Introduction to computer-aided design: page 110
Glass as a design material: page 129
Pcm for telephone transmission: page 139

September 19, 1966
75 cents
A McGraw-Hill Publication

Below: Printout shows a computer-aided design: page 110
AUDIO TRANSFORMERS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do-T44</td>
<td>80 CT 12</td>
<td>.32 split</td>
<td>40 split</td>
<td>9.8 11.5</td>
<td>500</td>
<td>DI-T44*</td>
<td></td>
</tr>
<tr>
<td>Do-T29</td>
<td>100 CT 10</td>
<td>.32 split</td>
<td>12</td>
<td>10</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T12</td>
<td>150 CT 10</td>
<td>.32</td>
<td>12</td>
<td>11</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T13</td>
<td>300 CT 7</td>
<td>.32</td>
<td>12</td>
<td>20</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T19</td>
<td>300 CT 7</td>
<td>.32</td>
<td>12</td>
<td>19 20 500</td>
<td>DI-T19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T30</td>
<td>320 CT 7</td>
<td>.32</td>
<td>20</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T43</td>
<td>400 CT 8</td>
<td>.32</td>
<td>46 50 500</td>
<td>DI-T43*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T42</td>
<td>400 CT 8</td>
<td>.32</td>
<td>46 50 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T41</td>
<td>400 CT 8</td>
<td>.32</td>
<td>46 50 500</td>
<td>DI-T41*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T2</td>
<td>500 CT 3</td>
<td>.32</td>
<td>60 65 100</td>
<td>DI-T2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T20</td>
<td>500 CT 5</td>
<td>.32</td>
<td>60 37 500</td>
<td>DT-T20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T4</td>
<td>600 CT 3</td>
<td>.32</td>
<td>60 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T14</td>
<td>600 CT 5</td>
<td>.32</td>
<td>60 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T31</td>
<td>600 CT 5</td>
<td>.32</td>
<td>60 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T32</td>
<td>800 CT 4</td>
<td>.32</td>
<td>12</td>
<td>51 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T15</td>
<td>1000 CT 4</td>
<td>.32</td>
<td>12</td>
<td>51 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T21</td>
<td>1200 CT 4</td>
<td>.32</td>
<td>12</td>
<td>10 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T17</td>
<td>1600 CT 4</td>
<td>.32</td>
<td>10 10 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T22</td>
<td>1500 CT 3</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T34</td>
<td>1500 CT 3</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T35</td>
<td>2000 CT 3</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T48</td>
<td>8000 CT 3</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T47</td>
<td>8000 CT 3</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T6</td>
<td>10000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T9</td>
<td>10000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T10</td>
<td>10000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T25</td>
<td>10000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T38</td>
<td>10000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T11</td>
<td>20000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T36</td>
<td>10000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T12</td>
<td>12000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T23</td>
<td>12000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T39</td>
<td>12000 CT 1</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T40</td>
<td>14000 CT 2</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T46</td>
<td>10000 CT 2</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T7</td>
<td>20000 CT 2</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do-T24</td>
<td>20000 CT 2</td>
<td>.32</td>
<td>12</td>
<td>505 100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do-TSH Drawn Hipermally shield and cover 20-30 db

Do-TM™ PIONEERS IN MINIATURIZATION

DO-T & DI-T Transistor TRANSFORMERS and INDUCTORS

Audio Transformers

Power Transformers

IMMEDIATE DELIVERY FROM STOCK

UNITED TRANSFORMER CO.

DIVISION OF TRW INC. • 150 VARICK STREET, NEW YORK, N. Y. 10013

Write for catalog of over 1,300 UTC TOP QUALITY STOCK ITEMS IMMEDIATELY AVAILABLE from your local distributor.

Circle 900 on reader service card
With HP's new spectrum analyzer up-converter, wideband spectrum analysis can be extended down to 10 kHz, and the entire frequency spectrum from 10 kHz to 40 GHz can be inspected with a simple measurement system.

Since all electrical devices generate unwanted signals, such as transients and harmonics that may interfere with sensitive electronic instrumentation, it often is necessary to specify the RFI from the upper audio frequencies into high microwave frequencies. The development of the Hewlett-Packard spectrum analyzer and its 10 kHz to 40 GHz capability eliminated many of the problems of RFI measurement, such as the need to use slowly tuned receivers that only covered small segments of the spectrum to be analyzed.

Radiation from an electric drill held next to the antenna as displayed by the spectrum analyzer and up-converter. Horizontal scale, 30 kHz/cm centered at 150 kHz; vertical scale, 10 dB/cm.

Not only does this instrument cover an extremely broad frequency range, but it also scans fast enough to detect transients often missed by older methods. This combination is equally valuable in spectrum signature work.

FM broadcast band in the Palo Alto, California, area displayed at 100 kHz/cm horizontal; vertical scale is 10 dB/cm, and the smallest signals are less than 1 µV.

RFI is typical of the many problems prevalent in the congested spectrum. The Hewlett-Packard K15-8551B Spectrum Analyzer Up-converter (shown below with the Model 851B/8551B Spectrum Analyzer) is a very sensitive, flexible device for extending spectrum analysis coverage. Analyzer range without the up-converter is 10.1 MHz to 40 GHz. Up-converter extends range below to 10 kHz. Model 8551B RF Section, $7100; Model 851B Display Section, $2400; Model K15-8551B Up-converter, $1555.

Additional technical data on the analyzer and up-converter is available from your HP field engineer. Or write direct, Hewlett-Packard, Palo Alto, California 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva.

Data subject to change without notice. Prices f.o.b. factory.

An extra measure of quality
new disciplines in DC

take the constant current model with <200 microsecond recovery

Accurate DC Voltage Monitoring Circuit Eliminates Output Resistance Degradation

A new series of compact, precision regulated, all-silicon DC power supplies features constant current output useful down to the microamp region. Ripple, regulation, and stability are orders of magnitude better than comparably priced constant current supplies, and permit CCB models to be used as general purpose laboratory constant current sources for semiconductor circuit development, and for component evaluation and testing.

A constant current DC power supply must be able to change its output voltage rapidly in order to minimize load current transients. With the CCB Series, less than 200 µs is required for transient load recovery to within 0.1%—even for load changes requiring full rated output voltage changes!

Placing a voltmeter across the output terminals of a normal constant current power supply degrades the load regulation and diminishes the load current both by a factor of $\frac{R_l}{R_l + R_v}$, (R_l = load resistance, R_v = voltmeter resistance.) The CCB Series eliminates this error by using an operational amplifier to feed the front panel voltmeter. This "replica" of the output voltage is also presented on rear terminals for possible connection to a more accurate differential or digital voltmeter, thus increasing the utility of these constant current supplies for component testing and sorting systems.

Three-Position Output and Meter Range Switch, 10-Turn Output Control With Resolution to 0.1 µA • Continuously Variable Voltage Limiting • Output Impedance to 20,000 Megohms, Depending on Model Number and Range • High Speed Remote Programming From Resistance or Voltage Input, Can Be Modulated Using External AC Source • No Overshoot on Turn-On, Turn-Off, or Power Removal • Front and Rear Output Terminals • Half Rack Width, Rack Mounting Hardware Available.

CCB SERIES SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Model 6177A</th>
<th>Model 6181A</th>
<th>Model 6186A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current</td>
<td>0-750 MA</td>
<td>0-300 MA</td>
<td>0-100 MA</td>
</tr>
<tr>
<td>Voltage Compliance</td>
<td>0-50 V</td>
<td>0-100V</td>
<td>0-300V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>Less than 10 PPM of output + 5 PPM of range setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Regulation</td>
<td>Less than 10 PPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS Ripple</td>
<td>Less than 100 PPM of output + 10 PPM of range setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>3½" (99 MM) H x 8½" (216 MM) W x 12½" (321 MM) D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact your nearest Hewlett-Packard Sales Office for full specifications.
News Features

Probing the News
183 Laser gyro comes in quartz
191 Transistors face an invisible foe
197 Mars flyby drawing closer
201 Air Force junks custom-built computers

Electronics Review
43 Space electronics: Venus squeeze play; Ball bearing; Orbiting yardstick; Electronic switch
45 Military electronics: Missile follower
46 Consumer electronics: Double play
48 Avionics: Landing on the beam
48 Antennas: Stanford's 5 & 10
50 Components: A little lithium
52 Railroad electronics: Transit tie-up
52 Communications: Home tv from space

Electronics Abroad
273 Soviet Union: Computer show
273 East Germany: Cut to fit
274 Great Britain: Computer on the rails; Accent on avionics
275 Japan: Breaking in
276 Belgium: Victory at sea
276 Italy: The plot quickens

Departments
4 Readers Comment
8 People
14 Meetings
16 Meeting Preview
23 Editorial
25 Electronics Newsletter
75 Washington Newsletter
209 New Products
260 New Books
263 Technical Abstracts
265 New Literature

Technical Articles

I. Design

Circuit design 110 Computer-aided design: part 1
The man-machine merger
The electronics industry is on the threshold of a new era in which the circuit designer and the computer establish a new relationship
Donald Christiansen, senior associate editor

115 Portfolio of computer-aided design projects
In color, pictures of how some engineers are using computer-aided design

120 Circuit analysis by computer
High-speed computers can facilitate network analysis to formulate and solve complex design problems
Joseph Mittleman, senior associate editor

Circuit design 124 Designer's casebook
- Sawtooth generator drives cathode-ray tube
- Interlock protects display tube
- Multirange d-c voltmeter
- Fail-safe frequency divider

Materials 129 Looking through glasses for new active components
Renaissance in glass technology is providing hundreds of new materials for future semiconductor components, transducers and memories
John D. Mackenzie, Rensselaer Polytechnic Institute

II. Application

Communications 139 Integrated circuits and pulse coding mean new gains for telephony
The switch to pcm is now economical because of the availability of microcircuits
A.E. Chatelon, Laboratoire Central de Telecommunications

142 Pcm: advantages and basic principles
A review of the background of pcm explains today's heated interest
Leonard Weller, communications editor

Avionics 151 Air navigation system testing grounded by signal simulator
Device checks out loran airborne receivers; the technique could be extended to test other navigation systems
Robert S. Stapleton, Teledyne Systems Co.
Readers Comment

Suggested guide to reliability

To the Editor:

Power supplies are among the most universal of electronic products. Thousands of engineers specify them, or use them, or evaluate them, or do all three.

Yet, in spite of the ubiquity of power supplies in systems and in spite of the overriding demands for reliability, the industry has failed to produce a simple guideline for reliability.

As president of a systems power supply company, I have, obviously, a vested interest in the subject. It would be better if such a guideline came from the systems engineers who are heavy users of power supplies. Nevertheless, I would like to propose such a guideline for reliability in specifying power supplies and invite comments on it.

A specification of mean time between failure would provide an excellent reliability standard. It is practical because most vendors have the necessary know-how and experience to supply valid data. Validity can be assured by standardizing on an acceptable mtbf calculation procedure, such as that set forth in Mil Handbook 217.

Most important, mean time between failure is handy for the power supply user. It enables him to apply one reliability standard to all vendors. It gives him a useful figure when assessing over-all system reliability. It provides a good yardstick to determine if a redundant power system will be required. Lastly, he can use it, along with other criteria, to evaluate the relative cost of one type of power supply system against another.

Most reputable power supply vendors offer unconditional guarantees of varying length on their modules. Many systems engineers will admit, however, that they find the guarantees more comforting than useful as standards. That is why some companies have been using mtbf in specifications for the past year or two.

If there were sufficient reaction from the field, then all the power supply vendors would have to provide this specification for reliability. I’m sure this would represent a use-
This is the typical wideband noise figure of Sprague Types 2N4383 and 2N4384 high-gain, low-level NPN silicon epitaxial planar transistors. Maximum NF is 2.0 db, one db lower than the type that has been the industry’s most popular high-gain, low-level transistor.

Sprague Electric also offers Types 2N4385 and 2N4386, with noise figures of 1.0 db typ., 3.0 db max.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conditions</th>
<th>2N4383 (TO-5 Case)</th>
<th>2N4384 (TO-18 Case)</th>
<th>2N4385 (TO-5 Case)</th>
<th>2N4386 (TO-18 Case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVCEO</td>
<td>IC = 10mA</td>
<td>40V min.</td>
<td>40V min.</td>
<td>40V min.</td>
<td>40V min.</td>
</tr>
<tr>
<td>BVCEO</td>
<td>30V min.</td>
<td>30V min.</td>
<td>30V min.</td>
<td>30V min.</td>
<td>30V min.</td>
</tr>
<tr>
<td>ICBO</td>
<td>VCBO = 30V</td>
<td>10mA max.</td>
<td>10mA max.</td>
<td>10mA max.</td>
<td>10mA max.</td>
</tr>
<tr>
<td>IEBO</td>
<td>VEB = 3V</td>
<td>10mA max.</td>
<td>10mA max.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>hFE</td>
<td>VCE = 5V, IC = 1mA</td>
<td>60 min.</td>
<td>60 min.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>hFE</td>
<td>VCE = 5V, IC = 10mA</td>
<td>100 min.</td>
<td>100 min.</td>
<td>40 min.</td>
<td>40 min.</td>
</tr>
<tr>
<td>hFE</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>hFE</td>
<td>VCE = 5V, IC = 1mA</td>
<td>120 min.</td>
<td>120 min.</td>
<td>100 min.</td>
<td>100 min.</td>
</tr>
<tr>
<td>NF</td>
<td>VCE = 5V, IC = 10µA, rρ = 10KΩ, Bandwidth = 10 Hz to 15.7 kHz</td>
<td>2db max.</td>
<td>2db max.</td>
<td>3db max.</td>
<td>3db max.</td>
</tr>
</tbody>
</table>

Evaluate these devices without delay. They’re available now in production quantities. Call your nearest Sprague Electric district office or sales representative for prices and delivery. Or, write Marketing Dept., Semiconductor Division, Sprague Electric Company, Concord, N.H. 03302.

SPRAGUE COMPONENTS

SPRAGUE®
THE MARK OF RELIABILITY

Sprague and ‘®’ are registered trademarks of the Sprague Electric Co.

Electronics | September 19, 1966

Circle 5 on reader service card
Select the oscillator you want, then choose the power supply that gives the performance you need... power, frequency stability, pulse and/or square-wave modulation, amplitude-regulated output, 115-V or 230-V input.

There are 32 different combinations offered here, each with a different set of features for your measurement needs. The seven oscillators from which you can choose provide continuous frequency coverage from 500 kHz to 2000 MHz and have typical outputs of several hundred milliwatts. All but two of these can be mated with any of five power supplies to provide a variety of operating conditions. Prices for oscillator/power-supply combinations range from $355 to $1104 in the U.S.A.

Please write for complete information.
ful step forward.

William Perzley
President
Consolidated Avionics
Westbury, N.Y.

Laser correction

To the Editor:
A few errors crept into the article on IBM's laser-wavelength selector [''Many colors are better than one'' July 11, p. 84]. The second formula on page 88 should read:

\[Z_i = \frac{1}{\sqrt{2}} \sin (\omega t + \theta \lambda) \]

The crystal material is potassium diodeuterium phosphate (KDP). The sentence at the top of page 88 should read "the light travels down the x' axis" rather than x' axis. The memory reading system shown on page 90 does not require a selector—the word "selector" in the caption should read deflector.

M.A. Habegger
International Business Machines Corp.
Poughkeepsie, N.Y.

Significant contribution

To the Editor:
I would appreciate it if you could acknowledge the very significant contribution of William Follmer to the work described in my article "New twist for backward diodes'' [July 11, p. 74].

Russell O. Wright
Manager
Microwave Department
Philco Corp.
Spring City, Pa.

Too many components?

To the Editor:
You say that pulse-width modulation amplifiers have not been produced with discrete components [July 25, p. 43]. However, we have been making such amplifiers for three years. Circuit complexity is not really a problem because the components required are cheap.

Some of the high-frequency, high-power switching transistors recently developed are ideal for this type of amplifier and we anticipate extending our range well above the 20 watts of our current X-20 amplifier.

C.M. Sinclair
Managing Director
Sinclair Radionics Ltd.
Cambridge, England

Many engineers will agree with reader Sinclair's statement that circuit complexity is not really a problem after examining the schematic of a pwm amplifier [below].

Are there too many components in a pulse-width modulation amplifier?
FEATURING
- Linear or Log response
- Solid State, Tube, and Ultra-miniature
- RFI Protected
- IF and Video Outputs
- MIL Grade
- Matched Units

RANGE OF SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Frequency</td>
<td>5 to 160 MHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>0.25 to 100 MHz</td>
</tr>
<tr>
<td>Gain</td>
<td>to 100 db</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>to 1.4 db</td>
</tr>
<tr>
<td>Price</td>
<td>From $185</td>
</tr>
</tbody>
</table>

In addition to offering the widest line of off-the-shelf units in the industry, an additional 268 CUSTOM DESIGNS have been produced. The solution to your problem may be on file in our library now.

For specials, test our ONE-DAY-QUOTE Service. For standards, see complete listing in EEM Section 3400.

RHG IF AMPLIFIERS

RHG ELECTRONICS LABORATORY, INC.
54 Milbar Blvd., Farmingdale, L.I., N.Y. 11735 • I.S.I.B. 694-3100

People

Taking the position that oceanography in the past has seen "a lot of poetry but not much leadership," Edward Wenk Jr. intends to take a strong hand as executive secretary of the National Council on Marine Resources and Engineering Development. Wenk has a mandate to ride herd on the scattered oceanographic activities of the Federal Government. His mandate is Public Law 89-454. He also has the backing of two of Washington’s leading citizens, Lyndon Johnson and Hubert Humphrey.

The law was pushed through Congress by Sen. Warren G. Magnuson (D., Wash.), chairman of the Senate Commerce Committee and outspoken advocate of fishing interests. It creates a 15-man advisory commission to formulate long-range oceanographic plans and a cabinet-level council to put the plans in motion.

Electronics role. Wenk points out that oceanography has to move out of the era of "sealing wax and string instrumentation" and begin developing advanced techniques in data collection and real time data processing. He also expects that oceanography, like other advanced technologies, will someday be spending half its dollars on electronics. But he warns against the mounting optimism of the past year or two. "Too many people have plugged this thing as if a great pot of gold is opening up," he says.

In commanding the kind of cooperation he will need, Wenk has one big advantage: he has been in both the legislative and executive branches of the Government. After graduating from Johns Hopkins University in 1940 he spent 14 years with the Navy's David Taylor Model Basin. He then put in three years with the Southwest Research Institute in Dallas before returning to the Government as first congressional science adviser at the Library of Congress. He rejoined the executive branch in 1961 as...
Only the rugged Bendix B-5000 silicon power transistor is that promising, that inexpensive, that powerful. 25 watts at 2.5 amps, 10 volts and 100°C.

If you still think the Bendix B-5000 is just another low-cost plastic silicon power transistor, you're in for a pleasant surprise. It's a real breakthrough—in itself, and in what it can do for your design capability.

The B-5000's small size and small price, coupled with its high power and high reliability, mean you can now afford to put silicon power to work in many industrial and consumer applications. Lighting equipment, TV sets, audio amplifiers and industrial controls—to name a few.

What's more, the B-5000 can expand your production capability. You can tailor its mounting techniques to fit your needs exactly. For example, the B-5000 is readily adaptable to the newer assembly solder techniques without degradation. And it lends itself equally well to other production line techniques. Mounting assistance? Call on us.

Reliability? The B-5000 already has 500,000 hours of successful life-testing behind it without a single failure! And it exceeds environmental and mechanical requirements of MIL-STD-750A.

Only new manufacturing and packaging techniques make the B-5000 possible. The result is a simple, low-cost, rugged transistor, with no power compromise when mounted upon the normal heat sink. Leads and collector strips are highly conductive, offering excellent solderability, strength and ability to withstand flex and pull. Plastic encapsulation provides outstanding insulation resistance, hermeticity, adhesion ability and high temperature characteristics. All for under 40¢ in volume.

Why not contact us for all the details on the B-5000? You won't be disappointed.

Bendix Semiconductor Division
HOLMDEL, NEW JERSEY

Electronics September 19, 1966
Circle 9 on reader service card

Bendix Semiconductor Division
HOLMDEL, NEW JERSEY

Electronics September 19, 1966
Circle 9 on reader service card
New from Sprague!

METFILM ‘A’ CAPACITORS

...dramatically smaller in size, yet more reliable than military-grade capacitors of the past!

Just a few years ago, the only 10 µF capacitor considered dependable enough for military applications was Type CP70 (to JAN-C-25), and was a block-busting 3 3/4" wide x 1 3/4" thick x 4" high. Today, you can get a military-quality 10 µF tubular capacitor measuring only 1 3/16" in diameter x 2 3/4" long. And it’s more reliable than any capacitor of the past!

Sprague Type 680P Metfilm ‘A’ Metallized Capacitors meet all environmental requirements of MIL-C-18312, yet they occupy only one third the volume of conventional metallized film capacitors of equivalent capacitance and voltage rating. Employing a new thin organic film dielectric system, Type 680P capacitors use a dual film totalling only 0.00008" thick, as compared to conventional polyester-film capacitors with a single film measuring 0.00015".

Another distinct advantage of the Metfilm ‘A’ dielectric system is minimum degradation of electrical properties during life.

Hermetically sealed in corrosion-resistant metal cases, capacitor sections are effectively non-inductive construction, resulting in capacitors with performance characteristics superior to those of comparably-sized capacitors.

Type 680P Metfilm ‘A’ Capacitors are available with capacitance values to 10 µF in both 50 and 100 volt ratings.

People

John L. McLucas, new president of the Mitre Corp., has the task of rebuilding the morale of his organization, which suffered when the Air Force imposed restrictions on nonprofit companies, including a ceiling on their growth [Electronics, May 2, p. 38]. “We can live with the restrictions,” he says, although he frankly admits the limitations of living in a goldfish bowl. “Public scrutiny tends to make management more conservative, like civil service. And that is not the idea behind Mitre.”

The Bedford, Mass., private company was chartered to work only for Government agencies. It was organized in 1958 principally to provide systems engineering support to the Air Force Electronic Systems division, also in Bedford. Its $33.5-million budget for fiscal 1967 is about half that of its West Coast counterpart, the Aerospace Corp.

“The Air Force report cleared the air for us,” McLucas says. “We and the other nonprofits were under fire; our usefulness was questioned. Now it is clear the Air Force is convinced we are needed. . . .

“I was a critic of the nonprofits myself in my Pentagon days,” McLucas admits. He was deputy director of defense research and engineering for two years before he left the Defense Department in 1964 to become State Department representative to the North Atlantic Treaty Organization in Paris.

Added tasks. McLucas is seeking to expand the Mitre budget, pointing to pressures for Mitre to take on added tasks for various agencies of the Defense Department, particularly in tactical communications.
Highest Power Level for RF operation at C-Band: MACHLETT miniature planar triodes

For comparable size and weight in the C-Band region, and higher, the Machlett miniature planar triode provides the highest plate dissipation capability with correspondingly high duty cycle and rf power output. 1 kW grid pulse operation is currently being achieved at 6 Gc with the ML-8630. From cathode rf heater contact to anode rf surface contact, these new tubes ML-8629, ML-8630 and ML-8631 measure only .565 inches high by .7 inch diameter. These "8600 series" tubes will dissipate 100 watts, or more, with suitable cooling devices. Frequency stable for quick on-frequency performance. Phormat cathode for high voltage stability.

For complete details, write The Machlett Laboratories, Inc., Springdale (Stamford), Conn. 06879.
Type TLS (CL64/65) Tantalum capacitors pass 10,000 hour life test

Mallory Capacitor Company engineers recently completed a series of life tests to evaluate the stability of electrical parameters of the Type TLS wet slug tantalum capacitors beyond the MIL 2000 hour requirement. These capacitors, which are equivalent of CL64 and CL65 per MIL-C-39006, demonstrated excellent retention of performance up to the 10,000 hours of the test, both at 85°C and at 125°C... and confirm the long term life capability of the Mallory TLS design.

DC leakage performance remained well below specification limits. Equivalent series resistance of all TLS capacitors tested measured in the order of one-tenth of specification values. Capacitance changes were relatively small, and these, too, stayed well within spec limits. Tests were made both on capacitors which had previously passed 2000-hour MIL life test, and on excess MIL screening units which had not been life tested. Good correlation of results was observed for both tested and untested lots. Typical values are shown here for one of the several different C-V values tested in this series. A copy of our Engineering Report is available on request.

Avalanche rectifiers can take 80% overvoltage

Because of their ability to withstand switching and line transient voltage spikes well above steady state rated values, Mallory Type LA controlled avalanche rectifiers prove an ideal means of protection for power supply circuits of phonographs, calculating machines, instruments and other industrial and commercial electronic products. The overvoltage capability of the Type LA is comparable to that of selenium rectifiers, without the aging characteristic of selenium. A special diffusion technique produces a silicon junction which can rectify safely over a broad range of applied voltage. Current ratings of ¼, 1, 2 and 3 amperes are supplied. Maximum spike which can be tolerated safely is 80% above nominal voltage rating. By values, at 25°C, are 200, 300, 400, 500 and 600 volts. Type LA is supplied in a molded case .377" long and .200" in diameter, with axial leads.

New Precision Film Resistors in new small size

Price: under 10¢ in production lots

For use where superior precision and stability are demanded, Mallory now offers precision film resistors in ¼ and ½ watt ratings. These MAF resistors are designed to meet the requirements of MIL-R-10509. Their physical size, or volume however, is approximately one-half that allowed under the specification, and is about 25% smaller than that of other precision resistors of this type on the market. The ¼-watt maximum size is .377" long and .127" in diameter; the ½-watt maximum size is .627" long and .189" in diameter.

The cutaway drawing shows construction. A nickel chrome alloy is vacuum deposited on a ceramic substrate. Gold bands are fired onto each end, to assure positive, low resistance contact with end caps. Precision helixing produces tight tolerances. Dual protection against environment is provided by a silicone undercoat and an outer coating of molded epoxy.

Load life stability is excellent. After 1000 hours at full load, resistance changes are typically less than ±.25%, and always less than ±.5%. Temperature coefficients of ±100, 50 and 25 PPM/°C are available. Power ratings of ¼ and ½ watt are based on 125°C ambient, and can be doubled for 70°C ambient. Tolerances: ±1.0% and ±.5%.

The ¼-watt size can be supplied in resistances from 30.1 ohms to 499K; the ½-watt size in values from 49.9 ohms to 1 megohm.

CIRCLE 191 ON READER SERVICE CARD

CIRCLE 192 ON READER SERVICE CARD

CIRCLE 193 ON READER SERVICE CARD
New line of medium power sealed silicon rectifiers

The new Mallory HC rectifiers cover the complete range of current ratings from \(\frac{3}{4} \) to 25 amperes. All ratings are 75°C ambient. They use true hermetic glass-to-metal sealed cases, with either single-ended or axial lead construction. A passivated silicon die affords superior high temperature stability.

The \(\frac{3}{4} \), 2 and 3 ampere types are in top-hat style flange cases, 450° diameter at the flange 350° body diameter. The 5, 10, 15, 18 and 25 ampere ratings come in press fit, solder fit and conductive epoxy case configurations. All current values are available in Peak Inverse Voltage ratings from 50 to 1000 volts.

CIRCLE 194 ON READER SERVICE CARD

Improved performance for Mallory Alkaline Batteries

Discharge characteristic of "AA" size Mallory Alkaline Batteries at 31°F. Two cells in parallel feeding into 8 ohm lamp load.

Now, standard Mallory manganese-alkaline batteries (sizes "D", "C" and "AA") have completely new performance ratings when operating at freezing temperatures or under relatively high current drains. For example, the graph compares service life of the new Mallory MN1500 (size "AA") versus the old when cells are discharged continuously through a PR-4 bulb at 31°F. This dramatic improvement in battery life was accomplished through changes in the battery’s internal design (see cut-away), which increase the effective anode area in relation to cell volume and reduce internal impedance of the cell. Added refinements in case and seal construction have also been made to insure reliability of the seal under even the most severe vibration.

The new Mallory alkaline batteries are ideal for lighting, photoflash, motor driven applications and other heavy drain service.

CIRCLE 195 ON READER SERVICE CARD

"O" Ring-type switches in Mallory controls give long life, high reliability

The line switches supplied attached to Mallory volume controls have a unique O-ring design which provides exceptional performance. Contact is made by a freely rotating ring element that snaps into place between stationary contacts. There are no current-carrying springs. The ring rotates slightly as the switch is operated, so that a new contacting surface is presented each time and contact wear is distributed around the entire periphery. The result is long switch life, freedom from contact failure and ample ability to handle overloads.

These switches, designated Type OAC, are available in SPST, SPDT and DPST configurations, with UL ratings of 3, 5 or 6 amps AC at 125 volts, in rotary, push-push or push-pull action. Terminal arrangements can be supplied, identical with those of the volume control, for point-to-point wiring or printed circuits.

CIRCLE 196 ON READER SERVICE CARD

Electronics | September 19, 1966
There are many "variables" between concept and use. One company which is a constant is PERMACOR. If you have a design problem, our engineers can help you solve it. If you have a production problem, we can help solve that, too. We have a full line of stock cores, and facilities for any custom core design and production. This is part of the reason why we are the number one producer of powdered iron cores. Write for the full story.

Meetings

Communication Symposium, IEEE; Cedar Rapids, Iowa, Sept. 23-24.

Environmental Test Equipment Show, Institute of Environmental Sciences, Bureau of International Commerce; U.S. Trade Center in Frankfurt, West Germany, Oct. 5-12.

Underwater Photo-Optics Conference, United States Naval Missile Center, Society of Photo-Optical Instrumentation Engineers; Miramar Hotel, Santa Barbara, Calif., Oct. 10-11.

Ultrasonics Symposium, IEEE; Statler Hotel, Cleveland, Oct. 12-15.

Canadian Symposium on Communications, IEEE; Queen Elizabeth Hotel, Montreal, Quebec, Oct. 13-14.

Military Aircraft Systems Meeting, American Institute of Aeronautics and Astronautics; Dallas, Oct. 18-19.

Symposium on Microwave Measurement, the International Measurement Confederation; Budapest, Hungary, Oct. 18-20.

International Trade Exhibition of Electronic Components, Electronica 66; Munich, West Germany, Oct. 20-26.

Call for papers

American Society of Tool and Manufacturing Engineering Conference; Chicago, April 24-25, 1967. Oct. 24 is deadline for submission of 200- to 250-word abstracts to Marino Zapico, director of engineering conferences, American Society of Tool and Manufacturing Engineers, 20501 Ford Road, Dearborn, Mich. 48125.

* Meeting preview on page 16
New TRIMPOT® Voltage Sensors:
0 to 1000 VDC Range, 1/2 Cubic-Inch Size!

At just ½ cubic inch, our new Model 3910 and 3917 TRIMPOT
voltage sensors are the smallest you can buy. They’re ideal for
such applications as fail-safe circuits, go-no-go testing and
monitoring of transducers. Each unit can sense voltages from
0 to 1000 VDC with the unmatched accuracy of ±1%. Choose
Model 3910 for DPDT electromechanical relay output, Model
3917 for SPST NO solid-state output. Both models sense levels
from 6 to 12 VDC without external components. With added
resistors, both units sense to +1000 VDC, and, with proper
biasing, to −24 VDC. When external components are used, a
built-in potentiometer permits screwdriver adjustment of
six volts.

These units are extremely rugged and well suited for military
use. While there is no MIL-Spec for voltage-sensing relays, both
models conform in general to applicable portions of MIL-R-
5757D and the moisture-resistance requirements of MIL-STD-
202, Method 106. They withstand 20G, 10-2000 cps vibration
and 75G, 11-millisecond shock, are fully encapsulated, and are
backed by the extensive testing of the exclusive Bourns Reli-
ability Assurance Program. Write today for complete technical
information.

Voltage sensing range
Accuracy, static conditions
Repeatability, environmental extremes
Operating temperature range
Dropout-to-pickup differential range
Trigger input current

<table>
<thead>
<tr>
<th></th>
<th>Model 3910</th>
<th>Model 3917</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage sensing range</td>
<td>0-1000 VDC</td>
<td>0-1000 VDC</td>
</tr>
<tr>
<td>Accuracy, static conditions</td>
<td>±1%</td>
<td>±1%</td>
</tr>
<tr>
<td>Repeatability, environmental extremes</td>
<td>±5%</td>
<td>±5%</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>−55 to +105°C</td>
<td>−55 to +105°C</td>
</tr>
<tr>
<td>Dropout-to-pickup differential range</td>
<td>−1 to −4% standard</td>
<td>−1 to −25% standard</td>
</tr>
<tr>
<td>Trigger input current</td>
<td>0.7 milliamp, max.</td>
<td>0.7 milliamp, max.</td>
</tr>
</tbody>
</table>

units shown one-third actual size

BOURNS
BOURNS INC. TRIMPOT DIVISION, 1200 COLUMBIA AVE., RIVERSIDE, CALIF.
PHONE 684-1700 • TWX: 714-682 9582 • CABLE: BOURNSINC.
how to measure resolver or synchro position with 30 second repeatability

In both production test and ground checkout systems, North Atlantic's high performance Angle Position Indicators provide exceptional operator ease and precision in the measurement of synchro and resolver position. Features include digital readout in degrees and minutes, 30 second resolution, continuous rotation, plug-in solid-state amplifier and power supply modules. Due to the design flexibility of these units, they can be readily provided with a variety of features for specific requirements. Typical units in this line incorporate combinations of the following features:

- Single Synchro or Resolver Input
- Dual Synchro or Resolver Inputs
- Retransmit Synchro, Resolver, Potentiometer, or Encoder
- 2-Speed Synchro Input
- Multi-frequency Inputs
- DC Input
- 0-999 Counter

BASIC SPECIFICATIONS

- **Range:** 0°-360° continuous rotation
- **Accuracy:** 6 minutes (standard)
- **Repeatability:** 30 seconds
- **Slew Speed:** 25°/second
- **Power:** 115 volts, 400 cps
- **Size:**
 - API-8025: 1 3/4"h x 9 1/2"w x 9 1/4"d
 - API-8027: 3 1/2"h x 4 1/8"w x 9 3/4"d

Your local North Atlantic representative has complete data on the API line. Call him today or write direct for technical literature.

NORTH ATLANTIC industries, inc.
TERMINAL DRIVE, PLAINVIEW, L.I., NEW YORK • OVerbrook 1-8600

Meeting preview

Microelectronics in Munich

Solid-state devices and microelectronic components, their manufacturing techniques and applications, will be major subjects at the Second International Symposium on Microelectronics in Munich. The three-day meeting, Oct. 24-26, is sponsored by the International Electronics Association and will be held during the Electronica 66 show—a trade exhibition of electronic components, Oct. 20-26.

At least 1,000 engineers and scientists are expected to attend the symposium. According to Jurgen Gunther, chairman of the organizing committee, about 400 specialists registered before meeting programs were sent out.

U.S. influence. More than 40 papers will be presented during seven sessions by experts from the United States, Japan and East and West Europe. About half are by American authors.

Leading off the meeting will be a paper by Edward Keonjian of Bethpage, N.Y., who will review predictions he made two years ago at the first microelectronics symposium and progress made since then. Silicon-on-sapphire thin-film integrated circuits is the subject of a paper by W. Downing and P.J. Hagon, of the Autonetics division, North American Aviation, Inc.

A.H. Benny and J.A. Hayers, two specialists from Manchester, England, will describe metal oxide semiconductor (MOS) transistors in integrated arrays. A. Cerny of the Institute for Industrial Development in Prague, Czechoslovakia, will discuss some stability problems of MOS transistors and R. Paul of the Technical University of Dresden, East Germany, will describe MOS transistor behavior at high frequencies.

A researcher from the principalty of Lichtenstein, F. Gaydou of Balzers AG, will analyze a method for manufacturing thin films by ion atomization in the 10^-4 torr region. H.T. Go, N.J. McAfee and H.C. Jones, all from the Westinghouse Electric Corp.'s Aerospace division will examine microelectronics reliability from a system manufacturer's point of view.

Meeting preview

Microelectronics in Munich

Solid-state devices and microelectronic components, their manufacturing techniques and applications, will be major subjects at the Second International Symposium on Microelectronics in Munich. The three-day meeting, Oct. 24-26, is sponsored by the International Electronics Association and will be held during the Electronica 66 show—a trade exhibition of electronic components, Oct. 20-26.

At least 1,000 engineers and scientists are expected to attend the symposium. According to Jurgen Gunther, chairman of the organizing committee, about 400 specialists registered before meeting programs were sent out.

U.S. influence. More than 40 papers will be presented during seven sessions by experts from the United States, Japan and East and West Europe. About half are by American authors.

Leading off the meeting will be a paper by Edward Keonjian of Bethpage, N.Y., who will review predictions he made two years ago at the first microelectronics symposium and progress made since then. Silicon-on-sapphire thin-film integrated circuits is the subject of a paper by W. Downing and P.J. Hagon, of the Autonetics division, North American Aviation, Inc.

A.H. Benny and J.A. Hayers, two specialists from Manchester, England, will describe metal oxide semiconductor (MOS) transistors in integrated arrays. A. Cerny of the Institute for Industrial Development in Prague, Czechoslovakia, will discuss some stability problems of MOS transistors and R. Paul of the Technical University of Dresden, East Germany, will describe MOS transistor behavior at high frequencies.

A researcher from the principalty of Lichtenstein, F. Gaydou of Balzers AG, will analyze a method for manufacturing thin films by ion atomization in the 10^-4 torr region. H.T. Go, N.J. McAfee and H.C. Jones, all from the Westinghouse Electric Corp.'s Aerospace division will examine microelectronics reliability from a system manufacturer's point of view.

Meeting preview

Microelectronics in Munich

Solid-state devices and microelectronic components, their manufacturing techniques and applications, will be major subjects at the Second International Symposium on Microelectronics in Munich. The three-day meeting, Oct. 24-26, is sponsored by the International Electronics Association and will be held during the Electronica 66 show—a trade exhibition of electronic components, Oct. 20-26.

At least 1,000 engineers and scientists are expected to attend the symposium. According to Jurgen Gunther, chairman of the organizing committee, about 400 specialists registered before meeting programs were sent out.

U.S. influence. More than 40 papers will be presented during seven sessions by experts from the United States, Japan and East and West Europe. About half are by American authors.

Leading off the meeting will be a paper by Edward Keonjian of Bethpage, N.Y., who will review predictions he made two years ago at the first microelectronics symposium and progress made since then. Silicon-on-sapphire thin-film integrated circuits is the subject of a paper by W. Downing and P.J. Hagon, of the Autonetics division, North American Aviation, Inc.

A.H. Benny and J.A. Hayers, two specialists from Manchester, England, will describe metal oxide semiconductor (MOS) transistors in integrated arrays. A. Cerny of the Institute for Industrial Development in Prague, Czechoslovakia, will discuss some stability problems of MOS transistors and R. Paul of the Technical University of Dresden, East Germany, will describe MOS transistor behavior at high frequencies.

A researcher from the principalty of Lichtenstein, F. Gaydou of Balzers AG, will analyze a method for manufacturing thin films by ion atomization in the 10^-4 torr region. H.T. Go, N.J. McAfee and H.C. Jones, all from the Westinghouse Electric Corp.'s Aerospace division will examine microelectronics reliability from a system manufacturer's point of view.

Meeting preview

Microelectronics in Munich

Solid-state devices and microelectronic components, their manufacturing techniques and applications, will be major subjects at the Second International Symposium on Microelectronics in Munich. The three-day meeting, Oct. 24-26, is sponsored by the International Electronics Association and will be held during the Electronica 66 show—a trade exhibition of electronic components, Oct. 20-26.

At least 1,000 engineers and scientists are expected to attend the symposium. According to Jurgen Gunther, chairman of the organizing committee, about 400 specialists registered before meeting programs were sent out.

U.S. influence. More than 40 papers will be presented during seven sessions by experts from the United States, Japan and East and West Europe. About half are by American authors.

Leading off the meeting will be a paper by Edward Keonjian of Bethpage, N.Y., who will review predictions he made two years ago at the first microelectronics symposium and progress made since then. Silicon-on-sapphire thin-film integrated circuits is the subject of a paper by W. Downing and P.J. Hagon, of the Autonetics division, North American Aviation, Inc.

A.H. Benny and J.A. Hayers, two specialists from Manchester, England, will describe metal oxide semiconductor (MOS) transistors in integrated arrays. A. Cerny of the Institute for Industrial Development in Prague, Czechoslovakia, will discuss some stability problems of MOS transistors and R. Paul of the Technical University of Dresden, East Germany, will describe MOS transistor behavior at high frequencies.

A researcher from the principalty of Lichtenstein, F. Gaydou of Balzers AG, will analyze a method for manufacturing thin films by ion atomization in the 10^-4 torr region. H.T. Go, N.J. McAfee and H.C. Jones, all from the Westinghouse Electric Corp.'s Aerospace division will examine microelectronics reliability from a system manufacturer's point of view.

Meeting preview

Microelectronics in Munich

Solid-state devices and microelectronic components, their manufacturing techniques and applications, will be major subjects at the Second International Symposium on Microelectronics in Munich. The three-day meeting, Oct. 24-26, is sponsored by the International Electronics Association and will be held during the Electronica 66 show—a trade exhibition of electronic components, Oct. 20-26.

At least 1,000 engineers and scientists are expected to attend the symposium. According to Jurgen Gunther, chairman of the organizing committee, about 400 specialists registered before meeting programs were sent out.

U.S. influence. More than 40 papers will be presented during seven sessions by experts from the United States, Japan and East and West Europe. About half are by American authors.

Leading off the meeting will be a paper by Edward Keonjian of Bethpage, N.Y., who will review predictions he made two years ago at the first microelectronics symposium and progress made since then. Silicon-on-sapphire thin-film integrated circuits is the subject of a paper by W. Downing and P.J. Hagon, of the Autonetics division, North American Aviation, Inc.

A.H. Benny and J.A. Hayers, two specialists from Manchester, England, will describe metal oxide semiconductor (MOS) transistors in integrated arrays. A. Cerny of the Institute for Industrial Development in Prague, Czechoslovakia, will discuss some stability problems of MOS transistors and R. Paul of the Technical University of Dresden, East Germany, will describe MOS transistor behavior at high frequencies.

A researcher from the principalty of Lichtenstein, F. Gaydou of Balzers AG, will analyze a method for manufacturing thin films by ion atomization in the 10^-4 torr region. H.T. Go, N.J. McAfee and H.C. Jones, all from the Westinghouse Electric Corp.'s Aerospace division will examine microelectronics reliability from a system manufacturer's point of view.
When you take delivery of a Hewlett-Packard 3439A or 3440A DVM, you can be sure of one thing: It's going to work. We've already warmed it up for you. After it's tested and calibrated, every 3439A and 3440A goes into this "oven" for an overnight dynamic test at 50°C. All night long it's cycled. On, off, on, off, until morning. Then we retest it. If any troubles show up, they're fixed.

And then it goes through the whole procedure again. This environmental test is only one reason these DVM's are the most reliable you can buy. Another example: the readout boards. Before assembly, each one goes through a 24-hour run-in, a million turn-ons. Any failures show up at our place, not yours. We take a lot of trouble with your DVM. That's why you have so little trouble with it. And that's not just talk. By the time it leaves our plant, we have enough faith in your 3439A and 3440A to back it up with a year's warranty. Ours is a confidence you don't find with other manufacturers. But then, they don't have the 3439A or 3440A either. So if you want a reliable DVM, we have one all warmed up and ready to go. The 3439A. Solid state. 4-digit readout. Manual, automatic, and remote ranging. Extra-high sensitivity. A/C, d/c voltage, current resistance measurements (d/c accuracy better than 0.05% of reading ±1 digit). Price, $950. The 3440A has BCD output. Price, $1160. Plug-ins, $40 to $575.

Data subject to change without notice.
Prices f.o.b. factory.

HEWLETT PACKARD
An extra measure of quality
HIGH-SPEED CORE MEMORY
SENSE AMPLIFIER
TYPE MC1540

... with adjustable threshold voltage!

Typical performance:
- Fast recovery time — $t_r = 40$ ns compatible with 0.5 microsecond cycle time memories
- Saturated logic output signal
- Narrow uncertainty region — 6 mV
- High sensitivity — $V_{th} = 17$ mV (adjustable)

... for all applications requiring core memory signal sensing — such as, industrial control systems, data processors, and airborne computer systems.
GUARANTEED LOW-NOISE FET FOR VHF AMPLIFIERS AND MIXERS

Now, RF receivers, including high-quality FM sets, can be virtually free from spurious responses, if you specify Motorola's new 2N3823 state-of-the-art JFET. An extremely low 100-MHz noise figure of 2.5 dB (max) is complemented by low cross-modulation and inter-modulation distortion.

200 MHz Low-Noise Amplifier Circuit
- Symmetrical geometry in TO-72 package — can plug right into existing sockets.
- Also useful in UHF applications — up to 500 MHz.
- Low transfer and input capacitance ... $C_{\text{in}} = 2 \text{ pF (max).}$
- $C_{\text{in}} = 6 \text{ pF (max).}$

N-CHANNEL IGFET OFFERS HIGH GAIN FOR GENERAL PURPOSE APPLICATIONS

Motorola's new MFE3001 IGFET operates in both the enhancement and depletion modes, for a broad range of applications in industrial, military, and consumer equipment. And, the 100-up price of $3.90 makes it practical for most applications. Typical uses are audio amplifiers, switches and controls. A low drain current results from its small geometry, and the n-Channel construction provides high gain indicated by the $|V_{th}|$ specification of 1,800 μmhos (typ).

- Extremely high input resistance $I_{\text{oss}} < 10 \text{ pA at } 10 \text{ Vdc}$
- High Signal-handling capability at low drain currents. $I_{\text{oss}} = 0.5 \text{ mAdc (min).}$

GENERAL PURPOSE JFETs OFFER LOW-NOISE & LOW-COST FOR INDUSTRIAL & CONSUMER USES

Ease of converting audio preamplifiers to FET designs with Motorola types 2N4220A-22A has excited the imaginations of engineers. The high input-resistance allows for "vacuum-tube" design principles in selection of tone control elements — permitting use of small, low-cost capacitors.

The low guaranteed noise figure of 2.5 dB (max) at 100 cycles/sec. provides a definite advantage over bipolar transistors. For additional savings, the cost is only $2.90 (100-up), even lower in larger production quantities.

- N-channel for high gain $|V_{th}| = 1,000 \mu$mhos (min) 2N4220A
 2,000 μmhos (min) 2N4221A
 2,500 μmhos (min) 2N4222A

Tone Control for High-fidelity Audio Amplifiers

FET DIFFERENTIAL AMPLIFIER

THE FET IN DIGITAL APPLICATIONS

FETs IN THEORY AND PRACTICE

YES, I am interested in learning more about field effect transistors. Please send me the following Motorola Application Notes:

Name ___________________________ Title ___________________________
Company __________________________ Address __________________________
City __________________________ State __________ Zip __________

MOTOROLA Semiconductors
-where the priceless ingredient is care!
SINGLE-CHANNEL

Economical "briefcase-size" recorders.

- **MODEL 7701A** — 100 mm chart. Frequency Range DC to 30 cps. Linearity 0.5%. Sensitivity (depending on "8800" Preamp used) 1 uv/div to 5 v/div. Four chart speeds, 4 more optional. With case: $1,325 plus preamp.
- **MODELS 299, 301** — 32 mm chart. Frequency Range DC to 100 cps. Linearity 0.625%. Sensitivity 10 mv/div (Model 299), 10 uv rms/div (Model 301). 2 chart speeds. Model 299: $800, Model 301: $850.

