surface metallization through a conductive p-region. Pinholes in the oxide may occur during processing as a result of imperfections in the masks used for etching, causing short circuits between gates and underlying p-regions or metal interconnections and underlying conductive p-regions.

Low threshold. Simply increasing the overall thickness of the oxide layer to reduce the incidence of pinholes is not a practical solution to the problem. The oxide must be kept thin under the gate electrode if the threshold voltage of the MOS devices is to be reasonably low. The MTOS process permits the retention of a thin oxide in the gate area while producing a thick oxide over the critical crossover points. The sequence of processing steps is chosen so that the final etching time before metallization isn't long enough for mask defects to allow pinholes to form in the thick portions.

Here's how the General Instrument technique works:

First, a thin oxide layer is grown over the silicon substrate, and holes are etched in this layer to define the p-regions in the array. P-type dopants are diffused into these regions, and then a thick oxide layer—about 10 times thicker than the first—is laid over everything. The next mask defines the channel regions and areas where contact to the underlying p-regions is to be made. In these areas, the thick oxide is stripped away, and a thin oxide layer is regrown in its place. The next step is to etch through the thin oxide regions to define contact areas for the final metallization. This is the key step in MTOS. Because the oxide layers over the contact area are thin, the re-
The required etching time is so short that etchant leaking through minute imperfections in the photoresist caused by a defective mask cannot penetrate completely through the thick oxide regions.

Yields increased. Even with MOS, the channel region with its metallization over thin oxide is still subject to pinholes, according to J. Leland Seely, director of General Instrument's MOS operations, but because the over-all area consumed by contact regions in an MOS array is much greater than that occupied by the channels, the virtual elimination of pinholes in the contact areas results in a significant increase in yield. Furthermore, Seely notes, the increased thickness of the oxide layer over much of the chip area markedly reduces the parasitic capacitance between metallization and conductive p-regions, thus improving the frequency of operation of such arrays by as much as five times. Seely credits a combination of MOS, and sophisticated circuitry with boosting the speed of General Instrument's MOS shift registers from 500 kilohertz a couple of years ago to about 2 MHz today. Also, he says, improved yields and reliability make it possible to fabricate even bigger and more complex arrays at a reasonable cost trade-off.

The company is using the technique for all its current MOS products, including the digital differential analyzer it introduced at Wescon last summer [Electronics, Aug. 22, 1966, p. 38]. A patent for the process has been applied for, but Seely isn't sure one will be granted. He isn't too concerned, though, he says, because "we have a year's head start on the competition, and by the time they catch up..."
up I expect its successor, which is well along, to be perfected."

Components

Do-it-yourself filters

An engineer needing an active filter has two equally unattractive choices: he can design it himself or have it done by a company specializing in such work. The first choice, even with a computer to help, presents a long and difficult chore, while the second is expensive. This week, engineers will get a third choice.

Edgerton, Gersheson & Grier Inc. of Boston is about to market a family of 10-lead miniature components that form the nucleus of an active resistive-capacitor filter and eliminate about 75% of the synthesis in a filter design. ECG will offer, at $100 each, 10 units with nominal center frequencies between 100 hertz and 15 kilohertz.

The units, called Minactors, each measure 0.8 by 0.6 by 0.2 inch, with pin separations of 0.1 inch. They contain a thick-film resistor substrate, an integrated circuit amplifier and discrete capacitors for fixed-frequency operations.

Adjustable. Each of the 10 units comes with a set of curves that enables the engineer to design a complete filter operating between 70 hertz and 25 kilohertz. He need only select the component whose nominal value is closest to the desired operating frequency and read off the correct resistance and capacitance values from the design curve.

These external resistors and capacitors connect to the terminals of the component to form a tunable filter that is temperature stabilized over a wide range. Thus, the user has an immediate breadboard that can be tuned precisely.

With appropriate external circuitry, the component can be used to provide band-, low- and high-pass filters and notch filters, low-frequency F-M modulators, low-frequency sine-wave oscillators, low-frequency automatic gain controls for specific frequencies, low-frequency F-M demodulators or discriminators and complex pole-zero generators for elliptic filter synthesis.

Typical operating parameters of the device are: bias supply of +12 volts d-c and -6 volts d-c at 5 milliamperes each; maximum output signal of 2.5 volts rms to a 10 kilohm load; short-circuit output noise of 1 millivolt rms; short circuit d-c offset of ±100 mv; minimum available peak gain of 60 decibels.

Reliability Symposium

Unsafe at any bias

Integrated-circuit manufacturers ran into a hornet's nest at the annual Symposium on Reliability that was held in Washington this month. Users and potential users made these claims:

- Integrated circuit buyers can expect to find defects in anywhere from 0.5% to more than 50% of the devices received from vendors.
- Published failure rates for IC's vary by a factor of 10,000 to 1, depending on the source of the data and how it is manipulated.
- Some reliability data provided by vendors is invented or at best speculative.
- Vendors have been known to supply performance data months before the devices themselves were available.

Dropout. Contributing to the questionable practices, said one user, is the explosive IC market. Another blamed unrealistic procurement specifications written by customers.

In a recent shipment of IC's to General Electric Co.'s light military electronics department, 60% had the wrong bar inside the case. The GE department classes itself as a medium-size customer, using about 1,000 IC's per week.

Joseph Brauer, reliability specialist at the Air Force's Rome Air Development Center, Rome, N.Y., told the conference:

"We consistently see a dual population in the microcircuit product. One fraction behaves beautifully under the most rigorous stresses, while the other is either dead on arrival at the customer's door or fails shortly thereafter." Between these factions are those that report a dropout rate from 0.5% to 5%.

Smoke screen. About 70% of the defects, Brauer said, are mechanical faults caused by poor workmanship. As examples he cited poor bonds, seals and metalization, and IC cases that should have been filled with dry nitrogen that were instead filled with "wet" air. Brauer concludes that the product is basically good, but that it is being handled and packaged poorly.

Manufacturers, he said, instead of assuming their proper role—that of sorting out the bad devices—sometimes hide behind a smoke screen of questionable or downright fraudulent data. They "juggle numbers to make a rather erratic or nonreproducible product appear better than it is, rather than make it as good as it can be made, or even as good as they know how, within the bounds of economic reality," he said.

Numbers. Brauer labeled "prophetic" the numbers publicized by some vendors. The performance characteristics of products are being described "months or even years before they've been invented or put into production."

The reliability numbers game, Brauer said, is "indicative of a mild form of insanity that has taken hold in the silicon microcircuit industry and is rapidly spreading to the rest of microelectronics." Failure rates ranging from 0.0007% per 1,000 hours to 7.7% per 1,000 hours were cited by Brauer as representative of the numbers game.

One vendor's derating chart was questioned by Brauer. It shows, at 20% of rated power, a failure rate that increases 660 times between 25°C and 125°C, an average of more than six times per degree C. The same chart indicates a failure rate at 25°C and rated power of 1% per 1,000 hours, which differs sharply from the figure of 0.005% per 1,000 hours published elsewhere by the same vendor for the same devices "under normal use conditions."
No nonsense. Brauer pleaded for the following industry standards to replace the meaningless numbers: device performance specifications, standards of quality, methods for reliability demonstration, rules for data reporting and manipulation and quality screening procedures that provide for more than one off-the-shelf quality level.

During the symposium, Harold Goldberg, reliability researcher for NASA's Goddard Space Flight Center, criticized vendors for "poor attitude," asserting that some would sooner tell a low-volume user like NASA to take its business elsewhere than spend time correcting a reliability fault.

Mad dog. In defense of the vendor, Dennis L. Mulcahy of General Electric's Apollo support department in Houston, said user-written procurement specifications are in many respects unreasonable and only confuse the vendor. He called for discussions between vendor and user, saying that imposing penalties on vendors for not meeting specs at this point could be like "poking a stick at a mad dog." Some testing techniques carried over from transistors are not completely legitimate, he said, citing burn-in and accelerated testing as examples.

While IC users at the conference were demanding an option of low price or higher reliability, a manager of quality assurance for one manufacturer found fault with the users.

He pinned the blame on the user's purchasing agent for buying on a price-only basis. Vendors, he said, are asked to bid on the same high-reliability order four or five times. One vendor is played against another. "Finally," he says, "I start to look for short cuts. You guys can't write the spec that I can't get around. It's either short cut or lose the business."

Pick a 2N number.

James R. Greene, an expert in computer-aided design at the Collins Radio Co., told the Symposium on Reliability about a technique that overcomes one of CAD's major shortcomings—lack of adequate transistor and diode models. Greene was a key man in the team of Collins engineers that developed the technique which he says will allow CAD to be applied to more circuit problems.

Greene says there is no greater deterrent to CAD use than the need to stop and diddle with a transistor model, particularly one based on the physical phenomena in a device. Most circuit engineers are not interested in the guts of a device, he notes.

Points. The Collins model solves this problem. Curves are either obtained from the vendor or measured with a transistor curve tracer. Data points (760 per transistor) are taken from a photo of the cathode-ray tube display and then punched on cards for entry onto magnetic tape.

To achieve the correct operating point for each device, a "curve read" subroutine is used. First an operating point is assumed and a solution obtained. Then device parameters are updated using the curves and the solution repeated. The process continues until the operating point changes less than a given amount, say 1%, between solutions.

The Collins program is currently limited to 30 modes and 75 elements, but can be enlarged with increased core storage. Data points for each transistor must be carefully programmed, since minor inflections could result in instability of an attempted solution.

Consumer electronics

IC's sound better

Integrated circuits continue to move into high-fidelity equipment, and the reason is primarily to improve performance rather than to reduce costs.

The Heath Co., manufacturer of do-it-yourself kits, introduced this month an a-m/f-m stereo receiver with two IC's, [Electronics, Oct. 31, 1966, p. 40]. The IC's, the company says, add more to the set's performance than would be possible...
Intermediate-frequency bandpass characteristic has extremely flat top and sharp sides by comparison with that of conventional i-f strips.

Heath has combined the ic's with specially developed quartz crystal filters in the intermediate-frequency section of the f-m receiver. The result is an exceptionally square-topped bandpass characteristic with almost vertical sides.

Considering IC's, too. In using ic's, Heath joined H.H. Scott Inc. and the Fisher Radio Corp., which said last month they would put ic's into several of their models. In addition, both Harmon-Kardon Inc. and KLH Research and Development Corp. indicate they are evaluating ic's and may put them into products for the first time within a few months.

Scott is using ic's in the i-f strip of several of its f-m products—three new tuner-amplifiers [Electronics, Dec. 12, 1966, p. 26]. However, Heath, a subsidiary of Schlumberger Ltd., apparently has gone much further than Scott in redesigning the i-f strip of its top-of-the-line model, AR-15, which sells for $330. Instead of using conventional transformer-tuned stages for selectivity, Heath has gone to two crystal filters and two ic's. The filters are supplied fixed-tuned by the manufacturer—crs Knights Inc.—so that the amateur builder need not worry about aligning the i-f section.

The electronic touch

The marriage of keyboard instruments to electronics dates back more than 100 years, when an electric motor first replaced the choir boy who pumped air for the organ. In the subsequent years, electronics moved further into the field, replacing the organ's bulky wind pipes with tiny oscillators. Now an inventor in New Jersey, who is also a musician, has fashioned a keyboard that eliminates the moving keys.

What Paul Rosberger has developed is a keyboard whose undersurface is a dielectric material. The keyboard, or more accurately, the touchboard, operates much like the capacitor buttons on some new elevators.

Rosberger has divided the touchboard into 88 thin strips of dielectric material, with each strip representing a musical half step—say from C to C sharp—resulting in a 12-tone scale. The black keys are eliminated; hence, a player can move up the scale by half steps, remaining on the white keys. But, if the player wants to play the conventional seven-step chromatic scale, he would have to skip certain notes.

Making the change. The keyboard has already been placed in an electric organ. The installation, explains Rosberger, is relatively simple: the old keyboard is removed, some minor interface equipment is added and the various strips are matched to the organ's sound-producing oscillators.

The inventor points out that the keyboard could also be adapted for pianos, but here the interface is much more difficult: a complex mechanism would have to be added to convert electronic signals into a mechanical motion for striking the hammers.

In designing the touchboard, one major problem arose: unless the player hit the key squarely, he was in danger of touching the key at either the left or right. To get around that, Rosberger made the active sensor beneath each key very thin, and positioned it in the center. Thus, even if the player's finger was off-center, only that note would be sounded. The key is 3/8-inch wide and the sensor 1/8-inch wide.

To orient the player, so he knows about where he is on the touchboard, Rosberger painted in black marks in a pattern that resembles the pattern for the black keys on a conventional keyboard. But in this case, of course, the arrangement is slightly different because there are 12 white keys between octaves—not seven.

Novel effects. To sound a note, a performer merely touches the metallic strip; there is no mechanical movement and therefore he can repeat a note as fast as he can oscillate his finger. Glissandos of both notes and chords can be produced without effort.

The touchboard also makes novel effects possible, such as those sounds associated with such electronic instruments as the theremin. To produce such a sound the player places two fingers on the touchboard and widens and narrows the distance between them. The fingers can also be drummed as they are moved up the board. Cluster chords
ONLY HONEYWELL OFFERS
TOMORROW'S BREED OF I/C COMPUTER...

...AND THEY'RE BEING DELIVERED TODAY!

I/C construction . . . 16-bit word . . . 960 nanosecond speeds . . . strong software support — unprecedented computer capability in a low cost compact. And these are only some of the features that put 3C's two new µ-COMP machines in tomorrow's computer class today.

THE DDP-516, at $25,000, is the most advanced I/C 16-bit computer now available. Both hardware and software are already operational. Hardware includes high-speed multiply and divide (optional), a 4096-word memory (expandable to 32K), 960 nsec cycle time. The command repertoire includes 72 instructions with such capabilities as byte manipulation, skip-branch conditioning, and extensive memory reference and control.

250 field proven programs are available with every DDP-516 . . . including ASA FORTRAN IV compiler, selectable one- or two-pass assembler with a unique DESECTORIZING loader that lets you ignore memory restrictions. DDP-516 delivery: as few as 90-days.

THE DDP-416, at $16,900, was engineered for a price/performance ratio that can't be beat by any other on-line real-time computer. Hardware features include a 4096-word memory (expandable to 16K), 960 nsec cycle time, 1.92 µsecs add, with indirect addressing.

A 30-command repertoire, priority interrupt and power failure protection are standard. Both the DDP-516 and the DDP-416 may be mounted in standard 19" racks. Best of all, if you decide to get the more powerful DDP-516 in the future, you can continue to use your DDP-416 programs because of direct compatibility. DDP-416 delivery: second quarter of 1967.

Write today for information on both µ-COMP computers. You can't go wrong with either one. Honeywell, Computer Control Division, Old Connecticut Path, Framingham, Massachusetts.

Honeywell

Electronics | January 23, 1967
can be sounded for short durations, providing a percussive sound that can be varied both in pitch and density.

Avionics

Put to the test

Navigating equipment for transoceanic air flights—only moderately accurate even in the best weather—faces a two-month test this summer to settle an argument over how wide the air lanes above the Atlantic should be.

The argument, between the pilots and the carriers, erupted last summer when the international airlines proposed to narrow the transatlantic lanes to 90 nautical miles from 120. The pilots immediately balked, asserting that their navigation gear wasn’t accurate enough to guide them along the narrower lanes; the airlines held that the equipment was adequate but they backed down under pressure and arranged for a test.

To run the test, the airlines industry group, the International Civil Aviation Organization, is building radar stations at Gander, Newfoundland, and Kilkee, Ireland, and is arranging to have United States Coast Guard ships stationed at strategic locations in the Atlantic. Each plane in the test will be fitted with a special transponder. As the plane passes over a station, its transponder will be interrogated and will respond with a coded message that will identify it; at the same time, the station’s radar will pinpoint the location of the craft to determine whether it’s exactly on course.

A choice. Millions of dollars are riding on the test, scheduled to begin in July. If the trial proves the pilots right, the airlines will have two immediate choices: either maintain the wider lanes, accommodating less traffic, or scrap the present gear for a new generation of equipment, namely inertial navigation equipment.

The planes that will be watched most closely are those Pan Ameri-
How to get more satisfaction from your metal film resistors—without switching brands

It’s easy. Just ask your supplier to incorporate his resistors into packaged networks or assemblies.

With pre-assembled networks, you can obtain packaging densities far greater than those obtainable with individual metal film resistors. In fact, volume savings of up to 80% can be achieved.

Pre-assembled and tested discrete resistor networks also offer reliability levels many magnitudes higher than those achievable with individual assemblies.

Another important advantage of networks is that manufacturing and performance cost factors can, in most cases, be surprisingly reduced.

As we noted above, these advantages (and others) will accrue no matter what brand of metal film resistor you happen to be using. On the other hand, we would be remiss not to remind you that our Jeffers Electronics Division’s JXP resistor has a definite edge over every other brand. Which means that networks incorporating this “white room” precision resistive element can really give you something extra in the way of increased satisfaction.

We therefore suggest that you don’t just investigate metal film resistors networks, but that you investigate our JXP precision networks specifically. Mail us the coupon—and discover just how satisfying resistor satisfaction can be.

Please try to ignore the surplus performance that components sometimes deliver

You probably read the editorial on this subject that one of the industry magazines published not long ago. Nevertheless, the message is worth repeating:

A component designed to meet one set of specifications may also test out to more rigid specifications. And engineers have been known to cut costs by designing such a component into equipment for which it wasn’t intended.

The only trouble is—they’re putting themselves out on a limb (not to mention their supplier). Subsequent lots of the component may very well turn out to perform much closer to the claimed specifications—for a variety of reasons.

Speer components are among those that sometimes deliver this surplus performance. (The operative word here is “sometimes,” incidentally. There are also areas in which our components always outperform their specifications. But that’s another story—one we’ll get into in a future issue.)

Your continued cooperation in this matter of under-specifying is much appreciated. We suspect that it’s a little chilly out there on that limb.

Typical Error #8 in the testing of inductors

We’re referring specifically to the testing procedures for measuring inductance and Q, as outlined in MIL-C-15305.

We heartily recommend these procedures for all commercial, industrial and military users of inductors (even users of our superb Jeffers inductors). But, as our headline suggests, there are more than a couple of commonly made test errors to watch out for.

There are eight. Error #8, for example, consists of extreme variations in test area environment. Solution? Make sure that your measurements are made at room ambient temperature, relative humidity and pressure.

In future issues, we’ll cover the other seven errors and indicate how to avoid them also. So watch this space.
system. Bids are due on Feb. 19 and the study is expected to be completed in May or June.

Alternatives. Richard B. Otte, the project officer, says bidders have been asked to prepare two alternative designs: one involves keyboard-type consoles working on a time-sharing basis, which requires the computer to juggle many users' inputs at one time; the second uses moderately high-speed printers and readers on a multi-programming basis, permitting the computer to handle one user at a time. Both designs would provide responses in a few minutes.

Under the agency's plan, computer technology would be both a subject in itself and an aid in learning other subjects. Otte says the system will serve:

- Students studying programing and using languages such as Algol, Fortran and Cobol.
- Students using computers to work out problems in mathematics and engineering.
- School administrators preparing reports and schedules and keeping records.

Computer tutor

How can a child who can't type use a computer in a teaching program? Similarly, how can an illiterate adult learn to read with the help of a computer if he can't handle the complex input-output terminals?

Answers to these questions are being worked out by computer researchers at the Systems Development Corp. in Santa Monica, Calif., as part of a project to help people, both old and young, learn to read and write. The project involves, among other things, the development of a new kind of terminal.

The input-output design is a modified Rand tablet on which an input can be displayed in such a way that the user is able to write on it with a metal stylus, causing a new line to be "traced" on the tablet.

Tablet sandwich. The modified tablet consists of a half-mil Mylar sheet sandwiched between two half-mil copper sheets. The sheets are etched into 3-mil lines on 10-mil centers, with the lines on one sheet running at 90° to the other so that they form a grid of 100 lines to the inch.

The sandwich is placed on a quarter-inch clear acrylic sheet for support, and the entire assembly is coated with clear epoxy 1 mil thick.

Even with the copper grid, the tablet is 40% transparent. Thus, by placing a CRT under the tablet and projecting the tube's image through it, a person is able to see a TV picture on the tablet's surface. The CRT is situated some 30 inches below the tablet and the image is projected up to the surface by an optical system.

With such an arrangement, the computer can ask a graphic question, such as: Which of the following drawings looks like a bird? The user checks the appropriate picture with the stylus. The tablet then senses the touch of the stylus on the X and Y coordinates of the copper grid and transmits the signal to the computer. The signal is subsequently fed to the CRT and the check mark is projected on the tablet.

Why the effort to develop such a terminal when computer makers are already offering such equipment as Rand tablets or the less-expensive CRT's with light pens?

One reason is that the light pen arrangement offers a resolution of about 10 lines per inch—too low for this application. And to have the light pen "trace" a line requires considerably more computer capability than that required for a Rand tablet. Further, the conventional Rand tablet is a difficult device for many people to operate because the imprint of the stylus produces a line not on the tablet, but on the remote CRT, so the user must keep looking up from the writing surface to see what he has written.

Pencil-pusher. Systems Development is not alone in trying to produce Rand tablet modifications to sidetrack the look-up, look-down problem. The International Business Machines Corp. is working on a technique in which the user places a sheet of paper on the tablet and uses an ordinary pencil for input. [Electronics, Nov. 14, 1966, p. 43].

The Systems Development Corp. is working on a program meant to be executed on a different kind of computer. For example, "multiply 42 by 25" might be interpreted for a computer with no multiply instruction as "add 42 to itself 24 times."

Although the system works fine in the lab, Gallenson notes that the design is not yet child-proof. "We feel that the tablet needs more protection than the 1-mil epoxy provides," he says. "I can just visualize some six-year-old using the table as a dart board."

Second thought

The software problems plaguing the manufacturers of some large-scale computers have been neatly sidestepped by a small Santa Ana, Calif., company that is using two old ideas in a new way.

The Standard Computer Corp. has combined emulation—hardware modification—with an interpretive program—software. Standard Computer's IC 6000 has two distinct read-write memories: one contains the main program, written to run on any other computer, and the other is a smaller and faster memory containing a special interpretive program. The interpretive program looks at each individual instruction in the main program and generates one or more corresponding instructions in a form that the IC 6000 can use.

Slow but good. An interpretive program is usually loaded into the computer's memory with the main program. It is a slow, inefficient way to get a computer to handle a program meant to be executed on a different kind of computer. For example, "multiply 42 by 25" might be interpreted for a computer with no multiply instruction as "add 42 to itself 24 times."

Emulation usually involves the temporary physical modification of a computer. It is somewhat faster than interpreting, but is still inefficient. For example, the standard read-only memories on International Business Machines Corp.'s System 360 computers can be re-
RCA announces 40429 and 40430 6A TRIACS

- With high gate sensitivity
- With symmetrical triggering characteristics \((I_{GT}=25 \text{ mA max}) \)
- With surge current protection up to 80A
- and the price on the 40429 is only........... $1.50*

RCA brings you a new generation of control devices! Each of these 6-amp Triacs can provide the same full-wave function as two SCRs...with the option of using either positive or negative gate-trigger signals. Hermetically sealed in an all-welded TO-66 package, RCA 40429 and 40430 can simplify your control circuits...reduce costs...add reliability and efficiency.

Evaluate these new RCA Triacs for AC motor controls, heat controls, universal motors, dc power supplies, or solenoid or relay controls. They could very well be the key to next year's model improvements.

For complete information including price and delivery, contact your RCA Field Representative. For technical data,

write RCA Electronic Components and Devices, Commercial Engineering, Section IN1-4, Harrison, N. J. 07029.

GATE FIRING CHARACTERISTICS

<table>
<thead>
<tr>
<th>Quadrant</th>
<th>I+</th>
<th>I-</th>
<th>III+</th>
<th>III-</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA @ 25°C</td>
<td>typ. max.</td>
<td>typ. max.</td>
<td>typ. max.</td>
<td>typ. max.</td>
</tr>
<tr>
<td></td>
<td>10 25</td>
<td>20 25</td>
<td>20 25</td>
<td>10 25</td>
</tr>
</tbody>
</table>

CHECK YOUR RCA DISTRIBUTOR FOR HIS PRICE AND DELIVERY
"Just building a lipstick size relay that worked would have been easy.

Building one around our great high-rel idea was another story."

Wedge-action*, our great high-rel idea, is 9 years old. Our 2PDT lipstick-case size relay has been around for less than 2 years. But it's already a standard replacement for the bulky things that worked already.

Why? Because it outperforms every spec requirement for both high and low-level loads. Like all our wedge-action relays, it combines long contact wipe with high contact force to give you continually clean precious-metal mating surfaces throughout life. Competitively priced with fast delivery.

The lipstick is just one of our family of wedge-action relays, which cover almost every dry-circuit to 2 amp application. When you need a high-rel relay that really works, test one of ours and try your darndest to prove we're wrong. You won't be able to.

* U.S. Patent No. 3,668,046 and others pending.

Electronics Review

placed with special ones that permit the 360 to run old IBM 1401 programs. The modified 360's run more slowly than the unmodified version, but they run at least as fast as the 1401.

The IC 6000 currently can interpret binary programs written for the IBM 7094 and for the IBM 7044, and an interpreter is being prepared to run IBM 7010 decimal programs. The 7094 programs run about one-third to one-fourth as fast as they would on the original machine.

Space electronics

Keeping in touch

Losing contact with a manned spacecraft while control is "handed" from one earth station to the next has long bothered space officials. Planners in NASA's office of tracking and data acquisition set out last year to define a system to plug these gaps. They now are confident that continuous communications with a manned spacecraft in low earth orbit can be achieved using three or four satellites in synchronous orbits to relay voice and data signals.

The Astro-Electronics division of the Radio Corp. of America, Princeton, N.J., and the Research and Development division of the Lockheed Missiles & Space Co., Sunnyvale, Calif., are scheduled to finish feasibility studies on such a data relay satellite system next month. The Pentagon is watching the work closely, hoping it can be applied to its satellite communications programs.

"These would not be simple satellites," says Paul Barritt, NASA program manager for data relay satellites. Each would weigh between 1,000 and 5,000 pounds.

Space link. The satellite system would provide a voice and data relay from a manned spacecraft orbiting at up to 1,000 nautical miles, and serve as a link with a manned or unmanned vehicle during the low-altitude phases of lunar and planetary flights.

Barritt says the greatest benefit from the system would be voice communication with a vehicle in trouble. He's sufficiently satisfied with RCA's and Lockheed's progress to say that the technology for such a system is essentially in hand. Some hardware for the satellite will be tested on an Applications Technology Satellite due for flight in 1968 or mid-1969. He adds, however, that going to the next step after the current studies—project definition—looks bleak because of NASA's budget constraints.

Despite the lack of funds in fiscal 1968, Barritt believes that a system could be operational by 1972 with a "reasonable, relaxed development schedule"—provided the program is funded in fiscal 1969.

Barritt's guess is that the relay system would cost between $100 million and $150 million to develop and deploy. He estimates it would cost about $35 million a year to operate, paring about half from the cost of operating the space agency's network of ground stations, ships and aircraft for manned space flights. The relay system, upon deployment, would immediately render obsolete the eight KC-135 Apollo range instrumentation aircraft, which now cost $6 million a year to operate. These planes have no tracking function, serving strictly in the data relay role.

Save money. The eight Apollo range instrumentation ships would be eliminated if the proposed relay system demonstrates a reasonable tracking capability. These vessels represent $20 million in annual operating costs.

Although the RCA and Lockheed study contracts do not encompass detailed tracking considerations, NASA wants the proposed satellites to have a pseudo-random range code and a doppler ranging system that is compatible with the capability of the unified S-band system.

The relay satellite must be able to handle voice and data communications from two manned spacecraft simultaneously. Each may have two transmitters and two receivers. Transmissions from the spacecraft will be either:
Discover the widest range of gold-plated specialty wire available.

From thick to thin. So thin, in fact, it has to be weighed to be measured.

We start with the highest-quality base stock, draw and then plate it with a bright, ductile, temperature-resistant 24K gold. The deposit is 99.5% pure. Its porosity is minimal. Its solderability is excellent. And it's resistant to discoloration. If that's not enough, our specially designed electroplating equipment and rigid quality control give a completely uniform plating around the wire—and from spool to spool.

We have a total capability to produce practically anything you want. Deposits from 5 to 200 millionths of an inch in thickness can be plated on almost any temper or diameter specialty wire or ribbon to your specification.

If you'd like to see what we can do with wire or ribbon, send for a sample today. Write: Sylvania Electric Products Inc., Parts Division, Warren, Pennsylvania 16365.
Single Dial Source and Detector

Simultaneous Tuning of Source and Detector with New Wayne Kerr SR268 (100kHz-100MHz)

With other systems, it is necessary to tune the source to a specific frequency and then the detector must be tuned to the exact same frequency.

The new Wayne Kerr SR268 Source & Detector performs both functions simultaneously in a single operation over the range 100kHz-100MHz at a short-term frequency stability of 0.01%. Frequency accuracy over this range is ±2%.

The simplicity of operation provided by ganged tuning is furthered by the incorporation of common-mode rejection transformers in the input and output networks, reducing any interference or cross-talk from unwanted signals.

Operable simultaneously from an external nine-volt battery and a six-volt battery for pilot light indications, SR268 is ideal for field work, too. SR268 is an ideal companion instrument to Wayne Kerr R. F. Bridge B601, VHF Bridge B801B and precision R. F. Bridge B201.

For literature and detailed specifications, write:

Wayne Kerr CORPORATION
188 Frink St., Montclair, N. J. 07042 • Phone (201) 745-2438

INNOVATIONS IN INSTRUMENTATION

Electronics Review

- Frequency-division multiplex/frequency-modulated, with a maximum multiplexed base video bandwidth of 1.5 megahertz and a maximum peak deviation for the multiplexed signal of 3.5 MHz, or,
- Pulse-code modulated/phase-modulated, with a maximum data rate of a million bits per second and a bit error rate of one per second.

Each target may transmit in one of these modes or both. Although antenna design is not part of the studies, it was assumed that the target vehicle would have a small directional antenna with a maximum gain of 20 decibels for video and an omnidirectional antenna for voice and data transmissions at a power level of 20 watts. The omnidirectional antenna would have a gain of 26 db, necessitating an antenna gain on the relay satellite of 40 db or more for the voice and data links.

A relay satellite in effect would act as a frequency translating repeater. Communications from the orbiting spacecraft to the relay satellite would be in the S band and in the X band from relay satellite to the ground. The links from the relay satellite to the ground would have about one-tenth the capacity of the links between the spacecraft and relay satellite.

Antenna plans. NASA planners think the relay antenna might be one of two types: a space-erectable dish with a 30-foot aperture or a multiple-beam phased array. Barritt says the dish would be lighter and that the technology for it is further advanced than for the phased array. He hints that he likes the phased-array concept.

The array, if it is selected, would account for 60% of the relay satellite's weight. There might be from 500 to 2,000 elements, with associated electronics weighing roughly 3 pounds per element.

If a phased array is used, according to Barritt, stabilization would probably be by gravity gradient, possibly augmented by gas jets. The 30-foot dish would probably require "totally active" stabilization. If the dish could be steered electronically, a combination of gravity gradient and rotating wheels might be possible.
Investing in a Sweep Generator with a limited frequency range can be an expensive purchase unless you’re positive your requirements won’t change 6 months or a year later. To avoid that embarrassing possibility, Telonic’s SM-2000 is built for non-obsolescence; it is actually

20 SWEEP GENERATORS

in one. The chassis will accept 20 different plug-in oscillators spanning various segments of the spectrum from 20 Hz to 3000 MHz, in an area that just fits your application today, or tomorrow, or in 6 months, or next year. And since it doesn’t cost any more than most single-range units, why not be a hero. Order one.

BASIC SPECIFICATIONS

- Frequency Range: 20 Hz to 3000 MHz
- Impedance: 50 or 75 ohms
- Operating Modes: Sweep, CW, 1 kHz
- Attenuation: Modulated Sweep or CW 0-60 dB in 1 dB steps
- Output (Scope Horizontal): 15 volts P-P (approx.)
- Frequency Markers: 8 Plug-in and/or Variable
- Sweep Width, Sweep Rate, Level Control, and Flatness will depend on the Plug-in Oscillator used.

Complete specifications on the SM-2000 and Plug-in Oscillators, plus an extensive treatment of Sweep Frequency Measurement Applications are covered in Catalog 870. Yours on request.

Telonic
Division of Telonic Industries Inc.
50 N. FIRST AVE., BECH GROVE, INDIANA 46107, TEL. (317) 797-3211 TWX: 810-341-3302
CONVERT COMPUTER DATA TO TV DISPLAY WITH THE ELECTROSTORE®

This TV Display shows a high resolution alphanumeric presentation derived from a computer. It is only one example of a computer display using the Electrostore, Model 221.

Electronics Review

For the record

Supply and demand. Texas Instruments Incorporated has announced a 40% price increase on three families of diode transistor logic integrated circuits. The devices affected are SN14246, SN14346 and SN14346N. The Sprague Electric Co. also increased its prices on hermetically sealed metal-cased solid tantalum capacitors.

Automation. The Sun Oil Co. will install a direct digital control computer in a plant producing petrochemicals and gasoline components in Marcus Hook, Pa. The computer system was produced by the Foxboro Co.

Milestone. Honeywell Inc. has chalked up worldwide 1966 sales of $910 million—up 24% over 1965. James H. Binger, board chairman, said the company's fastest growing area is the computer business. He added that Honeywell passed a milestone in 1966 when its domestic computer operation became profitable.

Approval. The Federal Communications Commission has authorized the Communications Satellite Corp. to buy the satellite ground station at Andover, Maine, from the American Telephone & Telegraph Co.

Lights out. Mosaic Fabrications Inc., a subsidiary of the Bendix Corp., has developed a fiber optics system that tells motorists if outside lights are working. Glass fibers are stretched from each of the car's light bulbs to a dashboard panel. The fibers pick up light from the bulb and pipe it to the panel where it shows as a pinpoint of light. When a bulb burns out, the driver can spot it at a glance.

Capital issues. President Johnson proposed several programs in his State of the Union message that will have an impact on the electronics industry. One was a ban on wiretapping and electronic bugging and snooping. A second was a plan to help states and cities combat crime by speeding communications and installing special alarm systems and other electronic equipment. A third would put in motion a major clean-air program calling for equipment to monitor and reduce air pollution. Yet another would use computers to prevent massive power failures.

Replacement. The American Stock Exchange will put a new computer complex in operation in March. The system will use two GE 415 computers to handle the tasks currently performed by three IBM 1401 units.

Healthy. The Western Electronic Manufacturers Association predicts a 12% sales increase for the electronic industry in the West this year. The 1967 forecast projects sales of over $5.7 billion by companies in the 13 western states. This forecast compares with the gain of 18.5% that was achieved in 1966.

Mergers. Agreement in principle was reached for Teledyne Inc. to acquire the Brown Engineering Co. and for Mencor Inc. to merge with LTV Electrosystems Inc. The Automatic Sprinkler Corp. of America has acquired Electronic Security Inc.

Prices. The prices of several key materials rose. The Phelps Dodge Corp. raised its price for copper from 36 to 38 cents a pound. Cobalt prices were increased by 20 cents a pound at mine level and Kennametal Inc. boosted by about 10% the base metal price for special tungsten carbide shapes.

Awards. The IEEE will present to Charles H. Townes of the Massachusetts Institute of Technology its principal award—the medal of honor—for his work on masers and lasers. The medal has been awarded 47 times since its creation in 1917. Major annual awards will go to George H. Brown of the Radio Corp. of America for his work in antennas, electromagnetic propagation, broadcasting, radio frequency heating and color tv; Harvey Fletcher, formerly of Bell Telephone Laboratories, for his work with acoustics; Warren P. Mason, formerly of Bell Labs, for his work in sonics, ultrasonics and electromagnetic transducers, and John R. Whinnery of the University of California for his teaching, administration and textbooks.
Stackpole commercial resistors helped Wurlitzer engineers discover a new harmony in four parts....

quality, price, delivery and service.

Only strict attention to detail produces a fine musical instrument. That's why Wurlitzer engineers so carefully select each component that goes into Wurlitzer Organs. Stackpole commercial resistors help make these magnificent instruments electronic, as well as musical, marvels. Performance in tune with your most demanding needs is the Stackpole guarantee. Write: Stackpole Carbon Company, Electronic Components Division, Kane, Pa. 16735.
Radiation's RM-17 Monolithic Diode Matrix, in conjunction with the RD-235 Hex High Voltage Interface Driver, offers a simplified approach to the design of BCD decode networks for driving decimal indicators. Other integrated BCD decoders are limited to only one weighted binary code. However, Radiation Matrices can be "customized" to any weighted binary code to decimal conversion. This design flexibility is achieved through Radiation's fusing technique for selecting desired coding patterns.

The 8·-4·-2·-1 BCD decoder, shown at left, is only one example of the many possible matrix patterns which can be formed. Only two Radiation 8 x 5 Matrices are used in this application.

TRUTH TABLE

2'	0 1 0 1 0 1 0 1 0 1 0 1
2'	0 0 1 1 0 0 1 1 0 0 1 0
2'	0 0 0 0 1 1 1 1 0 0 0 0
2'	0 0 0 0 0 0 0 0 0 1 1 1

Decimal output: 0 1 2 3 4 5 6 7 8 9

Note: True logic positive. Only one output will be true at any one time.
Radiation’s popular dielectrically isolated matrices provide an unusual degree of flexibility. (1) RM-17 Matrices contain 40 active devices per chip. (2) A fusible link in series with each diode permits unlimited matrix patterns to be formed. And (3), circuits can be combined to produce an almost infinite variety of size configurations.

In addition to flexibility, Radiation 8 x 5 Matrices offer an increased reliability of monolithic construction. Size and weight requirements are slashed through reduced package count. Further, cost of matching, testing and assembly of discrete diodes is eliminated.

Production has been expanded to guarantee fast shipment of matrices "customized" to your exact requirements. In fact, most orders are shipped on a 24-hour basis.

A new low-cost RM-114 design in a ceramic dual in-line package is available in volume at a unit price of $4.00—and can be supplied to any code configuration requested.

Write for data sheets on the entire line of Radiation Monolithic Diode Matrices. Worst-case limits are included, as well as all information required by design engineers. We'll also be glad to supply our new manual, Monolithic Diode Matrix Technical Information and Applications. For your copy, request publication number RDM-T01/A01 from our Melbourne, Florida office.

Radiation 8 x 5 Monolithic Diode Matrices* (typical limits)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>RM-17</th>
<th>RM-19</th>
<th>RM-14 RM-114</th>
<th>Unit</th>
<th>Test conditions (TA = +25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward drop</td>
<td>Vr</td>
<td>1.0</td>
<td>1.3</td>
<td>1.0</td>
<td>V</td>
<td>Ie = 20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>0.75</td>
<td>0.7</td>
<td>Ie</td>
<td>1 mA</td>
</tr>
<tr>
<td>Reverse breakdown</td>
<td>BVr</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>V</td>
<td>Ie = 100 μA</td>
</tr>
<tr>
<td>Reverse current</td>
<td>Ir</td>
<td>25</td>
<td>7</td>
<td>70</td>
<td>nA</td>
<td>Vr = 25 V</td>
</tr>
<tr>
<td>Reverse recovery</td>
<td>trr</td>
<td>11</td>
<td>7</td>
<td>30</td>
<td>ns</td>
<td>Ie = 10 mA to 10 mA</td>
</tr>
<tr>
<td>Crosspoint capacitance</td>
<td>Cr</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>pF</td>
<td>Vr = 5 V; f = 1 MHz</td>
</tr>
<tr>
<td>Coupling coefficient</td>
<td>Ic</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>μA</td>
<td>See data sheet</td>
</tr>
</tbody>
</table>

*Supplied in T0-84 packages. †Supplied in ceramic dual in-line package.

All Radiation integrated circuits are dielectrically isolated.

Radiation also offers a new line of Operational Amplifiers which open the door for integration of systems requiring high performance analog circuitry. These amplifiers are designed to provide the ideal 6 dB per octave high frequency roll-off required for unconditional stability in operational feedback connections without use of external compensation... even in the critical unity gain configuration. Three types are immediately available in T0-84 flat packages: general-purpose, broadband, and high-gain circuits.

Use of Radiation's RA-240 IC Amplifier, for example, permits design of high Q active filters with high initial attenuation. The amplifier has an extremely high internal feedback impedance, and allows wide flexibility in the choice of external filter components without regard to the active element of the circuit.

Typical characteristics:
- Q = 100 (symmetrical response)
- f = 10 kHz
- E = +10.8 V to -4.8 V
- Initial attenuation ≈ 40 dB per decade.
- Final attenuation ≈ 20 dB per decade below unity gain.

For further information, refer to our ELECTRONIC DESIGN advertisement of January 4. Write for data sheets on our entire line of operational amplifiers. Worst-case limits are included, as well as all necessary design information. We'll also be glad to send a copy of our new manual, Operational Amplifier Technical Information and Applications, ROA-T01/A01. Contact our Melbourne, Florida office.
RESOLVER/SYNCHRO
DIGITAL CONVERSION
A very short course for engineers who are concerned with converting resolver or synchro data to digits and vice versa.

Engineers working in digital computer input/output interface systems for tactical airborne equipment, aircraft and space vehicle simulation, antenna positioning or programming, and similar systems are increasingly involved in solving the digital/analog interface problem for resolver and synchro data. Accomplishing this task becomes quite simple by taking advantage of North Atlantic’s family of high accuracy resolver/synchro converters. Through the use of solid-state switching and precision transformer techniques, these converters provide single-speed accuracy and resolution from 10 to 17 bits, along with solid-state reliability and calibration-free operation.

Resolver/Synchro-To-Digital Conversion
One typical North Atlantic resolver/synchro interface is the Automatic Angle Position Indicator (Figure 1), which converts angular data from both 400Hz resolvers and synchros to digits.

This device uses all solid-state plug-in cards and trigonometric transformer elements (no motors, gears or relays), and operates at all line-to-line voltages from 9 to 115 volts. It can be supplied in a wide range of configurations for specific system requirements, for example, signal frequencies 60Hz to 10KHz, binary or BCD outputs, .001° resolution with 10 arc second accuracy, and multi-speed and/or multiplexed inputs. Its five-digit Nixie readout can be integral or remote.

The unit illustrated has an accuracy of .01°, and two basic modes of operation. They are read-on command (rapid acquisition) and tracking (least significant bit update). Prices start at $5900.

Digital-To-Resolver/Synchro Conversion
North Atlantic’s all solid-state digital-to-resolver/synchro converters (Figure 2) accept digital input data at computer speeds in either binary angle or binary sine/cosine form and convert to either resolver or synchro data. Their high accuracy and resolution (up to 17 bits) and freedom from switching transients meets an important requirement in space-mission simulation and antenna positioning systems for smooth servo performance at low rates of data change. All models are usually supplied with input storage registers.

Figure 1. Model 5450 Automatic Angle Position Indicator converts resolver and synchro angles to digital form.

Figure 2. Series 536 Digital-To-Resolver Converters translate binary digital angle to four-wire resolver data.

Depending on the combination of features specified, prices are in the $4500. to $6000. range.

Modular D-R/S Converters For High-Density Systems
The plug-in converters pictured in Figure 3 were developed by North Atlantic specifically for airborne systems and for aircraft simulation systems requiring high-density multi-channel operation. The modules illustrated provide 11-bit digital-to-synchro conversion and are capable of driving up to four torque receivers. As with other North Atlantic resolver/synchro interfaces, conversion is achieved through solid-state switching and trigonometric transformers, so there are none of the stability or calibration problems associated with conventional resistor-chain/amplifier type converters. Prices, in production quantities, run about $1100. per set. In prototype quantities about $1500. a set.

Figure 3. Series 537 D/S Converter Modules can drive multiple torque receivers from 11-bit digital data.

If you would like to take advantage of North Atlantic’s state-of-art experience in resolver/synchro computer interface, we would be pleased to show you how these converters can meet your particular requirements. Or if you prefer, we will arrange a comprehensive technical seminar for your project group, without cost, in your own plant. Simply write: North Atlantic Industries, Inc., 200 Terminal Drive, Plainview, N.Y. 11803. TWX 510-221-1879. / Phone 516-881-8000.
WHAT'S AN ELECTRONIC SPECIALIST DOING IN THE SCREEN PRINTING BUSINESS?

...PRINTED CIRCUITRY, OF COURSE!

Now, in addition to knowing about capacitors, diodes and resistors, you're supposed to know all about film, resolution, exposure and wash-out! ... Cheer up!

Ulano doesn't know beans about microelectronics ... but we know all there is to know about screen printing! We should. We've been at it for over 30 years. We're the world's leading manufacturer of screen stencil film ... any kind.

... There's a right Ulano film for every project.

In screen processing of complex printed circuitry ... there's no margin for error! That's why Ulano offers a complete line of Screen Process Stencil Films especially designed for the Electronics Industry.

ulano
TM
610 DEAN STREET, BROOKLYN, N.Y. 11238
NEW YORK • CALIFORNIA • CHICAGO • ZURICH
In Europe: ULANO A. G., Untere Heslibachstrasse 22, Kusnacht 8700, Switzerland
Write on your letterhead for special electronic test kit (no charge) No. 5948.
Circle 57 on reader service card
Dale RH Wirewounds have BONUS capacity to handle any power or stability problem.

Dale's RH Wirewound line offers 6 models, 5 to 250 watts. Each has bonus ability to dissipate heat beyond MIL-R-18546D requirements — see chart. In addition, you get an extra bonus of exceptional stability when RH models are derated to mil levels. To achieve this bonus performance, Dale combines precision wirewound elements with specially-conductive extruded aluminum housings and special molding compounds. The result is exceptional heat transfer ability matched by no other housed wirewound line.

NEW HIGH-REL MODELS
The ARH, a high-rel version of the RH, is now available in four models: 5, 10, 15 and 30 watts. ARH resistors meet the requirements of MIL-R-39009 and are being produced on the same line as Dale's ARS and AGS—the world's most reliable wirewounds.

For complete housed resistor information including non-inductive and thru-chassis models—write for Catalog A.

<table>
<thead>
<tr>
<th>RH RESISTOR SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DALE TYPE</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>RH-5</td>
</tr>
<tr>
<td>RH-10</td>
</tr>
<tr>
<td>RH-25</td>
</tr>
<tr>
<td>RH-50</td>
</tr>
<tr>
<td>RH-100</td>
</tr>
<tr>
<td>RH-250</td>
</tr>
</tbody>
</table>

ELECTRICAL & ENVIRONMENTAL SPECIFICATIONS

Tolerance:	0.5%, 1.0%, 2.5%, 5%, 1%, 3%
Operating Temp:	-55°C to +275°C
Overload:	±5% max. A R per MIL-R-18546D

*Power Rating based on 275°C max. Internal hotspot temperature with resistor mounted on standard heat sink. Figures in parentheses indicate wattage printed on RH-5 and RH-10. New construction allows higher ratings as shown, but these resistors will be printed with the higher rating only on customer request.

DALE ELECTRONICS, INC.
1300 28th Avenue, Columbus, Nebraska
in Canada: Dale Electronics, Canada, Ltd.

From David—to Goliath...
(5 watts)
(250 watts)
Hughes wins order for tactical comsat, may get another

After lengthy negotiations, the Air Force has awarded the Hughes Aircraft Co. the contract to design and build a tactical communications satellite [Electronics, Dec. 12, 1966, p. 74]. General Electric Co. was runner-up in the bidding. Hughes has received $9 million to begin work on the fixed-price, incentive-fee contract, which has a target price of $23,505,076. The goal is to demonstrate the feasibility of using space repeaters for the armed services' tactical communications. The satellite is expected to be launched next year from the Eastern Test Range into a stationary orbit 22,300 miles above the equator. Even if successful, it wouldn't be used to handle communications with forces in Vietnam, but would be available for emergency use.

Hughes may also win an order for a military communications satellite for Britain. The firm reportedly leads the Philco-Ford Corp. and TRW Inc. in the bidding for the award. The U.S. Air Force will put the satellite into synchronous orbit over the Indian Ocean and then turn it over to the British, who will pay the $20 million total cost of the project. Operation of the satellite is scheduled to begin in March 1968. The British will use the craft for 24-hour communications with Australia and points in Southeast Asia.

Air Force slates TX road show

The Air Force will try the "hard sell" approach in an effort to gain supporters for its Testing Extra (TX) semiconductor reliability program. Air Force reliability officials plan to conduct what they call a road show to explain TX benefits. On the tour schedule: the heads of the procurement commands and logistics commands, and possibly user companies and international groups such as the North Atlantic Treaty Organization.

If TX is widely accepted, the Air Force insists, users will get more reliability for their money. Army and Navy reliability officials are cool to the idea, contending that the new specification is unnecessary [Electronics, Jan. 9, 1967, p. 43]. Among other things, TX calls for 100% burn-in testing.

Communications for commuters

Commuters on the rapid-transit systems of the 1970's may be able to read teletyped news and make calls over videophones during their ride. At least, the prospects for equipping future high-speed systems with a variety of communications gear are being studied by the Environmental Science Services Administration.

Three transmitting methods are being considered by the agency's telecommunications group in Boulder, Colo.: inductive coupling in the 20- to 200 kilohertz range now employed on railroads; capacitive coupling utilizing a plate on the ground and one on the car with a half-inch air gap; and wave-guide coupling using a "leaky" wave guide radiating only toward the train in the millimeter and centimeter wavelengths.

Defense budget put at $70 billion plus

President Johnson is telling businessmen in private meetings that the fiscal 1968 military budget, to be released this week, will run between $70 billion and $75 billion and will maintain the U.S. effort in Vietnam at least at current levels.
A multipurpose satellite to perform the tasks of as many as six different special-purpose satellites is being considered by the National Aeronautics and Space Administration. The craft's jobs would include those already being done by satellites in earth orbit, such as communications, meteorology and geodesy, as well as those still in the planning stage—navigation, traffic control and earth resources surveying. NASA engineers are currently writing a work statement for an upcoming study of the Unified Space Application Satellite, but haven't yet decided whether to study the complex craft in-house or farm it out to industry. NASA planners believe that a single satellite could be designed to do the multiple tasks, but the study must determine whether a single optimum altitude and orbit inclination can be decided upon.

The Defense Department has started the ball rolling on a program to spread its research and development funds more evenly among the nation's colleges and universities. Geographic imbalance in Pentagon R&D spending is being increasingly attacked by Congressmen representing "have-not" areas.

The new program is a start, but the amount of money slated for it isn't enough, according to Democratic Sen. Fred Harris, who comes from the have-not state of Oklahoma; he will resume Congressional hearings this spring on the economic impact of Government research.

The Pentagon will spend $20.5 million on the program in fiscal 1967 and is seeking $27 million for fiscal 1968. It is asking schools to submit proposals for work in such areas as laser technology, terrain-avoidance systems, automatic navigation gear, and computer networks.

Despite earlier worries that the Voyager unmanned planetary exploration program would be delayed because of money problems [Electronics, Oct. 17, 1966, p. 49], NASA believes it can still make the first launch to Mars in 1973 with the $69 million it is seeking for the project in the fiscal 1968 budget. In fact, program managers believe they could settle for $50 million and still make the 1973 date.

Slated for release soon is the agency's request for bids to design the Voyager capsule; two or three companies will be selected to compete. The builders of the mother spacecraft will be selected from among the Boeing Co., the General Electric Co. and TRW, Inc.

President Johnson has again deferred a decision on deployment of the Nike X antiballistic-missile system, and the consensus in Washington is that none will be forthcoming while efforts to reach new disarmament agreements with the Russians go on. However, the debate will continue. Some Republicans are already talking about a missile-defense gap, and a number of Congressmen want work to at least proceed on tooling up for Nike X production.

International Business Machines Corp.'s Federal Systems division has submitted an unsolicited proposal to the Agency for International Development to study the cost and benefits of using satellites to beam educational television to developing nations.
SMALL SENSITIVE SPEEDY

SIZE
The larger relays shown here (actual size) occupy about 2 cubic centimeters; the smallest one shown occupies one cubic centimeter.

SENSITIVITY
Standard subminiature relays operate on 5 milliwatts; smallest one operates on 30 milliwatts; relays set up for operation at higher drive power give greater resistance to shock and vibration and faster response.

SPEED
Normally, response is 5 milliseconds or less; relays can be driven to as short a response as 0.1 millisecond.

CONTACTS
SPDT with your choice of three contact materials to give you maximum life at your operating load — below 1 ma; up to 1V for light loads 1 to 150 ma; up to 24V dc (medium) 100 to 500 ma; 50V ac or dc max.

ISOLATION
10,000 megohms minimum and 1 pf maximum between fixed contacts and all parts of relay; 10,000 megohms minimum and 7 pf maximum from moving contact to coil.

For electrometers, a special relay with the normally open contact brought out through header in top gives you 50,000,000 megohms minimum to any other part of relay.

COIL
Your choice of 15 standard resistances in the subminiature size from 20 to 14,500 ohms (higher on special order); 7 standard resistances to 8,000 ohms in microminiature size.

ENVIRONMENT
Temperature limits as wide as -40°C to +125°C for most types.

Shock and vibration high because of magnetic and mechanical balance of moving contact; in rugged relay with 90 milliwatt coil drive as much as 80 g for sinusoidal vibration from 0 to 2000 Hz, 150 g for sine pulse shocks of 8 milliseconds duration.

All relays hermetically sealed with glass-bead insulators for operation in any humidity; cadmium-plated steel cases for fungus protection.

CATALOG
Yours for the asking.
THE LIMITS OF UNDERSTANDING —

How much can displayed information be condensed and still be intelligible? How much detail is necessary to identify a TV image? To understand speech? Sperry is experimenting in all these areas. A pseudo-random scanning technique, for example, has demonstrated that simple shapes can be identified on a television screen at bandwidths as narrow as a kilicycle. In speech processing, methods are being developed for encoding and decoding speech to reduce bandwidth while retaining good understandability, speaker recognition, and certain aesthetic qualities present in normal speech. These techniques will permit the transmission of many, high quality simultaneous conversations over a single voice channel. In visual psychology, research is attempting to correlate electrical waveforms generated in the human brain with present theories of depth perception.

RANGING IN —

Through a better understanding of the wideband properties of microwave networks and the use of new pulse compression techniques, Sperry scientists foresee order-of-magnitude improvements in radar range resolution. Their achievements point the way to true imaging in battlefield surveillance and satellite identification radars as well as more accurate determination of target trajectory and greater clutter suppression. Other projects in the works include the synthesis of new components such as microwave pulse compression filters, and the generation of microwave phase-coherent energy for use as a diagnostic tool in antenna transient studies.

SIGNAL SUCCESS —

Real headway in signal design and processing is being made at the Center. New techniques—coherent and incoherent—have been found for achieving sub-clutter and sub-jamming visibility. Sophisticated computer search is aiding the discovery of radar waveforms that are both practical and effective. Other aspects of modern radar theory currently under study include phased array radars, sequential detection techniques, and video schemes such as pulse width discrimination and side lobe blanking.