DUAL-CHANNEL

In portable, rack-mount, or mobile cart units.

- **MODEL 7702A** — Two 50 mm channels. Frequency Range DC to 125 cps. Linearity 0.5%. Sensitivity (depending on "8800" Preamp used) 1 uv to 5 v/div. Four chart speeds, four more optional. $1,675, plus preamps.
- **SERIES** — Two 50 mm channels, Frequency Range DC to 125 cps. Linearity 0.5%. Sensitivity 0.5 to 20 mv/div and v/cm (Model 320), 10 uv rms/div to 2 mv/div (Model 321), 10 mv to 10 v/div (Model 322). Four chart speeds, more on special order. Model 322 has zero suppression. Prices with cases: Model 320: $1,650, Model 321: $1,650, Model 322: $1,395.

FOUR-CHANNEL

Sunborn MODEL 7704A recorder provides improved overall reliability, wider dynamic range, higher gain and more versatility through all solid-state "8800" Series preamps. Frequency range DC to 150 cps. Linearity 0.5%. Horizontal chart plane, nine chart speeds. Sensitivity (depending on "8800" preamp used) 1 uv/div to 5 v/div. In vertical cabinet, $4,020 plus preamps.

- **MODEL 7714A** combines the convenience of horizontal chart plane with the flexibility and high performance of interchangeable individual-channel 350 Series preamps. Four 50 mm channels. Frequency range DC to 150 cps. Linearity 0.5%. Sensitivity (depending on "350" preamp used): 2 uv/div to 5 v/div. Nine chart speeds. With vertical cabinet, $3,970 plus preamps.
See all measurements—
down to the last microvolt
with high resolution Sanborn thermal writing oscillography

Resolve and read the smallest variations in your test parameters — even at higher frequencies, small amplitudes, and at slow chart speeds. Sanborn heated stylus oscillographic recording on matching Permapaper® charts gives you an immediate, permanent and clear record of test variables... lets you make "straight across" comparisons and correlations of multiple channels quickly and accurately because of rectangular coordinate traces... lets you clearly see what happened — as it is happening, and at any future time for more study or proof of performance.

The advantages of Sanborn thermal writing are available in many combinations of standard catalog system choices. The extensive Sanborn line allows you to select the number of channels, chart speeds, and the type of signal conditioning circuits you need, and to choose the packaging method that best suits your facilities. The wide range of signal conditioners includes low-cost built-in units, all-channels-alike amplifiers in six or eight-channel modules, and two series of individual channel plug-in units — miniaturized solid-state signal conditioners and highly sophisticated, maximum performance units.

Check the brief specifications of the systems shown below or call the H-P field engineering office in your locality for complete technical data and application engineering assistance. Offices in 47 U.S. and Canadian cities, and major areas overseas. Sanborn Division, Hewlett-Packard Company, Waltham, Massachusetts 02154. Europe: Hewlett-Packard S.A., 54 Route des Acacias, Geneva, Switzerland.

HEWLETT PACKARD
SANBORN DIVISION

Circle 21 on reader service card

SIX AND EIGHT-CHANNEL

These versatile recorders have a wide range of input capacities, are completely integrated from signal input to galvanometer, and field-proven electronics. Six channel systems have 50 mm charts, and eight channel systems have 40 mm charts. All have DC to 150 cps frequency range. Linearity 0.5%. Nine chart speeds, nine more optional.

- MODELS 7706A, 7708A — Sensitivity (depending on "8800" preamp used) 1 μv/div to 5 v/div.
 - With 6-channel cabinet (7706A) $4,820 plus preamps, with 8-channel cabinet (7708A) $5,495 plus preamps.
- MODELS 7716A, 7718A — Sensitivity (depending on "350" preamp used) 2 μv/div to 5 v/div.
 - With 6-channel cabinet (7716A) $5,325 plus preamps, with 8-channel cabinet (7718A) $6,350 plus preamps.
- MODEL 7728A — Sensitivity (depending on "950" amplifier used) 10 μv/div to 5 v/div.
 - With 8-channel cabinet $3,425 plus amplifiers.
- MODEL 7709A 8-channel "control panel" recorder for basic inputs such as telemetry and computer outputs and other relatively high level ac-dc signals. Economical system uses no preamps, but has individual-channel front panel controls for gain, position, sensitivity selection (7 positions) and calibration. Polarity reversal is optional. Frequency range DC to 150 cps. Linearity

Sensitivity 0.5%. Sensitivity 50 μv/div to 250 v/div. Nine chart speeds, nine more optional. Solid-state power amplifiers, constant 1 megohm input impedance, low drift. In vertical cabinet $5,030.
THE NEW KEPCO SM-A GROUP

The familiar Kepco SM Power Supply is sporting a new suffix these days, "A." The new "A" version, in the Kepco tradition, designates a product improvement, introduced without price increase. Specifically, we’ve redesigned the voltage control assembly of the SM Power Supplies to accommodate a precision, 10-turn potentiometer control of the type used in most other Kepco Power Supplies.

This latest improvement continues a sequence of refinements that have marked the successful six-year history of reliable SM Series Power Supplies. Last year, for example Kepco's engineers gave the SM a better reference and jacked up the loop gain to tighten its regulation from 0.1% to 0.01% line, 0.05% load. Together with a 0.05% stability spec, less than a millivolt (rms) of ripple, and the new 10-turn control, the fifteen SM models are a pretty impressive group of supplies.

The SM design employs a mechanically coupled variable autotransformer and voltage control rheostat to limit dissipation, reduce overvoltage potential and control output. The new "A" models, with an efficient, low backlash gearing assembly, couples a full 3600° (10-turn) precision rheostat to the 320° variable autotransformer to improve resolution (to 0.05%).

The supplies employ Kepco’s patented Flux-O-Tran® regulating transformer in an RFI-free (non-SCR) control circuit which includes a full feedback series transistor regulator. Plug-in circuit cards and plug-in transistors simplify maintenance (even the power transistors are "plug-in"). Front and rear output terminals are provided, with remote error sensing connections at the rear. The table on the right lists the available models.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC OUTPUT RANGE</th>
<th>VOLTS</th>
<th>AMPS</th>
<th>DIMENSIONS</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 14-7AM</td>
<td>0-14 0-7 31/2 19 13</td>
<td>$405.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 14-15AM</td>
<td>0-14 0-15 51/4 19 13</td>
<td>$525.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 14-30AM</td>
<td>0-14 0-30 83/4 19 13</td>
<td>$725.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 36-5AM</td>
<td>0-36 0-5 31/2 19 13</td>
<td>$395.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 36-10AM</td>
<td>0-36 0-10 51/4 19 13</td>
<td>$525.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 36-15AM</td>
<td>0-36 0-15 83/4 19 13</td>
<td>$625.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 75-2AM</td>
<td>0-75 0-2 31/2 19 13</td>
<td>$425.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 75-5AM</td>
<td>0-75 0-5 51/4 19 13</td>
<td>$525.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 75-8AM</td>
<td>0-75 0-8 83/4 19 13</td>
<td>$625.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 160-1AM</td>
<td>0-160 0-1 31/2 19 13</td>
<td>$425.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 160-2AM</td>
<td>0-160 0-2 51/4 19 13</td>
<td>$525.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 160-4AM</td>
<td>0-160 0-4 83/4 19 13</td>
<td>$625.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 325-0.5AM</td>
<td>0-165-325 0-0.5 31/2 19 13</td>
<td>$440.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 325-1AM</td>
<td>0-325 0-1 51/4 19 13</td>
<td>$555.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM 325-2AM</td>
<td>0-325 0-2 83/4 19 13</td>
<td>$675.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicable Patent Nos. furnished on request.
Editorial

A traveler's lament

Last month, when the Boeing Co. announced it would proceed with its announced plan to build the 490-passenger Boeing 747, air travelers all over the world groaned in anguish. Those who remember the pleasurable experience of flying in the golden days of the DC-7 and Superconstellation have been complaining about the excruciating atmosphere of today's jet travel. The prospects of climbing aboard with 489 others are almost too enervating to face.

What's wrong, of course, is that the airlines insist on following ground procedures they developed 30 years ago for the DC-3, even though they are flying jets now and talking about super-loaded jets tomorrow. Most have given only lip service to changing their ways to take advantage of advancing technologies. Nobody who knows the slightest about data-processing techniques and communications can understand why the airlines have so much trouble checking in a passenger who has confirmed and reconfirmed a reservation.

The problem is more than just electronic equipment. Although American Airlines has invested over $30 million in Sabre, a complex electronic data processor and communications system, for all the good it does, the airline operates as if Bob Cratchit were sitting on a stool in the room behind the check-in counter and writing the reservations with a quill pen. But you can't point an accusing finger at American Airlines alone; others are worse. It takes almost as long to fly to Japan as it does to check in on the Pan American Airways flight that takes you there—with only slight exaggeration; United Airlines has sold so many services it doesn't deliver that travel by it is virtually impossible; checking in at Western Airlines, Eastern Airlines, TWA, National Airlines, or Northwest Airlines is an exercise in frustration and futility.

Instead of just mechanizing today's ground procedures, the airlines have to alter them to face up to increasing passenger loads and to utilize today's technology. For example, there's no reason why a passenger has to check in three times (once with his baggage, once at the check-in counter and once at the departure gate) for a single trip. There's no reason why data processing cannot assign passenger seats when the reservation is made instead of at the departure gate. There's no reason why some form of information retrieval cannot be used to tell an agent how a passenger gets from New York to Omaha without his having to thumb through five or six volumes the size of the telephone book. There's no reason why an agent has to write a ticket out by hand. There's no reason why he has to use the backs of envelopes to calculate the cost of a ticket.

The introduction of Boeing's giant 747 is likely to open a sizable market for electronic navigation equipment and communications gear. Yet the biggest market ought to be for data-processing and communications equipment on the ground. Makers of electronic equipment have to educate the management personnel of airlines to the need of modifying reservation and check-in procedures, just as computer-makers had to teach customers that data processors could be more than electronic bookkeeping machines.

If airline passengers have to ride in 490-passenger airplanes, they ought to be able to get aboard quickly and painlessly.

Moment of change

Rarely can man recognize a chain of technology that will radically alter his way of working at the instant the new developments appear. Generally, only by looking back into history can one pinpoint those innovations that changed his approach to his job or the importance of his role. Computer-aided design seems to be an exception. It is just starting to take hold in industry, yet nearly everyone can see how it will alter the role of the engineer. With computer-aided design, some of the decision making normally done by an engineer will be accomplished by an electronic data processor. The series that starts on page 110 may be one of the most significant ever published in Electronics.

Computer-aided design can be more efficient because it speeds up engineering at least two ways: by doing computations quickly and by trying a variety of designs and wiring interconnections in seconds. Some of the complex networks and large arrays of integrated circuits cannot be engineered economically any other way.

To many, such an advance is unwanted and undesirable. But it cannot be stopped. The clearest clue of what lies ahead can be found at the engineering schools where courses are now being changed to teach students to use and rely more on computers.

An engineer who chooses to ignore the promise of computer-aided design asks for a chance to become obsolete.
NEW! Four problem-solving P&B relays... all immediately available at factory prices from leading electronic parts distributors

Solid State Time Delay Relays for as little as $17.50

Here is a practical cost saving answer to many timing applications in the range of 1.0 to 180 seconds. You can save up to 60% on relay cost. They're available for AC or DC, knob adjustable, and accuracy is +10% over a -10°C to +55°C temperature range and include an internal 10 amp DPDT relay.

Versatile KUP relay can be a cost-saving answer to your plug-in relay problem

Save up to $2.00 each over similar relays with octal-type plugs. Get greater reliability, too. Relay has quick connect/solder terminals. Nylon socket (sold separately) rated for 10 ampere. One to three poles, Cover is heat and shock resistant lexan. For DC or AC operation.

The answer to billions of trouble free operations and speeds up to 1 millisecond

Mercury-wetted contact relay modules give you fast response, reliability, high sensitivity and extremely long life. Designed for printed-circuit mounting. Has SPDT, break-before-make (Form C) contact arrangement for single-side-stable or bi-stable operation.

Reed Relays may replace expensive solid state devices

In many applications JR reed relays may be used in place of more expensive solid state devices over which they have one basic advantage... they are not subject to inadvertent switching by line transients.

For applications where fast operate time, low power and long life are required. Their high sensitivity and compact size recommend them for data processing, computer equipment, logic circuitry, for voltage or current sensing and various other types of control circuits.

and there are 60 other basic types to choose from...

They're all in this new Stock Catalog 100. Free from your electronic parts distributor. Ask for your personal copy today.

POTTER & BRUMFIELD
Division of American Machine & Foundry Company, Princeton, Indiana
Export: AMF International, 261 Madison Avenue, New York, New York
U.S. weighs plans for global network of listening posts

The United States is quietly studying plans for an overseas network of seismic nuclear detection arrays modeled on the Large Aperture Seismic Array (LASA) in Montana [Electronics, July 26, 1965, p. 91]. The Defense Department's Advanced Research Projects Agency, which sponsored LASA, has turned the program over to the Air Force Electronic Systems division, Hanscom Field, Mass. Because of foreign policy and fiscal considerations, final decision will undoubtedly come from the White House.

LASA's performance in distinguishing an earthquake from an underground nuclear explosion has been kept under wraps during its first 18 months of operation. The goal of the 500-seismometer array in Montana is to increase bomb detection sensitivity at least tenfold. It has been estimated that 10 or 12 such arrays around the globe would be able to check and classify more than 80% of earth shocks.

In addition to engineering problems, the Air Force is studying the possible effects of a global seismic network on disarmament negotiations and is weighing alternatives of construction and financing.

One question is how the investment overseas will affect this nation's balance-of-payments deficit. The announced cost of the Montana LASA was $9 million, but actual cost is estimated to be more than $12 million. Also to be answered is how a network of the arrays can be integrated to yield the best information on earth shock waves. Another question is whether construction should be left to foreign countries or whether, for the sake of standardization, the U.S. should install the arrays and leave their operation to the host countries.

Laser identifies railroad cars

A first of its kind is claimed for the automatic railroad car identification system recently developed by the Union Switch & Signal division of Westinghouse Air Brake Co., Pittsburgh. The system consists of a helium-neon laser, two mirrors to direct the beam and a photo field effect transistor for scanning. Railroad cars using the system have a reflective pressure-sensitive tape stuck to their sides to reflect the laser beam back to the identification equipment.

The company will introduce the system at the Railway Signal and Communications Suppliers Association meeting Sept. 20 in Washington. The system, expected to sell for between $12,000 and $14,000, will compete with light-bulb optical systems, radio systems and microwave systems for a market estimated at $50 million to $70 million over the next 10 to 15 years.

Navigation satellite must communicate, committee reports

A navigation satellite system that can't provide communications for ships and aircraft is not economically feasible, according to the final report of a committee set up two years ago by six Government agencies. Current navigation techniques are adequate for all projected needs, but the committee pointed out in its long-overdue report that air traffic controllers on the North Atlantic route have an urgent requirement for better communications. The demand will be intensified when the supersonic transport aircraft is flying this route.

Development of an initial satellite system for the combined job of navigation and communications would cost $66 million, according to the committee: $30 million for two satellites, $16 million for two Atlas-Agena...
launch vehicles, $17 million for ground equipment and $3 million for supporting research.

High costs keep auto electronics at a minimum

The auto industry is putting more electronics in its 1967 cars—especially frequency-modulated radios and stereo tape decks. But the only technological innovation disclosed so far is the use of plastic optical fibers to transmit light to turn indicators and ignition switches in the big Chevrolets and Chevrolet trucks with automatic transmissions. Chevrolet, a division of the General Motors Corp., says the fibers, made by E.I. du Pont de Nemours & Co. [Electronics, June 27, p. 184], are as reliable as the bulbs they replace and cost about the same.

The Ford Motor Co. offered a transistorized ignition system as a standard item in one of its cars and several heavy-duty trucks last year. This year more Ford cars and some from GM’s Oldsmobile division will carry transistorized ignitions at extra cost. For two years GM’s Pontiac division presented such systems as an option but admits the $63 extra charge ($73 for air-conditioned cars) held sales down.

On target

The Gemini-11 astronauts’ faultless performance in making a first orbit rendezvous with Agena was carried off with a precision that did credit to the onboard electronics equipment. The flight proved out a capability that the astronauts coming back from the moon will have to have—the ability to link up with the Apollo spacecraft in a single orbit.

RCA to market home tape units

To get its share of what company market researchers think will be a six-million-unit annual market, the Radio Corp. of America’s Home Instruments division has introduced 14 versions of transistorized magnetic tape recorders, including an eight-track unit that will play the stereo cartridges used in cars.

RCA has turned to foreign manufacturers, undoubtedly Japanese, to keep prices of the units low—from $40 to $250. The lower priced units would be battery-powered; the more expensive versions could use either a-c or d-c power.

Grundig and CSF join to develop consumer products

Two major West European electronics companies—Germany’s Grundig GmbH and France’s CSF-Compagnie Generale de Telegraphie sans Fil—have moved to strengthen their positions in consumer markets through joint development of new products. The two companies still have to nail down details, but they indicate their working arrangements will cover integrated circuits and color television receivers.

The deal brings together a strong consumer electronics company, Grundig, and a heavyweight in component production, CSF. The French company produces some consumer products, but its sales in that sector have stagnated. CSF, though, should get a big lift in consumer markets when color tv broadcasts start in France next year using the Secam system developed by CSF [Electronics, June 13, p. 161]. Grundig is on the PAL side of the color-tv line since Germany, like most other West European countries, will broadcast color using the PAL system. But this won’t hamper joint development of color-tv receivers. About 90% of the components in PAL and Secam receivers could be interchangeable.
Sylvania's two new TTL J-K flip-flops are the fastest in the integrated circuit industry. Twice as fast as our own SUHL J-Ks, they will coast at a logic rate of 50 MHz and retain the high noise immunity, high logic swing, high fan-out, low power, and capacitance drive characteristics of the SUHL II line. The extra speed of the new units allows computer control and arithmetic sections to be redesigned for faster operation.

Both new devices, the SF-200 series AND J-K and the SF-210 series OR J-K, have a propagation delay of 10 nsec off and 13 nsec on. This high speed capability is achieved by using a fast switching flip-flop buffered by a SUHL II gate structure. This means total delay of the circuit is the t\text{off} delay of the fast flip-flop plus the t\text{on} of the SUHL output.

The improved J-K flip-flops aren't restricted by the clock; asynchronous entry permits operation in between clock pulses. The internal buffering also means that output loads will not affect input triggering. Output is symmetrical.

Other performance characteristics include power dissipation of 50 mw, noise immunity of \pm 1 volt, and logic offset of 3.5 volts for logic "1" and 0.2 volts for logic "0." Fan-out is from 9 to 15 and fan-in is 3. Operation is from a single 5-volt source.

Available in MIL (-55°C to +125°C) and industrial (0°C to 75°C) grades and in dual in-line plug-in packages or flat packs, the SF-200 and SF-210 series have pin connections identical to other SUHL J-Ks. Thus, they can be used as replacements for present SUHL J-Ks.

These new units can be applied to a host of digital systems including computers, communications equipment, and digital readout systems.

Specific digital subsystems which can be speeded up with these units are synchronous binary decade counters, synchronous binary counters, ripple counters, serial to parallel and parallel to serial counters, up-down counters, and circulating ring counters with decoded readout.

In summary, these flip-flops can be used in synchronous applications, where registers and counters are set and reset in conjunction with the system clock; and also in asynchronous applications, where registers and counters are set and reset independent of the system clock.

CIRCLE NUMBER 300

This issue in capsule

Receiving Tubes—How a noise-free tube helps detect enemy submarines.

Microwave Diodes—Newest varactors reach highest reliability and power-handling levels yet.

CRTs—Customed monoscopes and targets can speed up display.

Integrated Circuits—How to implement serial addition with SUHL circuits.

Diodes—Monolithic arrays can eliminate the need to match diodes.

Television—True, more vivid colors are assured with picture tube prestabilization.

Receiving Tubes—Highly reliable tube offers advantages for computer usage.
Highly reliable tube offers advantages in computer applications

A miniature medium-mu twin triode, Sylvania's Type 5963, is being successfully used in long-life computer applications, primarily as a flip-flop. Extreme stability throughout a long life, a high degree of balance within each device, and uniformity between different units are key characteristics of Sylvania's Type 5963 tube. Specialized for accurate computation in computers, counters, and other digital equipment, this improved tube offers an economical approach to circuit design. It eliminates the need for special temperature compensating networks, redundant circuits, and tightly regulated supply voltages while offering higher reliability, easier maintenance, and lower initial component cost.

In Type 5963, the extreme stability during operating life is the result of an improved cathode. With the special alloys used in this tube, the severe "zero" to "one" switching associated with flip-flop circuits is handled easily. Even when these voltage changes are imposed rapidly after lengthy periods of standby operation, performance and life are not degraded.

The high degree of electrical balance between the tube's two triode sections enhances flip-flop operation and eases the design requirements placed on associated circuitry.

Because all Sylvania 5963 tubes are manufactured to meet rigid in-process and final test limits, they exhibit excellent uniformity from tube to tube. This means replacement is simply a matter of changing tubes. There are no trimmers to adjust, no components to replace, and no preselection of devices. And these triodes are available from conveniently located Sylvania distributors.

In addition to its application in flip-flops and other switching applications, the 5963 is used as an amplifier as indicated in the table which shows typical operation data.

<table>
<thead>
<tr>
<th>CHARACTERISTICS AND TYPICAL OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A1 Amplifier (Each Unit)</td>
</tr>
<tr>
<td>Plate Voltage</td>
</tr>
<tr>
<td>Grid Voltage</td>
</tr>
<tr>
<td>Amplification Factor</td>
</tr>
<tr>
<td>Plate Resistance (Approx.)</td>
</tr>
<tr>
<td>Transconductance</td>
</tr>
<tr>
<td>Plate Current</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cutoff Condition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Plate Supply Voltage</td>
</tr>
<tr>
<td>Grid Voltage</td>
</tr>
<tr>
<td>Plate Circuit Resistance</td>
</tr>
<tr>
<td>Grid Circuit Resistance</td>
</tr>
<tr>
<td>Plate Current</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Zero Bias Condition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Plate Supply Voltage</td>
</tr>
<tr>
<td>Grid Voltage</td>
</tr>
<tr>
<td>Plate Circuit Resistance</td>
</tr>
<tr>
<td>Grid Circuit Resistance</td>
</tr>
<tr>
<td>Plate Current</td>
</tr>
</tbody>
</table>

COLOR TELEVISION

True, more vivid color is assured with prestabilization

Three basic color picture tube refinements that go into all color bright 85® picture tubes by Sylvania—the true-tempered screen, computer precision alignment and cross-hair gun indexing—combine to reduce the effect of changes that may normally occur during tube life.

Sylvania's true-tempered screen is the result of a stabilizing process used for some time by Sylvania but not publicly announced until this past June. The most recent issue of IDEAS described how the glass face panel is prestabilized, actually tempered to a predetermined dimensional density. While other screens can shift as much as 2 thousandths of an inch, during tube manufacture, color bright 85 tubes have near perfect alignment between phosphor dots and the holes of the aperture mask.

Precision alignment between aperture mask and screen is assured in a new computerized process. The relationship of the shadow mask to the screen is determined automatically and precisely as the computer takes measurements in all four corners and in the center of rectangular tubes and adjusts for normal deviation and tolerances. (See drawing)

The third essential ingredient is cross-hair indexing of the tube's three electron guns. Initial alignment of electron beams and phosphor dots on the proper axes is assured with positive location and positioning of guns.
inside the tube neck. These controls are not the full story in controlling the performance of the end product. Because of the broad diversity among company divisions, Sylvania controls the production of virtually all parts within its tubes—phosphors, guns, aperture masks, tube bases, and electron optic parts included.

There is 100% testing to critical requirements throughout all processes. For instance, because of its in-house controls, Sylvania assures that all vital characteristics of electron guns are top quality. All Sylvania guns have a shielded cathode (for minimizing leakage and arcing), shielded pre-focusing lens, low heater power (lower than most competitive types), double coated heater with premium rhenium-tungsten, and Sylvania’s own method of cutoff control. All of these aspects are fully checked long before further tests which will assure the precise rotational location of the three guns in the color tube.

These controls are just a few of the set designer’s and circuit designer’s assurances that only the most advanced methods and materials are always used in Sylvania picture tubes.

RECEIVING TUBES

How a noise-free tube helps detect enemy submarines

Sonobuoys provide a highly efficient means of protecting surface ships and coastlines. By dropping a group of these units from a plane and then interrogating them, it is possible to determine the location of an enemy submarine. But interpreting the response of Sonobuoy hydrophones is a skilled art. Telling a sub from a whale or other natural objects is no easy task. If noise generated by the tube used in the front end of the hydrophone masks the sound of the submarine, the job becomes impossible. Sylvania’s Type 1254 subminiature high-mu triode is a low-noise amplifier tailored to meet the strict requirements of Sonobuoy and similar applications.

ELECTRICAL DATA

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Voltage</td>
<td>100 Vdc</td>
</tr>
<tr>
<td>Cathode Resistor</td>
<td>1,500 Ohms</td>
</tr>
<tr>
<td>Plate Current</td>
<td>0.73 mA</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>70</td>
</tr>
<tr>
<td>Transconductance</td>
<td>1,700 µhos</td>
</tr>
<tr>
<td>Grid Voltage for</td>
<td></td>
</tr>
<tr>
<td>$I_b = 50$ Adc Max.</td>
<td>-2.5 Vdc</td>
</tr>
<tr>
<td>I_b</td>
<td>-3.8 Vdc</td>
</tr>
</tbody>
</table>

RATINGS (Absolute Maximum)

Plate Voltage	165 Vdc
Peak Plate Forward Voltage	330 V
Plate Dissipation	0.55 W
Plate Current	3.3 mA
Positive Value	0 Vdc
Negative Value	55 Vdc
Heater-Cathode Voltage	200 V
Heater Positive with Respect to Cathode	200 V
Grid Circuit Resistance	1.2 Meg

The Sonobuoy application places severe demands on the tube which first amplifies the sound detected by the underwater microphone. The tube in this first stage of amplification must not only overcome the rough environmental conditions seen by the other tubes, but it must amplify low-level audio and sub-audio signals without introducing any significant noise of its own. Modifying the features of tube Type 5719, a premium aircraft tube for multi-purpose use, Sylvania developed the Type 1254, a low-priced, extremely low-noise device.

Sylvania designers have gone to extraordinary lengths to produce these exceptionally low-noise characteristics. The method and material processing were changed to further enhance the low-noise properties already present in Type 5719. Special test procedures and circuits were developed to evaluate the changes in processing and manufacturing and to test the final units.

A typical example of these efforts is the noise test circuit shown here. A similar test is also used on tubes for front ends of high fidelity applications in the transferral of technology to benefit other markets. The same technology and skills used to detect enemy submarines are also now used to produce the lowest noise front ends in high fidelity history.

There is no price premium for this low-noise characteristic and for the other features which Sylvania has built into its reliable line of tubes for industrial and entertainment audio applications—i.e., 6AN8A, 7543, 12AU7A, 7591A, and the 7868.

You may not have any need to detect enemy submarines — but if low-noise performance is a must for your equipment, you are assured of the highest quality with Sylvania tubes — readily available from your local Sylvania distributor.

CIRCLE NUMBER 303
Newest varactors reach highest levels yet in reliability and power handling

Until now, the solder bonding technique was a major step in varactor construction and processing. Circuit designers found that, although these devices met the specifications that manufacturers published, there was still decided room for improvement in three regards—higher reliability, power-handling capability, and storage temperature characteristics. Here’s news of how the state of varactor art has just been advanced.

Reliability and life of high-power varactors have been increased with new assembly techniques developed by Sylvania. High-temperature test results with these new diodes show an MTBF of over 5 years, based on 100,000 unit hours of testing. As a result, these devices are suitable for new levels of exacting requirements and are especially suited for use in current manned space and communications satellite programs.

After being stored for 2,000 hours at 250°C, these units have shown no changes in electrical or physical characteristics. High-temperature capability, in fact, is the direct result of the new construction technique now being utilized with Sylvania’s D-4800 varactors.

In the new process, after an aluminum dot is metallized to the silicon (see line drawing), an aluminum ribbon is then thermal-compression bonded to the dot. Note, too, that the underside of the silicon area is now metallized with gold, making possible a high-temperature bond of gold to gold. A molybdenum disk between the gold layer and copper pedestal acts as a thermal shock absorber that permits Sylvania to use high-temperature bonding methods.

Another critical step in varactor processing is cleaning. With the new Sylvania construction it is now possible to use superior cleaning procedures within the package prior to baking and sealing. A further assurance of varactor reliability is that Sylvania subjects all these units to a 300°C bakeout, driving off any moisture and all volatile contaminants. Finally, the packages are placed in a dry box and sealed in a controlled dry atmosphere having less than 20 parts per million of water vapor.

INTEGRATED CIRCUITS

It’s easy to implement serial addition with SUHL

Before integrated circuits, how many different components and how much time did it take to wire a serial binary adder? With Sylvania’s SUHL line of ICs you need only two basic component types, full adders and carry flip-flops, and a bare minimum of wiring. Here’s how these SUHL units can be used to implement a variety of serial additions.

A serial binary adder accepts two bits of information at a time and adds them to produce a sum bit and a carry bit. The carry bit is stored in a flip-flop so that it’s available for the next addition. In the 4-bit serial adder of Figure 1, initially one Augend and Addend bit are added producing a sum and possibly a carry.

The next clock pulse shifts the first sum bit into the sum register and shifts the next Augend and Addend bits into position to be added. If a carry was generated by the first addition, it is stored in the carry flip-flop. Now another addition is performed, and the second sum bit and carry bits are formed.

At the second clock pulse, the sum, Augend and Addend are all shifted to the right and the carry is stored in the carry flip-flop. This operation of adding and shifting continues until all Augend and Addend bits have been summed. Since in this case there were four bits to be added, the final sum is available in the sum register after four clock pulses.

Figures 2, 3 and 4 show the actual implementation of serial addition using the SUHL family of ICs. All the circuits use the SM-10 series single-stage full adders.

In the basic serial adder with single-phase clock (Figure 2) and the basic serial adder where the sum is collected in the Augend register (Figure 3), the SUHL SF-50 J-K flip-flop is the only other type IC required. To make the Addend register of Figure 3 into a circulating type, simply use one SUHL SF-60 OR-input J-K flip-flop in place of the SF-50 in the MSD stage.

Figure 4 shows how to build a serial adder with two-phase clock using SM-70 four-bit binary registers.
Figure 1
Augend serial shift right register

```
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SF-50 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| AUGEND SERIAL SHIFT RIGHT REGISTER |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SUM | SF-50 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| FULL ADDER |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| CARRY |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SM-10 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| CARRY |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SF-50 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| LEAST SIGNIFICANT DIGIT |
```

Figure 2
Basic serial adder, single-phase clock

```
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SF-50 | SF-50 | SF-50 | SF-50 | SF-50 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| AUGEND |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SM-10 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| CARRY IN |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SF-50 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| MOST SIGNIFICANT DIGIT |
```

Figure 3
Basic serial adder, sum collected in Augend register

```
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SF-50 | SF-50 | SF-50 | SF-50 | SF-50 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| AUGEND |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SM-10 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| CARRY |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SF-50 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| MOST SIGNIFICANT DIGIT |
```

Figure 4
Serial adder, two-phase clock

```
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SF-50 | SF-50 | SF-50 | SF-50 | SF-50 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| AUGEND |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SUM OUT |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| SM-10 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| C C |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| CL |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| CL |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| CL |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| CL |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| MOST SIGNIFICANT DIGIT |
```

INTEGRATED CIRCUITS (contd)
Customed monoscopes and targets speed up display; add versatility

Because target configurations and general tube characteristics can be tailored to user specifications, customized monoscope CRTs from Sylvania meet many of today's display needs. Ability of these tubes to generate test patterns, alphanumeric symbols, charts, diagrams or maps at high speeds makes them ideal for a wide variety of uses. Applications include airline status boards, stock quotation systems, command control center displays, teaching machines, race track tally boards, and video test systems.

Targets in Sylvania's custom monoscopes are supplied as specified in the customer's own artwork. A typical target plate has a capability of 64 characters—A through Z, 0 to 9, punctuation marks, symbols, or just about anything needed for the specific application. These versatile displays are available in a wide selection of character fonts. They can also be supplied in a variety of black and white patterns.

In a typical application, a computer controls the scan and positioning circuits that determine which particular character on the target is to be read out by the tube's scanning beam. Secondary electrons emitted from the target are collected on a conductive band inside the tube.

Since the non-printed portions of the pattern have a different secondary-emission ratio from the printed portions, the secondary-emission current varies as the beam scans the character. This variable target current is terminated in a load resistor. The voltage variation across the resistor now corresponds to the information printed on the target. After amplification, the information in this video signal is displayed on the output monitor in a position determined by the computer control circuits.

The customized monoscopes from Sylvania provide high signal output levels, good resolution and compact design. They are lightweight too. Featuring electrostatic focus and deflection, they are available with maximum ratings (with respect to cathode) of: Collector, 2500 Vdc; Target, 2500 Vdc; Focusing electrode anode, 1000 Vdc; Accelerator anode, 2500 Vdc; and Negative control grid, 200 Vdc. Peak heater-cathode voltage is 200 V with heater negative or positive with respect to cathode.

A standard line of monoscopes is also available. This means that circuit designers can use standard units with conventional target configurations during preliminary design work. Then, when final system requirements are set, the particular target and electrical characteristics needed can be incorporated into a customized monoscope meeting the specific usage.

CIRCLE NUMBER 306

TYPICAL OPERATING CONDITIONS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Electrode Voltage</td>
<td>1800 Volts</td>
</tr>
<tr>
<td>Collector Voltage</td>
<td>1850 Volts</td>
</tr>
<tr>
<td>Anode #1 (Focus)</td>
<td>1800 Volts</td>
</tr>
<tr>
<td>Anode #2</td>
<td>750-950 Volts</td>
</tr>
<tr>
<td>Deflection Factors 1D2</td>
<td>40V/in/kv/max</td>
</tr>
<tr>
<td>3D4</td>
<td>40V/in/kv/max</td>
</tr>
</tbody>
</table>

TYPICAL APPLICATIONS BLOCK DIAGRAM
How Sylvania's monolithic arrays can eliminate the need to match diodes

Chances are that any circuit requirement for matched diodes can be met by one or more units from Sylvania's broad line of monolithic diode arrays. Packaged in pairs, triples and quads with either common anodes or cathodes, these matched units have wide circuit application and offer significant advantages over conventional discrete devices.

Because these arrays consist of silicon diodes formed on a common substrate by an epitaxial planar passivated process, the individual devices exhibit remarkably similar characteristics. Thus, circuit applications requiring matched diodes are easily filled. And the excellent electrical characteristics of each diode within the array further enhance circuit performance. High forward conductance, low reverse leakage, fast recovery time, and high rectification efficiency at high frequencies characterize each device.

Increased reliability and reduction in assembly costs are direct results of the few external interconnections required with the multiple devices.

Typical of the units in the Sylvania line is the SID4A-3, a common cathode 4-diode array. Supplied in a 5-lead TO-46 package, this unit replaces four discrete diodes in aerospace and similar applications where space is at a premium and reliability levels must be high.

Basic OR and AND logic circuits point up the superior circuit performance of the 4-diode array. Because each diode's recovery time is short, propagation delay is reduced while pulse rise and fall times are quite small. Uniformity of forward V-I characteristics assures even current distribution between diodes under conditions of forward bias. In the reverse bias case, leakage current distribution with temperature change remains uniform.

In addition to diodes with common cathodes or anodes, Sylvania's line of epitaxial multiple diodes includes diode bridges, ring modulators and discrete all-glass hermetically sealed silicon units molded in axial-lead and plug-in epoxy packages.

CIRCLE NUMBER 307
QUALITY CONTROL MANAGER'S CORNER

Quality can be a neuter concept

"High quality," "excellent quality," "unsurpassed quality." Great! But useless terms all, unless...

The Quality Concept is not just how well a product complies with a standard or specification. What really counts is its compliance with the needs and desires of a customer or with the market at large.

One graphic example is color picture tubes. In early 1964, industry standards were well established. By late 1964, one manufacturer, Sylvania, anticipating consumer needs, had raised these standards to new heights by following the broader, more inclusive approach to quality. Even now, two years later, this philosophy keeps color bright 85® tubes ahead of the field. Performance (via the Quality route) has made the big difference.

But performance cannot be realized without a strong control organization playing its role of watchdog—minute by minute, hour by hour, day by day. In our part of the electronics business, this means building each tube to the exacting standards established in Sylvania's engineering laboratories.

Where we have a particularly big quality edge is in virtually total control and evaluation of raw materials. Sylvania is among a select few component manufacturers who control their raw materials and component parts from start to finish. This includes our own parts, bases, leads, phosphors, emissive coatings, wires, tungsten and alloys. Almost everything except glass is fabricated under our own in-plant quality control systems to Sylvania's own demanding standards. And wherever we use vendors, Sylvania carefully establishes quality specifications and controls to assure the perfection of all parts.

All processes—mechanical, electro-mechanical, physical, and chemical—are carefully controlled and monitored. This is especially vital when sophisticated componentry like electron tubes must themselves be mass-produced, and then used in mass-produced radio, stereo and TV sets. Always bearing in mind that these devices are the brains and life's blood of an important end product, Sylvania builds in a high degree of uniformity of electrical and mechanical characteristics from tube to tube.

Our quality organization also performs the important functions of finished tube evaluation and the subsequent quality assurance program. In addition to 100% tests and inspections for all vital characteristics, color bright 85 picture tubes (and other tube types) are sampled with special statistical techniques—still further assurances of compliance to specifications.

No one questions the import of long life performance. Our program through the years has included the evaluation of tubes under actual usage conditions in radio and TV sets. We conduct additional tests under more severe operating conditions to develop an accelerated evaluation of life quality. With both of these test programs, Sylvania's able to statistically evaluate life performance while providing assurance of high quality tubes—not just initially, but for life.

Our quality story is not complete without mentioning that we maintain good and effective contacts with our customers. As a supplier, it is most important to us to maintain a feedback system of information of tube performance in customer manufacturing lines. This helps us to provide engineering and quality service quickly to solve virtually any problem.

A. J. HEITNER

SYLVANIA
SUBSIDIARY OF
GENERAL TELEPHONE & ELECTRONICS GTE

NEW CAPABILITIES IN: ELECTRONIC TUBES • SEMICONDUCTORS • MICROWAVE DEVICES • SPECIAL COMPONENTS • DISPLAY DEVICES

NAME__________________
TITLE__________________
COMPANY__________________
ADDRESS__________________
CITY__________________STATE__________________

Circle Numbers Corresponding to Product Item

<table>
<thead>
<tr>
<th>300</th>
<th>301</th>
<th>302</th>
<th>303</th>
<th>304</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>306</td>
<td>307</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ Please have a Sales Engineer call

HOT LINE INQUIRY SERVICE

Need information in a hurry? Clip the card and mail it. Be sure to fill in all information requested. We'll rush you full particulars on any item indicated. You can also get information using the publication's card elsewhere in this issue. Use of the card shown here will simplify handling and save time.

This information in Sylvania Ideas is furnished without assuming any obligations.
Micro-machined from Jewel-hard Materials

SEMICONDUCTOR PRODUCTION TOOLS ARE THE EXCLUSIVE PRODUCTS OF TEMPRESS RESEARCH COMPANY, based on unique processes developed by Tempress engineers for micro-machining diamonds and jewel-hard materials, such as titanium and tungsten-carbide. The company has become the principal source for the nation's leading semiconductor manufacturers because of the extreme durability and precision of these tools, immediate delivery from stock, and constant, personalized service at a high technical level. Among the Tempress products displayed on this page are: hydrogen flame-off torches, tungsten carbide lead bonding wedges, tungsten carbide lead bonding capillary tubes, diamond scribing tools, tungsten carbide probe contact needles, and diamond lapping points. If you have a requirement for any of these devices, let us place a highly detailed booklet in your hands, listing specifications, prices, and ordering information. Please write to us, noting the name of your company, address, and your specific applications.

Tempress Research Co., 566 San Xavier Ave., Sunnyvale, Calif.

Circle 35 on reader service card
The 7100 cures last digit jitters.
It corrects itself to compensate for component drift and noise.
It only measures the signal.
The secret is a measuring technique called Dual Slope integration. How it works is no secret.
We'll give you all the details in our 7100 data sheet.
Get it.
Con Avionics' new silicon power supply has an M.T.B.F. of 100,000 hours and a 5 year guarantee. It costs $65.

These dc regulated power supplies are available in nearly 200 different voltage-current combinations. Silicon transistors are used throughout and the units operate in ambient as high as 75°C, with a small external heat sink. The Mean Time Between Failure of the modules is 100,000 hours, calculated according to Mil Handbook 217. They are certified to meet the environmental tests of Mil-E-5272, and most of the requirements of three other mil specs. In addition, they meet the RFI requirements of Mil-I-6181.

Prices start at $65. Every time you specify one of these supplies, instead of a comparable germanium unit, you save considerable money. If you’re using commercial supplies, typical savings-per-unit are about $40. For military supplies it’s much more.

The fastest way to get complete technical information and prices is to write, call, TWX or wire Gerry Albers at Con Avionics.

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>STANDARD MODEL</th>
<th>"A" MODEL</th>
<th>"A" MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Regulation (Line and Load)</td>
<td>±0.5%</td>
<td>±0.05%</td>
<td>±0.1%</td>
</tr>
<tr>
<td>Ripple (rms. max.)</td>
<td>10 mV</td>
<td>1 mV or .003%</td>
<td>.005%</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>0.07%/°C</td>
<td>0.015%/°C</td>
<td></td>
</tr>
</tbody>
</table>

CONSOLIDATED AVIONICS
A DIVISION OF CONDEC CORPORATION
800 Shames Drive • Westbury, L.I., New York • (516) ED 4-8400

Circle 38 on reader service card
The industry's biggest performance/dollar values in monolithic linear integrated circuits

New CA3015 12-lead TO-5 style...$7.50 (1000+)
New CA3016 14-lead Flat Pack...$8.50 (1000+)

FOR MORE INFORMATION, check your RCA Distributor for his prices on CA3015 and CA3016, or contact your nearest RCA representative. For Technical Bulletin and Application Note, write Commercial Engineering, Section 1CN9-3, RCA Electronic Components and Devices, Harrison, N.J. 07029.

Look into RCA's growing linear line

<table>
<thead>
<tr>
<th>CA3000</th>
<th>CA3001</th>
<th>CA3002</th>
<th>CA3004 CA3005 CA3006</th>
<th>CA3007</th>
<th>CA3008</th>
<th>CA3010</th>
<th>CA3011 CA3012</th>
<th>CA3013 CA3014</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Amp</td>
<td>Video Amp</td>
<td>IF Amp</td>
<td>RF Amps</td>
<td>AF Amp</td>
<td>Opr Amps</td>
<td>Wide-Band Amps</td>
<td>Wideband Amp</td>
<td>Discriminators</td>
</tr>
</tbody>
</table>

AVAILABLE THROUGH YOUR RCA DISTRIBUTOR

THE MOST TRUSTED NAME IN ELECTRONICS

Circle 325 on reader service card 38A
Monsanto solves many
That's why airplanes fly better and why electronic instruments are more versatile than ever.

The Men from Monsanto developed a hydraulic fluid that's never burned in flight. It is the reliable lifeblood of a modern jet's hydraulic system. So good, it's specified by all of the world's major airlines.

Last year this scientific, technically oriented company introduced 43 basic new products. And Monsanto scientists secured a new patent every day of the year! That's an example of the capabilities that have helped Monsanto grow six-fold in the past 15 years. Through a broad mix of over 1000 products, Monsanto serves 50 industries.

Monsanto's innovative efforts now stand behind a growing family of quality electronic instruments. These test and measurement instruments feature advanced microcircuitry. They are ready to help solve your problems today. Monsanto, Electronics Technical Center, 620 Passaic Avenue, West Caldwell, New Jersey 07006.
FREE!
12 ways to use a Linear/Log Sweep Oscillator between .005 Hz and 50 kHz

Our SD104A Linear/Log Sweep Oscillator is all-electronic, all solid-state and like no other sweep oscillator you've ever used. We designed it for your convenience... and for today's ever-broadening test requirements. Get your new Applications Manual to find out in detail how it does jobs like these...

• Frequency response plotting • "Fundamental only" frequency response plotting • DC hysteresis testing plus plotting • Fourier spectrum analysis • Power spectral density analysis • Stepped frequency scanning • Sinewave vibration testing • Fatigue testing and resonance phase lock • Medical stimulation/AC equipment analysis • DC-to-LOG conversion • Order following and analysis • Oscilloscope sweep and observation

And those are just the applications we've thought of!

THE SD104 LINEAR/LOG SWEEP OSCILLATOR: Exceptionally flat frequency response .005 Hz to 50 kHz • 8 simultaneous outputs, including accurate dc analog for direct X-Y recording • Continuously variable, all-electronic linear and log sweep rates • Uninterrupted, automatic sweeps over full three-decade range • Automatic range switching of front panel meter for unequalled accuracy of frequency indication and resolution.

SEND TODAY FOR THE COMPLETE STORY ON THE SD104A—WHAT IT IS... WHAT IT DOES

SPECTRAL DYNAMICS CORPORATION OF SAN DIEGO
POST OFFICE BOX 671, SAN DIEGO, CALIFORNIA 92112, TWX 714-279-0283
TELEPHONE 714-278-2501
The Switch to IC's:

The Costly Myth

Many manufacturers still believe that it is more expensive to use IC's than discrete components. The truth is that integrated circuits are much more economical to use, and will become increasingly so as time goes on. Manufacturers and design engineers who fail to recognize this fact are clinging to a myth which is costing them the very money they are trying to save.

THREE AREAS OF COST: There are three areas you should consider when you evaluate integrated circuits. First, the cost of the components — what it will cost you to buy the integrated circuit, compared with what you would pay for the discrete devices to make up an equivalent. Second, the manufacturing cost — how much it will cost to assemble your completed unit. Third, the design cost — the money you will spend on engineering the changeover.

Let's look at each of these areas.

COMPONENTS COST: Many digital and linear integrated circuits for industrial applications are already lower in cost than the devices you need to build a circuit of equivalent performance and quality. More important, the price of integrated circuits is constantly going down, because new manufacturing techniques are being developed to increase the yields and lower unit costs. In discrete components most of the breakthroughs have occurred two or three years ago, and prices are likely to remain stable. If you expect your new product to remain on the market for a year or more, you can make the switch to integrated circuits with the assurance that you are paying no more now, and that you will save considerable amounts in the future.

MANUFACTURING COSTS: The real economies in integrated circuits are in manufacturing. Consider that by using IC's you reduce your components count by a factor of 10 or more. This means a reduction in the number and size of boards you have to use, resulting in savings in materials. It also means the overall equipment configuration will be considerably smaller. More material savings. And it means that you will have fewer boards to assemble, solder, clean, and inspect. Result: much lower labor costs. The savings in manpower are often so dramatic as to overshadow all other types of savings: labor reductions of up to 50% are often possible when you use integrated circuitry.