IN DEEP WATER —

Sperry is conducting work in a variety of disciplines which, taken together, form an integrated capability in undersea electronic and acoustic technology. For example, investigation of underwater acoustic channels is aimed at achieving major improvements in communication between submarines and between submarines and surface ships. New navigation and control techniques for deep submersible vehicles will minimize fuel consumption during the performance of specific maneuvers. Human factors research is devoted to the critical area of man-machine compatibility such as in the design and use of displays.
BRIEF SPECIFICATIONS: Power rating—2 Watts ■ Working Voltage—500Vdc ■ Resistance Range—50 ohms to 10 megohms linear, 250 ohms to 5 megohms tapered ■ Available with shaft seals, mounting seals, switches, high torque, ganging, non-metallic shafts, L & T Pads, concentric shafts, high-voltage standoffs, backlash assemblies, encapsulated units and locking bushings ■ Meets specifications of MIL-R-94—Style RV-4.

when you’re being critical about quality, nothing matches the design and the construction reliability of our SERIES 53 POTENTIOMETER materials are selected for optimum compatibility to assure minimum wear, low noise and long life. Backlash is zero. Total enclosure protects against moisture and other environmental hazards. No matter how critical your application—computer, space, military systems, etc.—you can count on the Series 53 potentiometer because you know it’s by
G.E.'s new wet slug tantalum capacitor gives you the performance of the CL64 in only ½ the case size

Get the highest volt-microfarad product per unit weight and volume of any capacitor you can buy with General Electric's new 69F900 wet slug tantalum capacitor. How? General Electric reduced the case size of the military type (CL64) wet slugs by ½ (it's even smaller when compared to solids). Electrical characteristics and performance remain essentially the same. G.E.'s new 69F900 answers the need for a commercial wet slug capacitor with the high volumetric efficiency demanded by modern high density applications.

G.E.'s new addition to its complete line of tantalum wet slug capacitors has excellent high capacitance retention at low temperatures and can be stored to -65°C. Its wide operating range is -55°C to +85°C. And it meets the parameters of larger military wet slugs: vibration to 2000 Hz, 15g acceleration!

The new sub-miniature 69F900 capacitor is fully insulated and has a low, stable leakage current. Voltage ratings are available from 6-60 volts; capacitance ranges from 3.3-450 microfarads.

Choose from a complete line of G-E wet slug tantalum capacitors to fill your slim, trim circuit needs. Write for GEA-8369 for details about the 69F900 and the other capacitors in General Electric's complete wet slug tantalum line, or ask your G-E sales engineer. Capacitor Department, Irmo, South Carolina.
One of the nice things about the 3-I Model PG-32 Dual Channel Pulse Generator is that it keeps things in perspective. If you don't care for what its output waveshape is, you can change it — it doesn't limit your usage.

You can control continuously the repetition rate, amplitude, rise time, fall time, pulse width, delay and so on of either or both of its dual output channels. If you want a current source, it's a current source at 500 ohms minimum impedance (current up to 400mA). When voltage is the thing, it's a voltage source (±20mV to ±20V from 50 ohms). Want bipolar outputs? Combine the channels and, voilà!, bipolar outputs. The complement of the normal output of either channel? Easy. Throw a switch. Since both output channels are completely DC-coupled, any combination of waveforms is possible . . . including 100% duty cycle.

From each channel you can get single or double pulses; either first or second pulse. Or square waves. Plus sync pulse. You can externally trigger or gate the PG-32 to 10MHz. One-shot? Pushbutton. DC offsets to 10V via front panel controls.

All (silicon) solid-state; 3½" high; modest price. If you would like technical literature or a demonstration, please write or 'phone.

Model PG-32. From Intercontinental Instruments, Inc. . . . an affiliate of CHRONETICS.

Intercontinental Instruments Incorporated
An Affiliate of Chronetics

U.S.A.: 500 Nuber Avenue, Mt. Vernon, New York (914) 699-4400 TWX 710 560 0014
Europe: 39 Rue Rothschild, Geneva, Switzerland (022) 31 81 80 TELEX 22266
We don't think the film pots we made to someone else's requirements are good enough for you.

That's why Litton never has any off-the-shelf potentiometers.
Yet we make some of the most versatile precision film pots in the industry. Linear. Trigonometric. Logarithmic. Pressure-altitude. Impact-mach. Nonlinear empirical. And every one of them custom engineered to fit your specific requirements.

Litton conductive film pots can be provided readily in any mechanical angle—sector configurations or continuous rotation. In addition, they feature:

- Infinite resolution
- Terminal conformity as low as ±0.01% depending upon size, resistance, and type of function
- A minimum temperature coefficient of −250 PPM/°C
- An ambient temperature range to +150°C
- Matching resistors and switches when specified
- Gold-plated slip rings and precious metal contacts to prevent oxidation, reduce noise and slip-ring wear
- Dimensionally stable housings to withstand shock and vibration, heat and cold, dust and humidity.

And each one is microscopically inspected, tested at every stage of production. What's more, our government-certified testing equipment allows simultaneous exposure to environmental extremes.

Send us your requirements or applications. We'll handle them—fast—at no cost or obligation. For more information, write or call: Litton Industries, Potentiometer Division, 226 East Third Street, Mt. Vernon, N.Y. 10550. Tel.: (914) 664-7733 TWX: (914) 699-4687 • Western Regional Office: Tel.: (213) 273-7015.
Reliability and price levels for every ER application

C\} Hermetic seal — 50 PPM
S\} .001% Failure Rate

H\} Molded — 50 PPM
R\} .01% Failure Rate

K\} Molded — 100 PPM
M\} 1.% Failure Rate

Mepco, using MIL-R-55182 rev. C as a base, now makes metal film resistors available in three reliability and cost levels to meet your specific application.

- C/S in Mepco's FH series hermetic seal metal film resistors ... for applications requiring the highest level of reliability and absolute protection against the most stringent environmental conditions.
- H/R in Mepco's FE series molded metal film resistors ... for use where true hermetic sealing is not critical.
- K/M in Mepco's FE series molded metal film resistors ... where economy can be achieved for ER applications.

Let us show you how this product line can fit into your program. Write or call today for Bulletin FE.

Mepco, Inc., Columbia Road, Morristown, N.J. 07960
(201) 539-2000, TWX (201) 538-6709
Mallory Capacitor Company chooses GAF x-ray film to make sure everyone gets the word

Computers, telemetry, AC/DC converters, navigational gear, radar and other sensitive electronic components used in our space and missile programs rely on tantalum capacitors for long life and dependable communications.

Mallory Capacitor Company, manufacturer of these tantalum capacitors, relies on GAF Industrial 'H-D' x-ray film to detect inclusions, excess bonding material, and check casing element clearances on all electrical connections.

To quote Mr. John E. Beckley, Quality Control Supervisor, "Only Industrial 'H-D' is used to radiograph our capacitors. It's the one x-ray film producing the definition, sensitivity and contrast that reveals minute detail within tiny components."

Ultra-fine grain and very high contrast characteristics make Industrial 'H-D' film the ultimate for pinpoint radiographic examination. Your distributor of GAF x-ray products can supply you with information on our complete line of films and chemistry.

GAF maintains a nationwide staff of full-time Industrial X-ray Specialists—trained to render expert radiographic counsel, assistance and service. We have one in your area. Don't hesitate to call on him.

Circle 68 on reader service card

E-123
If we made only digital IC's, what would we try to sell you?

If we made only linear IC's, what would we try to sell you?

If we made only hybrid IC's, what would we try to sell you?

If we made only MOS devices, what would we try to sell you?

If we made only transistors, what would we try to sell you?

But since we make all these, what will we try to sell you?

Only what you need.

Philco has the broadest line of products in the microelectronics industry. We make everything from epoxy transistors to MOS IC's, and we can show you how to use all these products to your advantage. Because our capability is the most diversified in the industry, we make an excellent source for all your present—and future—systems requirements. We offer you economy, unbiased service, and the finest products available today. Here are a few examples of Philco's broad capability.

DTL: We make both SE and the 930-Series standard DTL families. Our E-line 930 Series in dual inline packages guarantees the same levels of fan-out and noise immunity over 0° to 75°C available in hermetically-sealed packages.

Super RTL: For high-speed, medium-power logic systems. Typical propagation delay of 8 ns per logic level and power dissipation of 3.5 mW per gate.

Milliwatt III: For high-speed, low-power, applications. Typical propagation delay of 13 ns per logic level and power dissipation of 3 mW per gate.

Linear: PA 7600 RF/IF video amplifier, with highest gain bandwidth available today. PA 7601 RF/IF bandpass amplifier, with medium gain and bandpass of 40 to 150 MHz. PA 7602 utility amplifier, high gain, for use in analog guidance, computer, and instrumentation.

Hybrid: Compatible hybrid circuits; PNP, NPN, FET, and MOS FET—all on the same substrate. Packaged in: epoxy for industrial uses; low-cost conformal for consumer products; hermetically-sealed in TO-5 or flat packs for reliability optimization.

Transistors: PNP and NPN planar and planar epitaxial silicon transistors.

Picologic (Large-scale Integration): Integrated MOS subsystems include the pl4000 Series (gates, counters, etc.) at speeds from DC to 100 Kc and the pl5R shift register series with speeds from 10 Kc to 1 Mc.

Call or write: Philco-Ford Corporation Microelectronics Division

Sales Offices:

PHILCO-FORD CORPORATION
Microelectronics Division
Santa Clara, California • 95051

Electronics | January 23, 1967

Circle 69 on reader service card
Only one supplier gives you in-depth selection in these basic types of microwave devices.

In fact, only one makes all 6 types.

Only Bendix offers you such a comprehensive line of microwave components and instruments. And many are stocked for off-the-shelf delivery. That includes the 6 basic product categories—as well as such other microwave devices as adapters and transitions, integrated devices, attenuators, miniature components, and phase shifters. In all, over 5,000 different models.

Need a special device? We’re equipped to modify or build a device to meet your specific needs.

You’ll see what we mean by in-depth selection when you scan our new catalog. Write, call or TWX: Microwave Devices, Inc., Farmington Industrial Park, Farmington, Conn. 06032. Phone: (203) 677-9771; TWX: (710) 432-2206.

Microwave Devices, Inc.
Testing integrated circuits is a key step in their production. At the Molecular Electronics Division of Westinghouse Electric Corporation, Tally perforators are used to log data as each module is run through a series of parameter checks. Data logged on the tape is then analyzed by computer.

According to W. DeLauder, Foreman of the Instrumentation Section at Westinghouse, the five Tally Model 420 perforators worked extremely well during a fifteen month period just ended. Fewer than eight calls per perforator were made to keep all five perforators on duty over the entire period. The average time per call was 2.23 hours with an average cost for parts of $3.05.

During the fifteen month period, the five perforators punched with precision over 478 miles of tape. There are a lot of good solid engineering reasons why Tally perforators are extraordinarily reliable. For all of them, please address Ken Crawford, Tally Corporation, 1310 Mercer Street, Seattle, Washington 98109. In the U.K. and Europe, address Tally Europe, Ltd., Radnor House, 1272 London Road, London, S.W. 16, England.

There are five hard working Tally perforators on the job around the clock at Westinghouse. During one 15 month period, these perforators were ready for work 99.9% of the time...and work they did, knocking perfect chad out of 2,520,000 feet of tape!

How's that for reliability?
Cost-cutting ideas in switch actuation

You can often reduce your design and assembly costs by using a ready-made switch actuator.

For example, the proper actuator can eliminate complicated linkages or space-consuming brackets.

You can be sure of finding the right actuator in the MICRO SWITCH line—the world’s largest. Here you will find actuators to accommodate every type of operating motion: rollers, levers, springs and rods, both integral and auxiliary types, for single and gang-mounted switches.

Before you spend time on a special method of actuation, call a MICRO SWITCH Branch Office or Authorized Distributor (see Yellow Pages, “Switches, Electric”). Or, write...

MICRO SWITCH
FREEPORT, ILLINOIS 61032
A DIVISION OF HONEYWELL

HONEYWELL INTERNATIONAL—Sales and service offices in all principal cities of the world. Manufacturing in United States, United Kingdom, Canada, Netherlands, Germany, France, Japan.
You can get off-the-shelf delivery, right now, of seven basic groups of silicon planar NPN and PNP transistors and two families of dual diodes packaged in the new Amperex LIDS. These nine groups of microelectronic semiconductors, functionally replace hundreds of different types for all your hybrid applications listed above.

HIGH SPEED SWITCHES (NPN)

- LDS 200
- LDS 201

*functionally replace the following types:
- 2N706 2N744 2N914
- 2N708 2N834 2N2368
- 2N743 2N835 2N2369

GENERAL PURPOSE AMPLIFIERS (NPN)

- LDA 402
- LDA 403

*functionally replace general-purpose amplifiers operating from 1 to 100 ma, such as:
- 2N406 2N2218
- 2N407 2N2219
- 2N1613 2N3990
- 2N3991

DUAL DIODE - COMMON CATHODE

GENERAL PURPOSE and HIGH SPEED SWITCHING DIODE

- LDD 10

MEDIUM CURRENT AMPLIFIER AND SWITCH (NPN)

- LDA 404
- LDA 405

(COMPLEMENT TO LDA 451 AND LDA 453)

*functionally replace the following types:
- 2N2217 2N2220 2N1711
- 2N2218 2N2222 2N178A
- 2N2219 2N2220 2N1711
- 2N1613

HIGH FREQUENCY RF AMPLIFIER (NPN)

- LDA 406

functionally replaces type 2N918

GENERAL PURPOSE AMPLIFIER AND SWITCH (PNP)

- LDA 450
- LDA 451

*functionally replace the following types:
- 2N3604, 2N2605

HIGH GAIN, LOW LEVEL AMPLIFIERS (NPN)

- LDA 400
- LDA 401

*functionally replace the following types:
- 2N290 2N2483
- 2N290 2N2484

MEDIUM CURRENT AMPLIFIER AND SWITCH (PNP)

- LDA 452
- LDA 453

(COMPLEMENT TO LDA 404 AND LDA 405)

*functionally replace the following types:
- 2N2904 2N2906
- 2N2905 2N2907

DUAL DIODE - COMMON ANODE

GENERAL PURPOSE and HIGH SPEED SWITCHING DIODE

- LDD 50

The LID, introduced by Amperex last March, is the all-ceramic microelectronic package for semiconductors which brought mechanized production to hybrid integrated circuit manufacture. Smaller (0.075" x 0.045" x 0.032") and less costly than any existing metal package, it has already become the standard of the industry. To learn more about the immediately available LIDS listed above and about additional transistors and diodes which will soon be available in the Amperex LID package, write: Amperex Electronic Corporation, Semiconductor and Receiving Tube Div., Dept. 371, Slatersville, Rhode Island 02876.
Everything's a filter

in microwave sub-assemblies

—that's why we make better sub-assemblies!

When designing a microwave sub-assembly, practically everything becomes a filtering problem. And we're not talking about just the filters themselves. Couplers, mixers, detectors—everything up to and including the launchers—interact and determine the frequency characteristics of the entire sub-assembly.

So, final sub-assembly performance starts with superior filtering knowledge. Over the years, Microlab/FXR has designed and produced more filters and other microwave components than anyone else. In the process, we've had to learn more about how these components interact—how they should be designed and packaged to minimize the effects of shock, vibration, temperature and altitude—and how to optimize the performance of a sub-assembly built upon such components.

One result of this experience is the stripline sub-assembly above. It includes a mixer, two directional couplers, a filter, two terminations and a diode switch—all in a 5-ounce epoxy-encapsulated package just 3⅛" x 2⅝" x ⅛". Similar sub-assemblies can be supplied for any microwave frequency and bandwidth, using these same techniques.

Let us bring our skills to your microwave sub-assembly problem. Our services can include everything from the technical proposal through value analysis, production and acceptance testing. Write today for more information, as well as a free copy of our catalog of standard microwave products. Address: Dept. E-60.

MICROLAB/FXR
Livingston, New Jersey 07039 Phones: (201) 992-7700; (212) 721-9000
Monolithic IC techniques produce first all-silicon microwave switch

The most ambitious of several government-sponsored programs to develop integrated circuits for microwave equipment has started to bear fruit. Using monolithic techniques, the author has produced a transmit-receive switch that is all silicon. It can handle one watt of continuous power at about 9 gigahertz. Next will be the development of a balanced mixer and a 500-megahertz amplifier. On the cover is a disk on which are incorporated 100 switches.

Computer-aided design: part 5, Doing a model job

One critical problem in using a computer to help design electronic circuits is describing devices so the computer can recognize them. In fact, how well the engineer describes the semiconductor device can make the difference between a high-performance circuit and a mediocre one. Bad models yield inaccurate results. Here are some tips to help offset the computer’s lack of engineering intuition.

Integrat ed circuits in action: part 4
Postmortems help prevent future failures

As integrated circuits go into a widening range of equipment, the cause of failure is interesting an increasing number of people. In determining why integrated circuits fail, bad ones are more valuable than good ones. But the cause of failure may be improper application rather than faulty fabrication or design.

Chronometer expands pulses to measure nanosecond intervals

An inexpensive but accurate instrument resolves time intervals down to 10 nanoseconds and makes it possible to display the time interval data on a low speed oscilloscope. The technique of pulse stretching is usable in a variety of instrumentation applications that range from optical range finding to counting nuclear pulses.

Coming February 6

- Redundant integrated circuits that use little power
- A digital phase shifter
- Computer programs to aid design
- Designing a computer for command and control
Microwave

Monolithic IC techniques produce first all-silicon X-band switch

Transmit-receive device developed for radar project shows that diodes and microstrip transmission line can be fabricated directly on a silicon substrate

By Alfred Ertel
Texas Instruments Incorporated, Dallas

Planar techniques used to manufacture monolithic integrated circuits can now be used to build arrays of uniform, high-quality IC's operating at microwave frequencies. The first IC microwave circuit—an all-silicon transmit-receive switch—handles 1 watt of continuous power at around 9 gigahertz; it sustains peak powers of 50 watts, and even higher powers are anticipated.

The circuit, 100 mils square and 10 mils thick, also demonstrates the feasibility of fabricating microstrip transmission line—used to connect the microwave-frequency portions of the switch—directly onto the silicon substrate.

The switch was developed by Texas Instruments under the Air Force project MERA, for molecular electronics for radar applications, the most ambitious of several Government-sponsored microwave IC programs. An X-band balanced mixer and a 500-megahertz amplifier are also under development for this project, which aims to produce a phased-array radar made up of microwave IC's.

All of the factors that make monolithic integrated circuits practical at lower frequencies also apply to a microwave structure:

- Devices can be fabricated in place and produced by batch-processing techniques that tend to increase the over-all reproducibility and reliability of the circuit.
- Semiconductor substrates provide the best thermal-transfer medium because the devices are actually a part of the medium.
- Dimensions can be held to more exact values in the monolithic circuit because the same photographic masks control the position of both the active devices and the rest of the circuit (ideal for critical higher-frequency circuits).
- The monolithic approach may result in generally lower fabrication costs, though this will depend to a large extent on the number of processing steps and the yield at each step.

The monolithic structure used by TI represents one of the two major approaches being taken by the organizations developing microwave integrated circuits. The other involves a hybrid technique in which active semiconductor-device chips are bonded into a circuit fabricated on a different substrate material. Both approaches are, of course, aimed at developing extremely reliable microwave equipment that is at the same time compact and lightweight.

The hybrid structure generally offers greater versatility. Only good active devices are selected for bonding into the circuit, and those that become defective can often be readily replaced. The size of many passive microwave elements, such as filters and chokes, depends on the operating wavelength. The present size limitations on good-quality, high-resistivity silicon make the hybrid structure a necessity at the lower microwave frequencies. (Of course, the silicon crystal can be sliced parallel to the axis of growth to yield larger-area slices. But

The author

Alfred Ertel is a project manager in the Silicon Research and Development Laboratory's MERA program at Texas Instruments. Formerly manager of rectifier development, he is currently chairman of JS-2, the committee on small signal diodes of the Joint Electron Devices Engineering Council.
Monolithic 9-Ghz transmit-receive switch is integrated on a 10-mil-thick silicon chip 100 mils square. R-f portion of the switch, including p-i-n diodes and quarter-wavelength meander-line chokes, is built on microstrip transmission line. Thin-film capacitors are deposited atop the silicon.

here too there are limitations in width and there would probably be greater processing difficulty.

Structure of the switch

The switch is designed for use in a system with a characteristic impedance of 50 ohms.

The microstrip transmission line, or rather its 6-mil-wide upper metallic conductor, looks like an inverted “T,” with the center leg being the antenna lead and the crossarms being the input and output r-f leads.

Two single-pole, single-throw p-i-n diodes are located at the base of the center leg of the T. Decoupling elements in the form of quarter-wavelength chokes, bypassed by thin-film capacitors, allow bias to be applied to the diodes without seriously affecting the r-f transmission properties of the microstrip line. Bias voltage for switching the diodes can be as low as 1 to 1½ volts. At an input power of 1 watt, peak-to-peak voltage of the radio frequency signal is 40 volts.

A metallic ground plane for the microstrip covers the entire underside of the silicon chip. However, there is another ground plane on the top of the silicon that forms the undersurface of the film capacitors, and this surface connects to the two outside pads, one at each side of the bottom of the chip. The two planes are joined in the external circuitry. Forty-one complete circuits fit on a single 1-inch-diameter silicon slice.

The properties of the microstrip line depend on its dimensions. Characteristic impedance varies with the ratio of the width, w, of the microstrip to the thickness, h, of the silicon dielectric, shown plotted at the bottom of the next page.1,2 For microstrip of 50-ohm characteristic impedance, the w/h ratio is 0.6. Thus, the w dimension must be 6 mils wide for 10-mil-thick silicon.

The circuit is fabricated on p-type silicon with a resistivity greater than 1,500 ohm-cm to keep the line loss low. With this resistivity, power attenuation is 0.5 db/cm; the loss increases rapidly with decreasing resistivity. Unless precautions are taken,
Heat treatment of the material during processing will convert high-resistivity (greater than 1,000 ohm-cm) p-type silicon to a relatively lower resistivity n-type; the resulting excessive r-f losses then make it worthless as a transmission-line dielectric. Processed correctly, the silicon will maintain its high resistivity even if it does convert to n-type material.

Quarter-wavelength chokes

To conserve space, the quarter-wavelength decoupling chokes have been given a meander-line shape. At 9 Ghz, the ratio of wavelength in free space to wavelength in the microstrip is 2.78 for a 10-mil-thick high-resistivity silicon substrate; using this value gives a nominal quarter wavelength in the silicon of 118 mils. In practice, this length has to be adjusted for mutual coupling between the turns of the meander line.

A 15% increase in length to 136 mils appears satisfactory. The microstrip for the chokes is 2 mils wide, resulting in a characteristic impedance of 70 ohms.

Bypass capacitors

The three thin-film bypass capacitors are designed to provide an r-f path to ground having less than 1 ohm impedance at X band (5,200 to 10,000 megahertz). The dielectric is silicon dioxide stemming from the thermal decomposition of silane in an oxygen atmosphere. With a thickness of approximately 4,000 angstroms of oxide, the capacitance per unit area is 0.07 picofarads per square mil. The total area per capacitor is 400 square mils, giving a reactance of 3% ohm. Both aluminum and molybdenum-gold metal systems have been used with equal success in fabricating the circuits.

Switching diodes

The switching diodes in the circuit are of the surface-oriented type.\(^3,4\) This is one in which the anode and cathode areas are adjacent at the surface of a silicon chip. Carrier flow under bias is approximately parallel to the surface.

Such diodes have several advantages for microwave integrated circuits, whether hybrid or monolithic:

- They are compatible with microstrip construction.
- Capacitance under reverse-bias conditions may be made quite small and even adjusted during processing, within limits, by varying the depth of diffusion.
- Heat generated is dissipated readily because the p-n junctions are parallel to, and close to, the excellent heat sink formed by the ground plane.

A surface-oriented diode similar in principle to the p-n switch diode consists of one set or more of anode and cathode diffusions into high resistivity silicon, shown above. These diffusions can be connected directly into a microstrip line.

A seven fingered surface-oriented diode has been designed for a minimum of 25-db isolation on reverse bias at 500 Mhz (photo next page). All cathode diffusions are interconnected to join the

Figure: Forty-one complete microwave circuits fit on a single 1-inch-diameter slice of silicon.

Figure: Characteristic impedance of a microstrip line on silicon dielectric varies with the ratio of stripline width, \(w\), to the thickness of the dielectric, \(h\). For TI’s 50-ohm system, the strip is 6 mils wide.
Seven-fingered surface-oriented diode has cathode diffusions joining the microstrip to the top, anode diffusions joining the microstrip to the bottom. Reverse bias capacitance is about 0.18 pf.

portion of the microstrip going off to the top. Capacitance of the reverse-biased diode is approximately 0.18 pf, far too large, incidentally, to give a useful level of isolation at X band. (What appear to be cracks at the silver-colored bases of some of the diode fingers result from the way light strikes the window areas opened in the silicon dioxide during the diode diffusions.)

To achieve the same 25-db isolation at 9 Ghz, the reverse-bias capacitance must be reduced to about 0.01 pf. Here is where the inherent advantage of the integrated surface-oriented diodes comes into play. In a conventional solid state microwave switch using packaged diodes, the diodes are mounted in series or in shunt with the transmission line. Generally the series configuration isn't used at frequencies above 4 Ghz because the diode's reverse-bias capacitance, which includes a package capacitance, is too large.

In this circuit, however, a series diode configuration is no problem at all at X band. Very low capacitance can be obtained by using a special type of surface-oriented device, called a "gap" diode because it has only one anode area and one cathode area separated by a small gap of high-resistivity material. For the diode size and gap spacing used, reverse-bias capacitances as low as 0.005 to 0.008 pf are obtained, providing an isolation at 9 Ghz of 31 to 27 db, respectively.

Consider the forward bias condition of one of the diodes of the T-R switch with the other biased off. The insertion loss, δ, of a series diode switch in a 50-ohm transmission line is given by the relation $\delta = 10 \log \left(\left(1 + \frac{R_s}{100}\right)^2 + \left(\frac{X}{100}\right)^2 \right)$ where X, the reactance resulting from charge storage capacitance, is very small and can be ignored. R_s, the series resistance, is the major contributor to the total loss. The effect of excess amounts of series resistance can be gauged by examining a semilogarithmic plot of the diode equation, shown at the bottom of the next page.

This plot should be a straight line of slope $e^{e/2KT}$ if no series resistance is present and the voltage drop is entirely due to current passing through the junction impedance. If excess series resistance is present, the additional drop resulting from it shows up on the semilogarithmic plot as a curve deviating from this ideal straight line, especially at higher values of current. A diode giving a straight-line plot will provide a minimum insertion loss in the circuit. There are other considerations, however, to be discussed further on, which may contribute to higher levels of insertion loss in a silicon monolithic microwave circuit.

Gap diodes

The gap diodes in the switch are designed to operate in a "punch-through" condition when reverse biased. Under this condition, the high resistivity region becomes intrinsic and the reverse-biased diode resembles a parallel plate capacitor. Capacitance is fairly independent of voltage beyond punch-through. Therefore, circuit and diode design are simplified and actual bias voltage depends only on r-f peak voltage considerations. Switching characteristics are independent of r-f power over a wide range.

Using the equation for insertion loss given above, Garver has shown that the reverse-biased isolation, η, of a series diode switch in a 50-ohm transmission line is very nearly equal to $20 \log \left(\frac{X}{100} \right)$ when $R_s/Z_0 \ll 1$ and $X/Z_0 \gg 6$. The equation for η may be used to determine the value of the reverse-bias capacitance by measuring the power incident on a power meter both with and without the monolithic chip (in its test jig) connected into the test equipment. The diode leg being tested for isolation is reverse biased and the other leg forward biased. The capacitance is then determined from the value of X calculated at the test frequency.

Package capacitance is insignificant. Metal-oxide-silicon capacitance formed by the metallic stripline, the oxide and the silicon substrate is very much in evidence at 1 Mhz when measured by a capacitance bridge, but it disappears at microwave frequencies.
Test jig built for handling 100-mil-square circuit chip has three coaxial connectors for the r-f lines. D-c connections are through the contacts at right.

frequencies. The resistance of the high-resistivity substrate in series with this MOS capacitance completely negates the MOS capacitance.

On reverse bias, the diode equivalent circuit consists of the voltage-dependent barrier capacitance C_B shunted by a very large-value resistive component R_B and a lumped equivalent of the MOS capacitance in series with the resistance, R_N, of the substrate.

The parallel equivalent of this circuit, as shown, combines the MOS capacitance and the barrier capacitance into one value, C_p, and does the same for the conductance portion of the admittance. C_p and R_p can be calculated from known or assumed values of C_B, R_B, C_{MOS} and R_N. This shows that at high frequencies C_p is identical with C_B over a wide range of assumed values of substrate resistance R_N, and that the MOS capacitance doesn't enter into the picture at microwave frequencies.

Semiconductor dielectrics

The minimum insertion loss possible in a microwave monolithic integrated circuit depends on the transmission-line properties of the semiconductor substrate. The components interconnected by the microstrip have various potentials on their electrodes and terminals, and current paths to ground may be set up unless precautions are taken.

The cross section of a microstrip transmission line containing a gap diode, next page, shows the possible r-f and d-c conduction paths to ground. Resistances represent the high values of the d-c leakage paths that may exist across the protective oxides and the silicon substrate. Capacitances are part of the r-f transmission-line representation. Paths from microstrip to ground are shown, but not resistances parallel to the transmission line.

If the contact between the metal stripline and the silicon is ohmic and no junction barrier exists, current can flow with equal ease in either direction, depending upon the polarity of the applied bias. The magnitude of current depends entirely on the resistance of both the metallic and semiconductor layers. If a potential barrier exists either in the silicon or at the interface of the metal and semiconductor, current flow is enhanced in one direction of applied bias and suppressed in the other.

Uncombined carriers, produced in a semiconductor by a potential applied across it, effectively lower the apparent resistance of the region, a phenomenon known as conductivity modulation. This current flow degrades the dielectric properties of the semiconductor.

![Diode Equivalent Circuit](image)

At microwave frequencies, the equivalent parallel capacitance, C_p, is essentially equal to the barrier capacitance, C_B. The MOS capacitance is negligible.

Series resistance, R_s, in the gap diodes causes diode characteristic to tail off from ideal straight line.
When a potential barrier exists between a semiconductor electrode and the high-resistivity substrate, the unidirectional d-c flow may be inhibited by reverse biasing this semiconductor junction with respect to ground. D-c leakage through ohmic contacts may not be stopped this way, but direct current through the high-resistivity semiconductor substrate can be eliminated completely by providing an insulating layer—the lower oxide layer shown in the cross section—between the ground plane and the semiconductor body. This layer won’t affect the uhf or microwave transmission properties of the microstrip, but will effectively open-circuit any d-c path to ground. It thus prevents a loss of dielectric properties of the high-resistivity semiconductor by preventing conductivity modulation.

The insulating layer can be of any suitable material, organic or inorganic. Silicon dioxide, silicon nitride and vapor-deposited silicon carbide have been used with equal success.

Testing the complete circuit

The switching performance of the complete circuit has been evaluated at frequencies of 8 to 11 Ghz. A special test jig was required to hold the 100-mil-square chip. The r-f connections are made to the three coaxial connectors; the d-c connections are made through the wires attached at the right of the jig, shown in photo, page 80.

Swept-frequency oscilloscope traces were taken in a wave-guide system to measure voltage standing wave ratio and insertion loss. With the diodes properly switched by d-c bias, the lowest loss was found at 9 Ghz. Vswr of the jig and chip at this frequency was 1.43.

The performance achieved to date:

- **Frequency range**: 8 to 9 Ghz
- **Insertion loss**: 1.5 to 2.0 db
- **Isolation**: 25 to 27 db
- **Power**: 1 w c-w
- **Peak pulsed power**: 50 w

In contrast, a comparable conventional solid state switch has an insertion loss of 1.0 to 1.5 db at 8 to 12 Ghz and a maximum switch power dissipation of 1.25 watts. It’s estimated that with improved testing techniques and reevaluation of power-handling capability, insertion loss of the monolithic circuit will be reduced to 1 db and power handling increased.

The insertion effects of the quarter-wavelength chokes were tested by short-circuiting one side of the “T” to simulate a diode turned on, and open-circuiting the other side to simulate one turned off. This formed an “L” with two chokes hanging from one r-f conducting leg.

Power-switching capability

The circuit is intended to operate continuously at 1 watt. Since the power into the diode can be shown to equal \(P = \frac{V_m^2}{2Z_w} \), the peak voltage of the r-f signal will be 20 volts, giving a peak-to-peak value of 40 volts. Diode breakdown voltage (including a safety factor) may be as little as 30 to 50 volts as long as the peak of the r-f voltage plus the bias voltage is less than the breakdown voltage.

At 9 Ghz, bias voltage need only be greater than the punch-through voltage for the full isolation level to be reached; this can be as low as 1 or 1½ volts. Tests have shown that almost half the amplitude of the peak-to-peak value of the r-f voltage can be positive without affecting the isolation characteristics of the switch so long as the period of the r-f signal is much shorter than the lifetime of the carriers.

Maximum c-w power-switching capability hasn’t yet been evaluated beyond the 1-watt design. But there is every reason to believe that with the ground plane in contact with a good heat sink, power handling will at least match that afforded by a conventional solid state microwave switch. The circuit has been operated successfully with up to 50 watts peak power incident on it. Fifty watts represents a peak voltage of 141 volts incident on the diode, or an approximate electric field of 100-kilovolts/cm across the diode metalization gap.

Acknowledgment

This work was supported in part by the Avionics Laboratory Research and Technology Division, Air Force Systems Command, under USAF Contract No. AF33 (615)-2525.

References

Computer-aided design: part 5

Doing a model job

The circuit designer would like to tell a computer:

'Here's what we have, and here's what we want to know.'

But setting up active-device models is still a complex task

By Cyrus O. Harbourt
University of Texas, Austin

How accurately a designer describes a semiconductor device to a computer can make the difference between a high-performance circuit and a mediocre one. Bad models yield inaccurate results.

Computer systems don't have the intuition, experience and common sense of the engineer. And unless these qualities are reduced to an appropriate set of hole-punched cards the machine won't perform efficiently. To some extent the computer's speed and storage capacity offset its lack of engineering judgment. But the machine's advantages best complement good engineering, not substitute for it.

Some circuit elements such as resistors can quite readily be represented to the computer. But diodes, transistors and other active devices are not linear and their reactions to temperature and frequency are difficult to describe mathematically.

There is no optimum transistor model applicable to all design goals. Two ideal diodes and a dependent current source may satisfactorily represent the state of transistors in a saturating logic circuit, while an equivalent circuit with eight small-signal parameters might be just the thing to calculate a video preamplifier frequency response. But neither of these models precisely determine the offset voltage in a high-quality analog gate circuit.

Transistor information in a form and quantity suitable to computer analysis is rarely found entirely on manufacturers' data sheets, and to obtain required data elsewhere is expensive. If a circuit analysis program is to be applied to a wide variety of problems, therefore, it must contain provisions for the most complex design models anticipated. On the other hand, while computers can usually handle more data than they need to analyze a problem, too much information reduces program efficiency. For less involved problems, a program should omit large portions of the complex model.

Basic concepts of model-making

A model is a mathematical representation of the behavior of a real device, in which external variables simulate real signals, inputs, excitations or environmental stimuli. Besides accurately predicting the performance of a complex electrical device, a model must be characterized by parameters derived from practical measurements of actual devices and must be subject to analysis.

Other desirable, but not essential, factors are that the model be formed from conventional lumped circuit elements and that its parameters directly correspond with the internal physical properties of the device being represented.

Rarely do the internal variables in a model have physical counterparts in the real device, but this, fortunately, is not a requirement. A model must only answer those questions pertaining to external variables; its adequacy is properly judged only on the accuracy of the predictions based on it. In any case, a model performs accurately only over a specified range of device behavior; there are always

The author

Cyrus O. Harbourt received his Ph.D. from Syracuse University, N.Y., in 1961. Now an associate professor at the University of Texas, he is currently doing research on experimental threshold gates in computer circuits, and modeling devices for computer-aided design.
conditions outside that range for which it fails.

A model need not be derived from first principles. It can be developed on a practical or whimsical basis and tested by comparison with experiments.

It is relevant to consider the various properties that transistor models can have. They can be connected in common-base, common-emitter or common-collector configurations. They can be assembled from ordinary network elements or based directly upon the fundamental physical processes inside the transistor. However, neither the mode of connection nor the transistor's physical behavior determines the success of the model.

Good models develop from a consideration of both properties and applications. They are limited in their applications to operation in d-c, small-signal a-c or transient conditions, and can include or omit energy storage effects, temperature dependence, noise properties or radiation damage effects. A more elaborate model can be used for a specific class of problems, though with considerable waste of computer time. For example, a designer could use a nonlinear transient model for linear steady-state a-c analysis, but not efficiently.

The models can be automatically programed, requiring only connection and type-number designation by the programer, or they may require detailed programing of internal parts.

Models for transistors and diodes can be divided into the following categories: linear d-c models; linear steady-state a-c models; nonlinear d-c models that are further subdivided into piecewise linear, exponential nonlinear and tabulated-data types; nonlinear transient models, including piecewise linear and general nonlinearities.

Linear d-c models

The d-c model of a semiconductor diode is represented, at the above left, by the current-voltage characteristic curve, a single nonlinear function of a single variable. The external variables of the model are terminal current, i, and terminal voltage, v. Secondary effects aren't considered. For a transistor, the d-c model is represented by a pair of nonlinear functions, each of two real variables.

For linear d-c models to be of value, either their external variables must be restricted to limited regions, or the computed results for excursions outside those regions must be monitored. The linear d-c models for such typical diodes are composed of lumped circuit elements whose values are easily inserted in any network solving procedure. However, they give erroneous results if evaluated outside their intended range.

The transistor can be modeled in similar fashion. Any external configuration can be used with appropriate restrictions on variable values.

Although these transistor models appear crude, they are quite valuable for worst-case analysis of logic circuits with saturated transistors. In such analysis, the main task is to verify the proper off and on (saturated) transistor states for specified resistor and transistor tolerances. The desired states are known in advance, and the computed
results can be checked (automatically, if desired) for adequate saturating base current and proper polarity of the reverse bias voltage under worst-case conditions. Small discrepancies aren't serious because such circuits aren't designed to function near incorrect operating values.

Linear steady-state a-c models

There are many models for computing the steady-state sinusoidal currents and voltages in transistor circuits. However, if all energy storage effects inherent in the transistor are assumed negligible, any linear, incremental two-port model is sufficient. Most familiar to the transistor circuit designer is the common-emitter h-parameter model, but some manufacturers still provide parameter values for all or part of the common-base h-parameter model. An early favorite whose parameters are more easily identified with transistor operation than any other small-signal parameters is the common-base T circuit. This is of no consequence in low-frequency small-signal analysis, but is useful for more elaborate models.

In many circuits, some of the h or T parameters may have a negligible effect on computed results. For manual calculations, a circuit designer would apply simpler models if he could, but for computer assistance, it isn't worth the effort of deciding when certain parameters can be ignored in programming the problem. Little additional complexity is involved in returning all four parameters in the circuit for each transistor.

If inherent energy storage or frequency-dependent effects in the transistor can't be ignored, the task of formulating an adequate small-signal linear model is considerably more difficult. Perhaps the most elaborate lumped model of a junction transistor ever developed was Middlebrook's frequency-dependent y-parameter model. Here, each parameter is realized as the driving-point admittance of a four-element network that contains only constant element values. Each element value is a complicated algebraic function of certain measurable fundamental device parameters. Middlebrook's model achieved excellent accuracy at up to four times the alpha cutoff frequency of transistors available as of 1954.

There is no longer any need for such exhaustive treatment of frequency-dependent models for modern transistors. With semiconductor technology boosting transistor cutoff frequencies, the most common solution to high-frequency circuit problems is to buy transistors that cut off beyond the highest frequencies of interest.

Nanavati's less elaborate model achieves the same results with a wideband common-emitter h-parameter equivalent circuit. This circuit, at the left of page 85, suffers in that two of its parameters are frequency-dependent; these parameters may be represented by driving-point admittances of auxiliary, lumped-constant networks if necessary, but the model is still quite complex. In fact, a simpler circuit model, the hybrid-pi
Although the circuit at the left is a good wideband h-parameter a-c model it suffers from one serious limitation—two of its parameters, \(h_{rr} \) and \(h_{re} \), are frequency dependent. The limitation is overcome in the hybrid-pi circuit on the right.

shown at the above right of the diagram, yields frequency-dependent common-emitter h-parameters identical in form to Nanavati’s. The hybrid-pi, the most useful wideband model for general analysis programs, is composed of ordinary lumped network elements, including one dependent source whose control parameter is a constant. This model is estimated as valid at up to frequencies near alpha cutoff. The parameters required are usually derived by simple calculations based on the manufacturer’s published data. One possible exception is \(R'_{bb} \), the base spreading resistance, which often is not furnished by the manufacturer and must be measured.

Although the full complexity of the hybrid-pi model isn’t needed for some computations, the increased program efficiency gained from simpler special-case models isn’t worth the effort of adding them to the program and deciding when they may be properly applied.

The accuracy and effectiveness of the hybrid-pi model is improved by multiplying the intrinsic transconductance, \(g_m \), by a phase-shift factor of unit amplitude. The phase angle is dependent on the process used in making the transistor and is best determined experimentally from a frequency response curve for common-emitter current gain, \(\beta \).

There are devices that aren’t adequately represented by the hybrid-pi model. The special construction techniques used in very high frequency transistors require additional resistance and capacitance parameters, for example, and models for field effect transistors present problems as formidable as those for the junction transistor. It’s conceivable that appropriate parameter values can be found for a valid hybrid-pi FET model, but this still remains to be done. It may also be possible to develop a single wideband model that represents all three-terminal active devices.

Nonlinear d-c models

For d-c analysis, the transistor is considered a nonlinear device when it functions beyond the useful limits of linear operation. There are three modeling techniques for analyzing nonlinear d-c models: graphical or tabulated data, piecewise-linear networks and other nonlinear analytic forms. The direct application of graphical data as a transistor d-c model is limited for manual computation to simple circuits, and tabulated data isn’t directly useful at all. But a computer program can combine graphical and tabulated data for effective analysis of nonlinear problems.

Piecewise-linear transistor models are realizable by networks of lumped resistors, dependent and independent sources, and ideal diodes. The values and arrangement of the elements are chosen to approximate as closely as desired any set of transistor characteristic curves. If the model is a three-terminal network, it may represent any transistor configuration in the circuit. Modifications are called for when a nonlinear model doesn’t perform as anticipated. These modifications can be made easily if the internal parts of the model correspond to the physical internal behavior of the device, and for this reason, the piecewise linear model favored is a common-base model. This isn’t an essential choice, but the common-base type represents all regions of transistor operation more simply than does a comparable common-emitter piecewise-linear model.

In the basic piecewise-linear transistor model, junction effects are approximated by ideal diodes and current transfer effects by dependent current sources. The source \(\alpha_c \) represents normal transistor action; the source \(\alpha_e \) represents inverted action in which the roles of the collector and emitter are interchanged. The model is valid in all four regions of transistor operation—cutoff, saturation, active-normal and active-inverted—but excludes breakdown effects and is too simple for good quantitative results in or near the saturation region.

A refined piecewise-linear model, center diagram on page 86, is much more accurate than the simpler one if appropriate values represent its parameters. The parameter values are readily obtainable from \(i_c \) as a function of \(i_E \) and \(V_{EB} \) \((i_c = f(i_E,V_{EB}))\) and \(i_c \) as a function of \(i_c \) and \(V_{EB} \) \((i_E = f(i_c,V_{EB}))\) graphical data. But characteristic curves for the instantaneous values, \(i_c \) and \(i_E \), aren’t usually used since these are not available from the
manufacturer. However, curves for $i_c = f (i_b, V_{CE})$ and $i_b = f (V_{BE}, V_{VB})$ are available. It is possible through interpolation to obtain the parameter values desired from the i_c and i_b curves. However, slight numerical errors will result, the price paid for a model that is closely linked with the internal behavior of a device.

The most accurate d-c model for nonlinear transistor representation is the popular Ebers-Moll circuit, shown below. It is a common-base model that represents the nonlinearities of the transistor more accurately than any relatively simple piecewise linear model can. Parameter determination is a major problem, but once a transistor is fully characterized for such a model, it is very accurate over a wide range of circuit applications.

Some attempts to derive a common-emitter version of the Ebers-Moll model have been made, resulting in an exponential nonlinearity model with very complicated results. The exponent in the emitter-collector i-v relationship cannot be reduced to a form depending on a single junction voltage. There seems to be no choice, therefore, but to stick to the common-base version and accept whatever measurement difficulties it presents.

Nonlinear transient models

A very elaborate version of the common-base model on page 87 is applied in NET-1. [See “Computer-aided design: part 1, The man-machine merger,” Electronics, Sept. 19, 1966 p. 112.] It includes 36 parameters: base spreading resistance; emitter and collector bulk resistances; junction leakage resistance; junction reverse (saturation) currents; junction temperature; current gain function (a cubic polynomial with four coefficients and a scale factor—separate forward and inverted current gains); transition region capacitances (nonlinear); equivalent diffusion capacitances (nonlinear); maximum voltage, current, and power ratings; various scale factors and empirically determined parameters for optimum representation of real transistors. Nonlinear i-v junction equations describe the transistor’s resistive nonlinearity. The program provides for modification of individual parameters, but usually works from prestored taped data. A diode model consistent with the transistor model is also provided. A NET-1 program need only identify a device by 1N or 2N type number and give connection information if he is content with the stored parameter values. The program performs nonlinear d-c or transient analysis, but doesn’t include junction breakdown and conductivity modulation effects. The device models are also valid for small-signal a-c analysis. Although only diode and transistor models are built in, other semiconductors could be applied. Ideal switches can be simulated in NET-1 transient analysis.

A second general analysis program is the International Business Machines Corp.’s ECAP (Electronic Circuit Analysis Program), which relies on a program-it-yourself approach to nonlinear tran-
Nonlinear transient problems of transistors are best represented by this common-base circuit.

\[I_1 = \alpha_i i_c - \alpha_r i_c' \]
\[I_2 = i_c - \alpha_i i_e \]
\[C_{de} = \frac{q}{2\pi m_n kT_B} \]
\[C_{de} = \frac{q}{2\pi m_e kT_B} \]
\[C_{be} = \frac{U_1}{V_{oe} - V_{EB}} \]
\[C_{ce} = \frac{U_2}{V_{oe} - V_{CB}} \]

where
- \(q \) = charge of an electron
- \(k \) = Boltzmann constant
- \(T \) = absolute temperature of the junction
- \(V_{CB} \) = collector-base junction voltage
- \(V_{EB} \) = emitter-base junction voltage
- \(V_{C} \) = collector-base junction contact potential
- \(I_{EB} \) = collector-diode reverse saturation current
- \(m_e \) = emission constant for emitter
- \(m_i \) = emission constant for collector
- \(\gamma_e \) = emitter-base grading constant
- \(\gamma_i \) = collector-base grading constant
- \(B_p \) = proportionality constant determined empirically for base
- \(U_1 \) = proportionality constant determined empirically for collector
- \(U_2 \) = proportionality constant determined empirically for emitter

The program NET-1 for junction-transistor and diode-circuit analysis. On the other hand, NET-1 lacks ECAP's flexibility of model choices and must use a complex model to analyze such simple problems as the saturating logic circuit.

Storage time resists modeling

Some solid state phenomena are not easily modeled by conventional lumped (linear or nonlinear) network elements. Among these is the minority carrier storage time of ordinary diodes and transistors. This effect is easily represented in the Linvill lumped-diffusion model, though it's likely that adding elements that express relations between variables other than current and voltage will further improve the fidelity of solid state models for computers.

Another function of the computer is to store semiconductor parameter values. Designers often build equipment with semiconductors that perform at values not readily available in manufacturers' data sheets. At the same time, a collector of adequate data sheets would be enormous and impractical. By storing parameter information from transistor models in the computer, the designer need only feed in specifications for a circuit and have the machine tell him which semiconductors are best suited to his purposes.

As noted earlier, choosing an optimum single device model for a general-purpose program is just about impossible at present. It might eventually be possible to add to a flexible program like ECAP a preprogramed set of models ranging from the simple to the quite elaborate. It's conceivable that such a multiple model would make automatic provision for changing to a more accurate version when collector voltage dropped to near saturation or rose toward breakdown. Also, future advances in user-oriented circuit analysis and design programs are certain to render many of these conclusions concerning multiple applications irrelevant.

References

Bibliography
Circuit design

Designer's casebook

Polarized light triggers remote control system

By E.K. Howell,
Semiconductor Products Department,
General Electric Co., Auburn, N.Y.

A polarized light source more than 50 feet away can actuate a remote control system with little fear of the system being triggered accidentally. Since the polarized light is easily produced and conveniently directed, the source need not be fixed. For example, a signal from a moving vehicle can reach into visible, yet inaccessible places to trigger safety devices, garage doors or overhead hoists. Polarization permits selection of a single target from a group of controls while immunizing the system from background light or "noise."

For short-range work, there is little problem in differentiating between the desired light signal and the background light. At longer distances and in uncontrolled-light environments, however, the ratio of signal to noise becomes very small, requiring additional steps to achieve detection.

In this system, the controlling light source is polarized in a vertical plane by a filter. The receiver is a dual-element photocell with one section covered by a horizontal polarizing filter and the other by a vertical polarizing filter. The control circuit responds only if the output signal from the dual photocell indicates the presence of excess light polarized in the vertical plane.

The control circuit operates from a 24-volt a-c source. Rectifiers D₁ and D₂ respectively provide the negative and positive d-c supply voltages; both voltages are regulated by zener diodes. Terminals A and C of the dual-element photocell connect to the negative and positive supply voltages, while center terminal B is wired to the gate of the silicon controlled rectifier, SCR₁. If the negative and positive sections of the photocell are identical, nonpolarized light will produce equal resistances in each section; hence the potential at terminal B remains at zero. If there is an excess of horizontally polarized light, the resistance between terminals A and B decreases; thus the potential at terminal B will be negative and will have no effect on SCR₁. An excess of vertically polarized light decreases the resistance

Vertically polarized light lowers the resistance between terminals B and C, making B positive and firing SCR₁. Capacitor C, discharges and turns on SCR₁; the current through SCR₁ energizes the stepping relay.
between B and C, making B positive, and triggering \(\text{SCR}_1 \) when potential reaches 0.6 volt.

As \(\text{SCR}_1 \) fires, it discharges capacitor \(C_1 \), producing a negative pulse on the cathode of \(\text{SCR}_2 \), which turns it on. With \(\text{SCR}_2 \) on, current conducts through the stepping relay coil, and capacitor \(C_2 \) discharges. The discharge current holds \(\text{SCR}_2 \) in conduction for several cycles, giving time for the stepping relay to operate sequentially in controlling a motor. The first flash of light causes the relay to turn off the motor; the second flash causes the relay to turn on the motor in the reverse direction; the third flash causes the relay to turn off the motor; the fourth flash causes the relay to turn on the motor in the forward direction. The discharge of \(C_2 \) also produces a negative signal at the gate of \(\text{SCR}_1 \), turning it off. If light is still present on the vertically polarized section of the photocell at the end of \(\text{SCR}_2 \)'s conduction, \(\text{SCR}_1 \) will fire again before capacitor \(C_1 \) has time to charge. When \(\text{SCR}_1 \) conducts, however, it shorts out capacitor \(C_1 \), preventing a second pulse from triggering \(\text{SCR}_2 \) until no light hits the photocell for approximately 2 seconds.

To further improve the signal-to-noise ratio, the aperture block limits the view to a narrow rectangular area. The two slots in the aperture match the two sensitive areas of the dual-element photocell. The slots are deep enough so that light coming through one slot cannot strike the sensitive area beneath the other slot regardless of the angle of incidence. The angle, size and spacing of the two slots make it highly improbable that any light source or shadow will activate the system without proper polarization. The diagram shows the spatial response of the apertures in both planes.

In the laboratory, the lamp, components and aperture illustrated operated effectively at 51 feet under normal ambient lighting conditions. For best operation, the photocell should be positioned so that its viewing area does not include predominant sources of interfering light.

The immunity of the control system to non-
polarized light depends upon the quality of the positive and negative supply voltages and upon the balance of characteristics of the two sections of the photocell. Given normal component tolerances, some means of balancing the system is necessary. The best method is a mechanical shutter to control available light allowed to strike either section of the photocell. The shutter changes the length of the aperture slot; the width and depth spacing of the slot remains constant. A small set-screw at the end of the slot will suffice. The adjustment should be made in the presence of a high level of nonpolarized light.

At low-light levels, a resistor R_1 in parallel with the negative half of the photocell produces a negative signal on the gate of SCR_1, preventing accidental triggering of the photocell in the dark. Additional photocells may be connected in parallel to facilitate operation from different locations.

The remote control system's portable light source operates from 10 nickel-cadmium batteries that can be recharged from a cigarette lighter outlet in an automobile. Switch S_2 is a toggle or pushbutton switch that operates the lamp; switch S_1 provides the option of operating the lamp from the batteries or from the charger source and can be incorporated in the plug. Resistor R_1 limits the charging current to an appropriate value.

Differential Schmitt trigger with 200-k input impedance

By Gilbert Marosi

General Precision Equipment Corp.
Link Group, Sunnyvale, Calif.

Input impedance of the three-transistor differential Schmitt trigger circuit shown is 200 times greater than that of a conventional Schmitt trigger. High input impedance, essential for squaring up low-power information signals, normally requires an additional transistor. In addition, the circuit's trip points and hysteresis remain stable over a wide temperature range and can be predicted.

The differential pair of transistors, Q_1 and Q_2, form a constant-current mode switch controlling output transistor Q_3. Transistor Q_4 is normally on and maintains Q_3 on by supplying Q_3 with 1 milliampere of base current. With Q_3 on, the output is at −20 volts and diode D_2 is back biased so hysteresis resistor R_5 is out of the circuit.

Bias resistors R_1 and R_2 fix a reference voltage at the base of Q_5. The reference voltage exactly determines the turn on point of the circuit. Since Q_1 and Q_2 are identical and their emitters are at the same potential, an input voltage at the base of Q_1 equal to or more negative than the reference voltage at the base of Q_2 turns on Q_1. With Q_1 on, Q_3 turns off.

When Q_3 turns off, the output drops to ground, forward biasing diode D_2. Now that D_2 is conducting, hysteresis resistor R_5 is again part of the circuit, and provides another path to ground from the base of Q_2, bringing it closer to ground by approximately 0.5 volt—the hysteresis voltage. The hysteresis draws Q_3 even farther into the non-conducting region; this action assures a latching turn off for Q_3 and prepares Q_3 for fast turn on—typically 15 nanoseconds. The speed of Q_3 is the circuit speed, since the current mode switch Q_1 and Q_2, introduces only negligible delay.
The input signal drops below the new voltage at the base of Q2, the original reference voltage as adjusted by the hysteresis. As soon as this happens, Q1 turns off, allowing Q2 to turn on. With Q2 conducting, Q3 turns on and the output voltage jumps to -20 volts. Diode D2 is back biased, R3 is disconnected from the circuit, the triggering cycle is complete and the circuit is ready for the next input.

The circuit’s input impedance is at least 200 kilohms, assuming a current gain of 20 for Q1. The hysteresis and the turn-on and turn-off points are not dependent on temperature changes because of the compensation from the diodes.

Low voltage supply produces good regulation at low cost

By Ernest Luttrell
Texscan Corp., Indianapolis, Ind.

A well regulated, low-voltage power supply can be built for $7 by incorporating a zener diode in the regulator to boost the operating voltage of the amplifier that detects voltage differences.

For a high impedance voltmeter, a -2.7-volt d-c supply is required as a replacement for a mercury cell. It has to have less than 100 microvolts root-mean-square noise and ripple and no detectable low-frequency jitter. Line regulation of 0.01% and load regulation of 1% are required. The circuit shown below fits the need.

Transistor Q2 is controlled by emitter-follower Q4 and common-emitter amplifier Q3. Transistor Q4 is the difference amplifier. It produces a current proportional to the voltage difference between the output potentiometer arm and reference diode, D4.