DESIGN COSTS: Finally, you have to consider the cost of engineering, prototype, design qualification, and changes in your production line. On the surface you could save all of these costs by sticking with discrete components. Don't you believe it. In the electromechanical/electronic equipment business you have to make product improvements anyway — or risk rapid obsolescence. Your engineers are working right now on some new design. They could be working on an integrated circuit design. And because of the modular, building-block nature of integrated circuits, design time is radically reduced. Moreover, you can get a lot of help in converting your designs. In return for the attached post card we'll send you information on integrated circuit design. We'll also pull information on your particular application from our files. And we'll work with you to develop the most economical and profitable method of making the switch. The important thing is to get started. Start now by returning the post card.
A tape reader is one of the most frequently used input devices for numerically controlled machine tools, small scale computers, and other data handling systems. We have built a tape reader and display unit at the Fairchild Applications Laboratories to demonstrate the use of integrated circuits in the control circuitry of such equipment.

DESCRIPTION: The unit is designed to read standard 1 inch, 8 channel paper tape. Ten 8-bit characters are read simultaneously and eight of the ten characters are displayed on the lamp matrix. The remaining two characters are command signals and are not displayed. A stepping motor is used to shift the tape one character position each turn. The tape moves through two loose-fitting guides which control horizontal and vertical movements.

The devices used in the read head are Fairchild FPM-100 photosensors, which combine a large photosensitive base with an optically flat window. This feature results in exceptional sensitivity without the need for critical alignment. The unit will read different colored tape with a single threshold setting by adjusting the data sensing circuit to the most sensitive tape to be used. The spectral response is from 0.4 to more than 1.1 microns and the unit can operate with daylight, tungsten, and gallium arsenide sources. 80 FPM100 devices are used for the read head, soldered into a 3/16" brass plate on 0.1-inch centers. The flat window design permits mounting flush with the wear-plate, for minimum dust accumulation, maximum tape life and minimum crosstalk.

DRIVER AND CONTROL CIRCUITS: Fairchild RT, L integrated circuits are used in the driver and control circuitry and in the data detection circuit. \(\mu \)L 9900 buffers are used to drive discrete transistors which in turn drive the motor windings under control of a \(\mu \)L 9923 J-K flip-flop operating in the toggle mode. A free-running clock comprised of half a \(\mu \)L 9927 gate and two RC circuits provide the timing signals. Data detection is accomplished by eight circuits on one PC board operating under control of a \(\mu \)L 9900 buffer. Voltage representing the data threshold from the photodevices is gated through a \(\mu \)L 9914 to a discrete lamp drive transistor.

CASE HISTORY: A numeric control system using Fairchild integrated circuits for control is now on the market. The unit, a multi-station drill press called Model 105, is manufactured by Machine Control Corporation of Venice, California. The machine accepts tape commands to operate up to four drill stations with two drills each. It is capable of drilling more than 50 holes (holes) per minute within .001" of one another and with a repeatability of .0003".

The 105 is programmed by punching a tape while an operator manually performs the required operations on the initial run. Only seven MICROLOGIC integrated circuit boards, and one additional PC board, are required for the controller of this unit, compared to 80 or 90 PC boards used in comparable conventional equipment.

The use of integrated circuits in this equipment has resulted, according to Machine Control Corporation, in labor cost savings of 80%, a 10 to 20% reduction in materials costs, and in an enviable reliability record of 4 million element hours without failure.
NEW from Solitron

HIGH VOLTAGE LOW COST SILICON POWER TRANSISTORS

Here are three new family additions to Solitron's line of High Voltage Silicon Power Transistors. New production techniques have reduced the cost of these popular devices . . . and their performance matches that of similar higher priced units now on the market. A few of the many uses of these devices, available in a TO-3 package, include TV Circuits, Audio Amplifiers, Converters, Inverters and Relay Drivers.

2N 3055
- Gain: 20-70 @ 4A
- VCE (sat): 1.1 Max @ 4A
- VBE: 1.8 max @ 4A
- V(BR)CEX: 100V Min
- Power: 115 watts @ 25°C

2N 3773
- Gain: 15-60 @ 8A
- VCE (sat): 1.4 Max @ 8A
- VBE: 2.2 Max @ 8A
- V(BR)CEX: 160V Min
- Power: 150 watts @ 25°C

SDT 1000 SERIES
- Gain: 30-90 @ 1.0A
- VCE (sat): 0.8V Max @ 1.0A
- VBE: 1.5V Max @ 1.0A
- V(BR)CEX: 400V Min
- Power: 100 watts @ 25°C

*Prices indicated are for quantities of 1,000 and up.

All of these devices have built-in protection against secondary breakdown and are associated with the high reliability standards associated with Solitron. CONTACT US TODAY FOR COMPLETE PERFORMANCE DATA.

Leader in Germanium and Silicon Power Transistors, Cryogenic Thermometers, High Voltage Rectifiers, Hot Carrier Diodes, Temperature Compensated Zeners, Voltage Variable Capacitors, Random/White Noise Components, Microelectronic Circuits, and High-Pac Interconnection Systems.
The Model CW-1 Boxcar Integrator is a gated signal averaging device useful for the recovery of either complete repetitive waveforms or incremental portions thereof from noise. The input to the Boxcar Integrator is sampled by a variable width, variable delay gate which can be fixed at any point on, or slowly scanned across, the repetitive waveform. The sampled portion of the input waveform is averaged by a variable time constant integrator, displayed on the panel meter, and made available for external recording or other use. Because the mean value of random noise is zero, the output of the integrator will asymptotically approach the average value of that portion of the input waveform being sampled at any moment, with a corresponding suppression of the accompanying noise. The Model CW-1 may be used in such widely varied applications as pulsed nuclear resonance, laser excitation decay, and biological evoked response experiments. In general, this instrument should be of value in any application where noise interferes with the recovery of repetitive waveforms.

SPECIFICATIONS

SIGNAL CHANNEL
- **Input Sensitivity:** ± .2 volt to ± 100 volts in 1, 2, 5, sequence for ± 10 volts output.
- **Dynamic Range:** Will accept inputs 15 times full scale requirement without overloading.
- **Integration Time Constants:** 100 microseconds to 100 seconds in 1, 3, 10 sequence.
- **Holding Time:** At least 10⁶ times integration time constant for 10% F.S. change in output, up to 10⁵ sec.
- **Output:**
 - (a) ½% Panel Meter, ± 10 volts.
 - (b) ± 10 volts provided at front panel at an impedance of 1 K.
 - (c) Recorder Output — suitable for most galvanometric and servo recorders.

GATE TIMING CIRCUITS
- **Operating Modes:**
 - (a) Ext. Trigger
 - (b) Ext. Gate
 - (c) Recurrent: Time Base triggered automatically and repetitively.
 - (d) Continuous: Gate on continuously.

Time Base Widths: 10 microseconds to 1 second in 1, 2, 5 sequence.
- **Gate Pulse Width:** Continuously adjustable from 1 microsecond to .11 second.
- **Delay:**
 - (a) Manual adjustment from 0% to 100% of Time Base Width.
 - (b) Automatic scanning from 0% to that % of Time Base Width selected by setting the Manual Delay Dial.
- **Automatic Delay Scan Periods:** 1, 2, 5, 10, 20, 50, and 100 minutes.

GENERAL
- **Power Requirements:** 105-125 volts or 210-250 volts; 50-60 Hz; approximately 15 watts.
- **Size:** 19"W x 5"H x 14"D.
- **Price:** $1,950.00. Export prices approximately 5 per cent higher (except Canada). Request Bulletin No. 127.
Space electronics

Venus squeeze play

Prodded by Congress and the scientific community, the space agency has finally spelled out its plans for an ambitious program of unmanned Venus exploration. Critics in the House of Representatives had demanded a full report on the Venus plans, and top scientists meeting earlier in the year at Woods Hole, Mass., placed exploration of Venus right behind the moon and Mars in importance.

Responding to these pressures, the National Aeronautics and Space Administration this month outlined two long-range Venus programs. Venus is "an important, puzzling and paradoxical planet, meritng continued examination by space flight missions," the agency reported. This echoes the position of the National Academy of Sciences' Woods Hole conference, which urged that NASA support Venus exploration over the next 10 years on a level comparable with that proposed for Mars [see "Mars flyby on a level comparable with that of Venus", pp. 197-199].

Looking for life. NASA told the House that Mars has been the focal point in interplanetary exploration because of the "tentative conclusion" by the scientific community that it is the most likely place to find extraterrestrial life. Hence, Mars is the main target for Voyager, the unmanned planetary exploration program in the 1970's. But the agency added that the probability of life on Venus is high enough to warrant exploration.

Of the two sets of Venus missions presented, one is based on current scientific priorities and "certain resource assumptions." This program plus Mars requires annual funding of $400 million by fiscal 1972, increasing to about $800 million by fiscal 1975 and remaining at that rate for the rest of the 1970's. Four missions would be planned to Venus through 1979 and six to Mars.

The Mariner '67 Venus flyby, an attempt with a Mariner left over from the 1964 Mars mission, would be followed in 1972 by a larger Mariner-class spacecraft carrying an atmospheric probe to obtain data on the atmosphere and surface hardness. A 1975 mission would complete the atmospheric profile of Venus prior to the initial Voyager mission to the planet in 1977.

Flexible plans. If early Venus missions indicate that more emphasis should be placed on exploring, NASA could switch to its second set of proposed Venus missions. The 1972 mission in the original program could be moved ahead to 1970. NASA says the more advanced Mariner-Mars '69 design could be adapted for a 1970 Venus mission if the money is available. The agency says it is now "considering such a possibility" since the 1967 Venus mission "may indicate the desirability of increasing NASA emphasis on Venus."

The agency also hinted that Voyager missions could go to Venus earlier than currently planned if the money is available. Under this second set of Venus plans, a mission would be scheduled for each launch opportunity—a total of six during the next 13 years.

Ball bearing

An experimental navigation system has been developed to determine accurately a spacecraft's orbit around distant planets. Present star tracking techniques are accurate to about 0.1 mile in calculating earth orbits. But these techniques lack precision deep in space.

The new system will be tested aboard the third Applications Technology Satellite (ATS-C), due to be launched into a synchronous equatorial orbit early in 1968.

Instead of two star trackers that lock onto individual stars, such as Canopus, the new system developed by the Control Data Corp. for the National Aeronautics and Space Administration, uses a simple spring gun that shoots a three-inch ball at low velocity ahead of the spacecraft. The ball can be of any light-reflecting material but it must be dense enough to be unaffected by the pressure of solar radiation. (Balloons would be too light.)

A sensor on the spacecraft watches the ball's trajectory against the pattern of fixed stars, monitoring the angle of the ball's path. The spacecraft's orbit is then determined from calculations based on the gravitational constant of the moon or planet being orbited. All of these constants have been established by astronomers.

Star scanner to observe the pattern of fixed stars for spacecraft orientation is mounted on a test platform at Control Data Corporation. Lens in center of the device focuses starlight through a slit onto a photomultiplier.
Scanner. The key to the system is the optical scanner, which is now being tested at CDC. The scanner, to be mounted on a spin-stabilized spacecraft, has a lens with a two-inch aperture and a two-inch focal length. Light enters through a single slit and passes onto a photomultiplier and detector. As the image of each star crosses the slit, the detector generates a pulse that is transmitted to the computer. The timing of these pulses represents a pattern of stars that is processed by a computer to determine position and orientation of the scanner and the spacecraft.

The scanner is currently mounted on a wobbly platform that simulates the motion of a spin-stabilized spacecraft. Sitting in an open lot near Control Data's Minneapolis headquarters, the scanner watches the stars go by and transmits their position to a computer in the company's building. A pattern-recognition program in the computer calculates the position of the scanner with an accuracy of one-half to two minutes of arc.

This is the first time that a scanner using pattern recognition techniques has determined position from real stars. An earlier scanner built by CDC for a nonspinning satellite did its own spinning and was tested only against a simulated star field of white spots on a black screen [Electronics, March 21, p. 115 and April 4, p. 94].

Lookout. The scanner and the spring gun will be aboard ATS-C, but the computer will be on the ground. NASA's Goddard Space Flight Center, Greenbelt, Md., which is in charge of the ATS project, has tentative plans to incorporate the scanner in other experimental satellites.

ATS-C will eject the ball and watch while it recedes several miles. The satellite will then wait one orbit to look for it again. During that time—28 to 30 hours at the satellite's 22,300-mile altitude—the ball should go out 50 or 60 miles from the satellite, then return to within 15 miles, where the scanner will see it. The difference in trajectory between the two sightings will allow the satellite's orbit to be determined within an accuracy of about 10 miles. Accuracies up to 0.1 mile are forecast.

The spring-gun technique will not attain top accuracy aboard the ATS-C, however, because the craft's fast spin and the pointing requirements for other experiments aboard will limit the choice of direction of launching the ball and scanning it. ATS-C will telemeter the star scanner output to a computer on the ground rather than use an onboard special-purpose computer to make the calculations. Control Data is working on the design of such a computer for later missions.

Orbiting yardstick

An extension to the successful geodetic satellite program is under study at the National Aeronautics and Space Administration. With two geodetic satellites up and operating—and a third due for launch toward the end of next year—NASA is trying to determine just what other geodetic information is needed and the best methods of getting it.

Parallel studies are under way at two software contractors experienced in satellite computer programming: Wolf Research & Development Co., Bladensburg, Md., and D. Brown Associates, Inc., Eau Gallie, Fla. The contracts total just under $100,000 and call for five-month studies by each company.

Jerome D. Rosenberg, manager of the program at NASA headquarters in Washington, calls the current geodetic satellites the best tracked unmanned spacecraft in history and claims that they have enabled geographers to measure the distance between points on earth to an accuracy of 10 meters. To be answered in the current round of studies is whether satellites could measure changing features such as shorelines and tidal motions.

Another possible chore is calibrating the NASA and Defense Department tracking stations around the globe. The two agencies have $150 million worth of C-band stations and they have never been calibrated so that all their electronic equipment is compatible. The Air Force had planned what it called a Calsat (Calibration Satellite), but the program never got beyond the wishful thinking stage. In a sort of trial run, NASA plans to place a C-band transponder on the next geodetic satellite, Geos B.

On the money. To emphasize the operational nature of the geodetic program, NASA moved it from the Physics and Astronomy division to the recently formed Space Applications Programs division, which also includes communications, weather, navigation and earth-resources measurement satellite programs. NASA hopes these unromantic satellites, with their potential down-to-earth payoff, will pry more dollars for space out of the Administration and Congress.

The two satellites in orbit are an active and a passive craft. Explorer 29, the active satellite called Geos A before it went into orbit last Nov. 6, carries four flashing lights to make tracking easier, four reflectors to return laser beams, doppler beacon transmitters, a range and range-rate transponder and a Secor (sequential collation of range) transponder.

The passive satellite, called Pageos (Passive Geos), is a 100-foot-diameter balloon that looks like the Echo passive communications satellites. It was launched June 23 and serves as a target for tracking radars.

Except for addition of a C-band transponder, Geos B is a copy of Explorer 29. To reflect the shift to a new program office, the satellite will not get a number in the Explorer series if successfully orbited but will be called Geos 2.

To date the program has cost about $21 million, according to Rosenberg's breakdown: $7 million for the two Thor-Delta vehicles which launched the active satellites, $6.5 million for the Thor-Agena which launched Pageos, $2.5 million for the balloon and its backup and $5 million for Geos A and B and a prototype. The active spacecraft were produced by the Applied Physics Laboratory of Johns Hopkins University. Pageos was built by the G.T. Schjeldahl...
The exact configuration of the future geodetic satellites won't be known until the data requirements are established. If the decision is to proceed, NASA plans to put out a spacecraft definition contract next spring. And if there is a new geodetic satellite, Rosenberg plans to limit it to a launch vehicle no bigger than the Delta. However, there is a possibility that geodetic experiments will be carried piggyback on either the Applications Technology Satellite now being prepared by Goddard Space Flight Center, Greenbelt, Md., or the Saturn/Apollo Applications Program under study at Marshall Space Flight Center, Huntsville, Ala.

Electronic switch

A top space official with experience in running the multibillion dollar manned flight program will take over the agency's principal facility for advanced electronics research next month. James C. Elms, number two man in the National Aeronautics and Space Administration's Office of Manned Space Flight, will become director of the Electronics Research Center, Cambridge, Mass. He succeeds the center's first director, Winston E. Kock, who is returning to the Bendix Corporation in Detroit.

The controversial center was established despite congressional protests to do basic electronics research in preparation for future space missions. It is almost the only NASA center without some kind of satellite project. However, Kock said that the center might eventually have its own flight projects; the naming of Elms as director provides the experience for such activities.

Experience. Bypassed in the shuffle was Albert J. Kelley, former director of electronics and control at NASA headquarters in Washington. He once headed the task force responsible for planning the center and was considered the leading candidate for the directorship. But when the center began operation on Sept. 1, 1964, he got the second spot. The speculation was that his experience was confined to government, while Kock and Elms had industry background.

Kock's departure comes just weeks before the scheduled groundbreaking for the center's first permanent buildings. He is due to report to Bendix on Oct. 1 as chief scientist, vice president and a member of the firm's administration committee. In his previous time at Bendix he was vp for research, a lower caliber post.

Attractive. For Elms, the new job will be his third at NASA. He was second in command at the agency's Manned Spacecraft Center in Houston for a year before going to the Raytheon Company in 1964 as head of the firm's Space and Information Systems division, Sudbury, Mass. That job is currently held by NASA's first manned space flight chief, D. Brainerd Holmes.

At Bendix, Kock will do well if he can attract as many top professionals as he did at ERC. In his two years there, he built up the staff from the initial task force of 70 to a group of 550, including 76 scientists with doctorates. Kock also will fill some of the gap caused when R.D. O'Neal left his job as Bendix vice president and group executive for the firm's aerospace systems to become assistant secretary of the Army for research and development.

Military electronics

Missile follower

When the Army puts three of its new tactical missiles into the battlefield, two vans of test and repair equipment will be right behind the front lines. The missiles—the Shillelagh, Lance and TOW (tube-launched, optically tracked, wire-guided)—will be supported by a movable laboratory known as the Land Combat Support System under development for the Army Missile Command at Redstone Arsenal, Huntsville, Ala.

The lab's two mobile shelters...
weigh about 7,000 pounds each and contain equipment to test, calibrate and repair electro-optical missile components. One shelter carries the test gear and the other is for repair and storage. The Radio Corp. of America’s Aerospace Systems division, Burlington, Mass., has built and is testing three prototypes of each. The firm is negotiating with Redstone to produce 10 operational systems to begin the program. In production quantities the estimated cost of each is $500,000.

First clean booth. Among the novel features of the support system are an area free of contamination called a clean booth and a precision optical bench, each believed to be the first equipment of its kind designed for field use. The system is a more compact version of the automatic checkout and test equipment in maintenance depots [Electronics, Aug. 23, 1965, p. 88]. It is one of the first field systems to use integrated circuits.

Off-the-shelf integrated circuits from the Fairchild 900 series are used in the check-out and test logic, which is fundamentally the same as in larger systems using discrete-component modules. BCA project manager John F. Currier estimates that the 2,468 integrated circuit chips reduce the volume of rack-mounted equipment by 50%. They will also cut costs in production, he says.

The optical test bench, enclosed in a plastic clean booth, provides a rigid platform for alignment of optical components. Filtered air is forced out of the enclosure to prevent contamination. Access is through curtain slits.

To test infrared transmitters and trackers, the maintenance technician uses a plug-in source adapter and a detector adapter controlled by a taped program. The source adapter includes a vidicon tube that converts infrared radiation from a transmitter under test into electrical signals carrying beam pattern and boresight information. A calibrated detector measures intensity. A digital display provides readout to an operator and a paper tape gives sequencing instructions and keeps a permanent record.

For Vietnam. All three missiles for which the system was built will probably go to Vietnam. Though they were designed primarily as antitank weapons—and tanks have not been used against United States forces—the Army believes the missiles will be effective against any hard target, such as a pillbox.

The Shillelagh, an infrared-guided antitank weapon, is being produced in substantial quantities by the Philco Corp.’s Aeronutronic division and the Martin Co. Lance is built by Ling-Temco-Vought Inc.’s Michigan division using a simple inertial guidance system. TOW, produced by Hughes Aircraft Co., can be fired from the ground or a helicopter; it will be delivered and tested in the first half of 1967.

Consumer electronics

Double play

A multiplexing technique has been developed that allows two separate black-and-white television programs to be transmitted simultaneously over any single channel. Although Federal Communications Commission approval is necessary before the technique can be put into operation, its developer sees a wide variety of potential applications.

High on the list is the transmission of moneymaking programs, such as industrial training classes, by educational tv stations, which are barred from accepting advertising. Other possibilities include data retrieval from a central location by far-flung businesses and transmission of college courses over commercial tv to remote locations. The added programs would be visible only on sets fitted with special adapters and would not interfere with commercial programming.

Developed by Harold Walker, vice president of DuoVision, Inc., New York, the system employs techniques similar to those that permit black-and-white reception of broadcasts transmitted in color [Electronics, March 22, 1965, p. 97]. The signals from both programs occupy the same bandwidth. The second program modulates a subcarrier transmitted as a single-sideband suppressed carrier signal.

The DuoVision system uses a video subcarrier frequency of 4.24 megahertz rather than color tv’s 3.58 Mhz. Although the bandwidth is slightly narrower than the 4.5 Mhz specified for black-and-white pictures, Walker claims the added signal’s resolution will be as good as that of the regular signal.

Eye averaging. DuoVision’s system depends on the eye’s persistence of vision or its ability to average the light intensity of a few consecutive tv frames. The light intensity changes because the phase of the added signal’s subcarrier naturally reverses in every other frame—bright points on the screen in one frame become dark in the next. Consequently, the eye tends to see only the regular program because the added signal averages out to gray.

However, this phase reversal is not sufficient by itself. DuoVision’s circuits perform two additional tasks to prevent the two signals from interfering with each other. First, alternate scanned lines are phase reversed. Second, the highest level harmonics in the added signal are attenuated 20 decibels to limit the amplitudes of the multiplexed signal; hence, the picture tube operates with a more linear relationship between the applied voltage and the light output, resulting in better visual cancellation.

Attenuation also insure that the added signal remains at a lower amplitude than the regular signal—even if the home viewer’s set is mistuned.

Sound system. Sound for the added signal modulates onto a 31.5-khz subcarrier that is transmitted as a single-sideband suppressed signal. The signal is multiplexed on to the audio carrier using techniques of frequency-modulated stereo broadcasting.

The adapter measures about 12 by 8 by 3 inches and connects to a standard tv set’s antenna terminals without rewiring. It removes
Every characteristic the designer needs for top performance airborne inverters and switching regulators are combined in the new TRW 2N4305—2N4312 power transistors...high frequency...high gain...low collector saturation voltage.

Another plus factor in this outstanding new series is operating voltage characteristics as high as 120V.

Available in TO-5 packages. Available in Low Profile Isolated Stud packages. Available NOW from authorized distributors everywhere!

the signal from the subcarrier and puts the scanned lines into normal phase. At the same time, it phase reverses the regular signal so that the eye cancels it. Then the adapter remodulates the multiplexed signal onto a tv carrier frequency not in use in the particular reception area. Finally, the signal is fed into the set's antenna terminals.

The adapter would cost "under $150." The studio encoder, about the size of a small suitcase, should cost less than $10,000.

Although the system has been successfully tested over closed-circuit tv, tests over the air are needed to determine whether it can work without major changes in transmitting equipment approved by the Federal Communications Commission. Other unknowns are the maximum distance at which the added signal can be received and the effects of reflected signals on the added program's picture quality.

New York's educational tv station WNDT has requested permission from the FCC to test the system during the hours when the station doesn't usually broadcast. If approved, WNDT hopes to begin testing this fall.

Avionics

Landing on the beam

When a plane heads toward a touchdown at an airport it's usually guided by the airport's glideslope signal, generated by dipole antennas that use the half-mile or so of ground or water in front of the antennas to reflect the signals. If the ground in front of the antenna is uneven, the reflected signals are out of phase and erratic, producing an incorrect glideslope. Now a wide-aperture microwave antenna that eliminates these vagaries has been developed by Airborne Instrument Laboratory, a division of Cutler-Hammer, Inc.

Instead of using the ground to reflect the glideslope signal, the new antenna beams its signals directly at the aircraft. This means glidepath signals are consistent and the ground in front of the antenna needn't be excavated or filled—an expensive and time-consuming construction project in some areas.

Two beams. The antenna looks as if it had been installed incorrectly: it's not mounted perpendicularly to the ground but at an angle between 2½° and 3° from the perpendicular. This aims the two radiated lobes from the antenna at the necessary glideslope angle. The two lobes are fed from both the top and the bottom of the antenna and are shaped by carefully positioned slots cut in the face of the antenna wall.

The simultaneous radiation of the two beams produces a null reference-beam pattern by which a pilot steers his plane. A 330-megahertz signal in the top beam is modulated by a 90-hertz tone that indicates to the pilot that his plane is above the glideslope; the bottom beam is modulated by a 150-hertz code to indicate that the plane is below the path.

Try it out. The antenna is about to be tested at New York's LaGuardia Airport, where the area in front of the approach is tidewater and changes in water level affect the glideslope as much as 0.5°. The Federal Aviation Agency has authorized LaGuardia to install one antenna at runway 422, which fronts on an inlet of Long Island Sound. At the same time, the FAA will evaluate a similar antenna at its test facilities at Atlantic City, N.J.

In addition, the Air Force will soon receive a test antenna—for use at both strategic and tactical airports. So far nine military airports are being considered for new antennas.

And in Nice, French Government aviation officials are also testing such an antenna.

Antennas

Stanford's 5 & 10

Making five antennas do the work of 10 is a new approach to radio astronomy that promises to be the simplest way yet to measure distant radio sources with very high resolution. Radio astronomers already have learned that a row of ten 60-foot-diameter dishes can do the job of one huge—and expensive—675-foot parabolic antenna.

Now Ronald N. Bracewell, pro...
Tektronix oscilloscope displays both time-bases separately or alternately

TYPE 547 and 1A1 UNIT

DUAL TRACE
- DC-to-50 MHz
- 50 MV/CM
 - DC-TO-28 MHz, 5 MV/CM

SINGLE TRACE
- 2 Hz-to-15 MHz
- 500 µV/CM
 - (CHANNELS 1 AND 2 CASCADED)

With automatic display switching, the Type 547 provides two independent oscilloscope systems in one cabinet, time-sharing a single-beam CRT.

Some Type 547/1A1 Unit Features

- CRT (with internal graticule and controllable illumination) provides bright "no-parallax" displays of small spot size and uniform focus over the full 8-cm by 10-cm viewing area.
- Calibrated Sweep Delay extends continuously from 0.1 microsecond to 50 seconds.
- 2 Independent Sweep Systems provide 24 calibrated time-base rates from 5 sec/cm to 0.1 µsec/cm. Three magnified positions of 2X, 5X, and 10X, are common to both sweeps—with the 10X magnifier increasing the maximum calibrated sweep rates to 10 nsec/cm.

Single Sweep Operation enables one-shot displays for photography of either normal or delayed sweeps, including alternate presentations.

2 Independent Triggering Systems simplify set-up procedures, provide stable displays over the full passband and to beyond 50 MHz, and include brightline automatic modes for convenience.

- Type 547 Oscilloscope $1875
 - (without plug-in unit)
- Type 1A1 Dual-Trace Unit $ 600
- Rack-Mount Model Type RM547 ... $1975

U.S. Sales Prices f.o.b. Beaverton, Oregon

2 signals — different sweeps

Upper trace is Channel 1/A sweep, 1 µsec/cm.
Lower trace is Channel 2/B sweep, 10 µsec/cm.
Using same or different sweep rates (and sensitivities) to alternately display different signals provides equivalent dual-scope operation, in many instances.

Triggering internally (normal) permits viewing stable displays of waveforms unrelated in frequency.
Triggering internally (plug-in, Channel 1) permits viewing frequency or phase differences with respect to Channel 1.

2 signals — portions of each magnified

Trace 1 is Channel 2/B sweep, 10 µsec/cm.
Trace 2 (brightened portion of Trace 1) is Channel 2/A sweep, 10 µsec/cm.
Trace 3 is Channel 1/B sweep, 0.5 µsec/cm.
Trace 4 (brightened portion of Trace 3) is Channel 1/A sweep, 0.5 µsec/cm.

Using sweep delay technique-plus automatic alternate switching of the time bases—permits displaying both signals with a selected brightened portion and the brightened portions expanded to a full 10 centimeters.

B sweep triggering internally from Channel 1 (plug-in) assures a stable time-related display without using external trigger probe.

For complete information, contact your nearby Tektronix field engineer or write:
Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97005
fessor of electrical engineering at Stanford University, has devised a way to get the same results by spacing five of the smaller antennas at strategic points and using a computer to integrate the information they gather.

Bracewell and a small band of helpers built the first of the five antennas and unveiled it last month near the university's campus at Palo Alto, Calif. They plan an array of dishes in a row 75, 150, 450 and 675 feet from this original antenna. With this arrangement, five antennas can measure all possible 75-foot increments up to 675 feet just as 10 antennas would do.

Celestial picture. The purpose of the array is to produce an energy distribution profile of a celestial radio-frequency source. Since a known r-f source can be broken down into a series of sinusoidal Fourier components, Bracewell plans to construct a profile of an unknown source by treating the output of each pair of antennas as one Fourier component. By adding them he gets the desired profile.

The spacing of the antennas determines the output signal that each pair will produce in terms of a parameter that Bracewell calls the “spatial frequency.” The inverse of this parameter is a wavelength that can be expressed in minutes of arc. The nine useful pairings of the Stanford array will respond to wavelengths that range from 4.22 minutes to 23.1 seconds of an arc.

Each pair of antennas feeds a receiver that multiplies and integrates the two inputs. The result is sampled four times per second and converted to digital form by a voltage-to-frequency converter and counter. The information is put sequentially onto a tape.

An International Business Machines Corp.'s 360/67 computer separates the information into nine channels, each of which is considered a Fourier component. The components are then added with appropriate weighting to take into account amplitude and phase shifts. The result is a profile of the energy distribution of the source.

Sharp image. When the array is completed it will have a resolution of 16 seconds of arc at X band for a source on the meridian. The array will measure 675 feet with a wavelength of 2.8 centimeters. The diameter will be equivalent to some 7,300 wavelengths, thus giving the very high resolution. The resolution is at least an order of magnitude better than the performance of present large paraboloids, some of which cost up to $5 million.

The 140-foot dish at Green Bank, W. Va., has a two-minute beamwidth. The giant 1,000-foot dish at Arecibo, Puerto Rico, operates at L band, with a wavelength of 75 centimeters and has a 10-minute beamwidth.

It will be a year or two before the Stanford array is completed, depending on how fast the money comes from the Air Force contract under which Bracewell has been working. He has been operating under a contract that gives him $250,000 a year for research in radio astronomy.

The Stanford array is expected to be particularly useful in studying quasars, those distant sources of very high power radio energy. The nearest quasars appear as only about a degree of arc in width while distant quasars project a fuzzy image of two minutes of arc.

Components

A little lithium

The addition of lithium to silicon solar cells to make them more resistant to radiation is under study for the National Aeronautics and Space Administration by four electronics firms. If the method works as hoped, it could extend the life of satellites traveling through the Van Allen radiation belts or orbiting near the sun.

The concept was developed under NASA contract by the David Sarnoff Research Center of the Radio Corp. of America, Princeton, N.J. Three other companies have been asked whether they can duplicate RCA's results; the Heliotek Corp., Sylmar, Calif.; Hoffman Electronics Corp., El Monte, Calif.; and Texas Instruments Incorporated of Dallas. NASA has spent about $300,000 with the companies, more than half of it going to RCA.

The work is being done for NASA's Goddard Space Flight Center, Greenbelt, Md., which led the switch from p-on-n to n-on-p solar cells two years ago. That switch, which placed the negative layer above a cell's positive layer,
NAND logic is old hat.

We've invented SDS Natural Logic for our T Series integrated-circuit modules. It's a comprehensive set of gating structures that permit the terms of any Boolean logic equation to be converted directly into hardware.

Now you won't have to manipulate equations to make them fit the restrictions of NAND or NOR gates. With Natural Logic the hardware fits the equations without unnecessary inversions.

So you won’t need nearly as many circuits to build your logic system. Your system will cost you a lot less. It will be faster and more reliable. It will be easier to mechanize. And it will take up less room.

Naturally.

Scientific Data Systems
1649 Seventeenth Street, Santa Monica, California
Offices in principal cities throughout the world
improved radiation resistance 10 times and now all satellites carry n-on-p cells. RCA says lithium provides a 50-fold further improvement, and NASA agrees—up to a point.

Questions remain. Still unanswered, according to William Cherry, head of the space power technology branch at Goddard, is whether the lithium-doped cells will show the same radiation resistance in the vacuum of space that they do in experiments on earth. He also wants more data on whether lithium atoms will pile up at the junction between the p and n layers and whether they will damage the electrical contacts. So the center is having the companies build more lithium-doped cells. Some of them will be tortured in Goddard’s radiation lab and others will be carried into space in December on the first Applications Technology Satellite.

Cherry foresees two years of such experiments before he is confident enough to recommend the lithium-doped cells. But he notes that it took three years, seven months and 20 days before the n-on-p cells were accepted. NASA first flew these cells on the Relay 2 communications satellite launched Jan. 21, 1964.

Lithium improves the radiation resistance because atoms of the element move freely in the cell and actually “heal” a rupture caused by the bombarding protons and electrons of radiation. Other elements do the same thing, but lithium was chosen because it is the most mobile, it is electrically neutral and it can easily be introduced into the solar cell material.

A limiting factor is that lithium will do its job only at room temperature, or at about 20°C. At −40°C the lithium atoms don’t move at all and near 100°C they damage the cell by moving so fast they break up the structure. The problem is not as serious as it appears, Cherry points out, since the thermal control system of a spacecraft keeps the solar cells at room temperature even in the extreme cold of space.

Back to p-on-n. A side effect of the use of lithium, if it is accepted, will be a return to the p-on-n solar cells. In silicon solar cells, boron is used for the p layer and phosphorus for the n. Lithium can only work with phosphorous. Since the bottom layer provides 75% of the electrical current and logically is the one to protect from radiation, the p, or boron-diffused, layer will have to go on top. Lithium-doped cells will be a dull black instead of the bright blue of current solar cells.

RCA began work under the NASA contract in January, 1964, and used very conventional solar cells 1 by 2 centimeters with an efficiency of 10%. Both lithium-doped and undoped cells were subjected to the same amounts of radiation. The doped cells recovered after each radiation dose, reaching nearly the power output they exhibited beforehand. The undoped cells degraded along an almost linear curve.

Industrial electronics

Transit tie-up

The San Francisco Bay Area Rapid Transit District (BARTD) has decided to simplify requirements for its automatic train control and communications system. The decision means that bids will not be opened before January instead of the original target date, Dec. 6.

The main change is a relaxation of stopping accuracy from 1 foot to 15 feet. BARTD will also relax some of its demands for guarantees and reliability testing, which one potential supplier says would have upped the cost by several million of dollars more.

With the changes, says engineer Benne Aboudara, BARTD has been assured that its target figure of $25 million to $30 million is realistic. Some manufacturers had been talking of bids in the area of $45 million if the specs were as tight as those originally outlined [Electronics, Aug. 8, 1966, p. 195].

More time. The extra time will give the Philco Corp.’s Western Development Laboratories a chance to revise its train control plans. Philco, a subsidiary of the Ford Motor Co., had tested a system using aluminum pickets that interrupted a microwave signal, but BARTD shot it down on grounds that it did not provide continuous monitoring of the train.

Philco considers the difficulty a matter of defining the word “continuous.” The BARTD action “put a transient in our planning,” according to R.W. Porter, manager of ground instrumentation subsystems. The company is considering two other methods. One takes a track transmission approach similar to that of the Western Electric Co.; the company declines to discuss the other until BARTD decides whether to use a-c or d-c in the propulsion system.

Communications

Home tv from space

Although satellites won’t beam television directly to home receivers for several years, the technology has reached a point where community and educational receiving terminals appear to be economically feasible.

This conclusion can be drawn from a study just completed for the National Aeronautics and Space Administration by Atlantic Research Corp.’s Jansky & Bailey Systems Engineering department, Alexandria, Va. The report investigated factors that would affect the cost and quality of reception of television transmitted via stationary satellites through 1970. The satellites themselves were not studied.

Satellites now lack the effective radiated power needed to get television home receiver modification costs down to a price the owner would pay. In the lower satellite power ranges, however, ground terminals can be modified at costs within the reach of community antenna television and educational television operators.

Low cost. Jansky & Bailey calculated that home receiver modification costs on a mass production
basis (1 million units) could be as little as $15 per set if satellite power could be increased to 90 decibels above one watt (dbw). But this signal strength is far above what can be achieved now or in the immediate future. By contrast, the Communications Satellite Corp.'s operating Early Bird communication satellite has an effective radiated power of 10 dbw.

At the more realistic satellite output of 40 dbw, receiver modification costs would run about $180—too much for the average home receiver owner but within the range of the institutional user.

Jansky & Bailey studied signal power between 30 dbw and 90 dbw and projected cost and quality of all the trade-offs among frequency, background noise and effective radiated power. After studying a frequency range from 200 megahertz to 12,000 Mhz, the investigators decided the best frequencies from a cost standpoint are from 800 to 1,000 Mhz.

The study revealed that equipment costs generally increased sharply below 600 Mhz because atmospheric, man-made and cosmic noise levels are high in this range, necessitating a larger antenna. Above 1 Ghz, receiving equipment becomes very expensive because of the complex components needed for those frequencies. In the preferred range present ultrahigh frequency tuner techniques are applicable.

High level. For the study, the investigators used a 40 db signal-to-noise ratio at the receiver output since this is considered to provide a high quality tv picture with the standard 4-Mhz bandwidth used for television transmission in the United States.

A.M. Greg Andrus, NASA's communications director, says that the $50,000 report was ordered because of confusion about the problems in direct satellite broadcasting—particularly signal-to-noise problems in urban areas. Andrus said the next step is to examine the spaceborne link of such a system. He said that the space agency plans to seek industry proposals for this study in about two months.
Small Dimension

BUSS QUALITY Fuses

Thousands of different types and sizes of small dimension fuses and fuse mountings for protection of all types of Electric and Electronic Devices.

BUSS engineers have consistently pioneered the development of new fuses and fuseholders,—to assure you of safe, dependable protection,—no matter what the protection problem may be.

The complete BUSS and “TRON Family” fuse line includes: dual-element “slow-blowing”, single-element “quick-acting”, signal or visual indication types ... in ampere sizes from 1/500 up—in body sizes from only .140 x .300 inches up ... plus a companion line of fuse clips, blocks and holders.

For detailed information on the complete line,—write for BUSS bulletin SFB on small dimension fuses and fuse mountings.

All standard items are easily obtained through your BUSS distributor,—but if you don’t find what you need, get in touch with us.

For fuses and fuseholders of unquestioned high quality...
Every BUSS QUALITY fuse assures you safe, trouble-free protection because...

...Every BUSS QUALITY fuse, before it leaves the plant, is tested in a sensitive electronic device that automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

As the future brings increased demands for electrical safety, BUSS will continue to pioneer the development of safer and more advanced electrical protective devices, as it has during more than a half-century. To assure this continued industry leadership, BUSS maintains the world's largest fuse research laboratory, with its engineering staff and testing facility.

BUSSMANN MFG. DIVISION, McGraw-Edison Co., St. Louis, Mo. 63107
The most complete range of ceramic-metal tubes for U.H.F. Transmitters.

In operation for more than two years in a large number of U.H.F. Television Transmitters (BAND IV - BAND V)

HIGH GAIN U.H.F. TETRODES

UP TO 1000 Mcs

20 kW Anode vapor cooled

12 kW

3 kW

1.5 kW

6 kW

New

THOMSON ELECTRIC

EASY OPERATION
LOW COST
HIGH RELIABILITY
LONG LIFE

THOMSON HOU STON

TH 491
TH 290
TH 313
TH 293
TH 297

Circle 56 on reader service card

Circle 57 on reader service card—
"When we use A-B hot molded resistors instead of some other make, it's one less component we have to worry about"
Digital Equipment Corporation

FLIP CHIP T.M. Modules—The Digital Equipment Corporation trademark for a new kind of digital system module uses Allen-Bradley hot molded resistors exclusively.

Digital Equipment Corporation's PDP-8 programmed data processor, in which these modules are used, is a compact general purpose digital computer with a high speed, random-access, magnetic-core memory for engineering, scientific, and educational applications.

Allen-Bradley hot molded resistors have established such a consistently superior performance record over the years that Digital Equipment Corporation uses them exclusively in their computers—with no substitutes permitted under any circumstances!

While Allen-Bradley quality is the number one reason for this standardization, Digital reports that excellent service from Allen-Bradley is an advantage of vital importance to them, too. For example: "Recent expansion of FLIP CHIP production to meet the demand for PDP-7 and PDP-8 computers quadrupled our component needs. With Allen-Bradley's help there wasn't a single hitch in the production speedup."

The unvarying quality of Allen-Bradley resistors—million after million, year in and year out—results from an exclusive hot molding process. The precision automatic equipment developed and used only by Allen-Bradley produces such uniform properties that long term resistor performance can be accurately predicted. Please note, Allen-Bradley hot molded resistors have never been known to fail catastrophically in service.

HOT MOLDED FIXED RESISTORS are available in all standard EIA and MIL-R-11 resistance values and tolerances, and can usually also be furnished in values above and below standard limits. Shown actual size.
Allen-Bradley Type R adjustable fixed resistors are unexcelled for holding precise settings through extreme conditions of shock and vibration. This unusual ruggedness is the result of a manufacturing process—perfected and used only by Allen-Bradley—which hot molds the resistance and collector elements, terminals, and insulating material into an almost indestructible component. Thus, the controls can be mounted by their own rugged terminals without additional support.

The solid resistance track assures such smooth control that it approaches infinite resolution. Its smoothness cannot be compared with the abrupt wire-wound turn-to-turn resistance changes which may cause circuit transients. Since Type R controls are essentially non-inductive and have low distributed capacity, they can be applied in high frequency circuits where wire-wound controls are impractical. The Type R molded enclosures are both dustproof and watertight, permitting encapsulation after adjustment.

Allen-Bradley Type R controls are suitable for use from $-55^\circ C$ to $+125^\circ C$ and are rated $\frac{1}{4}$ watt at $70^\circ C$, 300 volts max. RMS. Available as standard in total resistance values from 100 ohms to 2.5 megohms with tolerances of $\pm 10\%$ or $\pm 20\%$. As special, can be furnished down to 50 ohms. Technical Bulletin B5205 contains complete specifications. Please send for your copy today: Allen-Bradley Co., 222 W. Greenfield Ave., Milwaukee, Wisconsin 53204. In Canada: Allen-Bradley Canada Limited. Export Office: 630 Third Ave., New York, New York, U.S.A. 10017.

Allen-Bradley Type R Adjustable Fixed Resistors—Shown actual size
Our DTL offers one feature we didn't license

on-time delivery

ITT is licensed to build all DTL integrated circuits from the 930 series. Quantity production is a reality in ITT Semiconductors' facility in West Palm Beach, Florida.

Doubtful? Ask your ITT Semiconductor distributor, who has plenty of DTL circuits in stock. Ask your ITT Semiconductor factory salesman, who can arrange two-week ARO shipment of your quantity orders.

It's easy to recognize the DTL circuits that come from ITT in West Palm Beach. They're the ones you don't have to wait for.

ITT Semiconductors is a division of International Telephone and Telegraph Corporation, 3301 Electronics Way, West Palm Beach, Florida.

<table>
<thead>
<tr>
<th>Type Number</th>
<th>Circuit Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC930</td>
<td>Dual 4-input Gate with Expander</td>
</tr>
<tr>
<td>MIC932</td>
<td>Dual 4-input Buffer</td>
</tr>
<tr>
<td>MIC933</td>
<td>Dual 4-input Expander</td>
</tr>
<tr>
<td>MIC944</td>
<td>Dual 4-input Power Gate</td>
</tr>
<tr>
<td>MIC945</td>
<td>R-S or J-K Flip-Flop</td>
</tr>
<tr>
<td>MIC946</td>
<td>Quad 2-input Gate</td>
</tr>
<tr>
<td>MIC948</td>
<td>R-S or J-K Flip-Flop</td>
</tr>
<tr>
<td>MIC949</td>
<td>Fast Quad 2-input Gate</td>
</tr>
<tr>
<td>MIC950</td>
<td>Pulse-triggered Binary</td>
</tr>
</tbody>
</table>

FACTORIES IN WEST PALM BEACH, FLORIDA. PALO ALTO, CALIFORNIA. LAWRENCE, MASSACHUSETTS. HARLOW AND FOOTSCRAY, ENGLAND. FREIBURG AND NUREMBERG, GERMANY.

Circle 58 on reader service card
Circle 59 on reader service card
Stackpole offers over 30 grades of Ceramag® material. More are being developed continually. Such up-to-the-minute technology permits you to specify Ceramag® on every new application. Discover the unique advantages of the versatile Ceramag® ferrites: complete moldability to virtually any shape, and the important savings over steel alloys for low frequency applications. When high permeability is an important factor, Ceramag® is the answer.

Hundreds of Ceramag® parts are already tooled as toroids, cup cores, insert cores, transformer cores, deflection yokes and rectangular solids. Special tooling is also available.

Stackpole is a name long associated with quality components in the electronic field. Only the closest attention to every production detail can result in the kind of product uniformity available with Ceramag® ferrites. As one of our customers put it, "Your ferrite cores are more consistent from order to order than any of your competitors."

If you are about to select a ferromagnetic material for a new application, or if you are dissatisfied with the performance and service of your present ferrite supplier, why not investigate Stackpole's Ceramag®? To discover how you can save and still insure superior performance, write for our Bulletin 1-A, Stackpole Carbon Company, Electronic Components Division, St. Marys, Pennsylvania 15857. Phone: 814-781-8521 — TWX: 510-693-4511.

CERAMAG® FERRITE PARTS ARE CONSISTENT
Who says 1-amp epoxy rectifiers can’t stand humidity?

Write for free water-soaked samples from ITT:

Choose the PRV rating that fits your application best and write for samples. We'll ship them immersed. You'll find that ITT epoxy rectifiers exceed the humidity requirements of MIL-STD-750. While you're at it, check for cool operation, low thermal impedance and extreme stability. All are made possible by ITT's patented* "double nail-head" design. Send for your free bottle of ITT rectifiers today! *Patent No. 3081374

ITT SEMICONDUCTORS
3301 Electronics Way
West Palm Beach, Florida

Please send me a pair of water-soaked 1-amp silicon epoxy rectifiers with the PRV rating I have indicated.

- 100 V - 200 V - 300 V - 400 V
- 500 V - 600 V - 800 V - 1000 V

NAME TITLE
COMPANY ...
ADDRESS ...
CITY STATE ZIP

ITT SEMICONDUCTORS
3301 Electronics Way
West Palm Beach, Florida

FACTORIES IN WEST PALM BEACH, FLORIDA, PALO ALTO, CALIFORNIA, LAWRENCE, MASSACHUSETTS, HARLOW AND FOOTS CRAY, ENGLAND, FRIBURG AND NURENBERG, GERMANY
It has a circuit of dependable FORMICA® brand copper clad.

They designed an emergency landing light knowing it couldn’t be babied in Arctic snow or jungle rainstorm.

Power failure puts an airfield out of business—or rather it used to. Today, airfields throughout the world depend on Bekon* lights for such emergencies. These rugged little life-savers, thrown quickly from moving trucks, to serve as emergency runway markers, keep working in any climate, under any weather condition. The Bekon Light nerve center is a printed circuit, made of a FORMICA® brand copper clad laminate. If the dependability of the p. c. in your product is also important, write Dept. ID-6 for data on FORMICA® brand copper clad laminates. Look for the FORMICA® brand, your assurance of quality.