Zener diode D2 insures that Q3 has sufficient voltage to operate properly. Diode D2 holds the base of Q1 at about 7 volts and places 10 volts across the combination of D3 and the collector of Q3. Since the voltage across Q1 should be as high as possible, the barrier potential of an ordinary diode D4, instead of a zener, serves as the reference voltage. Diode D2 has lower impedance and produces less noise than a low voltage zener.

If D2 were omitted, the base of Q1 would only be about 1.4 volts above ground. This would leave about 4.1 volts across the combination of Q2 and D2—a voltage too low for proper operation of Q3.

Forward-biased diode D4, which serves as a variable potential divider in the base of Qn, compensates for temperature variations in Dn and the rest of the power supply. Diodes D4 and D3 are similar types, and they vary with temperature at about the same rate. The value of R4 is specially selected to control the magnitude of the impedance change of D4.

To improve line voltage regulation and reduce ripple, resistor R1 and diode D1 establish a constant voltage source at the junction with R2. This reduces a possible source of current variation in Q1’s base current and makes Q1 less susceptible to input line variations. It is sometimes desirable to add a large electrolytic capacitor across zener diode D1 to reduce the low-frequency noise in this element.

Diagram:

[Diagram showing the power supply circuit with labels for each component.]

Zener diode D4 provides amplifier Q3 with the proper operating voltage. Reference voltage is established with a common diode, D4, instead of a zener diode since the zener would produce a larger voltage drop.
Postmortems prevent future failures

Weeding out defective IC's is just the first step in assuring reliability; IC pathologists dissect failed circuits to pin down failure causes and prevent future design and processing mistakes.

By Seymour Schwartz
National Aeronautics and Space Administration, Electronic Research Center, Cambridge, Mass.

Bad integrated circuits are more valuable than good ones to the failure analyst. It is his objective to perform a postmortem, then feed his findings to equipment or device designer. If improper use killed the ic, the equipment designer must rework the design or select a different ic. If poor design or fabrication of the ic itself caused its demise, the device manufacturer takes the blame and must find the cause.

Objectivity is the hallmark of the failure analyst. His aids are analytical tools ranging from simple voltage probes to electron microprobes costing about $100,000. His knowledge must encompass both materials and manufacturing methods.

To understand what caused the ic to fail, the analyst must first isolate the defect of the ic—the failure mode. Once he recognizes the failure mode, such as an open circuit or high leakage current, the analyst can often guess what caused the failure. But he must keep an open mind. Further analysis confirms or rejects his suspicions and pins down the underlying process that caused the defect—the failure mechanism. In the case of an open circuit, for example, the mechanism may be poor bonding of the aluminum conductor to the silicon substrate.

At times the analyst must compare good devices with bad, or examine starting materials to find anomalies that could influence behavior of the final ic. And from time to time he may have to deliberately cause failures in otherwise good devices to check a hypothesis.

An intimate knowledge of how failure mechanisms match failure modes is indispensable in attempting an analysis, since testing for the wrong fault can sometimes mask the real defect.

Let's follow the step-by-step analysis that disclosed the cause of a typical defect in ic's. The case is a classic, involving ic's for the Minuteman 2 program.

Detective story

Apparently, the thermocompression bonds between the gold interconnecting wire and the aluminum on the ic dice had a tendency to open. Once the ic package lid was removed, it was easy to recognize the completely open bonds. However, there was a catch. The bonds were permanently open in some devices and intermittently open in others. Furthermore, the intermittent ones were not found until some of the open bonds were seen to close when a static electrical charge accumulated on the ic's case.

Pursuing this clue further, the intermittent behavior was observed to occur fairly frequently and to depend upon the voltage applied during electrical testing. To complicate matters, the phenomenon was also influenced by temperature and even showed some time dependency. Some of the bonds could be made to behave intermittently almost at will, making them act as a mechanical on-off switch.

But it was still impossible to predict which good bonds would open from just electrically testing the ic's. The ic had to be subjected to a physics-of-failure investigation to determine the actual cause.

Both good and bad bonds in the same device as well as in other similar devices were subjected to metallographic examinations. Standard metallographic preparation procedures were used to cross-section and polish the bonds, enabling them to be...
viewed more dearly. Special etching techniques revealed the microstructure of the bonds. Photomicrographs of these polished bonds were then made.

The metallographic work showed that the thermo-compression bond failures were probably associated with intermetallic compounds appearing in a band between the gold lead wire and the aluminum thinfilm terminal on the IC chip. Even though the bond's constitution was considered to be a single-phased, aluminum-rich region, various aluminum etching reagents did not attack the intermetallic band. This lack of etching suggested that the band was probably composed of gold-rich phases.

Thorough microscopic examination of open and intermittently open bonds showed a crack, void or discontinuity of some kind at the outer edges. The location of the discontinuity was an additional indication that the band was a multiphase structure. A suitable etching reagent was developed to define the new structure. The information obtained from this extensive micrographic examination of polished and etched bond cross sections enabled a failure mechanism to be postulated—the interdiffusion of the gold and aluminum and a tendency to form gold rich intermetallic compounds at high temperatures.

Other techniques were then used to support and clarify the previous conclusions. Several gold-aluminum compositions were made to provide metallic and phase identification. X-ray diffraction and electron beam microprobe techniques determined the composition of the various microconstituents observed in the compositions as well as those in the intermetallic band. Thus the various phases making up the intermetallic were identified, within the limits of accuracy and resolution of the equipment available.

As in many failure investigations, the corrective action to prevent the failure from recurring was the most important product. In this case, the prescription was a third metal between the gold and aluminum. Deposited on the aluminum it acts as a diffusion barrier and prevents the gold-rich compounds from forming. As another solution, aluminum instead of gold wires can be used.

Tools of the trade

Failure analysis laboratories can range in size from little more than a home workshop, with only basic measuring instruments, to something like research facilities, with such sophisticated instruments as the scanning electron microscope. The equipment depends on the type of tests to be performed and these fall into three categories:

- Size and shape (physical damage)
- Material defects (deterioration or inferior materials)
- Contamination (including contamination resulting from leaks)

Tools for the first type of analysis include microscopy, radiography and film thickness measurements; the second includes electrical characteristics and thermal behavior measurements, metallographic and crystallographic examinations, chemical analysis and mechanical strength tests; the third category covers chemical and physical examinations.

The best-equipped failure analysis laboratories are usually those of IC manufacturers. But companies such as the Raytheon Co. and the Autometics division of North American Aviation Inc. use IC's in sufficient volume to warrant fully equipped failure analysis laboratories. Government facilities such as the Rome Air Development Center, N.Y. and the National Aeronautics and Space Administration's Electronic Research Center, Cambridge, Mass. are also equipped to handle failure analysis.

Among the basic gear necessary for failure analysis are microscopes capable of magnifying at least 500 times, photographic accessories, chip probes, power supplies, curve tracers and a variety of...
Scratched aluminum intraconnection can lead to an open circuit. The thinner conducting area has a reduced current capacity and therefore may burn through during operation.

meters. Most users will depend on an outside laboratory or the manufacturer for such specialized services as radiography. With only the basic tools, however, the user can verify the electrical tests the ic initially failed, evaluate the data for an indication of failure mode and narrow the probable cause of the failure. He can check case and lead isolation and diode characteristics, verify the hermetic seal and examine the chip with microscopes and microprobes. If desired, the user can even cut the ic into microscopic sections and examine each in detail, including its cross sections.

Sequence important

Searching for failure mechanisms often requires techniques that are destructive to the ic and the sequence of operations should be carefully set up so that one test does not destroy a failure mechanism that might be found in subsequent techniques. Basically, there are two types of tests: destructive and nondestructive. Opening a device's package to look inside or stressing it to failure destroys the device; testing it under extreme conditions and environments accelerates failure mechanisms and may result in a less reliable device. Nondestructive tests, however, are usually limited in scope, but obviously the nondestructive tests should be made first.

It is usually wise to begin the search for failure mechanisms by retesting the ic that failed to confirm its failure mode. Next the lead and case isolation of the ic are checked as well as its diode characteristics, that is, its pin-to-pin input-output characteristics. At this point the tests are limited to electrical screening, visual or microscopic examination of the exterior of the device and chemical analysis of removable contaminants.

Radiography also may uncover a reason for a failure without disturbing the parts internally; for example, open or missing wires between the circuit and header can be seen with X-rays. If radiography reveals no faults, the package is checked for leaks through which moisture and other contaminants may have entered, causing corrosion and shorts.

Infrared is a promising nondestructive tool, but still needs further development. Infrared thermographs reveal the thermal condition of an ic and it follows, therefore, that its greatest potential is in discovering sources of thermally-induced failures.

After the nondestructive tests are completed, the can is opened and the circuit is exposed. Now detailed microscopic examination is possible and the
chip can even be cross-sectioned to detect minute structural defects.

Immediately evident are failure mechanisms like open bonds, large voids in the bond between the back of the silicon chip and the package base or missing parts. But too often direct evidence of the cause is destroyed by the failure itself. Then one must postulate failure mechanisms and test sample ic's with design variances that reproduce the hypothesized failures.

Forced failures

Intentional failures in integrated circuits sometimes are induced with the same equipment used to test them. Among gear that can stress circuits to failure are wet and dry ovens, cooling baths, centrifuges, impact testers, vibrators, pressure vessels and electrical power sources.

The ovens serve a dual purpose. Storing ic's at high temperatures accelerates material interactions that lead to failure, such as a breakdown in the insulating films. The high temperature also causes differential thermal expansion leading to mechanical faults such as open thermocompression bonds.

Alternately heating a circuit in an oven and cooling it in a bath produces still another stress—thermal shock. As the circuit experiences heat and then cold, temperature gradients are established between materials with different thermal expansion coefficients, producing more stress. Such repeated thermal cycling often causes cracks in the substrate. Even if it does not produce an immediate failure, the cycling can cause the circuit to suffer a catastrophe from repeated plastic flow of the material bonding the ic to its header or heat sink.

Electrical stressing

Parts of the ic can be heated by electrically loading it in a manner logically related to in-use failures. Test loading is done either at rated capacity in hotter and hotter environments, or in a constant temperature at successively higher overloads.

During life testing, the electrical stress is applied at a fixed level until failures occur or the specified end-of-life is reached. In another type of electrical test, voltage or current stress is increased step by step until failures occur. Accelerated testing—testing at higher than design stress levels—has detected weaknesses that might not be obvious in ic's tested at normal operating conditions.

Although the failures experienced under the accelerated conditions may be related to those that would occur at normal operating conditions, the relation may be complex. For this reason, extrapolating the results of the accelerated tests to actual operating conditions may lead to erroneous answers. For instance, some mechanisms cannot be accelerated and, are more apt to occur under normal conditions than indicated by the accelerated tests.

Failures such as corrosion often are caused by moisture and other contaminants that enter the ic package through cracks and pores. Leak testing of ic's requires separate methods for detecting gross leaks and small leaks.

The smallest readily detectable leak (about 10⁻¹⁰ atmosphere-cc per second of helium at a pressure differential of one atmosphere) can be found by two methods: the first depends on the detection of radioactive gas, such as krypton 85, which is forced through the leak into the package; in the other method, helium is the tracer gas and a mass spectograph detects it as it flows through the leak. In either method, the tracer gas may leak out of the package undetected if the leak is larger than about 10⁻⁵ atmosphere-cc per second. If the operation is performed quickly, the radioactive tracer method can detect leaks as large as 10⁻³ atmosphere-cc per second.

For larger, or gross leaks the part is immersed in liquid and heated or subjected to a vacuum. Bubbles are noted as the inside gas expands through the leak. Usually, leak testing is performed first, to weed out badly packaged ic's before the more exacting tests are performed.

Sometimes, electrical tests made inside the can

What price reliability?

The ic user can gear up for failure analysis at a relatively modest investment or he can spend a fortune. The simpler equipment, such as binocular microscopes, may cost as little as $100, while more exotic instruments such as an electron microprobe may run as much as $100,000. Here's a thumbnail guide to equipment costs, subdivided according to the type of test the gear performs:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Typical price or range (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td></td>
</tr>
<tr>
<td>Optical microscope</td>
<td>100-1,700</td>
</tr>
<tr>
<td>Electron microscope</td>
<td>30,000-50,000</td>
</tr>
<tr>
<td>Interferometer</td>
<td>500-1,700</td>
</tr>
<tr>
<td>Profilometer</td>
<td>8,000-10,000</td>
</tr>
<tr>
<td>Electron diffraction microscope</td>
<td>30,000</td>
</tr>
<tr>
<td>Spectroscope</td>
<td>10,000-40,000</td>
</tr>
<tr>
<td>Electron microprobe</td>
<td>100,000</td>
</tr>
<tr>
<td>Scanning electron microscope</td>
<td>35,000</td>
</tr>
<tr>
<td>X-ray diffraction equipment</td>
<td>12,000-15,000</td>
</tr>
<tr>
<td>Tensile tester</td>
<td>25,000</td>
</tr>
<tr>
<td>Strain guage</td>
<td>100</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>1,000-2,000</td>
</tr>
<tr>
<td>Curve tracer</td>
<td>1,000-2,000</td>
</tr>
<tr>
<td>Meters, capacitance and inductance bridges</td>
<td>20,000-25,000</td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
</tr>
<tr>
<td>Absorption spectroscope</td>
<td>5,000-8,000</td>
</tr>
<tr>
<td>Emission spectroscope</td>
<td>10,000-13,000</td>
</tr>
<tr>
<td>Mass spectroscope</td>
<td>27,000-40,000</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
</tr>
<tr>
<td>Thermal plotter</td>
<td>4,000</td>
</tr>
</tbody>
</table>

Through the electron microscope

Transmission electron micrograph shows both a triangular and linear defect in the base region of a device. Such defects can lead to shorts or opens, or even cause parameters to drift. The device is magnified 5,000 times.

Dislocation structure, discontinuities on surface, are shown magnified with an electron microscope. The dislocation is at the surface of a power transistor near the junction region. Such a fault could lead to a soft junction and to abnormal electrical properties in the IC.

are more helpful than those made outside. Surface charge migration, contamination and surface leakage, for example, can be identified by studying on the die itself the minute changes in a device's secondary electrical properties that accompany failure. These properties include leakage current, capacitance and resistance.

Individual tests

Often the user will test IC's with instruments that run through a sequence of tests and provide readout on a digital voltmeter or punched tape. But failure analysis is concerned with individual testing and detailed probing of a device with pin-like contacts applied to the contacts or wiring on the IC chip. In these cases, IC voltage and current are often measured on an oscilloscope. Currents and voltages smaller than 1 nanoampere and 50 microvolts respectively, however, are read on static meters that have sensitivities as low as 0.003 picoampere or 2 nanovolts.

Resistance may be measured from 10^{-5} ohms to 10^{15} ohms or to resistivities as high as 10^{19} ohm-centimeters. Capacitance bridges are available to measure from 10^{-17} to 1 farad, and inductive bridges can measure from 10^{-10} to 10,000 henries.

Voltage probes may consist simply of two wires if contact pads are provided within the IC and contact potentials and thermal effects are taken into account. For voltage mapping—measuring the distribution of electric fields across a sample—a more general technique is available: electron beam sensing with a scanning electron microscope. Mapping the electric field across an IC shows any large voltage gradients and warns of a potential trouble spot. For example, a sharp corner on a resistor could result in a large field gradient, which could eventually short through the insulating layer.

Once the device is opened, many failures are apparent to the eye, such as discoloration or breakage of miniature device parts. Magnification up to 100 times with a binocular microscope more clearly reveals gross mechanical damage, chemical corrosion or discolorations resulting from overheating, poor registry of deposits and missing parts or materials. A vacuum-deposited aluminum interconnection, for example, may have reduced current capacity because of scratches.

Some defects, such as pinholes in insulating films which can lead to shorts, may not be visible even under a microscope. To detect these, the die or chip must be removed from the package and the aluminum etched off the IC's surface. Chemical techniques and a low-power microscope can then be used to locate the pinholes without damaging the sound portions of the film. For example, three variations of electrolysis can show pinholes in silicon oxide.

1. If no bare silicon is exposed, the sample acts as the cathode in a bath of methanol. Voltage through the bath produces a solution of silicon through the pinholes, forming a stream of bubbles.
2. Another method uses an anode material that
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Abnormality observed (physical)</th>
<th>Related failure modes</th>
<th>Probable failure mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye penetrant</td>
<td>Cracks, pores</td>
<td>Leaks</td>
<td>Inversion (change in semiconductor type)</td>
</tr>
<tr>
<td>Etching and microscopy</td>
<td>Dislocation distribution</td>
<td>Soft junction (gradual rather than sharp increase in current characteristic across junction).</td>
<td>A processing control</td>
</tr>
<tr>
<td></td>
<td>Pits, cracks and chips</td>
<td>Opens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinholes and cracks in oxide insulating layer</td>
<td>Shorts</td>
<td></td>
</tr>
<tr>
<td>Binocular microscope (3-120X magnification)</td>
<td>Inhomogeneity (Oxidation, contamination, intermetallics or rub marks.)</td>
<td>Weak bonds or electrical leakage</td>
<td>Poor surface wetting</td>
</tr>
<tr>
<td></td>
<td>Opened bonds</td>
<td>Electrical open circuit</td>
<td>Migration of charged contaminant causes inversion</td>
</tr>
<tr>
<td></td>
<td>Cracked dice</td>
<td>Open circuit or shift in resistance</td>
<td>Intermetallics form by diffusion.</td>
</tr>
<tr>
<td></td>
<td>Cracks in package lead seals</td>
<td>Leaks</td>
<td>May have resulted from overheating.</td>
</tr>
<tr>
<td></td>
<td>Pits and pyramids on dice</td>
<td>High leakage or hot spots at thinner base areas</td>
<td>Mishandling, overheating or contaminated land surface.</td>
</tr>
<tr>
<td></td>
<td>Poor registry or masking</td>
<td>High leakage, shorts or opens</td>
<td>Pressure during die or lead bonding.</td>
</tr>
<tr>
<td></td>
<td>Scratches on dice or intraconnects</td>
<td>Open or high resistance</td>
<td>Rough handling, misalignment, thermal mismatch or bubbles in glass.</td>
</tr>
<tr>
<td></td>
<td>Microplasma in operating device</td>
<td>Soft junction</td>
<td>Poor epitaxial growth control results in thin localized base areas (after diffusion).</td>
</tr>
<tr>
<td>Phase contrast microscope</td>
<td>Stacking faults</td>
<td>Soft junctions</td>
<td>Narrow insulating path may short, or inversion may cause high leakage current.</td>
</tr>
<tr>
<td></td>
<td>Transparent contaminants</td>
<td>Surface inversion</td>
<td>Meager connection may open.</td>
</tr>
<tr>
<td></td>
<td>Improper oxide metallization topography</td>
<td>Electrical leakage, shorts or opens</td>
<td>Excess heat.</td>
</tr>
<tr>
<td>Dark field microscope</td>
<td>Photoresist residues, dust</td>
<td>Inversion</td>
<td>Current concentrates at stacking faults, dislocations or thin spots in base.</td>
</tr>
<tr>
<td></td>
<td>Bubbles in sealant glass</td>
<td>Leaks</td>
<td></td>
</tr>
<tr>
<td>Interferometer</td>
<td>Oxide and surface topography varies from design</td>
<td>Electrical leakage, shorts or opens</td>
<td>Diffusion of charged contaminants</td>
</tr>
<tr>
<td></td>
<td>Oxide thickness varies from design</td>
<td>Stray capacitance, electrical leakage or inversion</td>
<td>Inversion</td>
</tr>
<tr>
<td></td>
<td>Metal thickness varies from design</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Misalignment creates narrow insulating paths which short or leak as result of inversion. Meager contacts melt and open.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metal diffuses through oxide and causes leakage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This metal assists with</td>
</tr>
<tr>
<td>Instrument</td>
<td>Abnormality observed (chemical)</td>
<td>Related failure modes</td>
<td>Probable failure mechanisms</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hot stage metallograph</td>
<td>Contaminant melting point and reactivity (for identification)</td>
<td>Weak bonds or electrical leakage</td>
<td>Intermetallics form from diffusion. Metal whiskers grow and make shorts. Removal of metal leaves opens. Drift in braze, bond or interconnect resistance. Metal films cause shorts or inversion. Lack of diffusion barriers.</td>
</tr>
<tr>
<td></td>
<td>Interdiffusion of metals, for example, Al-Au, Mo-Au, Ti-Au, Kovar-Au</td>
<td>Parameter drift</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whisker growth</td>
<td>Shorts or opens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain growth</td>
<td>Parameter drift</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface diffusion of metal films</td>
<td>Shorts, opens or parameter drift</td>
<td></td>
</tr>
<tr>
<td>Electron diffraction</td>
<td>Contaminant crystal structure and identity and identity of intermetallic compounds</td>
<td>Weak bonds or electrical leakage</td>
<td>Migration of charged absorbates causes inversion. Migration of charged contaminants causes inversion.</td>
</tr>
<tr>
<td>Low-energy electron diffraction</td>
<td>Deposit crystallinity</td>
<td>Open, shorts or parameter drift</td>
<td></td>
</tr>
<tr>
<td>Electron microprobe (elemental chemical analysis)</td>
<td>Presence of absorbed substances in surface</td>
<td>Inversion</td>
<td>Thin areas melt and open. Thin or narrow areas on interconnects open. Pinosoles. Migration of metal is evidence of inversion. Cause of abnormal electrical parameter may pinpoint failure mechanism.</td>
</tr>
<tr>
<td></td>
<td>Contaminant or rub mark residue identity and map.</td>
<td>Weak bonds or electrical leakage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dopant and dopant concentration</td>
<td>Related to process control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermetallic analysis</td>
<td>Weak bonds or electrical leakage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrosion product identity</td>
<td>Weak bonds or electrical leakage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deposit topography map by chemical element</td>
<td>Opens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deposit thickness map by chemical element</td>
<td>Opens or shorts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crack, pit and pinhole maps</td>
<td>Electrical leakage, shorts, opens or inversion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junction misalignment or movement</td>
<td>Abnormal electrical parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opens, short and current and/or voltage nonuniformity map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas chromatograph</td>
<td>Abnormal package ambients</td>
<td>Inversion or gain drift</td>
<td>Absorption, then charge migration causes inversion. Absorption, then charge migration causes inversion.</td>
</tr>
<tr>
<td></td>
<td>Leaks (by presence of air or test fluid)</td>
<td>Inversion or grain drift</td>
<td>Absorption, then charge migration causes inversion.</td>
</tr>
<tr>
<td>Mass spectrograph</td>
<td>Leaks. Also: reaction of device to ambient changes in the spectrograph</td>
<td>Inversion or grain drift</td>
<td>Absorption, then charge migration causes inversion.</td>
</tr>
<tr>
<td>Gas chromatograph and mass spectrograph in combination</td>
<td>Leaks. Also: reaction of device to ambient changes in the spectrograph</td>
<td>Inversion or grain drift</td>
<td>Absorption, then charge migration causes inversion.</td>
</tr>
<tr>
<td>Infrared absorption spectrograph</td>
<td>Thin oxide</td>
<td>Shorts or electrical leakage</td>
<td>Abnormal electrical parameters, Recombination centers.</td>
</tr>
<tr>
<td></td>
<td>Abnormal oxygen content in silicon</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>Electron microscope (magnifies to 100,000 X)</td>
<td>Radiographic equipment</td>
<td>Controlled etching</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dislocation and stacking faults distribution</td>
<td>Voids in welds</td>
<td>Depth of inversion charge</td>
<td>Identity of contaminant compounds or corrosion product compounds</td>
</tr>
<tr>
<td>Contaminant and corrosion location</td>
<td>Metal migration</td>
<td></td>
<td>Identity of materials</td>
</tr>
<tr>
<td>Etch pits, scratches, dust and deposit roughness</td>
<td>Contaminant particles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern alignment and topology errors</td>
<td>Cracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undercut etched edges</td>
<td>Long wires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weld porosity</td>
<td>Misalignment of metal parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porous diffusion products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scribe cracks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Abnormality observed (mechanical)</td>
<td>Related failure modes</td>
<td>Probable failure mechanisms</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Strain gauges</td>
<td>Abnormal epitaxy thickness, Impure photoresist, Water</td>
<td>Slow switching, punch-through, Inversion, Surface current leakage</td>
<td>Drift of marginal electrical parameters, Migration of impurities, Water vapor enters through leak.</td>
</tr>
<tr>
<td>Bubble tester</td>
<td>Analysis and identity of contaminants</td>
<td>Parameter drift, opens, inversion</td>
<td>Contaminants migrate and change electrical properties or cause corrosion.</td>
</tr>
<tr>
<td>Thermal plotter</td>
<td>Analysis and identity of contaminants</td>
<td>Parameter drift, opens, inversion</td>
<td>Contaminants migrate and change electrical properties or cause corrosion.</td>
</tr>
<tr>
<td>Helium leak tester or Radioflo tester</td>
<td>Analysis and identity of contaminants</td>
<td>Parameter drift, opens, inversion</td>
<td>Contaminants migrate and change electrical properties or cause corrosion.</td>
</tr>
<tr>
<td>Instrument</td>
<td>Abnormality observed (electrical)</td>
<td>Related failure modes</td>
<td>Probable failure mechanisms</td>
</tr>
<tr>
<td>Curve tracer</td>
<td>Shorts, Opens or intermittent contacts, Soft junctions, Abnormal resistance, Leakage currents and inversion</td>
<td>Shorts, Opens or intermittent contact, Soft junctions, Abnormal resistance, Inversion</td>
<td>Sagging wire, punch through or surface creep of metal, Mishandling, intermetallic formation, Surface leakage, Mechanical damage or corrosion, Surface charge migration or surface contamination.</td>
</tr>
</tbody>
</table>
can be eroded in methanol. The voltage applied de­
posits anode material in the defective area—not
necessarily a hole—and discolors it.2

- In yet another method, cracks and pinholes
are revealed by chlorine gas that etches away sili­
con through the discontinuities in the oxide3 or by
an amine-catechol etch.4

A print-out technique can identify bare silicon
areas of a device. A microporous filter saturated
with benzidine hydrochloride is pressed against the
surface of the device. Where the silicon is exposed,
either by design or through a pinhole, the colorless
benzidine hydrochloride is oxidized and forms a
black area on the filter.

Cracks and pores on the ic’s wafer may also be
detected by enhancing their visibility with dyes or
stains. When a dye is applied to a surface and then
wiped or rinsed off, the dye that penetrates a
-crack leaks back out and decorates the area of
the crack or pinhole. An electrochemica l technique
known as chromate staining causes areas of dif­
ferent polarity to turn different shades of brown.
The ic surface is covered with the stain and a volt­
age is applied to the die. Any crack or discontinuity
is seen easily since it causes a sharp difference in
surface potential and appears as a different shade
of brown on the package. This method was first
reported at the 1964 Physics of Failure
Symposium.

Small irregularities in the surface of a device,
such as those that are caused by contaminants,
can be seen easily with dark-field and phase-contrast
microscopes that depend on variations of illumina­
tion. Dark-field illumination is illumination from
angles beyond those accepted by the microscope
objective. The technique emphasizes rough spots,
pits and scratches as well as steep, shallow steps on
the device surface because these irregularities scatter
light into the instrument’s objective.

Phase-contrast microscopy consists of optically
combining in the microscope one part of the il­
munating light that is not reflected from the
sample with reflected light from the sample surface,
causing phase interference. Small variations in the
length of the light path, caused by small variations
in the height of the sample surface, result in de­
structive light interference and yield visible differ­
ces in shade or color.

Metallography

An instrument for investigating flaws in the sur­
face of an ic is the metallograph, another special
form of microscope. This instrument has an effec­
tive magnification of 2,000 with a resolution as fine
as 0.5 micron. Besides showing up the kind of fail­
ure mechanisms seen through the binocular micro­
scope, the metallograph can magnify cross sections
of the ic die. In this way, failure mechanisms such
as voids in thermocompression bonds, incomplete
welds and thin or nonadhering plating can be seen.

A more flexible metallograph, the hot-stage
metallograph, permits observation of changes in
materials and devices at controlled temperatures
up to 1,600°C. It can investigate failure mechanisms

associated with the high-temperature process in
manufacturing ic’s.

Shorter wavelengths show more

Very small defects, such as pinholes in an oxide
layer, require instruments with better than 0.5-
micron resolution. This is the maximum resolution
of optical microscopes, because it is the wavelength
of visible light. X-rays, with wavelengths of about
1 angstrom, and electrons with associated wave­
lengths of less than 0.1 angstrom [1 angstrom=10^{-10}
imcron] give this improved resolution. However,
microscopes that can focus X-rays cannot at present magnify more than about 200 times.

The transmission electron microscope can help find the causes of unstable electrical properties in IC's by measuring the size and shape of selected sections of the IC's, or can locate stacking faults, a type of defect associated with epitaxial deposition. The transmission electron microscope offers the best resolution of any method of electron microscopy. But it requires an extremely thin sample and this normally destroys the function of the device being tested. Thinning of the sample for direct examination requires removal of contacts and destroys most of the device. One way to circumvent this is to form a thin cast of the sample surface, but that contaminates the surface.

Electron-opaque specimens can be examined with the scanning electron microscope. As its name implies, a thin beam of electrons scans the specimen surface and detects either the electrons scattered from the surface or those absorbed by the specimen. The scanning electron microscope is useful for studying the topography of an IC and determining the cause of such failure modes as open circuits.

Weapons against IC failure

<table>
<thead>
<tr>
<th>Instrument and procedure</th>
<th>What’s measured</th>
<th>Sensitivity, resolution or power</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Physical properties)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical microscope</td>
<td>Size and shape</td>
<td>3X to 2,000X, 0.5 micron</td>
</tr>
<tr>
<td>Phase contrast</td>
<td>Stacking faults</td>
<td>To 1,000X, 0.5 micron</td>
</tr>
<tr>
<td>Electron microscope</td>
<td>Size and shape</td>
<td>Less than 10 angstroms or better</td>
</tr>
<tr>
<td></td>
<td>Stacking faults</td>
<td>100 angstroms apart</td>
</tr>
<tr>
<td>Interferometer</td>
<td>Film thickness or surface roughness</td>
<td>300 angstroms</td>
</tr>
<tr>
<td>Single beam</td>
<td></td>
<td>25 to 10 angstroms</td>
</tr>
<tr>
<td>Multiple beam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profilometer</td>
<td>Film thickness or surface roughness</td>
<td>25 to 100 angstroms</td>
</tr>
<tr>
<td>Contour analyzer</td>
<td>Surface contour along a line shadow</td>
<td>1 micron</td>
</tr>
<tr>
<td>Ellipsometer</td>
<td>Film thickness, dielectric</td>
<td>2 angstroms</td>
</tr>
<tr>
<td></td>
<td>Film thickness, silicon</td>
<td>10 microns or less</td>
</tr>
<tr>
<td>Electron diffraction</td>
<td>Crystal identification (contaminants)</td>
<td>Needs 1 mm sample</td>
</tr>
<tr>
<td>microscope</td>
<td></td>
<td>Less than 1,000 angstroms sample size</td>
</tr>
<tr>
<td>Reflection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low energy electron</td>
<td>Surface structure (generally indicates presence of absorbed materials)</td>
<td>1 to 2 atomic layers deep</td>
</tr>
<tr>
<td>diffraction (<400 v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scanning electron</td>
<td>Device topography</td>
<td>0.05 to 0.5 micron</td>
</tr>
<tr>
<td>microscope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiography unit</td>
<td>Inner topography</td>
<td>0.1 micron</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>Phase analysis</td>
<td>0.5% to 10%</td>
</tr>
<tr>
<td></td>
<td>Crystallite size</td>
<td>0.05 to 0.3 and 10 to 1,000 micron ranges</td>
</tr>
<tr>
<td></td>
<td>Dislocation mapping</td>
<td>Over 5 microns apart</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,000 psi or 500 ppm strain over area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.010 in. across</td>
</tr>
<tr>
<td>Strain gauges</td>
<td>Strain, thus stress</td>
<td>1 ppm over 0.015 in.</td>
</tr>
<tr>
<td>Tensile testers</td>
<td>Bond strength</td>
<td>0.1 gram</td>
</tr>
<tr>
<td>Thermal plotter</td>
<td>Surface temperature</td>
<td>2°C over 0.00035 in. diameter</td>
</tr>
<tr>
<td>Etching</td>
<td>Dislocations or stacking faults</td>
<td>10 microns apart</td>
</tr>
<tr>
<td>(Electrical properties)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscilloscopes</td>
<td>Current and voltage</td>
<td>1 nanoampere</td>
</tr>
<tr>
<td>Ammeters and electrometers</td>
<td>Current</td>
<td>10^-15 amperes</td>
</tr>
<tr>
<td>Voltmeters</td>
<td>Voltage</td>
<td>10^-9 volts</td>
</tr>
<tr>
<td>Capacitance bridges</td>
<td>Capacitance</td>
<td>10^-17 farads, static</td>
</tr>
<tr>
<td>Ohmmeters</td>
<td>Resistance</td>
<td>10^-5 ohms</td>
</tr>
</tbody>
</table>
shorts or electrical leakage. Since an electron beam may permanently alter the electrical characteristics of a device, the electron microscope is considered destructive. In the electron mirror microscope, however, electrons do not touch the specimen, but are reflected back for viewing by an equipotential barrier near the sample. The electrons do get close enough to acquire the information necessary to give a picture of the electromagnetic condition of the integrated circuit’s surface—with a reported resolution of 0.2 micron.

After locating a flaw on the surface of an IC, it is often necessary to measure the fault to determine its severity. A large array of instruments is available to do this, each with its own particular liabilities and assets. Profilometers and interferometers can measure the topography of a surface. Interferometers, ellipsometers and betasopes can directly measure film thickness. And X-ray diffraction and spectroscopy can measure film thickness by analyzing the weight per unit area of the chemical elements of the film.

A profilometer utilizes a small, lightly loaded
Radiographic techniques expose bad bonding of the IC die to the package that can cause the device to overheat and fail. The dark spots in the radiograph are voids in the braze under the silicon die. The radiograph shows details as small as the 1-mil interconnecting wires.

A hemispherical probe that slides over the surface being measured. Its movement normal to the surface is sensed and recorded or displayed. The instrument can measure surface smoothness and step heights from 25 to 100 angstroms. However, the profilometer is often unable to distinguish a crack from a shallow scratch.

Measuring steps

An interferometer, however, can measure any small irregularity in a sample surface plus steps at the edges of masked deposited films and thus give information about flatness and smoothness, including scratch and hole depth. Steps on an IC surface, even though not a defect in themselves, can trap contaminants and result in a variety of failure modes—corrosion or open bonds, for example. The interferometer measures differences in the optical path length of the two parts of a light beam separated by a partially reflecting mirror.

If only one part of the beam traverses the sample film, the difference of the optical path between the two parts is a measurement of film thickness. If the upper surface of a transparent film is partially reflective, the parts of the incident light being reflected from the upper and lower surfaces may interfere with each other and, for incident white light, the resultant color is a measure of the film thickness. Singly reflecting arrangements give a precision of 1/10 to 1/20 of the wavelength of light—about 200 angstroms. Accuracy is partly dependent on applying the proper corrections for both the index of refraction and the phase shift caused by the reflection. Films more than 1-wavelength thick may be measured and their refractive indexes determined by a method that measures phase difference as a function of angle of incidence.

To measure step heights on a reflective surface, a partially reflective plate is placed over the sample; corrections for the index of refraction and varied phase shift caused by reflection from different materials are not needed. If the additional plate is 90% to 95% reflective, the diffraction fringes are sharpened and measurements are accurate to 10 angstroms. Fairly economical instruments are available which have a precision of 25 to 30 angstroms.

Transparent films thinner than 1 wavelength may be measured by ellipsometry to a precision of 3% down to a thickness of 2 angstroms. The ellipsometer makes use of polarized light. Polarized light reflected at various angles from very thin films changes the polarization. This change is dependent on and a measure of both the thickness and refractive index of the film. However, because the measured numbers are not linear variables of film thickness, corrections must be assessed and applied to compensate for any contaminating film.

Atomic probes

When there is no surface evidence of the thickness of opaque films, the thickness may be measured nondestructively by penetrating radiation. Also the backscattering of beta radiation by film and substrate can be measured since the
scattering power of material increases strongly with atomic number.

If there is an appreciable difference in atomic number between the film and substrate and the compositions of both film and substrate are known or standards are available, the scattered intensity can be related to the film thickness. This results in a measure of thickness for films from 1 microinch to several mils with an accuracy to within a few percent.

Inside the chip

Inversion (change in semiconductor type) and many other failure mechanisms are the result of absorbed contaminants in the IC wafer or structural defects. Therefore other tests must be made to examine the wafer's physical and chemical properties.

To examine the interior of a specimen, more penetrating radiation is required and X-rays are normally used. A shadow-casting process is capable of detecting effective thickness variations of about 0.5%. And the resolution of the method, a function of the geometry of the setup, can be 0.1 micron although a resolution as coarse as several microns is still useful. Precise resolution requires either special equipment or techniques. Fine-resolution X-ray plates (capable of being enlarged 400 times with a conventional microscope) can clearly show the placement of 1-mil wires, cracks, voids and contaminants.

A stereoscopic view of the interior of a sample—made from two radiographs taken at different angles—can make crystalline defects more apparent. A variation of sectional radiography, laminalography, passes X-rays through the sample and the film at about 20° to the plane of the film. At the same time, the sample and film are rotated synchronously about their respective normals, which are parallel. The only portion of the sample that forms sharp shadows on the film is the plane that intersects its own rotation axis exactly on a line between the X-ray source and the intersection of the film with its own rotation axis.

One technique, three uses

X-ray diffraction can aid failure investigations in three ways: first, examination of X-ray diffraction patterns identifies phases and confirms the identity of construction materials and contaminants. The pattern also contains information about the quality of the crystals in a material and the size, shape and distribution of the particles or crystalites. It can reveal whether a noncrystalline material is dense and glassy or is an open structure with spaces between the atoms. Second, X-ray diffraction (and electron microscopy) can show the nature and distribution of grain boundaries and crystallographic defects, such as dislocations and stacking faults. Third, it can demonstrate and measure stress in any crystalline material.

In the examination of integrated circuits, a common task is to identify contaminants that cause short circuits or otherwise change the device performance. X-ray powder diffraction is a fingerprinting method—a pattern of the crystalline contaminant is compared with the patterns of known substances to identify the contaminant.

Crystallographic defects can also affect electrical and mechanical properties of materials. The defects may be misplaced atoms, grain boundaries or gross strain—resulting from a fracture or from constraint by adjacent incompatible material.

A dislocation is one form of a collection of misplaced atoms and contains a linear array with an environment different from that in a perfect crystal. Associated with the dislocation are variations of interatomic distances and strained interatomic bonds. In the immediate vicinity of the dislocation, the differences in interplanar spacings result in a difference of diffracted intensity recorded on the X-ray diffraction topograph or electron micrograph. Stacking faults, another form of misplaced atoms, do not cause appreciable strain or change in interatomic spacing but they still modify the crystal diffraction grating and show contrast on a diffraction topograph.

An optical alternative is phase-contrast microscopy. Because stacking faults formed in epitaxial silicon layers cause a slight departure from surface flatness they are often detectable by phase contrast microscopes. Also since the strain associated with dislocations and stacking faults affects chemical reactivity, the defects can be located by etching procedures.

Examining IC's chemically

Chemical analysis is also employed in investigating failures to analyze the material and to identify contaminants. However, it requires skilled technicians and this often precludes its use by the
Failure analysis may appear at first glance to be the responsibility of the manufacturer of integrated circuits. But says author Seymour Schwartz, IC’s are so complicated and the manufacturer is so dependent on the user’s specifications that the user has to share the responsibility.

Schwartz, of the National Aeronautics and Space Administration’s Electronic Research Center, says the customer has a real stake in preventing IC failures. He notes that the customer may have even designed the circuit. As chief of the failure mechanisms branch of NASA’s Qualification and Standards Lab at Cambridge, Mass., Schwartz devotes most of his work to integrated circuits.

He says that failure analysis can pinpoint whether design weakness or poor processing is responsible for trouble in the IC’s. And, he says, the result can be increased manufacturing yield and greater quality control, assuring customers that failures will not be repeated.

Schwartz has more than 15 years experience in the semiconductor field. He is editor of “Integrated Circuit Technology: Instrumentation and Techniques for Measurement, Process and Failure Analysis,” to be published this year by the McGraw-Hill Book Co.

References

Acknowledgment
Part of this article is based on material supplied by George V. Browning, Joseph M. Axelrod and Philip H. Eisenberg of the Material and Processing Lab, Autonetics division of North American Aviation Inc.
“If you’re buying our new integrated circuit op amp JUST for the 60,000 gain you may be missing several advantages!”

Certainly, our new MC1533 provides open-loop gain that’s 15,000 higher than the next best. (Typically, 60,000 — with 40,000 guaranteed minimum). But, it also features extremely low temperature drift (for better stability) combined with low input offset voltage and gain adjustability, too. Best of all, it’s competitively priced . . . and, available RIGHT NOW!

This extremely flexible operational amplifier sets new performance standards for a variety of applications. The high gain and temperature stability are extremely valuable for use in sensitive applications such as an integrator. Design simplicity and lower costs (because there’s seldom a need to cascade) result from the added gain and low input offset voltage in other applications such as summing amplifiers, source followers, twin tee filters and oscillators.

For an even wider range of applications, you can now get two different series of these state-of-the-art devices, in 10-pin TO-5 or flat-pack, priced as low as $15.00 (100-up). Here are some of the documented specifications that make it all possible:

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>MC1533G</th>
<th>MC1433G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (100-up)</td>
<td>$14.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>170 mW</td>
<td>180 mW</td>
</tr>
<tr>
<td>Operating Temp. Range</td>
<td>-55 to +125°C</td>
<td>0 to 75°C</td>
</tr>
<tr>
<td>Open Loop Voltage Gain - Aᵥitial</td>
<td>40,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Voltage Drift With Temp. (Typ.)</td>
<td>8 mV/°C</td>
<td>10 mV/°C</td>
</tr>
<tr>
<td>Input Impedance (Typ.)</td>
<td>1 Megohm</td>
<td>600 Kohms</td>
</tr>
<tr>
<td>Output Voltage Swing*</td>
<td>±12 volts</td>
<td>±12 volts</td>
</tr>
</tbody>
</table>

* +5 V Supply with R₂, 2 Kohms

For complete details on the World’s Best Op Amp Integrated Circuit, send for our data sheets and the Application Notes described at right. For immediate delivery on devices you’ll want to try, contact your nearby Motorola franchised semiconductor distributor.

HOW TO USE HIGH GAIN OP AMP DESCRIBED IN TWO NOTES

Designing source followers, twin tee filters and oscillators, and high impedance voltmeters are presented as examples of the wide variety of applications for the MC1533 operational amplifier. In addition, three complementary audio frequency amplifiers are discussed, each using an MC1533 to obtain the desired voltage gain and reduce the distortion figure. Motorola Application Notes 248 and 275 are sure to be valuable additions to your library of integrated circuit information. Send for them today!

The MC1533 is considered a multistage amplifier, and is constructed to best use the advantage of monolithic integrated circuits. The dotted lines separate the stages.

MOTOROLA Semiconductors

MOTOROLA SEMICONDUCTOR PRODUCTS INC. / P. O. BOX 955/ PHOENIX, ARIZONA 85001 (602) 273-6900/TWX 910-951-1334

Electronics | January 23, 1967

Circle 247 on reader service card
Instrumentation

Chronometer expands pulses to measure nanosecond intervals

'Streching' time intervals solves pulse-measurement problems in systems such as optical radars and nuclear detectors

By George M. Ettinger

An inexpensive, accurate instrument resolves time intervals down to 10 nanoseconds and makes it possible to display the time interval data on a low-speed oscilloscope. Alternatively, the pulse length or time interval data can be stored in an electronic integrator and read out on a meter or chart recorder. The device promises to solve a variety of problems in which very short accurate time intervals must be measured.

An example is timing the pulses of laser ranging systems. Optical radar systems should approach the ultimate in range resolution capability. Because they use high-power lasers emitting light pulses as short as a few nanoseconds, they should be able to resolve distance measurements to within a few feet. But optical radar designers have consistently run afoot of two major problems. First, circuits required to resolve accurately the nanosecond interval between the transmitted and received pulses are complex and costly. Even more important, high-power lasers are limited to low repetition rates because of their relatively long recovery time. As a result, conventional cathode-ray tube readout is ruled out because single-shot, high-speed operation of crt's produces a display of intolerably low brilliance.

Attempts to solve these problems with photographic techniques have been unsatisfactory because of the time lag imposed by film processing. Another approach makes use of high-speed counters with resolutions of 10 to 50 nanoseconds. However, such counters are complex and expensive.

The new instrument, called a nanosecond chronometer, relies on the simple principle of 'time' expansion. Instead of displaying the short pulses directly, they are converted to proportionally longer pulses—'time' is expanded—and range information is derived from the longer pulses. The expansion technique eliminates the need for costly counters. Short pulse intervals are lengthened in an interval expansion circuit built with tunnel diodes and transistors. Pulse intervals expanded by a factor of 1,000 can be resolved to within 10 microseconds, which corresponds to 10 nanoseconds in real time. Because the pulses have been placed in the millisecond region, they can be observed with adequate intensity on low-speed oscilloscopes in spite of their low repetition rate.

For readout on a meter or recorder, the expanded pulses gate a constant-current source to the input of a very stable electronic integrator. The integrator output is proportional to the period during which the d-c input is applied. Since the expanded period is proportional to the original short time interval from the optical radar before the expansion, the integrator output voltage is also proportional to the original time interval.

The information is stored in the capacitor of an integrator which has a drift of less than 0.1% of full scale per minute. The output resistance of the integrator is sufficiently low to allow connection of a panel meter and a chart recorder without introducing additional drift. The recorder can indicate long-term trends in cloud height radar.

The integrator is not required for digital data.

The author

George M. Ettinger obtained his Ph.D. from London University in 1960. He is the author of a book and numerous papers on magnets, power control systems, high-speed pulse devices and measurements. At G. & E. Bradley, he was responsible for the design and development of several measuring instruments and precision calibration equipment.

*Now engineering manager, Rotax Ltd., London
storage. For this mode of operation, the expanded pulses directly gate a fixed-frequency signal—say, 100 kilohertz—to produce an output of one pulse per radar echo; with a 100-khz signal, the number of 10-µsec pulses in each train is proportional to the original time interval.

Pulses control operation

The basic elements of the nanosecond chronometer are: a start, stop and interval expansion circuit, a pulse former, an electronic switch, an integrator and a readout device as shown below. Start and stop pulses are amplified to a level of 1 volt and applied to a gate. The gate switches a tunnel diode on and off to control a high-speed transistor.

When the transistor is in the waiting state, it is turned full on, so that the anode of the tunnel diode is nearly at ground potential. The transistor is turned off when a positive pulse of length \(t \) from the gate arrives at the diode. The 15-milliampere current, normally flowing through the transistor's collector-emitter circuit, is then diverted from the transistor, through the diode \(D_2 \) and charges capacitor \(C_1 \). At the end of the pulse, the transistor rapidly returns to its saturated or full-on state. Diode \(D_2 \) is now reverse-biased and prevents the capacitor from discharging through the transistor. Instead, it discharges through \(R_2 \) at a relatively slow rate, determined by the ratio of the charge and discharge currents. For example, if the charge current of 15 ma is 1,000 times the discharge current—the current through \(R_2 \) equals 15 microamperes—then the discharge time will equal 1,000 \(t \).

The pulse former connected to \(C_1 \) is a bistable circuit that acts as a low-leakage electronic switch, closing each time the positive voltage on the capacitor \(C_1 \) exceeds a preset value or threshold. The electronic switch permits a constant charging current to flow into the integrator capacitor during the time interval 1,000 \(t \). The capacitor charges linearly, eventually reaching a voltage proportional to \(t \). To store this voltage without any appreciable drift between measurements, both capacitor \(C_2 \) and the integrator input must exhibit very low leakage. Putting a forward-biased field effect transistor whose gate current is less than 100 picoamperes in the input stage accomplishes this.

Nonlinear characteristics

A fixed interval-expansion ratio can be obtained only if the system is linear. Linearity is controlled primarily by the degree of stability of the charge and discharge currents.

Linearity can be optimized if \(R_1 \) and \(R_2 \), which determine the currents, are replaced by such true constant-current sources as bipolar or unipolar emitter followers or source followers. However, good linearity—within 1%—can be obtained with the passive resistors by operating the circuit over a restricted portion of the chronometer's exponential characteristic curve. To do this, a 35-volt d-c supply is used for the transistor collector and the value of capacitor \(C_1 \) is chosen so the collector reaches only 7 volts at the maximum time interval \(t \).

A relatively high discharge supply voltage—120 volts—keeps the discharge constant whether capacitor \(C_1 \) charges from zero to 1 or zero to 7 volts during the interval. The nonlinearity contributed by the discharge characteristics under these conditions is again about 2%. Absolute scaling errors, created by the tolerances of the charge and discharge resistors and capacitor \(C_1 \) are eliminated by preset controls in the discharge circuit.

For some applications, nonlinear characteristics are desirable. An exponential characteristic permits the display of a wide range of times, and therefore target distances, on a single meter range. Such a characteristic is achieved by allowing capacitor \(C_1 \) to charge up to nearly the full positive supply voltage while keeping the discharge current essentially constant.

Eliminating ambiguity

In optical radars for measuring distances, separate start and stop pulses are employed. An ambiguity may arise when echoes are received that
might be returns from targets below the time and distance threshold (100 nsec in the special instrument to be described) or extremely weak or long-range echoes.

The ambiguity between a very short-range echo (below 50 feet in this case) and an extremely distant echo (greater than 4,000 or 5,000 feet, depending on the range selected) is a serious limitation. It is overcome by sensing the state of the tunnel diode and the fast transistor switch, shown on page 109, after each laser firing pulse. Then one of two neon indicating lamps is energized to indicate whether or not reset has taken place. The observer can thus resolve whether the echo has an amplitude greater than the threshold amplitude and its distance exceeds the range threshold of the system.

Making rectangular pulses

Rectangular pulses are produced in the input gate shown at right from the start and stop signals and are fed into the tunnel diode-transistor switch used for time expansion. The tunnel diode acts as a bistable memory element, ensuring fast operation of switch Q_3. Current is fed to the tunnel diode from transistor Q_1 which is normally not conducting. When a positive pulse is applied to Q_1, the tunnel diode current is reduced below its valley point and the diode switches to its low voltage state. The switch is turned off and the current charges C_1.

The stop pulse is applied to the base of Q_2. This causes the collector of Q_2 to rise from saturation, increasing the tunnel diode current through R_3 and R_4 beyond its peak value of 5 milliamperes. The increase places the diode in its high voltage, stable state and causes Q_3 to conduct again.

The voltage drop exhibited by germanium tunnel diodes is not sufficient to control silicon transistors

Chronometer output characteristics

Time-voltage transfer curves for several ranges of the chronometer. Restricting the chronometer's operation to a portion of its complete range keeps the readout linear. The readout can also be made exponential if desired. The curve directly above shows an exponential characteristic compared with a true exponential curve.
directly. But if the d-c bias is applied to the diode through R_5 and R_6 and adjusted by varying R_7 and R_8, the maximum voltage drop across the diode, together with the drop across R_6, is sufficient to saturate Q_i.

Pulses 1,000 times longer

The pulse-forming circuit senses whether the voltage across the charging capacitor exceeds an adjustable threshold value. Temperature-dependent variations of the emitter-base voltage in the transistor stage Q_4 approximately compensate for the corresponding temperature variations of the fast switching diode in the time expansion circuit.

Transistor Q_4, normally conducting, is cut off by a positive input so that Q_5 is also off and Q_6 is inverted. Current through Q_6 closes the electronic switch Q_7. The voltage drop across this switch is only 25 millivolts because it is operated in an inverted mode. In its normally open state Q_1 passes a leakage current of about 300 picoamperes while blocking 10 volts d-c. A drop of 25 millivolts affects the integrator sensitivity (10-volt full scale output) by only 0.25%. Since Q_7 always operates under the same conditions (switching from 10 volts to 5 milliamperes) the only change of saturation voltage to be considered is that caused by temperature. This variation is less than 1% of 25 mV per degree Centigrade—an integrator sensitivity change of only 0.0025% per degree C. This accuracy is the best that could be achieved even with special voltage reference diodes for the 10-volt supply feeding the integrator through the electronic switch. For analog presentation, a temperature coefficient of 0.02% per degree C is permissible.

The leakage in the transistor switch causes integrator drift. A leakage current of 300 picoamperes, which can be readily obtained even with pnp silicon alloy transistors, causes an output voltage drop, with a 2-microfarad integrator capacitor, of less than 10 mV per minute at room temperature, or 0.1% of the 10-volt full-scale output per minute. Variations in the leakage current have no effect on accuracy but merely reduce the storage time. For example, an allowable drift of 0.5% of full scale during the 30-second cycle time of a laser cloud height radar would permit the leakage to increase by a factor of 10 before it would have a detrimental effect on system performance.

The electronic integrator is a simple silicon transistor operational amplifier preceded by a p-channel field effect transistor operated in the zero-gate

Start, stop and time-interval expansion circuit for laser cloud height radar. Separate start and stop pulses are employed. The values of C_1 and the 9-megohm resistor are specified for the 8-microsecond range. Extra bias applied to tunnel diode cathode creates sufficient voltage drop across it to control Q_5. The output of the circuit is a ramp waveform 1,000 times longer than the time interval between the start and stop pulses.
Electronic integrator uses a field effect transistor in the input stage to eliminate current leakage that would prevent the information from being stored in the integrator without degradation between measurements. The integrator is reset to zero before any new information is received by applying 24-volts d-c to a relay which creates a short across the integrator capacitor.

Echo quality analyzer eliminates the ambiguity possible with certain returns. The state of the tunnel diode in the start, stop and time-expansion circuit is monitored by sensing the voltage at the collector of Q_9. The neon lamp indicating "ready" is lighted when the chronometer is in the reset state; the other lamp, indicating "fired," lights only if reset has not occurred.

The operational amplifier has a voltage gain of approximately 500 and consists of a balanced input stage, Q_9 and Q_{10}, followed by a voltage amplifier and an emitter follower. Approximately 100 mv bias on the base of Q_{10} balances the positive bias required on the source of the FET, Q_8, to ensure zero or negligible gate leakage.

A relay shorts the integrating capacitor for about 100 msec to reset the integrator prior to the arrival of new information. A simple clamp circuit ensures that the output is reset to zero every time. The echo quality verification circuit, shown above, determines whether tunnel-diode and transistor reset has taken place and signifies that an acceptable echo has been received. The circuit consists of two npn silicon transistors, Q_{12} and Q_{13}, with neon indicators connected to their collector and emitter, respectively. In the reset state, the voltage from the collector of Q_9 is nearly zero and Q_{12} turns on the ready lamp. If reset has not taken place, the fired lamp is turned on by Q_{13}.

A one-range nanosecond chronometer has been used in a laser cloud-height radar. Only a single exponential range—100 nanoseconds to 8 microseconds—was needed, and resolution was better than 1% of full scale. A bench-type instrument was also constructed with three linear time ranges—1, 3 and 10 microseconds full scale. A time resolution of 10 nanoseconds was obtained on the 1-microsecond scale of the multirange instrument, a resolution comparing favorably with that obtained with digital counters. The time threshold is less than 100 nanoseconds. For very short range radar applications and for other high-speed interval measurements, such as the detection of nuclear particles, the effect of this threshold can be removed by delaying the echo or other stop pulse. For example, about 60 feet of coaxial cable was sufficient to reduce the time threshold to 10 nanoseconds.

The chronometer, on the 1-microsecond linear range and with echo delay, can measure from 10 to 1,000 nanoseconds with a better resolution than 10 nanoseconds and accurate within 10 to 20 nanoseconds. On higher ranges, the resolution on a meter or chart recorder is 0.5% of full scale and accuracy is within 2% of reading. The accuracy can be improved to 1% by increased stabilization of the charge and discharge currents and by compensating for the 2% nonlinearity.

References

DOES KODAK HAVE AN ANSWER TO YOUR ENGINEERING PROBLEM?

The odds are almost 90,000 to 1 in your favor.

Let us put you in touch with the one individual among almost 90,000 Kodak people who is best qualified to deal photographically with your specific problems.

Many specialists in nonphotographic technical disciplines have a lot to gain from photography. We have specialists (photographic) who feel happiest and most useful when they can help these people solve engineering problems.

Once we know what your problems or ideas are, we can get you together with the appropriate Kodak specialist for a working session in which you may find a solution or another benefit.

We have an extraordinary diversity of products and experience. Among them there's surely some help for you.

Electronics | January 23, 1967
With an EMC Scanner System!

Proven EMC temperature scanner systems are now available for countless applications in a variety of industries. Monitoring temperatures at a rate of up to 50 points a second from 0°C to 500°C with a demonstrated accuracy of 0.1% of full scale, these systems have already saved thousands of man-hours for users in the chemical industry.

These modularly-constructed systems are simple to install, operate and maintain. Pushbutton controls provide monitoring ease and flexibility. Modular units are interchangeable.

The highly reliable systems are constructed from modules with proven reliability of 4.5 million hours MTBF. This gives the typical system an MTBF in excess of 8,000 hours.

An EMC representative will be glad to provide you additional information on how EMC systems can meet your requirements for process monitoring and control.

Space electronics

Apollo radar views the moon

Radar systems aboard the Lunar Module reflect the successes of the Gemini and Surveyor programs, but the moon-landing craft will be charting unexplored territory

By Richard F. Broderick

National Aeronautics and Space Administration, Manned Spacecraft Center, Houston

The Apollo radar systems stand halfway between the relatively simple designs in the Gemini program and future systems that will allow man to explore, identify terrain and map distant planets—and to dodge asteroids or rendezvous with other spacecraft en route.

Gemini’s rendezvous radar [Electronics, Jan. 24, 1966, p. 123], was a transponder-aided system, light and simple in design. It had fixed, circularly polarized (Archimedian spirals) antennas and continuously measured the range and bearing of the target vehicle. The analog radar data from the receivers was digitized and fed to the Gemini computer which calculated the guidance information. Angles in two orthogonal axes were measured with three receiving antennas; the monopulse transmitter had a separate antenna.

The Apollo spacecraft’s radar is more compli-
cated because the mission is more complex. The Lunar Module’s radar must serve as a rendezvous aid, a landing aid and a means of calculating the orbit of the Command and Service Module while the LM is seated on the moon.

Apollo’s lunar module rendezvous radar is a general-purpose tracking device that furnishes the LM with relative measurements of position and velocity. Like the Gemini radar, the LM’s rendezvous system uses a transponder to measure angle, angle rate, range and range rate along the line of sight. But unlike Gemini, it uses single gimbaled, four-horned cassegrainian-configured antenna to transmit and receive circularly polarized signals.

After Apollo

Present studies indicate that the basic radar concepts developed in the Gemini and Apollo programs will be used in future space stations and Mars-flyby missions except that the smaller components in the systems will be updated. Transponders will probably be located on the space stations and the Mars probe. Any earth-to-space-station ferry vehicle will probably use components of the microelectronic phased-array radars now being developed. These devices will function as long-range altimeters and rendezvous radars. The final compositions of these systems will depend on what components are available when their designs are frozen.

As spacecraft continue to improve, they will be used to evaluate other aspects of space flight and other forms of radar applications—such as side-looking radar systems.

For guidance and navigation

Apollo, like spacecraft before it, is not an ideal radar target. The surface is rather specular at microwave frequencies so little transmitted radar energy is returned to the receiver. The radar cross section—the effective reflective area—of the Apollo Command and Service Module varies from 0.1 to 600 square meters. To track it with ground radar it is necessary to place a beacon or transponder on the spacecraft. Transponders can also be vital in aiding rendezvous, as in the Gemini program. In Gemini, the tracking radar was aboard the manned craft, while an L-band transponder was aboard the Agena that served as a target in rendezvous missions. This same technique is planned for the Apollo lunar mission.

Basically, the spacecraft’s computing subsystem solves a vector relationship between \(R_1, R_2 \) and \(C \) as in the drawing on page 118. A matrix in terms of position (\(R \)) and velocity (\(V \)) must be solved to determine the change in velocity (\(\Delta V \)) that must be added to the initial velocity (\(V_0 \)) of the chase vehicle to change it to the intercept velocity (\(V_1 \)). The target vehicle is located in an outer circular or concentric trajectory. The chase vehicle leaves the inner concentric orbit and moves to the rendezvous point by changing its orbit from circular to elliptical.

The mechanics of this maneuver appear deceptively straightforward. Actually inertial guidance isn’t accurate enough to complete the rendezvous maneuver. Radar is needed to zero in on the target. If the relative position of the two spacecraft is determined initially with an optical device such as a sextant, the inertial reference and the computer on the chase vehicle can begin the rendezvous maneuver. But the path between the chase vehicle to the target vehicle will be a broadening cone of error, within what is called a circle of ambiguity. To minimize the fuel consumed by velocity corrections (\(\Delta V \)), it is necessary to narrow this cone of error with an additional sensor.

Accurate range or angle measurements, or both, can be used to calculate position while velocity can be measured with a doppler radar or computed from the position information. The Gemini radar has a pseudo-phase monopulse antenna system (interferometer) to obtain angular information and a pulse ranging system for position information. The Gemini spacecraft needed a computer to process the on-board radar data and derive
Lunar Module’s antenna swings as it guides the capsule. During the landing phase shown in the upper drawing, the antenna ranges on the moon’s surface. After the mission has been completed and the LM prepares to rejoin the Command and Service Module, the antenna swings upward and tracks the CSM across the sky. At rendezvous, the antenna will point along the spacecraft’s “Z” axis.
Spacecraft must transfer from a circular orbit to an elliptical path to catch its rendezvous target. The craft’s computer depends on radar data to calculate the changes in velocity needed to achieve the new orbit.

in-flight velocity corrections.

The LM rendezvous radar system, however, will be able to show velocity corrections directly, without having the data fed into a computer. The LM will have an amplitude monopulse antenna system for angular information, a three-tone phase-modulated ranging system for position information and a doppler frequency tracker for velocity data.

On Apollo, line-of-sight stabilization and line-of-sight angle rate measurements are performed by four rate-integrating gyros mounted in the antenna’s trunion axis.

Only two of the gyros are used at any one time and a voting logic system transfers control from one set of the gyros to the other. Upon failure of the active gyro, transfer to the redundant gyro is immediate since the voting logic continually compares their outputs.

Spacecraft electrical systems must be kept small and light and this affects the radar systems. For example, an antenna comparator technique that reduces transponder power requirements was developed for the Gemini program and will ride on Apollo. On Gemini, four receivers picked up radar signals coming from almost any direction. However, only one transmitter replied in the direction of the strongest signal. If more than one transmitter responded there would be nulls or errors in position caused by the phases of the signals in the overlapping antenna patterns. The comparator technique eliminates these nulls.

On and off the moon

When the two astronauts in the LM blast away from the orbiting Command and Service Module, they will use the rendezvous radar as a backup altimeter. After the lunar surface exploration has been completed they will update the LM computer with data from the rendezvous radar. The computer will calculate the orbit of the CSM and guide the LM during the initial liftoff period from the lunar surface. After takeoff, the radar must track along the spacecraft’s thrust axis (x-axis) during rendezvous with the CSM. Because of these varied requirements, the LM must have a gimbaled antenna. Gemini spacecraft used fixed antennas that were lighter and required less power; Gemini needed only one zone of coverage for rendezvous.

The selection of doppler navigation radar to guide the landing on the moon can be traced to an inherent deficiency of gyro inertial systems. Even if landmarks on the lunar surface were known and the spacecraft’s inertial guidance system functioned perfectly, a position error would still exist because
the earth-based telescopes through which the lunar characteristics were determined have an inherent inaccuracy of about 1 kilometer.

In addition, doppler radar is needed to measure the spacecraft's velocity relative to the moon's surface. An inertial platform would measure the spacecraft's position relative to the center of the moon, not its surface. This would cause an altitude error of about a mile. Since an error of this magnitude is intolerable, a radar altimeter—doppler radar—with an error of less than 30 centimeters measures the distance to the lunar surface as the LM is descending.

The altitude measurement is performed with a single frequency-modulated continuous-wave beam. The velocity components in the x-direction \(V_x \), y-direction \(V_y \) and z-direction \(V_z \) are measured with three continuous-wave beams.

To increase the reliability of the landing radar, the LM systems are based on conventional designs. The systems proved themselves in the successful Surveyor moon shot last year.

New radar systems will map the planets and rescue astronauts

Post-Apollo programs will concentrate on radar systems to rendezvous with space stations, explore and map planets and find lost spacecraft.

After the Apollo mission, a variety of radar systems will be investigated in the Apollo Applications Program for proposed missions to Mars and Venus.

Among the types of radars to be tested is a "noncooperative" system so named because it must locate targets without the help of a system on board the target vehicle. The noncooperative system seems particularly well suited to space rescue missions and could also provide information on asteroids.

In a conventional rendezvous radar system, the radar is pointed within the inertial system's cone of ambiguity during target acquisition. After acquiring the target, the radar, with the aid of transponder provides accurate tracking data to the guidance system on the chase vehicle. To find its target, a noncooperative radar system must transmit a wide radar beam. And to receive a strong return signal it must have very high effective transmitted power because the radar cross sections of small targets vary with range and aspect angle.

The most promising form of noncooperative radar appears to be a phased array of integrated-circuit transmitter-receiver modules.

In this technique, low-power microwave modules are coupled with individual transmitting elements in an antenna array. The number of modules is determined by the antenna's aperture size and the required effective transmitted power. The arrays can be end-fire or broadside. In an end-fire, the direction of maximum radiation is along the axis of the linear array; the broadside, maximum radiation is perpendicular to the plane of the array. In either case the phase of the transmitted wave would be digitally controlled with programable shift registers. Such arrays could contain several hundred modules.

Several companies are investigating basic phased-array techniques. Texas Instruments Incorporated, in a program called MERA (molecular electronics for radar applications), is developing a

Ellipticity that results when a radar beam strikes the ground at an angle is sensed as amplitude variations. It helps spacecraft maintain a constant attitude.

Nonuniform doppler reflections cause a radar's return signal to shift off the center frequency. Widebeam radars shift the centroid (right) and cause a terrain bias error.
Doppler bandwidth of a pencil radar beam is very narrow (top), while a broad beam produces a Gaussian distribution of the returning doppler signals (center). Spectrum compression allows frequencies within the doppler spectrum to be superimposed to approximate the impulse function shown in the lower diagram.

Terrain characteristics can be determined by the amplitude of backscattered radar signals measured within a fan-shaped beam of width ϕ, since different types of terrain reflect different amounts of beam energy. Curves indicating the reflectance profile of the terrain below the spacecraft are obtained by plotting the amplitude of discrete frequencies in wideband doppler returns.

Identifying the target

Besides acquiring and tracking targets, non-cooperative radar can identify a target's shape. For example, if linearly polarized vertical and horizontal waves are reflected from a sphere, the amplitude of the reflected waves will be equal. If the target is not a sphere, the returned signals will vary in strength according to the shape of the target. Two linearly polarized waves can provide a two-dimensional picture of the target. A three-dimensional picture can be obtained by transmitting both right- and left-hand circularly polarized waves.

Such an identification system could detect asteroids, a capability especially desirable for future missions to Mars and Venus where asteroids may be a hazard. Also, identifying types of spacecraft will be necessary during the post-Apollo period when multiple rendezvous missions will be common. Quick accurate identifications will insure against false starts toward the wrong target vehicle. In addition, radar that could find and identify powerless spacecraft whose transponders are not functioning would be invaluable during rescue missions.

Inertial systems

Another radar application to be investigated in the Apollo Applications Program is a radar-inertial system capable of three-axis attitude and attitude-rate sensing. Such systems will be evaluated during earth orbits and may be used in lunar, Martian and other planetary expeditions. Since future spacecraft that use side-looking radar to map a planet's surface must maintain a constant heading in relation to their forward velocity vector, continuous attitude corrections will be mandatory. Conventional gyro inertial reference systems are set up and periodically aligned with auxiliary systems such as star trackers or horizon scanners.

A monopulse radar, however, could be used as a continuous alignment tool for the inertial system because of the radar's doppler properties. A radar beam pointing directly below a space vehicle will have a circular pattern with symmetrical areas about the center. A beam located off the nadir (the lowest point in the path) will have an elliptical pattern; this asymmetry may be caused...
Lunar Module's landing radar antenna gets a coat of heat-resisting aluminum. Radiant electric heaters in a vacuum chamber vaporize aluminum strips and the metal condenses on the antenna.

by a doppler return signal. It is sensed as either an amplitude or phase variation.

The accuracy of a doppler measurement system depends on the position of the centroid (amplitude peak) in the doppler frequency spectrum \(f_d\), and the centroid's position depends on the reflectivity characteristics of the terrain over which the spacecraft is moving. The basic doppler expression is:

\[
f_d = \frac{(2V)}{\lambda} \cos \theta
\]

where \(V\) is the velocity, \(\lambda\) is the wavelength of the transmitted frequency and \(\theta\) is the beam depression angle—the angle between the spacecraft's direction vector and the radar's aiming point. A second doppler component that contains several doppler frequencies is called the doppler spectrum bandwidth term or

\[
\Delta f_d = \frac{(2V)}{\lambda} \sin \theta \Delta \theta
\]

The effects of reflectivity on the doppler spectrum is illustrated on page 119. In the left section of the drawing, the reflectivity is uniform and the centroid is located at the nadir. When a typical reflectivity pattern is superimposed on the doppler spectrum, the centroid is shifted off the nadir and this causes an error. Obviously a pencil beam-width would be less susceptible to this type of error. The resultant doppler frequency would be the familiar impulse function rather than the Gaussian distribution of frequencies shown in the upper diagram on page 120. The lower portion illustrates what would happen if a number of frequency components \((nA\bar{F})\) in the doppler signal are selected.

Linear frequency modulation techniques select frequencies within the gaussian distribution and superimpose them on each other at frequency \(F_d\) to approximate an impulse function. The over-all modulation selection technique is called spectrum compression. The technique of frequency modulating the transmitted wave was developed by the Raytheon Co., and the Laboratory for Electronics Inc. has developed a frequency tracking method. Scientists at the National Aeronautics and Space Administration say that a monopulse radar, with a spectrum compression technique, could guide spacecraft during a mapping expedition in deep space. The sum and difference channels of a monopulse radar can also be used to obtain a narrow power spectrum. This technique provides a narrow doppler spectrum by adding and subtracting the radar returns of two sequentially lobed beams. For a three-axis system, the signals in four beams must be added and subtracted. The Bell Aerosystems division of Textron Inc., has demonstrated the application of the monopulse system to single-beam sensing while the Sperry Gyroscope division of the Sperry Rand Corp. has obtained a narrow doppler spectrum with conical scan techniques.

Remote sensors

It is anticipated that radar systems will play an important role in the geoscience research for earth, lunar, and Martian explorations. Two radar systems being considered are the scatterometer,
Side-looking radar could map planet as a spacecraft passes over the surface of the moon or a planet.

which will be used to identify surface characteristics, and side-looking radar for mapping.

A scatterometer employs a fan-shaped beam to measure the amount of electromagnetic scattering from various types of terrains. Desert, vegetation, water and other surfaces each have a characteristic radar backscattering coefficient. Explorers will identify terrains remotely by comparing the coefficients of known surface compositions with the backscattering coefficients of unexplored regions.

In a typical scatterometer operation a fan-shaped beam with a beamwidth \(\phi \) illuminates an area and the backscattered signal is measured at several discrete angles, \(\theta \), within the beamwidth and plotted.

From the basic doppler expression,

\[f_d = \frac{(2V)}{\lambda} \cos \theta \]

the angle \(\theta \) is related as

\[\theta_a = \cos^{-1} \left(\frac{P_{\text{dn}} \lambda}{2V} \right) \]

when the transmitter frequency and spacecraft velocity are constant.

The wideband doppler frequency return is recorded and divided into discrete frequency intervals by comb filters—filters that provide regularly spaced and equal passbands separated by attenuation bands. The doppler signal amplitude (at each pass frequency) is related to the beam depression angle and is used to draw a graph that identifies terrain over which the spacecraft flies.

A doppler scatterometer has been developed for the NASA Manned Spaceflight Center by the Ryan Aeronautical Co. It will compare earth reflectivity data with lunar reflectivity data obtained from the Surveyor spacecraft to give the Apollo astronauts information about the moon’s surface before they set foot on it. NASA is also investigating systems that measure the effects of signal cross-polarization over a wide frequency range (very high frequency to Ku band). A family of these measuring devices—with such features as multifrequency transmission and multipolarization reception and transmission—may be developed to obtain more definitive profiles.

Side-looking radar

To back up the scatterometer, NASA plans to use side-looking radar to locate and map terrain. Existing side-looking radar produces terrain pictures almost as clear as photographs. However, the radar's clarity is affected by frequency, and atmospheric conditions affect radar signals more at some frequencies than at others. Since the exact characteristics of the lunar atmosphere are not known, a multifrequency system will be used.

Since the high velocity of a spacecraft decreases the width of the radar's mapping swath, several orbits of a spacecraft are required to cover the same area normally mapped on earth in a single pass of an airplane. The mapping width (M) is given by

\[M = \frac{R \delta \theta}{C} \frac{1}{2 \cos \phi} \frac{V}{V} \]

The terms \(R \delta \theta \) defines the lateral resolution in azimuth. For high orbital velocities, \(V \), the effective mapping area decreases with lateral resolution. This is because of the inverse relationship between \(M \) and \(V \). For space use, the weight and power consumption of conventional side-looking radar systems must also be reduced and the normal operating periods increased.

The radar's real aperture beamwidth \((\theta_a) \) can be effectively decreased by a synthetic aperture antenna. It increases the beam's angular resolution from \(\frac{AR}{D} \) to \(\frac{AR}{2L} \) where \(\lambda \) is the wavelength, \(R \) is the range, \(D \) is the spacing between array elements and \(L \) is the path length of one coherent radar pulse integration. Range resolution is achieved with pulse compression.

Reference

The author

Richard F. Broderick is head of the tracking techniques section in the Instrumentation and Electronics division at the NASA Manned Spacecraft Center. He is now studying applications of future radar systems to manned spacecraft.
HIGH CONDUCTANCE DIODES...

High speed
High current
Radiation resistance
Proven reliability

...from HPA

Reliability and radiation resistance are spelled out in published test results. For your copy and for a data sheet on these specialized Hewlett-Packard high-conductance diodes, call your HP field engineer or write HP Associates, 620 Page Mill Road, Palo Alto, California 94304.

Electrical characteristics at 25°C

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Forward Current</th>
<th>Breakdown Voltage</th>
<th>Reverse Current</th>
<th>Capacitance</th>
<th>Reverse Recovery Time</th>
<th>Turn-on Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym.</td>
<td>Iₚ</td>
<td>BVₚ</td>
<td>Iᵣ</td>
<td>C₀</td>
<td>tᵣ</td>
<td>tᵣ</td>
</tr>
<tr>
<td>HP 1001 Min.</td>
<td>500</td>
<td>35</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HP 1001 Max.</td>
<td>600</td>
<td>35</td>
<td>—</td>
<td>2.0</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HP 1002 Min.</td>
<td>500</td>
<td>35</td>
<td>—</td>
<td>2.0</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HP 1002 Max.</td>
<td>600</td>
<td>35</td>
<td>—</td>
<td>2.0</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HP 1003 Min.</td>
<td>350</td>
<td>25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HP 1003 Max.</td>
<td>500</td>
<td>25</td>
<td>—</td>
<td>2.0</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>HP 1004 Min.</td>
<td>500</td>
<td>25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HP 1004 Max.</td>
<td>500</td>
<td>25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HP 1006 Min.</td>
<td>500</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HP 1006 Max.</td>
<td>500</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Units
- mA
- V
- nA
- pF
- ns
- ms

Test Conditions
- Vᵢ = 1.4 V (Note 1)
- Vᵢ = 10 µA (Note 2)
- Vᵢ = 0 V, f = 1.0 MHz

Notes:
1. Measured at a repetition rate not to exceed the power dissipation.
2. Vᵢ = 35 V for 1006; Vᵢ = 20 V for 1001, 1002; Vᵢ = 20 V for 1003, 1004.
"Why do more and more executives say MICHIGAN has more of everything?"

"Fast, convenient delivery to half the nation's population is one big reason."

Making a good product is one thing — getting it to customers on time is another. Michigan transportation is second to none. Its 1,300 miles of toll-free, multiple-lane, divided highways make possible very rapid delivery, by nearly 1,300 carriers, to 21 major billion-dollar markets. The state's strategic location also provides easy access to national and international markets via a network of Great Lakes ports, 16 major air carriers, and 25 railroads. More details in confidence? Write:

Director of Area Development • 216 West Michigan Ave., Jackson, Michigan 49201 • Area Code 517-788-0500

Circle 124 on reader service card
TRG adds Ku and K bands to its comprehensive line of microwave components (now 12.4 to 220 Gc)... and all the facts are contained in our new short form catalog.

This 20-page, short-form catalog contains all the important specifications on products available for Ku and K bands, as well as A, B, V, E, W, F, D, and G bands. To get your copy, contact your TRG representative or write TRG, 400 Border Street, East Boston, Massachusetts 02128. Tel. (617) 569-2110.

TRG/A Division of Control Data Corporation
Announcing

a new range of digital products
for greater design capabilities across-the-board

Now CAMBION® provides digital design engineers an unparalleled source of componentry and hardware to achieve new levels of design speed and capacity. Combining its extensive research background, developmental experience and productive capacity, CAMBION now makes available a diversified selection of over 150 integrated circuit logic assemblies and more than 60 in-line sockets, flat-pack holders and Cambi-Card circuit cards.

IC Logic Assemblies
With CAMBION's new range of IC logic assemblies, design engineers can begin projects at the systems level. These low-cost, highly flexible units are of universal design, comprising a broad selection of logic functions for direct incorporation into data processing, computers, communications and process control systems. CAMBION's DTL (diode transistor logic) integrated circuit logic assemblies are characterized by high speed operation, positive logic levels, low power input, large noise threshold and 70 pin output/input configuration. Decoders, counters, shift registers, etc. . . you'll find them all in CAMBION's new line of IC logic assemblies.

Cambi-Cards
Cambi-Cards provide the engineer developing his own logic systems with the most versatile mounting hardware for all integrated circuits. CAMBION currently offers a series of 20 different Cambi-Card circuit boards that permit the flexible interconnection of 8 or 16 integrated circuit packages per board, including in-line sockets, flat-pack holders and TO-5 cans. These boards are offered with many jack and terminal combinations, permitting a variety of hardwire or jumper interconnections of circuit functions.

IC Sockets & Holders
Cambi-Sockets are designed to accept all in-line IC packages, with up to 32 pin capability. Jacks, with cage or flat spring inserts, are engineered to survive thousands of insertion/extraction cycles. The reverse ends of both jack styles (flat or round pins) are available with solder terminal, solder pot, Wire-Wrap* or pin/plug. CAMBION Holders, with either round pin/plug or Wire-Wrap contacts, can accept any standard flat microelectronic package with 14 pin configuration. These flat-pack holders are easy to handle, precision crafted and give reliable electrical contact.

This wide selection of IC logic assemblies and accessories affords design engineers exceptional economy and flexibility in prototyping and production, parts and systems testing, inspection of incoming parts, and general breadboarding applications.

Send for FREE descriptive literature today. See how this new range of tools can expand the spectrum of your digital design capabilities. Write to Cambridge Thermionic Corporation, 510 Concord Avenue, Cambridge, Massachusetts 02138. Phone: (617) 876-2800. In Los Angeles, at 8703 La Tijera Boulevard, Phone: (213) 776-0472.

CAMBION

Standardize on CAMBION ... 81,541 guaranteed electronic components

Circle 127 on reader service card
Now Westinghouse fills the thyristor amp gap

With the new Westinghouse 125 amp thyristor — Type 218 — you can stop paying for 150 amps just to fill 70 to 125 amp applications.

What's more, the Type 218 gives you a 3,300 amp surge rating — 45,000 ampere^2 seconds — even better than many 150 amp thyristors! Voltage ratings through 1400 volts, dv/dt rating of 100 volts per microsecond, and a typical turn off time of 40 microseconds offer greater design flexibility. 20 microseconds turn-off time available by request.

Key to this unusual performance is the exclusive Westinghouse C. B. E. design (Compression-Bonded Encapsulation). By eliminating solder joints, this construction ends thermal fatigue, greatly reduces thermal impedance.

Such features make possible the unique Westinghouse lifetime guarantee. On the Type 218, and other semiconductors, this symbol on the case means that the guarantee applies. For immediate delivery on Type 218, just call your local Westinghouse distributor. For detailed technical data, write: Westinghouse Semiconductor Division, Youngwood, Pa. 15697.

You can be sure if it's Westinghouse
the Nation's GROWTH INDUSTRIES are taking a hard look at MINNESOTA

45 of FORTUNE Magazine's "top 100" corporations operate 120 plants in Minnesota. These industries find Minnesota is on the move! A good hard look at Minnesota reveals a fine, creative work force with skills to meet any degree of sophistication.

Minnesotans believe in the wisdom of investing in people. That's why so many Minnesotans complete high school or one of Minnesota's many trade schools. Minnesota enjoys the distinction of being one of the leading states in the number of Ph.D's per million population.

Minnesota's investment in people can pay off handsomely for any company depending on intelligent, skilled, self-reliant employees . . . employees who welcome responsibility, who take pride in their work!

Minnesota is the marketing, financial and transportation hub of the Upper Midwest and Northwest economic regions. Minnesota enjoys a unique location that is commanding a hard look from the Nation's fastest growing industries.

Lastly, a good hard look at Minnesota will reveal unlimited cultural and recreational opportunities for employees . . . from the cosmopolitan atmosphere of her cities to the soul-stirring beauty of her virgin wilderness.

If you want to take a good hard look at Minnesota, call or write:

DEPARTMENT OF BUSINESS DEVELOPMENT
Division 14P, State Capitol
St. Paul, Minnesota (55101)
30-gage wire can't have much insulation

It's got to be tough

That's why it's Kynar®

Kynar has superior cut-through and abrasion resistance...double the mechanical strength of other fluoroplastic insulations. It withstands bending...vibration...resists cleaning solvents...operates from -80° to 300°F...feeds, cuts and strips smoothly in hand and automatic wiring machines.

Wire insulated with Kynar is available from leading manufacturers. For data, write or call Plastics Department, Pennsalt Chemicals Corporation, 3 Penn Center, Philadelphia, Pa. 19102.
new Tektronix plug-in simplifies reflectometry measurements

Type 1S2 Sampling Unit for time domain reflectometry and general-purpose sampling

You can test transmission lines, cables, connectors, broad-band devices with ease and accuracy with the new Type 1S2 Sampling Plug-In Unit. It can be used in any Tektronix oscilloscope that accepts letter and 1-series plug-ins.

The \(\leq 90 \text{ps} \) risetime of the vertical channel, and deflection factors to 5 mV/div make the Type 1S2 useful in many general-purpose sampling measurements. For this general-purpose use, a pretrigger or delay line is required. System risetime as a reflecto-meter is \(\leq 140 \text{ps} \).

The illustration shows a Type 1S2 in a Tektronix Type 549 Storage Oscilloscope being used to test a 50-Ω delay line. Information obtained from the upper trace includes electrical length of the line, nominal impedance, location and type of discontinuities. Lower trace is magnification of the discontinuity shown near the center of the upper trace. Deflection factors:
- Upper trace - Vertical 0.25 p/div
- Horizontal 20 ns/div
- Lower trace - Vertical 0.025 p/div
- Horizontal 5 ns/div

The Type 1S2 Manual Scan display mode was used in storing both traces to obtain optimum resolution.

With the Type 1S2, positions of discontinuities in a line under test can be read directly from a dial in units of time or distance. Accuracy of round-trip time readings is within \(\pm 1\% \) of full scale.

Dual, full-scale 10-division horizontal calibration is in distances of 10 m, 100 m, and 1 km, and in times of 0.1 µs, 1 µs, and 10 µs. The display can be expanded by a 7-step, calibrated, X1 through X100 magnifier for detailed examination of any discontinuities.

Illuminated readout of the horizontal scale factor, including any magnification, adds to the operating ease. And testing of either short or long lines is facilitated by internal generators that provide a 50-ps, 250 mV pulse and a 1-ns, 1-V pulse.

A front-panel switch provides for matching the horizontal calibration to the types of lines most commonly tested—air, TFE, and polyethylene. A variable control permits matching the calibration to lines using other dielectrics.

Vertical calibration is in both \(\rho \) (rho) and in volts, from 0.005/div to 0.5/div, in 7 steps, with an accuracy within \(\pm 3\% \). It is also variable between steps, uncalibrated. A \(\pm 2\text{-V} \) offset voltage, monitorable at the front panel, allows amplitude measurements, using slide-back techniques, with an accuracy within \(\pm 1\% \).

Vertical and horizontal outputs of 1 V/div of displayed signal are available at front-panel connectors.

Type 1S2 - $1300

Includes: 2X and 5X attenuators, 50-Ω termination, 20-cm airline, 5-ns RG 8/AU cable, 2 GR elbows, 18" patch cord, and 2 manuals.

U.S. Sales Price f.o.b. Beaverton, Oregon

For complete information, contact your nearby Tektronix field engineer or write:
Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97005
Here's something you ought to think about. A lot of your effort, and a bundle of dough, goes into the circuitry behind the panel. Is $4.50 asking too much to make it look better up front? We don't think so, and a lot of people seem to agree. Or else they wouldn't have made Helipot's Duodial® turns-counting dials the most widely used in the industry. There are two reasons: they look better and work better than the rest.

The design considerations you can see for yourself... gleaming satin chrome finish, black nylon knob, and precision machined cover. (Can you name any other manufacturer who machines the dial cover?) The mechanical advantages may not be quite so obvious, but they're there. If you turn the knob, you can feel the quality. Helipot dials are precision components that provide setting accuracy with a minimum of play and zero backlash. They're easier to read, too, because we've put big numerals in a wide window. That means you get maximum viewing angle and can see adjacent numbers and direction of travel. (Compare this with the dials that have tiny peek-a-boo windows.) Even the Helipot locking mechanism is to your advantage. Unlike other dials, the Helipot locking lever is independent of the knob so you won't disturb the dial setting when you lock it. We thought of just about everything — so you wouldn't have to.

Here's another reason economical Helipot dials make good sense: your local Helipot sales representative stocks them by the thousands, so you can have same-day delivery when you need it. Call Helipot now for information on the complete dial line, including new digital dials.
RESEARCH HAS A NEW TOOL

To date there are over 1000 known applications of closed circuit TV. The unknown are in the millions, but scientists are discovering new uses every day — as are we.

MTI camera equipment has become the accepted standard in the medical field. And the reasons are as simple as the equipment is to operate. A flip of the switch gives you 7 day - 24 hour continuous operation with no adjustment. Compact, lightweight, completely reliable — you have perfect viewing instantaneously. MTI equipment needs no special “studio lighting” — no special staff.

It’s a new tool — a valuable new tool in research. So may we suggest that if you have an application — known or unknown — call or write:

MTI MARYLAND TELECOMMUNICATIONS, INC.
York & Video Roads, Cockeysville, Md. 301 - 666-2727
World's largest manufacturer of low light level television cameras.
WAVETEK uses Allen-Bradley Type F variable resistors exclusively because of their

* Quality performance
* Excellent stability
* Infinite resolution

One of the 5-inch by 6½-inch Wavetek printed circuit cards, showing 15 of the 25 Allen-Bradley Type F hot molded variable resistors and numerous hot molded fixed resistors used in the Model 111 VCG function generator.

Type F variable resistor with pin type terminals for mounting directly on printed wiring boards. Rated ½ watt at 70°C. Total resistance values from 100 ohms to 5 megohms.

Wavetek Model 111 VCG generates sine, square, triangle, and ramp waves from 0.0015 Hz to 1 MHz, and offers precision control of the frequency of the waveforms by external voltage.

The precision waveforms generated by Wavetek's Model 111 VCG place exacting demands on the large number of variable resistors used to set amplitudes to very precise values and assure symmetry of all functions. They must provide velvet smooth control, and quiet operation. And since this is a Wavetek adjustment, it is essential that the variable resistors, once adjusted, will stay "put".

Allen-Bradley Type F variable resistors satisfy all of these requirements, because they have the same solid hot molded resistance track as the famous Type J and Type G variable resistors. There's velvet smooth control at all times—never the problem of discrete steps common to all wire-wound units. And since Type F variable resistors are essentially noninductive and have low distributed capacitance, they can be used at high frequencies where wire-wound controls are useless.

When a manufacturer like Wavetek has standardized on the quality of A-B electronic components, you can be sure of the superior performance of such equipment.

ALLEN-BRADLEY
QUALITY ELECTRONIC COMPONENTS
An Allen-Bradley announcement of importance to motor designers

The new MO6-C ferrite magnet having 30% higher intrinsic coercive force

The new Allen-Bradley MO6-C ceramic permanent magnets provide at least 30% increase in the highest previously available intrinsic coercive force—obtainable with A-B’s MO5-C material. This advance is achieved with the same high residual flux density.

Designers of permanent magnet motors have a choice of these advantages—30% higher resistance to demagnetization, or 30% increase in motor output, or 30% increase in cold temperature protection. In fact, where the higher coercive force is not required, the designer can give himself a 30% reduction in magnet size.

This new Allen-Bradley MO6-C material opens the door to such motor designs where permanent magnets heretofore were not practical, namely for motors used in many portable tools and appliances. Like with the MO5-C material, these new MO6-C magnets are radially oriented, and are available in virtually all sizes and shapes currently being produced in segments for motors from 3/4" diameter to 10 hp. While MO5-C magnets will continue to satisfy most needs, MO6-C enables designers to satisfy more exacting motor design requirements because of its unusually high intrinsic coercive force.

TYPE MO6-C CERAMIC PERMANENT MAGNETS

Typical Characteristics

- Stated values have been determined at 25°C.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Nominal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Induction (Br)</td>
<td>Gauss</td>
<td>3300</td>
</tr>
<tr>
<td>Coercive Force (Hc)</td>
<td>Oersteds</td>
<td>2800</td>
</tr>
<tr>
<td>Intrinsic Coercive Force (Hci)</td>
<td>Oersteds</td>
<td>3100</td>
</tr>
<tr>
<td>Peak Energy Product (BmaxHmax)</td>
<td>Gauss-Oersteds</td>
<td>2.5 x 10⁴</td>
</tr>
<tr>
<td>Reversible Permeability</td>
<td>—</td>
<td>1.09</td>
</tr>
<tr>
<td>Curie Temperature</td>
<td>—</td>
<td>450</td>
</tr>
<tr>
<td>Temperature Coefficient of Flux</td>
<td>%/°C</td>
<td>-0.20</td>
</tr>
<tr>
<td>Density at Br</td>
<td>%/°C</td>
<td>-0.20</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>—</td>
<td>4.9</td>
</tr>
<tr>
<td>Weight per Cu. In.</td>
<td>Lbs.</td>
<td>0.177</td>
</tr>
</tbody>
</table>

ENERGY PRODUCT \(B_d H_d \times 10^6 \)

2.5

3.0

2.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

H-(KILO-OERSTEDS)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

B-(KILO-GAUSSES)
Nearly everyone looks to TRW capacitors when he wants to build better communications systems. From space transmissions to cross-town phone calls, when man has something to say, capacitors from TRW help him say it better.

Product information is available from TRW Capacitor Division, TRW INC., Box 1000, Ogallala, Nebraska. Phone (308) 284-3611

TWX: 910-620-0321.
Just $75 Buys You This Tiny, Adjustable TRIMPOT® Time-Delay Relay

Now—low price, small size and adjustability all in one! You can easily fit the Model 3908 industrial time-delay relay into both your system and your budget. With just a screwdriver, you can adjust it accurately over a range of 0.1 to 1.5 seconds; and by adding an external resistor or resistor-capacitor combination, you can boost the time delay to 200 seconds while retaining the adjustment feature. In addition, you can mount it in just one square inch and operate it continuously on less than 0.06 amps.

The Model 3908 is potted and has all-welded, solid-state circuitry. It is protected against operating-voltage transients. Even in the most difficult industrial applications, it performs with full Bourns reliability.

Bourns also offers you two MIL-SPEC subminiature time-delay relays, Model 3900 (DPDT) and Model 3907 (SPST NO-Solid State). All units are available from stock. Write TODAY for complete technical data!
Military electronics

Troubleshooting in trouble spots

Army school uses lessons learned in Vietnam action to train corps of repairmen for fire-control systems aboard helicopters

Fighting helicopters, bristling with armament they were never designed to carry, have more than proved their worth in Vietnam. But problems in the electronic fire-control systems aboard these weapons platforms are just now coming to light. Reports on failures and malfunctions are fed back from operational units all over the world to the Aircraft Repairmen's school run by the Aberdeen Proving Ground in Maryland.

Capt. A.J. Larkin, chief of the school's Aircraft Armament branch, studies these reports so repairmen can be drilled on what to expect and how to troubleshoot effectively. "It's a real challenge to keep up with this quickly changing field," Larkin says. "We're getting more systems that are more complex and more electronic," he reports.

From 30 to 35 helicopter armament repairmen are graduated each week. The men must work hard since the whole course, including basic electronics, lasts only 17 weeks. They are taught to install, test, maintain and repair the six armament systems the Army uses aboard its two armed helicopters—the UH-1D transport and the UH-1B escort.

What's new. Beginning next month, the minigun for the Light Observation Helicopter will be added to the curriculum. In June, there will be new courses on five systems for the HueyCobra, which will be sent to Vietnam later this year. This fast, sleek chopper is the first built to operate specifically as a striking weapon. It will carry over a ton of ordnance, including two rocket launchers, a 40-millimeter grenade launcher, a minigun and mine dispenser.

Four weapons systems now used on the older Hueys already in Vietnam are being tested on the big Chinook copter. When they prove satisfactory, the school will coach its men on how to handle any difficulties arising from installation of the systems on a different aircraft. Later, there will be courses on a whole generation of new gear for Aafss, the advanced aerial fire support system that the Lockheed Aircraft Corp. is developing.

Before matriculating at Aberdeen, the students receive only eight weeks of basic training. The men now finishing up are 19 to 20 years old and have been through high school. Due to the Vietnam buildup, the new men coming in have much less formal education. Making these men satisfactorily proficient is a challenge for industry as well as the Army since the tools and techniques of armament maintenance must be made simpler and more reliable as must the equipment itself.

I. Grenade launcher

An elaborate system with a minimum of headaches is the M5 40-millimeter grenade launcher. Mounted on the nose of a UH-1B helicopter, the M5 can fire at a rate of up to 230 rounds per minute as far as 2,700 meters—1 1/2 nautical miles. The weapon is used against personnel, convoys, machine gun emplacements and soft buildings.

The launcher and grenade turret outside can be moved from inside the cockpit by the copilot gunner who uses a reflex sight. Impulses generated by moving the sight are converted by a servoamplifier to signals that activate the mechanism to swing the launcher laterally and vertically.

Repairmen complain about the servoamplifier junction-box assembly. This unit has two amplifier module assemblies, a control module, and relay switching and control circuits for the subsystem. The control servoamplifier module, the men
Trainees at the Aircraft Repairman's school check out subsystem with oscilloscope. The 17-week curriculum includes a course in basic electronics.

say, must be sent back to the depot for repair. Because spares are often unavailable, they feel these two modules should be designed for repair in the field.

Plus side. The assembly has its good points, however. It is mounted on the rear section of the helicopter where it can be easily reached from the baggage compartment. In addition, test jacks are externally mounted on both sides of the axial blower which permits electrical troubleshooting without removal of the cover assembly.

The loading switch on the ammunition-booster drive motor, mounted on a shelf inside the electronic equipment compartment of the copter, must be improved. Repairmen say the quality of the switch is poor and it frequently burns out. "If you don't have a spare, the gunner has to pull the heavy cartridge links from the ammunition box through the whole assembly by hand," says one.

There is also a major problem in the sight-mount bracket, which is secured to a plate on the helicopter structure above and slightly behind the copilot's head. The wire in the hand control and sight assembly is fragile and is weakened by slewing the sight to the left or right or by changing its elevation. When failure occurs, control of the whole weapons system is lost.

There are also complaints about the inflight test set for the grenade launcher. Repairmen at Aberdeen claim this unit isn't rugged enough to survive the shaking it gets in a helicopter. The test synchro often goes out of calibration, which, of course, makes the unit useless for calibrating the system. Finally, the men would like to repair the test set in the field, but it, too, must be sent to a depot.

The launcher and the test set were built by the General Electric Co. with the Sperry Utah Co., a division of the Sperry Rand Corp., a secondary source for the launcher. Each launcher costs close to $42,000; the test set, $38,000.

II. Guided missile

The big complaint about the M22 wire-guided missile is that it's made in France and spare parts are hard to obtain; components from the United States can't be substituted. According to instructors at Aberdeen the construction characteristics of the French transistors are not even known in the U.S.

The M22 missile is an airborne assault weapon used to support frontline troops. Primarily an anti-tank weapon, it is also effective against such targets as fortified gun emplacements and bunkers. The system has six missiles carried on and fired from boom assemblies attached to the helicopter. Missiles are fired and remotely controlled by the copilot gunner, firings can be made while the chopper is flying, hovering or on the ground.

The gunner operates an airplane-type control stick that provides the
basic pitch and yaw command signals. Basic commands are converted to coded electronic guidance signals and transmitted to two trailing wires on the in-flight missile. The signals are then routed to the appropriate control devices.

The missile weighs 64 pounds, is 4 feet long, has a course speed of 400 miles per hour and flies for 22 seconds with a maximum range of 3,500 meters—1.85 nautical miles.

Fragility is a problem with the missile sight. The mechanical stops often break when the sight is swing from left to right. In addition, the control amplifier for the sight is a throwaway item, though the men would like to be able to repair it.

Time sharing. The missile's command operations function (coF) tester has, according to the repairmen, an unfortunate characteristic: it is designed to operate on the same battery used in the missile. Since the life expectancy of this unit is no more than 40 seconds, it's impractical to use it for making tests. Instead, outside batteries are used, which, if the polarity is not correct, can burn out the whole test unit.

Another annoyance is that the guide pin for the test cable connector on the coF is made of soft material that can bend and break when the connecting unit is tightened.

Besides the airborne system and the test set there is a guided missile flight control simulator—the DX43—used for training, that the repairmen must learn to maintain. This system weighs 190 pounds, gives a three-dimensional illusion and can be used indoors. All three items are made by the Nord Aviation Co. of France. The missile system costs $24,500, the tester, $8,000, and the trainer, $23,155.

III. Machine gun and rocket

The XM16 system used on the UH-1B helicopter is a combination of four 7.62-mm machine guns—two on each side of the aircraft—and two 7-tube, 2.75-inch rocket launchers—one on either side. All these weapons are handled by one fire-control system.

The machine guns are fired electrically from the sighting station in the cockpit through a solenoid
"All right, Jeff, we'll buy your system, but you'll have to specify a more advanced X/Y recorder. We need greater versatility and more reliable operation on the job. Any ideas?"

"If you like, Craig, I'll give you the system with the latest X/Y recorder on the market. The PLOTAMATIC® built by Bolt Beranek and Newman's Data Equipment Division. Other users swear by them. The PLOTAMATIC has a paper hold-down system that always works, never gets dirty, and yet allows you to adjust the paper for proper alignment after it's mounted. Input resistance is greater than one megohm, independent of gain setting. Accuracy and input versatility are as good as anything on the market, and you don't have to buy time base if you don't want it. No high voltages to produce RFI problems, either. Just between us, Craig, I think our people are in a rut with those X/Y recorders we've been using. They use them out of habit, and aren't up on the latest the market has to offer."

BBN's PLOTAMATIC line includes a variety of 8½" x 11" and 11" x 17" X/Y recorders for virtually every application. Keep up with the market—write us for a catalog.
be "repaired in the field" is also heard for the M6 test set used on the XM16 system. If the men had schematics to guide them they believe they could handle the job.

The XM16 is manufactured by the Emerson Electric Co., the Nortronics division of the Northrup Corp., and the Chromcraft Corp. The system costs $14,500; the test gear, about $2,255.

IV. Miniguns and rockets

A system almost identical to the machine-gun rocket combination is the XM21 minigun-rocket system. The XM21 consists of two 7.62-mm miniguns—one on either side of the aircraft—and two 7-tube 2.75-inch rocket launchers—one on either side. The fire-control system is the same as is used for the XM16. It has, of course, the same problems. The XM21 is also used in the UH-1B. A variation is the XM3 system which has the 2.75-inch rocket launcher but neither machine guns nor miniguns.

Three design changes, the repairmen say, could make the XM21 a better system. One simple fault that causes a lot of trouble is the softness of pins in the cable adapter that plugs into the ignition box. They often bend or break off when the plug is being connected. The rigidity of the cable is partially responsible for this, since it makes connecting the plug an awkward task.

Another annoyance is the lead-in wire to the ignitor head in the rocket tube. It isn’t sufficiently resistant to heat. After a few firings the insulation breaks down, parting the wire. This results in a short which prevents further firing from the affected tube.

Carbon buildup on the igniter head on the igniter arm assembly of the rocket tube causes lots of headaches and extra work. Carbon from the rocket fire effectively insulates the contact disk of the rocket through which the ignition voltage is supposed to pass to start the rocket motor. The result is that the rocket won’t fire. To play safe, the igniter heads—all 48 of them—have to be cleaned after every mission. Contractors for the XM21 are the Emerson Electric Co., Chicago Aerial Industries Inc. and the Chromcraft Corp. Total cost for the system is about $30,000.

"Welsh, have you heard of the new "GRAFACON" for digitizing graphic data? I hear all you do is trace with a pen and the system digitizes at rates up to 40 inches per second. Know anything about it?"

"I saw one of those systems last month, Bryant, and it was a real whiz. They were using it at the time to digitize handwriting, but I understand it’ll handle anything from oscillograph records to fingerprints. GRAFACON systems are based upon the "RAND Tablet," a device for directly encoding position information without any encumbering cursers and cross-hairs. No servo-systems, shaft encoders or A/D converters are used. The system encodes the position of a hand-held stylus anywhere on a 10" x 10" working surface, even through several thicknesses of paper. It’s set up for rear projection of film data, too, and produces 10 bits of X and 10 bits of Y information once every 220 microseconds."

Off-line GRAFACON systems are available for producing digital records of graphic and pictorial data on punched-paper and digital magnetic tape, and on punched cards. The GRAFACON can also be connected on-line to IBM System/360 machines and to most other computers. Write us for complete details.

BOLT BERANEK AND NEUMANN INC
DATA EQUIPMENT DIVISION
2126 SOUTH LYON ST., SANTA ANA, CALIF. 92705 (714) 546-5300
GRAFACON is built under license from Rand Corporation.
Price slashes wound semiconductor makers

Industry's production capacity still outpaces its marketing finesse; diodes and transistors are among the devices available at bargain rates

Undeclared price warfare has broken out again along a number of fronts in the field of discrete semiconductor devices. Manufacturers are offering unsolicited bargains and shortened delivery schedules. Price tags on general-purpose diodes, metal-can and plastic silicon transistors, epoxy zener diodes and nanosecond diodes are among the notable casualties in a struggle stemming from the industry's preoccupation with volume and its skittishness over any hint of inventory imbalance.

Early last year, a spurt in military, industrial and commercial demand gave semiconductor producers four- to five-month order backlogs. As supplies tightened, some users overordered as a hedge against deliveries. Since mid-autumn, however, the supply situation has loosened up and order backlogs have fallen to two- to three-month levels. This adjustment has stamped some semiconductor manufacturers into offering unasked-for price cuts, thus softening the whole market.

The industry's quick-draw pricing policies are largely the result of its faith in volume. The prevalent theory holds that a manufacturer able to produce in quantity can improve his yields and hence his profit margins. Unfortunately, it hasn't worked this way in recent months. Slackened demand has tempted many semiconductor makers to reduce prices rather than cut back on output. These price moves have been instantly followed by competitors.

Gleeful customers. Except to chide wayward competitors, semiconductor companies characteristically see no price cuts, hear no price cuts and speak no price cuts. But their customers, gleeful at the buyers' market now in full swing, aren't so reticent.

"Diodes are the key area in the price break," says Richard Breck of the Raytheon Co.'s central purchasing office. "The average price for the IN914 in systems buys was 16 cents during 1966. But at year-end, they were going for 10½ cents apiece. In volume, say a million units, you can get them for 7 or 7½ cents each. For 200,000, the cost might be 8½ cents apiece."

I. Overproduction

Harold M. Zimmermann, director of procurement at the Kearfott Products division of General Precision Inc., agrees that drastic cutbacks in semiconductor prices are increasingly a happy fact of life. After having visited or been in touch with almost every important supplier during the past month, he says: "I think semiconductor manufacturers have overextended themselves. They are overproducing, and many have gone to duplication and triplication of each other's products so we have two or more vendors with identical configurations." This, of course, is just fine with Zimmermann because he can make better deals and establish secondary sources of supply.

The director of manufacturing at a West Coast aerospace company buying large lots of semiconductors for airborne systems and ground support equipment sees a clear trend toward a buyers' market. Prices are dropping on many assemblies, he says, and delivery times are improving.

Winston Willmert, purchasing manager for the Honeywell Co.'s Electronic Data Processing division has observed a generally downward pricing trend during the past two years, and doesn't believe it has yet bottomed out.

Still smarting from the effects of price wars in the 1950's and early 1960's, semiconductor manufacturers are reluctant to discuss price cuts. Their responses to direct questions are generally didactic and nearly identical.

In particular, the industry's Big Three—Fairchild Camera & Instrument Corp., Motorola Inc. and Texas Instruments Incorporated—who compete savagely in the marketplace, present a remarkably united front in their for-the-record statements on pricing.

Donald Valentine, marketing manager at Fairchild's Semiconductor division, denies there have been any significant moves in the pricing of discrete semiconductors. He points to a price list published in December in which "a significant majority of the prices were unchanged." Valentine acknowledges, however, that Fairchild does not publish its quotes on volume orders—precisely the sector of the market where, according to Raytheon's Breck, most of the horse-trading occurs.

Likewise, Richard J. Hanschen, marketing manager of ITT's Semiconductor Components division, discerns no fundamental deterioration in the semiconductor price structure. Nor does he believe that the markdowns now in evidence will persist. His optimism is apparently based on figures showing that the average unit price of all discrete components dropped to only 45 cents from 48 cents over the first 10 months of 1966. While
this 12% slide represents a slowing from the 16% decline posted in all 1965, a check of the semiconductor field reveals that really grievous price slashes were made in the waning weeks of 1966.

Sales charts. Hanschen uses curves and other graphic devices to prove that volume enables a semiconductor manufacturer to hack away at prices. Under normal competitive conditions, he says, cuts should be made as quickly as possible. Miscalculation is always a possibility in this game, Hanschen concedes.

Justified reductions have been made during the past year in prices on diodes for computers and silicon small-signal transistors, according to Hanschen. But he insists that the approximately 20% slashes are largely attributable to a switch to plastic encapsulation.

A semiconductor manufacturer must achieve an average annual increase of about 20% in dollar volume in Hanschen's opinion. To reach this goal in the face of the price cutting that has been going on, TI has taken to offering its customers extra services—for a price.

II. Industry shakeout

Noting decelerating declines in certain areas, David W. Hickie, manager of product marketing at Motorola's Semiconductor Products division, doesn't expect any significant weakening of price structures. He does not, however, rule out the possibility of a market undercut by "dumping" if an anticipated shakeout of semiconductor manufacturers comes to pass.

Marginal producers have been expected to fold for several years. But Vietnam defense orders, which stretched out the major concerns' delivery schedules across the board, granted fringe outfits a stay of execution. With the giants' backlogs dwindling, this protection no longer exists and a number of the lesser firms may drop out. Before their exit, however, these companies will bring their inventories to market at fire-sale prices. In this event, Hickie says, Motorola will refuse to meet such cuts and will sit out the absorption period.

George Meadows, marketing manager at the Philco-Ford Corp.'s plant in Spring City, Pa., says his firm has been paring prices on sili-
All the advantages of solid-state design and construction are yours in a wide variety of Hewlett-Packard 8½" x 11" and 11" x 17" x-y recorders. Compact, rugged construction; solid-state reliability and long life; all with optional metric calibration and unprecedented performance characteristics. Check the list, then talk to your Hewlett-Packard field engineer about the models most useful for your task. Or write for complete information: Hewlett-Packard, Palo Alto, California 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva.

Data subject to change without notice. Prices f.o.b. factory.

EXCLUSIVE, CARE-FREE, DEPENDABLE PAPER HOLDDOWN.

8-1/2" x 11" X-Y RECORDERS
- Bench/rack model in one, portable, 0.5 mv-5 v/in., X-axis time base; Model 135, $1650.
- 2-pen version of 135, 0.5 mv-50 v/in.; Model 136A, $2650.
- High-sensitivity model, 1 MΩ input impedance, time base either axis, 0.1 mv-20 v/in.; Model 7030A, $1855.
- Economy model, 1 mv-10 v/in.; Model 7035A, $895.

11" x 17" X-Y RECORDERS
- Versatile recorder, X-axis time base, 0.5 mv-50 v in., high-impedance, computer reference models available; Model 2D Series, from $1950.
- Economy model of 2D Series, 0.5 mv-10 v in.; Model 2D-4, $1490.
- 2-pen version of 2D Series; Model 2FA, $3375.
- High-sensitivity ac/dc recorder, time base either axis, 0.1 mv-20 v/in., 5 mv-20 v/in. ac; Model 7000A, $2495 (also available without ac input, Model 7001A $2175).
- Automatic data plotting system, null detector and character printer built in, 0.5 mv-10 v/in.; Model 7590C, $1985.
con transistors during the past three to five months to get rid of a large inventory. One reason for the unloading operation is the availability of cheap epoxy transistors from Hong Kong, where Fairchild has a plant, as well as from other Asian countries. These devices are being bought for entertainment equipment and for limited environmental stress assemblies for military ground support systems.

Motorola and Fairchild, the industry's consensus price leaders, are, according to a marketing man for a sizable East Coast semiconductor supplier, "having a field day with each other on the pricing of silicon transistors. They both have plenty on hand so we're watching them closely." While his company isn't planning any cuts, this source admits he is faced with more aggressive pricing.

Nor is the long-term outlook for semiconductor makers particularly sanguine. "As far as list prices are concerned, semiconductors are a strange breed of cat," says Raytheon's Breck. "There's always someone down the street with a lower price." Though he doesn't expect the current pricing spree on diodes to last much longer, the industry has a history of regaining only part of the ground it loses during its periodic slugfests. Data compiled by the International Telephone and Telegraph Corp. suggests that while worldwide unit sales of silicon transistors will more than double from current levels by 1971, dollar sales will remain static. This prospect results from the perfection of plastic encapsulation techniques.