There are many brands of industrial plastics but only one

FORMICA® BRAND

Leadership through innovation Formica Corporation • Cincinnati, Ohio 45232 • subsidiary of

*Made by Standard Parts & Equipment Corp., Ft. Worth

Circle 62 on reader service card

Circle 63 on reader service card
Want to generate a signal in the Ka band, test electronic gear on an aircraft, or check out the guidance system of a missile? Servo designs and manufactures instruments for these applications. And many others.

Our engineers are expert in producing microwave pulse-swept systems, microwave signal generators, microwave amplifiers and high voltage power supplies. Take the unit pictured above, for example. It's the first 20-watt TWTA amplifier available...and industry's most compact, too. Servo's amplifiers have many unusual features, and are supplied in models for operation from 1 to 18 GHz, in octave bandwidths.

Our Servodynamics Division also supplies special synchro-to-digital and digital-to-synchro conversion equipment and servo analyzers, digitally programmable function generators, and phase meters.

Other Servo divisions design systems and products which serve safety through science: the Railroad Products Division, the Infrared & Electro-Optics Division, and the Communications & Navigation Division.

servo corporation of america
111 new south road
hicksville, l.i., new york 11802
516 938-9700
Andrew doesn't just make antennas...we create them

Advanced technology, practical engineering, and extensive field testing are the Andrew formula for effective antenna designs. The new 4-port antenna shown above is an exciting breakthrough in microwave communications. For dual frequency systems in the 5.9-6.4 GHz and 10.7-11.7 GHz bands, it eliminates the need for a frequency combiner. Dual polarized inputs serve each frequency band. This Andrew advanced development meets tomorrow's communications needs today! Contact your regional Andrew sales engineer or contact Andrew Corporation, P. O. Box 807, Chicago, Illinois, U.S.A. 60642.

TELEMETRY ANTENNAS FIXED STATION ANTENNAS LARGE ANTENNAS

Andrew CORPORATION
29 YEARS OF ENGINEERING INTEGRITY
Years from now, people can still watch Surveyor's scan of the moon's surface

... thanks to Memorex precision magnetic tapes. When Surveyor relayed its famous closeup photographs of the moon's surface, Memorex tapes at JPL's Goldstone tracking station were busy recording these signals. All told, some 90% of the video and instrumentation tapes used in the Surveyor Program were Memorex. Now used to evaluate the mission, these tapes form a permanent record for future study.

Why was Memorex chosen? Simple. Space officials needed a tape that was rugged and reliable, and stood virtually no chance of missing any data. The logical choice was Memorex. Because of advanced design, careful manufacturing and uncompromising inspection and certification, Memorex tapes consistently outperform all others, reel after reel, year after year.

To find out what Memorex can do for you, call at one of our sales and service offices in this country and abroad, or contact us directly. We guarantee your satisfaction.
<table>
<thead>
<tr>
<th>Model</th>
<th>Element</th>
<th>Trade Name</th>
<th>Terminals</th>
<th>Tolerance (%)</th>
<th>Power Rating (Watt)</th>
<th>Max. Operating Temp. (°C)</th>
<th>Adj. Turns</th>
<th>Humidity Proof (Mil Spec)</th>
<th>Size (Inches)</th>
<th>Standard Resistances (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, S, P</td>
<td>±10</td>
<td>0.50</td>
<td>125</td>
<td>25</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>10-100K</td>
</tr>
<tr>
<td>215</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>L, S, P</td>
<td>±20</td>
<td>0.25</td>
<td>125</td>
<td>22</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>5K-5 Meg</td>
</tr>
<tr>
<td>260</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, S, P</td>
<td>±10</td>
<td>1.00</td>
<td>175</td>
<td>25</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>10-100K</td>
</tr>
<tr>
<td>235</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>L, S, P</td>
<td>±20</td>
<td>0.25</td>
<td>125</td>
<td>22</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>5K-5 Meg</td>
</tr>
<tr>
<td>236</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, S, P</td>
<td>±10</td>
<td>0.80</td>
<td>135</td>
<td>25</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>10-100K</td>
</tr>
<tr>
<td>220</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, W</td>
<td>±5</td>
<td>1.00</td>
<td>175</td>
<td>15</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>10-30K</td>
</tr>
<tr>
<td>224</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, S, P</td>
<td>±5</td>
<td>1.00</td>
<td>175</td>
<td>22</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>10-100K</td>
</tr>
<tr>
<td>3000</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>P</td>
<td>±10</td>
<td>0.50</td>
<td>175</td>
<td>15</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>50-20K</td>
</tr>
<tr>
<td>3001</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>P</td>
<td>±20</td>
<td>0.20</td>
<td>150</td>
<td>15</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>20K-1 Meg</td>
</tr>
<tr>
<td>3010</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, P</td>
<td>±5</td>
<td>1.00</td>
<td>175</td>
<td>25</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>10-100K</td>
</tr>
<tr>
<td>3011</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>L, P</td>
<td>±20</td>
<td>0.25</td>
<td>150</td>
<td>22</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>5K-5 Meg</td>
</tr>
<tr>
<td>3012</td>
<td>Cermet</td>
<td>TRIMPOT</td>
<td>L, P</td>
<td>±10</td>
<td>1.00</td>
<td>175</td>
<td>25</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>500Ω-1 Meg</td>
</tr>
<tr>
<td>3051</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>L, S, P</td>
<td>±20</td>
<td>0.25</td>
<td>150</td>
<td>22</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>5K-5 Meg</td>
</tr>
<tr>
<td>3052</td>
<td>Cermet</td>
<td>TRIMPOT</td>
<td>L, S, P</td>
<td>±10</td>
<td>1.00</td>
<td>175</td>
<td>25</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>500Ω-1 Meg</td>
</tr>
<tr>
<td>3053</td>
<td>Cermet</td>
<td>TRIMPOT</td>
<td>L, P</td>
<td>±10</td>
<td>0.50</td>
<td>175</td>
<td>25</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>20-200</td>
</tr>
<tr>
<td>3070</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>H, P, S, L</td>
<td>±5</td>
<td>1.50</td>
<td>175</td>
<td>10</td>
<td>Steady State Only</td>
<td>5/16</td>
<td>100-50K</td>
</tr>
<tr>
<td>3250</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, P, W</td>
<td>±5</td>
<td>1.00</td>
<td>175</td>
<td>25</td>
<td>Steady State Only</td>
<td>3/16</td>
<td>10-50K</td>
</tr>
<tr>
<td>3251</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>L, P, W</td>
<td>±20</td>
<td>0.50</td>
<td>150</td>
<td>25</td>
<td>Steady State Only</td>
<td>3/16</td>
<td>20K-1 Meg</td>
</tr>
<tr>
<td>3260</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>H</td>
<td>±5</td>
<td>0.20</td>
<td>175</td>
<td>11</td>
<td>Steady State Only</td>
<td>11/64</td>
<td>10-20K</td>
</tr>
</tbody>
</table>

TRIMPOT, TRIMIT, E-Z-TRIM, TWINPOT, are Registered Trademarks of Bourns, Inc.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3280</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, P, W</td>
<td>± 5</td>
<td>1.00</td>
<td>175</td>
<td>25</td>
<td>Yes</td>
<td>13/64 x 3/8</td>
<td>3/8</td>
</tr>
<tr>
<td>3281</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>L, P, W</td>
<td>± 20</td>
<td>0.5</td>
<td>150</td>
<td>25</td>
<td>Yes</td>
<td>13/64 x 3/8</td>
<td>3/8</td>
</tr>
<tr>
<td>3282</td>
<td>Carmet</td>
<td>TRIMPOT</td>
<td>L, P, W, H</td>
<td>± 10</td>
<td>1.00</td>
<td>175</td>
<td>25</td>
<td>Yes</td>
<td>3/8 x 13/64 x 3/8</td>
<td>3/8</td>
</tr>
<tr>
<td>3300</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>P</td>
<td>± 5</td>
<td>0.50</td>
<td>175</td>
<td>1</td>
<td>Yes</td>
<td>5/16 dia. x 3/16</td>
<td>10-20K</td>
</tr>
<tr>
<td>3301</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>P</td>
<td>± 20</td>
<td>0.25</td>
<td>150</td>
<td>1</td>
<td>Yes</td>
<td>5/16 dia. x 3/16</td>
<td>10K-1 Meg</td>
</tr>
<tr>
<td>3307</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>W</td>
<td>± 5</td>
<td>0.5</td>
<td>150</td>
<td>1</td>
<td>Yes</td>
<td>3/8 x 13/64 x 3/8</td>
<td>3/8</td>
</tr>
<tr>
<td>3316</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>W</td>
<td>± 10</td>
<td>0.2</td>
<td>105</td>
<td>1</td>
<td>No</td>
<td>3/16 x 13/64 x 3/8</td>
<td>3/8</td>
</tr>
<tr>
<td>3367</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>P</td>
<td>± 5</td>
<td>0.50</td>
<td>105</td>
<td>1</td>
<td>Steady State Only</td>
<td>1/2 dia. x 15/64</td>
<td>10-20K</td>
</tr>
<tr>
<td>3368</td>
<td>Carbon</td>
<td>TRIMPOT</td>
<td>P</td>
<td>± 20</td>
<td>0.25</td>
<td>105</td>
<td>1</td>
<td>Steady State Only</td>
<td>1/2 dia. x 15/64</td>
<td>20K-1 Meg</td>
</tr>
<tr>
<td>3257</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L, P, W</td>
<td>± 10</td>
<td>0.5</td>
<td>105</td>
<td>25</td>
<td>No</td>
<td>7/32 x 1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>271</td>
<td>Wirewound</td>
<td>TRIMIT</td>
<td>L</td>
<td>± 10</td>
<td>0.50</td>
<td>106</td>
<td>25</td>
<td>No</td>
<td>5/16 x 1/4</td>
<td>1-1/4</td>
</tr>
<tr>
<td>275</td>
<td>Carbon</td>
<td>TRIMIT</td>
<td>S, P</td>
<td>± 20</td>
<td>0.20</td>
<td>185</td>
<td>25</td>
<td>No</td>
<td>5/16 x 1/4</td>
<td>1-1/4</td>
</tr>
<tr>
<td>3067</td>
<td>E-Z-TRIM</td>
<td>S, P</td>
<td>± 10</td>
<td>0.50</td>
<td>85</td>
<td>15</td>
<td>No</td>
<td>23/64</td>
<td>9/32</td>
<td>1</td>
</tr>
<tr>
<td>3068</td>
<td>E-Z-TRIM</td>
<td>S, P</td>
<td>± 20</td>
<td>0.20</td>
<td>85</td>
<td>15</td>
<td>No</td>
<td>23/64</td>
<td>9/32</td>
<td>1</td>
</tr>
<tr>
<td>207</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L</td>
<td>± 10</td>
<td>2.00</td>
<td>175</td>
<td>25</td>
<td>No</td>
<td>13/16 x 9/32</td>
<td>1</td>
</tr>
<tr>
<td>3620</td>
<td>Wirewound</td>
<td>TRIMPOT</td>
<td>L</td>
<td>± 5</td>
<td>5.0</td>
<td>200</td>
<td>25</td>
<td>No</td>
<td>21/64</td>
<td>1/4</td>
</tr>
<tr>
<td>209</td>
<td>Wirewound</td>
<td>TWINPOT</td>
<td>L</td>
<td>± 10</td>
<td>0.5 (each element)</td>
<td>135</td>
<td>25</td>
<td>No</td>
<td>5/16 x 1/2</td>
<td>1-1/4</td>
</tr>
</tbody>
</table>
New and consistently better! At the left is the new face of our famous Microflex® reset timers and counters. High-visibility, direct reading dials enable you to make highly accurate settings, easier! The larger, 20-turn scale, for example, may be in minute divisions with the inner in seconds. Settings as short as 1/60th of a second with ±1/60th second accuracy are readily obtained. Other dial selections to 120 hours are available. After the desired pre-set time period, a variety of 15 amp. contacts can be opened or closed to control motors, solenoids, valves, etc. Uniform new lettering and attractive neutral grey color make units compatible with all other Eagle Signal types and with your most advanced machine designs. For full details about these new timers and counters, use Reader Service Card, circle number 480.

And not one turn too many! The operating characteristics of radio tuning coils depend on precise winding techniques. The Man from E.A.G.L.E. did a good turn for a leading manufacturer when he suggested the system shown above. Using a Microflex counter, variations in motor speed resulting from wire tension changes are taken care of . . . and an accurate product is produced each time. The operator merely needs to set the high-visibility dial and press the button. The arbor turns the pre-set number of revolutions and stops automatically. In this system, the Microflex counter controls brake, clutch and motor. Complete information is in Bulletin 730. For a copy, use Reader Service Card, circle number 481.

And not one ounce too many! A leading food supply manufacturer presented the Man from E.A.G.L.E. with the packaging requirement shown at the left. This manufacturer wanted to accurately fill containers. A versatile Microflex timer was the answer. It moves the containers under the hopper . . . filling and advancing them by the time lapse technique. The limit switch in this system activates the Microflex which controls hopper-valve and motor circuits. An accuracy of 1/10% of full scale is consistently maintained and the manufacturer can vary the container sizes and amounts he wants them to carry. Intriguing? Write for Bulletin 110 for full data. Use Reader Service Card, circle number 482.

The Man from E.A.G.L.E. would like you to see his complete "showcase" of process control ideas. May we send you our catalog? For your copy, use the handy Reader Service Card, circle number 483, or write directly to Eagle Signal Division, E.W. Bliss Company, Federal Street, Davenport, Iowa 52803.

BLISS EAGLE SIGNAL
A DIVISION OF THE E. W. BLISS COMPANY
22AP Plug-in General Purpose Relay

... the epitome of relay craftsmanship and design. Versatile to the Nth degree on loads to 10 amps. Available in 8- and 11-pin styles for AC, DC and plate circuit requirements. Features include: forms to 3PDT plus specials on request; standard units have gold-plated contacts for longer shelf life; lower pull-in voltages (DC: 70% of nominal, AC: 75% of nominal); AC operating voltages 0.5 to 250, DC 0.2 to 130 in current ranges from .005 to 10 amp. Complete information is in our new relay bulletin. For your copy, use Reader Service Card, circle number 484.

SPECIFICATIONS
• Contacts: SPDT, DPDT, 3PDT
• Contact Rating: 5 and 10 amps.
• Pull-in: 22 milliseconds average
• Drop-out Speed: 12 milliseconds average
• Size: 3/4" x 2 1/4" x 1 3/4"
• Weight: 3 ounces

25PS Medium Power Relay

... toss your toughest medium-power-handling assignments to this workhorse. 25PS types carry loads to 20 amps. on a fast duty cycle in a breeze. UL listed. Features include: rugged 1/8" diameter silver cadmium oxide alloy contact; lower pull-in voltages (DC: 75% of nominal, AC: 76% of nominal); AC operating voltages 4 to 250, DC 1 to 130 in current ranges from .02 to 10 amp. For full technical information on this and other Eagle Signal general purpose and medium power relays, use the Reader Service Card, and circle number 485.

SPECIFICATIONS
• Contacts: SPDT
• Contact Rating: 20 amps. 115/230 VAC 60 cycle resistive • 1 HP @ 115/230 VAC motor-inductive
• Pull-in: 50 milliseconds max.
• Drop-out Speed: 30 milliseconds max.
• Size: 2 3/4" x 1 15/32" x 1 3/4"
• Weight: 3 ounces

25AA Open Frame General Purpose Relay

... and boy what a relay it is! Versatile, dependable, economical. You'll find hundreds of uses for these 5 or 10 amps., UL listed high-reliability types. Standard units have gold-plated contacts which permit longer shelf life. Other significant features include: lower pull-in voltages (DC: 70% of nominal, AC: 75% of nominal). AC operating voltages 0.5 to 250, DC 0.2 to 130 in current ranges from .005 to 10 amp. Detailed specifications on these and other Eagle Signal general purpose relays are given in a new technical bulletin. For your copy, use Reader Service Card, circle number 486.

SPECIFICATIONS
• Contacts: SPDT, DPDT, 3PDT
• Contact Rating: 5A and 10A @ 115 VAC • 5A-1/10 HP @ 115 VAC, 1/6 HP @ 230 VAC • 10A-1/6 HP @ 115 VAC, 1/3 HP @ 230 VAC
• Pull-in: 22 milliseconds average
• Drop-out Speed: 12 milliseconds average
• Size: 3 1/4" x 2 1/2" x 1 3/4"
• Weight: 2 ounces

Ask the man from E.A.G.L.E. to open his "showcase" of ideas for you. Many can help solve your process control problems. Want our complete catalog? Use the handy Reader Service Card, circle number 487, or write: Eagle Signal Division, E. W. Bliss Company, Federal Street, Davenport, Iowa 52803.
Meet any programable or fixed voltage need

Up to 150 volts • Up to 95 amps

FEATURES and DATA

Convection cooled — no heat sinking or forced air required

Wide input voltage and frequency range—105-132 VAC, (200-250 VAC, optional at no extra charge) 45-440 cps

Regulation (line) 0.05% + 4MV (load) 0.03% + 3MV: Ripple and Noise — 1 MV rms, 3MV p to p

Overvoltage protection available for all models up to 70 VDC

High Performance Option — All models available with these specifications for $25.00 extra: Line regulation—0.01% + 1MV; Load regulation—0.02% + 2MV; Ripple and Noise — ½MV rms; 1¼MV p to p; Temp. Coef. — 0.01%°C

ACCESSORIES

and OPTIONS

System Rack Adapters

LRA-5 • 3¼" height by 2¾" depth. Price $35.00

LRA-4 • 3¼" height by 14" depth. (For use with chassis slides) Price $55.00

LRA-5 and LRA-4 mount the following combinations of LM models: up to 4 A package sizes • 3 B or 3 C package sizes • 2 A and 1 B or 1 C package sizes

LRA-3 • 5¼" height by 2¾" depth. Price $35.00

LRA-6 • 5¼" height by 14" depth. (For use with chassis slides) Price $60.00

LRA-3 and LRA-6 mount the following combinations of LM models: up to 4 A, B or C package sizes • 3 CC package sizes • 2 D or 2 E package sizes • 2 A, B or C and 1 CC or 1 D or 1 E package sizes • 1 CC and D or 1 E package sizes • 1 D and 1 E package sizes

Metered Panels • 3¼" Metered panel MP-3 is used with rack adapters LRA-4, LRA-5 and packages A, B and C. Price $40.00

5¼" Metered panel MP-5 is used with rack adapters LRA-6, LRA-3 and packages A, B, C, CC, D and E. Price $40.00

To order these accessory metered panels, specify panel number which MUST BE FOLLOWED BY THE MODEL NUMBER of the power supply with which it will be used.

F and G LM Packages are full rack power supplies available metered or non-metered. For metered models, add suffix M to the Model No. and $30 to the non-metered price.

Other Options • Also available are Overvoltage Protectors, Fungus Proofing, and High Performance Options at moderate surcharges.
with Lambda Modular Power Supply Systems

Fixed Voltage Range

Lambda Series Models

<table>
<thead>
<tr>
<th>Package</th>
<th>Adj. Volts</th>
<th>Max. Amps</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC1</td>
<td>3.5%</td>
<td>0.125</td>
<td>$119</td>
</tr>
<tr>
<td>LMC2</td>
<td>3.5%</td>
<td>0.125</td>
<td>$119</td>
</tr>
<tr>
<td>LMC3</td>
<td>3.5%</td>
<td>0.125</td>
<td>$119</td>
</tr>
<tr>
<td>LMC4</td>
<td>3.5%</td>
<td>0.125</td>
<td>$119</td>
</tr>
<tr>
<td>LMC5</td>
<td>3.5%</td>
<td>0.125</td>
<td>$119</td>
</tr>
</tbody>
</table>

NOTE: Space does not permit listing all LM Series fixed-voltage power supplies. In every package size there are models for each voltage range listed under the B package. Call or write for data and prices.

* Current rating is from zero to I max. at ambient. Current rating applies over entire output voltage range.

Prices:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 V</td>
<td>$285</td>
</tr>
<tr>
<td>5 V</td>
<td>$285</td>
</tr>
<tr>
<td>5 V</td>
<td>$285</td>
</tr>
</tbody>
</table>

SEND FOR NEW CATALOG ON FIXED VOLTAGE AND WIDE RANGE MODULAR POWER SUPPLIES

Lambda Electronics Corp., a Veeco Subsidiary
615 Broad Hollow Road, Melville, L. I., New York - 616 Myrtle 6-8000

Electronics | September 19, 1966

Circle 71 on reader service card 71
Now you can throw out less versatile storage techniques. A Ferroxcube core memory costs as little as $1,190.

We haven't been a leading core memory manufacturer all these years for nothing. We learned how to mass produce core memories and thereby sell them to you at prices competitive with less reliable, less versatile storage techniques.

Aside from price (we'll get back to that in a moment), consider the advantages of core memory systems. Speed. Random access. Non-dissipative. And they're non-volatile. We could go on and on. We won't because you've probably always wanted to design your system around core storage anyway. Only the cost stopped you.

Now you can buy a Ferroxcube 128 x 8 core memory system complete with stack electronics, data register and timing for a paltry $1,190. That's our FX-12. Its capacity ranges up to 512 x 8. The FX-14 picks up there and goes on to 4,096 x 32. Prices are comparably low. Moreover, the FX-14 is available with almost any choice of interfacing elements. Buy only what you need to interface with what you already have.

In brief, Ferroxcube core memories make both functional and economic sense. Write or call for Bulletin M661.

Ferroxcube
Target Tracking Depends on Temperature Tracking . . .
and you can depend on AMELCO to deliver 0.5 nA/°C

Don't confuse Amelco's new 805 Series Operational Amplifiers with any others . . . even our own! Type 805B, for example, operates from a ±15 volt supply and delivers a 26 volt output swing, has 0.5 nA current tracking, and fits most existing circuits without modification. Short circuit proof, too.

Cost? From $27 to $45 in quantities of 100 or more, depending on type. Four types are available and in stock at your Amelco distributor. You can depend on that, too!
How Sperry blends the best of two technologies into a superior microwave source

System designers who want to capitalize on the obvious advantages of solid-state without enduring the crippling power and frequency limitations are discovering a new solution: the packaged power supply/klystron oscillator combination from Sperry Electronic Tube Division.

Sperry now offers single low-voltage (28 volts) DC-to-microwave frequency sources which combine the best features of solid-state circuitry and klystron oscillators. The source consists of an all solid-state power supply, a reflex klystron, and (if required) a stalo cavity and an isolator.

For many applications, Sperry has already proved that such a combination can equal the size and weight of an all solid-state source and show considerable improvement in reliability, power handling capability, noise and other characteristics.

The Sperry designs are based on existing hardware and technologies. Tubes, power supplies and stalos already in production require only minor modifications to become usable components in packaged source combinations. Because no development work is required, you can expect peak reliability from the first unit—the "learning curve" stage is completely eliminated.

Sperry delivers the source in a compact, integrated package... for a typical X band application it may be as small as 100 cubic inches and weigh as little as four pounds. While power supply maintenance should be conducted at depot level, the tube and stalo may be replaced, at any level, thanks to the fixed reflector voltage feature of Sperry reflex klystrons.

In packaging the units, Sperry pays particular attention to environmental requirements, mounting requirements and optimum RFI shielding.

If you're concerned with the performance and reliability of an all solid-state source to meet your specifications, or if you want to avoid the agony of matching a klystron to its power supply, get more information about Sperry's packaged source capability. For your free copy of a new technical paper, ask your Cain & Co. man or write Sperry, Gainesville, Fla.

SPERRY ELECTRONIC TUBE CORPORATION, Gainesville, Fla.

National Representatives: Cain & Co., Los Angeles, 783-4700; Boston, 665-6600; Arlington Heights, 253-3078; Dallas, 369-2897; Dayton, 228-2433; Eastchester, 337-3445; Philadelphia, 823-3961; San Francisco, 948-6332; Syracuse, 463-0462; Washington, 236-6265; South Amboy, 727-1900; Huntsville, 534-7955; Dade City, 422-3460; Montreal, 844-0089.
The high cost of expansion

The proposed suspension of the 7% investment tax credit may not slow electronics as much as other industries. There is serious concern the war effort may be hindered if expansion of the electronics and other key industries are hampered. Thus, to fill military orders, some expansion, even at the more costly rates, may still be necessary. Also, electronics firms have shown more restraint in their expansion plans than the rest of the economy.

President Johnson has sent his proposed legislation to Capitol Hill, where hearings have already begun in the House Ways and Means Committee. The bill, which seems assured of passage, would make expansion more costly and cause companies to defer such expansions until the credit is reestablished—probably in January, 1968. The President proposed that the credit suspension be made retroactive to Sept. 1.

Commerce Department figures forecast electronics expansion for the rest of this year at 2.4% above the previous quarter, compared to a 3% rise for all industries. Investment in new plant and equipment by the electronics industry—paced by the communications segment—was $6.09 billion for the year’s first three months, went to $6.27 billion for the second quarter and $6.53 billion in the third. Investment is expected to climb another $6.7 billion between now and year’s end.

Components manufacturers account for $575 million of the projected fourth-quarter total, computer firms another $206 million, and the communications giants are planning a $5.9 billion growth. Computer firms cut their expansion plans to a level below the last quarter’s, but the communications companies more than made up the difference.

Congress fears antisub slowdown...

L. Mendel Rivers (D., S.C.), chairman of the House Armed Services Committee, wants to make sure that Pentagon concern with the war in Vietnam doesn’t shortchange the Navy’s antisubmarine warfare program. He has asked Samuel S. Stratton (D., N.Y.) to find out whether antisubmarine defense against a potential Soviet threat is being sacrificed to the land war in Southeast Asia.

Stratton, who headed the congressional subcommittee that visited Vietnam in April, has had some preliminary interviews with Vice Adm. Charles B. Martell, director of the Navy antisubmarine program; hearings are planned before the full committee.

... while Navy goes ahead with Autec...

Despite the fears of Rivers and his committee, progress is reported in one area of antisubmarine warfare research. The Navy’s Atlantic Undersea Test and Evaluation Center (Autec) is ready to begin limited operations and a three-year, $10.8-million contract has gone to the Radio Corp. of America to manage and maintain the ocean test bed off the Bahamas.

None if by land

Returning Gemini and Apollo spacecraft will continue to splash down in the ocean, but dry landings may be possible for early flights in the Apollo Applications Program now under study by the National Aeronautics and Space Administration. John Kiker, head of landing techniques at NASA’s Manned Spacecraft Center in Houston, says that
Air Force tests emergency network for communications

A system that worked well during the East Coast blackout last Nov. 9 may provide the Defense Department with an emergency communications network; when the lights went out stations switched to standby power and continued both commercial and emergency teletypewriter broadcasting over a-m broadcast facilities.

The teletypewriter system—under test by the Air Force—operates at 100 words a minute. Messages are squeezed onto the broadcasting bands along with commercial programs—without interference—by shifting carrier-wave signals 18 hertz. Twelve stations in the northeastern United States have been equipped for the tests.

The system is compatible with digital air-to-ground communications equipment at high frequencies and with low-frequency systems used to contact submarines and underground command posts.

Westinghouse seeks better sonar for rescue sub

The Navy has ordered development of a sonar for its deep submergence rescue vehicle (DSRV) that will sound out and display small parts of a disabled submarine. The Westinghouse Electric Corp.'s Undersea division, Baltimore, is designing the sonar with a display resolution of one foot for an object 15 feet away. This difficult-to-obtain resolution is vital if the rescue vessel is to find and latch onto the hatch of crippled subs when the water is too turbid for visual observations.

To obtain the desired resolution, Westinghouse shortened the pulse rate to 20 microseconds and narrowed the beam to one degree. Power is held to less than 50 watts, and the external transducer and scan package can be no larger than 4 by 4 by 10 inches. Westinghouse has a $150,000 contract to build two systems for the DSRV program. Delivery is scheduled for mid-March.

California share of spending drops

California is receiving a smaller share of a bigger defense procurement budget and Texas is getting a bigger share, but otherwise the state-by-state breakdown of defense contract dollars looks like business as usual. However, California still holds a 2-to-1 lead over runner-up New York.

In fiscal year 1966, which ended June 30, California firms received $5.8 billion in prime contracts, or 18.3% of the $35.7 billion total defense procurement. In the previous year, California companies got $5.1 billion—22.1 of the $26.6 billion spent.

Trailing California in 1966 were New York with 8.9%, Texas with 7.2%, Connecticut with 6.5% and Pennsylvania at 5.3%.

Essa 3 comes to the rescue

The third in the series of operational weather satellites and the first of its kind to carry a one-inch vidicon camera system will be launched for the Environmental Science Services Administration on Sept. 21. Essa 3 will resume the global cloud picture coverage interrupted by the failure last month of one of Essa 1's two half-inch vidicon systems and the tape recorder that stored pictures for Nimbus 2's one-inch vidicon system. Earlier Essa satellites carried half-inch vidicons.
What increased chemical cleaning production 20% and cut solvent costs in half?

ITT says: FREON solvents and Branson Ultrasonics.

At ITT's Electron Tube Plant in Easton, Pa., components are now cleaned in a Branson ultrasonic system using FREON TF solvent. Standard degreasing just couldn't do the job as efficiently. Time and money were lost through recleaning.

Now, FREON leaves components microscopically clean—the first time through. With its low surface tension it reaches into the smallest pores and crevices. With its high density, FREON carries off all traces of dirt, cutting oils and other contaminants. It dries quickly, leaving no residue.

The result: chemical cleaning production up 20% . . . solvent costs down 52% from $100 to $48 per week.

And, because FREON is nonexplosive and relatively nontoxic, no special exhaust system is needed. Its high stability permits recovery and reuse after simple distillation.

FREON solvents could be the answer to your cleaning problems. For more information, write Du Pont Co., Room 4342, Wilmington, Delaware 19898. (In Europe, write: Du Pont de Nemours International S.A., “FREON” Products Div., 81 Route de l’Aire, CH 1211 Geneva 24, Switzerland.)
Now just apply a factor of 2, and you can establish a technique to rely on.

New KODAK Industrial X-ray Film, Type T (ESTAR Base), completes the most comprehensive line of industrial x-ray emulsions available; the five most popular Kodak films increase in speed by an approximate factor of 2. This means no more complicated calculation in selecting a film for a particular job. All you have to do is remember the factor of 2—then apply it.

Type T fits halfway between Type M and Type AA. It's the fastest extra-fine-grain film Kodak makes. It's specially
In the above illustration, (1) and (2) are the diagnostically significant images. KODAK Industrial X-ray Film, Type AA (ESTAR Base), is twice as fast as KODAK Industrial X-ray Film, Type T (ESTAR Base).

Kodak's comprehensive line of industrial x-ray film emulsions means greater versatility and less mathematics in multiple-film exposure techniques. Now multiple-film exposures using Kodak films can be applied to a greater range of casting thicknesses, even extremely thick- and thinwall specimens.

Use the table on the right to choose the best combination of films for your needs.

Want to know more about KODAK Industrial X-ray Film, Type T (ESTAR Base), and how the factor of 2 table can make life simpler? Contact your Kodak x-ray dealer or write us to have a representative call from Kodak's Radiography Markets Division.

<table>
<thead>
<tr>
<th>Type of Film</th>
<th>Approximate Relative Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
</tr>
<tr>
<td>T</td>
<td>8</td>
</tr>
<tr>
<td>AA</td>
<td>16</td>
</tr>
</tbody>
</table>

*at 200 kv

EASTMAN KODAK COMPANY
Radiography Markets Division
ROCHESTER, N.Y. 14650

Circle 80 on reader service card—
NEW ASTRO/348

Illustrated: 16-55 Astro/348 subminiature
raises the limit on reliability

AMPHENOL HIGH-DENSITY SUBMINIATURE PROVIDES:

1. Maximum of 85 #22 contacts in size 18 shell.
2. Improved contact retention design eliminating metal retention clip, permitting .021" minimum dielectric separation on .085" contact centers.
3. Environmental performance to MIL-C-26500/38300 except temperature range -55 C to 150 C.
4. Elimination of damage to receptacle male pins during blind mating.
5. Optional assembly of contacts into retention disc outside of connector shell. (For visual assurance that contacts are installed properly.)
Announcing the Brush Mark 250, first strip chart recorder for the perfectionists of the world.

Meet the fastest, most accurate strip chart recorder on record: The new Brush Mark 250. When you read about all the features you'll know why we call it the first recorder for the perfectionists of the world!

1 **Unmatched frequency response.** Flat to 10 cycles on full 4½" span! Useful response to 100 cycles. Nobody has a strip chart recorder in the same league.

2 **Wide selection of signal conditioners.** Choose from 21 interchangeable preamps. Use one today; plug in a different one when your recording requirements change.

3 **Crisp, clean rectilinear writing.** Patented, pressurized inking system puts smudge-proof trace into the paper not just on it.

4 **Contactless, non-wearing feedback system.** Same one used in our multi-channel Mark 200 recorders. (No slide wires!) Accuracy? Better than ½%!

5 **Multiple chart speeds.** Push-button choice of twelve... from 5 inches/second to 1/10 of an inch/minute (up to 8 days of continuous recording).

6 **Portable or Rack mounting.** And either way you get the exclusive new dual position writing table.

7 **Removable chart paper magazine.** Great for desk top record reviews. Man-sized manual winding knobs let you roll chart forward and back. Chart reloading is a clinch.

See what we mean? The Mark 250 is for the perfectionists of the world. Ask your Brush Sales Engineer for a demonstration. Or, write for chart sample and specifications. Clevite Corporation, Brush Instruments Division, 3633 Perkins Ave., Cleveland, Ohio 44114.

CLEVITE

Circle 493 on reader service card
The Brush Mark 250
First recorder for perfectionists
NEW FET CHOPPER-MFE2133
FOR MILITARY/INDUSTRIAL DESIGNS

...featuring low $r_{ds} \, \text{"on"} - 60 \, \text{ohms (max)}$

Here is one high-impedance device that can dissipate 1.5 watts. In addition, Motorola’s TO-39 package — with low thermal resistance (6.7 mW/°C) — keeps the junction relatively free of troublesome temperature swings. The MFE2133 also offers low transfer capacitance (5 pF) in proportion to the low drain-source resistance. And, the combination makes for better all-around switching performance.

The MFE2133 is suitable for large gate voltage swings as a chopper. The circuit as shown allows input voltages of 10 volts. No transformer is required. The result, of course, is circuit simplicity and savings in component costs.

MEDIUM-POWER AMPLIFIER JFETs
FOR INDUSTRIAL & CONSUMER USES

The industry’s first medium-power, high-gain, economical JFETs are Motorola types MFE2097 & MFE2098. Because of their natural high impedances, combined with a medium-power capability, you can often eliminate one transformer as well as large coupling and bypass capacitors in most designs. Even greater savings result from the low 100-up price of $4.90 — less than half the price of comparable devices! While these new FETs are ideal for driver stages of audio amplifiers and other audio communications equipment, they are also well-suited for use in analog control systems.

- Medium-power capability results from large geometry with many current paths.
- I_{ds} ranges from 15 to 50 mA — MFE2097
 40 — 100 mA — MFE2098
- $|y.| = 10,000 \, \mu\text{hos (min)}$ — MFE2097
 14,000 \, \mu\text{hos (min)} — MFE2098
 ... for extremely high gain.
- High-dissipation package — TO-39 with 1 1/2” leads.

MAKE YOUR MOVE TO FETs WITH ANY ONE OF FIVE NEW PIECES FROM MOTOROLA
RF-IF
CASCODE AMPLIFIER
TYPE MC1550
...with excellent AGC performance!

Typical performance:
- Very low internal feedback ($y_{12} < 0.001$ mmhos) — for easy alignment and high stability
- High power gain — 25 dB @ 60 MHz
- Constant input impedance over entire AGC range
- Low noise figure — 5 dB @ 60 MHz

...ideal for your newest communication equipment designs.

HIGH-GAIN
OPERATIONAL AMPLIFIER
TYPE MC1533
...with extremely low drift ($\pm 3 \mu V/°C$)

Typical performance:
- Open loop gain — 60,000
- High-input impedance — $Z_{in} = 1$ megohm
- Adjustable input offset (set $V_{off} = 0$ volts for minimum possible error signal)
- Large-output voltage swing — 13 volts ($\pm V = 15$ volts) with 2 K load

...for application in all types of low-level sensing equipment and analog computation systems.

Units for immediate evaluation are in stock at your nearest Motorola franchised semiconductor distributor. For complete technical details and/or application assistance in designing with these new integrated circuit amplifiers, contact your nearest Motorola field representative. Or write: Motorola Semiconductor Products Inc., Technical Information Center, Box 955, Phoenix, Arizona 85001.

MOTOROLA Semiconductors
—where the priceless ingredient is care!
Our optical processors can achieve coherent time-bandwidth products of 10^{10}

Perhaps you don't need this full capability. The important point is that advanced optical technology is the key to achieving optimum performance in both coherent and noncoherent processors.

At Perkin-Elmer, we can accurately predict the performance of your optical processor prior to hardware commitment through the use of modern computer design programs. Over twenty-five years experience in the design and fabrication of precision optics assures successful execution of your program.

Of course, the ability to discuss your data processing problems and apply optical technology to them is also important. That's why we've been selected to study, design, and develop electro-optical processors and correlators for critical requirements in communications, ELINT, ECM, reconnaissance, biomedics, radar, seismology, and sonar.

If you think your requirements are special, we do, too. Call or write: Optical Group, Perkin-Elmer Corporation, Norwalk, Conn. 06852. Tel.(213) 847-0411.
CTS Cermet Trimmers
± 100 PPM/°C T.C. Available (Series 185)

- Series 180* 1-1/4" x .325 x .295 Rectilinear
- Series 170* 1/2" Square
- Series 171* 1/2" Square
- Series 385* 11/32" dia., single turn
- Series 172* 1/2" Square
- Series 660PC 3/8" dia., single turn
- NEW Series 630 1/2" dia., single turn
- NEW Series 630 P 1/2" dia., single turn
- NEW Series B180 1.30 X .376 X .385 Rectilinear
- NEW Series B185 1.30 X .376 X .385 Rectilinear
- NEW Series 185 PC 1-1/4" x .345 x .290 Rectilinear

CTS Wirewound Trimmers
Infinite Resolution Available. Stability ±25% (Series IRW)

- Series K350* 1/2" dia., single turn knob operated
- Series 110* 3/4" dia., single turn
- Series 112* 3/4" dia., single turn
- Series P115* 3/4" dia., single turn
- Exclusive Series IRW 1-1/4" x .325 x .295 Rectilinear spiral infinite resolution
- Series XPC110 3/4" dia., single turn
- Series 117* 3/4" dia., single turn
- Series 116 1" x .320 x .180 Rectilinear
- NEW Series 115 3/4" dia., single turn
- NEW Series 116 3/4" dia., single turn
- NEW Series 330 1/2" dia., single turn
- NEW Series 330 P 1/2" dia., single turn

CTS Carbon Trimmers
for Lowest Prices

- Series C140* 1-1/4" x .325 x .295 Rectilinear
- Series C140PC* 1-1/4" x .325 x .295 Rectilinear
- Series 220* 7/16" x 1/2" single turn
- Series 220PC 1-1/4" x .325 x .295 Rectilinear
- Series 330 1/2" dia., single turn
- Series U201* 19/32" dia., single turn knob operated
- Series X201* 19/32" dia., single turn knob operated
- Series XPC110 3/4" dia., single turn

7 New Trimmers added to CTS’ Extensive Line
CTS TECHNOLOGICAL SUPERIORITY GIVES YOU:

- Broadest Line of cermet trimmers.
- Wide range of wirewound and carbon trimmers.
- Prices from 10¢ to $17.60 for industrial, military and entertainment applications.
- Engineering versatility for challenging design requirements.
- Precision controlled production from raw materials to finished product.
- Unsurpassed mass production capability.

*Immediately available from distributor stocks.

Sales Offices and Representatives conveniently located throughout the world

Principal Products
- Variable Resistors
- Selector Switches
- Loudspeakers
- Trimming Potentiometers
- Microminiature Components & Circuit Packages
- Crystals, Filters
- Oscillators & Ovens

Subsidiaries:
- CTS of Asheville, Inc., Skyland, N. C.
- CTS of Berne, Inc., Berne, Indiana
- CTS of Paducah, Inc., Paducah, Kentucky
- Chicago Telephone of California, Inc., South Pasadena, California
- CTS of Canada, Ltd., Streetsville, Ontario
- CTS Microelectronics, Inc., Lafayette, Ind.
- CTS Research, Inc., Lafayette, Indiana

© CTS Corporation
Elkhart, Indiana
That's 14 years at 25°C... with capacitance change less than 5%. The bouquet's still there! And long shelf life is only one reason for using G-E tantalum foil capacitors. Here are 3 others:

PROVED OPERATING LIFE: Our 85°C tantalum foil has been on continuous test for over 50,000 hours, our 125°C for more than 40,000 hours... with no capacitance change significant enough to affect performance. And with General Electric's Minuteman-proved true hermetic seal (now offered on most foil units for a small additional charge), life can be extended indefinitely.

REVERSE VOLTAGE STRENGTH: G-E tantalum foil capacitors are designed to withstand unsuspected reversals.

SELF HEALING: Forget about low impedance circuit problems and catastrophic failures. G-E tantalum foil capacitors are self-healing.

G-E tantalum foil capacitors are available in ratings up to 450VDC, 0.15 to 3500μf, —55 to 85 or 125°C.

We've been proving—and improving—them for 17 years. They're virtually risk-proof. And may cost a bit more. But don't the best grapes make the best vintage?

For all the facts on G-E tantalum foil reliability, write for Reliability Report, Section 430-27, General Electric Co., Schenectady, N. Y. 12305

14 years proved shelf life is just one more reason for G-E tantalum foil
This year, you'll buy more than 2000 POLARAD modular microwave signal instruments ... 40% more than last year.

Why?

Turn the page...

POLARAD ELECTRONIC INSTRUMENTS
A Division of Polarad Electronics Corp.
34-02 Queens Blvd.
Long Island City, N.Y. 11101
Tel. No. (212) EX 2-4500

BUSINESS REPLY MAIL
Postage Will Be Paid by Addressee
No Postage Stamp Necessary If Mailed In The United States

POLARAD ELECTRONIC INSTRUMENTS
A Division of Polarad Electronics Corporation
34-02 Queens Blvd.
Long Island City, N.Y. 11101
Here are 10 of the reasons!

1. Lowest Cost—yet highest quality, widest range, greatest flexibility. Always your best buy—and we can prove it!
2. True Modular Compatibility—buy only what you need, and add new capabilities as required—without wasteful overlap or performance compromise!
3. Highest Inherent Reliability—due to exclusive rock-solid ceramic klystron, ultra-rigid castings, advanced thermal design, and the most generous operating margins ever provided in this class of instruments.
4. Full Mechanical Flexibility—rack or stack these modern, attractive packages, in any combination—easiest instruments to use, to convert, to "build-in"!
5. Over 100 Useful Combinations—from only 11 basic modules; and that means capital-budget economy for the small laboratory or production-test facility!
6. Most Compact in their Class—more range, more function per cubic inch, per panel inch, per lb, per dollar—than is offered by any other precise microwave signal instrumentation.
7. ± 0.5% Accurate Digital Frequency Readout—programmable by rear tuning shaft extension, too.
8. Ultra-Stable, Ultra-Pure—extremely-well-regulated power supplies, low thermal gradients, bimetallic cavity stabilization, and advanced shielding/filtering/isolating design ensure lowest drift, lowest incident AM and FM, greatest freedom from spurious signals.
9. Full Phase-Lock Compatibility—all models designed to accept phase-lock frequency stabilization from the Polarad Model 3815—the highest-performance master-crystal stabilizer you can buy.
10. In-Stock Availability—in small quantities, we ship from continually-replenished stock; larger quantities are scheduled on a 15-45 day cycle, currently. (Demos? Overnight by air!)

Yes, IT'S TRUE—more engineers standardize on POLARAD Modular Microwave Signal Instrumentation every year...won't use any other kind, in fact. The card below will bring you all the reasons for PEI's popularity—by return mail!

Gentlemen:

- I want to see and try a Polarad Signal Generator. Have my local Polarad Field Engineer call me at once to arrange for a demonstration.
- The frequency range of interest to me is

 Name:
 Title:
 Company:
 Address:
 City:
 State:
 Zip:
 Tel.:
 Ext.:

- I may have a requirement soon. Send me Bulletin EIS-663 by return mail, and have my local Polarad Field Engineer get in touch with me shortly thereafter, to discuss my requirements.

- I have no immediate requirement, but I want the complete new Polarad Signal Generator Catalog for my files.

Send for this brand-new, comprehensive guide to the best in Microwave Signal Instrumentation...just off the press—Bulletin EIS-663

Use this card for Fast, Direct Action. (If card is missing, see back of this stub.)
An essential element in the constant picture quality provided by Jerrold Electronics Corporation's Starline all-band solid state CATV distribution system are thermal equalizers employing Keystone disc type thermistors (see arrows). Stationed at every third trunk amplifier location, each of these units, controlled by our thermistors, equalizes for 17db of cable at 216 mc at 70°F and compensates for temperature changes for 60 db of cable from a wintry low of —40°F to a summer high of 120°F. We make thermistors that measure and control temperatures, provide power surge protection, sense liquid levels, etc., in over 400 standard types! Resistance values, temperature coefficients and physical sizes range widely to meet your needs. Let us have your inquiry.

KEYSTONE CARBON COMPANY, St. Marys, Pa. 15857

Circle 90 on reader service card
For any capacitor requirement
...fixed or variable...
glass, quartz, air or ceramic dielectrics

Write

JFD VAM air variable capacitors maintain highest Q at high frequencies, offer ultra stability, smallest size. Request Bulletin VAM-65.

Uniceram High-Q Ceramic Fixed Capacitors combine exceptional stability, small size with minimum Q of 5000. Send for Bulletin UNM-65-2.

Low-cost Stangard miniature ceramic variable series for commercial and industrial applications provide 8 wide Δ'C in 4 versatile configurations. Write for Bulletin STD-65.

And remember JFD also offers industry's widest line of piston trimmer capacitors...over 3500 standard and special panel-mount and printed-circuit units. They're available with glass, quartz, air and ceramic dielectrics, with a wide variety of drive mechanisms for every requirement. Here are two examples.

For tuning and trimming applications, JFD's Super Max-C Extended Range EMC series offers unusually wide Δ'C- as wide as 1.5 to 300 pf with a single standard unit.

If space is highly limited, the miniature 950 series offers capacitance ranges as wide as 1.2 to 16 pf in a unit only 5/16" long. These and many others are fully described in Catalog C-66. To obtain a copy, just add "and C-66" to any of the coupons above.

"TODAY'S COMPONENTS BUILT FOR TOMORROW'S CHALLENGES"

JFD ELECTRONICS CO. / COMPONENTS DIVISION
15th Ave. at 62nd St.
Brooklyn, N. Y. 11219
Phone 212-331-1000

Circle 92 on reader service card Electronics | September 19, 1966
Fast, convenient
direct reading
measurements of
impedance and
phase angle 500 kHz
to 108 MHz...

THE 4815A RF VECTOR IMPEDANCE METER

This new Vector Impedance Meter is a versatile instrument that provides fast, direct reading measurements of impedance and phase angle over the frequency range from 500 kHz to 108 MHz. It is continuous tuning over this frequency range, and does not require balancing or data interpretation. Thus, it is an extremely useful tool for the evaluation of the complex impedance of both active circuits and components. The convenience of probe measurement, ease of operation, and direct reading features make the instrument equally useful for laboratory, receiving inspection or production line measurements.