In striving to boost volume, semiconductor companies have become victims of their own technical capabilities. "There's always been a buyers' market in semiconductors," says the purchasing agent at an East Coast electronics company. "It's still an immature industry and prices go down as capacity goes up."

A purchasing executive with a Los Angeles aerospace firm goes a step further: "As a result of higher yields and lower packaging costs, it's only a matter of time before a situation akin to the transistor debacle of the 1950's develops. It's inherent in the industry's mechanization."

DM AR122-1

LOG PERIODIC ANTENNA

The size of broadband antennas has been radically reduced by Dorne and Margolin, Inc. Without sacrifice of performance, the DM AR122-1 occupies less than a third the area of the conventional L-P.

Rugged, weather-proofed, and light of weight, the antenna shown is available for 30 day delivery. Other models designed for higher or lower frequency bands can be supplied.

Order the DM AR122-1 for surveillance, communication, or other field uses, from either D & M facility.

VSWR

2.2:1

GAIN

6db/iso

IMPEDEANCE

50Ω

WEIGHT

12 lbs

SIZE

22 5/8 x 37 1/4 x 1 in

PRICE

$435

30 DAY DELIVERY

dorne and margolin

INCORPORATED

20 Years of Leadership in Aircraft and Missile Antennas

Electronics | January 23, 1967
Systems engineering is now being employed in mundane new markets, including waste disposal, airport transit and blood bank control.

By Walter Barney
San Francisco regional editor

"Three years ago," says Eric L. Peterson, "All I knew about blood was that it was red, it flowed, it was considered good to give, and my sister's was Rh negative." As an employee of the Lockheed Missiles & Space Co., there was small reason for him to know more; yet today, as manager of Lockheed Missiles' expanding blood bank inventory control program, Peterson knows plenty about blood and is indirectly responsible for thousands of pints of it.

A year ago, as assistant chief engineer for the Los Angeles County sanitation district, Frank L. Bowerman was a stranger to systems analysis. Today, as assistant to the vice president for development at the Aerojet-General Corp., he juggles—albeit in gingerly fashion—terms like "trade off" and "conceptual design," and coordinates the work of a staff of systems engineers.

These men personify the trend to what has been described as "the application of aerospace methods to social problems." A better description would be the application of aerospace companies to new markets. Lockheed Missiles & Space Co., a division of the Lockheed Aircraft Corp., and Aerojet both have down-to-earth reasons for entering this earthbound field. Their aims and their approaches, however, differ radically. Lockheed wants to sell services while Aerojet is aiming at hardware business.

I. Hard or soft

Aerojet, a subsidiary of the General Tire & Rubber Co., was one of four companies that made systems studies for the State of California; its specific field of study was solid waste disposal. Currently, the company is under contract to do a follow-on study for Fresno County. "What interested me in making the change from government to industry," Bowerman says, "was that Aerojet made it clear that its main interest was in developing new hardware. Working for the county, I had been unable to implement many ideas because there was no hardware available."

Lockheed Missiles & Space Co. apparently expects its fledgling information systems organization, now a part of its research and development unit, to become an independent operation selling its services.

Melvin H. Hodge, Lockheed Missiles' assistant to the director of information systems, observes that computers are no longer thought of as individual chunks of hardware but as parts of large systems. Lockheed figures that software and communications account for two-thirds of the cost of a computer system. It has therefore concentrated its efforts in this part of the market, buying its hardware and providing only special interface components of the system.

The Video Matrix system that it just shipped to the Mayo Clinic, Rochester, Minn., for example, uses a Scientific Data Systems 92 computer, a Univac drum memory, and an International Business Machines Corp. teleprinter. Lockheed's hardware contribution to the system, which employs remote terminals to speed the administration of medication and streamline hospital business procedures, was a light pen.

The company has moved strongly into two markets: hospital services and state and local government information services. "The medical market will be over $1-billion a year by 1975," Hodge says. "Now it's almost nil. State and local governments spent $75 billion for goods and services in 1964, passing the Federal Government in that department," he continues. "There are 13 million people working for the government, and half of them are doing paper work. The market is so big I've even quit thinking about it. We could be off in our estimate by a factor of 10 and it wouldn't matter."

Brave words. Thomas C. Rowan, vice president of the nonprofit Systems Development Corp. and manager of its Advanced Systems division, agrees with Hodge about the market potential but is skeptical as to whether a hardware company can crack it.

"When the California studies be-
two Choices from OHMITE

SERIES 88 • MOLDED OHMICONE®
Coating is uniformly thick, dense and smooth. Meets 1000 VAC insulation test. Consistent form and size make these resistors highly suitable for rapid automated assembly techniques and also permit firm mounting in clips for significant heat-sink advantages. Available in commercial, military, precision, and non-inductive types. Can be provided to meet new Char. U of MIL-R-26. Solderable or weldable leads. (Bulletin 101)

Wattages (Commercial): 1.5, 2.25, 3.25, 6.5, 9, 11 watts at 25°C.
Resistances: 0.1 to 226K ohms.
Tolerances: ±0.05%; standard commercial, 3%.
Low Temperature Coefficient of Resistance: 0 ± 20 ppm/°C, 10 ohms and above.

SERIES 44 • CONFORMAL OHMICONE®
Same basic high quality wire-wound resistor as above, but with a conformal coating (1000 VAC rating). While it does not have the uniform shape and dimensions of the molded Series 88, the Series 44 is available with the same close, standard tolerance and low TC. It is supplied in commercial and high precision types. Can also be furnished to meet MIL-R-26 requirements. (Bulletin 109)

Wattages (Commercial): 1.5, 3.25, 6.5, 11 watts at 25°C.
Resistances: 0.1 to 442K ohms.
Tolerances: ±0.05%; commercial, 3% for values above 1 ohm.
Low Temperature Coefficient of Resistance: Standard is 0 ± 20 ppm/°C for 10 ohms or more.

OHMICONE Silicone-Ceramic—Not just a conventional silicone coating, but rather silicone combined with a ceramic compound. Blending the two materials provides a coating which has the best characteristics of each. Developed and patented by Ohmite, Ohmite cone envelopes a wire-wound resistor in an unusually tough, resilient jacket that has high moisture resistance and excellent dielectric properties, plus good stability and low temperature coefficients. Choose either the molded or conformal coating in accordance with your requirements.
Direct answers...

Bausch & Lomb V.O.M. Recorders give just that. Without external converters, they will directly measure and record d-c voltage, current and resistance. They provide performance you can depend on with their multiple inputs, fast pen response, photoelectric chopper, high off-balance impedance, built-in paper take-up reel or instant reference tear-off.

V.O.M. Recorders come equipped with features that are usually sold as optional extras—five variable chart speeds, an event marker, a zener stabilized reference supply, three-position operation and a full scale zero set. Low cost V.O.M. Recorders offer extra versatility at no extra cost.

Bausch & Lomb V.O.M. Recorders are available in a variety of models with different full scale sensitivity. A wide range of accessories further extend their usefulness. Customized models can be built to handle special applications. Write for Catalog 37-2194. Or, if you prefer, let us show you how to get direct answers with a personal demonstration. Bausch & Lomb, 61437 Bausch Street, Rochester, New York 14602.

Bausch & Lomb Electronics Division

In Canada, Bausch & Lomb Optical Co., Ltd., 16 Grosvenor St., Toronto, Ontario.

Melvin H. Hodge of Lockheed—“The market is so big I’ve even quit thinking about it. We could be off in our estimate by a factor of 10 and it wouldn’t matter.”

II. Banking for profit

Lockheed Missiles commitment to information management, however, seems solid. In addition to its study of California’s information-handling problems, it has undertaken a study of that state’s occupational licensing system and of Alaska’s information processing. It is also computerizing an information system in educational research for the Far West Laboratory for Educational Research and Development, and has contracts for...
clinical and administrative data processing for hospitals in Saskatchewan, the San Francisco Bay area and Texas. Further, its original program for the Alameda-Contra Costa County blood bank, across the bay from San Francisco, is being applied to blood banks in Los Angeles and Sacramento.

The Alameda-Contra Costa operation, Lockheed Missiles first venture into blood banking, provides a good, if microcosmic, example of the company’s approach. The first step, in June of 1964, was a joint study to acquaint Lockheed with the needs of the bank, and the bank with the methods of data processing. Peterson found that a blood bank must know where its blood actually is (there are 30 hospitals in the system, with some blood stored at each), how old it is, and whether or not it is in cross-match—that is, reserved for a particular patient.

If a blood bank could stock blood the way Fort Knox stacks gold bars, there would be no need for an elaborate inventory control system. But whole blood is only good for 21 days, after which it must be used for plasma or thrown away. After a certain point, a large inventory is wasteful; but too small an inventory could cost lives.

After determining the desired output format and working out samples, Lockheed made a five-day dry run. “Three of us worked 18 hours a day on the simulation,” Peterson says. “We took real input data and processed it by punched card and by hand.” Peterson was then ready to write a program. He chose Neliac, an advanced science-based, business-oriented Cobol, because more information can be put into a Neliac word.

Shift to speed. The program was run on an IBM 7094 computer, and Lockheed found that an entire day’s inventory changes could be executed in about 50 seconds of computer time. To handle certain difficulties encountered in using Neliac and to increase speed even further, the program is now being shifted to a Univac 1108, which has 65,534 words of core memory. With all data stored in the core, execution time will be about 20 seconds.

The computer time is important—and not only because of the expense. Blood banking, like hotel accounting, turns out to be a nighttime operation at Lockheed. Hospitals phone information on changes in their blood stocks to the bank at the end of each day; this information is punched on a Friden Inc. Flexowriter and transmitted by Dataphone to the Lockheed plant in Sunnyvale, Calif. Next morning, the blood bank gets its daily report on how much blood is on hand and what its status is. The data includes identification numbers, quantity, location, age, source, cross-match status and types of blood.

The potential market for this sort of system, Peterson figures, is about 250 blood banks. The Los Angeles bank alone, which serves 222 hospitals and handles 200,000 pints of blood a year, will require about three minutes of computer time. If Lockheed were to sign up every bank—and that seems to be its goal—the 1108 would be busy for four to five hours a night doing nothing but shuffling data on blood.

Once the program had been developed, Lockheed and the bank signed a contract under which Alameda-Contra Costa paid 95 cents per pint of blood recorded in the computer memory. The first year’s work was very much a developmental effort; Lockheed figures it had a loss of $1.80 per pint (the bank handles about 33,000 pints a year). “Back in January of 1965,” Peterson recalls, “I was getting up at 4:30 every morning so that I could drive to Oakland and hold peoples’ hands all day.”

Forging ahead. Results, though, have been spectacular. Inventory

Want to design for
INSTANT STARTING?...
SPLIT-SECOND ACCURACY?...
REVERSIBILITY?...
MIXED SPEEDS?...

turn the
job over to
SYNCHRON® MOTORS!

No matter whether you want a motor to withstand swiftly changing temperatures, meet fast-reversing stresses, turn a small part with exact accuracy to 1 Rev. per week or 600 Rev. per minute, there’s a SYNCHRON Motor that can do it! It can do a hundred other things as demanding as these — if you tell us how you want it to function. Before you start any design that calls for small drive or timing motors, think of SYNCHRON Motors, and call or write us at Hansen Manufacturing Company. We’ll be there at once to help — with experience. Better still — don’t wait till you face a problem. Write us now — let us tell you about SYNCHRON Motors and the ways we design them to work for you.

HANSEN MANUFACTURING COMPANY, INC.
PRINCETON, INDIANA

has been reduced from between 1,000 and 1,100 pints to 300 or 500, a cut of more than 20%. Also, the percentage of outdated blood has gone from over 13% to below 3%; the national average is 15%. Peterson thinks that 2½% to 3% is about as good as one can hope for.

Moreover, the bank now has a much better accounting of the flow of blood, and can judge how much blood it should keep on hand. If Alameda Hospital, for instance, has averaged 10 pints transfused per week, the bank can very reasonably turn down a pathologist who wants to keep 35 to 40 pints in the refrigerator.

There were, of course, some difficulties. At first, for instance, hospitals had a tendency to falsely report blood as being on cross match in order to prevent its return to the bank. They didn't believe the figures.

Lockheed itself has run into trouble in trying to write a basic program applicable to all banks. Some banks want a daily report on how much blood is within five days of being outdated, while others want that figure for six or seven days.

The blood bank program makes money now, even though the cost to the bank has been reduced to 45 cents a pint. Lockheed had certainly taken a systems approach to the blood bank's problem, and once it solved that problem, it kept on selling a service.

III. Another approach

The Aerojet approach to waste disposal is different. Bowerman has suggested two types of hardware that don't currently exist—a container for dumping refuse in the sea (so it won't float to the surface), and a pneumatic refuse-collection system for several apartment houses—an analog to a sewer.

Touches all bases. Aerojet's contract with Fresno County calls for a review of solid-waste disposal with respect to public health in all of its aspects: odor, fire hazards, flies, disease, even aesthetics. If the company were later to get a hardware contract, it would build a system and then, presumably, go hunting for another customer.

In this study, as in almost all projects for governmental agencies, the systems approach has run head-on into political realities. But Bowerman is familiar with this sort of difficulty from his days with the sanitation district, when differences in city garbage collection techniques frustrated efforts to control the fly cycle; and he is absolutely sold on systems analysis.

“Aerospace companies evaluate all aspects of a problem—even when the proposal was due yesterday,” he says.

IV. Hand in hand

“Hardware and software,” muses SOC's Rowan, “are like popcorn and the movies; which brings in the money? In general, we've just seen the beginning of this trend to systems solutions for social problems. As state and local governments see the potential in computers and automation in general, they'll have to buy it.

“The expense of course, will shock them” he says. Waste disposal, for instance, is a Department of Defense order-of-magnitude problem. But local agencies are already bearing the costs; the systems approach merely brings such outlays to the surface.

“I do think,” Rowan continues, “that the 'aerospace' idea has been oversold. What aerospace people really bring is management. The universities don't have the interdisciplinary approach. Typically, people from different disciplines study the same problem as it relates to their own areas. We can tie in the social sciences, computers and engineers in the same way we related electronics, life sciences, propulsion, aeronautics and so forth in space.”

SOC has some 60 studies currently in the works, and Rowan says that sheer volume may be one answer to the problem of profits for hardware companies, since only with high volume can they afford to maintain large professional staffs. He cites the Skylounge project, in which SOC is overseeing five other companies in a study of a novel method of getting plane passengers from city to airport, as a good example of the company's methods.

Skylounge, basically, is a system by which a ground vehicle built by the Budd Corp. would collect passengers at several downtown stops and would then be mated to a heli-
FUSEHOLDERS FOR BUSS FUSES

Panel mounted, in-the-line, lamp indicating, signal activating, visual indicating fuseholders—with solder terminals, quick-connect terminals or special terminals—for fuses from $\frac{1}{4} \times \frac{3}{8}$ inches and larger.

Fuseholders of various types to meet Commercial and Military specifications.

For full information on the many small dimension fuse mountings and companion fuses available from BUSS ... write for BUSS Bulletin SFB.

BE PROFIT WISE ... INSIST ON BUSS QUALITY

SUPPLIED THE ECONOMICAL WAY—THRU ELECTRONIC DISTRIBUTORS

BUSSMANN MFG. DIV. McGraw Edison Co. St. Louis, Mo. 63107
THE S.S. WHITE AIRBRASIVE® UNIT

Airbrasive technicians get carried away with their demonstrations sometimes...there's nothing safe from a tool that cuts just about anything hard and brittle.

What does it prove? The Airbrasive is a unique tool of a thousand uses in shop or laboratory. A precise stream of gas-propelled particles (cuts as fine as 0.005") made it possible for us to cut this TV tube like a radish. The Airbrasive has a cool completely shockless cutting action, which can be applied to such hard-to-work materials as germanium, tungsten, glass, ferrites, and ceramics. It will clean, cut, abrade, remove surface coatings, adjust microminiature circuits, strip potentiometers, debur tiny parts, and perform many more delicate tasks.

In many cases you will find that the Airbrasive pays for itself on the first application by eliminating rejects, reducing handwork, or simply performing a job that you had previously thought impossible. For under $1000 you can set up your own Airbrasive cutting unit.

You don't believe in magic wands?...just try us. Send samples of your impossible jobs...and we'll test them free of charge.

SEND FOR BULLETIN 6407A—Complete Information

S.S. WHITE, COMPANY, INDUSTRIAL DIVISION, Dept. EU, 201 East 42nd Street, N.Y., N.Y. 10017, Telephone 212 661-3320
Jungle fighters on Chesapeake Bay

The staff of the Army’s Limited War Laboratory in Maryland is developing special gear to combat guerrillas. Today’s prototypes are tomorrow’s hardware, much of it electronic.

By John F. Mason

A Vietcong rifleman takes aim at a U.S. helicopter as it clears a hill a mile away. When it’s within range he fires. No hit. He aims again, but the craft cuts sharply to its right, beginning evasive action. Acoustic sensors fixed to the bottom of the helicopter have warned the pilot of that initial shot despite the noise of his engine and rotors. The warning system, developed at a laboratory at Aberdeen Proving Ground, Md., has perhaps saved the craft.

The campus-like setting of the Army’s Limited War Laboratory belies the facility’s deadly serious mission of furnishing special weapons and equipment to combat guerrillas in underdeveloped areas of the world. Products of this building on the shores of Chesapeake Bay get their final test in the rice paddies of Vietnam.

Some 100 projects, 23 of them involving electronics, are currently being worked on at the lab, which is under the command of the Special Warfare division of the Office of the Army’s Chief of Research and Development.

Col. Robert W. McEvoy, the lab’s commanding officer, and his 11-man officer corps have all spent time in Southeast Asia, as have many of the 65 civilian engineers, physicists and researchers on the staff. And at least one civilian or military representative from the lab is always posted in Vietnam. These men constantly observe operations and interview servicemen to come up with ideas for improving battlefield performance. They send memos, sketches and suggestions back to Aberdeen for possible action.

In addition, battle commanders as well as R&D agencies in Vietnam and Thailand can submit formal proposals through channels. Finally, staff members are free to pursue their own technological bent: anyone at the lab with an idea can get $2,000 and 90 days to develop it.

Before work continues on a project at Aberdeen, the proposal must be reviewed and approved by a board. Those that are approved are expected to result in hardware
Rosemount precision resistance ratio bridge disregards lead resistance and thermal emf's

Rosemount's VLF 51 Precision Resistance Ratio Bridge measures resistance ratios with exceptional accuracy, stability and speed. It disregards both lead resistances and thermal emf's, which can disrupt conventional dc resistance measurements. Leads hundreds of yards long and varying from one to another in resistance will not seriously degrade the accuracy. Thermal emf's from bimetal connections and ambient variations have no effect on accuracy.

The digital ratio readout is accurate to 10 ppm at ratios near 1.0 in the range of 0.1 to 500 ohms. This is achieved by employing current transformers and a unique scheme of modulation and demodulation.

Full specifications and operating data are available from Rosemount.

SPECIFICATIONS

Accuracy: ±10 ppm to ±400 ppm
Resolution: 1 in 10^6
Resistance Range: Full accuracy: 0.1-500 ohms, Reduced accuracy: 10^-4 to 10^6 ohms

Experimental microphone built into top of helicopter crewman's helmet enables him to talk without interference from wind noise and to keep both hands free.

I. Helping helicopters

One such development is the acoustic bullet-detector for helicopters. All too often, pilots don't know when they are under small-arms attack because engine noise drowns out the sound of the shots. To carry pilots and their craft through these vulnerable periods, a device is being tested that picks up the sound of enemy projectiles as they pass the aircraft. The detector listens for frequencies rather than sound volume, reacting to the higher frequencies of the sonic boom but ignoring the low-frequency noise of the engine. The device also detects and "points toward" the muzzle blast of the enemy weapon, displaying the azimuth and angle of depression—below the horizon—on a cathode-ray-tube display.

A pod of acoustic sensors, or microphones, is fixed to the bottom of the helicopter, while inside the craft are a computer, amplifiers, filters, display-driving circuits and the pilot's display.

An earlier model of the device was field-tested in Vietnam last April. The current version will go to Vietnam this spring. Meanwhile, various other kinds of sensors will be checked for accuracy, range and applications on other kinds of aircraft.

II. Talking through your hat

Another of the lab's efforts undergoing tests in Vietnam with the 1st Cavalry Division (Airmobile) is a microphone built into the top of a helicopter crewman's helmet that enables him to talk through his skull. Wind noise picked up by a conventional mouth microphone when a door gunner leans out of the windowless helicopter often makes communication with the pilot impossible. Throat mikes aren't popular in Vietnam because they are hot and tight and require a free hand to operate.

The new bone-conduction microphone is held in place by a chamois pad resting on the roof of the cranium. Voice vibrations pass through the liquid in the brain and through the skull into the microphone. A full head of hair blocks surprisingly little sound—no more than 1 decibel. Satisfactory performances in 100-knot winds with ambient noise levels up to 130 decibels have been achieved with the mike.

The rectangular variable-reluctance transducer measures .44 by .22 by .16 inch and weighs .94 gram. A magnetic translating portion at the bottom of the unit has a pole piece, a pair of magnets, a
Thrifty HF antenna.
Skimps on acreage.

One powerful 3½-acre log-periodic can replace up to 14 acres of rhombic arrays.

Land-saving is just one advantage. Consider the performance:
It puts the energy where you need it. From 2.5 to 32MHz, it provides constant patterns, low VSWR (2.0:1), low side lobes (-14 db), and high efficiency (better than 90%). Do you need compact quality and economy? G/A has the answer now:
the world's largest HF antenna selection. Request full data.

folder armature and a coil interlocking the armature, to which a drive rod is attached. The transducer's shell is made of a 45%-to-50% nickel alloy and the center structure of an 80% nickel alloy. A reed inside the device moves when the operator speaks, remaining at rest when there is no sound. Mike-equipped helmets have a solid state amplifier powered by a single mercury cell. The battery is good for 30 days of continuous use.

The Navy and Marine Corps are testing the device, and a number of civilian agencies, including the Los Angeles motorcycle police, are interested. The developer, Dyna Magnetics Devices Inc. of Hicksville, N.Y., says it has received more than 200 inquiries about the mike from private detective agencies.

III. Electroluminescence

Another lab project being tested in Vietnam is a lightweight, portable, electroluminescent lighting system for use at airfields in remote areas. The system was developed by Sylvania Electric Products Inc., a subsidiary of the General Telephone & Electronics Corp.

Sylvania's flexible electroluminescent tapelight is the basis of this system. It consists of electrically activated phosphors laminated between two electrically conductive plates, one of them aluminum, the other translucent plastic. When a-c voltage is applied, the phosphors are activated, producing light. The material comes in strips 1.75 inches wide and in lengths up to 150 feet.

Light from the device is visible at an altitude of 2,000 feet and a slant range of three miles. The system was designed to mark runways, heliports or drop zones for approaches, landings or take-offs in the dark, but it has found such homely applications in Vietnam as illuminating latrines. When tilted slightly upward, the lights aren't bright enough to alert the Vietcong, but they are sufficient to guide a GI to the appropriate field facility.

Blue grass. Blue-green was chosen for the landing lights because this color can be seen by pilots at the greatest distances. Frequency must be constant for color fidelity. If the frequency rises, the light turns blue; if it goes down the light turns green. To maintain the right color, a modulator is attached to the lamp that converts any frequency used—so long as it's at 110 volts—to 400 hertz. The modulator is controlled by a unijunction transistor to provide stability over a wide range of temperatures.

Strobe effect. A special timer system can be used to provide a rippling, strobe effect and a 1/4-second blackout every six seconds. This contrast in illumination enables a pilot to spot an airfield at greater distances. The strobe unit has six timers—one master and five slaves—attached to six green tapeights. The master timer is a two-wire strobe system producing a square wave that turns on the light for 1½ seconds. A quarter of a second later, a slave timer turns on its light for 1½ seconds, and this is followed by similar action by the third through sixth timers. All the lights then go off for a half-second.

The master timer, a silicon controlled rectifier circuit controlled by a unijunction transistor, is turned off by a capacitor discharge and another unijunction transistor. Unijunction control provides the necessary timing stability over a wide temperature range. The slave timers use standard delay circuits with unijunction transistor controls.

Inverter. The power pack is a plastic case with holders for four 1.5-volt "D" cells and a standard circuit inverter providing an output of 110 volts at 5,000 hertz. It's
Philbrick Operational Amplifiers for comparison shoppers

Compare their prices†

<table>
<thead>
<tr>
<th>Feature</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Parametric</td>
<td>SP2AU</td>
<td>$138.</td>
</tr>
<tr>
<td>FET</td>
<td>PP25AU</td>
<td>$79.</td>
</tr>
<tr>
<td>High performance, high impedance</td>
<td>PP35AU</td>
<td>$54.</td>
</tr>
<tr>
<td>High performance, ultra-high speed</td>
<td>PP45AU</td>
<td>$89.</td>
</tr>
<tr>
<td>General purpose, high speed</td>
<td>PP55AHU</td>
<td>$19.</td>
</tr>
</tbody>
</table>

These Philbrick Operational Amplifiers, which meet more than 70% of all requirements, are available in quantity for immediate delivery. Conservatively-rated, they never fail to deliver the promised performance and reliability. Compare Operational Amplifiers and we know you'll concur . . . Philbrick is usually the lowest priced, always the best value.

†U.S. unit prices from published literature — 9/66

For more information, demonstration units, or engineering assistance, call your nearest Philbrick engineering representative or Philbrick Researches, Inc., 22 R Allied Drive, Route 128, Dedham, Massachusetts 02026. Phone (617) 329-1600.

ENGINEERING REPRESENTATIVES — Ala.: Huntsville (205) 536-8393; Ariz.: Phoenix (602) 265-3629; Cal.: Los Angeles (213) 937-0780, Mountain View (415) 969-9020, San Diego (714) 222-1211; Colo.: Denver (303) 733-3701; Conn.: West Hartford (203) 233-5503, Fairfield County (203) 651-5146; Fla.: Ft. Lauderdale (305) 564-8000, Ft. Walton Beach (904) 243-6424, Orlando (305) 425-5505; Ga.: Tucker (404) 939-1674; Ill.: Chicago (312) 676-1100, (312) 676-1101; Ind.: Indianapolis (317) 366-4249; Md.: Baltimore (301) 727-1999; Mass.: Wakefield (617) 245-5100; Mich.: Detroit (313) 838-7324; Minn.: Minneapolis (612) 545-4481; Mo.: Florissant (314) 831-0015; N.M.: Albuquerque (505) 268-3941; N.Y.: Buffalo (716) 835-6186, DeWitt (315) 446-0220, Valley Stream (516) 561-7791; N.C.: Winston-Salem (919) 725-5384, (919) 725-5385; Ohio: Dayton (513) 298-9964, Westlake (216) 871-8000; Okla.: Tulsan (918) 627-6199; Pa.: Conshohocken (215) 277-0559, Pittsburgh (412) 371-1231; Tex.: Dallas (214) 526-8316, Houston (713) 781-1441; Utah: Salt Lake City (801) 466-4924; Va.: Alexandria (703) 836-1800, Newport News (703) 245-8272; Wash.: Seattle (206) 723-3320.

EXPORT: N.Y.: (212) 246-2133. Cable: TERMRADIO Telex: 224326 TRIL.

ELECTRONIC ANALOG COMPUTING EQUIPMENT for MODELLING, MEASURING, MANIPULATING and MUCH ELSE

PHILBRICK
A Great Society for Industry?

Right.

And it’s located in Louisiana. We figured it was about time somebody made it easier (instead of harder) for industry to turn an honest profit.

The core of our Great Society is some no-nonsense legislation, known as The Right-To-Profit Laws. They protect industry, large and small, from unfair taxation and excessive government regulation. In short, they help you make money ... if you decide to open a plant in Louisiana.

Since our Great Society hasn’t received as much publicity as the other one, we’d like to give you some details. If you’re interested, write to W. T. Hackett, Department of Commerce and Industry, Room 214, Capitol Annex, Baton Rouge, Louisiana 70804.

The Right-To-Profit State

The Right-To-Profit State

reported that efficiency is 85%.

The system, originally designed for airstrips handling fixed-wing planes, is being put under considerable stress in Vietnam, where it is used to mark heliports. The wash from a Chinook helicopter on the way down is much stronger than anything the system was built to withstand. Special devices have had to be added to each lamp for protection. Another minor but irritating complaint is that in colder weather it’s very hard to plug in or detach the unit’s waterproof connector. Refinements are in the works, however, and the next version of the system will probably be designed to provide beacons at any Army air installation.

IV. Nose to the trail

Yet another device from the Aberdeen lab is so sensitive to human effluents—man emits 401 different kinds—that it can detect an ambush before the patrol using it is close enough to be effectively fired upon. This device, which detects increases in the concentration of condensation nuclei in the atmosphere caused by these effluents, can be carried on a man’s back or trailed from a low-flying aircraft on the end of a cable. Built by the General Electric Co.’s ordnance department, the detector has also been tested at the Army’s Jungle Warfare School in the Republic of Panama.

The manpack system uses a sampler attached to a rifle to pick up submicroscopic agents emitted by human beings. Samples are sent through a tube to the pack unit where they are chemically analyzed and compared to effluents emitted by human beings. If a positive reading results, a transmitter signals a warning by wire to a receiver in the pack bearer’s ear.

Researchers at Aberdeen are watching a modification project being undertaken by the Australian army with one of the lab’s radios. The lab built four preset channels in the high-frequency AN/PRC-64 radio being used by U.S. Special Forces troops in Vietnam, but the Australians want more. They’ve asked the developer—the Delco Products division of the Ford Motor Co.—to put a synthesizer in the radio so they can use all the channels in the 2-to-6 Mhz band.
At Sperry Phoenix...when FLEXPRINT® Circuitry goes in, the package gets smaller... and costs go down

The design advantages of FLEXPRINT circuitry for Sperry's HZ-6B Attitude Director Indicator were evident from the start. Four thin, custom-engineered FLEXPRINT circuits would replace 67 separate bulky conductors. The finished assembly would then fit into a much smaller package.

The production benefits were less obvious. It took actual experience to demonstrate that attaching connectors and other components to FLEXPRINT circuitry before installation made assembly faster, simpler and error-free... and resulted in a reduction of 25% in installed wiring costs.

FLEXPRINT circuits handle like components — can be completely pre-tested, assembled faster, keyed for one-way insertion, and mass produced with precision — at savings over any other interconnection method.

Take advantage of our experience and capabilities in solving interconnection problems at lower installed costs. A FLEXPRINT engineering representative is fully qualified to discuss the best answer to your needs: FLEXPRINT circuitry, FLEXMAX flexible multilayer circuits or INTRAMAX* multilayer hardboard.

Call or write Sanders Associates, Inc., FLEXPRINT Products Division, Grenier Field, Manchester, New Hampshire 03103.

Phone: (603) 627-3811

* T.M., Sanders Associates, Inc.
From the recognized leader in C.P. Clare & Co. introduces

- **FIVE CONTACTS IN .406 CU.IN.**
- **ISOLATED SWITCHING** ... no sensitivity to transients
- **INHERENT RELIABILITY** ... no maintenance
- **FAST SWITCHING** ... high microsecond to low millisecond range
- **HIGH SWITCHING CAPACITY** ... one to five contacts per relay

Type MRME
Epoxy Molded Module

Type MRMC
Open Coil Module

Contact arrangements: 1-5 Form A
Maximum current rating: low level to 750 ma
Maximum voltage rating: 200 vdc, 110 vac
Maximum load: 10 va
Life expectancy: .125 amp, 28v: 10×10^6 operations low level: 100×10^6 operations
Contact resistance: 100 milliohms max, initial 1 ohm max, after life
Operate time: .5ms to 2 ms*
Release time: .5ms max
Coil voltage: 6 to 48 vdc
Dielectric standoff: 250 v rms min.
Insulation resistance: 10,000 megohms min.
Shock: Type MRME: 50 g
Type MRMC: 20 g
Vibration: 10 g, 10-2,000 cps
Temperature: $-55^\circ C \text{ to } +85^\circ C$ (+125°C available)

*Including bounce, rating dependent upon number of contacts and drive level

<table>
<thead>
<tr>
<th>No. of Switches</th>
<th>MRME</th>
<th>MRMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13/32"</td>
<td>11/32"</td>
</tr>
<tr>
<td>2</td>
<td>33/64"</td>
<td>29/64"</td>
</tr>
<tr>
<td>3</td>
<td>39/64"</td>
<td>35/64"</td>
</tr>
<tr>
<td>4</td>
<td>45/64"</td>
<td>21/32"</td>
</tr>
<tr>
<td>5</td>
<td>13/16"</td>
<td>3/4"</td>
</tr>
</tbody>
</table>

Relays, switch, and dime actual size

Electronics | January 23, 1967
sealed-contact reed relays—
the new subminiature

Outstanding design and production capabilities have made Clareed Relays the recognized standard of quality in sealed contact reed relays. System and circuit designers have shown overwhelming preference for Clareed® Relays. And now you can have the same high standards of performance and reliability in only one-fifth the size!

The new MicroClareed Relays offer the identical features and same high quality. Isolation between coil and contacts prevent false actuation due to transient noise. Contacts are sealed in glass in an inert atmosphere under superclean conditions, so there is no contact contamination in manufacture, and complete protection from environmental contamination in use. Their extremely simple design and completely automated production eliminate need for adjustment or maintenance. Precious metal contacts assure long life and low contact resistance. Packaging of both types is ideal for low-profile, high-density printed circuits.

MicroClareed switching speeds (500 microseconds to 2 milliseconds) are completely compatible with other components in most process control applications, and are ample for many systems in instrumentation, circuit check-out, and similar uses.

For complete information, ask your Clare sales engineer, circle the reader service number shown below, or write: Group O1N9, C. P. CLARE & CO., 3101 Pratt Blvd., Chicago, Illinois 60645
SCR's for Pulse Modulator Circuits

Extremely fast switching at ratings to 700V

IRC's new SCR series features extremely fast switching speeds for pulse modulator applications. Typical turn-on and turn-off times are 0.5 µsec and 6 µsec respectively. These devices offer pulse repetitive frequencies greater than 10 KC, repetitive pulse currents to 130 amps, and switching stability over a wide temperature range.

These types are immediately available from stock:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FORWARD BREAKOVER VOLTAGE (DC)</th>
<th>TYPE</th>
<th>FORWARD BREAKOVER VOLTAGE (DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCM 100E</td>
<td>100V, min.</td>
<td>NCM 500E</td>
<td>500V, min.</td>
</tr>
<tr>
<td>NCM 200E</td>
<td>200V, min.</td>
<td>NCM 600E</td>
<td>600V, min.</td>
</tr>
<tr>
<td>NCM 300E</td>
<td>300V, min.</td>
<td>NCM 700E</td>
<td>700V, min.</td>
</tr>
<tr>
<td>NCM 400E</td>
<td>400V, min.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other current ratings and a variety of packaging configurations are also available. Write for complete data and prices. IRC, Inc., Semiconductor Division, 401 N. Broad St., Philadelphia, Pa. 19108. (Formerly North American Electronics, Inc.)
New Products

Under pressure, transistor becomes transducer

Piezojunction transistor that responds simultaneously to electrical inputs and mechanical pressure can modulate its own output

Serendipitous was the word used to describe the discovery of the piezojunction transistor in 1962, when a Raytheon Co. researcher, scratching away at a transistor to study surface defects, noticed that his probing caused shifts in electrical output.

Now, more than four years later, the first piezoelectric transistors are being produced commercially, not by Raytheon, but by a small spin-off company in Stow, Mass. One of their initial applications is in fluidic systems, to measure operating pressures in turbulence amplifiers.

The device, labeled the Pitran—pronounced "p-tran"—is being manufactured by Stow Laboratories, a year-old firm organized by Gerhard Doering, who worked on the piezojunction effect while at Raytheon. Claiming it to be the first transducer of any kind that involves an active circuit component, Doering notes that all other transducers use a variable resistor, a capacitor or some similar element. An exception, he recalls, was the not-too-successful tunable grid vacuum tube of many years ago in which the grid was moved mechanically. Stow Laboratories' production of Pitran is licensed by Raytheon, which accumulated a broad range of patents on stress-sensitive semiconductor junction devices during the past five years. Raytheon's research program included pressure-sensitive integrated circuits [Electronics, July 12, 1965, p. 81].

The new device can be considered a high-speed silicon switch that has been made sensitive to stress. In the process, Doering concedes, gain is sacrificed. Typical beta is 5, compared to about 20 in today's high-speed switching transistors. The temperature coefficient is higher than that of other transducers—"the price you pay for high sensitivity," says Doering.

The Pitran, he says, permits the superimposing of mechanical variables on electrical variables—the device can react to both simultaneously. The cap of the transistor's To-46 can is a pressure-sensitive diaphragm. Stress applied to it is transferred to the emitter-base junction, and an electrical output results. The curve shows how the collector-emitter voltage varies with the amount of pressure applied to the case. The specified linear output range is two volts ($V_{ce} = 2 \pm 1$ volt). The curve is for the circuit shown on the following page.

Since the device is a transistor, it can be conventionally biased for various applications. One of the most useful and simple, says Doering, is a common-emitter d-c amplifier, in which the gain is modulated by a mechanical input. Other applications, he says, involve such digital techniques as a multivibrator circuit whose output is frequency- or pulse-width modulated. Since it is easy to convert PWM into pulse-code modulation, the device is said to be applicable to the latest PCM trends in instrumentation.

The first devices being produced commercially are developmental models and cost $100 each. "These are the first pressure transducers with a potential for mass production," Doering asserts.

The executive sees a variety of
future high-volume applications. "In five years," he says, "it might be the transducer in electronic bathroom scales. In 10 years, with quantity manufacturing bringing the price down, it might be used as a pressure transducer in a vacuum cleaner, to tell the housewife when it is time to empty the bag."

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full linear range</td>
<td>1-3v</td>
</tr>
<tr>
<td>Overload</td>
<td>500 to 700%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>4v/gram, typical</td>
</tr>
<tr>
<td>Linearity over ±1v range</td>
<td>1% deviation from best</td>
</tr>
<tr>
<td>Hysteresis over ±1v range</td>
<td>1% deviation between same point on reversing mechanical inputs, max</td>
</tr>
<tr>
<td>Mechanical resonant</td>
<td>100 khz</td>
</tr>
<tr>
<td>frequency frequency</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>±20mv/°C, typical</td>
</tr>
<tr>
<td>Beta at 5v, 500µa</td>
<td>5, maximum</td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>120v at 10µa, typical</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40° to 60°C</td>
</tr>
<tr>
<td>Price, developmental</td>
<td>$100</td>
</tr>
<tr>
<td>model</td>
<td></td>
</tr>
<tr>
<td>Delivery</td>
<td>8 weeks</td>
</tr>
</tbody>
</table>

Stow Laboratories, Inc., Parton Road, Stow, Mass. 01775
Circle [349] on reader service card

Varactors tune out capacitors

Varactor tuning diodes are beginning to replace mechanical tuning capacitors in television and radio receivers. One brand of diodes already used in Germany TV sets are being imported here by ITT Semiconductors [Electronics, December 26, 1966, p. 136].

Now an American manufacturer, the Semiconductor Products division of Motorola Inc., is introducing a line of 16 inexpensive voltage-variable capacitance diodes for the same purpose. All have a minimum tuning ratio of 2 and a maximum of 3.2. Typical capacitance, at 4 volts d-c and a frequency of 1 megahertz, ranges from 6.8 to 100 picofarads. At 4 v d-c and 50 Mhz, the Q ranges from 300 for the low capacitances to 150 for the higher capacitances.

Three to six of the diodes would be needed to replace the mechanical tuning barrel of a TV set. For channels 2 through 13, for example, three diodes could be used, in the oscillator, the radio-frequency stage and r-f mixer.

An additional diode could be used for fine tuning. According to the company, the new diodes can lock onto the carrier frequencies better than any previous method because they will track a station transmitter’s allowable drift. The diodes can also handle the automatic frequency control in a frequency-modulated tuner.

Like all varactors, the new units are more resistant to shock, vibration and careless handling than mechanical capacitors, and they can be placed in any convenient spot in the receiver. In addition, Motorola claims its RamRod construction, which replaces the conventional S-bend cat whiskers as contacts at the junction, makes the diodes more stable mechanically. The technique also results in higher production yields, a spokesman reports, thus helping to reduce prices. Glass DO-7 packages allow the silicon devices to work through a wide temperature range.

Motorola is reluctant to give exact prices, but indicates that sample diodes are priced at about $1 each.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse voltage</td>
<td>20 v</td>
</tr>
<tr>
<td>Forward current</td>
<td>250 ma</td>
</tr>
<tr>
<td>Dissipation</td>
<td>400 mw at 25°C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>175°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65° to 200°C</td>
</tr>
<tr>
<td>Reverse breakdown voltage</td>
<td>20 v, d-c min at 10 µa</td>
</tr>
<tr>
<td>Reverse voltage leakage current</td>
<td>0.1 µa, d-c max at 15 v</td>
</tr>
<tr>
<td>Series inductance</td>
<td>10 nhy at 250 Mhz</td>
</tr>
<tr>
<td>Case capacitance</td>
<td>0.3 pf at 1 Mhz</td>
</tr>
</tbody>
</table>

Motorola Semiconductor Products Inc., 5005 E. McDowell Rd., Phoenix, Ariz. 85008 [350]
Savings across the board just took a new turn

DAYSTROM Squaretrim® potentiometers now include single-turn types. New models 504 and 505 are fully adjustable with just one turn. Models 501 and 502 are 15-turn types. They all clear up to 80% more PC board space—at no extra cost. But the trim .02 cubic inch size is only one reason why these commercial 500 Series pots are proving so popular. They also feature Weston’s exclusive wire-in-the-groove design, and all these performance extras:

Convenience 5 different configurations with adjusting screw on top, side or end • Tolerance ±5% • Adjustability 15 turns or single turn • Slip Clutch eliminates wiper damage, cuts production delays • Suregard™ Terminations (controlled solder) for better protection against vibration, shock and humidity—no pressure taps • Superior Resolution 0.125% or less • Wide Range 10Ω to 20kΩ • High Power 0.6 watt in still air at 70°C • Wide Temperature Range —55°C to 150°C • Low Temperature Coefficient 70 ppm max. • Low Noise 110nV max. ENR • Small Size 3/16" x 3/16" x 1/16".

Daystrom potentiometers are another product of:

Weston Instruments, Inc. • Weston-Archbald Division • Archbald, Pa. 18403

WESTON® prime source for precision...since 1888

Circle 165 on reader service card
The more you need from crystal filters, the more you need Bulova!

Today's sophisticated systems call for filters with "difficult" characteristics. Difficult, that is, for everyone but Bulova! Bulova has had so much experience with crystal filters, there's hardly anything we don't know about them.

Take single side-band filters, for example: Attenuation figures alone are not enough to adequately describe today's military communication filters. More and more filters require limitations on envelope time delay, while others must follow a precise time-delay envelope curve.

Bulova has been testing for these parameters — providing measurements both in terms of phase linearity and, in many cases, directly in envelope time-delay readings. As a result, Bulova can engineer and produce to the exact measurements you specify. And at a realistic price!

Proof: Here are the actual curves and specs for just one Bulova filter, Model 562.

Amplitude Response

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>1000</td>
<td>40</td>
</tr>
<tr>
<td>10000</td>
<td>60</td>
</tr>
</tbody>
</table>

Bandwidth

- (1 dB) 100.255 to 103.035 Kc
- (60 dB) 99.990 to 103.260 Kc

Carrier Frequency

- 100 Kc

Loss at Carrier

- 55 dB min.

Max. Insertion Loss

- 6 dB

Max. Ripple

- 1 db max.

Operating Temperature

- -40° to +65°C

Impedance

- 500 ohms (in and out)

Differential Envelope Time Delay

- 500 µsec max., over 80% of pass band

With specs like these you can see why we say — the more you need from a filter, the more you need Bulova! Call or write Dept. E-21.

Try Bulova first!

FREQUENCY CONTROL PRODUCTS

ELECTRONICS DIVISION OF BULOVA WATCH COMPANY, INC.

61-20 WOODSIDE AVENUE, WOODSIDE, N.Y. 11377, (212) DE 5-6000

New Components and Hardware

Keep the connector, replace the pin

The very high throw-away cost of a defective contact has been the primary disadvantage of filter connectors, according to Amphenol Canada Ltd. With its new connectors, the company says, the user will merely have to replace a $2 pin, not an entire $150 connector.

In addition, the Amphenol Corp.'s Canadian subsidiary claims the replaceable-pin connectors are the first filter connectors built to exactly the same size and weight as comparable unfiltered connectors which need external filters.

The basic filtering mechanism isn't new. It is being used by connector manufacturers other than Amphenol Canada. The Amphenol subsidiary, however, has applied its parent firm's patented "Poke Home" field serviceability.

The low-pass filter itself is fabricated by packing ferrite beads between the contact pin and a ceramic dielectric sleeve. A silver deposit on the outside of the ceramic acts as a capacitor ground plate. A microstrip grounding plate, located approximately midway through the connector near the plane of the mounting flange, conducts the unwanted r-f interference to the silver ground.

Prototype samples are available, with full production of four configurations scheduled to begin this year. The first unit to go into production will be a miniature circular connector with contacts on 0.130-inch centers. Although military specifications haven't been set for filter connectors, the initial unit has been designed to meet the re-
Lightweight rack and panel subminiatures
Series SRM, XSRM. For aircraft, instrumentation and portable equipment. Compact, lightweight rack and panel types. With accessories.

High current capacity subminiatures
Series JF, JFA. For television, radio and communications applications. Flat mounting. With accessories.

Crimp contact subminiatures
Series SREC. For aircraft, instrumentation and portable equipment. Compact, lightweight rack and panel types. With accessories.

Printed circuit subminiatures
Series PC. For integrated thin film and semiconductor circuitry. With accessories.

High current rack and panel subminiatures
Series SRE. For applications where current rating or voltage drop requirements dictate large wire size. Meet MIL C 8384. With accessories.

Rack and panel subminiatures
Series SMRE. For airborne and portable applications where space and weight savings are mandatory. High current for size. With accessories.

High voltage subminiatures
Series M, PM, SM. For photoflash, aircraft, instrumentation and communications. Single contact. Cable or panel mounted. With accessories.

High contact density subminiatures
Series SRD. For instrumentation, small modular packages, logic units, computers...cable or panel mounting types. With accessories.

For information write Main St. & Hillside Ave., Oakville, Conn.
how to get your Pulse Generator "made to order" from TI

"Special" Pulse Generators are made to order at TI. Modular construction allows assembly of the right building blocks to meet your requirements. Now, "specials" cost you no more, frequently cost less than conventional pulse generators.

For example, the 6613 is an economical general-purpose unit with PRF from 15 cps to 15 mc, priced at only $950. Another model, the 6325, is a ten-channel, word-bit programmable unit operating up to 25 mc. The single unit does the job of ten discrete generators, at half the cost, and fits in a cabinet 23 in. wide, 38 in. high, 18 in. deep.

TI Pulse Generators give you outstanding performance: PRF's to 100 mc, fast rise and fall times, variable pulse width and delay, variable rise and fall times, plus and minus outputs, pulse mixing, programmed and random word generation. You have your choice of portable or rack-mounting cases.

When you need special pulse generator performance, choose one of the thousands of standard pulse generator combinations from Texas Instruments. For more information, contact your nearest TI Authorized Representative or write to the Industrial Products Group in Houston.

New Components

requirements for unfiltered connectors. It will be available only in a size-22 shell, with 61 contacts.

There will be three series of subminiature rectangular connectors, all with contacts spaced on 0.100-inch centers. Two series are designed to withstand temperatures from -55° to 125°C, with one line containing an electrically bonded face seal on the receptacle and plug shells to provide shielding against radiated rf. The third line, designated economy, is designed for use at room temperatures. The number of contacts will range from 30 to 72.

Even though 90% of the market for this type of connector, currently estimated at $5 million to $8 million annually, is in the United States, all production and marketing will be done by Amphenol Canada. Recently, the Canadian government gave the company $600,000 of aid to ensure that the exportable items would be made in Canada.

The company declines to specify prices at this time for any of the four types of connectors. The rule of thumb, a spokesman says, is to take the price of a standard connector, then add $2 for each contact to obtain an approximation of the price. The units should, he notes, be somewhat less expensive than ordinary connectors with external filters.

Specifications

Subminiature, rectangular connectors	Dielectric strength	500 v, dc
Working voltage	200 v, dc at 25°C	
Insulation resistance	10,000 megohms, min, at 100 v	
Shock	30 g's	

Amphenol Canada Ltd., 44 Metropolitan Road, Scarborough, Canada [351]

Control cable saves time and materials

A small-diameter cable for industrial control and instrumentation applications, the 600-v Mini-Trol has a high dielectric, heat-sealed film as primary insulation. This gives higher temperature rating and significant space and weight savings compared to presently
AE’s dry-reed switches are soggybobbinproof

On our PC Correeds, we soggy-proof the bobbins by molding them from a fiberglass-reinforced nylon. This strong material is marvelously low in moisture absorption. It keeps its shape even when humidity stays at the saturation point.

That’s good to know if you’re designing AE Correeds into a piece of remote equipment that must work in a Louisiana bayou. Or anywhere that is exposed to moist atmospheres.

Enough about bobbins. Let’s take a look at the “business end” of a PC Correed. We separated the leads from the terminals — to eliminate strain. We welded the terminals, for a better electrical connection than possible with solder.

And for high-density packaging, we have designed low profiles, magnetic shielding and standard printed-circuit terminal spacing (multiples of 0.200”).

You can get PC Correeds with 1, 2, 3 and 5 reedcapsules. In contact forms A, B, C and magnetic latching. Many of these modules are available directly from stock. Soggy-proof bobbin and all.

Could you use some helpful new design information? Ask your nearby AE representative for Circular 1070-B.

Or write to the Director, Electronic Control Equipment Sales, Automatic Electric Company, Northlake, Ill. 60164.

AUTOMATIC ELECTRIC
SUBSIDIARY OF
GENERAL TELEPHONE & ELECTRONICS GT&E

Electronics | January 23, 1967
Circle 169 on reader service card 169
General Electric is geared to produce a broad line of semiconductor parts. Make G. E. your one source for all components such as:

Component Assemblies—Semiconductor lead-in wires—Dumet “slug” leads—molybdenum “slug” leads—whisker welds and other 2 or 3 part welded lead wires—molybdenum diode slugs—plastic transistor headers—plastic integrated circuit packages.

Lead and Interconnection Wires—Tungsten, molybdenum, and borated Dumet wire for glass to metal sealing—unborated and gold plated Dumet for interconnections and “pigtail” leads—tungsten and molybdenum whisker wire, bare or gold plated.

Sheet and Discs—Molybdenum and tungsten sheet—molybdenum and tungsten discs (punched, pressed and sintered, cut from rod).

Evaporative Sources for Functional Coatings—Stranded tungsten metallizing wire and coils—tungsten and molybdenum boats.

And More! Get all the data. Write or call for our new booklet “Products for the Semiconductor Industry.” General Electric Lamp Metals & Components Dept., 21800 Tungsten Rd., Cleveland, Ohio 44117. Tel: (216) 266-2970

New Components

available small industrial control cables. The 7-mil insulation actually outperforms standard 30-mil polyethylene insulation, according to the manufacturer.

The Mini-Trol construction also provides savings in time, labor and materials when adding circuits to existing installations or constructing new installations. For example, a standard 7-conductor, 19/12 Awg cable requires the same one-inch conduit as the new Mini-Trol 19-conductor cable. Application of Mini-Trol cable, therefore, increases conduit capacity from 2½ to 3 times.

The polyester insulation used on Mini-Trol cable has a temperature rating of 105 °C, with outstanding cut-through and abrasion resistance over a broad temperature range, the company says.

Rockbestos Wire & Cable Co., division of Cerro Corp., Nicoll & Canner Sts., New Haven, Conn., 06504. [352]

Polyvinyl chloride crimp-type lugs

Two insulated Sta-Kon wire lugs are applicable to connecting blocks that have reduced clearances between barriers in electrical and electronic installations. Both are insulated with polyvinyl chloride (pvc).

The RB197 is a solderless forked
Here's how to get more cooling with less size and weight:

Use Garrett-AiResearch "ICE":

The Garrett-AiResearch systems approach to "black box" cooling is called Integrated Cooling for Electronics ("ICE"). It can save you development dollars, cut system weight, and reduce circuit enclosure size.

Simply give us your circuit design heat transfer problem and we'll do the rest: trade-off studies, interface details, heat transfer system design, and manufacturing.

You'll get an optimized system with minimum power consumption for maximum cooling, and a compact, lightweight chassis with an integral or separate heat transport loop or heat pump.

If you're developing electronics circuits for space vehicles, weapons systems, aircraft or ground communications, or other critical applications, call in AiResearch while your package is being conceived; we'll work with you to match an "ICE" system to your specific needs. Contact AiResearch Manufacturing Company, 9851 Sepulveda Blvd., Los Angeles, California 90009.

Complete heat transport system (left) is contained in a single, compact unit. We can also utilize integral heat exchangers, heat pumps, and expendable evaporant cooling methods.
STANDARD TYPES AND SPECIALS —

E-I Glass-to-Metal Seals more than meet today's highly critical electro-environmental specs

— IN MILITARY/COMMERCIAL APPLICATIONS!

Service-proven in every type of electrical and electronic requirement, E-I hermetic seals are finding even wider application in the more sophisticated under-sea/aero-space instruments, equipment and systems. These high dielectric strength seals are being produced to meet unusually severe shock and vibration conditions, and wide fluctuations in temperature and humidity. E-I glass-to-metal terminations offer the advantages of vacuum-tight sealing with maximum rigidity and durability, miniaturization and design standardization. Where custom seals or unusual lead configurations are required, E-I sales engineers will make recommendations from your blueprints, sketches or data.

Write for the E-I Catalog — A practical, concise volume edited and compiled for the engineer / designer / specifier. Contains data and specifications covering a diversity of glass-to-metal seals in a wide range of types and sizes, including hundreds of stock items. Please address requests on company letterhead.

Electrical Industries
A Division of Philips Electronics and Pharmaceutical Industries Corp.,
Murray Hill, N. J. 07971 — Tel. (201) 464-3200
Patented in U.S.A., No. 3,035,372; in Canada, No. 523,390; in United Kingdom, No. 734,583; other patents pending.

New Components

tongue, copper lug with turned-up toes, which fit most narrow barrier blocks. The toes are turned up to retain the lug under the number 6 screw head, thereby making it semicaptive, which is not the case with a straight forked tongue type.
The RB1347 is a solderless ring tongue lug, which has a tongue width of 0.25 in. to accommodate a number 8 stud. This lug has been made to fit the narrow barrier of blocks.
The lugs are fabricated of high-conductivity copper and are electro-tin plated. Both can be installed with a standard hand tool such as WT445 or new automatic crimping tools, and can be used on number 16 to number 14 wires.
The Thomas & Betts Co., 36 Butler St., Elizabeth, N.J., 07207. [353]

Low-level choppers have electrostatic shielding

Two low-level photo choppers—models 354256 (spst) and 354258 (spdt)—are available as components for measurement and control circuitry. The solid state devices feature low d-c voltage offset (less than 1 µv); electrostatic shielding between lamp and cells; a life of 25,000 to 50,000 hours.
The company says that careful selection of materials, proper physical arrangement of parts and closely controlled production techniques have assured low thermal and low noise characteristics. The photocell is fully shielded from the lamp by a unique transparent electrostatic shield, according to the manufacturer.
The choppers can be mounted either vertically or horizontally and
Tracor has been looking closely at your specialized instrument needs.

You may want to look at what we have come up with for you.

You may be surprised.

No matter what your specialized field of interest may be . . . more and more you'll find TRACOR or one of its affiliated companies ready to meet your requirements with precision-quality industrial instruments. Here, briefly, is a summary of TRACOR . . . its products, and the companies which make them.

Time and Frequency Instruments: Omega Navigation Systems, VLF/LF Phase Tracking Receivers, Linear Phase/Time Comparators, Omega Commutators, Frequency Difference Meters, Frequency Distribution Systems, Tuning Fork Oscillators . . . by TRACOR.

Atomic Standards: Rubidium Frequency Standards, Portable Atomic Clocks, Tactical Atomic Clocks, Time Scale Selectors, Stand-by Power Supplies . . . by General Technology Corporation.

Crystal Standards and Components: Crystal Frequency Standards, Crystal Oscillators, Portable Crystal Clocks, Magnetic Counters, Plug-in Decade Counters, Television Synchronization Systems . . . by Sulzer Laboratories.

Filters and Analyzers: Variable Filters, Fixed Filters, Amplifiers, Noise Sources, Power Supplies, Equalizers, Spectrum Shapers, Analyzers . . . by Allison.

Display Instruments: Digital Memory Oscilloscopes, Pulse Height Analyzers... by Northern Scientific.

Can TRACOR play a part in your industrial instruments requirement? Give us a try and see. Contact: TRACOR , Inc., General Sales Offices, 6500 Tracor Lane, Austin, Texas 78721. Phone 512 926-2800.
HYSOL has more answers than anyone in the business

HYSOL HYFLO® epoxy molding powders are being used, successfully and economically, for transfer molding encapsulation of just about every type of component, from tiniest capacitors and precision resistors to large transformers and complex modules.

HYSOL liquid epoxy systems, in several hundred varieties, are being used for casting or potting the most delicate components. Most compatibility problems can be solved, too.

HYSOL DRI-KOTE® POWDERS, for spray or aerated bed application offer a particularly fast, economical way to encapsulate components that can withstand elevated temperatures during manufacture.

Our experience in the entire spectrum of epoxy and urethane encapsulating techniques, and our background in depth in all types of epoxy powder and liquid systems, are yours for the asking. Let us work to develop the best answer to your problems, as we have already done for scores of leading manufacturers.

Call, write or wire HYSOL today for technical data and application engineering assistance. Ask for Bulletins E3-100, E7-100 and E8-900.1.

New Components

are designed to operate with good efficiency with a wide range of circuit impedances in various circuit configurations. Both the 354256 (tubular design) and the 354258 (flat-package, plug-in design) are suited for 60-hz applications.

Leeds & Northrup Co., Components division, North Wales, Pa., 19454.

Subminiature trimmers meet MIL-R-27208A

Two series of subminiature trimmers are designed for compact, solid state circuitry and plug-in card modules.

The “transistor can” TTI units are less than ½ in. in diameter and less than ½ in. high. Fifty of them would weigh about an ounce.

Equipped with gold-plated solid pin connectors and precious metal wipers, the low-noise single-turn TTI units are rotated, potentiometer-like, by a slotted shaft flush with the top of the trimmer. High shaft torque of 5 oz-in. assures setting stability under severe shock and vibration conditions. The trimmers are available in six standard resistance values from 500 ohms to 10,000 ohms, with resolutions from 0.1% to 0.18%. Power rating is 0.5 w from -65° to +70° C.

Square series TSI units offer a choice of gold-plated base pins for mounting and connection, or flexible Teflon-insulated stranded leads, and are manufactured in nine standard values from 50 ohms to 20,000 ohms, with resolutions as high as 0.12%.

TSI trimmers weigh 2.5 grams, are ½ x ½-in. square and are adjusted by a 42-turn stainless steel
A FULL HOUSE...

... OF ZENER DIODES, HIGH-VOLTAGE RECTIFIERS, TANTALUM CAPACITORS ... AND A SELECT GROUP OF SILICON TUNNEL DIODES, SILICON RESISTORS, FETS, SOLID STATE CIRCUIT BREAKERS AND TIME DELAY RELAYS
<table>
<thead>
<tr>
<th>TYPE</th>
<th>V_T Max. (V)</th>
<th>over</th>
<th>Temp. Range °C</th>
<th>Dynamic Impedance Oms (Maximum)</th>
<th>Effective Temperature Coefficient %/°C</th>
<th>TYPE</th>
<th>V_T Max. (V)</th>
<th>over</th>
<th>Temp. Range °C</th>
<th>Dynamic Impedance Oms (Maximum)</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4057 (11)</td>
<td>12.4</td>
<td>10.0</td>
<td>10.0</td>
<td>96</td>
<td>25</td>
<td>.005</td>
<td>IN4067 (11)</td>
<td>43.0</td>
<td>7.5</td>
<td>333</td>
<td>90</td>
</tr>
<tr>
<td>1N4057A (11)</td>
<td>12.4</td>
<td>10.0</td>
<td>10.0</td>
<td>39</td>
<td>25</td>
<td>.002</td>
<td>IN4067A (11)</td>
<td>43.0</td>
<td>7.5</td>
<td>133</td>
<td>90</td>
</tr>
<tr>
<td>1N4058 (11)</td>
<td>14.6</td>
<td>10.0</td>
<td>10.0</td>
<td>133</td>
<td>30</td>
<td>.005</td>
<td>IN4068 (11)</td>
<td>47.0</td>
<td>7.5</td>
<td>364</td>
<td>100</td>
</tr>
<tr>
<td>1N4058A (11)</td>
<td>14.6</td>
<td>10.0</td>
<td>10.0</td>
<td>68</td>
<td>30</td>
<td>.002</td>
<td>IN4068A (11)</td>
<td>47.0</td>
<td>7.5</td>
<td>146</td>
<td>100</td>
</tr>
<tr>
<td>1N4059 (11)</td>
<td>16.8</td>
<td>10.0</td>
<td>10.0</td>
<td>53</td>
<td>30</td>
<td>.005</td>
<td>IN4069 (11)</td>
<td>51.0</td>
<td>7.5</td>
<td>158</td>
<td>110</td>
</tr>
<tr>
<td>1N4059A (11)</td>
<td>16.8</td>
<td>10.0</td>
<td>10.0</td>
<td>143</td>
<td>30</td>
<td>.002</td>
<td>IN4069A (11)</td>
<td>51.0</td>
<td>7.5</td>
<td>434</td>
<td>120</td>
</tr>
<tr>
<td>1N4060 (11)</td>
<td>18.5</td>
<td>10.0</td>
<td>10.0</td>
<td>174</td>
<td>25</td>
<td>.005</td>
<td>IN4070 (11)</td>
<td>56.0</td>
<td>7.5</td>
<td>174</td>
<td>120</td>
</tr>
<tr>
<td>1N4060A (11)</td>
<td>18.5</td>
<td>10.0</td>
<td>10.0</td>
<td>147</td>
<td>25</td>
<td>.002</td>
<td>IN4070A (11)</td>
<td>56.0</td>
<td>7.5</td>
<td>482</td>
<td>135</td>
</tr>
<tr>
<td>1N4061 (11)</td>
<td>21.0</td>
<td>10.0</td>
<td>10.0</td>
<td>163</td>
<td>35</td>
<td>.005</td>
<td>IN4071 (11)</td>
<td>62.0</td>
<td>7.5</td>
<td>193</td>
<td>135</td>
</tr>
<tr>
<td>1N4061A (11)</td>
<td>21.0</td>
<td>10.0</td>
<td>10.0</td>
<td>105</td>
<td>35</td>
<td>.002</td>
<td>IN4071A (11)</td>
<td>62.0</td>
<td>7.5</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>1N4062 (11)</td>
<td>23.0</td>
<td>10.0</td>
<td>10.0</td>
<td>130</td>
<td>30</td>
<td>.005</td>
<td>IN4072 (11)</td>
<td>65.0</td>
<td>7.5</td>
<td>512</td>
<td>230</td>
</tr>
<tr>
<td>1N4062A (11)</td>
<td>23.0</td>
<td>10.0</td>
<td>10.0</td>
<td>72</td>
<td>40</td>
<td>.002</td>
<td>IN4072A (11)</td>
<td>65.0</td>
<td>7.5</td>
<td>311</td>
<td>230</td>
</tr>
<tr>
<td>1N4063 (11)</td>
<td>27.0</td>
<td>10.0</td>
<td>10.0</td>
<td>270</td>
<td>45</td>
<td>.005</td>
<td>IN4073 (11)</td>
<td>75.0</td>
<td>7.5</td>
<td>582</td>
<td>250</td>
</tr>
<tr>
<td>1N4063A (11)</td>
<td>27.0</td>
<td>10.0</td>
<td>10.0</td>
<td>84</td>
<td>45</td>
<td>.002</td>
<td>IN4073A (11)</td>
<td>75.0</td>
<td>7.5</td>
<td>253</td>
<td>250</td>
</tr>
<tr>
<td>1N4064 (11)</td>
<td>30.0</td>
<td>10.0</td>
<td>10.0</td>
<td>330</td>
<td>50</td>
<td>.005</td>
<td>IN4074 (11)</td>
<td>82.0</td>
<td>7.5</td>
<td>636</td>
<td>270</td>
</tr>
<tr>
<td>1N4064A (11)</td>
<td>30.0</td>
<td>10.0</td>
<td>10.0</td>
<td>193</td>
<td>50</td>
<td>.002</td>
<td>IN4074A (11)</td>
<td>82.0</td>
<td>7.5</td>
<td>254</td>
<td>290</td>
</tr>
<tr>
<td>1N4065 (11)</td>
<td>33.0</td>
<td>10.0</td>
<td>10.0</td>
<td>256</td>
<td>55</td>
<td>.005</td>
<td>IN4075 (11)</td>
<td>87.0</td>
<td>7.5</td>
<td>672</td>
<td>290</td>
</tr>
<tr>
<td>1N4065A (11)</td>
<td>33.0</td>
<td>10.0</td>
<td>10.0</td>
<td>103</td>
<td>55</td>
<td>.002</td>
<td>IN4075A (11)</td>
<td>87.0</td>
<td>7.5</td>
<td>270</td>
<td>290</td>
</tr>
<tr>
<td>1N4066 (11)</td>
<td>37.0</td>
<td>10.0</td>
<td>115</td>
<td>80</td>
<td>.005</td>
<td>IN4076 (11)</td>
<td>91.0</td>
<td>7.5</td>
<td>705</td>
<td>310</td>
<td>.005</td>
</tr>
<tr>
<td>1N4066A (11)</td>
<td>37.0</td>
<td>10.0</td>
<td>115</td>
<td>80</td>
<td>.002</td>
<td>IN4076A (11)</td>
<td>91.0</td>
<td>7.5</td>
<td>283</td>
<td>310</td>
<td>.002</td>
</tr>
</tbody>
</table>

- **ULTRA-STABLE CERTIFIED REFERENCE DIODES**
- **PRECISION VOLTAGE TOLERANCE, TEMPERATURE COMPENSATED ZENER DIODES**
- **HIGH POWER TEMPERATURE COMPENSATED DIODES**
- **CHIP ZENER DIODES**
- **CFA SERIES, CHIP SIZE 0.025 x 0.025**
Moulded Case

Temperature Compensated Reference Diodes

<table>
<thead>
<tr>
<th>TYPE</th>
<th>V<sub>φ</sub> @ T<sub>x</sub></th>
<th>V<sub>φ</sub> Max. mV</th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
<th>TYPE</th>
<th>V<sub>φ</sub> @ T<sub>x</sub></th>
<th>V<sub>φ</sub> Max. mV</th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

5000 mW, 11.7 V ± 5% (± 7.5 mA) CASE 2 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400 mW, 8.4 V ± 5% (± 10 mA) CASE 1 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5000 mW, 9.0 V ± 5% (± 7.5 mA) CASE 1 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

500 mW, 11.7 V ± 5% (± 7.5 mA) CASE 1 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

500 mW, 11.7 V ± 5% (± 7.5 mA) CASE 2 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400 mW, 8.4 V ± 5% (± 10 mA) CASE 1 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400 mW, 8.4 V ± 5% (± 10 mA) CASE 2 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400 mW, 8.4 V ± 5% (± 10 mA) CASE 1 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400 mW, 8.4 V ± 5% (± 10 mA) CASE 2 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400 mW, 8.4 V ± 5% (± 10 mA) CASE 1 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400 mW, 8.4 V ± 5% (± 10 mA) CASE 2 GLASS

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCE

- For 1N2163 thru 1N2171
- Type 1N2623 thru 1N2671
- Type 1N2628 thru 1N2678

MIL-16464: ±55 to ±150 1N2163 thru 1N2171

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16465: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16466: ±0.001

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16467: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16468: ±0.001

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16469: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16470: ±0.001

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16471: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16472: ±0.001

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16473: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16474: ±0.001

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16475: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16476: ±0.001

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16477: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16478: ±0.001

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16479: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16480: ±0.001

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIL-16481: ±0.002

<table>
<thead>
<tr>
<th>V<sub>x</sub></th>
<th>V<sub>φ</sub></th>
<th>Maximum Dynamic Impedance Ohms</th>
<th>Effective Temperature Coefficient %/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HIGH VOLTAGE RECTIFIERS – MOULDED CASE

CUSTOM RECTIFIERS available with voltage ratings up to 150,000 volts

<table>
<thead>
<tr>
<th>Type</th>
<th>Peak Inverse Voltage (PIV)</th>
<th>Maximum Forward Output Current @ 75°C</th>
<th>Forward Surge Current @ 25°C</th>
<th>Maximum Reverse Voltage @ 25°C</th>
<th>Maximum Forward Output Current</th>
<th>Maximum Reverse Voltage @ 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volts mA</td>
<td>I₀ mA</td>
<td>Iₚ mA</td>
<td>Vₚ mA</td>
<td>I₀ mA</td>
<td>V₀ mA</td>
</tr>
<tr>
<td>CASE 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1133</td>
<td>1.500 75</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1134</td>
<td>1.500 100</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1135</td>
<td>1.800 65</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1136</td>
<td>1.800 85</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1137</td>
<td>2.400 50</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1138</td>
<td>2.400 60</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1140</td>
<td>3.600 60</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1141</td>
<td>4.800 60</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1142</td>
<td>4.800 60</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1143</td>
<td>6.000 50</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N1144</td>
<td>6.000 60</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N2927</td>
<td>8.000 70</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N2934</td>
<td>8.000 100</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N2937</td>
<td>8.000 200</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N2938</td>
<td>8.000 100</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N2939</td>
<td>8.000 200</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3880</td>
<td>9.000 60</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N4937</td>
<td>10.000 60</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N4938</td>
<td>10.000 60</td>
<td>6 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAST RECOVERY RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Peak Inverse Voltage (PIV)</th>
<th>Maximum Forward Output Current @ 75°C</th>
<th>Forward Surge Current @ 25°C</th>
<th>Maximum Reverse Voltage @ 25°C</th>
<th>Maximum Forward Output Current</th>
<th>Maximum Reverse Voltage @ 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volts mA</td>
<td>I₀ mA</td>
<td>Iₚ mA</td>
<td>Vₚ mA</td>
<td>I₀ mA</td>
<td>V₀ mA</td>
</tr>
<tr>
<td>CASE 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3890</td>
<td>50 6 75</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3891</td>
<td>50 6 75</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3892</td>
<td>50 6 75</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3893</td>
<td>50 6 75</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3894</td>
<td>50 1.0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3895</td>
<td>50 1.0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3896</td>
<td>50 1.0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N3897</td>
<td>50 1.0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SILICON TUNNEL DIODES

Recently added to the Dickson product line these devices feature standard Iₚ tolerances as low as 2% in conjunction with intrinsic qualities of high Vᵣ to Vᵰ ratio, and wide operating and storage temperature range.

POSITIVE TEMPERATURE COEFFICIENT SILICON RESISTORS

Available in values of 10 Ω thru 2.2 MΩ, 1/4 and 1/2 watt packages. This latest addition to Dickson’s product line is characterized by a large controlled positive temperature coefficient of resistance.

SILICON DIFFUSED MULTI-TAP RESISTORS

Especially applicable to hybrid circuits requiring precision resistance values, and low temperature coefficient. These devices incorporate: 12 sections with resistance values ranging from 1000-2500 Ω, and 12 with resistance values ranging from 100-250 Ω, allowing user to probe and bond to obtain highly accurate resistance.

FEATURES:
- Easily soldered into circuits.
- Aluminum pads for conventional bonding.
- Similarity of characteristics to monolithic resistors allows easy conversion to monolithic circuits.

SILICON

Contact a Dickson Rep or Dickson for data sheets.
FIELD EFFECT TRANSISTORS

Covering a conductance range from 200 μmhos to 10,000 μmhos, Dickson field effect transistors are available in both N and P channel configurations. Applications include: low-noise voltage amplifiers, voltage-variable resistors, and many other applications.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>BVCEO (Volts)</th>
<th>Ioss (mA)</th>
<th>VR (Volts)</th>
<th>gfs (μmhos)</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>N-CHANNEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1101</td>
<td>25</td>
<td>-10</td>
<td>0.8</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>D1102</td>
<td>25</td>
<td>-10</td>
<td>0.2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>D1103</td>
<td>25</td>
<td>-10</td>
<td>0.05</td>
<td>0.25</td>
<td>2.5</td>
</tr>
<tr>
<td>D1177</td>
<td>50</td>
<td>-5</td>
<td>0.8</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>D1178</td>
<td>50</td>
<td>-5</td>
<td>0.2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>D1179</td>
<td>50</td>
<td>-5</td>
<td>0.05</td>
<td>0.25</td>
<td>2.5</td>
</tr>
<tr>
<td>D1180</td>
<td>50</td>
<td>-5</td>
<td>2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>D1181</td>
<td>50</td>
<td>-5</td>
<td>0.5</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>D1182</td>
<td>50</td>
<td>-5</td>
<td>0.1</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>D1183</td>
<td>50</td>
<td>-5</td>
<td>3</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>D1184</td>
<td>50</td>
<td>-5</td>
<td>0.8</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>D1185</td>
<td>50</td>
<td>-5</td>
<td>0.2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>DN3066A</td>
<td>50</td>
<td>-1</td>
<td>0.8</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>DN3067A</td>
<td>50</td>
<td>-1</td>
<td>0.2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>DN3068A</td>
<td>50</td>
<td>-1</td>
<td>0.05</td>
<td>0.25</td>
<td>2.5</td>
</tr>
</tbody>
</table>

REFERENCES AMPLIFIERS

Specifically designed for use in regulated power supplies, as combination voltage reference elements, and high-voltage amplifiers, Dickson Reference Amplifiers provide temperature compensation for optimum reference voltage stability. Dickson's 6.8 volt series incorporates a NPN Transistor and a silicon voltage regulator diode. Operating temperature range is -25°C to 100°C. They are specified with a variety of reference voltage stability factors to permit selection of the most economical device to meet circuit requirements. ContactDickson Rep or Dickson for data sheets.

SOLID, TANTALUM CAPACITORS

Seven polar, six non-polar series, plus two mil-spec types in a voltage range of 6-100 volts comprise the present line. This table indicates product range only. For more detailed information fill out and mail the attached Business Reply card, or contact a Dickson representative or distributor.

COMMERCIAL TYPES — For top performance and reliability, Dickson combines devices of mil-spec construction to produce standard and custom designs in both polar and non-polar types.

<table>
<thead>
<tr>
<th>Case Code</th>
<th>Cap/Voltage Range</th>
<th>Min/Max</th>
<th>Min/Max</th>
<th>Dimensions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µFd</td>
<td>µFd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.0047/6.8</td>
<td>6/100</td>
<td>0.135</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.068/6.1</td>
<td>6/100</td>
<td>0.063</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.7/180</td>
<td>6/75</td>
<td>0.686</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>12/330</td>
<td>6/75</td>
<td>0.786</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>0.0047/6.8</td>
<td>6/100</td>
<td>0.135</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>0.068/6.1</td>
<td>6/100</td>
<td>0.063</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>4.7/180</td>
<td>6/75</td>
<td>0.686</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

Packaging and configurations includes:

- **Miniature packages, hermetically sealed.**
- **Epoxy encapsulated packages.**
- **Base-off rectangular packages.**

MIL SPEC TYPES: CS12, CS13, MIL-C-26655/2D CSR13 MIL-C-39003

All capacitance ratings are available in tolerances of ±5%, ±10% and ±20%.

<table>
<thead>
<tr>
<th>Case Code</th>
<th>Cap/Voltage Range</th>
<th>Min/Max</th>
<th>Min/Max</th>
<th>Dimensions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µFd</td>
<td>µFd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>12/680</td>
<td>6/75</td>
<td>0.786</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>0.0253/4.1</td>
<td>6/100</td>
<td>0.585</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>0.35/30</td>
<td>6/100</td>
<td>0.935</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>2.3/90</td>
<td>6/75</td>
<td>1.360</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>DN</td>
<td>6.0/160</td>
<td>6/75</td>
<td>1.600</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0.0047/6.8</td>
<td>4/100</td>
<td>0.250</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>0.27/12</td>
<td>4/100</td>
<td>0.265</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Check with factory or factory representative for specific capacitance and voltage combinations.
Temperature Compensated Reference Diodes

<table>
<thead>
<tr>
<th>Type</th>
<th>ΔT_P Max. mV</th>
<th>ΔT_P Max. mV/°C</th>
<th>Temp. Range °C</th>
<th>Maximum Dynamic Impedance ohms</th>
<th>Effective Temperature Coefficient °C/°C</th>
<th>Type</th>
<th>ΔT_P Max. mV</th>
<th>ΔT_P Max. mV/°C</th>
<th>Temp. Range °C</th>
<th>Maximum Dynamic Impedance ohms</th>
<th>Effective Temperature Coefficient °C/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mW, $V_T = 6.2 V$ ±5% ($I_T = 7.5 mA$)</td>
<td>96</td>
<td>—55 to 100</td>
<td>20</td>
<td>0.1</td>
<td>1N429</td>
<td>26</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.002</td>
<td>1N430A</td>
<td>13</td>
</tr>
<tr>
<td>250 mW, $V_T = 8.4 V$ ±5% ($I_T = 10 mA$)</td>
<td>1N430</td>
<td>26</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.002</td>
<td>1N430A</td>
<td>13</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>400 mW, $V_T = 6.2 V$ ±5% ($I_T = 7.5 mA$)</td>
<td>1N429</td>
<td>96</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.005</td>
<td>1N430</td>
<td>26</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.002</td>
<td>1N430A</td>
</tr>
<tr>
<td>400 mW, $V_T = 8.4 V$ ±5% ($I_T = 10 mA$)</td>
<td>1N430</td>
<td>26</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.002</td>
<td>1N430A</td>
<td>13</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>400 mW, $V_T = 6.2 V$ ±5% ($I_T = 7.5 mA$)</td>
<td>1N429</td>
<td>96</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.005</td>
<td>1N430</td>
<td>26</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.002</td>
<td>1N430A</td>
</tr>
<tr>
<td>400 mW, $V_T = 8.4 V$ ±5% ($I_T = 10 mA$)</td>
<td>1N430</td>
<td>26</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.002</td>
<td>1N430A</td>
<td>13</td>
<td>—55 to 100</td>
<td>15</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Case 1: Moulded Cap (1N430, 1N430A)

Case 2: Glass Encapsulated (1N429, 1N429A)

Case 3: Glass Encapsulated (1N430, 1N430A)

Case 4: Glass Encapsulated (1N429, 1N429A)

Case 5: Glass Encapsulated (1N430, 1N430A)

Case 6: Glass Encapsulated (1N429, 1N429A)

Case 7: Glass Encapsulated (1N430, 1N430A)

Case 8: Glass Encapsulated (1N429, 1N429A)

Case 9: Glass Encapsulated (1N430, 1N430A)

Case 10: Glass Encapsulated (1N429, 1N429A)

Case 11: Glass Encapsulated (1N430, 1N430A)

Case 12: Glass Encapsulated (1N429, 1N429A)

Case 13: Glass Encapsulated (1N430, 1N430A)

Case 14: Glass Encapsulated (1N429, 1N429A)
IN JUST SIX YEARS ... Dickson has become a major supplier of high-reliability semiconductors to the Aerospace, Military, Industrial and Consumer Markets. In these competitive markets of super critical technical requirements where the criterion for value is product performance, Dickson product sales have almost doubled every year for five years.

Dickson’s rapid growth to prominence as a prime source for high-reliability zener diodes, high voltage rectifiers, and tantalum capacitors has been earned by providing the customer with specific benefits:

- Maximum value, based on product performance.
- Practical application of technical skill to customer design problems.

ZENER DIODES

available in standard voltage tolerances of ±5%, ±10%, ±20%

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Nominal Voltage VD</th>
<th>Test Current IT</th>
<th>Maximum Impedance ZD</th>
<th>TYPE</th>
<th>Nominal Voltage VD</th>
<th>Test Current IT</th>
<th>Maximum Impedance ZD</th>
</tr>
</thead>
</table>
| 250 mW — CASE 1 GLASS

- **L22.40**
- **L22.70**
- **L23.20**
- **L23.30**
- **L23.60**
- **L23.90**
- **L24.30**
- **L24.50**
- **L25.10**
- **L25.60**
- **L26.80**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Nominal Voltage VD</th>
<th>Test Current IT</th>
<th>Maximum Impedance ZD</th>
</tr>
</thead>
</table>
| 400 mW — CASE 1 GLASS

- **1N4730**
- **1N4731**
- **1N4732**
- **1N4734**
- **1N4735**
- **1N4736**
- **1N4740**
- **1N4741**
- **1N4742**
- **1N4743**
- **1N4744**
- **1N4745**
- **1N4746**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Nominal Voltage VD</th>
<th>Test Current IT</th>
<th>Maximum Impedance ZD</th>
</tr>
</thead>
</table>
| 1 WATT — CASE 2 METAL

- **1N3016**
- **1N3017**
- **1N3018**
- **1N3019**
- **1N3020**
- **1N3021**
- **1N3022**
- **1N3023**
- **1N3024**
- **1N3025**
- **1N3026**
- **1N3027**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Nominal Voltage VD</th>
<th>Test Current IT</th>
<th>Maximum Impedance ZD</th>
</tr>
</thead>
</table>
| 1 WATT — CASE 3 MOLDED

- **1N4728**
- **1N4730**
- **1N4731**
- **1N4734**
- **1N4735**
- **1N4736**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Nominal Voltage VD</th>
<th>Test Current IT</th>
<th>Maximum Impedance ZD</th>
</tr>
</thead>
</table>
| 2.5 WATT — CASE 10 MOLDED

- **1N5000**
- **1N5003**
- **1N5012**
- **1N5013**
- **1N5014**
- **1N5015**
- **1N5016**
- **1N5017**
- **1N5018**

- **MORE JEDEC REGISTERED T.C. reference diodes than all other suppliers combined.**

Dickson zener diodes, rectifiers, and tantalum capacitors are now used in critical applications on most of our nation’s missile and aerospace hardware including, NIKE X, GEMINI, TITAN II, III, RANGER, MARiner, POLARIS and TFX (F-111).

The product lines have been expanded to include special related products, manufactured to provide the same customer benefits:

- **Field Effect Transistors**
- **Reference Amplifiers**
- **Solid-State Circuit Breakers**
- **Time Delay Relays**
- **Silicon Tunnel Diodes**
- **Silicon Resistors**

The devices shown in the listings here are the more popular types and represent only a small portion of those available from Dickson.
Solid-State Circuit Breakers — Dickson solid-state circuit breakers offer microsecond protection from overcurrent or overvoltage. Response time in microseconds can even provide momentary surge protection with automatic reset. Models with manual and push-button reset also are available. For further information, request data sheets on Series 1100, 1200, 1300.

Time Delay Relays — These devices are all solid-state in epoxy packages, and are available in both two and three terminal configurations. They can be supplied with fixed delay times up to 180 seconds using 28VDC, and can supply loads of up to 50 mA at 85°C. For further information, request data sheets on Models DTR and DDR.

Optical Relays — These relays are all solid-state and ideal for applications requiring fast response to light beam interruption. Illumination trip and 1000 candlefeet. Maximum Contact Rating 250 mA. For further information, request a data sheet on Model D002025-35.

SPECIAL PRODUCTS

Dickson offers a select group of solid-state circuit breakers, time-delay and optical relays for use in a wide range of power control applications.

DICKSON REGIONAL REPRESENTATIVES

NEW ENGLAND
- KITCHEN & KUTCHIN, INC.
 - 17 Watling St., Lexington, Mass. 02173
 - (617) 862-8230, TWX 617 862-1386
- WESTERN ELECTRONICS, INC.
 - 152 Temple St., New Haven, Conn. 06510
- ELECTRICAL MANUFACTURERS SERVICES
 - 3170 Veterans Memorial Highway
 - Bohemia, N.Y. 11716
 - (516) 585-3120
 - TWX 516 588-3728
- METROPOLITAN NEW YORK (including Long Island and New York City, metropolitan area)
 - 119 Luther Ave., Liverpool, N.Y. 13088
 - (315) 472-7686, TWX 315 677-1090
- DELAWARE, EASTERN PENNSYLVANIA, SOUTHERN NEW JERSEY
 - THOMAS ASSOCIATES, INC.
 - 118 Haddon Ave., Haddonfield, N.J. 08033
 - (609) 854-3011
- MARYLAND, VIRGINIA, DISTRICT OF COLUMBIA
 - BOSTUCK & ASSOCIATES
 - P.O. Box 4165
 - Huntville, Alabama 35982
 - (205) 881-3877
- WESTERN PENNSYLVANIA, OHIO, WEST VIRGINIA
 - BOSTOCK & ASSOCIATES
 - P.O. Box 4165
 - Huntville, Alabama 35982
 - (205) 881-3877
- KENTUCKY, INDIANA
 - GIBSON ELECTRONICS MARKETING CO.
 - Far Oaks Bldg., Room 110, 2801 Far Hills Ave., Dayton, Ohio 45419
 - (513) 298-7683
 - 2643 Streetsboro Rd., Hudson, Ohio 44236
- ALABAMA
 - BOSTOCK & ASSOCIATES
 - P.O. Box 4165
 - Huntville, Alabama 35982
 - (205) 881-3877
- NORTH CAROLINA, SOUTH CAROLINA, GEORGIA, MISSISSIPPI, TENNESSEE, LOUISIANA
 - BILL HENRY ASSOCIATES
 - 10420 Providence Rd., Box 6097, Charlotte, N.C. 28207
 - (704) 375-8585, TWX 704-525-2527
 - 247 Photoshop Ave., Metairie, La. 70005
 - (504) 832-3771
- FLORIDA, PUERTO RICO
 - W. BEN WILBURN BLDG.
 - 532 S. Fl Harrison Ave., Clearwater, Fla. 33756
 - (813) 464-7072, TWX 813 442-2278
 - 500 S. Osceola St., Orlando, Fla. 32801
 - (305) 425-3083, TWX 305 275-1358
 - MICHIGAN
 - VILLANI-PITCHER, INC.
 - 20203 Ann Arbor Trall, Dearborn, Mich. 48127
 - (313) 581-5600

MINNESOTA
- E. G. ELECTRONIC SALES
 - 10108 Abbott Ave., Minneapolis, Minn. 55431
 - (612) 888-4629
- NORTHERN ILLINOIS, WISCONSIN
 - L. L. HANNA CO.
 - Box 202, Palatine, Ill. 60067
 - (312) 358-3940
- MISSOURI, KANSAS, NEBRASKA, SOUTH DAKOTA, NORTH DAKOTA
 - S. ILLINOIS, IOWA
 - FLORENCE & MEYER
 - 406 W. 34th St., Kansas City, Mo. 64108
 - (816) 1-7282
 - 2900 Woodland, Wichita, Kansas (316) 5-7229
 - 6050 Brown Rd., Berkeley Station, St. Louis, Mo. (314) 2-1880
- TEXAS, OKLAHOMA, ARKANSAS
 - CARTER ASSOCIATES, INC.
 - Box 87, Garland, Texas 75040
 - (214) 276-7151, TWX 214 276-8979
 - 22674 Houston, Texas 77027
 - (713) 622-0844, TWX 713 571-3142
- ARIZONA, NEW MEXICO, NEVADA
 - CARTER ASSOCIATES, INC.
 - Box 99, Scottsdale, Ariz. 85252
 - (602) 947-3435, TWX 602 900-0276
- COLORADO, UTAH, WYOMING, MONTANA, IDAHO
 - HYER ELECTRONICS CO.
 - 7895 E. Prentice Ave., Englewood, Colo. 80110
 - (303) 771-5285, TWX 303 771-6494
- WASHINGTON, OREGON
 - JON B. JOLLY
 - 69 Marion St., Seattle, Wash. 98104
 - (206) 623-7060
- NORTHERN CALIFORNIA
 - JACK PYE CO.
 - 1611 Borel Place, Suite 4, San Mateo, Calif. 94402
 - (415) 349-1266 TWX 910 574-2264
- SOUTHERN CALIFORNIA (except San Diego)
 - ENGINEERING LIASON ASSOCIATES
 - 3360 Barham Blvd., Hollywood, Calif. 90028
 - (213) 469-2283, TWX 213 876-4086
- SAN DIEGO
 - T.J. ELECTRONICS, INC.
 - 1129 Cushman Ave., San Diego, Calif. 92110
 - (714) 291-2809
- CANADA
 - GARRETT MANUFACTURING LTD.
 - Aero Sales Division
 - 4 Racine Rd., Rexdale, Ont., Canada
 - (416) 244-5655

NOTE: Check with factory or factory representative for specific capacitance and voltage combinations.
New Components

slotted screw. The pin-equipped version is 0.265-in. high because of a high temperature plastic base, while the wire-lead type is 0.2-in. high and has a one-piece all-aluminum base.

Since both versions of the TSI have two mounting holes on 0.525-in. centers, they are interchangeable and can be stacked one on top of the other.

Both the TTI and TSI series are designed to meet or exceed requirements of MIL-R-27205A. Technology Instrument Corp. of California, 850 Lawrence Drive, Newbury Park, Calif. [355]

Small r-f capacitors carry high current

Miniature, glass-encapsulated r-f capacitors can be used in spaceborne, airborne and mobile radio transmitters. The manufacturer says the units carry higher current than other capacitors of the same size.

The FCJ45 series is available in capacitance values of 20 picofarads or lower, or up to 3,000 pf. Typical is the 1,000-pf unit rated at 2,500 V d-c and 5 amps r-f. It is ½-in. square and ¼ in. to ½ in. thick ±½ in. Standard tolerances of 1%, 2%, 5%, 10% and 20% are furnished. The units have high insulation resistance and the glass encapsulation insures an hermetic seal.

The capacitors pass all applicable environmental tests of MIL-STD 202. The high-Q dielectric can withstand a temperature range from −55° to +125°C.

The capacitors are normally supplied with fine silver wide-ribbon leads, approximately 0.350 in. wide. However, they are also available in wafer form without leads.

JFD Electronics Co., 15th Ave. at 62nd St., Brooklyn, N.Y., 11219. [356]
Design any custom header you need

We can manufacture it . . . and test it . . . to your specs. And do it more economically than you can do it yourself. For example, here’s how Atlas engineers solved the problem of spot-welding a bracket to a header without cracking the glass seal—we weld the bracket on before we form the seal. And the testing is done in our environmental chambers—to your own or MIL specs—so we know it’s done right. That way, rejects are our problem, not yours. For detailed information, call or write our marketing department today. Area 215 666-0700.

ATLAS
CHEMICAL INDUSTRIES, INC.
Aerospace Components Division
Valley Forge, Pa. 19481

New Semiconductors

Computer diodes offer high stability

A family of silicon diodes features a compact package and planar epitaxial construction. The series of six high-speed computer switching diodes, IN4148-49 and IN4446-49, has electrical characteristics equivalent to the 1N914 family.

Reverse breakdown voltage (I_R=100 μA) is 100 v minimum. Reverse recovery time is 4 nsec maximum.

The DO-35 is 50% smaller than the standard DO-7 package, making possible greater component density in space-critical computer applications. The planar epitaxial construction offers even greater stability and reliability, particularly during high-temperature operation.

Only four component parts are used to assemble the device: the glass-passivated silicon wafer; two plug-leads that serve as mounting and contact areas for the active element; and a glass sleeve encapsulating the device. All components are in a thermal-compression bond. Closely matched coefficients of expansion assure maintenance of the bond. The whiskerless design results in increased protection against shock and vibration.

The new epitaxial planar Uni/G diodes are immediately available in high volume with short lead time. Representative pricing is from 25 cents to 99 cents in 100 to 999 quantities.

Texas Instruments Incorporated, 13500 North Central Expressway, Dallas, Texas. [361]

Glass zeners designed for regulator use

The 1-watt voltage regulator series offers a nominal zener voltage range from 3.0 to 12 v and voltage tolerance of ±20%, ±10%, and ±5%.

Price of the units is 73 cents each for 20% tolerance units in lots of 100 to 999.

International Rectifier Corp., 233 Kansas St., El Segundo, Calif., 90245. [362]

Low-cost transistors deliver power at uhf

A series of glass zener voltage regulators, C3 through G12, is offered for regulator and other industrial and commercial applications where stable long-term operation is required. The glass configuration offers small size—DO-7—and is especially suited for high density packaging applications.

The minimum power output of the MM1500 is 250 mw at 1.5 Ghz, and for applications with lower power requirements the new series includes the MM1501 transistor (150 mw minimum at 1.0 Ghz).

These power transistors, housed in a wide flange case for easy mounting in cavity circuits, are

New Semiconductors

Computer diodes offer high stability

A family of silicon diodes features a compact package and planar epitaxial construction. The series of six high-speed computer switching diodes, IN4148-49 and IN4446-49, has electrical characteristics equivalent to the 1N914 family.

Reverse breakdown voltage (I_R=100 μA) is 100 v minimum. Reverse recovery time is 4 nsec maximum.

The DO-35 is 50% smaller than the standard DO-7 package, making possible greater component density in space-critical computer applications. The planar epitaxial construction offers even greater stability and reliability, particularly during high-temperature operation.

Only four component parts are used to assemble the device: the glass-passivated silicon wafer; two plug-leads that serve as mounting and contact areas for the active element; and a glass sleeve encapsulating the device. All components are in a thermal-compression bond. Closely matched coefficients of expansion assure maintenance of the bond. The whiskerless design results in increased protection against shock and vibration.

The new epitaxial planar Uni/G diodes are immediately available in high volume with short lead time. Representative pricing is from 25 cents to 99 cents in 100 to 999 quantities.

Texas Instruments Incorporated, 13500 North Central Expressway, Dallas, Texas. [361]

Glass zeners designed for regulator use

The 1-watt voltage regulator series offers a nominal zener voltage range from 3.0 to 12 v and voltage tolerance of ±20%, ±10%, and ±5%.

Price of the units is 73 cents each for 20% tolerance units in lots of 100 to 999.

International Rectifier Corp., 233 Kansas St., El Segundo, Calif., 90245. [362]

Low-cost transistors deliver power at uhf

A series of glass zener voltage regulators, C3 through G12, is offered for regulator and other industrial and commercial applications where stable long-term operation is required. The glass configuration offers small size—DO-7—and is especially suited for high density packaging applications.

The minimum power output of the MM1500 is 250 mw at 1.5 Ghz, and for applications with lower power requirements the new series includes the MM1501 transistor (150 mw minimum at 1.0 Ghz).

These power transistors, housed in a wide flange case for easy mounting in cavity circuits, are

New Semiconductors

Computer diodes offer high stability

A family of silicon diodes features a compact package and planar epitaxial construction. The series of six high-speed computer switching diodes, IN4148-49 and IN4446-49, has electrical characteristics equivalent to the 1N914 family.

Reverse breakdown voltage (I_R=100 μA) is 100 v minimum. Reverse recovery time is 4 nsec maximum.

The DO-35 is 50% smaller than the standard DO-7 package, making possible greater component density in space-critical computer applications. The planar epitaxial construction offers even greater stability and reliability, particularly during high-temperature operation.

Only four component parts are used to assemble the device: the glass-passivated silicon wafer; two plug-leads that serve as mounting and contact areas for the active element; and a glass sleeve encapsulating the device. All components are in a thermal-compression bond. Closely matched coefficients of expansion assure maintenance of the bond. The whiskerless design results in increased protection against shock and vibration.

The new epitaxial planar Uni/G diodes are immediately available in high volume with short lead time. Representative pricing is from 25 cents to 99 cents in 100 to 999 quantities.

Texas Instruments Incorporated, 13500 North Central Expressway, Dallas, Texas. [361]

Glass zeners designed for regulator use

The 1-watt voltage regulator series offers a nominal zener voltage range from 3.0 to 12 v and voltage tolerance of ±20%, ±10%, and ±5%.

Price of the units is 73 cents each for 20% tolerance units in lots of 100 to 999.

International Rectifier Corp., 233 Kansas St., El Segundo, Calif., 90245. [362]

Low-cost transistors deliver power at uhf

A series of glass zener voltage regulators, C3 through G12, is offered for regulator and other industrial and commercial applications where stable long-term operation is required. The glass configuration offers small size—DO-7—and is especially suited for high density packaging applications.

The minimum power output of the MM1500 is 250 mw at 1.5 Ghz, and for applications with lower power requirements the new series includes the MM1501 transistor (150 mw minimum at 1.0 Ghz).

These power transistors, housed in a wide flange case for easy mounting in cavity circuits, are
When it comes to electrical tapes, Mystik is king!

No doubt about it, Mystik leads the field in special-purpose tapes. Our extensive line of top quality products are perfect for hundreds of applications ranging from conventional industrial uses to the more sophisticated demands of the space age.

Mystik tapes are made in a wide range of materials including paper, plastic, cloth and glass cloth as well as many types of films and foils. They provide physical and performance characteristics of every description and are suitable for binding, shielding, strapping and insulating. Mystik pioneered tapes with heat-resistant silicone adhesives that grip like a vise even when exposed to high temperatures. Other new tapes are continually being developed to keep pace with the needs of the rapidly-expanding electrical industry.

We'll gladly prove our right to the "crown". Our local distributor will assist you in selecting the right tape for your application. He's in the Yellow Pages under "Tape" or write The Borden Chemical Co., Mystik Tape Div., 1700 Winnetka Ave., Northfield, Ill.
New Semiconductors

useful as local oscillators for radar systems, telemetry, and proximity fuses and for varactor drivers.

The multiple-emitter overlay design lengths the emitter perimeter in relationship to the area of the emitter, and provides the increased power capabilities of the transistor at these high frequencies.

Prices for the MM1500 are $28 each in quantities of 100 and up; for the MM1501, $18 each in quantities of 100 and up. Delivery is immediate.

Motorola Semiconductor Products Inc.,
Box 955, Phoenix, Ariz., 85001.

Fast, silicon photodetectors

Photoconductive silicon photodetectors offer better combinations of detectivity, rise time and responsivity than presently available photo junction devices, according to the manufacturer. Detectivity is 5x10¹¹ cm Hz¹/²/watt; responsivity, 2x10⁹ v/w; and rise time, 4 µsec with a 0.5-megohm load.

Until now, the theoretical advantages of photoconductive operation have not been realized because of electrode deposition problems and
the lack of high purity intrinsic silicon. The manufacturer says it has overcome these problems in the fabrication of the new detectors. Featuring active area dimensions ranging from 1 to 15 mm, SPC photodetectors can be made in a variety of shapes and electrode configurations.

Mithras, Inc., 701 Concord Ave., Cambridge, Mass., 02138. [364]

Photochopper cells need little warm-up

High efficiency plus the temperature stability and low light memory of cadmium sulfide are combined in a pair of photochopper cells. Efficiency levels of the two cells, in spdt configuration, range up to 72% at 1 khz, 93% at 400 hertz and 98% at 60 hz. Temperature coefficient is low, so that efficiency change from -25° to 60° C is less than 15%, one-third to one-quarter the variation of cadmium selenide photochopper cells.

The new cells are: type CL906CS with on resistance of 82 kilohms; and a low-resistance type CL906CLS, with on resistance of 2.75 kilohms. On resistance is guaranteed within ±50%, while comparable cadmium selenide cells only guarantee an on resistance no greater than a stated value. The low light memory of the type 6C cadmium sulfide material in the cells essentially eliminates warm-up time. The devices reach normal resistance in a minute. Cadmium selenide cells require 10 minutes or more to exhibit normal resistance to a given light level.

Clairex Corp., 1239 Broadway, New York, N.Y., 10001. [365]

Why do Jennings vacuum capacitors meet every requirement?
There’s nothing to it

Ultra high vacuum dielectric combined with Jennings exclusive capacitor design is the answer. This combination has been a major factor in the development of modern transmitters. New vacuum capacitor designs from Jennings will contribute even more to the advancement of transmitter design. They can also help solve some of your immediate problems.

Jennings has hundreds of standard fixed and variable vacuum capacitors in a wide variety of capacity, voltage, and current levels. In all probability the capacitor you need has already been designed, field tested, and proven reliable. If it hasn’t you couldn’t find a more experienced company than Jennings to design a new one.

JENNINGS

Capacity: 20-500 pF
Peak Test Voltage: 15 KV
RF Current: 80 Amps RMS
Height: 3-3'/4"
Width: 2-3'/8"

For complete information on ITT Jennings vacuum capacitors, write for our new catalog No. 101. ITT Jennings, a subsidiary of International Telephone and Telegraph Corporation, 970 McLaughlin Avenue, San Jose, California 95108.
The Dual Output DL40-1

It was already a winner: dual output, dual range—two power supplies in one—with two independently adjustable outputs, series-parallel combinations for 8 different outputs. We kept all that and—

- Increased power by 50%—to 1 amp. Now, each independent output provides 0-40 v at 500 ma, or 0-20 v at 1 amp.
- Added the calibrated adjustable current-limiting feature you wanted.
We kept the—

- Compact half-rack size
- The old price of $249.

These are the highlights of this new, improved power supply. Get all the facts.
MAIL THE COUPON TODAY.

TRYGON POWER SUPPLIES
PLEASANT AVE., ROOSEVELT, L.I., N.Y.
Please rush me your new 52-page Power Supply Handbook—FREE

Name
Title
Company
Address
City State Zip

New Instruments

Video amplifier tests crystal detectors

Testing high-impedance microwave crystal detectors is one use for a recently developed portable, low-noise video amplifier. It has five basic adjustable-bandwidth frequency ranges from 0.5 to 5 Mhz. Convenience of operation is enhanced by a built-in bias supply, with a front panel meter covering 0 to 85 microamps in two ranges.

Model 153A features a gain of 65 db minimum at 10 kilohertz, and an input impedance at 1 Mhz of greater than 350,000 ohms and less than 10 picofarads ±10%. Equivalent input noise resistance is less than 750 ohms. Polarity is reversing, and power requirements are 117 v a-c, 60 hz, 60 w.

Envelope dimensions are 8x9x12 in. Price is $495.
American Electronic Laboratories, Inc., P.O. Box 552, Lansdale, Pa., 19446 [371]

Solid state sweeper offers plug-in design

Output greater than 0.7 v is obtained, with compactness and light weight, through solid state design in a sweep oscillator that spans 100 khz to 100 Mhz. Model 3211A has two plug-in positions. One determines the range of sweep frequencies; the other accepts as many as eight plug-in marker cards, each with its own frequency-determining crystal.

Using off-the-shelf plug-ins, and exploiting the instrument’s built-in wide range of operating modes, the oscillator will meet the needs of almost any special test program at reasonable cost, the manufacturer says. The sweeper will fulfill new requirements quickly and at minimal cost with new plug-ins.

The marker functions of the model are different from other sweepers. Each of the eight markers has its own front-panel switch. A birdie bypass marker system transforms marker beatnotes into video pulses. Video pulses can be applied either to the detected response of the test circuit, to obtain positive or negative vertical markers, or to the Z axis input of an oscilloscope, which yields intensity-modulated dots. Marker sensitivity and bandwidth are front-panel controls. Additional external markers may be added through a front panel input.

Sweep rates from 10 to 100 per second are continuously selectable with each plug-in. Single sweep may be chosen, and provision is made for sweeps of 1 to 10 seconds compatible with X-Y recording needs.

Among the sweeper’s applications are design, calibration and alignment of f-m tuners and receivers, and the general testing of i-f sections and other circuits in the video-to-vhf range.

The sweep oscillator costs $665; the 3221A marker plug-in, $85. Marker plug-in boards are $40 each.

Radar range calibrator marks time too

A high-precision triggered calibration standard and a time mark generator have been combined in one lightweight instrument. Meeting
military specifications, the model is designed to calibrate radar displays, simulators, radar range calibrators, long-range tracking equipment, short-range gun control equipment and oscilloscopes. It can also generate an accurate adjustable triggered delay.

Less than 20-nsec jitter in its range ensures excellent display clarity even with external triggering. Better than 0.0025% ±5 yards accuracy is maintained throughout the full operating range of 25 yards to 2 million yards. A built-in pulse-repetition-frequency generator provides internal triggering from 50 hertz to 5 kHz. A prf pulse is also available for triggering associated equipment.

The RM138A is completely solid state using high quality professional and military type semiconductors and components, the company reports. It has been designed to resist corrosion in humid environments. Components are mounted in plated holes on circuit cards. Rotary switches incorporate stainless steel shafts, high-quality wafer material and coin silver contacts.

Philips Electronic Equipment, a division of Philips Electronics Industries Ltd., 116 Vanderhoof Ave., Toronto 17, Ontario, Canada. [373]

Stable, sensitive peak power meter

Accurate measurement in high r-f environments is the salient feature of the type 6690 peak power meter. The stable, solid state instrument’s measuring circuity is encased in an r-f shielded module. A cut-off tube is used with the range switch for extreme attenuation of the r-f interference.

Full-scale readings of 30, 100, and 300 mw are covered in four

New! -- Ballantine Solid State True RMS Voltmeter

Measures from 10 Hz to 20 MHz regardless of Waveform

Ballantine’s new Model 323 is a rugged, all-solid-state voltmeter for True RMS measurements for 10 Hz to 20 MHz . . . and for a wide variety of waveforms. Use it as a completely portable instrument isolated from line effects (due to built-in rechargeable batteries), or plug it into the power line. (Model 323-01 is for use on power line, only.)

FEATURES:

* Measures True RMS of sine waves, square waves, noise voltages and a range of pulses
* Frequency range of 10 Hz to 20 MHz
* Voltage range of 300 µV to 330 V. (As null detector to 70 µV)
* Unmatched accuracy: 2% of indication, 50 Hz to 10 MHz; 3% of indication, 20 Hz to 15 MHz; 5% of indication, 10 Hz to 20 MHz. Ballantine’s accuracy of 2% means 2% of the actual indication, whether at the top or bottom of a scale
* Operates from built-in rechargeable batteries or line power
* Ideal for recorder applications — DC output of 0.1 to 1.0 V for each range simultaneous with meter reading
* Crest factor: 5 at full scale to 15 at down scale
* Separate isolated signal and case grounds
* Optional 80 dB Attenuator Probe, Model 1301, for operation up to 10,000 V

Prices: Model 323, $520 (Battery & Line) Model 323-01, $485 (Line only)

Write for complete technical data today

BALLANTINE LABORATORIES INC.
Boonton, New Jersey

CHECK WITH BALLANTINE FIRST FOR DC AND AC ELECTRONIC VOLTMETERS/AMMETERS/OMMETERS, REGARDLESS OF YOUR REQUIREMENTS. WE HAVE A LARGE LINE, WITH ADDITIONS EACH YEAR. ALSO AC/DC LINEAR CONVERTERS, AC/DC CALIBRATORS, WIDE BAND AMPLIFIERS, DIRECT-READING CAPACITANCE METERS, AND A LINE OF LABORATORY VOLTAGE STANDARDS FOR 0 TO 1,000 MHZ.
Producers of all types of electronic components have their reasons for relying on Volkert Stampings. It comes out in the extra things Volkert does. Like converting a multi-piece design to a single stamping. Or consistently using high-speed equipment to reduce per-part costs.

Write or call Volkert Stampings, Inc., 222-35 96th Avenue, Queens Village, L.I., New York 11429. Telephone 212-464-8400.

Volkert STAMPINGS, Inc.
Subsidiary of The Stanley Works

Counter features
high sensitivity

A 12.5-Mhz electronic counter combines a six-digit Nixie readout, automatic decimal point and units indicator and all five counter measuring functions (frequency, time interval, period and multiple period averaging, ratio, and totalizing). The unit measures 6½ in. high by 7½ in. wide. It is designed for low level work, especially pulses and is claimed to be 10 times more sensitive than a conventional electronic counter. It counts 10 mv sine waves or pulses with only 100 mv peak steps with an accuracy of ±0.2 db.

In the 30-mw, narrow-band position, the unit can make accurate measurements below 5 mw.

Features include: sensitivity adjustment to match a wide range of bolometers; instrument components meet military specs for reliability; solid state design; optional battery pack and measurements to 300-mw peak power independent of frequency, pulse width, repetition frequency, and pulse shape.

PRD Electronics Inc., 1200 Prospect Ave., Westbury, L.I., N.Y., 11590.
amplitude. Pulses down to 50 nsec can be accommodated.

Another provision is the input selector switch that allows the trigger bias level to be altered at near 0 volts for optimum response to either sine waves or pulses, positive or negative.

D-c coupling allows events occurring less often than two per second to be counted, while eliminating any effect an a-c coupled RC time constant might have in counting random width pulses and changing repetition rates. A front panel slide switch allows the internal count frequency to be divided by 1,000 so the desired resolution can be selected for time interval measurements. Start-stop connectors for time interval measurements are on the rear panel.

The internal time base is a 1-Mhz crystal, with aging rate below two parts in 10^7 per month.

The instrument's modular cabinet occupies half of a rack-space 7 inches high. Price is $1,650, or with option 02 (binary-coded-decimal recorder output), $1,685. Delivery is five to 10 days.

The active diaphragm of a subminiature pressure transducer is isolated from strains due to various applied mounting forces by a mounting flange built right onto the transducer. This flange also provides positive positioning and is designed to make the transducer a more rugged unit than some previous models, the company says.

For easier handling, the model SA-SA-M-69 will be supplied with

The game is called Swept VSWR

And the winner receives a fast, precise answer to a difficult test problem. Until Telonic developed the Rho-Tector impedance comparator, swept VSWR measurement was usually a fairly complex, and always an expensive, procedure. Now it's simply a matter of hooking up and reading directly from a Telonic Rho-Meter or scope display, or XY recorder at any frequency from .5 to 4000 MHz.

And what kind of accuracies can you expect from something so easy? How about 50 dB?

<table>
<thead>
<tr>
<th>Model</th>
<th>TRB-1</th>
<th>TRB-2</th>
<th>TRB-3</th>
<th>TRB-4*</th>
<th>TRB-5</th>
<th>TRB-8</th>
<th>TRB-9*</th>
<th>TRB-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range in MHz</td>
<td>.5-1000</td>
<td>.5-2500</td>
<td>.5-1000</td>
<td>.5-1000</td>
<td>200-4000</td>
<td>.5-2500</td>
<td>.5-1000</td>
<td>200-4000</td>
</tr>
<tr>
<td>Min. Unbalance (Return Loss) in dB</td>
<td>30</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>50</td>
<td>30</td>
</tr>
</tbody>
</table>

*with ALC Detector

For a complete VSWR measuring system, Telonic provides eight Rho-Tector Models. Microwave Terminations in 21 VSWR values, (also available in VSWR kits with Rho-Tectors) and the Rho-Meter for direct read-out of VSWR values.
so precise each switch element is a "JEWEL"!

RCL ½" ROTARY SWITCHES
- Up to 12 positions per deck with stops.
- As many as 6 poles per deck.
- Shorting and non-shorting poles may be grouped on one deck in any combination.