The 4815A is a convenient and powerful measuring tool for any application involving measurements over a band of frequencies or in-circuit measurements. It may be used to determine the self-resonance point of capacitors, the series and parallel resonance points of crystals, or the characteristics of high frequency transformers and transducers. Price: $2650 f.o.b. factory. For complete specifications, contact your local Hewlett-Packard field engineer or write Hewlett-Packard, Rockaway Division, Green Pond Road, Rockaway, N. J. 07866; Europe: 54 Route des Acacias, Geneva.

Advantages:
- Fast, continuous tuning from 500 kHz to 108 MHz
- Provides data directly in impedance and phase angle, 1 ohm to 100K ohms 0 to 360°
- Convenient probe for in-circuit measurements
- Analog outputs permit permanent data recording
- Self calibration check provides measurement confidence
- Low-level test signal minimizes circuit disturbance

HEWLETT PACKARD
An extra measure of quality
The small pin hole in the center of this circle is more than enough light for MTI Image Orthicon Television Cameras.

MTI is the world's largest manufacturer of low light level TV systems. This simply means that low light levels are our specialty. Specifically, at 1 x 10^{-5} foot candles of ambient light (approaching total darkness) MTI image Orthicon TV cameras will produce high resolution pictures. So the amount of light illustrated by the pin hole is more than enough.

There are hundreds of applications for MTI low light level equipment. Here are just a few: viewing nocturnal animals performing tasks, observing stars, examining small components such as transistors, diodes, capacitors and relays for minute flaws, and so on. In any application where low light levels are of prime importance, MTI can solve your problems.

Seven different line scan frequencies are available "off the shelf". Specific details available on request. If you have an application problem, call us. We can help.

MTI MARYLAND TELECOMMUNICATIONS, INC.
York & Video Roads, Cockeysville, Maryland / Area code 301, 666-2727
WORLD'S LARGEST MANUFACTURER of low light level image Orthicon cameras
What brings a silicon chip like you to Taiwan, anyhow?

Low-cost packaging, what else?

Our new Taiwan production facility packages a complete line of transistors and integrated circuits at the most competitive prices around. And available, now.

FOR EXAMPLE: IMMEDIATE DELIVERY ON PLANAR AND PLANAR EPITAXIAL SILICON TRANSISTORS.

PNP: General-purpose amplifier medium-speed switch.

NPN: AM-FM receivers, 400 kc IF amplifier, 10.7 Mc IF amplifier, RF and video amplifier, low-noise high-gain amplifiers at low-level operation, UHF/VHF oscillator

RF amplifier, general-purpose amplifier medium-speed switch, high-speed switching saturated-logic circuits.

Microelectronics Division PHILCO

Santa Clara, Calif. • Lansdale, Pa. • Spring City, Pa.
Sometimes we worry about Jim becoming a Narcissist.

It all started with Celanar Polyester Film. We go to extremes to make it the cleanest, strongest, smoothest film available. Then challenge Jim, and our quality control experts, to find a flaw in it. But stare as he may, it's a rare day when Jim finds a wrinkle, a cross-buckle or other visual defect to mar his own reflection on a roll of Celanar. Which is enough to turn anyone into a narcissist.

The cleanliness of Celanar starts in our "White Room" production area at Greer, S.C., where air filtration systems trap dirt specks as tiny as 0.3 micron. But clean just begins to describe Celanar. It's stronger than the other polyester film. Retains its strength at elevated temperatures. Its gauge thickness is more uniform. We assure its uniformity by radioactively inspecting every foot of every roll before it's shipped. And Celanar film has excellent aging characteristics, resists embrittlement.

What's more, we go a long way to supply Celanar in the roll lengths, widths, and gauges most convenient to you. Even guard it during shipment with temperature recording flags. Or impact recorders, when necessary.

Send for complete details about Celanar Polyester Film—and how we can help you make the best use of it. Celanese Plastics Company, Dept. 133-C, 744 Broad Street, Newark, N. J.

Celanese Plastics Company is a division of Celanese Corporation of America.
Until recently, there was only one type AOLux glass laser rod.

Today there are 10.

They’re all made by American Optical and designed to suit the purpose of just about every system. They all require less input power than other solid-state materials.

We’ve expanded the line of general-purpose glass rods to include dopings of 2%, 3% and 6%, to give you a wider selection for high pump uniformity. This group of rods exhibits very low loss, is essentially inclusion-free, and is available with special-purpose claddings.

For you who want long fluorescent lifetime, higher efficiency for "Q" switching and better energy storage for amplifier applications, use the AOLux long-lifetime 3%, 4% and 6% neodymium-doped rods.

Also available is a high-durability rod for extra-large laser systems, in dopings of 3% or less. Then there are AOLux neodymium YbNd double-doped rods with a 2 millisecond lifetime, still with 1.06 micron output. And AOLux ErYbNd triple-doped rods with 14 millisecond lifetime—with outputs of 1.54 microns.

Naturally, such considerations as present cavity configuration and power supply, output wavelength, output power, pulse duration, beam spread, repetition rate, shape of spike, cooling, etc., will condition your selection.

That’s where American Optical comes in. We pioneered neodymium-doped glass laser rods; we now offer 10 standard types. We’re ready and willing to help you match our laser rods to your specifications. Contact American Optical Company, Space-Defense Division, 4709 Baum Blvd., Pittsburgh, Pa. 15213.
Are design engineers choosy?

You bet they are! And the more discerning they are the better we like it.

That's why CAMBION® RF chokes molded with epoxy resins offer triple the advantages of competitive chokes. They provide greater resistance to external contaminants, cooler operating temperatures and tighter electrical tolerances. They are five times more water resistant, have 50% more dielectric strength and develop only half the heat of chokes encapsulated with alkyd resins. Because they run cooler, CAMBION chokes last longer... achieve greater reliability. And by radiating less heat to neighboring components, these chokes improve the total reliability of your circuit assemblies.

CAMBION quality is a tangible thing. Special techniques, new equipment and our quality control program assure precise winding and careful handling of epoxy resins.

Seals are stronger, too. There is a more uniform bond between the epoxy, the windings and the terminal leads. Our molded RF chokes are rugged... built to take rough treatment both in production and in the field.

What's more, CAMBION advanced techniques in epoxy molding permit winding with larger diameter wire to give you reduced d-c resistance and high Q.

And you can specify tolerances to 5% or 10%. Standard CAMBION RF chokes combine consistency and uniformity in a variety of values, styles and sizes. There's a CAMBION choke built to meet your particular requirements, ready for immediate delivery off the shelf. We also produce many popular styles of RF chokes in conformance with Military Specifications. All CAMBION chokes are guaranteed for quality regardless of quantity.

Contact your nearest CAMBION distributor. Be choosy — there are 18 styles of CAMBION RF chokes in over 500 different inductance ratings, stocked and ready for shipment. For complete technical data, write Cambridge Thermionic Corporation, 401 Concord Avenue, Cambridge, Massachusetts 02138. In Los Angeles, at 8703 La Tijera Boulevard, 90045.

Standardize on CAMBION... 21,541 guaranteed electronic components
AE’s dry-reed switches are soggybobbinproof

On our PC Correeds, we soggy-proof the bobbins by molding them from a fiberglass-reinforced nylon. This strong material is marvelously low in moisture absorption. It keeps its shape even when humidity stays at the saturation point.

That’s good to know if you’re designing AE Correeds into a piece of remote equipment that must work in a Louisiana bayou. Or anywhere that is exposed to moist atmospheres.

Enough about bobbins. Let’s take a look at the “business end” of a PC Correed. We separated the leads from the terminals — to eliminate strain. We welded the terminals, for a better electrical connection than possible with solder.

And for high-density packaging, we have designed low profiles, magnetic shielding and standard printed-circuit terminal spacing (multiples of 0.200”).

You can get PC Correeds with 1, 2, 3 and 5 reedcapsules. In contact forms A, B, C and magnetic latching. Many of these modules are available directly from stock. Soggy-proof bobbin and all.

Could you use some helpful new design information? Ask your nearby AE representative for Circular 1070-B.

Or write to the Director, Electronic Control Equipment Sales, Automatic Electric Company, Northlake, Ill. 60164.
High-performance amplifiers for coaxial transmission

Field-trial installation of the new transistor amplifiers in manhole near Dayton, Ohio. Amplifiers and associated circuits comprise repeaters; they are mounted in drawer-type boxes, then placed in gas-tight cylindrical housings. With the new system, a pair of coaxials will carry up to 3600 telephone conversations on an 0.5-MHz to 20-MHz band. A fully utilized coaxial cable could handle up to 32,000 conversations. On a coast-to-coast connection over the new system, about 2000 repeaters would be needed for each direction of transmission, with a total one-way amplification of as much as 75,000 dB.

Low-distortion, wideband transistorized amplifier developed at Bell Laboratories for a new coaxial cable system.

Every “hi-fi” enthusiast knows that faithful reproduction of music requires an amplifier with constant gain and low distortion over a wide band of frequencies. Amplifiers for such purposes are available today with 100 watts of power, gain deviation of less than 1.0 dB from 20 to over 20,000 hertz, and less than 0.4% distortion. This high level of performance has been obtained by utilizing to the fullest the best of today’s electronics technology.

At Bell Telephone Laboratories, the development of modern coaxial cable systems for transmitting thousands of telephone conversations also requires amplifiers which push electronics technology to its limits. The low-frequency limit for these amplifiers need not be as low as that for hi-fi amplifiers, but the high-frequency limit must be much higher—20 megahertz. The power output can be less—on the order of 1/10 watt—but the gain deviation must be less than 0.25 dB, and the distortion must be limited to 0.0004%. These requirements arise from the large number of simultaneous voice signals which these amplifiers must transmit and the large number of amplifiers that must be connected in tandem for a coast-to-coast system.

In the past, such amplifier performance was impossible. Today it is possible because of circuit-design techniques which include close control of feedback and the use of digital computer techniques to optimize circuit parameters. And of considerable importance to the design, new transistors were developed at Bell Laboratories with properties that are constant over wide dynamic and frequency ranges.
DUAL BEAMS DOUBLE SCOPE VERSATILITY!

Two Completely Independent Traces In One Display Make Comparisons Easier!

Capability of many different displays through two independent CRT beams easily doubles versatility of the hp Model 132A Dual Beam Oscilloscope. This two-in-one scope allows simultaneous comparisons of two different traces—quantitatively and qualitatively!

Waveforms look the same from range to range with the Model 132A because the high sensitivity, stable vertical amplifiers retain full bandwidth of 500 kHz at all sensitivities from 1 mv/cm through 20 v/cm. At the most sensitive range, 100 µv/cm, bandwidth becomes 200 kHz.

Stability of the two vertical amplifiers is provided through use of Nuvistor tubes in an aluminum shock-mounted block. This heat sink keeps Nuvistor temperatures identical, which gives the scope excellent DC drift stability. When DC coupling is not needed, drift can be eliminated entirely by using the AC amplifier coupling switch.

Internal time base may be applied through one or both horizontal amplifiers, thereby allowing two different sweep speeds or a simultaneous X-Y and Y vs. time display.

Compare these and additional features such as outputs from each vertical amplifier for monitoring and recording; front panel beam finder to facilitate location of off-screen traces; non-glare, parallax-free internal graticule CRT; plug-in circuit boards for easy servicing. Get the double versatility of the hp 132A for the low price of $1275. Call your hp field representative for a demonstration. Or, write Hewlett-Packard, Palo Alto, California 94304, Tel (415) 326-7000; Europe: 54 Route des Acacias, Geneva.
Why Photocircuits' tape readers were selected for...

APOLLO
GEMINI
LEM
MINUTEMAN
TITAN II
SHILLELAGH
GSM 133
CENTAUR
DIMATE
LCSS
TEAMS

... because of the simplicity and reliability of the printed motor single capstan drive, with the electronic control of all tape movement. Troublesome, high-maintenance components such as pinch rollers, brakes and clutches have been completely eliminated.

The fully militarized 500RM was specifically designed as a military unit... not a “beefed-up” version of a commercial tape reader. It has successfully passed mil specs, MIL-E-16400 Class 3, MIL-T-21200 Class 2 and MIL-T-945; tests for shock, vibration, RFI, altitude, salt, sand, dust and heat and cold.

The 500RM reads bidirectionally at up to 1000 char/sec., has eight inch reels with proportional reel servos, accepts 5, 6, 7 or 8 level tape and has a MTBF of 5000 hours.

For full specifications on the 500RM, or on Photocircuits' complete line of commercial tape readers, contact: Photocircuits Corporation, Tape Reader Division, Glen Cove, N.Y.
SPRING-BACKED JEWELS (left above) dissipate much of the shock energy on a movement's moving part. This prevents damage to the jewel and avoids subsequent “stickiness” or inaccuracy. In contrast are the two constructions shown above right...so-called cushion-backed and fixed jewels. The fixed absorbs no shock at all. The cushion-backed protects a little, but still won't do the job under the rugged use to which most of us put meters and test equipment. On the other hand, a spring-backed jewel permits full deflection with less than 20% increase in pivot pressure. Simpson makes a complete selection of spring-backed meter movements as well as fixed. The spring-backed type costs only about 20¢ more than a cushion-back, and 40¢ more than a fixed jewel. Is the spring-backed jewel worth the small extra amount? You bet it is, say most of our customers. Write for Stock Catalog No. 2073 which lists 1400 sizes and types. It may well be the cure for meter headaches and complaints in your equipment.
MIL-T SPECS call for 22% to 32% wax coating on LACING TAPE.

• But what really is the right amount for trouble-free, tight-knot lacing?

• GUDEBROD KNOWS. They make yard after yard after yard exactly right!

• GUDEBROD TAPE cuts harness costs!

• Send for a sample.

You are often required to lace with tape that meets MIL-T Specs—with a specified range of wax content. But that’s no assurance that you are using a tape that ties tight, holds tight, that probably won’t be rejected—unless, of course, you have Gudebrod Gudelace. Like all Gudebrod Lacing Tapes it’s manufactured under strict quality control including the wax coating. Every yard of Gudelace is impregnated exactly the same, exactly right. You can count on that—and on speedier, easier, better harnessing. That’s where you save real money. Want to know more? Get in touch with Gudebrod.

GUDEBROD CABLE-LACER

GUDEBROD BROS. SILK CO., INC.
FOUNDED IN 1870
12 SOUTH 12TH STREET, PHILADELPHIA, PENNSYLVANIA 19107

Give the sample any comparative test you want. Let your harness crew try it. Send it to your lab. It’s exactly what you’ll get when you order Gudebrod tape—every time.

Area Code 215, WA 2-1122

Circle 104 on reader service card

Electronics | September 19, 1966
Familiar with Teflon®? Try this quiz.

1. Teflon is transparent!
 - TRUE - FALSE

2. Teflon can be cemented!
 - TRUE - FALSE

3. Teflon can be heat sealed, thermoformed, heat bonded!
 - TRUE - FALSE

4. A Teflon film is made by Du Pont!
 - TRUE - FALSE

All are true with Teflon FEP film: a new dimension in Teflon

Let us tell you more.

Du Pont Company, Room 4612, Wilmington, Delaware 19898

Teflon FEP fluorocarbon film brings the familiar properties of Teflon plus a new form, versatility and ease of fabrication for applications like: conveyor belting, critical industrial packaging, gaskets, roll covers, reinforced plastics curing, closures, high temperature electrical insulation, flexible flat cable, printed circuitry.

The application I am considering is ________________________________

To do the job, a material with the following critical properties is required:

- **Teflon FEP Film**
 - Mechanical: high impact, abrasion, tear strength. Useful at cryogenic temperatures
 - Thermal resistance: from -240 to +200°C, continuously
 - Chemical resistance: the most inert of all plastics
 - Release, anti-stick: superior
 - Electrical: high transmittance of ultraviolet and all but far infrared, inert to outdoor exposure
 - Weatherability: high transmittance of ultraviolet and all but far infrared, inert to outdoor exposure

I am interested in these forms and processing techniques:

- **Thickness**
- **Substrate**
- **One Side**
- **Both Sides**

Please send full appropriate technical data.

Name: ___________________________ Address: ___________________________
Company: ______________________ City: ______ State: ______ Zip: ______
Job Responsibility: _____________ Business Phone: ________________

Electronics | September 19, 1966
If every design engineer knew what Slater can do in solving semiconductor problems

we would be 10 times larger!

We’re not a large company because we are not widely known...as yet. But we’re getting there because of our specialized skills in solving unique semiconductor problems.

Slater produces in volume single junction diffused 1 and 2 ampere silicon diodes up to 2000 volt PIV. All units provide a 20% safety factor on all specifications and are controlled avalanche.

We would be pleased to send you samples of our 1 ampere hermetically sealed diodes up to 1000 volts PIV with guaranteed recovery times of less than 100 nanoseconds. We want you to see how these Slater units expand operation of your circuits into very high frequency applications.

Don’t just accept these claims; test us. Find out first hand how Slater can supply 1N3189 series diodes to MIL-S-19500/155 and high voltage rectifiers and assemblies at the lowest price per voltage and ampere rating in the industry.

Let us sample you with our product. Then offer us an opportunity to quote to your requirements. Test us on the quality and reliability of our rectifiers and assemblies and the down to earth prices we offer. You’ll like the answers you get. This is the way we’ll grow.
What more can we say about relay reliability. In the strange environs of space, warranty can be a pretty empty word. We like "integ­rity" better...a projectable promise backed by the relay industry's most comprehensive quality assurance program.

Babcock's tenure in space began with the earliest satellites under mission-critical conditions, progressed through the life-critical missions of Mercury and Gemini, and continues now with Apollo. This is not only experience and capability...this is responsibility.

To illustrate, let's look at Apollo—from the ground up.

Each of these units has its own pedigree, and is produced on our own "TLC" line with Tender Loving Care. Each is the result of close customer liaison and application assistance. Each is the finest, most reliable relay of its type in the world.

Get acquainted with Babcock...our service and the complete Babcock line of high reliability and general purpose relays. Write Babcock Relays, Division of Babcock Electronics Corp., 3501 Harbor Blvd., Costa Mesa, Calif.; (714) 540-1234.
Here it is! Our all-new NIXIE tube—the industry's lowest-cost electronic readout*, and one sure to usher in a whole new generation of low-cost digital instrumentation.

But—don't be misled by its low, low cost. It's all NIXIE tube—in name, in design, in construction, in performance, in quality, in long, trouble-free life.

Important new design and manufacturing techniques have made its low price possible. Now check the important new features shown—they make the new NIXIE tube more functional and easier to use.

The new NIXIE tube Type B-5440 is available now—from stock—both from the factory and from Burroughs Stocking Dealers across the country.

Before you freeze a new design, before you commit your company to a costly and irreversibly uneconomical position, call, wire or write for samples or prototype quantities.

Remember—the low cost of the new NIXIE tube Type B-5440 precludes consideration of other types of numerical readouts such as electro-luminescent and projection types where cost is a major factor. Get a real NIXIE tube with real NIXIE-tube performance and acceptability.

Use the reply card for full information on the new NIXIE tube and complete readout-application assistance.

*4.95 in quantities of 1000.

Only Burroughs manufactures NIXIE Tubes
The electronics industry is on the threshold of a new era of circuit design. The computer is invading the decision-making province that was once exclusively the engineer's. Computer-aided design is changing the role of the circuit designer and promises to increase engineering efficiency. This article is the first in a series that will appear through most of the rest of 1966. For the cover, a photographer at the Norden Division, United Aircraft Corp. caught a Calcomp plotter as it drew an integrated circuit design created by a computer.

Glass can now be made to have the same properties as semiconductors, photoconductors, magnets, transducers, optical switches, memory materials or insulators and dielectrics. Yet device designers have not used this versatile material to its fullest advantage. The author describes some of the unusual properties that make glass useful in active electronic components.

Pulse-code modulation in communications is an extremely attractive idea because telephone engineers can see a rising demand for digital data transmission coming from everywhere in the world as more government agencies and companies go to computerized operations. In addition, pcm means more channels on a line and can lead to improved voice quality. Integrated circuits now make the conversion from traditional analog circuits to pcm economically feasible.

Loran navigation receivers once had to be taken on long flight tests to make sure they worked properly. A new simulator, developed for the Federal Aviation Agency, permits full scale tests in the laboratory. The techniques may be extended to test other navigation systems and coordinate converters.

- Voltage-tunable filters
- Using glass in integrated circuits
- Switching pulse-code modulated signals
- Electronics in an orbiting laboratory
- Opinion: Rebuttal on obsolescence
Computer-aided design: part 1
The man-machine merger

The circuit designer and the computer are headed for a new relationship, say the experts, with the computer as the bright, young, junior partner and the designer as the undisputed boss

By Donald Christiansen
Senior associate editor

“When this circuit learns your job, what are you going to do?” asks a poster now appearing widely in subways and buses. Intended to alert the public to the need for job retraining to replace obsolete skills, the rhetorical question can strike momentary terror in the heart of the circuit designer, who suddenly wonders if he is designing himself out of a job.

Unmistakably, the electronics industry is on the threshold of a new era in circuit design. Directly ahead is the period in which circuits—specifically, computer circuits—designed by an engineer may invade the decision-making area that was once the engineer’s exclusive province. The circuits he designs may in turn design new circuits.

Faced with this probability, the old-time electronicker, operating solely by intuition and experimentation, has cause for fear, but only if he turns his back on the revolution in progress and ignores the fact that the computer is already working on circuit design. The machine is assisting the engineer by

- Performing repetitive calculations.
- Evaluating the effects of changes in circuit parameters caused by component tolerances, drift, etc.
- Studying the feasibility and cost of circuit optimization.
- Simulating component failure.
- Developing optimum physical device layouts and optimum circuit interconnection paths.

A computer can do a little or a lot; it can be a modest aid or a tremendous help. It can be used at few or many stages of the design process. To decide on the best use of so versatile a tool, computer application consultants at the International Business Machines Corp. suggest that the design process itself be examined first. After that, one can judge which stages of the process should be computerized. The designation of a program depends on this judgment. Unfortunately, confusion is rampant in definitions that relate to computer-aided design. Among terms used frequently and often indiscriminately are these: design synthesis, design automation and computer-aided design.

Design synthesis may be thought of as the creation of a set of specifications describing a circuit. Design automation, on the other hand, would include detailed specifications and machine instructions required to fabricate the circuit. And computer-aided design (CAD) indicates the use of a computer at one or more stages of the design process.

The design process

The designer usually goes through some sequence like this: statement of the problem (or goals), choice of attack, paper design, breadboarding or modeling, optimizing and checking effects of limit devices.

At the optimizing stage he diddles potentiometers and otherwise changes parameter values, then checks circuit performance. The process is cut and try. Since his equipment must operate with components that have some production spread, he then searches for limit devices (transistors with high and low-limit beta, for example) plugs them into the breadboard and notes the output. If it is not within spec he’ll go back, change some other component or parameter value, and check the result once again. At some point short of per-
Infection he'll freeze the design, knowing full well that he'd better, or the equipment may become obsolete even before the prototype is built.

Super slide rule

Assigning the repetitive cut-and-try tasks to a computer is the opening wedge to completely automated design engineering. IBM calls this use of a computer the “big slide rule” technique. While helpful, it is limited both in sophistication and payoff.

If a computer can simulate a circuit, it can easily perform a given calculation on demand. It is when the computer is called upon to employ its decision-making powers that it plays its most significant role. Then, it can be used to relieve the designer of many intermediate decisions ("Do we have enough gain in this stage, or should we go back and change a resistor?").

Such an approach represents the beginning use of the computer in design synthesis with the computer as a junior partner in the man-computer merger.

Design automation: an example

Since the goal of the design process is to build equipment, the ultimate use of the computer would be its control of the fabrication process for the equipment it has “designed.” When design engineering and manufacturing are linked by computer, the process is termed design automation. Carried to its extreme, the technique would mean that equipment could be manufactured directly from the customer's order with little manual engineering. At that point, the computer will be in the main stream of the design function; preparing the engineering paperwork—detailed configurations, machine tool instructions and manufacturing control data—by which the equipment is manufactured.

An example of how close design automation is to reality—at least in one area—is the work done by the Norden division of United Aircraft Corp., under an Air Force contract. Using the same basic circuit definition that was used in analyzing the circuit, Norden developed programs that—through a series of man-machine interactions—convert the circuit to a practical integrated circuit format, occupying a minimum of area, with an optimized interconnection pattern. The intermediate-frequency amplifier on page 118 was designed this way.

I. Among the techniques, dilemmas galore

The computer is a rigid machine, refusing categorically to accept information it cannot comprehend. Communicating with it poses a barrier to the circuit designer because, the experts say, designers know little about programing and programers know less about circuit design.

“What shall we tell the computer a circuit is?” is the basic question. Once a model of the circuit has been developed that the computer can assimilate, it is relatively simple to feed the machine a list of trial inputs, parameter values and constraints. In effect, the computer is told: "Here's what we want in, here's what we want out, and here's a trial design—let's see what happens."

Model behavior

The accuracy of the circuit model fed to the computer determines how valid the computer analysis is. A bad model yields a doubtful result.

Some circuit elements such as resistors are better behaved than others—and can quite readily be represented to the computer. But active devices are tough to model because they're not linear and react to temperature and frequency in a way that is not easily formulated.

Research on what constitutes good models has led Cyrus Harbort, a professor at the University of Texas, to zero in on the narrower, but extremely salient question: “What shall we tell the computer a transistor is?"

Harbort says a good device model should successfully predict actual device performance; contain only parameters which can be determined from practical measurements made on real-life devices; and finally, it must be capable of being understood by the computer.

A device model can be simple or complex. Com-
Complexity permits a more accurate representation of the device over a wide range of circuit conditions. But the use of an overly complex model for the task at hand is time-wasting. Conversely, a simple model is efficient when assigned an appropriate task, but useless when overtaxed.

Perhaps the most complex transistor model is the one for NET-1, one of the two widely used general-purpose computer programs. A transistor type is defined for NET-1 by 36 parameters, which can be prestored on a library tape, or developed for a new transistor.

In contrast, the other major electronic circuit analysis program, ECAP, uses a do-it-yourself device model. ECAP provides resistors, capacitors, inductors, dependent current sources, and a generalized ideal switch. The chief asset of the switching function is that the value of parameters can be altered when selected currents reach predetermined values.

Most designers say ECAP is superior when flexibility is sought, but they give the nod to NET-1 for accuracy. Harbourt notes that with NET-1 a complex model must be used even when dealing with problems as simple as a saturating logic circuit.

Users of NET-1 express dissatisfaction with the library of device models available to them. Time, effort, and a free interchange among users may resolve the difficulty.

Little work has been done on models for the more exotic solid state devices. Even field effect transistor models are hard to come by. Moreover, some phenomena encountered in devices are difficult to model—minority carrier storage time is an example. One of the few companies developing models for offbeat semiconductor devices is Design Automation, Lexington, Mass.

The designer is still a long way away from the day when he'll push buttons that feed circuit performance requirements into a computer and get a finished circuit—integrated or otherwise. Today he is more likely to make his inputs in the form of cards or tape bearing data that defines portions of the circuit, operating constraints, and input signal conditions. Outputs for the most part are printed out.

Toward the ideal: NET-1 and ECAP

The experts guess that there are anywhere from 200 to 2,000 programs for aiding circuit design. Admittedly, the bulk of them are limited in scope and documentation. Programs proliferate because it's often quicker to develop a new program than to locate, decipher and debug someone else's.

Like the ideal secretary, a computer program must be versatile, efficient, accurate, and above all, available. To gain wide acceptance, a program should handle steady state (a-c and d-c) analysis as well as transient analysis. Franklin Kuo, network analysis expert for Bell Telephone Laboratories, Murray Hill, N.J., thinks the perfect program would have a simple input language, handle a wide range of models of physical devices, and provide a nonlinear analysis capability. Kuo says that if automatic parameter modifications were added—it could replace breadboarding—a design engineer couldn't ask for anything more.

The two programs which come closest to meeting the ideal requirements are NET-1 and ECAP. NET-1 was developed on the Maniac II computer under the auspices of the Atomic Energy Commission at the Los Alamos Scientific Laboratory of the University of California, Los Alamos, N. M. Since its completion in 1962, the program has been translated into versions for the IBM 7040, 7044,
7090 and 7094 computers, and is used at over 60 commercial, government and university installations here and abroad.

One of the chief virtues of NET-1 is that it's easy to use. Specifically, the user need not know how to solve simultaneous nonlinear differential equations, nor manipulate matrix algebra, nor cope with numerical instability. He doesn't even have to know simple programming techniques and, when analyzing a circuit, needn't have the slightest idea how the circuit works.

If instructed properly, the computer will deliver an accurate circuit analysis—one which may provide some insight into hazy circuit operation. NET-1 can simulate fixed value resistors, capacitors, inductors and mutual inductive couplings. Additionally, it can handle both junction transistors and diodes, fixed-value voltage sources and several classes of time-dependent voltage sources—including trapezoidal, sinusoidal, exponential and tabular waveshapes.

The transistor model for NET-1 requires specification of 36 parameters; the diode model, 13.

ECAP, the other major general-purpose program, stemmed from the joint efforts of IBM and the Norden division of United Aircraft. ECAP is written in Fortran for the 1620, 7090 and 7094.

Using ECAP, the designer develops an equivalent circuit based on the circuit he plans to study. In it, he is free to use any representation of a transistor or diode that he chooses, providing it is modeled with conventional circuit elements.

In ECAP, the matrix approach is fundamental and information on basic network branches are key entries to the computer. Each branch comprises three network elements, pictured on the next page—a passive element (resistor, capacitor or inductor), a voltage source and a current source. Branch terminations are called nodes.

Cards, representing the branches of the equivalent circuit, are punched. Each branch card contains data that tells where the nodes are connected, identifies assumed direction of current flow, and provides the value of voltage, current and passive element. The input to each card is user-oriented; no translational language is needed.

ECAP can perform d-c, a-c and transient analysis and has options for sensitivity, standard deviation and worst-case analysis.

Arinc program

The Arinc Research Corp. at Santa Ana, Calif., has a general-purpose program that can be used
Basic branch for which an ECAP data card is prepared. E and I are voltage and current sources, respectively, e and i are branch voltage and current, Y is the conductance of the passive element, and e' and e" are node to datum voltages.

without knowledge of either Fortran or machine language. A circuit to be analyzed is described by a linear equivalent circuit for which \(n \) simultaneous equations in \(n \) unknowns are written. A source deck of punched cards contains the circuit equations in standard matrix notation as well as equations describing the desired output solutions.

Parameter data for the Arinc program goes on a separate deck of punched cards. Each card represents one circuit element, and contains such data as nominal value, tolerance limits, temperature drift limits, production distribution characteristics and, if appropriate, alternate values.

The engineer feeds the two card decks to the computer, then specifies the analysis options. These include one-at-a-time parameter variation and sensitivity tests, worst-case solutions with all components at drift limits, a Monte Carlo analysis to determine the probable spread of circuit performance in large-volume production, and solutions representing combinations of circuit values.

An example

It may be profitable to follow the steps of the Arinc program on a very simple common emitter amplifier [p. 119]. First, the designer converts the schematic to the equivalent circuit shown. Then he writes a matrix of five simultaneous equations representing the five circuit loops.

Each of the elements of the equivalent circuit gets an input variable number, \(V_1, V_2, V_3 \ldots \) etc. Each of the coefficients of the equations is punched on a separate card in terms of input variable numbers.

Then cards are punched—one per input variable—that contain the nominal value, tolerance limits, distribution shape, and so forth. For this example, data on the card is listed in the first five columns of the table below the circuit schematics. If an order goes into the computer for a sensitivity test, using the circuit and input variable data that the designer has supplied, the machine will print out the data listed in the last three columns of the table. It's evident that the culprits are \(R_3, R_4, \) and the transistor beta; that is, if the values of \(R_3, R_4, \) and \(h_{FE} \) are permitted to reach their tolerance limits, large shifts occur in amplifier gain.

It should be obvious that the Arinc program cannot be listed among the most sophisticated, since the user must still write the circuit equations. But in the future he'll merely have to supply the equivalent circuit, says Robert Mammano, specialist in circuit analysis for Arinc.

II. Practice: Some successes, some failures

Among firms already applying computers in circuit design are the Autonetics division of North American Aviation, Collins Radio, Hughes Aircraft, Friden Corp., RCA, and Bell Telephone Laboratories.

Having worked on computer-aided design since 1959, Autonetics has produced several home-grown programs. Mostly they are for digital circuitry, such as computer circuits for Minuteman airborne computers. For two years Autonetics has used a program which accepts point-to-point topology and prepares equations automatically [See "Circuit analysis by computer," p. 120]. The division has also applied computer-aided design to advanced radar systems using integrated circuits.

Simulating failures

Autonetics also has a failure mode and failure effects analysis program. In the program, destruction of one circuit element is simulated and over-stress of other components noted. At the same time, voltage readings at monitor points within the circuit are recorded. With this data as a guide, the engineer can rapidly judge which component has failed in an actual circuit, without removing individual components for testing. The advantage is obvious, but a specific example is the Minuteman D37 computer; once a component—even a good one—is removed it cannot be replaced.

In one of Autonetics' programs, a computer will select the best device among several. In effect, the computer is fed the characteristics of several transistors along with the circuit requirements. The program picks the best transistor and reads out the biasing voltages required.

The Collins Radio Co. uses ECAP for the design of linear circuits and some digital circuits. Its
Talking to computer calls for new techniques

CAD expert Jacob Katzenelson communicates with Project MAC’s time-shared computer in an on-line demonstration using the MIT Electronic Systems Laboratory console. Using light pen and typewriter he draws an emitter-coupled multivibrator and assigns component values by typing or sketching characteristics on the display console. Following computer analysis of the circuit, waveforms can be viewed on the console, evaluated, and the circuit returned to the screen for modification. The experiment is carried out by a CAD program called AEDNET, written in MIT’s AED-O language.

Operator’s eye view of console screen.
A giant step in design automation

Many-circuited wafer is coated with photoresist, exposed in unique pattern by ultraviolet beam (bright spot).

Blurred table is rapidly indexed to generate interconnection path under fixed beam.

Lead wires are affixed to finished array by thermocompression bonding.

At IBM, an experimental program tests each integrated circuit on a completed wafer of many circuits, records the results on punch cards. Cards are fed to a computer along with the interconnection instructions to produce, for example, a small arithmetic and control unit containing about 500 circuits. The IC wafer is then coated with photoresist and mounted on indexing table beneath stationary ultraviolet beam. Under computer control, the table is rapidly indexed in horizontal plane while uv beam exposes a unique pattern that connects only good circuits. Metal interconnection grid is then etched by conventional techniques and lead wires attached.
Spider-like multiprobe tester checks one of IBM’s completed integrated circuit arrays whose interconnections (close-up at left) were computer-generated.
Computers deliver the goods

At this console in the IBM World Trade Center in New York, an engineer from the Norden division of United Aircraft instructs an IBM 360 computer in a point-to-point wiring exercise, part of a project Norden has under way to develop on-line methods of man-machine interactions for computer-aided integrated circuit design. The experiment is conducted under an Air Force contract.

Integrated circuit intermediate-frequency amplifier designed using the Norden-developed CAD program. Components are located and interconnection paths developed with an assist from the computer.

Final design of i-f amplifier at the right is drawn automatically by the plotter.
To carry out a sensitivity study of the common emitter amplifier shown here, using the Arinc program, an equivalent circuit, top right, is first developed. Then a description of each element of the equivalent circuit (first five columns in table) is fed to a computer, along with the loop equations and a request for a sensitivity analysis. The computer then provides the results tabulated in the final three columns.

designers find the program particularly useful for design of small-signal amplifiers, d-c amplifiers, balanced modulators, phase detectors, active filters, and power supplies. A major use of ECAP by Collins is in checking circuits for tolerance to parameter shifts.

Worst-case studies

The Hughes Aircraft Co., Culver City, Calif., uses ECAP for worst case, transient and frequency analysis. At Hughes' Research and Development division ECAP aids in the design of linear circuits in airborne radar and communications packages such as those for Early Bird and Syncom satellites. ECAP has been very useful in detecting errors and in establishing tolerances, Hughes says.

ECAP helps the Friden Corp.'s military products section, San Leandro, Calif., in digital circuit design, primarily for circuit analysis and reliability studies, and in optimizing topological layout. Its big advantages, Friden engineers say, are in saving time, providing insight, and pointing out redundancy. So far, Friden has not used ECAP in design synthesis.

NET-1 is at work for the Radio Corp. of America's Aerospace Systems division, Burlington, Mass., along with home-built programs, selecting existing circuits to perform a specified function, determining circuit response, optimizing circuit performance, and studying circuit reliability.

The special programs used by this RCA division include a small-signal a-c program based on nodal analysis, a nonlinear large-signal program using mesh techniques, and a piecewise linear program. Fairchild Semiconductor's active filter facility, Mountain View, Calif., uses computers for filter design. Two Fairchild-developed programs—one for synthesis, the other for analysis—are used. With the first, the customer's specifications go directly into the computer. The computer then spells out the structure and element values needed to realize the specifications (the output is a list of capacitors and resistors). The second program accepts a circuit description and reads out the filter characteristics to be expected.

For two years the Centralab division of Globe Union, Inc., Milwaukee, has used ECAP in designing hybrid circuits. The circuits contain film-type passive components deposited on a ceramic substrate, with active chips added. J.E. Brewer, Centralab's manager of advanced design, notes that an advantage of the hybrid technique is that all the resistive components are accessible and can be precisely trimmed. Among other things, ECAP can spell out the required tolerances, resistor by resistor.

At Norden, some of the most advanced work in CAD is under way. "We pick and choose among
Circuit analysis by computer

By Joseph Mittleman
Senior associate editor

High-speed computers can transform tedious and difficult network-analysis computations to simple routine. The common denominator that ties the computer to network analysis is matrix algebra. It provides a desired generality as well as a convenient mode of expression that can later be translated into machine language. In essence, the computer is indifferent to whether the problem is electrical or mechanical in nature; it reaches a solution only by computation.

Network theory provides a unified method of both formulating and solving a very large and important class of problems. Thus, it is possible to write a network analysis program capable of transforming a large scale digital computer into a kind of super-analog machine of great versatility.

Digital computers are widely used in circuit analysis, time-and-frequency-domain analysis, circuit (filter) design and optimization or iterative design (calculating a desired result by repetitive operations that come closer and closer to the desired result). Programs for these tasks are built algorithmically, that is, step by step.

Circuit analysis. Linear circuit-analysis programs, where the aim is to obtain responses to prescribed signal excitations, are based on a variety of methods. Among them are: mesh and nodal analysis (analyzing a network using Kirchhoff's voltage and current laws); topological formulas (analyzing a network graphically from its physical structure), and state variables (analyzing a network using matrix algebra to manipulate a set of simultaneous differential equations). Most of these handle active elements such as transistors, diodes and vacuum tubes by using equivalent circuit models.

State-variable programs based upon Bashkow's A-matrix formulations perform calculations directly in the time domain by means of numerical integration and matrix inversion. The outputs of these programs provide network responses to impulse and step inputs in tabular form.

Most circuit analysis programs perform their calculations in the frequency domain. The program user need specify only the topology of the network, the element values and the transfer functions desired. The computer does the rest. It calculates the specified transfer functions in polynomial form, calculates the poles and zeros of these functions and can also provide transient and steady-state response. With versatile input-output equipment, the output can also provide a schematic of the original network, as well as plots of time- and frequency-response characteristics.

Domain analysis. The time-and frequency-domain analysis programs can be used with circuit-analysis programs or independently. Time-domain programs analyze the network's transient response as a function of time and solve the convolution integral (an intricate interweaving of two mathematical functions) numerically. This eliminates the necessity of finding roots of high-order polynomials and has the additional advantage that the excitation signal need not be specified analytically, but only in numerical form.

Frequency-domain programs analyze the network's steady-state response, given the transfer function in factored or unfactored form. The program user must specify the numerator and denominator polynomials of the transfer functions and the type of steady-state response desired (amplitude, amplitude in decibels, phase, delay, etc.). In addition, he must indicate the frequency and time date points at which the calculations are to be performed—if evenly spaced data is desired, only the minimum point, the number of points required and the increment between them need be specified. If data is only desired at certain points, this must be specified at the input.

Filter design. An example of the profitable use of computers can be seen in programs for filter design. Digital computers are the logical choice when designing insertion loss filters to meet certain amplitude requirements because even the simplest designs require tremendous amounts of numerical calculations. Although considerable time is needed to construct a gen-

Shortcomings

Most criticism of existing programs for computer-aided design focuses on their limited flexibility or limited capacity. Frequently voiced complaints concern the programs' limited ability to handle nonlinear circuits and restrictions on the size of the circuit that can be studied. NET-1, for example, can handle 300 each of resistors, capacitors and inductors, 63 fixed-voltage sources, 63 time-dependent sources and 200 nodes (based on 32,000-word memory). ECAP can handle 50 nodes, 200 branches, 200 dependent sources, and 200 switches in its 7094 version, but only 20 nodes and 50 branches for the 1620.

Dennis Walz, head of circuit and component design for Collins Radio's facilities at Newport Beach and Santa Ana, complains that accounting for nonlinearities, in diodes for example, is accomplished by ECAP only in "raw approximations."

The driving-point functions now available for linear circuits don't cover all the points Collins would like to have, Walz says. ECAP, he adds, can't handle discontinuous sine waves adequately. Collins is trying to modify the time-step routine so that the program will handle a larger network, shorter time intervals, and more of them—up to
eral filter synthesis program it is worth while in cases where large numbers of filters must be designed to meet different specifications.

One program for filter design has been written by Szentirmai. The program is complete in that it handles the approximation and synthesis problem. It can handle low-high- and band-pass filters with prescribed zeros of transmission. There are provisions for either equal-ripple or maximally flat-type pass-band behavior, for arbitrary ratios of load-to-source impedances and for predistortion and incidental dissipation. The second program synthesizes low- and band-pass filters with maximally flat or equal-ripple-type delay in their pass band and monotonic or equal-ripple-type loss in the stop bands.

The engineer is free to specify both the zeros of the loss peaks and the network configuration desired. If his specifications include neither, the computer is free to pick both configuration and zeros of transmission. The computer chooses a network in which the inductance values are kept at a minimum. The network can be synthesized from both ends.

Finally, the computer prints out the network configuration, its dual, the normalized element values and the denormalized ones. Information such as amplitude and phase response, as well as plots of these responses obtained from a microfilm printer, are also provided by the computer.

Filter designs obtained using the computer are completed in minutes rather than days and at a typical cost of $20 rather than $2,000 (not including initial programing costs).

Network topology. It is sometimes necessary to compute a network function in symbolic rather than numerical form. Although symbolic determinants can be evaluated, the process is slow and complicated. Topological formulas provide a solution.

The generation of trees (a way of representing a network by a set of open branch elements that include all nodes of a given circuit) with the proper sign is the main problem of topological analysis of networks. For this purpose, several procedures have been designed for the computer. However, the use of topological formulas for network analysis does not appear as efficient as other methods. This is primarily due to the fact that the number of trees of a network with say 11 nodes and 21 branches can be about 13,000.

Optimization. Network design is not always accomplished by simple substitution in formulas. Trial-and-error processes are often used. The network designer starts with a set of specifications, selects a network configuration and makes an initial guess about the element values. He then measures or calculates the desired responses and compresses them with specifications. If the measured responses differ widely from the specified responses, the designer changes the values of the elements and compares again. The process is repeated until the measured responses agree with the specified responses within a preset tolerance.

A cut-and-try process can be made to converge quite rapidly using the method of steepest descent. A steepest-descent Fortran program used for designing delay networks has been described by Semmelman.

To use the program, the network designer first selects the initial values for the parameters x_i. He must also provide the specified delays R_j and the frequency data points f_i. The program successively changes the parameters x_i so that the squared error is minimized. The program provides for 128 match points and 64 parameter values. It is capable of meeting requirements simultaneously in the time and frequency domains. The designer is not restricted to equal-ripple approximations or infinite Q requirements. He is free to impose requirements such as nonuniform dissipation and ranges of available element values on the design.

References

Bibliography

Debugging a program can also take time, Scheffler says. "No matter how you try to write a program that will take into account every possible occurrence, you never do it the first time," he says. In one case, Autonetics wanted to simulate a shorted resistor, and tried to represent it by setting its value equal to zero; the computer could not handle it.

Expensive data

When using complex device models, such as those for NET-1, the data needed is seldom found in its entirety on the device maker's data sheets, notes Texas U's Harbort. As a result, either the circuit designer must develop the needed parameter data through expensive tests, or the
vendor must be asked to supply it. Asked which transistor model would be best for circuit problems, Harbort said there is no “best” transistor model; the choice depends on the nature of the problem.

He explained: “Two ideal diodes and a dependent current source may be fine for determining the states of transistors in a saturating logic circuit. Eight small-signal parameters might be ideal for a video amplifier frequency-response calculation. Yet neither of these would suffice in precisely determining the offset voltage in a high performance analog gate circuit.”

Tracking the results

Brewer’s experience with ECAP at Centralab is that an enormous amount of data begins to accumulate as a design proceeds.

In the iterative loops, which represent design modifications, portions of the data become obsolete. The designer, Brewer notes, must carefully and completely identify all intermediate data as well as the latest version of the design. “In all but the simplest analysis it has been found necessary to use an elaborate identification code to keep track of computed results, he says. “While ECAP generates detailed information it does not help the designer with his data coordination problem.”

Since Centralab uses ECAP to analyze hybrid circuits that contain chip transistors and diodes, a big problem is device modeling. Brewer says the problems of generating model data and developing product control procedures that relate well to the models are most difficult. The money spent by Centralab to come up with complete modeling capabilities, he said, was 50 times greater than that spent to install ECAP in the first place.

An obscure error—confusing the letter O with a zero, in keypunching, for example—can throw a monkey wrench into a computer program. It can take days to find such a mistake, Brewer says. To avoid the most-feared error—the one that provides an erroneous result but gives no signal that it’s wrong—Centralab checks against a breadboard at an early stage of design.

Sometimes, says Brewer, what the program can do and what the designer wants just don’t jibe. It is difficult, for example, to predict the extremes of power dissipation in a transistor because maximum power does not coincide with either maximum voltage or maximum current.

Facts of life

Robert Mammano, assistant program manager at Arinc’s Western division, urges the designer to keep uppermost in his mind the basic problem of relating his computer analysis to the facts of life. “Do you really know the distribution of values for the components being shipped by your particular supplier?” Mammano asks.

Component manufacturers may be reluctant to reveal distributions because they relate to yield and to special selection processes which mutilate the basic distribution.

Mammano’s solution is a Monte Carlo approach, which, he points out, can only be done with the aid of a computer because of the large number of solutions required. With Monte Carlo, Mammano says, the computer “builds and tests” multiple circuits, selecting individual component parameters from a “bin” of values preprogrammed as input data. Errors caused by inadequate knowledge of component tolerances are less significant when Monte Carlo is used. It is particularly appropriate for monolithic IC designs, Mammano says, since the circuit must “take what the manufacturing process gives—and that is often a normal distribution.”

Monte Carlo, it must be noted, has its opponents. Arnold Spitalny, chief of the computer branch, advanced engineering section, Norden, says “I’m agin’ it.” There are ways to get the same information, Spitalny says, with much less use of valuable computer time.

III. Master and slave

Transcending the technical aspects of computer-aided circuit design are philosophical and psychological questions. “Will the computer replace me?” the circuit designer wonders. “Can the design process be so systematized that a computer can handle it from beginning to end? And if so, does this imply that the design engineering function is not truly creative?”