"Off-The-Shelf" Delivery—Write for complete engineering information

RCL ELECTRONICS, INC.
General Sales Office: One Hixon Place, Maplewood, New Jersey 07040

Circle 249 on reader service card

of all meter/relays, the PARKER
MINITROL is the most compact, most rugged, simplest, most dependable

with an array of features never before available in a single instrument:
- All-solid-state switching / no physical contacts, mirrors or prisms...
- Positive repeatable switching over the entire instrument range...
- Completely self-contained indicating and control...
- Dual or Single Control Points with simultaneous switching available...
- Selenium or Light-Activated SCR Cells, as desired...
- Internal-Switching Capability to 300 MA at 100V...
- Extreme Compactness / ¾"-thin case includes all indicating and control elements, etched-circuit design...
- Multi-Unit Assemblies of edgewise modules for high-density control/display (14 units per foot)

write for bulletin M-10

New Instruments

24-in. leads and a terminal connector. The transducer element is 0.250 in. in diameter and provides sensitivity up to 20 mv/v. It utilizes semiconductor type, bonded strain gauges in a fully active bridge for stability. Both differential and absolute models are available in pressure ranges of ±2 up to 2,000 psi. Internal temperature compensation is available in ranges from −40° to 300°F. These units operate on either d-c or a-c and are compatible with standard strain-gauge instrumentation.

Scientific Advances, Inc., 1400 Holly Ave., Columbus, Ohio, 43212 [376]

Phase meter, shifter offers direct reading

A combination phase meter and phase shifter, model 301A, operates over a frequency range from 30 to 30,000 hertz. The phase angle, when used either as a phase shifter or a phase meter, is read directly from a large circular dial calibrated from 0° to 90°.

A quadrant selector switch allows operation over a full 360° without ambiguity. Measurement accuracy is ±2°. Input impedance is 10 megohms and sensitivity is 85 mv. The output from the phase shifter is provided by a 300-ohm source and is adjustable from 0 to 5 v rms.

Dytronics Co., Inc., 4800 Evanswood Drive, Columbus, Ohio, 43224 [377]

Sensitive electrometer uses FET for input

The description of this vibrating reed electrometer [Dec. 12, p. 201] contained some errors. The instrument is used with mass spectrometers, not mass spectrophotometers. Correct specifications—lowest measurable potential: 2 x 10⁻⁸ volts; possible outputs: 10, 25 and 100 millivolts and 1 and 30 volts; current range: 10⁻¹⁷ to 3 x 10⁻⁷ amps; and charge range: 5 x 10⁻¹⁶ to 6 x 10⁻¹⁰ coulombs.

Cary Instruments, subsidiary of Varian Associates, 2724 S. Peck Road, Monrovia, Calif. 91016
New Subassemblies and Systems

Ambient reference for thermocouples

Thermocouples attached to equipment in environmental test chambers are usually referenced to outside junctions whose temperature is held to some fixed standard, such as the freezing point of water. But, claiming that a passive reference is less expensive and more reliable than a controlled reference, Joseph Kaye & Co., Cambridge, Mass., have developed a 64-channel system keyed to the ambient temperature outside the test chamber.

Instead of relating measurement signals from the chamber to a fixed standard, the company's Uniform Temperature Reference urn system combines the measurement and ambient reference signals; the reference temperature or the voltage generated at the reference temperature is then subtracted out.

Under this system, designed to work with computer-type data-logging gear, thermocouple wires are connected to the equipment being tested to form a measurement junction, a chromel-alumel one, for example. At their other end, the wires are connected to the urn panel outside the chamber to form two more junctions of chromel-copper and alumel-copper.

The magnitude of the reference signals generated by the junction in the panel is dependent on the ambient temperature outside the test chamber. The combined signals from the thermocouple in the test chamber and those in the urn panel are then fed on a pair of single wires to multiplexers or directly to a computer input. The voltage generated at the ambient reference temperature can be electrically subtracted before reaching the multiplexers, or the computer can be programmed to automatically subtract the reference temperature.

The unit will work with any type or combination of types of thermocouples: copper-constantan; chromel-alumel; iron-constantan or platinum-platinum/10% rhodium. Temperature errors are reported to be less than 0.1°F for a linear 20°F-per-hour ambient change and 0.02°F for a linear 5°F-per-hour change. If ambient variations are kept very small, junction-to-junction temperature differences approach zero, according to the developers. Channel-to-channel leakage resistances are greater than 1,000 megohms.

The reference system is available from stock and costs $735. Joseph Kaye & Co., 737 Concord Ave., Cambridge 38, Mass. [381]

Small power supply delivers high voltage

A power supply that provides up to 1,500 v d-c and 2 ma output with low noise characteristics is available in a military-ruggedized package that occupies 3 cubic inches and weighs 120 grams. Output ripple is 0.1% rms of output voltage. The completely floating output can be adjusted with a screwdriver from 700 to 1,500 v. The units may be easily stacked if increased voltage output is required.

Excellent stability of the HV-15 power supply provides line regulation of 0.15% per volt and load.
The response time of any photocell slows proportionately as the light level decreases. But Vactec delivers a rapid response time even at low light levels. At .01 ft. candles, for example, Vactec Type O material provides a rise time of 780 milliseconds with a delay time of only 90 milliseconds. And you also get the temperature stability provided only by CdS material. Even if yours is a higher light level application, isn’t it reassuring to know there is a supplier whose cells are capable of such a high level of performance?

Five new materials ranging from Cadmium Sulfide to Cadmium Selenide for new Type O material are now available. Write for new Bulletin PCO-4 today!

VACTEC INC.
2423 Northline Industrial Blvd., Maryland Hts., Mo. 63042
AC 314. HE 2-4200

See Vactec’s listing in EBG under “Semiconductors,” and in EEM, Sec. 3700.

New Subassemblies

regulation of 2.5% from half to full load. Designed to meet all applicable military standards of shock, vibration and temperature, these power converters are suited for use with klystron oscillators, amplifiers, backward wave oscillators and other land, sea or aerospace applications where optimum reliability is essential.

Available from stock, the supplies are $273 in quantities from 1 to 10. Price and delivery information on larger quantities will be supplied on request.

Mil Associates, Inc., Hudson, N.H., 03051. [382]

D-c power supplies recover rapidly

Precision-regulated, all-solid state power supplies feature constant-current output useful down to the microamp region. Ripple, regulation and stability are orders of magnitude better than comparably priced devices, according to the manufacturer. The compact CCB models can serve as general-purpose lab constant-current sources for semiconductor circuit development and component evaluation and testing. Outputs to 750 milliamperes are available.

A constant-current d-c power supply must change its output voltage rapidly to minimize load current transients. With the CCB series even load changes that require changing the full rated output voltage take less than 200 microseconds to return to within 0.1% of the prescribed current.

On most constant-current power supplies, placing a voltmeter across the output terminals degrades the load regulation and diminishes the load current. The CCB series eliminates this error,
A LOW-COST 4PDT 3 AMP RELAY CAN OUTPERFORM THE HIGHER PRICED ONES.

New Sigma Series 67 4PDT 3 amp AC-DC relays are not only priced lower than competitive types but will outperform them four ways:

In Life Expectancy: Slots in contact base between fixed contacts eliminate build-up of vaporized contact material and leakage paths. This feature alone can double relay life expectancy.

In Adjustment Stability: The contact base and movable contact support of the new Series 67 is made of diallyl phthalate. This material does not deform under mechanical and thermal stresses.

In Thermal Resistance: The Series 67 enclosure is made of high heat resistant polycarbonate instead of less resistant nylon. This assures stable operation at high temperatures.

In Fast, Easy Installation: Series 67 solder terminal socket can be installed in seconds, with no need for screws or fasteners. It simply snaps into the face of the panel and four spring clips lock it.

We'd like to give you a new Sigma Series 67—or any of our other standard relays. Test and compare it against the brand you may now be using. It's the best way we know to prove what we say about Sigma relay performance. Just circle our reader service number on the reader service card. We'll send you the new Sigma relay catalog and a "free relay" request form. Return the form to us and your Sigma representative will see that you get the relay you need.

Need fast delivery? The Series 67 is available off-the-shelf from your Sigma distributor.
CEI's Sensitive New VHF Receiver

Six Crystal-Controlled Frequencies...
Plus Continuous 30-300 mHz Tuning in Two Bands

Meet a new and unusual VHF receiver from CEI. The Type 952 provides AM, FM and CW reception throughout the 30-300 mHz range, while also offering six switch-selectable crystal-controlled frequencies within the 100-150 mHz range.

The receiver's full frequency range is covered in two bands—30-90 mHz and 60-300 mHz—with accurate tuning facilitated by a long steel tape dial. IF bandwidths of 50 and 300 kHz are selectable at the front panel; video and audio outputs are provided from the bandwidth selected, and a built-in BFO operates with either bandwidth when the CW mode is selected.

Sensitivity, stability and operating flexibility are outstanding. For full information about the 952's unusual features and performance, please contact:

COMMUNICATION ELECTRONICS INCORPORATED
6006 Executive Blvd., Rockville, Md. 20852 · Phone: (301) 933-2800 · TWX: 710-824-9603

New Subassemblies

The CCB supplies have three-position output and meter range switches, a 10-turn output control with resolution to 0.1 microampere, continuously variable voltage limiting, output impedance up to 20,000 megohms, front and rear output terminals, high-speed remote programming, and modulation capability using external a-c source.

Hewlett-Packard, Harrison division, 100 Locust Ave., Berkeley Heights, N.J., 07922. [383]

Plotters operate from digital inputs

A digital plotting system designated model 6710 operates directly from computers, counters, digital voltmeters, or any source generating parallel binary or bcd data. A 3-decade range of presentation can be made on a 10 in. x 144 ft recording surface with 0.1% resolution. The fan-fold paper can be separated at perforated folds to give 8½ x 11 in. or 11 x 17 in. notebook size records or extended records of unlimited length. All portions of the record may be observed as one would read a book.

The system requires only 1.5 µsec data access as it incorporates a 3-decade single point memory. Command logic and the memory are built into the system allowing operation with computers in the program interrupt mode. A maxi-
NEW

Lambda high current LK Series power supplies
0-20, 0-36, 0-60 VDC • up to 35 amps • 5¼” height • starting at $330.

Features

• Series/Parallel Operation
• Regulation—0.15% or 1 MV (Line or Load)
• Ripple—500 uV RMS.
• Temp. Coef.—0.15%/°C
• Transformer—designed to MIL-T-27 Grade 6
• Completely Protected—Short Circuit Proof—Continuously Adjustable Automatic Current Limiting
• Constant I./Constant V. by automatic crossover
• No Voltage Spikes or Overshoot on “turn on, turn off” or power failure
• Wide Input Voltage and Frequency Range—105-132 VAC, 47-63 cps

Rack or Bench use—rubber feet included for bench use.

3 full-rack models—Size 5¼” x 19” x 16½”

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Range</th>
<th>CURRENT RANGE AT AMBIENT OF:</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK 350</td>
<td>0-20VDC</td>
<td>0-35A 0-31A 0-26A 0-20A</td>
<td>$675</td>
</tr>
<tr>
<td>LK 351</td>
<td>0-36VDC</td>
<td>0-25A 0-23A 0-20A 0-15A</td>
<td>$640</td>
</tr>
<tr>
<td>LK 352</td>
<td>0-60VDC</td>
<td>0-15A 0-14A 0-12.5A 0-10A 0-8A</td>
<td>$650</td>
</tr>
</tbody>
</table>

6 half-rack models—Size 5¼” x 8½” x 16½”

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Range</th>
<th>CURRENT RANGE AT AMBIENT OF:</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK 340</td>
<td>0-20VDC</td>
<td>0-8.0A 0-7.0A 0-6.1A 0-4.9A</td>
<td>$330</td>
</tr>
<tr>
<td>LK 341</td>
<td>0-20VDC</td>
<td>0-13.5A 0-11.0A 0-10.0A 0-7.7A</td>
<td>$385</td>
</tr>
<tr>
<td>LK 342</td>
<td>0-36VDC</td>
<td>0-5.2A 0-5.0A 0-4.5A 0-3.7A</td>
<td>$335</td>
</tr>
<tr>
<td>LK 343</td>
<td>0-36VDC</td>
<td>0-9.0A 0-8.5A 0-7.6A 0-6.1A</td>
<td>$395</td>
</tr>
<tr>
<td>LK 344</td>
<td>0-60VDC</td>
<td>0-4.0A 0-3.5A 0-3.0A 0-2.5A</td>
<td>$340</td>
</tr>
<tr>
<td>LK 345</td>
<td>0-60VDC</td>
<td>0-6.0A 0-5.2A 0-4.5A 0-4.0A</td>
<td>$395</td>
</tr>
</tbody>
</table>

† Current rating applies over entire voltage range.
‡ Prices are for non-metered models. For metered models add suffix (FM) to model number and add $30.00 to price.
§ Overvoltage Protection: Add suffix (OV) to model number and add $70.00 to the price for half-rack models; $90.00 for full-rack models.
... if you think that heart disease and stroke hit only the other fellow's family. No one is immune. Protect the hearts you love. For authoritative information, ask your Heart Association. For medical advice see your doctor. To safeguard your family...

GIVE... so more will live

HEART FUND

New Subassemblies

Maximum of 1,200 points/minute may be plotted with 0.2% full-scale accuracy.

Price is $3,725; availability, 45 days after receipt of order.

Houston Omnigraphic Corp., 4950 Terminal Ave., Bellaire, Texas, 77401. [384]

Operational amplifier features low cost

 Designed for medium gain and relatively high drift stability, an operational amplifier has been developed that sells for only $13.50. This is a full service unit with 6 db per octave roll off, low susceptibility to capacitive loading and instant turn-on drift of less than 50 microvolts. It can be used in any application.

Performance characteristics for the model 10Q7AR include a differential input drift of 10 µV and 0.2 nanoamp per °C. Differential input resistance is 180 kilohms; offset current, less than 25 nanoamps; gain, 90 db; crossover frequency, 2 Mhz; full output frequency, 15 khz; and output, ±10 v, 2 ma.

Computer Dynamics Inc., 179 Water St., Torrington, Conn., 06791. [385]

Differential amplifier covers wide band

A completely floating, solid state amplifier containing a regulated power supply fulfills all d-c instrumentation amplifier requirements. The model 501 differential d-c amplifier provides 500-v common mode voltage and 120-db isolation.

Other features include stepped and variable gain to 100; noise, 4 µv; response, 1% from d-c to 5
khz, 1 db to 20 khz and 10-megohm input impedance. Output capabilities are ±10 v, adjustable between 50 and 150 ma. Output impedance is less than 0.5 ohm. Linearity is 0.05%, and ±2-v d-c zero adjust is provided.

The amplifier comes complete with a case suitable for bench use and is priced at $450 each. Series 103 rack adapter allows 5 amplifiers to be mounted in only 3½ inches of vertical rack height—complete with mating connectors. Instrumentation Amplifiers & Supplies, Inc., 29 Newtown Road, Plainview, N.Y., 11803. [386]

Dual plug-in supplies power for many uses

Analog systems, special laboratory or production test setups, and one-time test stations are among the applications for a new dual plug-in power supply. Model 506 features dual, 3-wire output of ±12 to ±24 volts d-c at 150 milliamperes for each channel in the compact, plug-in, card-type module design.

Other features include current limit, short circuit protection, and convection cooling over an operating temperature range of -20° to 70°C. Model 506 has regulation of 0.03% line and 0.15% load, and operates at 45 to 440 hertz, 105 to 130 v a-c input.

The unit is 2½x3½x3¼ in. RO Associates Inc., 917 Terminal Way, San Carlos, Calif., 94070. [387]

How to sell your boss on getting you a Model 140 Ion Laser

Tell him it’s put together the way a precision scientific instrument should be, with superior mechanical and electrical integrity, backed by a full-year, no-strings warranty.

Tell him it has a power density capability of a billion watts per square inch, yet costs less per watt than any other ion laser of comparable quality. Tell him it’s the only induction ion laser, and explain that this means no metal cathodes to burn out in the plasma tube, giving you low-noise optical output with much greater plasma tube reliability.

Tell him about Dial-a-Color tuning, which uses an intra-cavity Littrow prism to give you any one of eight wavelengths from yellow to blue, shown on the calibrated slide rule dial. Tell him you can also get the Model 140 with an interchangeable non-prism reflector, permitting all argon transitions to operate simultaneously, resulting in maximum power output.

And tell him, if your application idea is one that requires the ion laser itself to determine its feasibility, we can perhaps arrange for you to experiment with a Model 140 we’ve set aside for that purpose.

If he hasn’t given you a thumbs-up by this time, tell him the Model 140 is made by Spectra-Physics. That should do the trick.

If you’d like to be armed with a data sheet before you tackle your boss, write us at 1255 Terra Bella, Mountain View, California 94040. In Europe, Spectra-Physics, S.A., 18, rue Saint-Pierre, Box 142, 1701 Fribourg, Switzerland.
BIFILAR
THE NEW TWIST
IN RELAYS!

Of course Bifilar coil winding is no dramatic new story. But a relay with a counter EMF of 50 volts max is! We've gotten rid of all diodes and bulky shielding tricks, so the relay package is still the same small standard size.

Most importantly, our method doesn't suppress transient voltage at the expense of relay parameters, or increase temperature past recommended maximums, or affect contact resistance. Reliability's up because Bifilar isn't polarity sensitive and doesn't use additional components.

Still as tough? How about shock of 50G, 11 ms and vibration standards like 30G @ 3000 cps on a Bifilar half size crystal can. Good enough?

Then you'll be glad to know that Bifilar relays are now shipping in sub-miniature Series E, as well as husky 20-amp 3PST/NO 9324 power contactors.

Call Leach Corporation, Relay Division (213) 232-8221. Mail takes a little longer. 5915 South Avalon Bl., Los Angeles, Calif. 90003.

Export...Leach International S.A. LEACH
Ball .002" dia., Iteration ±5%
select from the most complete line of relay rack panels on the market

BUD makes 141 different types and sizes ... in a choice of seven finishes ... all delivered from stock

What do you look for in a relay rack panel ... steel or aluminum ... wide choice of sizes ... good selection of finishes ... immediate delivery!

Our huge production facilities enable us to meet your requirements promptly ... smaller quantities from our distributors' stock — larger quantities from our plant.

If a stock panel doesn't exactly suit your needs, our special services include custom punching, color matching and silk screening.

See all the Bud relay rack panels at any one of 400 Authorized Bud Distributors.

Write us for Bulletin PA 67 which gives complete information about our complete line of relay rack panels.

BUD RADIO, INC.
4611 E. 355th Street • Willoughby, Ohio 44094
A swept-frequency network analyzer costing but a fraction of that of comparable wideband units, according to its maker, accurately measures a signal's phase and amplitude. Such information is essential in designing microwave components, amplifiers and antenna arrays, and in analyzing circuit constants such as "S" parameters. An external sweep generator sweeps the system in octave bands from 0.11 to 12.4 gigahertz.

The analyzer can perform in minutes measurements that take hours with conventional slotted line techniques.

The manufacturer, the Hewlett-Packard Co., offers the analyzer, with accessories, for less than $10,000. This equals the cost of previous systems that measure only amplitude. Such information is essential in designing microwave components, amplifiers and antenna arrays, and in analyzing circuit constants such as "S" parameters.

A swept-frequency network analyzer costing but a fraction of that of comparable wideband units, according to its maker, accurately measures a signal's phase and amplitude. Such information is essential in designing microwave components, amplifiers and antenna arrays, and in analyzing circuit constants such as "S" parameters.

The analyzer consists basically of a frequency converter, A; a network analyzer mainframe, B; and two types of plug-in units, such as C, that provide different displays. The plug-in shown, model 8413A, displays phase and amplitude on a meter and supplies output signals for display on a conventional oscilloscope. The alternate plug-in, model 8414A, allows Smith chart analysis by presenting the information in polar coordinates on a cathode-ray tube. Precision calibrated line stretchers in accessory D, model 8740A, split the sweep-frequency signal. The transmission unit also changes the reference plane to facilitate analysis of the impedance or admittance of the circuit being tested.

Amplitude is resolved to 0.1 decibel and phase is resolved to 0.1° at any angle to 360°. Phase lead and lag are clearly indicated. Swept measurements can be made of components that have an amplitude variation of 60 dB.

In measuring, the output of a sweep or signal generator is split into two parts. One part serves as a reference for phase and amplitude and the other serves as a test signal that interacts with a component or circuit being measured. The transmission unit, D, can perform this split or conventional precision hardware can be used.

Reference and test signals are fed into the frequency converter, which is the main element of the analyzer. The converter, model 8411A, is a wideband, phase-locked unit that heterodynes the inputs down to two 20-megahertz signals that are coherently related in phase and amplitude to the microwave signals.

These 20-Mhz signals when fed into a plug-in, such as C, are converted to 277.7 kilohertz, allowing all measurements to be made with precision low-frequency components. Since 277.7 is inversely related to 360, a time interval counter can relate the period of the signal directly to degrees.

The phase lock loop in the converter maintains the 20-Mhz frequency

why do the world's leading manufacturers* depend on Hull packaged systems?

Here's why:

RECOMMENDATIONS BASED UPON OVER 500 INSTALLATIONS—Since 1956, Hull has accumulated a wealth of encapsulation know-how to guide selection of the right production equipment.

UNDIVIDED SYSTEM RESPONSIBILITY —The Hull "package" includes press, molds, loading frames, and auxiliary handling equipment... assuring smooth, economical flow of production parts.

INTO PRODUCTION, FASTER, SURE—Hull can help steer system design for optimum encapsulation while product is at "bread-board" stage... minimizing lost motion and delays.

LOW-COST, QUALITY PRODUCT ASSURED—Hull encapsulation systems offer a proven method for rapid, precise, and economical packaging of electronic components and circuits, large or small.

FOR MORE OF THE HULL STORY on encapsulation by transfer molding, write for a copy of Bulletin P963.

*Texas Instruments, General Electric, IBM, Motorola, Philips, Fairchild Semiconductor, Siemens & Halske—to name a few.

Visit Us at NEPCON West Booth 708

Circle 203 on reader service card
New Microwave

Frequency output even when the source is very rapidly swept. H-P accomplished this by optimizing all parameters in the phase lock loop to achieve an equivalent bandwidth of 2 to 3 MHz. This allows the converter to follow a signal that sweeps 4 gigahertz in 10 milliseconds.

To heterodyne, a high-speed step recovery diode in the converter serves as a driver for a high-speed Schottky barrier diode that samples the microwave frequency. The sampling diode, which turns on and off in 30 picoseconds, was specially designed for the unit; but is also used in an X-band oscilloscope that H-P introduced last year. The diode is not for sale, the company says.

Prices

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic analyzer</td>
<td></td>
</tr>
<tr>
<td>Frequency converter, 8411A</td>
<td>$2,200</td>
</tr>
<tr>
<td>Network analyzer mainframe, 8410A</td>
<td>$1,700</td>
</tr>
<tr>
<td>Plug-in, 8413A</td>
<td>$825</td>
</tr>
<tr>
<td>Plug-in, 8414A</td>
<td>$825</td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
</tr>
<tr>
<td>Transmission test unit, 8740A</td>
<td>$1,100</td>
</tr>
<tr>
<td>Reflection test unit, 8741A (0.11 to 2 Gzh)</td>
<td>Less than $1,500</td>
</tr>
<tr>
<td>Reflection test unit, 8742A (2 to 12.4 Gzh)</td>
<td>Less than $1,500</td>
</tr>
</tbody>
</table>

Hewlett-Packard Co., 1501 Page Mill Road, Palo Alto, Calif. [391]

S-band, high power digital phase shifter

A compact digital phase shifter, the MA-8357-8S1E, is designed for phased array applications. An array of these devices is capable of replacing conventional electromechanically driven antennas. The unit features reciprocal operation and high power capability at 15 kw peak and 500 w average.
operating power levels with a burnout level in excess of 30 kw. Particular emphasis has been placed on its ability to maintain phase accuracy at ±3° for all phase combinations from a nominal characteristic. Bandwidth is 10% within any 2 to 4 Ghz range.

P-i-n diodes are mounted in iterative fashion in the phase shifter and are switched in combinations which provide a maximum of 360° of phase shift in a minimum of 22.5° increments. Insertion loss is 2 db maximum and 1.5 db average; vswr, 1.35:1 maximum and 1.15:1 average. Lightweight, compact construction has resulted in a package 21 in. long x 2 in. diameter and 5 lbs in weight.

Microwave Associates, Burlington, Mass. [392]

Mixer/preamplifiers come in 7 models

A compact series of waveguide-input mixer/preamplifiers makes use of low-noise wideband, orthogonal-mode waveguide mixers. Seven models encompass the frequency range of 5.4 to 39 Ghz.

Typical is the XDB-7 with input-frequency range of 8.2 to 12.4 Ghz; intermediate frequencies, 30, 60 or 70 Ghz; noise figure, 9 to 10 db; local oscillator required, 2 mw; power requirement, −20 v d-c, 10 ma.

A choice of i-f bandwidths, 12 or 20 Mhz, is offered. Conversion gain is 24 db for the 12 Mhz bandwidth; 19 db in the 20 Mhz bandwidth. The mixer/preamplifier has a signal-handling capability of −24 dB. Insertion loss is 2 db maximum and 1.5 db average; vswr, 1.35:1 maximum and 1.15:1 average. Light-weight, compact construction has resulted in a package 21 in. long x 2 in. diameter and 5 lbs in weight.

Microwave Associates, Burlington, Mass. [392]
New Microwave

dbm, with less than 1 db of compression.
Price is $995; delivery, one month.
LEL division, Varian Associates, Akron St., Copiague, N.Y., 11726. [393]

B-w amplifier tube
operates in S band

Combination of a 16-db gain at 2.9 to 3.1 Ghz with 60 kw peak power is featured in an S-band backward-wave amplifier tube. The model QKS1267 amplifier retains the compactness, high efficiency and low voltage features of standard bwa's.
Average powers up to 3 kw are available. Nominal efficiency is 70% and anode voltage is 25 kv. The unit has a pulse width of 30 or more µsec. Weight is under 50 lbs. Raytheon Co., Microwave and Power Tube division, Waltham, Mass., 02154. [394]

Turret attenuators
feature high accuracy

A line of coaxial step-attenuators provide 60-db attenuation in 10-db steps at any frequency from dc to 12.4 Ghz. The accuracy of the steps is ±1.0 db, which includes any variations due to frequency.
Series TA-700 turret attenuators, suited for use in both production line and laboratory test equipment, remain unaffected by major changes in frequency. Frequency sensitivity is less than 0.3 db per octave. Measuring only 2¼ x 2½ x 2½ in., the attenuators have 1.5 vswr at both input and output ports.
and a 1 db maximum insertion loss over the entire frequency range. The units can handle 2 watts average and 1 kw peak power. Connectors are type N, stainless steel, designed to meet the requirements of MIL-C-39012.

Filmohm Corp., 48 W. 25th St., New York, N.Y., 10010. [395]

Co-ax transfer switch maintains low vswr

Versatility of operation is featured in a 1½ in. coaxial transfer switch designed for frequencies up to 2.9 Ghz. The 50-ohm switch has applications wherever r-f power must be rerouted quickly and reliably such as in industrial and military communications systems or in radio and tv broadcast stations.

The transfer switch, which is motor driven, maintains a vswr of less than 1.05 up to 2.9 Ghz, and has an average capability of 15 kw at 100 Mhz. It can be cycled manually in case of a-c power failure.

Type 6732 requires fewer units than spdt switches that perform similar switching functions. It provides two completely independent interlock circuits which follow the r-f path, opening and closing as the r-f contacts open and close. Contacts that indicate switch position are also included.

Andrew Corp., 'Box 807, Chicago, Ill., 60642. [396]

EDGewise PANEL METERS

...we've got your number

1122 flat, stackable, self-shielding; 1.24" scale in less than a square inch of panel.

1136 scale length (2") of a 3½" conventional meter in a stackable, 2.6" wide edgewise. Easy to read, too: bi-level scale, optional internal illumination.

1145 2.7" scale, bi-level, for easy reading. A completely shielded, 3½" stackable meter, ideal where you need a bigger readout.

1147, 2520, 2150, 1120, 2500 military models, dual-scale meters, 5" scales, economy versions, meters with interchangeable scales, specials to order.

The move is on to edgewise. Equipment designers everywhere are realizing that edgewise meters give as much as three times the scale readout as conventional meters in the same panel space.

We're the leaders in edgewise meters, have been since we pioneered the concept years ago. Now we offer industry's broadest line of up-to-date, space-saving edgewise models. Our new edgewise catalog, Bulletin 391, has all the details. Write for a copy.

International Instruments Inc.

8703 Marsh Hill Road • Orange, Connecticut 06477

Circle 207 on reader service card 207

Electronics | January 23, 1967
Is your problem INTEGRATED OPERATIONAL AMPLIFIERS—output current carrying capability, input offset voltage, input bias current?

Here's the NSC answer!

NS7560 and NS7560A

Integrated Operational Amplifiers

Features: • Low input currents • Low differential input currents • High output current capability • Low input offset voltages • Low standby power • TO-5 package.

100 LOT PRICE

NS7560 $17.50 NS7560A $35.00

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>NS7560</th>
<th>NS7560A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage (Maximum)</td>
<td>10 mv</td>
<td>3 mv</td>
</tr>
<tr>
<td>Input Offset Voltage Temperature Coefficient (Maximum)</td>
<td>30 µV/°C</td>
<td>15 µV/°C</td>
</tr>
<tr>
<td>Input Bias Current (Maximum)</td>
<td>100 na</td>
<td>25 na</td>
</tr>
<tr>
<td>Differential Input Current (Maximum)</td>
<td>50 na</td>
<td>2 na</td>
</tr>
<tr>
<td>Input Bias Current Temperature Coefficient (Maximum)</td>
<td>2 na/°C</td>
<td>1 na/°C</td>
</tr>
<tr>
<td>Peak Output Current (Maximum)</td>
<td>±50 ma</td>
<td>±50 ma</td>
</tr>
</tbody>
</table>

NATIONAL SEMICONDUCTOR CORPORATION, DANBURY, CONN.
(203) 744-0060

Circle 208 on reader service card
New Production Equipment

Peg tip solders miniature assemblies

Parallel-gap electrodes plugged with a peg tip are joining the family of tools used to bond ultra-miniature assemblies by the solder reflow method. The developer, the Hughes Aircraft Co.'s production equipment department, claims the new electrodes will replace the unplugged type in most applications because:

- Leads don't have to be stripped before the soldering operation as in parallel-gap soldering. The peg tip melts right through the insulation.
- Current doesn't pass through the parts being soldered and there is no buildup of flux on the soldering electrodes. Thus, they require little cleaning.
- The shape of the peg tip makes it possible to solder parts regardless of their orientation.

In addition, a minimum of heat is transferred to adjacent parts or to previously soldered areas, according to Hughes, and there is little damage to or delamination of printed circuit pads.

The peg tip is 35 mils in diameter and is placed between the two copper electrodes. The tip is cool when held to the work before the solder cycle begins. A pulse of heating current is then applied and the tip holds the work in place while the solder flows and hardens. No current flows in the work itself.

Applications include terminating wire matrixes in memory planes, attaching discrete components in hybrid thin-film circuits and soldering to small coils and transformers. The system effectively solders round wire up to 20 mils in diameter.

The peg tip—actually a molybdenum short between the electrodes—is heated by conduction. A voltage pickup across the tip monitors its resistance every 25 microseconds and feeds this information back to a transistorized power supply. Controlled amounts of current are fed into the tip to hold its temperature constant.

The operator of the unit can vary both the amplitude of the heating pulse and its length before he begins soldering. Pulse length can range from one millisecond to 9.9...
Radar Equipment Design Engineers

The Hughes Radar & Space Electronics Laboratories have important opportunities available for experienced Engineers.

Circuit development

Engineers are desired for assignments involving high-power transmitters for advanced design pulse/pulse doppler radars. Desirable background would include detailed familiarity with transmitter tubes, high-voltage design, solid state techniques, microminiaturization, logic/control, pulse circuits or power supply design.

Openings are available on nearly all levels—from those with a minimum of two years of applicable, professional experience through those who are interested in and qualified for senior supervisory positions.

Accredited degree and U.S. citizenship required.

For immediate consideration, please airmail your resume to:

MR. ROBERT A. MARTIN
Head of Employment
Hughes Aerospace Divisions
11940 W. Jefferson Blvd.
Culver City 44, California

Production Equipment

seconds, depending on the electrical resistance of the tip. The exact values of these parameters are empirically determined for each solder used and remain unchanged during a soldering run.

The electrodes with peg tips fit into Hughes’ mcw-type bonding equipment, and are priced at $40. Power supplies and heads for mounting the tip can also be used for parallel-gap welding, micro-resistance brazing and resistance welding. Delivery is from stock.

Hughes Production Equipment, 2020 Oceanside Blvd., Oceanside, Calif. [401]

Automatic machine makes IC masks

An integrated circuit mask manufacturing machine, the 4M-10AX, offers automatic continuous stepping speeds up to 5 inches per minute. It is said to be virtually foolproof because of a new approach to step-and-repeat technology which places the image to a tolerance of ±10 microinches.

This is accomplished without the use of mechanical readout but with an electronic optical scanner that employs no moving elements.

A photosensitive plate is located axially beneath a master scale. A high frequency response, position-sensing scanner detects location

An equal opportunity employer – M & F

Hughes Aircraft Company
Aerospace Divisions

that's a gasser!

When you're under less pressure, write for "spec" sheets on the gases you need and our folder which points out the benefits of buying your high-purity specialty gases from Air Products.
from a master coordinate optical scale. At each precise location a signal is generated for image placement. This arrangement, coupled with both the sensing scanner and reduction camera fixed coaxially, assures that image locations are always an exact reproduction of the master optical scale.

Standard rate of continuous image placement is 4 in. per minute. Faster rates are possible depending on the rate of recovery of the light source being utilized. The 4M-10AX will accept photo plates 2 x 2 in., 2½ x 2½ in. and 4 x 5 in., and can be easily and quickly adapted to other sizes.

Images may be changed within an array by a new off-stage aligning feature without detectable loss in accuracy. An optional programming console for image omission within an array is also available. This is a desirable feature when an array is to be composed of two or more images.

The generation of each step-and-repeat plate is accomplished by rescanning the master. Continuous repeatability is, therefore, assured. The Jade Corp., Bethayres, Pa., 19006.

Processing machines for p-c boards

There's a choice of ways to clean and develop printed-circuit boards with a new series of printed-circuit processing machines. The machines offer either manual or conveyor operation and feature a choice of immersion-vapor, vapor-electronics, etc.
spray-vapor or immersion-spray-vapor cycles. Solvents such as Freon TMC for flux removal and tricholoroethylene for developing KOR and KRP photoresist can be used.

Long, narrow top openings in the processors match the configuration of p-c boards. This minimizes machine height and insures low solvent consumption.

The manually operated models are normally used for low and medium production rates where process timing and sequencing are not critical. Where high production rates are involved or where process sequence and timing are critical, a conveyorized version with a program control is added to the manually operated machine.

Conveyor installation can be accomplished at manufacture or in the customer's plant with a "drop-in" conveyor and associated program control. A feature of the conveyorized machine is the oscillation of the boards in the immersion and spray which yields uniform cleaning or developing.

Standard units are available which can process individual boards or combinations with maximum dimensions ranging from 36 x 15 in. to 72 x 15 in. Custom machines are available with a stainless steel enclosure for white room installations.

Prices for the SLC series range from $2,000 to $9,900 depending on size, conveyorization and program control.

Branson Equipment Co., 51 Terminal Ave., Clark, N.J. [403]

Cable stripper severs instantly

Metal braided shielding on coaxial cable and thermocouple wire can be stripped cleanly by melting the shielding with an electric current.

Two electrodes, 1/16 in. apart in the MSS-205 Blue Arc stripper, grip opposite sides of the braid. Low-voltage current is then sent through the gap to sever the braid in much the same way as when a fuse is blown.

At the point of severance the braid ends are fused so there is no
Great editorial is something he takes home
(What a climate for selling!)

Electronics
A McGraw-Hill Market-Directed Publication
330 West 42nd Street, New York, N.Y.10036

VERSATILE, EASY-TO-USE SELECTOR SWITCH

Provides fast rail freight yard classification control

New Cherry Selector Switch enables operator to control freight yard traffic with speed and accuracy

Now—a manual switching device, human-engineered for rapid finger-tip selection of cars, track locations and sequence classification of trains—with continuous visual reference.

The Cherry Selector Switch can be installed quickly because no soldering is required. And there's no jungle of wires to confuse you or cause problems. It is available in various sizes—from 100 to 2784 positions. Write today for full details.

CHERRY ELECTRICAL PRODUCTS CORP.
1656 Old Deerfield Road Highland Park, Illinois 60035

Circle 213 on reader service card

Electronics | January 23, 1967
fraying. A grounded wire or pigtail may be welded to the braid by placing the wire between the electrodes for simultaneous fusing and severing. The electrodes are closed pneumatically by a foot switch. An air flow valve mounted on the front panel controls both the speed of closing and the pressure of the electrode jaws.

The bench model unit is 10 in. wide x 16 3/16 in. long x 9 ¾ in. high, resting on rubber bumpers.

The Eraser Co., Inc., 1068 South Clinton St., Syracuse, N.Y., 13201.

Automatic machine impregnates armatures

An automatic trickle-impregnation machine can handle up to 540 armatures per hour. The armatures are continuously rotated in the machine for uniform heating, impregnating, jelling and curing. Resin is applied on both ends of the armatures simultaneously. Three-zone resistance heating gives precise control of the temperature throughout the process. Radiant heat or a combination of resistance and radiant heat are also available.

Because the resin is applied to the windings only, cleanup of the outside diameter, commutator and shaft is eliminated. There is no material waste or material recycle.

The compact in-line design of the model PT1-9-75 provides straight-through production line efficiency. The machine accommodates three armatures at a time with diameters of 2/5 in. to 2 3/8 in. and stack heights of ½ in. to 3 in. Possis Machine Corp., 825 Rhode Island Ave., South, Minneapolis, Minn., 55426.

Q-max Corporation
MARLBORO, NEW JERSEY
Telephone: 462-3636 (Area Code 201)

Circle 255 on reader service card
Nowhere Else Can You Get All Of These Features For Less Than $875

The New Heath 10-14... a 5" DC to 8 MHz Scope with continuous duty ratings, triggered sweep, 0.25 µsec coaxial vertical input and time base... factory assembled & tested for $399.00... kit only $299.00

The Heath 10-14 Features The Engineering And Quality Components You Expect Only In Higher Priced Oscilloscopes. For example, switches are all-detect type; all major control potentiometers are precision high-quality sealed components; all critical resistors are 1% precision; and vertical signal delay is provided through high-linearity coaxial delay lines. Here is the ultra-stable, low-distortion performance demanded from a truly professional industrial, academic, electronic engineering laboratory oscilloscope. Check the prices and specifications yourself, and you'll agree the Heath 10-14 gives a new meaning to 'scope value.

Kit 10-14 (with standard P-2 phosphor), 53 lbs. $299.00
Assembled 10W-14 (P-2 phosphor), 47 lbs. $399.00
Assembled 10W-14S (with long persistence P-7 phosphor for bio-medical or industrial use), 47 lbs. $410.00
Kit PK-1, Low-Capacitance Probe, 1 lb. $45.95

10-14 SPECIFICATIONS — (Vertical) Sensitivity: 0.05 v/cm AC or DC. Frequency response: DC to 5 MHz, — 3 db or less; DC to 8 MHz, — 3 db or less. Rise time: 40 nsec (0.04 microseconds) or less. Input impedance: 1 megohm shunted by 15 µuf. Signal delay: 0.25 microsecond. Attenuator: 9-position, compensated, calibrated in 1, 2, 5 sequence from 0.05 v/cm. Accuracy: ±3% on each step with continuously variable control (uncalibrated) between each step. Maximum input voltage: 600 volts peak-to-peak; 120 volts provides full scale pattern in least sensitive position. (Horizontal) Time base: Triggers with 16 calibrated rates in 1, 3, 5 sequence from 0.5 sec/cm to 1 microsecond/cm with ±3%; accuracy or continuously variable control position (un calibrated). Sweep magnifier: X5, so that fastest sweep rate becomes 0.2 microseconds/cm with magnifier on. (Overall time base accuracy ±5% when magnifier is on.) Triggering capability: Internal, external, or line signals may be switch selected. Switch selection of + or — slope. Variable control on slope level. Either AC or DC coupling. "Auto" position. Triggering requirements: Internal, ½ cm to 6 cm display. External: 0.5 volts to 120 volts peak-to-peak. Horizontal input: 1.0 v/cm sensitivity (un calibrated) continuous gain control. Bandwidth: DC to 200 kHz ±3 db. Generals: SADP81 or SAD72 flat face CRT, interchangeable with any SAD or 5AB series tube for different phosphor characteristics, 4750 V accelerating potential. 6 x 10 cm edge lighted graticule with 1 cm major divisions & 2 mm minor divisions. Power supply: All voltages electronically regulated over range of 105-125 VAC or 210-250 VAC 50/60 cycle input. (2 Axis) Input provided. DC coupled CRT unblanking for complete trace suppression. Power requirements: 285 watts, 115 or 230 VAC 50/60 Hz. Cabinet dimensions: 15" H x 10" J X 22" D includes clearance for handle and knobs. Net weight: 40 lbs.
New Materials

Thermally conductive bonding adhesive

An adhesive with high-thermal conductivity has been developed for bonding together heat sinks and conductive metals. Thermal bond 312 is supplied in two-part, ready-to-mix-and-use tubes containing bonding compound and hardener.

The material has a thermal conductivity of 7.4 Btu per hr-ft² per °F per inch and a dielectric strength of 650 volts per mil. The coefficient of thermal expansion is matched to that of aluminum since the compound is designed primarily for use with aluminum heat sinks. The cured compound exhibits excellent bond-shear strength.

The adhesive is normally supplied in cartons of 12 boxes. Each box contains two 5-oz. tubes of the bond and hardener for $46.60. Quotations will be supplied for bulk volumes on request.

Astrodyne Inc., 207 Cambridge St., Burlington, Mass., 01803. [406]

Encapsulant resists high temperature

A two-part potting and encapsulating epoxy system, Stycast 2762, is designed for use at high temperatures. Its thermal conductivity, the manufacturer reports, is well above that of most epoxy systems, yet it maintains its electrical insulating qualities.

Stycast 2762 with Catalyst 14 or Catalyst 17 gives a resin mix with a pot life of about 24 hours. It is cured at high temperature, and is used at temperatures in the 400° to 600°F range; curing should be done in steps. Stycast 2762 with Catalyst 14 withstands a 700°F environment for a few hours and a 600°F environment for much longer periods. One test at 570°F showed a weight loss of only 0.3% in 3 days.

The figure at left in the photo shows Stycast 2762 after 50 hours at 500°F; at the right, conventional epoxy after 20 hours at 500°F.

The encapsulant is also radiation resistant. After exposure to 6 x 10⁹ roentgens from a cobalt-60 source, there was no evidence of damage.

Stycast 2762 is available in 15-lb and 2-lb containers for about $2.50 per pound.

Emerson & Cuming, Inc., Canton, Mass., 02021 [407]

Heat-shrinkable tubing for component use

A high temperature tubing called Insultite TFE is flexible and heat-shrinkable. It is expected to find wide use in the aerospace and electronics industries.

The new polytetrafluoroethylene tubing is available in standard 1.7 to 1 shrink ratio or with a shrink ratio of 4 to 1. Designed for a maximum continuous operating temperature of 200°C, Insultite TFE will shrink to a predetermined diameter upon application of heat in excess of 621°F.

Specific applications for TFE cited by the company include capacitors, relays, semiconductors and cable jacketing.

The material comes in standard lengths of four feet, in standard milk-white translucent color and is available in 30 days.

Electronized Chemicals Corp., Box 57, Burlington, Mass. [408]
For checking the tension of springs or similar resistive forces,
- Most precise
- Easiest to read

Available in six tension ranges from 4 to 2500 grams

for free illustrated leaflet, write to

Hitching Post for High-Spirited Electrons...

JOHNSON'S NEW MINIATURE "6-WAY" 111-200 BINDING POST

* Compact Pre-Assembled Design
* Short Front Panel Projection
* 5,000 VDC Breakdown

Hold your horses! Look first at Johnson for binding posts... for instance, at the #111-200 series designed for compact test equipment applications. Tough, low-loss polyamide body fully insulates stud, provides higher voltage breakdown. Front projection 25/32" max. with thumb nut open... only 21/32" closed. Thumb nut is self-capacitated... cannot work loose. Equipped with single 1/4"-32 nut for fast mounting — no time consuming spacers or mounting hardware required. 6-Way feature permits connection by tip plug, alligator clip to stud, wire wrapped around stud and clamped, wire (max. size #12) through center hole, clamped, and clamped spade lug.

ELECTRICAL CHARACTERISTICS:
- Current rating 15 amps. thumb nut to terminal; five amps. tip jack to terminal.
- Capacitance to 1/4" panel 3 pf.
- Insulation resistance greater than 200 megohms after MIL-T-5422B humidity test.

Also available in Series 111-100 (15 amps, 8,000 VDC Breakdown) and Series 111-300 (40 amps, 7,000 VDC Breakdown).

WRITE NOW FOR FREE SAMPLE AND COMPLETE INFORMATION ON JOHNSON CONNECTOR LINE
New Books

Fundamentals of higher math

Topics in Advanced Mathematics for Electronics Technology
Stephen Pauli
John Wiley & Sons, Inc., 420 pp., $4.95

Here, in one paperbound volume, is much of the advanced mathematics—including infinite series, the contributions of Fourier and Laplace, vector analysis and matrix algebra—that is widely applied in electronics engineering. Intended primarily as an introduction for electronics technicians or veteran engineers who haven't formally studied all of these subjects, the book can also serve as a refresher for engineers who have been exposed to the techniques before.

The approach is not rigorous; essential definitions and theorems are stated and applied, but not proved. The presentation is in clear and simple terms and includes many illustrative examples, most of which are classic electronic problems.

Each of the eight chapters covers a separate topic or two, so that each can be studied separately. Problems, some with answers, follow each major section, and an excellent topical bibliography is provided for readers wishing to delve deeper.

Pauli begins with infinite series. He covers definitions, tests for convergence and representation of functions of power series. The treatment is clear, but perhaps too brief.

In the two-chapter discussion of the Fourier series both trigonometric and complex forms are covered. The Fourier integral is developed as a limiting case of the series, with emphasis on both forms. Transforms of several common waveshapes and their singularity functions are worked out.

The author gives lucid introductory definitions of ordinary differential equations, most of them linear, followed by a thorough discussion on applying the equations to linear, time-invariant circuits.

In a succeeding chapter, the Laplace transform is applied to the solution of linear, ordinary differential equations for several circuits. Theorems, properties, the inversion integral and the use of transform tables are covered.

Gamma, beta and Bessel functions are combined in one chapter, along with the various derivations of the Bessel solution. These are followed by vector analysis. While there is a balanced assortment of topics, a bit more detail about the integration of vector functions would have been helpful. A well-written chapter on determinants and matrix algebra concludes the book.

Robert Goldberg
Radio Receptor division
General Instrument Corp.
Hicksville, N.Y.

Designer's time-saver

American Microelectronics Data 1966-67 Edited by G.W.A. Dummer and J. Mackenzie Robertson
Pergamon Press, 1,515 pp., $40

Any engineer whose secretary spends more than three or four working days during a year in writing to semiconductor manufacturers for integrated-circuit data sheets, then filing the returns, might find this eight-pound compendium of data sheets just the thing to save time, effort and money.

It is, of course, incomplete, as any attempt to gather manufacturers' literature inevitably is. Nevertheless, one blanches at the exclusion of manufacturers such as the Transitron Electronic Corp., the Norden division of United Aircraft Corp., Radiation Inc. and the Union Carbide Corp. Another omission is that of the semiconductor division of the International Telephone and Telegraph Corp. This exclusion is particularly curious since data sheets from Rr's's Cannon Electric and Federal Laboratories are included.

One might conclude either that the omitted companies issued no data sheets during the time the book was being compiled (the sheets are not dated, so when they were collected is unclear) or that the publishers merely failed to obtain them.

Despite its shortcomings, the book is probably as up to date as the personal files of most engineers.
710 PCM SYSTEMS require as little as 26 cubic inches and weigh as little as 30 ounces. Space and weight are saved in Type 710 Microcircuit PCM Systems because they use MEMA.*

Provides up to 256 channels of high, low and/or digital inputs.
FET analog input gates.
Offset and scatter below ±25 microvolts.
Backcurrent below ±0.1 microampere.
NRZ 10-bit word output.
Sample rates from 1 to 50,000 words.

*T Micro Electronic Modular Assemblies, a high density integrated circuit packaging concept developed by TELEDYNE, INC.

For complete information on Teledyne Telemetry components and systems contact:

TELEDYNE TELEMETRY
A TELEDYNE COMPANY
12964 Panama Street
Los Angeles, California 90066
Phone (213) 870-9831
TWX: 510 343 6955

Are you up to date... on dielectric tubing materials?

Send for your FREE copies

Tubing Materials Chart
This chart gives a complete listing of spiral-wound dielectric tubing uses and material features. A handy reference which, at a quick glance, points out facts you may overlook in tubing selection.

Dielectric Tubing Catalog
This 8 page catalog gives basic information on Precision's spiral-wound dielectric tubes. Illustrates end-product uses, covers, in detail, the advantages of each type of dielectric tube.

Precision
Paper Tube Company
1033 S. NOEL AVE., WHEELING, ILL. 60090
Phones: Chicago, 631-1445, Long Distance, 312-537-4250

Please rush my copies of the tubing materials chart and tubing catalog

NAME
COMPANY
ADDRESS
CITY ____________________________ STATE ______ ZIP

Circle 257 on reader service card

Circle 219 on reader service card 219
Technical Abstracts

50-kw solar panels
Solar cell power systems for electric propulsion
A. Krausz, W. Luff and P. Bauer
TRW Systems, Redondo Beach, Calif.

Aside from the millions being spent on solar cells, more than $2 million a year is devoted to figuring out how to build huge, but lightweight, solar panels. The panels would have to supply at least 50 kilowatts of power to the ion engines of interplanetary spacecraft.

Some designers are working on arrays of standard silicon solar cells, others on silicon dendritic webs that can roll up like tape and still others on large area, thin-film solar cells based on plastic or other flexible materials. Over-all weights will range from 25 to 65 pounds per kilowatt.

The lightest of the experimental thin-film cells is cadmium sulfide on plastic film. With anticipated improvements in efficiency, their weight should be about 10 pounds per kilowatt in a few years and 6 pounds per kilowatt by 1970.

Cost of the CdS cells is about $100 per watt, about that of silicon cells. By next year the cost for CdS should drop to $30 to $50 a watt and then to around $5 when mass production begins. The problems of cadmium sulfide degradation have been solved, with the exception of thermal cycling problems.

However, many mechanical problems are not yet solved, such as the best way of pointing the big panels at the sun, how to balance the structure and how much of a threat meteorite damage represents.

Today's ion engines don't place a heavy drain on power supplies. Every once in a while, they draw several hundred watts, as they electrically propel satellites into orbital positions. But if ion engines are to be used for primary propulsion, clusters of engines and kilowatts of high voltage power will be needed, along with multiple power conditioning and control circuits.

Ideally, the solar panel would supply high voltage directly to the engine, without an intervening d-c to d-c converter. However, this would still not eliminate the need for voltage regulation, since the panel output will vary as the distance between the spacecraft and the sun changes.

Generally, a switching-type converter is used. To keep the weight of the power conditioning equipment below 12 pounds per kilowatt or less—the desired figure—the converter's switching frequency should be high and losses low. Special circuits can minimize switching losses, such as series-parallel combinations of medium- voltage converter modules.

Presented at the AIAA Third Annual Meeting, Boston, Nov. 29-Dec. 2.

Post checks
The effect of post geometry on solderless, wrapped termination performance
Mark Auriana
Burndy Corp., Norwalk, Conn.

How does the shape of a wrapped-wiring terminal post affect the reliability of the connection?

To answer this question, two of the most common wrap geometries—0.045-inch square and 0.031 x 0.062-inch rectangular, both of which are specified in MIL-STD-1130 for solderless, wrapped electrical connections—were wrapped with wire. A machine then measured how much force was required to strip the wire from the post.

Test samples were prepared with the minimum acceptable number of wraps specified in MIL-STD-1130: 3½ turns for 20-gauge wire, 4½ turns for 22 and 24-gauge wire. The amount of force required to strip the wires from the square posts differed little from the force to strip the rectangular posts. However, 24-gauge wire wrapped on the square posts could be stripped with less than the minimum MIL-STD-1130 force of seven pounds. It took a little more than seven pounds to strip the same wire wrapped on rectangular posts.

If the wiring is subjected to mechanical stress, a rectangular post will probably permit more reliable wiring joints.

microbial contamination
product spoilage,
downtime,
need for excessive additives

for use in DEIONIZED WATER SYSTEMS

Steroline's Aquafine Ultraviolet purification systems are designed to produce unlimited quantities of 99+ % of safe, pure water and other liquids.

Skilled Steroline specialists will design the most economical purification system for you...reducing bacterial build-up...eliminating downtime...ending product spoilage...reducing maintenance costs. And, Steroline purification systems are available with special warning device and/or automatic shut off. Whether you select a portable or permanent system, you'll find that your over-all savings quickly exceed your capital investment.

Get the facts on liquid purification. Write:

Steroline Systems Corporation
11809 (J) East Slauson Avenue
Santa Fe Springs, California 90670
Telephone: (213) 698-8157 Cable: Sterline

DISTRIBUTORS! Valuable territories open. Write for full information.

Circle 221 on reader service card

EVER SEE THIS COLLECTION OF POWER RESISTORS BEFORE?

Don't feel left out because no one else has either. Each resistor or network illustrated is designed for custom fit and performance in some customer's special application.

If provided a few details of your extraordinary resistor needs perhaps SAGE can help you out too. Write or call industry's leading producer of miniature precision wirewound resistors.

SAGE ELECTRONICS CORP.
BOX 3926 • ROCHESTER, N. Y. 14610
PHONE: 716-586-8010
Ultrasonic relays

The circuit drawing below indicates just one of many complex control problems solved with Barber-Colman Micropositioner® polarized d-c relays.

SYNCHRONIZING CONTROL

Here is a simple way to equalize rate of change on separately powered actions such as aircraft landing flaps, flow of fluids into a mixing tank, and synchronizing rotary output by means of tach generators instead of resistance elements.

Motor No. 1 turning faster than No. 2 will move potentiometer R1 toward (+) at a faster rate than R2. This causes current flow through the Micropositioner coil from C1 to C2, closing contact R and energizing relay No. 1 which opens the circuit to motor No. 1.

Micropositioner will hold this position until motor No. 2 (still moving) advances its potentiometer, reducing current to restore balance in Micropositioner. This de-energizes relay No. 1 and re-applies current to motor No. 1.

Increasing speed of motor No. 2 would actuate the circuit in reverse. If multiple-speed devices are controlled, action of the relays can be used to speed up the slow unit instead of stopping the fast one.

If you need reliable synchronous control, test a Micropositioner in your circuits. Write for more ideas in our technical bulletins.

Barber-Colman Micropositioner® polarized d-c relays operate on input power as low as 40 microwatts, available in null-seeking and magnetic-latching “memory” types of adjustment. Also transistorized types with built-in preamplifier. Write for our latest catalog with full information on polarized relays.