Most experts in CAD have weighed these questions carefully and have strong opinions on them.

The computer-circuit designer relationship may well turn out to be a master-slave relationship, says Kuo, but “the engineer will still be the master; he is the designer of the program that commands the computer.” The engineer must still recognize the need for the circuit, determine its specifications, find out if there already are programs to design his circuit and, if so, prepare the input data in language that the computer can handle.

Defensive move

Many engineers become defensive on first encountering CAD. They regard the computer as the enemy, assigning to it many human traits and crediting it with powers it does not possess. An engineer will blame the computer when the answers come up wrong—or when the program won’t run.
"The computer is not so smart," he'll boast, forgetting that the burden of "educating" the computer falls on the program designer in the first place. Moreover, when existing programs fall short, revamping them or constructing better ones is the engineer's job.

A good example of how this is done is a monster program being developed by Autometrics. Richard Miles, who supervises design and analysis methods in the computing technology department, says the program may be working by the time the IBM 360 system is operational—hopefully, toward the end of the year. The program, to be used during preliminary circuit design, will have an optimization technique tied in with analysis. Written in Fortran IV, it will feature an overlay technique. With the overlay, the complete program need not be in the computer at any one time. The program, Miles says, has outgrown the 7094's memory.

Parameter range sweeps on two parameters at a time will be possible through progressive selection of incremental values of one parameter while sweeping the entire range of the other parameter.

A pair of optimization routines, one a direct search type and the other a gradient method will be tied into the d-c program. Miles says, "The idea of having an optimization routine tied into the analysis package is that you can describe the specs of a circuit and tell the computer you want the output voltage to be within a certain range, and temperature sensitivity to be a certain value. "Using these specs you write an error function. In the case of an amplifier, you'd want a certain gain, plus or minus a certain percentage. You can write an error function which states this is equal to the desired gain minus the calculated gain. You want to minimize this function so that the amplifier will have the gain you require."

Writing the error functions is one of the toughest parts of the job, Miles says.

Garrulous computers

Often, the engineer would like to query the computer by feeding it a scribbled schematic. He'd like the answer in a specific form (a plotted curve, for example), unencumbered by extraneous results.

But, except for a few large general-purpose programs, such simplicity is still more dream than reality, though work is under way to accelerate it.

At the output end, the computer still tends to talk too much. It is an efficient paperwork generator, and the more prolific it is, the more the wanted results become obscured among the chaff.

There's a project at the Massachusetts Institute of Technology to permit on-line design modifications, using the time-shared Project MAC computer [Electronics, Feb. 7, 1966, p.39]. With a light pen and a typewriter, a circuit diagram can be fed into a computer. An operator at a console views an oscilloscope upon which he locates or moves circuit elements with a light pen, and assigns parameter values by using the typewriter. Outputs can also be displayed on the oscilloscope. Thus, plots of branch parameters against time or against one another can be observed.

The experts are sharply divided about who ought to be at the console. Some say the designer should; he can learn a lot and speed the design process. But, referring to Centralab's present use of ECAP, Brewer says "The concept of an engineer sitting at a 1620 console does not seem worthwhile. The only assured result is wasted engineering time and additional machine expense."

Centralab permits only selected technicians and computing-center personnel to prepare and run programs. This policy, Brewer says, fits the engineer's working pattern—requesting an ECAP run is like having a breadboard constructed.

Central clearinghouse

Finding out what has already been done is one of the most difficult jobs facing the potential user of CAD. Frequently the task is impossible; the designer throws up his hands and embarks on his project from scratch. Even if he does find a program that promises to do what he wants, it may be so poorly documented that he'll abandon it.

There are other deterrents. Among them are the proprietary nature of some special-purpose programs, and the cost of others.

The problem, a monumental one, is being scrutinized by observers who are convinced that the same programs will be developed over and over, often at the taxpayer's expense, if something is not done to publicize the availability of programs.

The National Aeronautics and Space Administration's Technology Utilization Branch has issued a grant to the Computer Center at the University of Georgia, Athens, to administer a program called Cosmic that will establish a library of verified programs. The inputs to the library are from NASA program libraries at the Marshall Space Flight Center, Huntsville; the Manned Space Center, Houston; and the Electronics Research Center, Cambridge. NASA intends to make programs available to industry for a nominal fee.

Users of IBM equipment can participate in Share, a closed interchange of information about program applications or obtain, from the Journal of the Association for Computing Machinery, monthly listings of new programs.

Other groups have gone their separate ways, each with the intention of developing a comprehensive library of CAD programs. The best way to resolve the problem is still uncertain.

One thing, however, is certain—CAD is here to stay and it will grow, perhaps faster than the experts think.

This overview of computer-aided design of circuits is the first in a series of articles. Among the contributors, in future issues, will be such CAD experts as Franklin Branim, Harlow Freitag, Martin Goldberg, William Happ, Cyrus Harbourt, Waldo Magnuson, Allan Malmberg, and Arnold Spitalny.
Circuit design

Designer's casebook

Sawtooth generator drives cathode-ray tube

By C.C. Hoo

Paratronix Instrumentos Electronicos, Sao Paulo, Brazil

A *transistorized sawtooth generator* with an oscillating frequency range of 6 hertz to 450 khz (divided into five ranges), good linearity and constant amplitude is shown below. The unit is used to drive a cathode-ray tube when a portable oscilloscope of light weight and low power consumption is desired. Transistors Q1 and Q2 form the sawtooth oscillator; Q3 is in a bootstrap circuit used to increase linearity.

Portable-scope driver is composed of transistors Q1, Q2, and Q3. The first two form a sawtooth oscillator, the latter is in a bootstrap circuit. The design provides constant amplitude over the frequency range of 6 hertz to 450 kilohertz.

A trigger voltage of 0.5 to 5 volts root mean square is applied to the base of transistor Q3 and synchronizes the oscillation to the input waveform. When the circuit is connected to its power source, the current through resistors R1 and R4 causes Q2 to conduct. Capacitor C1 and C2 are charged by the current through R7. Resistor R7 should be small so that the charging time is short compared to the sweep duration. The voltage division between R7 and capacitors C1 and C2 drives the base of Q1 positive. When the base of Q1 goes positive, the transistor cuts off completely.

Capacitors C3 through C7 select the frequency provided to adjust linearity. Too small a value causes poor linearity; too large a value stops the oscillation. Resistor R4 also influences amplitude and frequency range. The best point is achieved when good linearity is obtained on both the highest and lowest frequencies. This point is not critical. Resistor R5 is used to eliminate parasitic oscillation at the highest frequency range. Resistors R4 and R6 stabilize the transistors.

The following results were obtained: Nonlinearity: less than 1% from 20 hertz to 200 kilohertz, less than 15% from 6 hertz to 450 kilohertz; output voltage: 3 volts peak to peak; triggering voltage: 0.5 to 5 volts root mean square.
volts sinusoidal; triggering range: ±10% at 2 volts or above; free running frequency: 6 to 48 hz for C3 = 8 µf, 47 to 630 hz for C4 = 0.68 µf, 470 hz to 5.9 khz for C5 = 0.068 µf, 4.7 to 59 khz for C6 = 6800 pf and 50 to 450 khz for C7 = 560 pf.

The transistors used were the germanium-alloy diffused type (AF117) with hFE = 150 and f1 = 75 Mhz.

Interlock protects display tube

By Karl E. Springer
Hughes Aircraft Co., Culver City, Calif.

Cathode-ray tubes, like most tubes should not have high voltage applied to the anodes without filament excitation. The interlock circuit in the diagram minimizes the possibility. This circuit provides protection against filament power-supply failure or overvoltage, overvoltage and open and shorted filament feed lines.

Under normal conditions the voltage drop across R1 is greater than the breakdown voltage of D1 but less than that of D2. The supply voltage, Vs, is also less than the breakdown voltage of D3. Current only flows into inverter 1 through D1, drawing Q1's collector voltage down and energizing K1, thus closing the high voltage interlock contacts.

Four possible system faults activate the circuit as follows:

- If the filament supply voltage, Vs, falls below its normal value, the voltage drop across R1 is not sufficient to break down D1. With no input current to converter 1, relay K1 is de-energized, and the interlock contacts open.

- If Vs becomes greater than normal, D1 remains in the avalanche (breakdown) state. D2 also breaks down, causing current to flow into inverter 2. The current that was flowing into the base of Q1 is shunted through Q2 to ground. Relay K1 becomes de-energized, causing the interlock contacts to open.

- If the filament feed lines are opened, there is no voltage drop across R1. Circuit action is then similar to that in the first fault described.

- If the filament feed lines are shorted, the voltage drop across R1 is greater than the breakdown of D2. Current flows into the input of inverter 2. Circuit action is then similar to that in the second fault. The interlocking circuit can accommodate a wide range of filament voltages and currents if the following relationships governing the critical parameter selections are used:

\[
R_1 = \frac{V_s - V_f}{I_{T_1}}
\]

\[
V_{D1} \leq V_s - V_f - 1
\]

\[
V_{D2} \leq V_s - V_f + 1
\]

\[
V_{D2} < V_s
\]

\[
V_{D3} \geq V_s + 1
\]

Where Vs is the supply voltage, Vf is the filament voltage, and V_{D1}, V_{D2}, and V_{D3} are zener diode voltages.

Selection of zener voltages to fulfill the conditions of equality of equations 1 through 5, yields
the narrowest margin of under-over voltage control, but requires greater precision in other circuit components.

There are other inherent advantages in addition to the circuit's protective features. Line losses may be compensated for by reducing the resistance R_1 from its original calculated value. Further reduction of R_1 brightens the CRT display.

Multirange d-c voltmeter

By Richard Traina

Airborne Accessories Corp., Hillside, N.J.

Full-scale meter deflection of 1.0 volt is obtained independently of the input voltage with the circuit shown below. The 1-volt range may be positioned anywhere between 0 and 7 V d-c. For example, the meter may be set to read 1 to 2, 4 to 5, 3.5 to 4.5, and so on.

A varying electric field applied across a field effect transistor produces the very high input impedance, essential for optimum operation in a voltmeter. The higher a meter's input impedance the less the meter affects a measured circuit. With this circuit a voltmeter with an input impedance (sensitivity) of 1.0 megohm per volt is obtained for all scales.

With the rotary switch in position 1 the 100-microampere meter is connected in parallel with a shunt resistor, R_n. At the same time resistor R, which is approximately equal to the meter's internal resistance, is connected in the metering circuit. This combination of resistors increases the meter range to 500 microamperes and measures the drain current.

With the input set at the low limit of the voltage to be measured, the drain current of the FET is set at 350 microamperes (approximately the point of zero temperature coefficient of the FET used) with the suppression-adjust potentiometer. This action sets the bias of the FET. The increased bias voltage returns the bridge essentially to a zero input condition regardless of the applied input voltage.

The rotary switch is moved to position 2. The meter now replaces resistor R and R_2 is short circuited. The zero-adjust potentiometer zeros the meter.

The input voltage is now raised 1 V d-c above the low limit and the calibration-adjust potentiometer gives full-scale deflection on the meter. The meter reads 1 volt full scale with an accuracy of ±2% and good stability.

An FET circuit coupled with a 100-microampere meter movement makes a d-c voltmeter with a 1-volt full-scale range. Range can be set between 0 and 7 volts. Accuracy of the voltmeter is ±2%.
Fail-safe frequency divider

By A. L. Plevy and E. N. Monacchio
Consulting Engineers

Frequency division by as much as 60 to 1 is possible when the emitters of the astable multivibrator, formed by transistors Q₁ and Q₂, are tied to the collector of Q₃ instead of being returned to ground as in a conventional circuit. The frequency-divider formed stops oscillating if the clock fails and is locked when the clock is running.

Normally, the multivibrator operates at the desired output frequency with a repetition rate, \(t_r \), expressed as:

\[t_r = \frac{1}{2(0.7)R_1C_1} \approx \frac{1}{2(0.7)R_2C_3} \]

A half-wave rectifier made up of components D₁, Rₖ, and C₃ is connected to the base of Q₃. Capacitor C₃ is charged by the clock and provides a negative voltage that keeps Q₃ biased on. Resistor Rₖ limits the base current supplied to Q₃. Components Rₖ and C₃ are selected to offer ripple to the base of Q₃ at the clock frequency. This ripple is amplified and fed to the multivibrator through Q₃ and serves to lock the multivibrator to the clock.

If the clock fails, C₃ discharges and Q₃ is turned off, providing a high impedance path to ground. As a result, the multivibrator stops oscillating. The circuit runs at 10 kilohertz when Q₃ is on, and is easily synchronized to a 92-volt sinusoidal or square-wave clock over a frequency range of 10 to 600 kHz. Photographs below show locked Lissajous patterns that indicate a 10-to-1 and 60-to-1 frequency division. To obtain these patterns the output of the multi, which is a good square wave, was purposely distorted by uncompensating the scope probe. The waveshape used for the patterns appears at the right.

Locked Lissajous patterns indicate a 10-to-1 and a 60-to-1 frequency division (left and center). To obtain these Lissajous patterns the square-wave output of the multivibrator was distorted purposely by uncompensating the probe of the oscilloscope. The waveshape for the Lissajous patterns is shown at right; it was measured at 100 kilohertz with a vertical scale of 2 volts per centimeter and a horizontal of 0.1 microsecond per centimeter.
SELECTIVE MICROVOLTMETER

Unique Features
- Extremely wide frequency range: 10 kc to 30 mc.
- Fine frequency adjustment: ± 2.5 kc.
- Bandwidth, selectable: 500 cps and 5 kc.
- Full-scale deflections, 1 µv to 1 v.
- Six input impedances from 50 Ω to 500 kΩ.

Here is a highly sensitive superheterodyne receiver whose output voltage is indicated by a diode voltmeter. A switch permits selection of any of the conventional input impedances. Single frequency changing is used for input frequencies from 10 to 1000 kc, double frequency changing for 1 to 30 mc, the bandwidth being 5 kc in both cases. Additional frequency conversion takes place in 500-cps narrow-band operation.

The local oscillator can be varied in frequency by ± 2.5 kc and thus permit shifting of the 500 cps pass band over the 5 kc bandwidth present up to this frequency conversion.

The meter is calibrated in volts and decibels, and features an additional expanded scale with a relative calibration from 0.7 to 1. A head-phone output provides aural monitoring. A built-in calibration oscillator permits checking and adjustment. The power supply is electronically regulated for greater stability with regard to gain and frequency accuracy. A high impedance probe/amplifier is available.

Typical Measurement Applications
- Frequency response on four-terminal networks, especially at low voltage levels.
- Frequency response on amplifiers or filters within their pass bands.
- R-f distortion of long-, medium- and short-wave transmitters.
- Modulation depth.
- Envelope distortion.
- Inter-channel cross-talk attenuation.
- Signal-generator attenuation.
- R-f leakage on shields and r-f chokes.

10kc to 30mc
IMMEDIATE DELIVERY FROM STOCK $3,080
Materials

Looking through glasses for new active components

Renaissance in glass technology is providing hundreds of new materials—including amorphous alloys—with potential applications as low-cost semiconductor components, transducers, memories and other devices

By John D. Mackenzie
Rensselaer Polytechnic Institute, Troy, N.Y.

Glass isn't an ordinary electronic material, even though most component designers only use it in ordinary ways. Many kinds of components, from switching and memory diodes to computer memories, might be cheaply produced with glass if recent discoveries by glass scientists were exploited by electronics engineers. Glasses can now be made as semiconductors, photoconductors, magnets, transducers, optical switches, memory materials and superior insulators and dielectrics.

Present applications are mainly based on just a few of the obvious physical characteristics of glass. Most engineers think of it as an easy to form, transparent, nearly impervious solid with high electrical resistivity. So they use glass for optical parts, tube envelopes, protective coatings, insulators and substrates. All are secondary roles, compared with the primary roles assigned to such materials as ferrites and crystalline semiconductors.

This general concept of glass as an auxiliary material is actually very narrow in contrast with the capabilities of hundreds of new glasses. Few people realize, for example, that glasses are not solids, but rigid liquids that can have an almost infinite variety of compositions. Their room temperature resistivity can range from only 100 ohm-centimeters to 10^{20} ohm-cm. They can conduct both ionically and electronically. Their structures can be controlled so that the glassy matrix is host to millions of ferrite crystals, opening up the possibilities of producing microminiature but numerically vast arrays of memory elements.

Device designers can't really be faulted for not having exploited these and other potentially significant features of glass. Materials scientists have still not thoroughly probed all the inherent electronic properties of glass and some of the glasses that enhance such properties are new and untried. But it is apparent that glass is enjoying a technological renaissance certain to make it an increasingly important electronic device material in the coming decade. Some of the recent discoveries have already been converted into practical hardware.

Uniqueness of glass

If device designers are to make maximum use of glass's inherent electronic properties they should recognize that it is unlike any other material. It can be put to work both as a liquid and a solid because it is a "frozen-in" liquid. Like most liquids it can—in the absence of physical disturbances and impurities—be cooled well below its freezing point without crystallizing. The viscosity of a watery liquid is 0.01 poise and that of glycerine is 10 poise. When the liquid becomes so cold that its viscosity has risen to 10^{14} poise it becomes rigid. Such a liquid is defined as glass. Many materials can be rendered into the glassy or vitreous state in addition to the common glasses.\(^1\)

Since glass is a rigid liquid it never melts but only softens when heated. This makes the fabrication of glass objects easy and permits materials to

The author

John D. Mackenzie, known internationally for his work on glass, was born in Hong Kong and educated in England. After a post-doctoral fellowship at Princeton University, he did research at the General Electric Co. and became professor of materials sciences at Rensselaer in 1963.
One ion blocks another to make a better glass substrate

KEY: O - OXYGEN ● - SILICON ○ - SODIUM ION ● - CALCIUM ION

Divalent ions such as calcium improve resistivity of glass by preventing ionic condition. Weak electrostatic bonds hold monovalent sodium ions in place (upper left). A direct-current field, indicated by colored electrodes, causes the ions to move between the glassy chains (upper right). The stronger bond of a calcium ion (lower left) allows it to block the ions behind it when there is a d-c field (lower right).

be dissolved in glass at high temperature. The added material can then be precipitated out in a controlled manner when the glass is cooler and rigid. This explains why a second phase—such as ferrite crystals of controllable size—can be uniformly distributed through the glass and why the compositions can be so varied.

The inexhaustible flexibility of composition means, of course, wide flexibility in properties. In contrast, most solids consist of crystals. Since crystals are stoichiometry compounds—having fixed proportions—the control over their properties is restricted. Yet the atomic defects that make crystals so useful in electronic applications can be duplicated in glass. Glass behaves much like crystal in its short-range order (over spacings of a few atomic distances). How advantageous this is, is demonstrated, for example, in the manufacture of high-power lasers. A neodymium-doped glass laser rod 4 feet long and 3 inches in diameter is readily made by conventional glass-making techniques. But there is no practical way of making a sufficiently uniform single-crystal ruby laser of like size.

Glass’s fabrication ease should help make practical other new electronic systems, too. For instance, it is difficult to produce fine, superconducting magnet wire with adequate insulation. Many years ago glass workers learned to draw hollow, hair-like fibers of glass by pulling on a softened glass tube. Insulating superconducting wire can now be made inexpensively by putting a slug of the superconducting metal into a tube and softening and pulling both at once.

High-resistivity glasses

Formulating the glass to suppress ionic conduction improves insulating substrates, such as those for thin-film circuits. Common oxide glasses may not be chemically inert to the components they carry because they contain mobile and reactive alkali metal ions, particularly sodium ions. In silicate glasses, for instance, ionic electrical transport is entirely due to sodium ions. Their motion deteriorates circuits placed on the glass.

Using pure silica glass, with a minimum of sodium ions, prevents deterioration. But such glass is difficult to fabricate, is expensive and its coefficient of thermal expansion is negligible—too low for good adherence of metal films. However, the motions of the sodium ions can be suppressed in inexpensive
silicate and borate glasses by adding calcium and barium ions. Ionic conduction becomes negligible despite appreciable quantities of alkalis. Some newer glasses containing calcium ions are even much better insulators than silica, as the graph at the right indicates. One such glass, simply fused wollastonite, is a silicate of the composition CaO·SiO₂.

Because ionic conduction occurs on an atomic scale, it has not been seen visually, but the mechanism is probably that diagramed at the left. Apparently the sodium ions must travel in preferential paths, which highly immobile ions such as calcium can block to pin down the sodium ions.

Normally, the sodium ions are held in place between the silica tetrahedra (silicon atoms bonded to four oxygen atoms) by electrostatic binding, as in the upper left drawing. The sodium ions are cations (positively charged) while the oxygen has a negative charge. However, when there is a d-c potential across the glass, as in the upper right drawing, the greater attraction of the negative electrode causes the sodium ion numbered 1 to vacate its original site. Ion 2 can then move through the opening in the polymer-like chains of tetrahedra and replace ion 1. Ion 3 can then replace ion 2 and so on until ion 5 has moved along the path.

Sodium ions move easily because their valence is low, only 1, and electrostatic binding is proportional to the va lence, or charge, squared. Calcium and barium ions are divalent so their electrostatic binding is four times as strong. The lower set of diagrams show how a calcium ion—the solid colored circle—stays put in a d-c field. Sodium ion 1 can still move to the negative electrode but sodium ions 3, 4 and 5 are blocked. This blocking can occur millions of times in a piece of glass, effectively suppressing ionic conduction and making the glass more inert and more resistive.

Semiconducting oxide glasses

Most polyvalent cations are not only immobile in glass—even at temperatures of 200° to 300° C—but because they have different valence states they make possible electronic conduction in glass. Hence, glasses can be semiconductors, often surprisingly good ones. Some of the possible applications for such glasses are tabulated at the right.

In a crystalline transition metal oxide like iron oxide, electronic conduction occurs by means of a highly complex charge-transfer mechanism. The mechanism involves carriers of low mobility, say less than 1 cm² per volt-second. Electron motion in a n-type conductor may be represented by:

\[\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} \rightarrow \text{Fe}^{4+} \]

Electronic conduction can also occur in glass when enough variable valence ions are present, since the glass's short-range order is considered similar to a crystal's. Silicate glass containing 10% iron oxide has high resistivity but is also electronically conducting, so it is a semiconductor.

In glasses the charge transfer is generally called "hopping" and is thought to be similar to impurity-band conduction in doped germanium. This hopping, together with polarization induced by the charge, is called a polaron, which is now thought to be the most likely conduction mechanism. In glasses containing vanadium oxides, which the author has studied extensively, the hopping process is represented by:

\[V^{2+} - O - V^{3+} \rightarrow V^{2+} - O - V^{4+} \]

Many hundreds of such semiconducting glasses have been made recently. Conduction is a bulk effect so the semiconductors are not polarized. Resistivity can vary with the concentration of variable valence ions and other factors.

Semiconductor glasses are superior to conventional silicate glasses for all direct-current applications. An immediate and important application is improving the long-term performance of image-orthicon tubes. The targets of these tubes are glass disks 2 to 5 microns thick and about 2 inches in diameter.

Possible uses of semiconducting glass

<table>
<thead>
<tr>
<th>Glass system</th>
<th>Use</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tubes</td>
<td></td>
</tr>
<tr>
<td>Aluminosilicates</td>
<td>infrared detection</td>
<td>English Electric Co.</td>
</tr>
<tr>
<td></td>
<td>devices</td>
<td></td>
</tr>
<tr>
<td>Vanadates</td>
<td>surface, junction</td>
<td>Bausch & Lomb, Inc.</td>
</tr>
<tr>
<td></td>
<td>detectors</td>
<td></td>
</tr>
<tr>
<td>Complex</td>
<td>electronic ceramics</td>
<td>Phillips</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gloeilampenfabrieken N.V.</td>
</tr>
<tr>
<td>Barium-iron-borate</td>
<td>magnetic ceramics</td>
<td>Osaka Government Industrial Research Institute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>transducers</td>
<td>J.D. Mackenzie</td>
</tr>
</tbody>
</table>
Superiority of semiconducting glass and glass-bonded mica over ionic conducting materials is indicated by effect of 200 volts of direct current. Increase in resistance with time indicates deterioration.

Crack-proof dielectrics

Semiconducting glasses can also improve glass-bonded mica, widely used in electronics because of highly desirable dielectric and mechanical properties provided by the mica it contains. Unlike ordinary glass, cracks apparently do not propagate through this composite material, so it can be made into complex shapes by machining or molding.

However, charge buildup during prolonged exposure to electrons leads to dielectric breakdown.

This is due to the ionic nature of the glassy phase. If semiconducting glass is substituted for common silicate glass, electron conduction overcomes this difficulty, as shown at the left. Furthermore, the composite's resistivity range, controlled mainly by the glass phase, is greatly extended.

The layered structure of the mica, as in the photomicrograph at the right, is probably what prevents crack propagation. Many other inorganic materials also have a layered structure. Among them are boron nitride, a good dielectric, and graphite, a good conductor. The author formed composite glasses with both these materials. They are machinable and possess interesting electrical properties. Varying the amount of graphite changes the resistivity and its temperature coefficient. The glass containing boron nitride has very low-loss factors, indicating it would be a superior capacitor material.

Glass transducers

Exploitation of glass semiconductors as active semiconductors is still in its infancy. But it appears that oxide-glass semiconductors could make good temperature and pressure transducers and that other glasses can be made into switching and active but nonvolatile memory components.

Many oxide-glass semiconductors have large Seebeck coefficients (a measure of thermoelectric conversion efficiency), as indicated by the typical values given in the graph and table at the right.

The graph indicates also that the Seebeck coefficient is relatively stable over wide ranges of temperature and that the glasses can be made as p-type semiconductors (upper curves) or as n-type (lower curves). Thus, these glasses might make good, low-cost temperature sensors.

Another distinction between semiconducting glasses and ionically conducting glasses is that the electronic conductivity of semiconductors increases with physical pressure. The resistivity change can be remarkably linear, as plotted by the author in the graph on page 134. The pressure was applied hydrostatically at room temperature: at 100°C, the resistance drops about an order of magnitude but is still very linear. Analysis indicated that the conductivity increase was due to compression of the glassy matrix, which increased the concentration of vanadium atoms per unit volume and increased conduction by the hopping process.

An obvious potential use of this glass is as a pressure transducer. Such a transducer could have advantages over conventional pressure sensors, since the pressure sensed by a calibrated device could be read directly as a resistance value or used to initiate a control signal without converting from a nonelectronic value.

Glass ceramics

Uncontrolled crystallization in glass is undesirable because it makes the physical properties uncontrollable. However, in recent years the controlled crystallization of glass has become a highly

<table>
<thead>
<tr>
<th>Semiconducting glass-bonded mica</th>
<th>Sample 1</th>
<th>Sample 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass (300-mesh muscovite mica)</td>
<td>7V₂O₅·3P₂O₅</td>
<td>8V₂O₅·2P₂O₅</td>
</tr>
<tr>
<td>Hot-pressed at</td>
<td>340°C, 2,700 psi, 5 minutes</td>
<td>450°C, 1,500 psi, 5 minutes</td>
</tr>
<tr>
<td>Electrical resistance at 25°C</td>
<td>2.4×10⁶ ohm-cm</td>
<td>3.4×10⁶ ohm-cm</td>
</tr>
<tr>
<td>Density</td>
<td>2,336 gm per cc</td>
<td>15,000 psi</td>
</tr>
<tr>
<td>Elastic modulus</td>
<td>6×10⁶ psi</td>
<td></td>
</tr>
</tbody>
</table>
successful technology with electronic implications far wider than the present use of the technique to produce supporting materials.

Glass can crystallize because it is a metastable solid—one whose structure may be radically changed by an impurity or physical disturbance. It tends to crystallize at temperatures that make the ions sufficiently mobile because the crystalline phase is invariably more stable thermodynamically.

The glass ceramics widely used in electronics for missile radomes, high-temperature circuit boards and other components are an example of controlled crystallization. The insulating types are detailed in a recent book. The crystals, whose formation is triggered by electromagnetic radiation and heat, are less than a micron in diameter and closely knit together, so mechanical properties are excellent. They can also have high electrical resistivity and low loss factors.

Glass ceramics with active electronic properties—such as the semiconductor glasses—can also be produced today. So it should be possible to further tailor and enhance their electronic properties.

The composition and hence the electronic properties of such glass can be remarkably uniform, as evidenced by the electron micrograph on page 135. The picture shows semiconducting glass in an early stage of crystal formation, enlarged 40,000 times. The droplets that will later become crystals are only about 100 angstroms in diameter and the distances between them vary by only a small fraction of a micron.

No such precision can be achieved in formation of single-crystal semiconductors. If three constituents—call them A, B and C—are combined to form a crystalline material, A and B will probably concentrate on the surface and C will have a concentration gradient. The electrical properties will also be nonuniform through the body of the material, and such factors as variations in temperature coefficient of expansion may cause strains and other defects.

Glassy semiconductors on the other hand—including the amorphous metals discussed on page 130—are almost like perfect single crystals in that there are no grain boundaries, with attendant faults and concentrations of impurities. This uniformity might someday be exploited to solve semiconductor production problems. For example, integrated-circuit manufacturers are beginning to make monolithic circuit arrays containing thousands of devices on a single-crystal substrate. When crystal semiconductors are used, the number of devices ruined by random flaws in the crystals pose serious problems. One such problem is the need to develop custom wiring patterns that avoid the faulty devices.

New magnetic materials

Well on the way to laboratory success is the production of glass ceramics containing ferrite crystals.
of controlled composition and distribution. This creates exciting possibilities in development of microelectronic magnetic devices.

For example, if oxides are melted to form glass with a molecular composition of 20% B₂O₃, 30% BaO and 50% Fe₂O₃, controlled heat treatment will crystallize barium ferrite out of the glass. Barium ferrite is a hard, ferromagnetic material, suitable for magnets. Virtually any ferrite can be produced in glass hosts in this way. Thin films of barium-titanate ferroelectric have already been made, an achievement that makes possible the manufacture of thin-film capacitors with high dielectric constant.

From a manufacturing viewpoint, the significance of glass ferrites is the ease of shaping and “assembling” ferrite elements, compared to the complex sequence of processes and assembly steps needed, for instance, to produce a ferrite-core memory. The glass can be pressed, molded, blown or drawn to produce rods, plates, films, fibers or complex forms. The crystals can be oriented in the glass by controlling the direction in which they grow. Phosphate glass, for one, contains long, glassy chains; ferrite crystals will grow along these chains and their easy direction of magnetization will be along the chains.

Selective crystallization techniques, such as selective heating or irradiation, can control the location of the crystals. As a simple proof, the author wrapped a resistance-heated wire around a glass cylinder. When the glass was cooled, the ferrite appeared as a helix around the cylinder. Perhaps sense and drive wires could be counterwound on such a helix by an ordinary coil-winding machine to produce a small memory. Or perhaps thin-film memories could be made with orthogonal wiring; if in a forming stage wiring crosspoints were heated by an overcurrent so the ferrite crystallized in the underlying glass film, many of the deposition processes now required to make planar or laminar memories could be avoided. These possibilities remain to be proved by electronic device designers.

Optoelectronic switches and memories

Controlled crystallization has also led to the invention of phototropic or photochromic glasses—materials that change color when irradiated by light of one wavelength and then revert to their original color under light of another wavelength.

Optoelectronic system designers have worked for some time with organic phototropic materials, but these suffer from “fatigue”—usually, after a few hundred color changes they lose their phototropy.

Scientists at the Corning Glass Works discovered that silicate glasses containing about ½% of silver-halide crystals retain their phototropy for more than 300,000 cycles. Corning is studying the feasibility of using such glasses in optical displays, temporary data storage and data-processing systems, as well as ophthalmic, automotive and architectural applications. It might also be used as a Q switch, a device that boosts the peak power of laser pulses.

The phototropy is a result of glass being a rigid liquid. Silver halide is dissolved in it at high temperature. After the glass is shaped it is heat-treated at a lower temperature until the halide crystals are about 50 to 100 angstroms in size. The glass is transparent to visible light, darkens under ultraviolet light and bleaches under light of a higher wavelength or when heated. Apparently, darkening results when the first wavelength releases halogens, but they cannot disperse in the glass and so they recombine under the bleaching stimulus.

The reactions take from less than two minutes to hours depending on composition and stimuli, and darkened glass eventually bleaches. Corning scientists concede slow reactions may bar high-speed electronic applications, but point out that optical resolution is 10 to 20 times that of photographic film. So they envision other data and display uses.

Another phototropic glass, discovered several years ago at the Pittsburgh Plate Glass Co., is based on glass having a short-range order like a crystal. It has long been known that crystals can be made phototropic by generating color centers in them. Centers can be formed in glass by melting it under highly reducing conditions. Doping with cerium or europium ions improves the phototropy. A company spokesman reported in August that it has not been pursuing electronic applications of...
Semiconducting glass magnified 40,000 times by electron microscope. "Droplets" are tiny crystals about 100 angstroms in diameter. The size and distribution of crystals such as ferrites can be closely controlled in glass.

the glass because of the low volume that would be used.

Nonoxide glasses

A group of glasses known as the chalcogenides now used for infrared transmissions started with arsenic trisulfide in the early 1950's. The constant hunt for better infrared transmitters that are more stable at high temperatures led to the discovery of many such nonoxide or elemental glassy systems. Again, many possess intriguing electronic properties.

These glasses are made by melting together various proportions of the following elements: sulphur, selenium, tellurium, arsenic, antimony, thallium, chlorine, bromine, iodine, phosphorus, silicon and germanium. The melt is quenched to produce the glass. Some typical glass systems and applications are: As-S-Se, an insulator that melts at low temperature; As-Te-I, electronic switches and memory devices; As-Se-Te, photoconductor; and As-Ge-Si-Te, an infrared transmitter that withstands high temperature. Some elemental glasses transmit infrared light with wavelengths as long as 20 microns.

Recently, the American Optical Co. began making arsenic trisulfide in long fibers by pulling the melt. This allows infrared light to be piped, as in visible-light fiber optics, and might pave the way for better methods of transmitting and steering laser signals.

Some chalcogenides soften at temperatures below 0°C, others are viscous at 100°C, making it feasible to dip-coat temperature-sensitive devices in glass rather than organic materials. The softening temperatures can be controlled over a wide range.

Several years ago, Bell Telephone Laboratories reported experimental success in dip-coating diodes with arsenic and sulfur glasses. They were good insulators and their chemical stability was superior to organic polymeric materials. But according to A.D. Pearson of the research team, that work was set aside primarily because the planar-passivation process for silicon devices proved better. Nonetheless, glass should be an attractive coating for other types of devices.

Elemental glass switches

Current-voltage characteristics of some elemental glasses indicate they can be used as switching and memory devices. Pearson and his co-workers at Bell Telephone Laboratories reported on such devices verbally in May, 1962, at an Electrochemical Society meeting. When point contacts are made to a glass such as As-Te-I, a variation in applied voltage switches the device from an insulating to a highly conducting state. The switching can occur in less than a microsecond and is reversible. The diode would remain in a given state, even under zero bias, and could remember which state it was in for many days. A generalized current-voltage plot is shown below.

Pearson says this work, too, is inactive at present. One reason is that crystal semiconductors have better long-term stability and thus are considered more suitable for telephone system applications. However, several companies in the U.S. and Europe are actively attempting to develop practical uses for elemental glasses. Little of this work is reported in the open literature since it is considered proprietary.

[The Energy Conversion Devices Co. disclosed this month that the semiconductor devices it has...]

Current-voltage characteristics of diodes made of elemental arsenic-tellurium-iodine glass. Besides pronounced switching behavior, diodes made of this semiconducting glass will remember their states for long periods at zero bias voltage.
begun offering commercially are principally elemental glasses and amorphous alloys. The active materials are homogenous, without p-n junctions. Devices being made or under development include a-c and d-c switches, temperature and pressure transducers, adaptive devices and nonvolatile memory elements.—Editor]

Photoconducting glasses

The Russians have extensively studied the electronic properties of nonoxide glasses. One of the better known properties is photoconductivity—the photoconductivity of glassy selenium, for example, makes it a basic material for xerography.

Glasses based on selenium, tellurium and arsenic are also photoconductors. In contrast to crystalline materials, the conductivity of the glasses is insensitive to impurity contents. This means electronic properties are easier to control during manufacture. Silicon and germanium are rendered into the amorphous—or glassy—state by vacuum evaporation and show higher conductivity and other interesting variations in semiconducting property. It is not known for certain whether such vapor-deposited noncrystalline films are glasses. Glasses are usually considered materials made by cooling molten materials.

Still another new form of glass of interest to electronics is electronically conducting glass based upon mixtures of oxides and nonoxides.

Quenched and pseudo glasses

Quenching and other exotic techniques of producing glasses from metals and other unusual materials are also being tried. In one quenching technique, called splat-cooling, droplets of molten metal are sprayed at high speed onto a revolving substrate cooled by liquid nitrogen. Alloys such as silicon and gold or silver can be made as glass by this method, and some metals that normally will not mix can be rendered into glassy or amorphous alloys.

The technique is based on the fact that undercooled liquids can be prevented from crystallizing if the cooling—called quenching—is rapid enough. Since quenching rate depends upon heat conduction, the smaller the amount of material, the easier it is to make it into glass. Tiny glass bodies may not interest window and bottle manufacturers, but small amounts of materials can be highly important in processes such as those used to produce semiconductor integrated circuits.

Although little information is available on metal glasses, related materials give strong indications that interesting electronic properties can be expected. These indications come from noncrystalline films formed by vapor deposition. The films are not necessarily similar to quenched glass films of the material, but often they are alike. Silicon dioxide films formed by diverse techniques—such as melting, vapor-phase hydrolysis, sputtering, thermal decomposition and shock-wave transformation and neutron bombardment of crystals—have similar refractive indexes and infrared absorption bands. One can conclude that each SiO₂ sample is glass.

If one also assumes that all vapor-formed, noncrystalline films are glass, many new electronic glasses or pseudo glasses have been discovered in recent years. Among these are: bismuth, a superconductor; MgO and MgF₂, infrared transmitters; and cobalt-gold alloys, ferromagnetics. The latter should settle the question whether a noncrystalline material can be ferromagnetic.

The cobalt-gold alloys were made by researchers at the International Business Machine Co. They vacuum-deposited the two metals onto a liquid-nitrogen cooled substrate. The material remains amorphous until heated. As it becomes crystalline, its coercive force jumps, typically from 20 to 40 oersteds. The alloy appears to have a magnetic structure like fine-grained Permalloy.

It seems, therefore, that microelectronic systems designers searching for new magnetic materials now have a possible alternative to conventional materials and oxide glasses containing ferrite.

References

Reduce friction and keep cool with Mystik Teflon® Tapes

Mystik's Teflon tapes combine the advantages of TFE Teflon film with a silicone pressure-sensitive adhesive. As a result, they offer high dielectric strength, low coefficient of friction, and high performance within a temperature range from \(-100^\circ F\) to \(+450^\circ F\).

These remarkable tapes are particularly useful in reducing friction on high speed equipment and as insulators of electrical apparatus, but they have many other applications in the electrical and electronic industry.

Of course, Mystik Teflon Tapes represent only a few of the high quality paper, film, and glass cloth tapes available for special applications. For assistance in selecting the best ones for your needs, contact your local Mystik distributor. He's listed in the Yellow Pages under "Tape" or write The Borden Chemical Co., Mystik Tape Div., 1700 Winnetka Avenue, Northfield, Illinois 60093.
WE TRY HARDER because we’re FIRST!
That’s how we got here. Now it’s a pleasant habit.

FIRST! In Design
CELCO Deflection Components make news. With remarkable consistancy our engineers meet the challenge of the Display Industry. New yokes, new focus coils, and have you seen our brand new fast 40V deflection driver? No one else makes it.

FIRST! In Production
CELCO Deflection Components are quality-rated in a demanding and successful “Zero-Defects” program. Each item is individually processed through our own production testing departments before shipment. Our confidence is your assurance of quality performance.

FIRST! In Service
CELCO Deflection Components are backed by all our know-how. You’re not left on your own. Our engineers — either in our own labs or your plant — will work with you on your problems. Our equipment, too, is at your service. All of it, including our shielded room with its Primary Standards, is available to perfect your display.

Constantine Engineering Laboratories Company

MAHWAH, N. J. 201-327-1123 TWX 201-327-1435

UPLAND, CAL. 714-982-0215 TWX 714-556-9550

DRIVERS FOCUS COILS YOKES
Integrated circuits and pulse coding mean new gains for telephony

Replacing analog circuits with digital integrated circuits in pcm telephone systems is resulting in lower costs, more channels on a line and improved voice quality

By A.E. Chatelon
Laboratoire Central de Telecommunications, Paris

Low-cost integrated circuits are now making it economically attractive to convert existing telephone networks to pulse-code modulation systems. A pcm system has always been technically desirable because it transmits speech as digital signals that are highly immune to noise and transmission line attenuation. But the cost of such a system was always too high. Now, integrated circuits have made it possible to attain not only the technical benefits plus higher reliability, but also lower manufacturing and operating costs.

Since pcm signals are merely a string of digital pulses, they can be regenerated at points along the transmission line so that the received pcm signal is exactly as transmitted. Also, pcm allows 24 or more voice signals to be time-division multiplexed onto an existing telephone line previously limited to one voice channel. This means that the quality and amount of traffic on existing telephone lines can be increased without having to replace the line itself—an extremely expensive proposition in metropolitan areas.

Basically a pcm system takes voice signals from a telephone, samples them many times a second and encodes each sample as a digital number. During this process, weak signals are given preferential amplification to make the signal level independent of the voice level of the speaker. This is called compression. The encoded digital number is the pcm signal that is transmitted along the line. To make the digital signal independent of line characteristics, the pulses are reshaped at regular intervals along the line. This signal is then reconverted to a voice—analogue—signal by reversing the process (expanding) before the signal reaches the other end of the line.

There have been telephone exchanges with pcm in the United States since 1962 [see “Pcm: advantages and basic principles” p. 142], but existing pcm systems employ electromechanical exchanges that require that the pcm signal be converted to analog before switching. New exchanges are being designed that can switch the pcm information directly. Combining a pcm exchange and pcm transmission results in a system called an integrated network.

Meantime, the Laboratoire Central de Télécommunications of Paris, a French laboratory of the International Telephone and Telegraph Corp., has found a way to reduce the number of analog components in the transmission portion of a pcm system. This means reduced costs and improved reliability—and the equipment also can be used in an integrated network. [A pcm exchange in an integrated network will be discussed in an article in the next issue of Electronics.]

Modernizing a telephone system

An electromechanical exchange as represented in the top diagram on page 141 might serve subscribers by connecting individual two-wire lines

The author
Andre Chatelon is head of LCT’s transmission department. Born in Versailles, he received his degree from the Ecole Polytechnique in 1951. From 1953, when he joined LCT, until 1958, he was in charge of designing and constructing digital computers. He is a member of Societe Francaise des Electroniciens and the IEEE.
Terminal for 24 pcm channels includes a power supply, channel filters, decoder circuits and encoder circuits.
The inexpensive channel filters are used to convert the pcm signal back to analog.

in a cable from the subscriber through many exchanges. If traffic increases, it is necessary either to use frequency-division multiplexing or to increase the number of lines. Both alternatives are expensive.

Instead, if speech signals are converted to pcm signals as in terminals A₁ to A₄ in the middle diagram, additional channels may be added to the pair of cables that once carried a single speech signal. Most pcm terminals such as in the photograph above multiplex 24 speech signals by time division onto a twisted-wire pair. The exchange unit includes both coding and decoding equipment.

Encoding equipment to convert analog speech signals to pcm is relatively complex, but because the signals are multiplexed, the encoder's cost is shared by 24 channels. Pem transmission reduces terminal costs because there is no need for the expensive filters required in a frequency-division multiplex system. Pcm thus increases traffic even with electromechanical exchanges, but these exchanges must be capable of handling the traffic. The drawback to this system is that the pcm signals must be converted to analog in a terminal like A₂ to get through the exchange; then the analog must be converted back to pcm in A₃ so that it can be transmitted further down the line. These modulations and demodulations increase system noise and require the additional equipment terminals A₂ and A₃.

The bottom diagram on page 141 shows that the number of modulations and demodulations and the number of pcm terminals may be reduced by using pcm exchange T. Terminals A₂ and A₃ in the middle diagram are no longer needed and the number of modulations-demodulations is reduced, improving the quality of communications. With a pcm exchange, modulations-demodulations occur only in terminal A₅ or in local line concentrator C₁ or remote line concentrator C₂. A concentrator is a small terminal that connects phones in a small area to a local exchange. The concentrator's traffic capacity to the exchange can be less than the number of subscriber's lines because phones normally are not all used at the same time.

Compression and encoding

As discussed earlier three basic operations are performed on the pcm transmission line—sampling (and time-division multiplexing), compression and encoding. However, most pcm systems require a great number of expensive analog circuits that increase costs and present difficult manufacturing problems.

The method for sampling, compression and encoding in the T-1 pcm system of the American Telephone & Telegraph Co., for example, is illustrated in the figure on page 144. A compressor is placed between the sampling gates, SG, and a linear encoder—an analog-to-digital converter. The
linear encoder's output is a digital representation of the instantaneous input voltage amplitude.

The sampling gates to the various telephone lines are connected sequentially and convert the continuous signals into a time-division multiplexed train of pulses. The amplitude of each pulse is determined by the amplitude of the voice signal at the time of sampling; therefore the sampled waveform is referred to as a pulse-amplitude modulated (pam) signal. After compression the pam signals are encoded for transmission as pcm signals. The compressor and the associated analog amplifiers as well as the equipment to reverse the process—the expander—must be extremely accurate and reliable. If the expander does not have the exact inverse characteristic of the compressor, the signal is distorted. The problem is further complicated because one compressor may handle signals that are distributed to many lines—each with a different expander. This means, for example, that the carefully matched diodes that develop the compression characteristics must be maintained in a temperature-controlled environment that is held to within ±0.1°C.

The pam amplifiers must be linear over a 60-decibel range of audio levels produced by loud and soft talkers. Cross talk between adjacent pam pulses must be less than 75 dB or the signals will be noisy.

Pam amplifiers must have bandwidths greater than 100 megahertz because at a sampling rate of 8,000 times per second and with 24 channels multiplexed on one line there are 192,000 pam samples a second, each sample separated by only a half microsecond. To minimize the interaction between channels, it is necessary to reduce the pam circuitry and the length of wiring.

Some of these problems have been simplified in the T-1 system by splitting the pam path into two sections—one for the odd-numbered channels and one for the even-numbered channels. This reduces the pam repetition frequency and increases the spacing between pam samples for each path. However in operating with two paths a great deal of equipment is duplicated, resulting in increased cost.

A matched pair

The problem of matching compressors and expandors and reducing size of the pam circuitry has been solved in LTC's equipment by eliminating the analog compressor and expander and replacing them by digital equivalents. The compressor and encoder are combined into a single unit called a nonlinear encoder because compression is a nonlinear operation.

The block diagram on page 145 indicates that a nonlinear encoder consists of three main parts—a digital comparison amplifier (comparator), a matricial decoder and a digital centering device. The nonlinear encoder is basically an analog-to-digital converter that employs a digital-to-analog feedback path.

By comparing the input pam signal with the
Pcm: advantages and basic principles

A pulse-code modulation telephone system offers the following technical advantages over conventional telephony:

- The quality of transmission is practically independent of the line’s length because the repeaters in the line can periodically regenerate the digital signals to their original form. Noise with a peak value below a design threshold is rejected by the pulse regeneration circuits.
- The amplitude of the decoded signal is independent of the line’s attenuation characteristics. Since the amplitude is coded, line attenuation has no effect as long as the code is received without error.