Barber-Colman Company
Electro-Mechanical Products Division
Dept. M, 12129 Rock Street, Rockford, Illinois

New Literature

Desktop computers. Mathatronics, a division of Barry Wright Corp., 241 Crescent St., Waltham, Mass., 02154, has a fold-out brochure outlining the complete Mathatron line of desktop computers. Circle 420 on reader service card.

Power conversion equipment. Wanlass Electric Co., 2175 South Grand Ave., Santa Ana, Calif., 92705, offers a catalog that includes details on 10 new lines and 199 models of voltage regulators, power supply units and a dynamic line filter that removes scr spikes. [421]

Data modem. Milgo Electronic Corp., 7620 N.W. 36th Ave., Miami, Fla., 33145, has available a two-page bulletin on the data modem 4400, a unit developed to transmit 2,400 bits per second on unconditioned voice-grade telephone lines. [422]

Tone receiver. Quindar Electronics Inc., 60 Fadem Road, Springfield, N.J., 07081, has prepared a two-page bulletin describing in detail a transistorized, frequency shift tone receiver. [423]

Control grips. Guardian Electric Manufacturing Co., 1550 West Carroll Ave., Chicago, Ill., 60607. Bulletin J1 covers a broad line of grip types including servocontrol, cyclic control, Gemini control and special control. [424]

Small computers. Digital Equipment Corp., 146 Main St., Maynard, Mass., 01754, has published a 544-page handbook detailing its small computer product line and designed to be a source book of basic computer technology for scientists, engineers and students. [426]

Precision alloy wire. Fort Wayne Metals Inc., 3211 MacArthur Drive, Fort Wayne, Ind. A four-page brochure entitled “Clean Metals” describes the problems caused by tiny foreign matter inclusions and voids in stainless alloy wire, especially in small sizes below 0.005 in. in diameter. [427]

Solid state relay. Solid State Electronics Corp., 15321 Rayen St., Sepulveda, Calif., 91343, has available a bulletin describing the model SSR-1285-5050, a silicon transistorized, static switching relay. [428]

Displaying computer output. Image Instruments Inc., 223 Crescent St., Waltham, Mass., 02154. A six-page applications note that describes the coupling of the Electrostore scan converter to the computer and visual display covers the advantages of this system for remote displays and multiple-access computers. [429]

Striped line bandpass filters. Elpac Microwave, a division of EIPac Inc., 3800 Campus Drive, Newport Beach, Calif., 92660, has issued a data sheet describing the unusual design characteristics of its microwave striped bandpass filters. [430]

Coaxial cable. Phelps Dodge Electronic Products Corp., 60 Dodge Ave., North Haven, Conn., 06473. A 12-page technical bulletin outlines electrical, physical and mechanical characteristics of Styroflex coaxial cable, plus performance curves and tables. [432]

Operational amplifiers. Analog Devices Inc., 221 Fifth St., Cambridge, Mass., 02142. Part 5 in a continuing series of application notes is a 12-page handbook covering theory and applications of chopper-stabilized operational amplifiers. [433]

Computer development techniques. Scientific Data Systems, 1649 17th St., Santa Monica, Calif., 90404, has prepared a 16-page brochure describing the design, development and production of its new line of Sigma computers. [434]

Precision reference diodes. Motorola Semiconductor Products Inc., Box 955, Phoenix, Ariz., 85001, has published a brochure to familiarize the circuit designer with the fabrication, function, testing and specification of a line of precision reference diodes. [435]

Magnetic core memories. Di/An Controls Inc., 944 Dorchester Ave., Boston, Mass., 02125. Catalog 3-700 describes magnetic core memory systems for military, aerospace and commercial applications. [436]

Transistor choppers. Airpax Electronics Inc., Cambridge, Md., 21613. Type ST-5 transistor choppers, suited for operational amplifiers and servoinstruments, are described in bulletin C-124. Typical application circuits are included. [437]

Synchos and resolvers. Vernitron Corp., 59 Central Ave., Farmingdale, N.Y., has published a six-page brochure in color on its line of multispeed synchros and resolvers for high-accuracy data transmission. [438]
there are two sides to DigiTec:
low cost · high performance

Model 252
from $585

ALL SOLID STATE digital instrumentation
the series 250 digital voltmeter

- High Accuracy 0.05% of Reading
- BCD Output
- Data Acquisition to 20 Readings/Sec.
- "Plug-in" Versatility
- Ultra Long Life Nine Readout—4 digits
- Automatic Polarity Selection and Indication
- Constant 10 megohms Input Impedance
- No Blinking Readout
- Buffer Storage
- AC Rejection 75 dB @ 60 Hz
- 50% Calibrated Over-range
- Compatible with existing DigiTec Instruments
- Maximum Reading—15000 digits

DIGITEC
by UNITED SYSTEMS CORPORATION
918 Woodley Rd., Dayton, Ohio 45403

For Complete Specifications request new catalog D-67

from BENRUS
TRIPLEX X-Y RECORDER

- 3 independent, solid state RA840C Indicators, in 1/2 the rack panel space of 1 conventional scope
- Completely assembled to 3 1/2" x 19" rack panel.
- Requires only 10 1/2" behind panel.
- Each section has its own power supply.
- Conforms with MIL environmental specifications.

FEATURES (of each section):
- Identical X-Y amplifiers;
- Sensitivity 1 v/cm, variable to 10 v/cm;
- Frequency response DC to 200 KHz (3 db);
- DC coupled blanking provided.

Individual Model RA840C Indicators — $285 each.

Model RA840A scopes, with preamps and sweeps, are also available in the triplex configuration.

Ask your Benrus Technical Products representative for a demonstration, or write us for detailed specifications.

BENRUS
TECHNICAL PRODUCTS DIVISION
30 CHERRY AVENUE • WATERBURY, CONNECTICUT 06720

Circle 223 on reader service card

Electronics | January 23, 1967
How do the vortices cause sound emitting vibrations?

NRL invites you to help find the answer.

This is just one of the problems currently being studied at the Naval Research Laboratory. There are hundreds of others equally intriguing.

NRL, the Navy's corporate laboratory, is engaged in research and development embracing practically all branches of physical and engineering science and covering the entire range from basic investigations of fundamental problems to applied and developmental research.

The Laboratory has current vacancies and a continuing need for electronic and mechanical engineers, physicists, chemists, metallurgists, mathematicians, oceanographers, and technical writers and editors for challenging assignments.

Persons appointed receive the full benefits of career Civil Service including regular salary increases and liberal retirement. The Metropolitan Area offers excellent living conditions and recreational facilities to suit a variety of needs. Six local universities provide opportunities for graduate study in almost any field.

The Laboratory encourages its employees to further their professional education. Send resume or Standard Form 57 to:

The Director (Code 1818·3)
Naval Research Laboratory
Washington, D.C. 20390

An Equal Opportunity Employer
Some organizations won’t support an R&D program unless there’s an immediate payoff.

We’re different.

Engineers and scientists at our eight laboratories work in basic and applied research on projects that are evaluated not by the ring of the cash register, but by their ultimate value to the security of the nation.

Some of these projects are completed in months. Others go on for years. But, because these projects are of national significance, the men who work on them are backed by the full resources of Navy and the Federal government and provided with the facilities and equipment they need to do the job.

If you’re tired of starting projects and then being forced to drop them just when you are beginning to make some progress, we invite you to consider a career with us. To explore the possibilities, get in touch with the Employment Officer (Dept. C) of the particular laboratory which interests you. He’ll bring you up to date on the benefits of career Civil Service and the unique recreational and educational opportunities you and your family will find in the Washington, D.C. area.

Naval Laboratories of the Washington, D.C. Area*

1. Naval Research Laboratory
 Washington, D. C. 20390
 —places heavy emphasis on pure and basic research in the physical sciences to increase the store of knowledge of the sciences, as well as on applied problem-solving research under the sponsorship of various government activities to improve materials, techniques and systems.

2. Naval Ordnance Laboratory
 White Oak, Maryland 20910
 In addition to being one of the nation’s leading establishments for research and development in underwater warfare, NOL is the Navy’s principal aeroballistic activity and a leader in the development of air and surface weapons. With a broad research program including explosives, electrochemistry, polymers, magnetism, acoustics, materials, solid state and nuclear phenomena.

3. Naval Oceanographic Office
 Washington, D. C. 20390
 —engaged in long range technical and scientific research in general oceanography, geophysical and geodetic surveys, bathymetry, oceanographic instrumentation, information processing, cartography and other important areas.

4. David Taylor Model Basin
 Washington, D. C. 20397
 —fundamental and applied research leading to the development of advanced ship design concepts and related to the resistance, stability, and propulsion of ships and aircraft; the strength of ship structures and the survivability of ships under attack: hydro-structural acoustics and mechanical vibration, as applied particularly to silent operation of ships; the application of mathematics and high-speed computer techniques to engineering and logistics problems of the Navy; and development of new ship types such as surface-effect ships and hydrofoils.

5. Naval Weapons Laboratory
 Dahlgren, Virginia 22448
 —engaged, first, in studying and analyzing advanced weapons systems, ballistics, and astrophysics through basic and applied research in mathematics, physics, and engineering; and, second, in achieving maximum degree of competence in various DOD projects utilizing the most advanced computer technology and systems available.

6. Marine Engineering Laboratory
 Annapolis, Maryland 21402
 —R&D in naval shipboard and submarine machinery and auxiliary systems (electrical, propulsion, control, etc.). Emphasis on ship silencing, new concepts in energy conversion and control, ways to minimize friction and wear, special operating machinery for deep diving vessels; naval alloys to meet all ocean environmental conditions; mini­mization of ships’ magnetic signatures; and systems engineering.

7. Naval Propellant Plant
 Indian Head, Maryland 20640
 —develops and maintains the Navy’s technical competence in missile, gun and rocket propellants. Conducts R&D in chemistry, propellants, propellant ingredients, propel­lant processing; performs product and production engineering, chemical engineering, chemical process development and pilot plant operations in the field of solid and liquid propellants and explosives.

8. Naval Observatory
 Washington, D. C. 20390
 —continued fundamental observations of positions and motions of celestial bodies ... basic research in positional astronomy, astrophysics and celestial mechanics ... determination of precise times and frequencies ... control of worldwide Department of Defense distribution systems for time and frequency ... computing and publishing astronomical ephemerides and catalogs.

*An Equal Opportunity Employer
difficult installations made easy

The long continuous lengths of HELIAX® coaxial cable make any type of installation possible. Whether across a vast ravine or up the tallest tower, the installed cost is less. Corrugated inner and outer conductors absorb all stress. Andrew connectors firmly anchor both conductors to eliminate electrical problems. Consult your Andrew sales engineer or write Andrew Corporation, P. O. Box 807, Chicago, Illinois, U.S.A. 60642.

870-foot self-supporting catenary installation of 5-inch HELIAX air dielectric coaxial cable (Type HJ9-50) at mountain top site of Station KBYU-TV, Provo, Utah.
British look into telecommunications equipment buying

The Labor government plans to probe into the relations between Britain's top telecommunications makers and their main domestic customer—the General Post Office.

GPO traditionally buys most of its telecommunications gear from five companies under an arrangement that looks much too clubby at a time when sentiment against monopolies is building up in Britain. Each of the five major suppliers virtually has a segment of the industry all to itself and the Post Office buys under “bulk supply agreements”, with negotiated prices rather than open competitive bidding.

Although the arrangement eliminates expensive duplication in research and development, the government has assigned its Industrial Reorganization Corp. to see how the GPO might get better deals on telecommunications equipment from its suppliers. IRC will tackle the possibility of setting up competitive bidding—soon to go into effect for subscribers sets—for telephone exchange equipment. Britain already has started to switch to electronic exchanges [Electronics, Jan. 9, p. 254].

The Post Office has been buying some $475 million of telecommunications equipment annually but expects its spending to rise to more than $560 million over the next few years. The five companies that have this market largely to themselves are The Plessey Co., Associated Electrical Industries Ltd., the British General Electric Co. (not affiliated with GE in the United States), Standard Telephones and Cables Ltd., a subsidiary of the International Telephone and Telegraph Corp., and the Telephone Manufacturing Co., one of the companies in the group controlled by Pye of Cambridge Ltd. Pye currently is the object of a takeover battle.

Holland's electronics giant, Philips Gloeilampenfabrieken NV, may be blackballed in its attempt to join the British telecommunications makers' "club" through a takeover of Pye of Cambridge Ltd.

Through a British subsidiary, Philips has been vying with Thorn Electrical Industries Ltd. for control of Pye, an important producer of telecommunications equipment and television receivers [Electronics, Dec. 26, 1966, p. 166]. After Thorn had topped Philips' initial bid, the Dutch concern late last month said it would up the ante.

Since its first informal offer, Philips has acquired 20% of Pye's outstanding shares. The London Stock Exchange wants the company to disclose the source of this holding, which Philips insists wasn't purchased on the open market.

Philips needs British Treasury approval to make a formal offer for Pye. Although Treasury officials aren't commenting, there's considerable speculation that the government is reluctant to let a major Post Office supplier pass over to foreign control. Thorn is holding off until the Treasury decides what to do, but it almost certainly will renew its attempts to take over Pye when the situation clears up.

Hayakawa considers making own IC's

The Hayakawa Electric Co. is taking a hard look at the possibility of producing integrated circuits for its own use. The company now has negotiations under way to acquire IC licenses and knowhow. If the negotiations pan out, Hayakawa may be turning out IC's next year and thus almost certainly become the first Japanese company not now in the tran-
Swedish spending plans endanger defense projects

Military electronics producers are jittery over the slowdown in defense spending the Swedish government has proposed in its draft budget for the upcoming fiscal year. Instead of slating the usual 2.5% increase, the budget holds the line on defense spending at essentially the current fiscal year's level—$1 billion.

Defense procurement officials maintain there'll be no cutbacks on hardware already ordered. But the long-range outlook is bleak. According to Lt. Gen. Lage Thunberg, commander of the country's air force, the proposed slowdown would mean a slash in Sweden's kingpin defense project—the Viggen-37 all-purpose supersonic aircraft [Electronics, Dec. 26, 1966, p. 99]. Thunberg says the number of planes in the program would have to be cut from 700 to 400, and that no funds would be available to install the $8 million of radar and communications equipment already ordered for the Viggen air-defense network.

Along with the air-defense cutbacks, the budget would reduce electronics spending by the army and navy. The army would get fewer ground-to-air missiles and the navy's testing of coastal and seaborne missiles would likely be dropped. A planned expansion of a central defense communications network also would be put off.

Even more ominous in the long run is the prospect of a new defense policy for Sweden, which since the late 1950's has emphasized air defense and sophisticated electronics. Defense Minister Sven Andersson hinted this month that the government may concentrate on building up conventional ground forces in the future.

Addenda

A proposal for a joint communications satellite project was discussed by officials of West Germany and France this month as Chancellor Kurt Georg Kiesinger and President Charles de Gaulle held their top-level talks... Tokyo Shibaura Electric Co. this April will start marketing six types of diode-transistor-logic circuits and nine types of transistor-transistor-logic IC's. Propagation times are 50 and 6 nanoseconds, respectively... The Westinghouse Electric Corp. plans to substantially expand semiconductor-production facilities at the Le Mans plant of its French subsidiary. The company will concentrate on increasing output of rectifiers and high-power semiconductors, but has no plans to produce integrated circuits... General Electric, which has been having computer problems [Electronics, Jan. 9, p. 242], has appointed J. Stanford Smith, a vice president, to take charge of its worldwide computer operations.
What continuously etches circuit boards at a constant rate without waste disposal problems?
(It also cuts your ammonium persulfate etchant costs in half.)

For further information about this new process, contact our Product Promotion Department, FMC CORPORATION, INORGANIC CHEMICALS DIVISION, 633 Third Ave., New York, N.Y. 10017.

SEE IT AT NEP/CON '67 WEST FMC BOOTH 560-562.
New space-saving switch now available on Mallory carbon controls

A new kind of rotary switch, with flat configuration, can now be supplied on Mallory carbon controls for applications where back of panel space is limited. From front face of the mounting bushing to tip of the terminals, the total back-of-panel depth of a Mallory LC single control with the new switch measures only 0.798"—compared with 1.00" for the usual single LC control-switch combination.

Reliability Report on Mallory Wet Slug Tantalum Capacitors

Cutaway view of 3-cell Type XT capacitor
U.S. Patent 3,275,902

Ever since we started making wet slug tantalum capacitors 17 years ago, we have been accumulating data on their reliability. At latest count, we had over 22 million piece-hours of testing for this product line on which to base evaluation of reliability.

The incidence of catastrophic failure has been exceptionally low. This quality is an inherent property of the wet slug construction, which provides a self-healing capability.

The data shown on the chart represents a summary of test programs to date on several Mallory wet slug types. We will be glad to supply detailed test records on specific capacitor models. And we welcome your personal inspection of our manufacturing, quality control and life test facilities.

SUMMARY OF RELIABILITY DATA
MALLORY WET SLUG TANTALUM CAPACITORS

| Capacitor Type | Test Conditions | Total Unit test hrs. | Failures (catast.) | Failure rate: % per 1000 hrs.* | Mean time between failures: hours*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MTPH</td>
<td>85°C Rated</td>
<td>6,214,900</td>
<td>1</td>
<td>0.022</td>
<td>3 x 10^3</td>
</tr>
<tr>
<td>TLS</td>
<td>85°C Rated</td>
<td>832,750</td>
<td>0</td>
<td>0.11</td>
<td>0.9 x 10^3</td>
</tr>
<tr>
<td></td>
<td>125°C 67% Rated</td>
<td>697,650</td>
<td>1</td>
<td>0.29</td>
<td>0.32 x 10^3</td>
</tr>
<tr>
<td>All XT Series</td>
<td>85°C Rated</td>
<td>8,291,100</td>
<td>6</td>
<td>0.09</td>
<td>1.1 x 10^4</td>
</tr>
<tr>
<td></td>
<td>175°C 67% Rated</td>
<td>7,361,200</td>
<td>7</td>
<td>0.11</td>
<td>0.5 x 10^4</td>
</tr>
</tbody>
</table>

*60% confidence level

Matched dual controls for stereo systems

For the leading manufacturers of stereo equipment, we have been producing dual volume controls whose resistance tapers are closely matched throughout the audible range of the control. Single-knob control of both stereo channels simultaneously becomes practical, with perfect tracking of both amplifiers without need for adjustment of a clutch coupling the control sections.

This simplification of stereo adjustment is made possible by the refined production control procedures which Mallory applies to the manufacture of carbon control elements. We were the first to make dual controls which tracked within 2 db, from 0 to —50 db, and are now producing matched controls in a variety of tapers for audio equipment—including the lower resistance values used in solid-state circuitry.

CIRCLE 105 ON READER SERVICE CARD

CIRCLE 106 ON READER SERVICE CARD

CIRCLE 107 ON READER SERVICE CARD
Dual trigger diode generates voltage peaks for SCR circuits

The Mallory STD dual trigger diode is a symmetrical three-layer avalanche diode which has many applications in activating SCR's and bi-switches. It's somewhat like two zener diodes connected back to back. When you apply AC to it, it allows current to pass only during that part of each half cycle when applied voltage exceeds its firing voltage. Thus it produces impulses, whose phase can be readily controlled, to switch the SCR on at different points in the cycle.

The STD has a symmetrical switching mode, as shown by the typical characteristic curve. At voltages beyond the breakover point, its resistance decreases rapidly; this "snap back" characteristic affords improved stability of control in the SCR circuit.

The STD comes in molded case only .375" long by .200" in diameter. It is rated 1 watt average at 50°C ambient. It can handle 1.0 ampere peaks of 20 microseconds duration on a 0.5% duty cycle. Standard breakover voltage ratings go from 24 to 120 volts, in standard tolerance of ±10%. Symmetry of breakover voltage is within 5%.

Miniature cells for Microcircuits

Circuits have shrunk and now so have batteries—but that doesn't mean that efficiency suffers in the least. The new Mallory mercury batteries in sizes to complement integrated circuits retain their extraordinary high energy density. Performance, if anything, is improved.

Miniature Mallory mercury cells are now available to power everything from hearing aids to ordnance devices. Capacities range from 16 MAH to 160 MAH, sizes from 0.225" to 0.450" diameter.

(See Table below.)

<table>
<thead>
<tr>
<th></th>
<th>RM-212</th>
<th>RM-312</th>
<th>RM-575</th>
<th>RM-675</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITY</td>
<td>MAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>36</td>
<td>100</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>RATED DRAIN MA</td>
<td>.75</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>DIA. (IN.)</td>
<td>.225</td>
<td>.305</td>
<td>.450</td>
<td>.450</td>
</tr>
<tr>
<td>HT. (IN.)</td>
<td>.130</td>
<td>.135</td>
<td>.130</td>
<td>.200</td>
</tr>
<tr>
<td>WT. (OZ.)</td>
<td>.01</td>
<td>.02</td>
<td>.05</td>
<td>.09</td>
</tr>
</tbody>
</table>
Sierra brings to light...

You'll spot them all with lightning speed on Sierra's Model 360A Spectrum Display Unit: Overload, noise, crosstalk, carrier leak. The communications disrupters!

Tracking automatically across the tuning range of a companion frequency selective voltmeter (shown above, Sierra's Model 128A), Model 360A presents an expanded view of selected frequency segments on a high-resolution, swept-band CRT display. Sweepwidths of 120 kHz or 12 kHz display thirty- or three-channel segments of the multiplex baseband. A 3.6-kHz sweep position narrows the view to one voice channel, resolving approximately 30 Hz at 3 db down from a carrier peak and 60 Hz at 40 db down. The voltmeter indicates precisely the frequency and amplitude of any displayed signals.

Price of the Model 360A is $2,450. The bulletin sheds further light on the matter. Write Sierra, 3885 Bohannon Drive, Menlo Park, California 94025.

Circle 232 on reader service card
Great Britain

Bulk IC's

So far, researchers working with bulk semiconductors have concentrated largely on developing such microwave devices as Gunn-effect oscillators. But it may turn out that they've overlooked a much better bet—bulk-effect monolithic circuits.

At next month's International Solid State Circuits Conference in Philadelphia, C.P. Sandbank of Britain's Standard Telecommunications Laboratories Ltd., an affiliate of the International Telephone and Telegraph Corp., will report on some experimental integrated circuits that point to a completely new class of devices. Instead of interconnected active and passive elements laid down on a single semiconductor chip, Sandbank's circuits depend on bulk effects to generate complex electronic functions.

Sandbank calls the new circuits domain-originated functional IC's. In them, stable high-field domains travel along drift paths that are long compared to the width of the domain. The circuit function depends on the characteristics of the drift path. As the domain, driven by a constant-voltage source, transits an IC, the instantaneous current varies according to the "conduction profile" of the path.

Fast and slow. The domain can transit over a wide range of speeds. When produced by field trapping, the domain pokes along at less than 1 centimeter per second. With electron-phonon coupling, however, it moves at the speed of sound; and inter-valley transfer of hot electrons produces domains that transit at speeds up to 10^7 cm/sec.

Along with transit speed, the current-time characteristic of the domain-originated IC can be shaped by tinkering with the drift path in any of several ways. An obvious method is to vary the cross-section of the drift path; another is to vary the doping in the semiconductor. The conduction profile also changes when light is beamed on different parts of the drift path or when local impact ionization of deep donors occurs. Still another possibility is local application of electric fields through electrodes close to the drift path.

Electrodes also can be used to pick off voltage waveforms from the monolithic circuit. Optical readout is possible too, suggesting the eventual use of the domain-originated IC for video scanning and display.

Converter. An example of how a domain-originated IC can be tailored to develop a desired function is the analog-to-digital converter circuit shown. In it, the conduction profile of the drift path is established by etching an epitaxial layer laid down on a gallium-arsenide substrate. The serrations set the digital code, and the analog characteristic is a function of the overall taper of the drift path. Since the domain travel depends on the amount of bias applied, the number of digits read out corresponds to the analog voltage.

In the family

Like any with-it communications equipment maker, the Plessey Co. opted for integrated circuits a year ago when it started development of a mobile single sideband transceiver for the Ministry of Aviation. But when Plessey completed its design, it found it had not only a transceiver but also a compatible family of IC's for military and professional communications systems.

The Plessey family of IC's includes a radio-frequency amplifier with 150-megahertz bandwidth, an intermediate-frequency amplifier, an audio-frequency amplifier, a diode ring for modulators, and automatic-gain-control generators...
for single sideband use and for microphone amplifiers. Plessey's ic family planning calls for adding a limiting intermediate-frequency amplifier and a transformerless double-balanced modulator to the circuits already developed.

In its transceiver ic's, Plessey aimed for low power consumption and hit the mark. The i-f amplifier, for example, gives a voltage gain of 50 but consumes only 15 milliwatts from a 6-volt supply. The audio amplifier's quiescent consumption is just 20 mw, about a sixth of the maximum allowed in the specifications for the transceiver.

Despite low consumption, the circuits outperform their discrete-component predecessors. The r-f amplifier can handle signal inputs up to 200 millivolts root-mean-square and the audio amplifier has an age range better than 90 decibels. The ic single sideband age, actually has fewer elements than its conventional equivalent has discrete components.

All-around. Still another family characteristic of Plessey's circuits is versatility. The audio amplifier, for example, operates either as a headphone or microphone amplifier. The single sideband age generator and voice-operated gain-adjusting device (vogad) are both obtained from the same basic chip. The age generator gets its input from the input to the headphone amplifier and develops a control output for the r-f and i-f amplifiers. As a vogad, the circuit controls the microphone amplifier.

The circuits were developed at Plessey's Allen Clark Research Centre by a team headed by M.J. Gay. Gay and his co-workers will report in detail on their ic family next month at the International Solid State Circuits Conference in Philadelphia.

Edgewise entry
British electronics manufacturers long maintained they could make headway in the United States market for military hardware if the Pentagon relaxed its "Buy American" policies. The success of Elliott-Automation Ltd., particularly, is bearing out their contention. Elliott this month landed a pair of contracts for electronics gear destined for the Air Force's giant C-5A transport. The contracts, along with an earlier one for an air-data computer, bring to $4.5 million the business Elliott will get from the C-5A. In addition, the company has a contract to develop a "head-up" display for the Navy's Corsair-2 carrier aircraft. [Electronics, Sept. 5, 1966, p. 199].

Foothold. All the contracts come under the Anglo-American agreement in which the Pentagon agreed to waive "Buy American" rules for some $300 million of British equipment to offset the cost of 50 F-111 intercontinental fighter-bombers Britain will buy from the U.S. But Elliott feels it now has a foothold in the U.S. military market that will outlast offset. Says an Elliott official, "Once you're inside the door, nobody mentions offset."

Elliott's two latest C-5A contracts cover an analog computer for fuel management and a control system to swivel the plane's undercarriage during landings in crosswinds. The control system swivels the main undercarriage legs and the nosewheel into line with the runway as the plane comes in crabwise to correct for drift. Shortly after touchdown, the system automatically swings the fuselage back into alignment with the undercarriage. The amount of swiveling before landing is controlled by the pilot.

Fuel watch. The fuel management computer is designed to keep the crew up-to-date on the range of the plane under a variety of flying conditions. The computer, which takes up less than half a cubic-foot of space, is fed continuous inputs of airspeed, fuel consumption, altitude and air temperature. The crew cranks in cargo weight, fuel weight and aircraft operating weight. From these inputs, the analog computer determines optimum speed and engine pressure ratio for either a cruise climb, constant-altitude cruise or best endurance.

Japan
In the groove
Like Broadway dolls, audiophiles have little esteem for synthetic sapphires. For high fidelity, they insist a diamond stylus is a record player's best friend.

But synthetic sapphires may take over as the stylus material in all but expensive hi-fi sets because of a discovery by the Tokyo Shibaura Electric Co. (Toshiba). The company has found a way to make a low-cost sapphire stylus that lasts almost as long as a diamond one. Toshiba's new stylus takes advantage of a phenomenon diamond cutters discovered long ago: rub a diamond face the right way and it can be polished; rub it the wrong way and practically nothing happens. The same anisotropic wear characteristics hold for synthetic sapphires and the key to the long life of Toshiba's stylus is simply putting the wear-resisting rubbing directions in contact with the record groove.

With the right crystal orientation, a stylus holds its 0.7-mil spherical radius several times longer than a conventional sapphire stylus. In tests on the same record, an ordinary stylus showed a flat developing on the point after eight hours of use. After 24 hours, the stylus had worn enough to...
start damaging the record. The oriented-crystal stylus, by contrast, still showed a spherical point after 176 hours of playing.

X-rayed. Production of the new stylus starts with a single-crystal rod of synthetic sapphire, the same material used in a conventional sapphire stylus. The longitudinal axis of the rod coincides with an "easy" direction of crystal growth and is inclined from 50° to 80° to the vertical axis of the crystal. Since the crystal orientation varies from rod to rod, each has its exact structure checked by X-ray diffraction. Then the rod is sawed so that the stylus has a long-wear orientation when it is mounted in its holder.

Toshiba already is using the new stylus, called Ultra-C, in a portable radio-phonograph. Because of its low cost, Toshiba sees a bright future for the stylus in medium- and low-quality record players. Nagaoka Seiki Hoseki Kogyo K.K., a Japanese phonograph-needle maker, is mass-producing the Toshiba stylus.

Startling stripes

At first glance the term "monochrome" seems self-contradictory. But engineers at the Japan Broadcasting Corp. (NHK) and the Nippon Columbia Co. have figured out a way to record motion pictures on black-and-white film for telecasting in color.

The quality of the monochrome images doesn’t match that of telecasts based on regular color film, but NHK expects the faster post-processing speed and lower costs afforded by monochrome to win the new system a place in spot news colorcasts. And Nippon Columbia, which has developed a live monochrome camera as well as a film version, sees a large potential market in closed-circuit tv systems for the live camera, which is less expensive than conventional cameras because it uses only a single pickup tube.

Filtered. To pack onto 16-millimeter black-and-white film enough information to produce a color picture, the monochrome system uses a pair of striped filters fitted in the camera’s optical system tight against the film. One set of stripes, each 21 microns wide, passes only green and red light. The other set of stripes, 27 microns wide, passes only green and blue light. In each filter, the colored stripes alternate with transparent stripes; the two filters are stacked one on top of the other and sandwiched between fiber-optic faceplates. With this arrangement, stripelines with red and blue color information are obtained on a black-and-white film. Green light passes through to the film unmodulated and forms the basis for a luminance signal.

Scanned. The developed monochrome film with the color-information stripes is projected onto a 1½-inch vidicon camera tube. When the image is scanned, a luminance signal (the unmodulated green plus the mean values of red and blue) with a bandwidth of 2.8 megahertz is obtained. Because of the stripes, a blue subcarrier centered at 3.3 MHz and a red subcarrier centered at 4.25 MHz also are picked up.

The output of the vidicon tube is fed to a pair of bandpass filters to separate out the subcarriers, and through a lowpass filter to extract the luminance signal. All three video-signal components are then fed to a matrix that extracts the green signal from the luminance signal. Through this process, the striped black-and-white image thus yields all four components required for a color-tv signal: luminance, red, blue and green.

Vidicon cameras in general have a poor signal-to-noise ratio at high frequencies, and the chrominance channels in the monochrome system are high-frequency subcarriers. To improve the ratio, a Percival circuit is used for the first stage of

Colorful stripes. Pair of striped filters puts three-color image on black-and-white film. Projected on a vidicon tube and scanned, stripes generate chrominance subcarriers for red and blue channels. Green is extracted from luminance signal.
the camera amplifier. Also, a deflection-correction signal is superimposed on the horizontal deflection signal to increase linearity.

Switched. The prototype live monochrome camera produces a better picture than the film version largely because there's more image area on its 1⅝-inch vidicon tube than on a 16-mm film frame. Both the filter stripes and the video-signal bandwidths can thus be wider. The luminance channel extends to 3.5 MHz; the red channel appears on a subcarrier at 4.5 MHz and the blue channel at 6.5 MHz. Because the live camera is intended primarily for daylight use, its chrominance channels were switched. With adequate light, the noisier, higher-frequency channel is best for blue light since the human eye is less bothered by noise effects in blue hues. But for the film version of the monochrome camera, which often will be used with tungsten light, the lower-frequency channel is used for blue to increase the sensitivity of the camera.

West Germany

The right sort

Every day, some 30 million letters stream through West Germany's postal system. To cope with the flood of mail, which rises 7% each year and swells to nearly 60-million items daily during the Christmas season, German postal authorities are increasingly turning to automation in a long-range modernization program.

The latest addition to the German arsenal of mail-sorting systems is an installation that sorts 21,600 letters an hour for 100 destinations. Currently under test at the Weisbaden post office, the sorter is the fastest of three systems now operating in Germany.

Fluorescent. Standard Elektrik Lorenz AG, a subsidiary of the International Telephone and Telegraph Corp., developed the Weisbaden system. In it, a conveyor feeds outgoing letters to seven coding desks, each with a typewriter-like keyboard. As a letter passes through a coding desk, the operator punches in the postal area code, the German equivalent of the ZIP code used in the United States. A proficient operator can encode 5,000 letters an hour.

The code signals generated by the keyboard unit are stored in a 20-bit register until the letter reaches a fluorescent-ink printing unit. Then, the code signals actuate the printer, which marks the envelope with vertical fluorescent marks in a two-of-five code.

At the sorting bins, a scanner reads the fluorescent marks, and a translator converts the scanner's output into signals that release the letter from the conveyor at the proper bin.

Expansion plans. The SEL system was designed so that its capacity could be increased to 200 destinations. And it could be fitted with SEL-built letter-facing gear that orients letters so that the address is right-side up, ready for automatic feed by conveyor belt to the coding desks.

This facing equipment, already in use in the U.S. and Europe, searches for the stamp and once it locates it, positions the letter. Looking ahead to the time when the facing equipment will be added to German automatic sorting centers, postal authorities there have already switched to fluorescent stamps that can be spotted by the scanning heads of letter facers.

France

Atomic impetus

The agency that has masterminded France's drive toward independence in everything nuclear—from power stations to hydrogen bombs—is pushing the French electronics industry to the fore in nuclear instrumentation.

The agency, Commissariat à l'Energie Atomique, spends about $40 million a year on electronics, mostly new equipment developed under its own contracts. CEA is a demanding customer, and for that very reason equipment turned out by French nuclear instrumentation firms is increasingly finding export markets.

French electronics companies are unstinting in their praise of CEA. Jacques Raux, technical director of La Radiotechnique-Coprim-RTC, attributes his company's considerable achievements in the nuclear field largely to the agency. Says Raux: "The CEA defines the performance and other standards to meet. They're always the highest standards, and that's what helps us most."

The recent history of RTC, a components-producing affiliate of Philips Gloeilampenfabrieken of the Netherlands, affords a prime example of the impact CEA has had on the industry. Photomultiplier tubes originally developed for CEA have become one of the company's most successful product lines. Raux says RTC exports 50% of the photomultipliers it produces, and that 55% of these exports go to the United States.

Rectangular. RTC's latest photomultiplier tube, also the fruit of collaboration with CEA, is an espe-
Design a new circuit?
It only takes 10 seconds to find out that maybe you didn’t.

Polaroid Land film for oscillography is as quick to point out a mistake as it is to point out a success.

You never have to wait for darkroom development only to find out that your new breadboard needs more work.

You get your results in 10 seconds flat. And it’s always a sharply detailed, high-contrast trace recording.

You can study it, attach it to a report, send it as a test record along with a product shipment, or file it for future use.

Choice of films? Yes. There are four different films for oscilloscope recording in pack, roll, and 4 x 5 formats.

The standard film speed has an ASA equivalent rating of 3000.

If you want to take a picture of a trace so fast you can’t even see it, we’ve got a special film called Polaroid PolaScope Land film with an ASA equivalent rating of 10,000. It’s the fastest film around. It will actually record a scintillation pulse with a rise time of less than 3 nanoseconds.

To use these films on your scope, you need a camera with a Polaroid Land Camera Back. Most manufacturers have them (Analog, BNK Associates, Coleman Engineering, EG & G, Fairchild, General Atomics, Hewlett-Packard, Tektronix).

You can get complete details from one of these manufacturers, or by writing to Polaroid Corporation, Technical Sales, Dept. 30, Cambridge, Massachusetts 02139.

Polaroid Land Film for Oscilloscope Trace Recording
Your plant may be ready for new electronics equipment... but how about your people?

Every day more sophisticated electronic equipment is used by more companies to perform more critical operations. Computers. Calculators. Control systems. Process instrumentation. Communications equipment. It's highly efficient... as long as you have qualified electronic technicians who understand it, know how to maintain it... and can fix it fast if it ever fails.

A good way to build a competent staff of skilled electronics technicians is to up-grade your present technical personnel. And a good way to do it is with a Cleveland Institute of Electronics Training Program. CIE "AUTO-PROGRAMMED" Courses are fast, effective and economical. What's more they can be "tailored" to your specific training needs. There are other advantages, too... and hundreds of satisfied users. Learn about them. Send coupon today for FREE details.

Cleveland Institute of Electronics
Dept. E-26, 1776 E. 17th St., Cleveland, Ohio

SEND COUPON TODAY

Cleveland Institute of Electronics
Dept. E-26, 1776 E. 17th St., Cleveland, Ohio

Gentlemen: I am interested in learning more about your Electronics Home Study Programs. Please send complete information.

Name ____________________________ Title ____________________________

Company ____________________________ Address ____________________________

City ____________________________ State __ Zip ____________________________

Accredited Member, National Home Study Council.

Electronics Abroad

cially rugged one designed for French satellites and missiles. The company guarantees it against sinusoidal vibration from 20 to 2,000 hertz at accelerations to 30 g's, shocks up to 11 milliseconds long at 100 g's, and centrifugal acceleration forces up to 45 g's. To achieve the necessary mechanical rigidity, the electrodes are soldered on heavy parallel bars and the dynode connections through the glass housing of the tube are rugged metal conductors. For this tube, which has a gain of 10 million and a rise time of 3 nanoseconds, irrC uses a rectangular glass housing for rigidity and ready installation in space-tight equipment.

Along with its photomultiplier tubes, the concern produces semiconductor detectors that Raux says match U.S. devices in performance. Rtc's new photomultipliers and detectors provide cia with all-French nuclear spectrometry instrumentation for the first time.

Cia has to turn to U.S. companies only for the most sophisticated hardware, such as integrated circuits. Of the agency's $40 million annual electronics outlay, 95% goes to French suppliers. Less than a third is spent on standard catalog items; most of the rest goes for new equipment developed at cia's behest.

International

Satellite forecast

Europe still has some years to go before orbiting its own communications satellite but its space technology is already far enough along that aerospace companies are looking at the economies of space communications.

Early this month, esro 2, the first scientific satellite of the European Space Research Organization, was dispatched from London to the United States for a scheduled March 1 launching from the Western Test Range. Geoffrey Pardoe, technical sales manager of Hawker-Siddeley Dynamics Ltd., the prime contractor for the satellite, took the occasion to expound the company's thinking on future European satellite development.

Hawker-Siddeley feels that regional European space communications systems are now technically practicable and would be cheaper to build in most cases than networks using submarine cables or complex microwave links. And the company thinks a direct-broadcasting television relay satellite would turn out a money saver.

Four channels. Pardoe points out that the British Space Development Co. estimates that it would cost about $340 million to provide four new conventional tv channels to cover Great Britain. By direct-broadcasting satellite, the same four channels would cost $140 million, according to British Space. The sum would cover development of a single-channel satellite and putting four of them into operation.

Theoretically, the satellite would need only a 2° beamwidth to cover all of Britain; but to compensate for stabilization errors, a 35-foot diameter erectable antenna with 3° beamwidth would be used.

A possible frequency for transmission would be 850 megahertz and the electronics would be powered by 8 kilowatts generated by a solar cell array. To pick up the satellite broadcast, home receivers would need an antenna 3 feet in diameter plus a transistorized preamplifier. Pardoe thinks such a satellite could be orbited within four to six years. To meet that hypothetical deadline, a U.S. launch vehicle would be needed to orbit the heavy satellite.

But by 1970, Europe should have a launch vehicle capable of putting into orbit a communications satellite with as many as 5,000 voice circuits. The European Launcher Development Organization plans to develop the vehicle [Electronics, July 25, 1966, p. 230].

Around the world

France. Cie. Française Thomson Houston-Hotchkiss Brandt is ready to put on the market a four-tube color television camera. Like
The 807 is the newest addition to Amelco's successful line of monolithic operational amplifiers—unsurpassed in drift performance and now available from stock at only $45.00* in TO-5s or flat packs.

If your application demands GUARANTEED drift performance, we invite you to compare the 807 specs with any monolithic available. You won't find anything to compare with our spec limits of 50 nA INPUT OFFSET CURRENT, 5 µV/°C OFFSET VOLTAGE DRIFT, OR 500 nA INPUT BIAS CURRENT! See for yourself:

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CIRCUIT TYPE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset</td>
<td>807BE</td>
<td>709A</td>
</tr>
<tr>
<td>Voltage (25°C)</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Voltage (-55°C to +125°C)</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Voltage Drift (untrimmed)</td>
<td>10</td>
<td>note</td>
</tr>
<tr>
<td>Voltage Drift (trimmed)</td>
<td>5.0</td>
<td>note</td>
</tr>
<tr>
<td>Current</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

Note: Both 709A and 1533 list no guaranteed value for this parameter. Worst case calculations of 11mV show that devices with Drift of 60 µV/°C would be in spec.

$45.00 isn't much to pay for the world's best monolithic op amp. You'll pay three to four times that much for an equivalent module-type op amp—hardly what we'd call a bargain! Your best buy is really our 807 data sheet. It's free.

*QUANTITIES 100 AND UP

AMELCO SEMICONDUCTOR
DIVISION OF TELedyne, INC. • 1300 TERRA BELLA AVENUE • MOUNTAIN VIEW, CALIFORNIA • Mail Address: P. O. Box 1030, Mountain View, California • Phone: (415) 968-9241 / TWX: (415) 969-9112 / Telex: 34-8416 • REGIONAL OFFICES: Southwest—Suite 213, 8621 Bellanca Ave., Los Angeles, California 90045, (213) 678-3145 • Northwest—1300 Terra Bella Ave., Mountain View, California, (415) 968-9241 East—P. O. Box 2091, Paterson, New Jersey 07509, (201) 696-4747; 60 Broad Hollow Rd., Melville L. I. New York, (516) 682-6070; P. O. Box 366, Kemberton, Pennsylvania, (215) 885-1755 • Northeast—805 High Street, Westwood, Massachusetts, (617) 326-6600 • Southeast—711 Magnolia Avenue, Orlando, Florida, (305) 423-5833 • Midwest—650 West Arloquin Road, Des Plaines, Illinois, (312) 439-3250; 3020 Woodlark Lane, St. Paul, Minnesota, (612) 646-1151 • Canada—Deskim Sales, Montreal, Quebec, (514) 384-1420.
An important breakthrough in electroplating technique, the work of the Cinch Electrochemical Laboratories, backed by the R & D activities of the United-Carr Exploratory Development Laboratory, permits the control of both thickness and selective location of gold deposits on connector contacts.

RESULT: Substantial cost savings with no decrease in connector reliability, durability or electrical performance. This achievement in precious metal deposition has even greater significance when combined with Cinch capabilities in contact and insulator design.

In addition to this unique process, Cinch utilizes other, more conventional, selective plating methods, when appropriate. "Gold Button" welding is another Cinch-developed method for reduction of gold usage and connector costs.

Here is another demonstration of the extra dimension in Cinch's engineering and developmental skills. Beyond this ability to design fine products, we offer in-depth production engineering capabilities, including tool, die, mold and equipment design and fabrication.
the four-tube camera of Britain’s Marconi Ltd. [Electronics, Dec. 26, 1966, p. 188], the new unit uses Plumbicon color tubes developed by Philips Gloeilampenfabrieken nv of the Netherlands. The Thomson-Houston camera was developed primarily for the Secam color tv system that will be used in France, where the company has about 90% of the studio-equipment market. However, it can be adapted to both U.S. color standard and the West German PAL system selected by most Western European countries.

Great Britain. The Post Office has made a 10-year grant of £250,000 to set up a chair of telecommunications at the recently established University of Essex. Post Office officials see the move as the first step toward a school of telecommunications that will do research and train engineers.

Japan. A driverless battery-powered tractor has been put on the market by the Shinko Electric Co. of Tokyo. Intended for transporting materials in industrial plants, it is guided by a low-voltage wire taped to the floor and a silicon controlled rectifier system in the vehicle. The control setup allows eight switch points and 14 stop stations on the tractor’s chosen route, which can be up to 1.2-miles long. The tractor can haul trucks of about 6 tons in total weight at 2.5 miles an hour. It can be converted to driver-controlled operation by the moving of a lever.

Bulgaria. The Sofia city government has installed a centrally controlled timing system for its public clocks. The master clock, electronically controlled to limit time deviation to less than three seconds yearly, transmits by radio a timing pulse once every minute to secondary clocks throughout the city and surrounding suburbs. Each of the secondary clocks can be connected by wire to as many as 150 clocks in factories, public offices and the like.

Japan. Sanyo Electric Co. last week started selling two types of 19-inch color television sets at retail prices of $452 and $486. The company will produce 3,000 of each model monthly. Sanyo’s move breaks through the $500 minimum retail price level the Japanese government claims was illegally set by six major tv producers, and it could weaken the government’s case in an antitrust hearing scheduled for next week [Electronics, Jan. 9, p. 241].

Sweden. Radio Engineering Products Ltd. of Montreal has formed a subsidiary in Stockholm to handle sales throughout Europe and parts of Asia. The company chose Sweden as an overseas base largely because it already has sold the Swedish armed forces some $7 million of equipment for multichannel tactical radio links and expects more Swedish business. Radio Engineering is the first Canadian electronics company to set up its European sales headquarters in Sweden.

Hong Kong. General Telephone & Electronics Corp. plans to buy control of Wireless Products Ltd., a major Hong Kong transistor-radio manufacturer, from the Amrex group of companies for stock. Wireless Products had sales of $5 million in the year ended Nov. 30, 1966. As a General Telephone subsidiary, it will continue transistor-radio production and add other electronic products to its line.

West Germany. Next month the Max Planck Institute for Radio Astronomy will let a contract for what will be the world’s largest fully steerable radio-telescope antenna. The German telescope will have an antenna diameter of 328 feet, compared to 250 feet for the Jodrell Bank facility in Britain and 300 feet for the National Radio Astronomy Observatory’s installation at Green Bank, W. Va.

Great Britain. Electronic Signs & Signals Ltd. is producing a transistorized unit to power neon lamps on cars and trucks. The unit, which runs off the vehicle’s battery, uses a free-running electronic circuit with a high-frequency output matched to the neon tube. The transformer is an integral part of the oscillating circuit. Power consumption for a neon tube two feet long is about 1 amperes, and the light produced has about three times the penetrating power of conventional filament lamps with equal current consumption.
Electronics advertisers

January 23, 1967

• Acme Electric Corporation
 Scheel Advertising Agency Inc.

• Acme Division
 Mort Barish Associates

• Acrornag Incorporated
 Ingolds-Ingolds Inc.

• Air Products & Chemicals Inc.
 Arthur Falconer Associates

• Allen Electronics Inc.
 Welch, Mirabile & Company

• Allen-Bradley Company
 Fensholt Advertising Agency

• Amelco Electronics Corporation
 Div. of Teledyne Inc.

• American Semiconductor Corporation
 Benn Associates

• Ammon Instruments Inc.
 Culver Advertising Agency

• Ampex Electronics Corporation
 Div. of North American Philips Co.

• Angstrom Company
 Saro & Associates

• American Electronic Laboratories
 Benn Associates

• Amphenol Corporation
 Wolfs Associates Inc.

• Andrew Corporation
 Fensholt Advertising Inc.

• Atlas Chemical Industry Inc.
 Hara D. D. McKinney Inc.

• Automatic Electric Company
 Gen. Tel. & Electronics Corp.

• Ballantine Laboratories
 Lang-Lawrence Advertising

• Barber-Coleman Company
 Electrical Components Group

• Bausch & Lomb Incorporated
 Hisson & Jongerson Incorporated

• Bendix Corporation
 Microwave Devices

• Bendix Corporation
 Montrose Division

• Benrus Watch Company
 Technical Products Division

• B&N Creative Services
 S & S Creative Services

• Bolt Beranek & Newman Inc.
 Leland Oliver Company

• Borden Chemical Company
 Mystik Tape Industrial Division

• Bud Radio Incorporated
 Allied Advertising Agency

• Bourns Incorporated
 Lester Company, The

• Bulova Watch Company
 Electronics Division

• Bussmann Mfg. Division
 Frank Best Co., Inc.

• Cambridge Thermionic Corporation
 Churig & Cairns Inc.

• Cherry Electrical Products Corporation
 Gill & A Incorporated

• Cinch Manufacturing Company
 Strad Advertising Company

• Clarion Corporation
 Michael-Cather Incorporated

• Clare & Company, C.P.
 Reincke, Meyer & Finn Advertising Incorporated

• Clearstar Manufacturing Company
 Lescarboula Advertising Incorporated

• Cleveland Institute of Electronics
 Foote, Cone & Belding

• Clifton Precision Products Company
 Division of Litton Industries

• Communications Electronics Incorporated
 S.G. Stackigh Incorporated

• Conductor MRC Division
 Gray & Kilgore Incorporated

• Consolidated Avionics Corporation
 Stanley Schwartz Company

• Consolidated Electrodynamics Corporation
 Sub. of Bell & Howell

• Consumers Power Company
 Area Development

• Couch Ordnance Incorporated
 Culver Advertising Incorporated

• Curtis Instruments
 Lescarboula Advertising Incorporated

• Dale Electronics Incorporated—sub. of
 Lienel Corporation

• Digital Equipment Corporation
 McCallan Associates

• Donn & Macmillan Incorporated
 Snow & Dewey Advertising

• Dupont de Nemours Company
 Mylar Division

• Eastman Kodak Company
 PCIM Market Development

• Electrotech Corporation
 Riskell-Hoyt Incorporated

• Electro Craft
 Fischbein Advertising Incorporated

• Electrical Industries
 George Homer Martin Associates

• Electro-Tec Corporation
 McCallan Associates

• Electronic Modules Corporation
 Raymond Thompson & Associates

• Elliott Service Corporation
 The Powerd Company

• FMG Corporation
 Product Promotion Department

• Fairchild Semiconductor
 Incorporated

• Garrett Corporation
 Airesearch Manufacturing Division

• General Electric Company
 Capacitor & Components Division

• General Electric Company
 Lamp Metals & Components Division

• General Radio Company
 2nd cover

• Hamilton Watch Company
 Beaumont, Heller & Sperling Incorporated

• Hansen Manufacturing Company
 Keller Crescent Company

• Heath Company—sub. of
 Schueller-Muller

• Hewlett Packard Associates
 Lennin & Newell Incorporated

• Hewlett Packard—Lovelock Division
 Tallant & Yates Inc.

• Hewlett Packard Microdivision
 Lennin & Newell Incorporated

• Hewlett Packard—F.L. Moseley Company Division
 Lennin & Newell Incorporated

• Honeywell Computer Control Division
 Franklin P. Fields Co.

• Honeywell Microwave Division
 Lennin & Newell Incorporated

• Hughes Aircraft Company
 183 & 210 & 220

• Hull Corporation
 Currie & Belding Incorporated

• Juris Corporation
 Michener Company Advertising

• K R C Incorporated
 Gray & Rogers Incorporated

• Image Instruments Incorporated
 L.K. Frank Company Incorporated

• Intalcor Corporation
 S. G. Gunnar Myrbeck Company

• International Commercial Incorporated
 J.S. Lanza & Associates

• International Instruments Incorporated
 Thomas R. Sundheim Incorporated

• ITT Jennings Manufacturing Company
 West, Weir & Bartel Incorporated

• ITT Semiconductors Division
 Neals & Hickok Inc.

• J G D Electronics Company
 Components Division

• Jerrold Corporation
 Lescarboula Advertising Incorporated

• Johnson Company, E.F.
 Midland Associates

• Lambda Electronics Corporation
 Michel Cather Incorporated

• Leach Corporation
 Jay Chiat & Associates

• Litton Industries Incorporated
 West, Weir & Bartel Incorporated

• Louisana, State of Dept. of
 Commerce

• Machlett Laboratories
 Division of Raytheon Company

• Mallory
 Fuller, Smith & Ross Incorporated

• P.E. Mallory & Company
 Manufacturing Div.

• Maryland Telecommunications
 Incorporated

• Maryland Television Incorporated
 Ray E. Finn Advertising

• Meapo Incorporated
 Ray Ellis Advertising Corporation

• Miller Instruments Company
 Frank Best & Company, Incorporated

• Minnesota Department of Business Development
 White, Herzog & Associates

• Monsanto Chemical Company
 Inorganic Division

• Motorola Semiconductor
 Products Incorporated

• National Cash Register
 Allen Dorsay & Hatfield Inc.
Learn why

Please send me a FREE copy of "Transistor characteristics related to circuit performance," along with detailed specifications on ITT strip line transistors.

Name Title
Company .. Address ..
City .. State Zip

ITT's exclusive strip line packaging makes VHF/UHF transistor circuits work better

The strip line package reduces or eliminates many of the difficulties that were formerly inevitable when working with high-power VHF-UHF transistors.

Consider these advantages: strip line configuration simplifies final tune-up by virtually eliminating instability; low-inductance package means easier matching to driver stages and broad bandwidth. For 400 MHz application, you may select the 3TE440 (15 watts output) or the 3TE450 (4 watts output).

For full details fill in the coupon above. Or see for yourself — sample quantities are available off the shelf from your ITT distributor or factory representative.

ITT SEMICONDUCTORS IS A DIVISION OF INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, 3301 ELECTRONICS WAY, WEST PALM BEACH, FLORIDA.
FACTORIES IN WEST PALM BEACH, FLORIDA; PALO ALTO, CALIFORNIA; LAWRENCE, MASSACHUSETTS; HARLOW AND FOOTSCRAY, ENGLAND; FREIBURG AND NUREMBERG, GERMANY

Circle 244 on reader service card
Get 20 MHz bandwidth and delayed sweep readability. With this scope you can choose from 17 plug-ins that cover the entire measurement spectrum. If you need wideband performance, for example, you can use the dual-trace 1402A vertical amplifier and get DC to 20 MHz at 5 mv/cm, algebraic addition, built-in delay line for viewing fast-rise pulses, full 6 cm deflection and a wide dynamic range.

For easy readability of complex waveforms and accurate time interval measurements, Model 1421A time base provides extreme magnification and sweep speeds from 1 sec/cm to 20 ns/cm. It also offers the additional advantage of exclusive hp mixed sweep. This feature combines display of the first portion of a trace at normal sweep speeds and simultaneously expands the trailing portion of the trace at faster delayed sweep speeds to allow step-by-step magnified examination.

An alternate mainframe (141A) provides equal versatility plus the advantages of variable persistence and storage. Price of the wideband system with 140A mainframe, 1402A vertical plug-in and 1421A horizontal plug-in is $1795. Price with the 141A mainframe is $2475.

Ask your hp Sales Engineer for brochure (data sheet 140A) with specs on the 140A wideband system as well as 140A high-sensitivity, TDR or 12.4 GHz sampling systems. You’ll find they give more and better measurements in less time. Hewlett Packard, Palo Alto, California, 94304. In Europe: 54 Route des Acacias, Geneva.
RCA
Hometaxial-Base
Transistors...
a family of
low-cost, reliable
silicon power transistors
offering you freedom
from the problems
of second breakdown

For more information on Hometaxial-Base
transistors, see your local RCA representative,
or write: Commercial Engineering,
RCA Electronic Components and Devices,
Harrison, N.J.

ALSO AVAILABLE THROUGH YOUR RCA DISTRIBUTOR

The Most Trusted Name in Electronics