- 24 signals can be multiplexed onto a line that previously carried one or two voice signals. This is accomplished by removing the loading coils needed for conventional analog transmission. These loading coils flatten the 4-kilohertz passband needed for audio and sharply attenuate signals beyond the passband. Removing the coils provides the increased bandwidth needed for pcm transmission. Of course more than 24 pcm signals can be multiplexed on special transmission lines, such as coaxial cable.

There is no longer any doubt that pcm is the most economic way to multiplex telephone signals over short distances. A pcm system uses digital circuits instead of the expensive filters required by a frequency-division multiplexed system. Although less obvious, an equally important reason for pcm’s economy is that high-speed data and telephone signaling information is simply incorporated into the pcm multiplex format. The cost of a telephone channel’s signaling unit, an important part of a terminal, can be reduced to a minimum.

History

In 1938 A.H. Reeves, then a staff member of the International Telephone and Telegraph Corp.’s French laboratories, described the principles of pulse code modulation in a French patent. Reeves’ work was extended in the 1940’s by the information theory studies of Claude Shannon of Bell Telephone Laboratories. However, since many more active components are required for pcm multiplexing than for frequency-division carrier systems, pcm was not a practical possibility until the advent of transistors in the 1950’s. Inexpensive vacuum tubes were not reliable and each needed a few watts of power.

The first pcm system—Bell Lab’s T-1 system—was introduced into a public telephone network in 1962. Now more than 100,000 pcm telephone channels are in service on trunks interconnecting exchanges in local telephone networks. Many countries, such as England, Japan and France, are developing pcm carrier systems for their telephone systems.

In pcm systems three basic operations—sampling, compression and encoding—transform the narrowband (less than 4 khz) speech signals into wideband but relatively noiseproof pulse-coded signals. Generally the signals are time-division multiplexed at the same time that they are sampled.

Sampling

In almost every pcm telephone system voice signals [top diagram, below] are sampled 8,000 times a second. This produces a string of pulses [lower diagram below] whose amplitude is the amplitude of the waveform at the instant of sampling. The samples are referred to as a pulse-amplitude modulated (pam) signal.

To recover the original voice waveform, the samples are passed through a low pass filter that has a bandwidth equal to 4 khz. There is hardly any degradation in the recovered signal if the original sampling frequency is greater than twice the highest frequency component in the voice signal. This explains the choice of a sampling rate of 8 khz.

Usually 24 audio signals are multiplexed at a time by sequentially taking a sample from each of the 24 waveforms. Since each signal is sampled at 8,000 times per second, there are 192,000 samples per second on a 24-voice multiplexed line.

The same gate that samples can also operate as a multiplexer and serve as a switch. A gate has an opening time. Once the multiplexing process it can transfer information from a subscriber’s line to a trunk line.

Encoding

Encoding or quantizing can only approximate the signal levels in a voice waveform. A 7-bit code—used in most systems—can only represent 2^7 (128) distinct amplitude levels, but the number of amplitude levels in any voice signals is infinite. If the maximum speech signal is 1 volt and a 7 bit/128 level code is employed, the linear encoder divides the 1 volt into 128 amplitudes, each 1/128 (0.00781) volt high. Any voltage within one of these steps would be encoded as the same binary number. For example, all amplitudes at 0.500 ± 0.0039 volts would be encoded as the same binary equivalent of 0.500 volts. Because quantizing only approximates the voice signal when the pcm signal is decoded (converted to pam) and filtered, the output’s waveform is not an exact replica of the input’s waveform. The difference in the two signals is called quantizing noise. Quantizing is the major source of noise in pcm.

Every conversion from voice to pcm increases the quantization noise in the system. One reason for the international acceptance of a 7 bit/128 level code is to hold the quantization noise to an acceptable level even after many modulations in the pcm network. A 6 bit/64 level or smaller code could be used if fewer modulations—demodulations occurred.

Increasing the number of bits in the code reduces the quantizing noise because the quantizing steps are narrower. However, more bits
require digital components with higher switching speeds and more storage capacity in memory equipment. In addition, speeding up the bit rate increases the digital signal's bandwidth. The wider band signal would probably have to be regenerated more frequently.

It is possible to modify the frequency spectrum of the encoded pulses by choosing special digital codes. This is done to eliminate d-c levels, which are difficult to transmit, and to reduce high frequency signals, which cause cross talk. A simple binary or unipolar—off-on—code has a (sin X)/X amplitude variation versus frequency as in the top curve below. Frequency components have their largest amplitude near zero frequency. This unipolar code also produces a d-c component.

If alternate pulses are inverted, as in the bipolar code in the lower diagram above, the d-c component is removed and the bulk of the energy will be concentrated between zero frequency and the pulse-repetition frequency. Bipolar encoding is used in Bell's T-1 system and is being considered for most of the other pcm systems that are under development.

Since a multiplexed line normally encodes 192,000 voice samples per second, the minimum bit rate with a 7-bit code is 1.344 megabits per second. However, pcm systems add an extra bit for supervisory and signalling information so that 8-bit words are transmitted. This increases the bit rate to 1.536 megabits per second.

Every time the entire group of 24 signal code words is encoded, a bit (or framing pulse) is added. These framing pulses raise the total bit rate to 1.544 megabits per second. Various pcm systems will have slightly different bit rates depending on the exact number of bits used for coding, signalling and framing.

Compression

A system handling speech signals must be able to accommodate signals with a 1,000 to 1 range in voltage amplitude. This large amplitude variation represents the ratio of the highest voice level of a loud talker to the lowest voice level of a soft talker and corresponds to a 60 decibel range.

If the encoder in a pcm system were adjusted to encode the highest voice signal, then these high-level signals would fall into all 128 voltage steps associated with the 7-bit encoder as desired. However, low-level signals would only pass through the lower voltage steps. Therefore the encoding would be much coarser for low-level signals and signal quality would be seriously impaired.

To take full advantage of the code, the range of signals is compressed; low-level signals are amplified more than stronger signals resulting in a signal level relatively independent of talker level. As a result the signal-to-quantizing noise ratio is kept fairly constant even though the input levels vary over a large range.

Compression is effective, however, only if the signals are expanded to their original values at the other end of the line. Expanding characteristics must be the exact inverse of the compressor if the signal is not to be distorted.

This is a critical requirement and is solved in a number of ways as described in the article.

Compressing curve

The compressor's characteristics are determined by a compression curve that relates the output level of the compressor to input level. Because the ear's sensitivity to sound is proportional to the logarithm of the sound amplitude, the compression curve often selected also has a logarithmic characteristic.

In the T-1 pcm system the compressor curve is based on the logarithm given by

\[E_{out} = \frac{\ln (1 + \mu E_{in})}{\ln (1 + \mu)} \]

where

- \(E_{out} \) = output level normalized to the allowable peak input level,
- \(E_{in} \) = input level normalized to the allowable peak input level,
- \(\mu \) = a constant with an approximate value of 100 to give the desired compression characteristic,
- \(\ln \) = natural logarithm

The curve in Bell's equipment differs from the equation in that it passes through the origin \((E_{in} = 0) \); the logarithmic relationship does not pass through zero. Bell uses a smooth compression curve because the T-1 system compresses the pulse signals. Laboratories Central de Télécommunications, Paris, employs curves that are approximated by straight line segments as in the graph on the bottom of page 147; these curves are easier to implement in LCT's digital encoder-compressor.

Regeneration

During transmission, line attenuation and variations in phase with frequency will tend to smear the pulses in the digital signal. Most of the high frequencies in the spectrum will be lost because of line attenuation.

One major advantage of pcm is that this deteriorated pulse train can be regenerated into its original pulse waveform and then sent further down the line. This regeneration is performed by pcm repeaters spaced about a mile apart on the transmission line.

A repeater actually does three things: it equalizes the line, retimes the pulses and regenerates the pulse train.

The equalization circuits restore some semblance of a pulse train by compensating attenuation characteristics.

In retiming, the repeater locks itself to the timing information in the signal. This allows the retiming circuits to signal the regenerator when it is time to make a decision on the amplitude of the pulse.

The regenerator establishes a reference level proportional to the received pulse height after equalization. The repeater compares the reference level with the height of the digital signal and decides if a pulse is present. The regenerator is usually designed to eliminate all noise spikes that are less than one-quarter of the received pulse height (eliminating pulses less than a half the received pulse height is the ideal criterion). If the noise is too great the signal will be regenerated with an error.

One principal source of noise that causes regeneration errors is voltages induced in pairs of cable by nearby conductors. The most serious problem is cross talk near a repeating section. Cross talk occurs when amplified signals couple into the inputs of other lines and mask the desired signal. Careful selection of repeater locations can reduce cross talk problems.

Leonard Weller
feedback signal, the comparator generates the code word that is the digital equivalent of the pam amplitude. The matrical decoder converts the pcm code word back to an analog signal that is the feedback voltage for the comparator. Compression takes place in the matrical decoder.

The feedback voltage is increased until it equals the voltage developed by the pam sample. This equalization is carried out in seven steps, each step generating another bit of the code.

The digital centering device prevents an increase in the signal-to-quantizing noise ratio by eliminating d-c drift at the nonlinear encoder's input. The photograph on page 146 shows the integrated circuits for a 24-channel nonlinear encoder.

The nonlinear encoding scheme simplifies the problems associated with a separate compressor and expander in three ways:

- The analog compressor is replaced by digital components that require no thermal stabilization.
- Digital components do not have to be specially selected nor do their characteristics have to be matched.
- Instead of one type of circuit for compression and another for expansion, the same type of decoder is in the encoding-compression and encoding-expansion equipment.

Problems in the analog circuitry have also been eliminated. The pam path is shortened since the compressor has been removed, and d-c shift is eliminated by incorporating a digital centering device in the encoder.

The nonlinear encoder is more economical than the linear version because inexpensive digital components replace precision analog components. The proportion of digital to analog circuits has increased from 50% to 90%. Also contributing to cost reduction is the ability to use identical current generators and resistive ladder networks.

Digital compression

Compression takes place because the feedback voltage in the matrical decoder is nonlinearly related to the coded output. As a hypothetical example, the pcm word 1010000 (decimal number 80) may correspond to an input analog-voltage of 20 millivolts, while the binary word 1110000 (decimal number 112) may correspond to a voltage of 420 mv. The ratio of the input voltages is 21:1. Since the coded outputs are referenced to the digital word 1000000 (decimal number 64) which corresponds to zero input, the ratio of the differences between the output numbers and 64 is only 3:1.

The compression characteristics are determined by the compression curve of the encoder which is a combination of the linear relationship.

\[y_1 = \frac{A}{1 + \ln A} E_{in} \left(0 < E_{in} < \frac{1}{A} \right) \quad (1) \]

and the logarithmic relationship

\[y_2 = 1 + \ln E_{in} \left(\frac{1}{A} < E_{in} < 1 \right) \]

where

- \(y_1 \) = the compressor's output for a low level signal
- \(y_2 \) = the output for higher level signals
- \(E_{in} \) = the input analog voltage
- \(A \) = a constant

Equation 1 describes a portion of the compression curve for low-level signals while equation 2 represents a portion of the curve for the higher levels. Combining these two portions to form one compression curve provides a more constant signal-to-quantizing noise ratio than the compression characteristics of the T-1 network [see “Pcm: advantages and basic principles” p. 143].

In the encoder the curves are approximated by straight lines that result in encoding-compression curves in the graph on the bottom of page 147. The two curves differ in the number of straight line segments that make up the approximation.

Signal-to-quantizing noise ratios measured at the output of a transmission link that has a nonlinear encoder are plotted in the graph at the top of page 147. Sine waves at a frequency of 850 hertz were encoded, transmitted and decoded.

The “teeth” in the curves are the result of sharp changes in the slope of the companding characteristics. It is generally accepted that even the coarser characteristic of the four-slope curve provides adequate signal-to-quantization noise ratio.
for telephone conversations.

The transcoding matrix in the feedback circuit is the most expensive part of the compression system; the smoother the compression curve the greater the cost. The curve's smoothness in turn is a function of both the required signal-to-quantizing noise ratio and the type of signals to be transmitted.

The transcoding matrix for the four-slope compression curves has been built with 21 resistor-transistor logic elements. However, with transistor-transistor logic only 15 elements are needed. A seven-slope compression curve requires 24 transistor-transistor logic elements.

Digital centering

The purpose of the digital centering device, which is connected between the pcm line and the comparator's input, is to reduce quantizing noise introduced by drift in the pam amplifiers. When a separate compressor is inserted in the pam path and linear encoding is employed, there is no way of automatically compensating for this drift.

However, with a nonlinear encoder, compensation can be accomplished easily. To do this, ground signals are sampled by the ground sampling gate (SGG). These samples are sent to the encoder through the common pam path, and the encoder senses the polarity of this SGG signal at the output of the pam chain. Depending on whether the polarity is plus or minus, a flip-flop charges or discharges an integrator. Current supplied by this integrator is fed back to the encoder in such a direction as to counteract drift. Because the drift correction will vary, the reference current has a slight amplitude oscillation around the desired level.

The digital centering operation takes place during the synchronizing time slot—the time when synchronizing pulses are transmitted—rather than when the encoder is operating on speech signals. Only a portion of the synchronizing time slot is necessary for this purpose since only the polarity of the drift must be recognized.

Digital memory encoder

Although the nonlinear encoder reduces some of the pam problems, a further reduction is possible by using a multiplexing and encoding scheme that utilizes a digital memory with a variable speed counter and ramp encoder.

Ramp encoders are frequently used in digital voltmeters because they provide analog-to-digital conversion with excellent linearity. By using a variable-speed counter synchronized with the ramp encoder it is possible to eliminate the external
Encoder for 24 pcm channels uses matrical decoding and includes circuits for digital centering. Almost 90% of the circuits on these boards are digital; in previous transistorized versions only 50% of circuits were digital.

There are two main drawbacks to this encoding scheme. First, it does not completely eliminate the pam circuitry. Second, the counting speeds become excessively high. A 7-bit, 128-level code corresponds to a counter speed of 1 Mhz for a single channel or 24 Mhz for a 24-channel multiplex system. The counter speeds are higher than the bit rates used on the line because the counter must go through at least 128 bits every 125 microseconds.

If nonlinear encoding with 24 to 26 db compression is desired, the counting speed must be higher than 400 megabits per second for a 24-channel system. Such high counting speeds are difficult to achieve.

Counting speeds may be reduced by using buffer units to store the pam signals. However, this leads to greater difficulties than using the pam circuitry.

Because of these difficulties, it was decided to use a nonlinear encoder-multiplexer that operates without pam gates, pam buffer units and pam amplifiers, shown in the block diagram on page 148.

This encoder-multiplexer advantageously trades the analog amplifiers for digital components. Existing integrated circuits are sufficiently fast to be used in such an encoder-multiplexer.

The digital memory encoder employs a sawtooth generator that is triggered at an 8 kilohertz rate in synchronism with a variable-speed counter. The maximum speed of this counter is around 16 megabits per second.

Instead of the conventional pam gate, a comparator is associated with each channel. The linear sawtooth generator feeds one input of each comparator. The other input of each comparator is fed by the audio signal on the telephone line to which it is connected.

The comparators are triggered when the amplitude of the sawtooth waveform exceeds the audio waveform. The resulting pulse transfers the digital counter's signal into a row in the memory.

Since the counter's binary number depends on the time at which a pulse occurs, the information stored in the row of memory is the coded value of a pulse-position modulated signal. This quantity and signal corresponds to the audio signal of a channel sampled by the sawtooth waveform at 8,000 times per second.

Signals at the inputs of the comparators will be at different levels at different times so that rows in the memory are filled in a random manner with some rows being filled simultaneously. This means the counter speed does not have to be as high as would be needed if each voice channel were dealt
with separately. For transmission purposes the memory is read out cyclically.

In addition to technical advantages, the digital memory's encoder-multiplexer is more flexible than the previous nonlinear encoder. In particular, channel comparators and the associated row of memory may be added without an increase in the speed of the encoding operation. Therefore more than 24 groups of speech channels can be achieved without any serious system complications.

Decoding equipment, which may be similar to the encoding equipment, requires no more analog components than the nonlinear decoder. Since they appear only in the audio part of the decoding system, the analog components are mainly filters to eliminate the intermodulation products produced by the sampling and quantizing operations.

The apparent drawback of the digital memory encoder-multiplexer is that an increase in the number of speech channels requires more components than the previous nonlinear encoder; signal processing is on a per channel basis rather than by time multiplexing into a common channel. Because of the additional components, using conventional transistorized logic would create severe problems. Integrated circuits solve the problems technically if not economically but it now seems possible to integrate all the functions corresponding to a channel into a very small number of units. It is even expected that in the near future new devices such as metal oxide semiconductors will allow an entire channel to be built in one unit, cutting the cost significantly.

Line repeaters

Another serious technical difficulty in digital speech transmission is regenerating the digital in-

![Signal-to-quantizing noise levels in transmission line with a nonlinear encoder are fairly constant over a large range of input levels. Tooth-like variations are caused by changes in slope in the companding circuits. The seven-slope compression curve in color has less variation.](image)

Compression curves relate analog input level to compressed output level. Same curves are also used in expandors to convert compressed signal back to its original level. Seven-slope curve in color produces higher signal-to-quantizing noise level than four-slope curve on the left.
sources of distortion and interference exist:

- Attenuation rapidly increases with frequency in all the lines in the cable.
- Attenuation characteristics vary depending on the wire pairs chosen, the ambient temperature and the quality of the line.
- The cross talk will vary in different wire pairs in the same cable.

It is only because of the digital and synchronous properties of the transmitted signals that these difficulties may be overcome. However, although the transmitted information is digital in nature, mostpcm repeaters—the devices that regenerate the signals—include a very high proportion of analog components.

A repeater usually consists of input, timing extraction and gating and reshaping devices. In brief, the purpose of the input device is:

- to separate the information signals from the current that powers the regenerator.
- to compensate for the line's variation of attenuation in the operating frequency range.
- to amplify the received signals.
- to rectify the received signals when necessary.

While it is economical to use integrated circuits for the gating and reshaping circuits, only a portion of the input circuits may employ integrated circuitry. Many analog components are still necessary; mostly to equalize line-impedance characteristics.

Timing circuits must extract a periodic waveform at the bit rate from the incoming signals. The phase of this extracted waveform must not vary despite the random nature of the signals and the distortion or interference encountered on the line.

Two methods may be used for the timing extraction. The first, used in the T-1 system, employs accurately adjusted inductance-capacitance filters. The second, which LCT prefers, is the phase-locking method.

Phase locking offers two principal advantages: the system does not require a special code, for example a long sequence of zeroes may be transmitted without any difficulty; components need not have close tolerance requirements even when wide temperature variations are expected, therefore inexpensive integrated circuits can be used in this section of the repeater. Integrated circuits also replace analog circuitry in the retiming section of the regenerator.

Because the phase-locking system does not require a fixed period, it has an advantage over systems that must have accurately controlled clock frequencies; for example, when high speed data is exchanged between computers or between computers and peripheral devices whose clock frequencies are not accurately determined. Accommodating varying clock frequencies also is desirable when the frequency varies during transmission, as it would if the pcm signal were transmitted over a satellite.

A recently patented redundancy method4 not only simplifies the retiming problem but also eases tolerances for the input circuitry. When redundancy is incorporated into the code, the energy of the signals is concentrated at the center frequencies. This shaped frequency spectrum reduces the circuit's dependency on transmission line amplitude response and reduces the problem of equalization in the regenerator's input circuit.

A few additional logic elements introduce redundancy in the terminal equipment. In this case accuracy in the regenerator's analog circuitry has been exchanged for some additional complexity in the terminal's digital circuitry.

The choice between nonlinear encoding or digital-memory encoding and possible inclusion of redundancy in the codes depends upon the requirements of the pcm system and economics. It is conceivable that a pcm system could use a number of these techniques to take advantage of their particular benefits. However, this must be weighed against the resulting increase in spare parts and extra training for personnel. The final choice must consider all these factors.

References

Many plastic packaging materials for solid-state devices look like Dow Corning® silicone molding compound. But, that's where all similarity ends ... looks are deceiving.

- Dow Corning silicone molding compound is inherently nonburning ... doesn't require the addition of flame snuffers which can contaminate junctions.
- This material is unaffected by long term heat aging and thermal cycling. Devices can be operated at maximum power ratings when packaged with silicone molding compound ... no need to derate to compensate for heat leaching.
- Soldering doesn't deform devices protected with silicone molding compound.
- Junctions are not contaminated by silicone molding compound ... fact is, silicone resins have long been used on device junctions as a barrier to contamination in metal or glass packages.

- Dow Corning silicone molding compound costs only slightly more than ordinary plastic materials ... but its non-flashing property permits less-critical mold clearances, lower mold costs, less lead clean-up ... reduced overall device-production cost.

To avoid the limitations of look alike materials, be sure your device source is giving you the added benefits of Dow Corning silicone molding compound packaging.

For complete technical data on Dow Corning silicone molding compound, write: Department 3906, Electronic Materials Department, Dow Corning Corporation, Midland, Michigan 48640.
New 2N3494: 80 V_{CE} $f_T=200$ MHz minimum

Now! Design your high voltage PNP circuits around this reliable planar product. Rated at 80 volts V_{CE} and $f_T=200$ MHz minimum, this device is outstanding for high voltage switching and linear amplifier applications at current levels up to $\frac{1}{2}$ ampere.

More new additions to Raytheon's line of PNP. Now, you can get 2N4080s with $h_{FE}=1$ Kmc minimum for VHF-UHF amplifiers, oscillators, and high-speed non-saturating switches. And Raytheon high-current core drivers—2N3244s and 2N3467s—for fast switching at current levels up to 1 ampere.

Proven reliability of every type. Raytheon manufactures all PNP under its exclusive Mark XII reliability program which provides complete lot traceability to the silicon ingot. And all Raytheon PNP's are of PLANEX® silicon planar design, utilizing Channelstopper™ construction to eliminate channeling problems.

Send reader service card for all PNP data sheets. Or write for information: Raytheon Company, Components Division, 141 Spring Street, Lexington, Mass. 02173.

Raytheon Components Division—A single source for Transistors/Diodes/Integrated Circuits/Industrial Tubes/Control Knobs/Panel Hardware/Raysistors/Circuit Modules/Display Devices

Raytheon Company, Components Division, 141 Spring Street, Lexington, Mass. 02173.
Air navigation system testing grounded by signal simulator

Device checks out loran airborne receivers in the laboratory, ending need for costly air trials; technique may be extended to testing of other navigation systems and coordinate converters

By Robert S. Stapleton
Teledyne Systems Co., Hawthorne, Calif.

Testing and calibration of airborne navigation receivers has been an expensive, time-consuming, often inadequate procedure. It has been necessary to take a receiver on long airplane flights to determine how accurately the system can process signals from transmitters thousands of miles away and how well it handles signal distortion caused by interference, noise and doppler shifts due to the aircraft’s motion.

Now the job can be done quickly and economically at a test bench with a simulator developed for the Federal Aviation Agency.

With modifications, the simulator, built to check out loran A and loran C airborne receivers, can test other hyperbolic navigation systems operating on the same principles as loran [see “Radio beacons guide aircraft navigators,” p. 154].

The techniques that simulate pulse transmission over long distances—such as multiple delay lines to introduce doppler delays and precision pulse timing and a unique combination of digital techniques and delay lines to eliminate the requirement for a high-frequency oscillator—may also apply to the testing of communications and radar systems.

Although hyperbolic navigation systems such as loran (long-range navigation system) have been in use since 1940, only static test equipment has been available. The loran A and C signal simulator built by Teledyne Systems Co. is the first system capable of testing these complex devices dynamically in the laboratory.

It generates loran A or loran C test pulses that are fed into a receiver, making the receiver seem to be in an aircraft flying on some predetermined course at speeds up to 2,000 nautical miles an hour—equipment destined for supersonic transport planes can be tested now. The accuracy of the simulated timing pulses is equivalent to the real-time loran transmission error of ±0.1 microsecond. In addition, appropriate sky waves, radio-frequency interference and continuous-wave interference can be generated to complete the duplication of loran signals received at any point on the earth.

Good for others

The family of accurately timed digital signals can also dynamically test other types of equipment. The growing field of coordinate converters, for example, introduces a broad range of new navigational aids, many still under development. The loran simulator presents a valuable tool for analysis and test of these new systems.

A coordinate converter is a device which accepts time-difference signal inputs in the hyperbolic system of coordinates—such as those used in the loran system—and shows them on a display that depicts receiver and position in latitude and longitude. Since the simulator provides a continuously updated set of coordinates for position computation, the ground testing of converters is

The author

Robert Stapleton is a project engineer on the self-contained navigation and short-range station-keeping system for the Integrated Helicopter Avionics System that Teledyne is making for the Navy. He helped develop the digital interface unit of that system’s computer.
superior in many ways to an expensive flight test.

The simulator only requires minor modifications in timing to make it suitable for testing other navigation systems. For example, any r-f pulse envelope may be duplicated by substituting appropriate modular circuit cards for the loran C (100 kilohertz) or loran A (2 MHz) modulators in use. Replacing a plug-in oscillator changes the carrier frequency. Rewiring one or two gate cards modifies the pulse repetition rate and even a complex change such as revising the pulse sequence involves little more than a change in the wiring of 8 or 10 gate cards.

One modulator or three

The simulator contains loran C and loran A modulators; only the loran C configuration is shown in the block diagram at the right, but the loran A configuration is essentially the same. Loran A requires three modulators, for a master and two slave stations; the loran C simulator has one.

The loran C modulator accepts digital signals defining pulse generation times and phase coding and a continuous-wave 100-kilohertz signal directly from a timing source. Using these inputs, it generates a pulse which is described by the function:

\[f(t) = t^2 e^{-2(t-1)} \]

in which \(t \) is time. The function describes the passage of a loran C pulse from the transmitter to a receiver. The loran A modulator accepts digital timing pulses and a c-w carrier at one of the four standard frequencies and generates the loran A pulse, which is essentially gaussian.

The simulator system has four primary functions when used to evaluate loran receiver performance:
- To test the dynamic response of time-difference tracking circuits in the receiver with realistic aircraft motions.
- To measure and record receiver time-difference readings in all forms of operation for calibration purposes.
- To test the receiver's ability to extract signals from noise, interference or sky-wave returns.
- To see if the receiver operates at all basic and specific repetition rates and recognizes slave and master transmitter "blinking" and phase coding [see p. 154].

Making waves

The simulator operates under the control of a punched tape that contains in digital format the pseudo airplane flight and the loran C signals which the simulator processes. The information is inserted through a high-speed tape reader to load the seven digital registers seen along the side of the block diagram at the right. The latitude and longitude registers drive readout devices directly through decoding networks. The master delay, slave X delay, and slave Y delay registers, in conjunction with an elapsed time register, generate trigger pulses for each pulse group. The triggers are digital pulses timed to within 10-microsecond increments. For loran C the trigger pulses generate loran C pulses which pass through two highly accurate tapped delay lines, called fine delay lines, to provide the delays of 1 to 9.9 microseconds and 0.1 to 0.9 microsecond needed to fulfill system accuracy. After separation into M, X and Y pulse groups, the signals pass through electrically variable delay lines and attenuators. These provide sky-wave delay and doppler shifts that simulate the signal received by a moving aircraft.

In loran A operation, the digital pulses which trigger the signal pulse generator are passed through the same type of delay lines and then are used to generate loran A signal pulses.

After each discrete pulse or pulse group is generated and delayed, the master pulses, slave X pulses and slave Y pulses are amplified individually, summed, and sent to a filter/mixer network, where the composite loran signal is mixed with noise or radio-frequency interference and presented to the receivers under test.

Sky waves are generated by taking the final r-f pulses for loran C or digital pulses for loran A and passing them through precision magnetostriuctive delay lines with a length selectable from 0 to 700 microseconds. The output of the delay lines are summed with the ground wave signals to provide the composite loran signals.

To connect the simulated signals to the antenna input of the receiver, a matching network that has the proper antenna impedance is used. Otherwise the direct simulator output (50 ohms impedance) is used.

To simulate a loran C station the equipment can operate at any of the standard repetition rates or any desired repetition rate and deliver signals having either a 500- or 1,000-microsecond pulse spacing. In addition it can operate in either a multipulse or single-pulse mode at the 100-kilohertz loran carrier frequency. Loran C simulated signals are phase coded according to loran standards and provision is made for "blinking."

Display subsystem

In addition to simulator control, the computer-generated tape data also lights four sets of numerical readouts (Nixie tubes). These show the operator the master-X station time difference, master-Y station time difference and latitude and longitude (in degrees, minutes and seconds) as the simulated flight progresses. The pulses displayed would be identical to those displayed if the receiver actually was at the location shown.

A flight can be halted at any point and the prevailing conditions used in extensive examination of receiver response.

Two Beattie Varitron cameras provide a check on receiver time-difference display versus simulation time-difference display. One camera, with a wide angle lens, is on a mechanical support bar directly in front of the simulator's Nixie tube display. A second, on a tripod, is directly in front of the receiver or receivers under test. Both are electrically operated and driven by identical sig-
Digital circuits are the substitute for flight time

Cost of loran simulator, shown in the loran C setup, was kept low by time sharing of major parts and by combining digital and delay-line techniques to avoid the use of expensive oscillators and delay lines. Delay lines are shown in color, as are the portions of the registers that control the fine delay lines. The major propagation delays are provided directly by the registers, which are fed a tape program containing the data needed to simulate the loran signals that would be received by a moving plane.
Radio beacons guide aircraft navigators

Loran C is one of several hyperbolic-coordinate navigation systems that fix the position of an aircraft or ship by measurement of the differences in the times it takes radio signals to travel from a set of transmitters to a receiver.

The time differences for signals received from a pair of transmitters indicates that the receiver is somewhere along a line drawn on the earth. This line passes between the two transmitters and is approximately a hyperbola. Measuring the time differences for a second pair of stations gives a second hyperbola, intersecting the first one at the receiver's location.

Loran C is a modification of this basic arrangement. Instead of four transmitters, three—called a loran triad—are used. A master station, M, triggers two slave stations, X and Y. Precise time delays and signal codes are used to prevent ambiguity about which station is farthest from the receiver and which station sent a signal.

The hyperbolas generated by loran C triads are plotted on charts, providing navigators with coordinates as definite as lines of latitude and longitude.

Taking pulse. The stations transmit pulse groups on a 100-kilohertz carrier signal. The phase of the carrier signal is varied from pulse to pulse. For example, the master station may transmit a pulse group in which pulses 3, 4, 6 and 8 are out of phase with the other pulses in the group. In the next pulse group, only pulses 2 and 3 would be out of phase. These two pulse groups would alternate. Each of the slaves would transmit in a different code; in alternate groups, pulses 6 and 7 would be out of phase, then pulses 2, 4, 7 and 8.

If a slave station is not transmitting reliably, it indicates this by “blinking”—the station's pulse groups are delayed by 300 microseconds for one second, then return to their normal position for a half second.

Ground-wave signals from a loran C triad have a usable range of 1,200 nautical miles. Sky waves extend this, but accuracy is less since sky waves are subject to more variables than ground waves. Sky wave fixes at ranges up to 3,500 nautical miles, accurate to about 2,952 feet (±2 microseconds) are not unusual.

Moving through air

To reflect an aircraft's motion, the loran signals are individually doppler shifted in accordance with the aircraft's motion with respect to each of the three simulated loran stations.

The time delays are calculated from an initial set of programmed conditions derived once the precise flight path and location of the transmitters are known. Based on the flight path, a circular or geodetic program is chosen for the computer [programs are outlined on the next page].

The geodetic program simulates the movement of a receiver from an origin to a point along a geodetic line. The position incrementation is derived from equations which modify the receiver latitude and longitude according to the distance traveled by light in 0.1 microsecond, leading angle of the receiver and the ellipsoidal distance to the destination. The initial calculations are further modified to correct positions, distances and headings for the ellipticity of the earth.

The circular program generates tapes that move the receiver around a point at a constant distance from the point. For both types of programs, the propagation distance is then calculated as the distance, on a sphere, between the receiver and a loran transmitter, again corrected for the ellipticity of the earth. The distance is also corrected for receiver altitude, since the line-of-sight distance is needed, and the amount of path along the earth's surface and in the air is also determined.

Propagation time determination, the most important single calculation in simulating transmission over long distances, is made in two parts: one for the path near the earth's surface and another for the altitudes at which only atmospheric refractivity is a factor.

The surface propagation time equals the sur-
face distance divided by the velocity of light at the surface. To this is added the secondary delays resulting from land and seawater conductivity [see table of constants, p. 156].

Finally, total surface delay is added to total atmospheric delay to obtain total propagation time between a transmitter and the receiver at each increment of receiver motion. The atmospheric delay is calculated by dividing the atmospheric path length by the velocity of light at half the given altitude. The decrease in refractivity per kilometer of altitude equals 7.32(0.005577N_s), where N_s is the measured surface refractivity. Assuming this decrease is linear, taking the half altitude provides the average atmospheric delay.

Reading the tape

Rather than storing binary quantities on the tape and reading them into digital registers, a method was chosen in which digital registers are set to initial conditions and thereafter are updated incrementally. There are seven registers which require initial conditions: master delay, slave X delay, slave Y delay, latitude, longitude, M-X time difference and M-Y time difference.

The number fed into the master delay register corresponds to the propagation time (in microseconds) of pulses that travel from the master transmitter to the receiver.

The number in the slave X delay and slave Y delay registers corresponds to their relative propagation times, plus the coded delays normal in loran operation. As these numbers are installed in the delay registers, the difference between the time in the master delay register and the time in the slave X delay register is inserted into the M-X difference register; the corresponding M-Y time difference is installed in the M-Y difference register. When the initial latitude and longitude numbers are inserted, the setup is ready.

From this point, only the numbers in the three delay registers and in the latitude and longitude registers need be updated to reflect receiver movement. The digitally coded program tape changes the numbers in the latitude and longitude registers uniformly, allowing a smooth movement of the airborne receiver along the simulated flight path. The five incremental channels supply these instructions: count up, count down and no count, which require two coding bits. Therefore, two characters are used for each incrementing instruction.

To obtain accuracy in delay time, a count in the least significant stage of the delay registers and time-difference registers is taken to mean a 0.1-microsecond delay. Therefore each increment coded has a meaning of ±0.1 microsecond depending upon simulated direction. Since each count is equivalent to 0.1 microsecond there are 20 counts in two microseconds on any of the delay registers. Since two characters are required for a single count, the system's tape reader must read approximately 66 characters a second to

Geodetic and circular programs that prepare with a computer the simulator-control tapes. The tapes reproduce the movement of a receiver in an airplane flying in a prearranged path at speeds up to 2,000 miles an hour.
simulate an aircraft traveling 2,000 nautical miles per hour. The character speed is not difficult for tape readers—a Tally Corp. model 424 is used.

Flip-flop counter

An eighth channel on the tape contains the control signal, which tells whether initial conditions or incremental data is being supplied to the simulator. It controls the configuration of the seven registers since each must act as a shift register during setup and as up-down counters the rest of the time.

Since two characters define one count period, a flip-flop in the reader for each incrementing channel can define the character on which the count should be made. When this flip-flop is turned off, no count can occur but flip-flops connected directly to the tape reader circuits on the five incrementing (delays, latitude and longitude) can each pick up the first bit of the two-bit code. When these flip-flops are turned on, a count signal may be generated in those five channels. These control flip-flops are synchronized to the tape.

The first bit of the two-bit code which is stored in each delay-channel flip-flop indicates (when it's on) that a count is to be made. The second bit, which is taken directly from the tape, indicates the count direction; an on signal makes the register count up, and an off causes a count down.

As the simulated path approaches the North or South Pole, the rate of change of the longitude register must increase faster and may increase without bound. Although the problem of updating the longitude register near a pole cannot be solved completely, a small modification in decoding extends the region over which the longitude register can accurately be updated. The 0 1 code, unused in the other channels, indicates a double count. The count direction is the direction taken on the last single count code. This direction is stored in a flip-flop.

The latitude register and the three delay registers, which can note only one count per count period, use only the first count time. The longitude register and the two time difference registers, which can count one or two counts per count period, use both the first and second count times.

Time-sharing system

The schematic on page 153 illustrates that outputs of the three delay registers are coordinated with the elapsed-time register output to determine when pulses are transmitted from each simulated station. The turn-on signal for each station comes in the proper sequence, from the flip-flops designated LFRM, LFRX and LFRY, respectively. An on signal from LFRX, for instance, defines the region (time interval) for generation of the slave X pulse or pulses.

By defining the region of master, X and Y pulse generation in this way, time sharing of a large portion of the system is possible by using LFRM, LFRX and LFRY to control all time-shared circuits, since only one signal can be present at a time. The three signals are generated in an identical manner, so the processing of the master-slave X station signal will be used as an example.

The elapsed time register, which is basically a four-stage counter, acts as a digital timing reference. Each stage is itself a decade counter having four flip-flops. The elapsed time register counts 100-khz pulses supplied by the system timing source, a Hewlett-Packard Co. model 101A frequency standard oscillator. Therefore, each count in its least significant stage represents 10 microseconds. The succeeding stages count 100, 1,000 and 10,000 microseconds respectively. The gating circuit of the register is interlocked with front panel switches that control the repetition rate of the transmission being simulated. These gates reset the counter to zero at the end of a specified interval. For example, if the loran C repetition rate known as S-3 were to be a part of the simulation, setting the repetition rate selector switches to S and 3 would cause the elapsed time counter to reset each time it had counted 59,700 microseconds, since this is precisely the period for rate S-3. Designated LPSS, the reset pulse is precisely at the beginning of each repetition period [see timing diagram at the right, above].

Signal LFRM is turned on when the number contained in the master-delay register is identical to that in the elapsed time counter. As explained, the number in any delay register is in digital form and is equal to the delay time in microseconds between the beginning of the pulse repetition

Constants for tape program generation

- **Flattening of the earth**: 1/297
- **Semiajor axis of the earth**: 3,963.33863 miles
- **Velocity of light (vacuum)**: 0.1862831068 miles/microsecond
- **Velocity of light (20,000 feet altitude)**: 0.186724538 miles/microsecond
- **Refractivity (earth's surface)**: 1.000338
- **Refractivity (20,000 feet altitude)**: 1.000046
- **Conductivity (land)**: 0.005 mhos/meter
- **Conductivity (sea water)**: 5.0 mhos/meter
- **Transmitter location in west longitude and north latitude**
 - Master: -77° 54' 47.2"; 34° 15' 11.98"
 - Slave X: -80° 6' 53.71"; 27° 1' 57.32"
 - Slave Y: -69° 58' 40.51"; 41° 15' 11.98"

Simulator-control tape format. The latitude, longitude, loran pulse time delays and transmitter station time differences are punched in digital code.
cycle and the initiation of an r-f pulse or pulse group. Each time the elapsed time counter is reset to zero it begins immediately to count the repetition period. Therefore each stage of the elapsed time counter is being compared constantly with the master-delay register. When the two numbers are equal, the proper master delay time has elapsed and a trigger is generated which turns on LF RM.

Depending upon whether the simulation is multipulse or single pulse, logic circuits will turn off LF RM after the proper interval of r-f pulse generation. The elapsed time is counted in 10-microsecond increments so the two least significant bits in the delay register corresponding to the microsecond number and the tenths of microseconds number will not be reflected in the generation of an LF RM trigger. These two decade stages of the delay registers are termed the fine delay and in another part of the simulator provide the delay needed to keep the r-f pulses accurately timed.

The method was chosen with an eye to economy, since two more decade stages would be required in the elapsed time counter if it were necessary to compare the two least significant bits of each register. More important, it would then be necessary for all count registers to run at a 10-Mhz rate—not an easy requirement. Further, a 10-Mhz oscillator would be required in addition to the precise 100-khz generator for the loran C carrier. Finally, shielding would be a big problem at the higher frequency.

Picking a time delay

Comparison of an elapsed time register with each individual delay register automatically causes the simulated pulses to be delayed by the proper amount (to the nearest 10-microsecond interval). This same register comparison technique could have been used to provide a delay to the nearest 0.1-microsecond interval but at a considerable increase in system complexity and cost. The technique developed for the simulator achieves the results by using accurate delay lines and selecting the delay length digitally.

Pulses, delayed to the nearest 10-microsecond interval are fed into a 10-microsecond delay line, tapped every 1.0 microsecond. Tap selection is done by relays under program control. The digital number contained in the “microseconds” decade of a register is decoded and used to select one of 10 relays which in turn select one of 10 taps, each one having a delay a microsecond longer than the preceding one. The signal out of the delay line, now delayed to the nearest microsecond, is then fed into a 1-microsecond-long delay line, similarly tapped every 0.1 microsecond. Proper tap selection, then, will introduce the additional 0- to 9.9-microsecond delay required.

For example, to delay a pulse train exactly 16,498.1 microseconds from the time reference, a 16,490-microsecond delay would be provided by the trigger from the pulse sequence generator. The required 8.1-microsecond additional delay is obtained by passing the pulses through an 8-microsecond delay in the first delay line. Next, the pulses are sent through the second delay line, tapped at 0.1 microsecond. With this technique, any delay from theoretical zero to the complete duration of the repetition period can be provided to an accuracy of 0.1 microsecond.

Delay lines manufactured for the loran A carrier frequency, approximately 2 Mhz, are expensive. Therefore an alternate method was chosen for the additional delays required by loran A pulses. Where loran C pulses are slowed by passage through a delay line, the same delay required in loran A transmission is brought about by passing the digital signals that initiate the loran A pulses through the delay lines and then using the appropriately delayed digital pulses to generate the loran A pulse. It requires additional loran A modulators but still represents a savings over delay lines with highly accurate taps and wide bandwidth. The technique has worked out quite satisfactorily since economical delay lines of relatively narrow bandwidth can provide delays in r-f pulses of widely varying frequencies.

As in a plane

From the fine delay lines, the pulses are sent to the doppler delay line. This variable-length, electrically controllable delay line simulates the doppler shift in a pulse picked up by a rapidly moving receiver. The doppler-shifted pulse is passed through a variable-length delay line whose delay is a function of current passing through its control winding. The control signal is a linear current ramp obtained by sampling the receiver’s course and speed with respect to the loran station. Ramp magnitude and direction are determined by
a special counter and digital-to-analog converter.

The signal that emerges from the doppler delay line is the simulated ground-wave signal, ready for mixing with other components, such as noise, c-w and interference, to make up the system output. Simulated sky waves are provided by still another set of delay lines. These, however, are 700-microsecond magnetostrictive lines, tapped every 25 microseconds. A manually variable 25-microsecond section is included so that any delay from 0 to 700 microseconds is selectable by means of rotary switches. By passing a sample of the ground-wave signal through these lines, sky waves can be simulated and sent to the attenuator-mixer circuits.

Sharing the black boxes

Because of the normal delays between the master and each slave transmission in a loran chain, and because there is never an overlap in the time of the master, slave X and slave Y pulse trains, it is possible to use some common equipment including the pulse sequence generator, fine delay lines and doppler simulator. However, to properly route and sequence the pulses, it is necessary to define the regions of signal operation. The diagram on page 157 shows the timing of critical digital signals which form loran pulses. The signals shown are those produced when the system generates a 17,353.7-microsecond M-X and a 35,418.4-microsecond M-Y time difference in loran C mode, rate SO.

Signal LPSS defines the pulse repetition period. In the example, it occurs once every 50,000 microseconds for loran C rate SO. The rate is controlled by the rate switches on the control panel.

The master, slave X and slave Y triggers define the start times for the pulse trains. From the triggers, the pulse-region definition pulses LFRM, LFRX and LFRY are generated. These pulses are used throughout the system to separate pulse trains in circuits that are time shared.

During the definition pulse period, a separate 300-microsecond pulse is generated for each loran pulse. This is used by the modulator circuits to provide properly shaped loran A or C pulses at the correct time. Also, from the pulse sequence generator comes a signal designated LFPH, which is used in the loran C modulator to insert the proper phase code. An on signal from an LFPH flip-flop coincident with an on signal at LFPS will create a normal loran C pulse. The absence of an LFPH signal in the presence of an LFPS signal will cause the modulator to generate a pulse 180° out of phase with the normal pulse. Phase coding is used in the loran C system to help prevent ambiguity.

Making the tests

A multitude of very detailed and demanding receiver tests, such as threshold, sensitivity and noise-rejection tests are possible with the special attenuators built into the simulator’s output circuits. All generated pulses, master, slave X and slave Y ground waves and sky waves are amplified and subjected to manually controllable attenuators. Each attenuator, built in three sections: a 100-decibel unit, adjustable from 0 to 100 db in 10-db steps; a 10-db unit, with 1-db steps; and a 1-db unit continuously variable from 0 to 1 db. Any signal component from 500 millivolts to a few microvolts may be attenuated.

After the first attenuation, the ground-wave and sky-wave signals are summed and passed through a second three-stage attenuator for over-all signal level control.

At the output, selected noise and c-w interference are mixed with the simulated signals to produce a true loran-like radio wave. The white noise is provided by a General Radio Co. model 1390-B noise generator. c-w interference is produced in a selectable two-band variable frequency oscillator. The bands cover the loran C range (80.8 kHz to 120 kHz) and loran A (1.5 MHz to 2.0 MHz). Control of r-f interference as well as noise signal level can simulate almost any set of signal conditions.

The velocity of the simulated flight is manually adjustable from zero to 1,935 knots. Since the velocity is simply a function of how fast incremental data is processed by the system, velocity can be simulated by controlling the speed of the tape reader. The upper velocity limit of the system is a parameter of the tape reader now in the system. However, the system proper, exclusive of tape reader, is capable of processing data at rates far greater than the simulated 2,000 knots.

Future simulators

Integrated circuits will minimize the size of the simulator. The present model is built with discrete components and occupies 15 square feet of floor space. A complete avionics system built with integrated circuits could reduce the size by at least a factor of 10. For instance, the master delay register requires six flip-flop cards and 12 gate cards, each card approximately 5 inches by 6 inches. The register occupies a space of approximately 187 cubic inches. The same register can be built in a space only slightly larger than 0.1 cubic inch, using techniques developed for the Integrated Helicopter Avionics System.

Eventual size of the system will depend almost entirely on the degree to which components such as the delay lines, tape reader, noise generator and power supplies can be miniaturized. A bench model, truly portable, is possible.

The system could be used in many more ways with the addition of a digital differential analyzer, memory section and arithmetic computational circuits. These would eliminate the tapes, tape program and tape reader; self-contained programs for specified flight paths could be reprogrammed to provide any new flight path.

Reference
Now Commercial High Speed TTL I/C's in dual in-line packages 10 ns gates 82¢ per gate function.

Signetics very high speed TTL integrated circuits are now available for as little as 82¢ per gate function in distributor quantity. 19 ns gate delays and 35 MHz flip-flops make SP800 series especially suitable for high-speed computers and very high-speed counters. Molded dual-in-line packages offer lower cost, high performance and easy handling.

SP800A (+10°C to +55°C) Series available from distributor stock
SP800A (-55°C to +70°C) available on factory order only

A subsidiary of Corning Glass Works
811 East Arques Avenue, Sunnyvale, California
Tel.: (408) 739-7700 TWX: (910) 339-9220

SIGNETICS INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th></th>
<th>1000-2499</th>
<th>1 Type</th>
<th>100-999</th>
<th>Mixed</th>
<th>100-999</th>
<th>25-99</th>
<th>1-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP806A</td>
<td>Dual 4-Input Gate Expander</td>
<td>2.95</td>
<td>3.10</td>
<td>3.25</td>
<td>3.70</td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>SP808A</td>
<td>Single 8-Input NAND Gate</td>
<td>2.95</td>
<td>3.10</td>
<td>3.25</td>
<td>3.70</td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>SP816A</td>
<td>Dual 4-Input NAND Gate</td>
<td>2.95</td>
<td>3.10</td>
<td>3.25</td>
<td>3.70</td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>SP825A</td>
<td>J-K Binary Element</td>
<td>4.55</td>
<td>4.80</td>
<td>5.05</td>
<td>5.75</td>
<td>7.20</td>
<td></td>
</tr>
<tr>
<td>SP826A*</td>
<td>Dual AC Binary Element</td>
<td>8.00</td>
<td>8.40</td>
<td>8.80</td>
<td>10.10</td>
<td>12.60</td>
<td></td>
</tr>
<tr>
<td>SP840A</td>
<td>Dual Exclusive-OR Gate</td>
<td>3.30</td>
<td>3.50</td>
<td>3.70</td>
<td>4.20</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>SP855A</td>
<td>Dual 4-Input Power Gate</td>
<td>3.30</td>
<td>3.50</td>
<td>3.70</td>
<td>4.20</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>SP870A</td>
<td>Triple 3-Input NAND Gate</td>
<td>3.30</td>
<td>3.50</td>
<td>3.70</td>
<td>4.20</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>SP880A</td>
<td>Quadruple 2-Input NAND Gate</td>
<td>3.30</td>
<td>3.50</td>
<td>3.70</td>
<td>4.20</td>
<td>5.25</td>
<td></td>
</tr>
</tbody>
</table>

*Available after July 15

Electronics | September 19, 1966

Circle 159 on reader service card 159
Say you started out to design a hi-rel regulator that would replace bulky 7-13 cans. But still deliver at commercial prices. First you'd tap management for quite a few kilobucks and a room full of the best brains. Then, after both were spent, you'd find you'd developed a thermally-grown, oxide-passivated, silicon wafer. With brazed leads. Snug fitting slugs. And exclusive hermetic seal. And you'd pass the word along that it'd take more heat and current than the old metal cans. Now what? You'd expand the line and wind up with twenty-eight each 1 watt or 400 mw micro-glass, micro-miniature regulators that you could deliver in a week. Which is what we did right here.
Molten-solder temperatures won’t hurt G-E 150-grid relays

During degassing, G-E 150-grid relays get even hotter than the 356°F it takes to melt solder. And it’s good for them. High-temperature degassing removes much more of the organic volatiles that can contaminate a relay at normal operating temperatures.

Not many relays can stand the heat. G-E 150-grid relays can because they have a polyimide coil insulation and a welded can-to-header seal. Polyimide insulation withstands 50% more heat than conventional fluorocarbons. And a weld won’t melt like a soldered joint.

New materials and fabrication methods are constantly being developed and used by General Electric to make its sealed relays more reliable. Get the full story from your G-E Electronic Components Sales Engineer. Or write for bulletin GEA-80248, Section 792-39, General Electric Co., Schenectady, New York.

Specialty Control Department, Waynesboro, Va.
there are ordinary oscillators

...and then there's McCoy

McCoy manufactures the most complete line of high and low frequency oscillators for precise control of output signals. New TCXO's (Temperature Compensated Crystal Oscillators) offer reduced size, weight and input power advantages while eliminating the need for temperature control. Stabilities of 0.5 PPM over -40°C to +70°C are typical results without an oven. Regular crystal oscillators, oven controlled crystal oscillators and TCXO's are available in the 10 kc to 125 mc range. With frequency dividing circuitry, low frequency outputs can be provided with the stability of high frequency oscillators. Tuning fork oscillators provide control in the 1 cps to 20,000 cps audio and power range. McCoy's line of oscillators is too broad to be covered here—write for our new oscillator catalog giving full details on types for every purpose.
All the advantages of solid-state design and construction are yours in a wide variety of Hewlett-Packard 8½" x 11" and 11" x 17" x-y recorders. Compact, rugged construction; solid-state reliability and long life; all with optional metric calibration and unprecedented performance characteristics. Check the list, then talk to your Hewlett-Packard field engineer about the models most useful for your task. Or write for complete information: Hewlett-Packard, Palo Alto, California 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva.

Data subject to change without notice. Prices f.o.b. factory.

*EXCLUSIVE, CARE-FREE, DEPENDABLE PAPER HOLDDOWN.
WAYNE-GEORGE produces the most complete line of Optical Shaft-Angle Encoders

Whatever your shaft angle encoding requirement, Wayne-George almost certainly has an item meeting your needs either directly or with minor modification.

DIGISEC® NATURAL CODE®, ABSOLUTE ANGLE ENCODERS

<table>
<thead>
<tr>
<th>SERIES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-25</td>
<td>5 to 15 Digits per revolution</td>
</tr>
<tr>
<td>BD-55</td>
<td>5 to 19 Digits per revolution</td>
</tr>
<tr>
<td>BA-25</td>
<td>2° to 21° pulses</td>
</tr>
<tr>
<td>BA-35</td>
<td>Up to 36000 pulses</td>
</tr>
<tr>
<td>BA-55</td>
<td>2° to 21° pulses</td>
</tr>
<tr>
<td>BA-100</td>
<td>21° to 210° pulses</td>
</tr>
</tbody>
</table>

Natural Binary, Binary Coded Decimal, etc.

DIGISYN® CYCLIC CODE®, ABSOLUTE ANGLE ENCODERS

<table>
<thead>
<tr>
<th>SERIES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-100</td>
<td>17 to 20 Digits per revolution</td>
</tr>
<tr>
<td>RD-16/17</td>
<td>16 or 17 Digits per revolution</td>
</tr>
<tr>
<td>BA-25</td>
<td>2° to 21° pulses</td>
</tr>
<tr>
<td>BA-35</td>
<td>Up to 36000 pulses</td>
</tr>
<tr>
<td>BA-55</td>
<td>2° to 21° pulses</td>
</tr>
<tr>
<td>BA-100</td>
<td>21° to 210° pulses</td>
</tr>
</tbody>
</table>

Cyclic Binary, Binary Coded Cyclic Decimal, etc.

ARCSEC® INCREMENTAL ANGLE ENCODERS*

<table>
<thead>
<tr>
<th>SERIES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA-25</td>
<td>2° to 21° pulses</td>
</tr>
<tr>
<td>BA-35</td>
<td>Up to 36000 pulses</td>
</tr>
<tr>
<td>BA-55</td>
<td>2° to 21° pulses</td>
</tr>
<tr>
<td>BA-100</td>
<td>21° to 210° pulses</td>
</tr>
</tbody>
</table>

That's right... our entire optical encoder product line has been rendered virtually obsolete as a result of a dramatic technological breakthrough by WAYNE-GEORGE. That doesn't mean that the thousands of W/G encoders in everyday use throughout the world should be scrapped. Neither does it mean that we won't continue to provide replacements and parts for these encoders. All we are saying is that WAYNE-GEORGE, consistently the pace-setter in the optical encoder field, has just taken another giant step forward in improving the things that really count... accuracy, reliability, size and price.

Here is what we can offer you NOW

- Self-contained integrated circuit electronics — all models
- Operating life and MTBF in excess of 30,000 hours
- Accuracy and resolution to 1.25 arcseconds
- Case diameters from 1 inch to 10 inches
- Operating temperature range from -55°C to $+125^\circ$C
- Incremental and absolute reading models — all code formats

For more information about the most advanced family of optical encoders available anywhere, at any price, call or write:
RCA Engineers never let well enough alone!

When it comes to color-TV receiving tubes

But...
There are stimulating challenges for the engineer to still further improve damper tubes. Foremost is to reduce tube-voltage drop.

CHECK THESE RCA-6CL3 FEATURES:
- **Heater:** 6.3V @ 12A
- **Max. Peak Inverse Plate Voltage:** 5500V
- **Max. Peak Plate Current:** 1300mA
- **Max. Average Plate Current:** 250mA
- **Max. Peak Negative Heater-Cathode Voltage:** 5500V
- **Tube Voltage Drop:** 16V@350mA (instantaneous)
- **Max. Plate Dissipation:** 8.5W

The same performance profile is available in both 12CL3 (12.6V, 0.6A Heater) and 17CL3 (16.8V, 0.45A Heater) types.

Now...
They have a new cathode with a pressure-welded coating - the best ever for damper tubes. It permits tighter spacing with no danger of damage to the coating resulting from arc-over, sputtering or hot spots.

Result:
RCA's new 6CL3 with lower tube-voltage drop lessens the load on the horizontal-deflection output tube.

RCA Engineers are quite excited about the pressure-welded coating of the new cathode. They see it as giving them new opportunities for still further improvements in damper tubes and other types as well. But RCA Engineers are always pursuing new ideas, working on new designs to bring color-TV circuit designers tubes that will provide even better performance at the lowest possible cost.

For news of the latest color-TV receiving tube developments, call your nearest RCA District Office. For specific data on the 6CL3, write to RCA Electronic Components and Devices, Commercial Engineering 11901E-3, Harrison, N.J. 07029.

RCA DISTRICT OFFICES—OEM SALES—EAST, 2075 Millburn Ave., Maplewood, N.J. 07040, (201) 488-3900 • MID-ATLANTIC, 605 Merlon Drive, Haddonfield, N.J. 08036, (609) 428-6800 • MID-CENTRAL, 2511 East 46th St., Bldg. C2, Atkinson Square, Indianapolis, Ind. 46205, (317) 566-4001 • CENTRAL, 446 East Howard Ave., Des Plaines, Ill. 60018, (312) 827-0033 • WEST, 6363 Sunset Blvd., Hollywood, Cal. 90028, (213) 661-9171 • INTERNATIONAL OPERATIONS, RCA International Division, Central and Terminal Aves., Clark, N.J. 07066, (201) 382-1000 • 118 Rue du Rhone, Geneva, Switzerland, 35 75 00.

TAKE DAMPER TUBES FOR EXAMPLE:

First...
They designed the 6AU4GT. Then they developed the 6D04 with improved characteristics. This tube is now performing in millions of color-TV sets.

The Most Trusted Name in Electronics

Circle 165 on reader service card
Introducing the "Slimpac" family

high voltage — high current silicon rectifier series.

Semtech Corporation is proud to introduce a new "family" of high voltage high current low cost silicon rectifiers... "Slimpac." "Slimpac" consists of high density axial lead silicon assemblies, molded into rugged compact rectangular configurations. Internally, the device utilizes the Semtech high performance solid double heat sink junctions welded together for mechanical strength. Now being produced in quantities for off-the-shelf delivery the series is available in three basic current ratings:

"Slimpac" Senior — PIV: 2,500 to 15,000V (Low leakage 10 UA @ PIV, 25°C)
* Average Rectified Current: 2 amps @ 55°C / free air, 1.2 amps @ 100°C / free air
 Case Sizes: .687" H, .379" W, 1.5" to 6.5" L

"Slimpac" Regular — PIV: 5,000 to 25,000V (Low leakage 0.1 UA @ PIV, 25°C)
* Average Rectified Current: .5 amps @ 55°C / free air, .33 amps @ 100°C / free air
 Case Sizes: .50" H, .25" W, 1.125" to 4.25" L.
 Also available. "Slimpac" Fast Recovery (Tr 150 ns max.)

"Slimpac" Junior — PIV: 15,000 to 45,000V (Low leakage 0.1 UA @ PIV, 25°C)
* Average Rectified Current: .050 amp at 55°C / free air, .030 amp @ 100°C / free air
 Case Sizes: .25" H, .25" W, 1.5" to 3.5" L.

The entire "Slimpac Family" has corona free construction and meets the most stringent life and environmental requirements. For use on commercial, industrial and military applications, write for technical literature or contact your nearest representative.

* Average Rectified Current rating can be doubled in oil environment.

"Slimpac"

The entire "Slimpac Family" has corona free construction and meets the most stringent life and environmental requirements. For use on commercial, industrial and military applications, write for technical literature or contact your nearest representative.

* Average Rectified Current rating can be doubled in oil environment.
This is a naked YAES terminal.

We've stripped it to show why Burndy YAES Insulug terminals are unique.

Once the insulation is off, it's easy to see that this terminal is a one-piece unit. That's a Burndy exclusive. Look closely and you'll see that the seam on the terminal body has been brazed. Another unique Burndy feature. And all YAES terminals are fully plated. You won't find any exposed copper edges. In fact, there are no unplated edges where the terminal is separated from the carrier. Look inside the terminal body, too. The surface has been serrated to insure intimate contact.

Additionally, each terminal is marked with the range of wire acceptable. As a double check, the tough, nylon insulation is color-coded to indicate wire size. Installation is quick and easy with either MS 25037 or MR 8-83 ratchet-controlled hand tools.

Automatic installation tools are available, too. Burndy's Bandolug® equipment, the SME and the SME 10, handles wire ranging from 22 to 10. And they handle them quickly, simply and inexpensively. More so than any other tools.

Burndy YAES terminals meet both the Class I and II requirements of MIL-T-7928 when installed with appropriate tools. There really is more than meets the eye when it comes to Insulug terminals and tools. Write for Bulletin YAES-66 and see for yourself.
Special Introductory Offer

To new members of the **ELECTRONICS and CONTROL ENGINEERS' Book Club**

ANY ONE

YOURS WITH A CHARTER MEMBERSHIP AND SENT WITH YOUR FIRST SELECTION

VALUES FROM $9.75 TO $16.50

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Author</th>
<th>Publisher's Price</th>
<th>Club Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Semiconductor Technology</td>
<td>W. R. Vision</td>
<td>$12.50</td>
<td>$9.35</td>
</tr>
<tr>
<td>Control System Device by J. Savant, Jr.</td>
<td></td>
<td>$12.50</td>
<td>$9.35</td>
</tr>
<tr>
<td>Digital Computer Principles, Field-Effect Transistors</td>
<td>L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>Digital Computer Principles, Field-Effect Transistors</td>
<td>L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>Field-Effect Transistors by L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Integrated Circuits. Prepare by Engineering Staff of Motorola, Inc.</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Microelectronic Circuits and Applications by J. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Network Analysis and Design W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Pulse Electronics by R. Latush, Inductance</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Network Analysis and Design W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Network Analysis and Design W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Silicon Semiconductor Technology</td>
<td>W. R. Vision</td>
<td>$12.50</td>
<td>$9.35</td>
</tr>
<tr>
<td>Control System Device by J. Savant, Jr.</td>
<td></td>
<td>$12.50</td>
<td>$9.35</td>
</tr>
<tr>
<td>Digital Computer Principles, Field-Effect Transistors</td>
<td>L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>Digital Computer Principles, Field-Effect Transistors</td>
<td>L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>Field-Effect Transistors by L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Integrated Circuits. Prepare by Engineering Staff of Motorola, Inc.</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Microelectronic Circuits and Applications by J. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Network Analysis and Design W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Pulse Electronics by R. Latush, Inductance</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Network Analysis and Design W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Silicon Semiconductor Technology</td>
<td>W. R. Vision</td>
<td>$12.50</td>
<td>$9.35</td>
</tr>
<tr>
<td>Control System Device by J. Savant, Jr.</td>
<td></td>
<td>$12.50</td>
<td>$9.35</td>
</tr>
<tr>
<td>Digital Computer Principles, Field-Effect Transistors</td>
<td>L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>Digital Computer Principles, Field-Effect Transistors</td>
<td>L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>Field-Effect Transistors by L. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Integrated Circuits. Prepare by Engineering Staff of Motorola, Inc.</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Microelectronic Circuits and Applications by J. Smith, W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Network Analysis and Design W. R. Hun, J. Davey</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>Pulse Electronics by R. Latush, Inductance</td>
<td>$10.00</td>
<td>$7.50</td>
<td></td>
</tr>
</tbody>
</table>

How many of the books shown here do you wish you had immediately at hand?

Select one for JUST A DOLLAR! Choose from Silicon Semiconductor Technology, Digital Computer Principles, Field-Effect Transistors, and seven other valuable books in your introduction to membership in **The Electronic and Control Engineers' Book Club**.

If you're missing out on important technical literature—if today's high cost of reading curbs the growth of your library—here's the solution to your problem. The **Electronic and Control Engineers' Book Club** was organized for you, to provide an economical technical reading program that cannot fail to be of value to you.

All books are chosen by qualified editors and consultants. Their thoroughgoing understanding of the standards and values of the literature in your field guarantees the authoritativeness of the selections.

How the Club operates. Periodically you receive free of charge **The Electronic and Control Engineers' Book Bulletin**, as issued. This gives complete advance notice of the next main selection, as well as a number of alternate selections. If you want the main selection you do nothing; the book will be mailed to you. If you want an alternate selection, or if you want no book at all for that particular period, notify the Club by returning the convenient card enclosed with each Bulletin.

We ask you to agree only to the purchase of four books over a two-year period. Certainly out of the large number of books in your field offered during this time there will be at least four you would buy anyway. By joining the Club you save yourself the bother of searching and shopping, and save in cost about 15 per cent from publishers' prices.

Send no money now. Just check any two books you want—one for only $1.00 and one as your first Club selection—in the coupon below. Take advantage of this offer now, and get two books for less than the regular price of one.

THIS COUPON IS WORTH UP TO $15.50

The Electronic and Control Engineers' Book Club, Dept. EE 0919
290 West 42nd Street, New York 36, N. Y. 10036

Please enroll me as a member of the **Electronic and Control Engineers' Book Club**. I am to receive the two books I have indicated at the right. You will bill me for my first selection at the special club price and $1 for my new membership book, plus local tax, and a few additional cents for delivery costs. (The Club assumes this charge on prepaid orders.) Subsequent selections will be described to me in advance and I may decline any book. I need take only 4 selections or alternates in two years of membership. (This offer good in U.S. only.)

PLEASE PRINT

Name
Address
City, State, Zip Code
Company

NO RISK GUARANTEE If not completely satisfied, you may return your first shipment within 10 days and your membership will be canceled.

Check 2 Books: We will send the higher priced book for only $1.00, and the other as your Club Selection:

- Optoelectronic Devices and Circuits, $12.50
- Control System Design, $10.65
- Silicon Semiconductor Technology, $10.65
- Data Transmission, $12.50
- Integrated Circuits, $12.50
- Semiconductor Network Analysis and Design, $10.65
- Microelectronic Circuits and Applications, $8.30
- Field-Effect Transistors, $9.30
- Digital Computer Principles, $9.30
- Pulse Electronics, $10.00

Electronics | September 19, 1966
G-E NORYL® puts itself out (UL group I)
just as easily as it takes to water

Self-extinguishing, non-dripping by UL procedures and hydrolytic stability are two examples of the excellent balance of properties offered by General Electric's new engineering thermoplastic. Noryl is a tough, dimensionally stable material that maintains its balance of properties up to approximately 200°F. Its low density (specific gravity 1.06) gives you more parts per pound for additional value.

A UL rating of self-extinguishing, Group I, is combined with low creep and ease of processing to close tolerances. It is an excellent choice for a variety of electrical and electronic components such as the connector shown above. Toughness, strength in thin sections, and precision moldability make Noryl an ideal material for a variety of business machine housings as well as internal components.

Noryl is already replacing other materials in water applications such as the pump impeller assembly shown above. Like connectors, the success of Noryl in this application includes low creep, low water absorption, high modulus and easy processing. Noryl also offers outstanding hydrolytic stability and is unaffected by aqueous media, hot and cold water, detergents and many acids and bases. Noryl has NSF approval.

Look into Noryl today, the new resin combining an overall balance of properties with value and easy processing. Designed for use where the ultra-high performance of PPO® polyphenylene oxide is not demanded, Noryl is an excellent material for many appliances and automotive fixtures as well as water distribution parts and electrical components. For more information on both the SE-1 and the 731 grade, call your Chemical Materials Sales Representative, or write Section 615, Polymer Products Operation, General Electric Company, One Plastics Avenue, Pittsfield, Massachusetts.

Leader in Engineering Plastics
PPO® LEXAN® NORYL® PHENOLICS

Circle 169 on reader service card
Are your thin films ready for automatic mass production?

IF... your optical or electronic thin films are in demand, and
IF... cycling your 18 or 20-inch coaters is slowing you down, and
IF... you'd really like to program mass production of thin films in a
fully automatic evaporator,
YOU'LL PICK... our new BA-710V-A evaporator, because it features:

- Fully automatic 5000 liter/second pumping system
- Fully automatic glow discharge cycle available
- Fully automatic coating cycle
- 28-inch diameter stainless bell jar
- Standard geometrically-proved accessories
- Ultimate vacuum less than 5 x 10^-8 torr

IF... automatic mass production is your problem,
the BA-710V-A might just solve it.

Write for free details today

Bendix-Balzers Vacuum, Inc.
1645 ST. PAUL STREET, ROCHESTER, N.Y. 14621

Visit us at the AVS Show, Booth 88

Electronics | September 19, 1966
What's the easiest way to make this part?

LET FANSTEEL DO IT! Tell us the component part you need. We'll combine our diverse technologies with your application know-how and give you a better, more economical part.

Want a for instance? Our new FANTORK™. Semiconductor Hex Head Heat Sink. Previous designs used scarce wrought OFHC copper for base. Copper shank threads were stripping during assembly, wouldn't stand excessive torque.

1. Experience told us that we could use Fansteel 2900 electrical grade sintered copper for the base.

2. Our engineers improved on the original design by counter-sinking and brazing a steel threaded shank into the base.

3. Nickel-plated molybdenum and tungsten backing wafers were a problem. We had the established plating technology to do it right.

Results: FANTORK packaging technology provided comparable heat dissipation to meet high current demands...shank torque was increased by a factor of three and eliminated costly re-threading after assembly...Fansteel plating of wafers assured positive wetting action.

All our customers do:
mount the silicon and assemble—presto! A component made to specifications! How easy can you have it?
Don't need FANTORK? How about precision parts for thy-
trons, ignitions, contactors, mercury vapor arc tubes, capacitors? We can make this job easy for you, too.
Let us prove it. Contact your Fansteel representative...or write us. Just say, "O.K., show me how you would..."
THE LIMITS OF UNDERSTANDING —

How much can displayed information be condensed and still be intelligible? How much detail is necessary to identify a TV image? To understand speech? Sperry is experimenting in all these areas. A pseudo-random scanning technique, for example, has demonstrated that simple shapes can be identified on a television screen at bandwidths as narrow as a kilocycle. In speech processing, methods are being developed for encoding and decoding speech to reduce bandwidth while retaining good understandability, speaker recognition, and certain aesthetic qualities present in normal speech. These techniques will permit the transmission of many, high quality simultaneous conversations over a single voice channel. In visual psychology, research is attempting to correlate electrical waveforms generated in the human brain with present theories of depth perception.

RANGING IN —

Through a better understanding of the wideband properties of microwave networks and the use of new pulse compression techniques, Sperry scientists foresee order-of-magnitude improvements in radar range resolution. Their achievements point the way to true imaging in battlefield surveillance and satellite identification radars as well as more accurate determination of target trajectory and greater clutter suppression. Other projects in the works include the synthesis of new components such as microwave pulse compression filters, and the generation of microwave phase-coherent energy for use as a diagnostic tool in antenna transient studies.

SIGNAL SUCCESS —

Real headway in signal design and processing is being made at the Center. New techniques — coherent and incoherent — have been found for achieving sub-clutter and sub-jamming visibility. Sophisticated computer search is aiding the discovery of radar waveforms that are both practical and effective. Other aspects of modern radar theory currently under study include phased array radars, sequential detection techniques, and video schemes such as pulse width discrimination and side lobe blanking.

IN DEEP WATER —

Sperry is conducting work in a variety of disciplines which, taken together, form an integrated capability in undersea electronic and acoustic technology. For example, investigation of underwater acoustic channels is aimed at achieving major improvements in communication between submarines and between submarines and surface ships. New navigation and control techniques for deep submersible vehicles will minimize fuel consumption during the performance of specific maneuvers. Human factors research is devoted to the critical area of man-machine compatibility such as in the design and use of displays.

SPERRY RAND RESEARCH CENTER • Sudbury, Massachusetts 01776
Polaroid Land film makes you wait 10 seconds for an oscilloscope picture
The suspense can be unbearable.

We're sorry we can't do anything about that 10-second wait.
But if you can bear up under the strain, you'll get a sharply detailed, high-contrast, trace record.
You can study it, attach it to a report, send it as a test record along with a product shipment, or file it for future reference.
You also get a choice of four films for oscilloscope recording in pack, roll, and 4 x 5 formats.
The standard film has an ASA equivalent rating of 3000. And if you think that's fast, you haven't heard of our special film called Polaroid PolaScope Land film.

With an ASA equivalent rating of 10,000, it's the fastest thing in films. It can actually record a trace too fleeting for the human eye (for instance, a scintillation pulse with a rise time of less than 3 nanoseconds).
Of course, Polaroid Land films are as quick to point out a mistake as they are to point out a success.

If your trace shows an error, you know it right away. And you never go through the tedium of darkroom procedure only to find out that your blip was a blooper.
To use these films on your scope, you need a camera with a Polaroid Land Camera Back. Most manufacturers have them. Such as: Analab, Beattie-Coleman, BNK Associates, Fairchild, EG&G, General Atronics, Hewlett-Packard, and Tektronix.
You can get complete details by writing to one of these manufacturers or to Polaroid Corporation, Sales Department, Cambridge, Massachusetts 02139.
By the way, if 10 seconds fray your nerves, just imagine what it was like when Polaroid Land film made you wait 60 seconds to see your trace.
"Polaroid" and "PolaScope"®
Antenna strain insulators of 240,000 lbs. ultimate strength?

Lapp designs and builds them.

The double-strain insulator assembly shown here tested to 240,000 lbs. ultimate strength. It isn’t the biggest either. Already designed is a similar triple-strain insulator with a strength of 360,000 lbs. Lapp also has delivered compression cone guy insulators as high as 620,000 lbs. ultimate strength, and has designed them to 750,000 lbs. strength.

Lapp makes individual insulators, insulator assemblies, and complete insulator systems to handle most any electrical and mechanical requirement. Lapp does the complete job from drawing board, through testing, to delivery. We’ve been doing this work since “radio” was born. So, you can count on Lapp for knowledge, ingenuity, facility and quality.

Got a big insulator problem? Drop us a line or give us a call so we can get started on the solution. Radio Specialities Division, Lapp Insulator Co., Inc., LeRoy, N.Y. 14482.
The high-performance photoconductor components developed and utilized in Hewlett-Packard's own chopper and chopper-stabilized dc amplifiers and switches are now commercially available, featuring HP's standard reliability and optimum performance in terms of temperature, speed, offset and drift.

The basic photoconductor used in these photochoppers, modulators, and photo-controlled resistors (PCR's) was developed through years of intense use in numerous HP amplifiers and switches and is still the "heart" of HP Associates' family of photo-conductor components.

The photochoppers contain two synchronous SPDT switches for applications requiring series-shunt modulation and demodulation, while the photomodulators contain one SPDT switch for applications requiring modulation only. The PCR's are ideally suited for applications where SPST switching is required. All of the devices offer wide dynamic range, low driving power consumption, long life and freedom from drift.

For evidence of performance see the chart. For complete specifications see our data sheets. Call your local HP field engineer—or write HP Associates, 620 Page Mill Road, Palo Alto, California 94304, Tel. (415) 321-8510; Europe: 54 Route des Acacias, Geneva.

Data subject to change without notice. Prices f.o.b. factory.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Typical Impedances</th>
<th>Drive</th>
<th>Price 1-9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10-99</td>
</tr>
<tr>
<td>4501</td>
<td>DPDT 4-cell Mod/Demod</td>
<td>Mod. Input 1.25MO</td>
<td>250V, 2.5mA DC Internal Oscillator 225Hz</td>
<td>$39.50</td>
</tr>
<tr>
<td></td>
<td>Internal Oscillator</td>
<td>Mod. Output 125KΩ</td>
<td></td>
<td>33.50</td>
</tr>
<tr>
<td>4502</td>
<td>DPDT 4-cell Mod/Demod</td>
<td>Mod. Input 15KΩ</td>
<td>250V, 2.5mA DC Internal Oscillator 95Hz</td>
<td>$39.50</td>
</tr>
<tr>
<td></td>
<td>Internal Oscillator</td>
<td>Mod. Output 7.5KΩ</td>
<td></td>
<td>33.50</td>
</tr>
<tr>
<td>4503</td>
<td>DPDT 4-cell Mod/Demod</td>
<td>Mod. Input 5MO</td>
<td>170V peak 2.5mA 1kHz max.</td>
<td>$37.50</td>
</tr>
<tr>
<td></td>
<td>for Ext. Oscillator</td>
<td>Mod. Output 125KΩ</td>
<td></td>
<td>32.00</td>
</tr>
<tr>
<td>4504</td>
<td>DPDT 4-cell Mod/Demod</td>
<td>Mod. Input 200KΩ</td>
<td>170V peak 2.5mA 1kHz max.</td>
<td>$37.50</td>
</tr>
<tr>
<td></td>
<td>Internal Oscillator</td>
<td>Mod. Output 5KΩ</td>
<td></td>
<td>32.00</td>
</tr>
<tr>
<td>4505</td>
<td>SPDT 2-cell Mod. only</td>
<td>200Hz chopping freq.</td>
<td>170V peak 2.5mA 1kHz max.</td>
<td>$22.50</td>
</tr>
<tr>
<td></td>
<td>High Z</td>
<td>Mod. Input 2MO</td>
<td></td>
<td>19.00</td>
</tr>
<tr>
<td>4506</td>
<td>SPDT 2-cell Mod. only</td>
<td>200Hz chopping freq.</td>
<td>170V peak 2.5mA 1kHz max.</td>
<td>$22.50</td>
</tr>
<tr>
<td></td>
<td>Low Z</td>
<td>Mod. Input 75KΩ</td>
<td></td>
<td>19.50</td>
</tr>
<tr>
<td>4507</td>
<td>SPST PCR</td>
<td>"ON" R 150KΩ</td>
<td>150V peak 1kHz max.</td>
<td>$8.00</td>
</tr>
<tr>
<td></td>
<td>High Z</td>
<td>"OFF" R Min.100MO</td>
<td></td>
<td>6.80</td>
</tr>
<tr>
<td>4508</td>
<td>SPST PCR</td>
<td>"ON" R 6.8KΩ</td>
<td>150V peak 1kHz max.</td>
<td>$8.00</td>
</tr>
<tr>
<td></td>
<td>Low Z</td>
<td>"OFF" R Min.100MO</td>
<td></td>
<td>6.80</td>
</tr>
</tbody>
</table>
Make full use of your creative energy on a responsible assignment in General Dynamics' highly diversified Research and Engineering Departments. Contribute to the F-111 or other advanced aircraft projects; missile assignments; space systems and mission analysis or other challenging R&D requirements.

Enjoy living in 1965's All-America City, where superior housing, schools, sports and recreation, graduate studies and mild weather are all part of the package.

Call collect—817-PE 2-4811 extension 3551 or send a resume of your education and experience to J. B. Ellis, Industrial Relations Administrator, Engineering, General Dynamics, Fort Worth Division, P. O. Box 748E, Fort Worth, Texas. An equal opportunity employer.

Information Technology
- Mission Simulation, Display Technology
- Navigation, Stability, Guidance & Control
 - Stability and Control, Computer Design, Servo Analysis

Electronic Systems
- ECM, Penetration Aids

Electronic Age
- Microwave and Computer Design

Electronics Laboratories
- Circuit Design, Flight Test Instrumentation

Electrical Installation Design

GENERAL DYNAMICS
Fort Worth Division
Alpha not only makes the broadest line of wire, cable and tubing in the business.

With the help of quality control men like Jack, we also take a good deal of it apart in one of the industry's most comprehensive line and lab quality control programs.

When 1,000,000 feet may end up with as many as 1,000 different customers, we figure we need to be extra careful.

So we inspect all long lengths as they're run off. And then re-inspect all over again when they're cut and spooled.

We insist all materials meet Alpha's specifications (better than mil specs); we won't use reprocessed materials; and we test coax 100% for dimension and out-of-roundness (and monitor and record the results).

And with 1 in 7 of Alpha's production workers on quality control, we're staffed for it 24 hours a day.

Alpha quality control helps our products sell and stay sold. It's good business.

That's why we'd be very cut up if Jack or his colleagues ever let us down.

Like to know more about Alpha products? Write us. Or call your nearest Alpha distributor.
The EIMAC 4CV250,000C is the world’s highest power tetrode. It is designed for service in super-power broadcast transmitters, and was developed on the foundation of technology which produced its “little brother,” the hundred-kilowatt 4CV100,000C, now used by the USIA. The giant new vapor-cooled tube combines high power gain with long life. Vapor cooling is accepted as an efficient and economical method of cooling in advanced broadcast systems. As EIMAC’s latest addition to its line of power tetrodes, the 4CV250,000C is ideally suited for service as an audio modulator, a pulse modulator, or a regulator, and as an rf amplifier in linear accelerators. Ready now for the super-power transmitters of the future, this 250 kW tetrode is another example of how EIMAC’s experience in power tube technology paves the way for the developments of tomorrow. For a power tube to fit your needs—big or small—write Product Manager, Power Grid Tubes, or contact your nearest EIMAC distributor.

TYPICAL OPERATION
(as a Plate-Modulated Power Amplifier at Frequencies below 30 MHz)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Plate Voltage</td>
<td>14 kV</td>
</tr>
<tr>
<td>DC Screen Voltage</td>
<td>800 V</td>
</tr>
<tr>
<td>Peak AF Screen Voltage (for 100% Modulation)</td>
<td>800 V</td>
</tr>
<tr>
<td>DC Grid Voltage</td>
<td>800 V</td>
</tr>
<tr>
<td>DC Plate Current</td>
<td>29 Amps</td>
</tr>
<tr>
<td>DC Screen Current</td>
<td>3.6 Amps</td>
</tr>
<tr>
<td>DC Grid Current</td>
<td>1.8 Amps</td>
</tr>
<tr>
<td>Peak RF Grid Voltage</td>
<td>1200 V</td>
</tr>
<tr>
<td>Grid Driving Power</td>
<td>2.5 kW</td>
</tr>
<tr>
<td>Plate Output Power</td>
<td>292 kW</td>
</tr>
</tbody>
</table>

EIMAC
Division of Varian
San Carlos, California 94070

Circle 178 on reader service card
CORNING®
C-Style Resistors:
1 part to buy,
1 part to inventory,
1 part to handle

Why are you still buying 22684 parts... and T-O parts... and Characteristic D parts... and "comp" type parts? New CORNING C-Style Resistors meet and beat all four of those specs!

Think of the dollars this true multi-use resistor can save you—in the paperwork of purchasing and in the lower unit price you enjoy on quantity orders for a single part. Think how it can simplify your inventory and simplify handling in assembly. Our new CORNING C-Style Resistors can make your job a whole lot easier, your circuits a whole lot better. Look at the classic CORNING Glass Tin Oxide Film Resistor performance documented in the table. Then send the coupon for your test samples and data.

PERFORMANCE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>New CORNING C-Style Resistors</th>
<th>MIL-R-22684B</th>
<th>MIL-R-10509F Characteristic D*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Rating</td>
<td>70°C 70°C 125°C</td>
<td>70°C 70°C</td>
<td></td>
</tr>
<tr>
<td>Wattage C.4 (RL075) Resistors, 51 ohms to 150 K</td>
<td>1/4 1/4 1/10</td>
<td>1/4 1/4</td>
<td></td>
</tr>
<tr>
<td>Wattage C.5 (RL205) Resistors, 10 ohms to 499 K</td>
<td>1/4 1/4 1/4</td>
<td>1/4 1/4</td>
<td></td>
</tr>
<tr>
<td>Load Life Δ, R</td>
<td>1.0% 0.5% 0.5%</td>
<td>2% 2%</td>
<td></td>
</tr>
<tr>
<td>Design Tolerance Δ, R</td>
<td>-2 to +4% ±2.8%</td>
<td>-1.5 to +3%</td>
<td></td>
</tr>
<tr>
<td>Temperature Coefficient from -55°C to +175°C</td>
<td>±100 ppm</td>
<td>±200 ppm</td>
<td>±200 to +500 ppm</td>
</tr>
<tr>
<td>Dielectric Withstanding Voltage Δ, R</td>
<td>±0.5%</td>
<td>±0.5%</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Moisture Resistance Δ, R</td>
<td>±0.50%</td>
<td>±1.50%</td>
<td>±200 to +500 ppm</td>
</tr>
<tr>
<td>Short Time Overload Δ, R</td>
<td>±0.25%</td>
<td>±0.50%</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Temperature Cycling Δ, R</td>
<td>±0.25%</td>
<td>±1.00%</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Effect of Soldering Δ, R</td>
<td>±0.10%</td>
<td>±0.50%</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Low Temperature Operation Δ, R</td>
<td>±0.50%</td>
<td>±0.50%</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Shock Δ, R</td>
<td>±0.10%</td>
<td>±0.50%</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Vibration Δ, R</td>
<td>±0.10%</td>
<td>±0.50%</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Terminal Strength Δ, R</td>
<td>±0.10%</td>
<td>±0.50%</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Voltage Coefficient</td>
<td>±0.001%/Volts</td>
<td>±1.0%</td>
<td></td>
</tr>
<tr>
<td>Shelf Life Δ, R</td>
<td>+10%/Year</td>
<td>+0.001%</td>
<td></td>
</tr>
</tbody>
</table>

*For type-marked, military lead MIL-R-10509F, Characteristic D, Resistors, specify CORNING NA-Style Resistors.

CORNING GLASS WORKS, 3913 Electronics Dr., Raleigh, N. C. 27602.
Send complete data, test samples of new CORNING® C-Style Resistors.

Name __________________________ Title __________________________
Company __________________________
Address __________________________
City ___________________________ State ______ ZIP ______

CORNING ELECTRONICS
up.
down.
on the ground.
the place for new electronics advances is Lockheed.

Whatever environment you now work in—land, sea, or space—you’ll find it to your advantage to look into opportunities at Lockheed. Take Agena and Poseidon for example. Major technical expansion is under way on both of these vital programs. And both Agena and Poseidon share the need for new concepts and major technical advances. Typical Agena assignments will include: digital communication systems for data transmission and command, digital and analog flight control systems, optical and infrared sensors, solar power panels, and power conditioning. Poseidon’s general area of requirements ranges from weapon effects on electronics to the design and use of state-of-the-art test check-out equipment in one of the largest checkout programs ever mounted. Undersea, Lockheed is active in the expanding field of deep submersibles and ocean mining. Now under way—the Navy’s unique Deep Submergence Rescue Vehicle and Lockheed’s Deep Quest research vehicle designed to operate down to 8000 feet. On land, Lockheed is engaged in the development of unique land vehicle systems, information systems for states and hospitals, and many other important programs. For more complete information, you are invited to write Mr. R. C. Birdsall, Professional Employment Manager, P.O. Box 504, Sunnyvale, California. Lockheed is an equal opportunity employer.
Our pedigreed connector is traceable!

So revolutionary was the design of our CH-AMP* subminiature pin and socket connector, we gave it a "pedigree".

Total traceability is accomplished by etching a date code on each assembled connector half with an electric pencil. The number designates a specific job lot which is traceable through control cards maintained by Receiving Inspection, Stock, Manufacturing, Final Assembly and Inspection personnel.

In this way, we accumulate a useful history from which we can prevent any product discrepancy. Traceability exists right down to the operation or component involved—even to the individual operator!

But traceability is only half of this quality story. Reliability, too, deserves special mention. Final unit samples are subjected to numerous tests for such critical factors as contact insertion/removal force, dielectric strength, bond integrity, air leakage, and environmental stress. The result is a high-density subminiature connector whose performance meets or exceeds requirements of MIL-C-26482, MIL-C-26500, and MIL-C-38300.

You would naturally expect a pedigreed connector like ours to boast many superior electrical and mechanical features. It does . . .

- Shift of the ring locks all contacts in place
- Four-spring member closed entry sockets for positive contact
- Stainless steel shell for conductivity, grounding and RF shielding
- Bayonet-coupled, keyed shells—fully sealed

And there’s a lot more. Why not write today for complete product specifications.

*Trademark of AMP Incorporated

AMP
INCORPORATED
Harrisburg, Pennsylvania

AMF products and engineering assistance are available through subsidiary companies in:
- Austria
- Canada
- England
- France
- Holland
- Italy
- Japan
- Mexico
- Spain
- West Germany
Complete Circuit at single transistor price: The Fairchild μA703 is the only monolithic I-F amplifier which limits without saturating, thus minimizing phase distortion for critical FM applications. Its low internal feedback gives you higher stability-limited gain than you'd get from a conventional circuit. The biasing network is included in the package, so that you need fewer external components. This allows you to reduce assembly costs and improve the reliability of your end product. The μA703 is a low-cost circuit. You'd have to spend many times its price just on the components you'd need to build an equivalent circuit. In fact, in some cases, the μA703C sells for less than you'd pay for the transistors alone:$3.00 in quantities of 100, even less in larger quantities. The device is available for use within two temperature ranges: μA703 for full range operation (−55°C to +125°C), and μA703C for intermediate range operation (0°C to +70°C). Use it as a limiting or non-limiting I-F amplifier, harmonic mixer, or oscillator up to 150MHz. For complete details get our data sheet or call the nearest Fairchild Distributor.

Specifications (T ambient = 25°C; f = 10.7MHz)
- Operating Voltage Range: 7-20V
- Stability Limited Gain: 41db
- Reverse Transadmittance: 0.003mmhos
- Forward Transadmittance: 35mmhos
- Output Conductance: 0.02mmhos
- Input Conductance: 0.3mmhos
- Output Voltage Swing: 10V
- Power Gain @ f = 100MHz: 20db
Probing the News

Advanced technology

Laser gyro comes in quartz

Navy to try out loop of light encased in rugged material; bulky rotors of old-fashioned spinners are eliminated along with drift caused by friction

By Donald Christiansen

Senior Associate Editor

That passenger getting the VIP treatment on a Convair headed for the West Coast last week wasn't a movie star; it was a first-of-its-kind laser gyroscope on its way to the Naval Ordnance Test Station in China Lake. And it was being tested in flight.

Honeywell Co. was delivering a laser gyro drilled from a solid block of quartz to make it compact and rugged. Up to now, laser gyroscopes were unwieldy, fragile and sensitive to shock and vibration.

An important asset of laser gyroscopes is their ability to sense extremely high rotation rates—because they have no rotors and no friction to cause drift.

The new quartz gyro was developed under a year-long Navy contract at Honeywell’s Systems and Research Center, St. Paul, Minn. The Navy intends to test the unit for shipboard use. It contains three planar or single axis gyro, one to sense rotation in each of the three orthogonal axes. A three-dimensional laser gyro—containing three planar ring gyro in a single spherical block — is considered the next step in development.

The concept upon which the laser gyro is based dates back to classical optics studies in the 1920’s by A. A. Michelson, H. G. Gale and others. Their work was based on conventional light sources. In more recent years, the Air Force was keeping close tabs on the optical gyro even before the laser came on the scene.

I. Advantages and uses

The laser gyro has an advantage over the conventional spinning gyroscope in that it has no spinning mass or rotor.

Rotor friction and rotor unbalance in an electromechanical gyro can lead to parasitic torques. Magnetic and temperature effects can also wreak havoc with a rotor gyro. The result is unwanted torques which cause drift, or random displacement from an initial position, of anywhere from 100° to 500° per hour. There are ways to bring drift down to as low as 0.001° per hour, but they are costly. For example, the rotor can be floated in a liquid or gas, or in electrostatic or magnetic fields.

The laser gyro has no major moving parts, bearings or temperature-sensitive flotation fluids. It has great dynamic range compared with the conventional gyro. Honeywell engi-
Earlier laser gyro's, like this, had many separate elements that were fragile and hard to keep in adjustment. The bright tubes are laser gain tubes.

Engineers believe that low rotational rates, ranging down to zero, should be theoretically measurable to accuracies of better than 0.001° per hour. And rates as high as 75 revolutions per second can be measured with high accuracy.

These high rotational rates suggest use of the laser gyro in gimballed aircraft navigators, where the gyro sensors are mounted or "strapped down" to the vehicle and rotate with it. In aircraft, instant starting and freedom from frequent trimming would be advantageous. A conventional gyro can take anywhere from 15 minutes to a half hour to get up to speed and to reach temperature stability.

The new gyro might also be considered for use in missiles that undergo extremely high acceleration during takeoff and maneuvering. Its rugged construction enables it to withstand high gravity forces and, unlike conventional gyro's, its operation is unrelated to g and g^2 terms.

II. Operation

In the laser gyro, called a ring laser sensor or a laser integrating gyro, two laser beams, one aimed in a clockwise direction and the other one counterclockwise, are generated within a common closed loop. If the optical path is stationary, the two beams take the same time to traverse the loop. But if the path is rotated about its axis, the effective path for one beam is shortened while the path for the other beam is made longer. As a result, the frequencies of the beams differ and this difference (∆f) can be detected and interpreted without difficulty. If the beams were generated by conventional thermal light sources they would exhibit a phase shift under the influence of rotation but a phase difference would be difficult to detect, even if the device were made exceptionally large.

The laser gyro can also be thought of as an oscillator operating at optical frequencies, with its oscillating frequencies determined by the length of its cavity.

Readout. To measure the gyro's rotation, the outputs from the two laser beams are combined so that the beams are nearly parallel. The beam wavefronts will interfere with one another to create a fringe or bar pattern. In effect the waves are mixed and a beat note results.

The bars will move in a direction determined by the direction of rotation of the laser gyro, and the number of bars per unit of time will be proportional to the rate of rotation. Each bar then represents an angle through which the gyro has moved. A pair of photocells can sense the rate and direction of rotation. If the photocells' output is fed to a pulse counter, an integrating rate gyro results.

Handle with care. Fragile laser beam tubes and independently mounted mirrors caused early experimental units to lose adjustment easily. A separate, bulky frame was needed to provide a firm mounting base.

Although Honeywell's laser gyro has three sides, this configuration is not mandatory. Sperry, for example, has constructed both three- and four-sided units. The salient point is that ∆f is directly proportional to the area enclosed by the configuration: ∆f = K A s / L λ, where A is the area enclosed, s is the rotation rate, L is the optical path length and λ is the wavelength.

Both Sperry and Honeywell have now settled on the triangular configuration for two reasons. First, an odd number of mirrors will be self-aligning in the horizontal plane and second, fewer parts mean easier alignment and less light scattering.

III. Monolithic quartz block

The success of the Honeywell development is based on the use of a solid block of high quality fused quartz. Holes and cavities are machined into the block for the beam paths, the anodes, cathode and fill port. The mirrors are mounted to
Model of triad laser gyroscope comprising three orthogonal “planar” gyros in one solid quartz sphere. The three separate laser beam paths are distinguished by different colors. The three readout prisms are evident.
mirrors are molecularly mounted to give rugged construction...

the corners of the block by molecular adhesion so that the mirrors and block together form a rugged unit. To achieve the molecular adhesion, the contact surfaces of the quartz and the mirrors are ground flat and highly polished.

The interior of the quartz block is pumped down and filled with a helium-neon mixture to a pressure of about 5 millimeters of mercury. About 1,000 volts is applied between cathode and anodes to provide lasing action.

Physical tolerances of the block must be close enough to guarantee that lasing will occur automatically. Honeywell engineers say they overcame some tough problems but that the machining is within the state of the art. The simplicity of the quartz block construction could mean that laser gyros will be a fifth the cost of conventional gyros.

IV. Not all roses

Some limitations are inherent in the laser gyro, but there are ways to get around most of them. As the gyro rotates more and more slowly, the effect of unwanted coupling between the counterrotating beams becomes more serious, until at some threshold value of Δf the beams lock: Δf goes to zero abruptly. A way around this is to bias the beam, or effectively create an artificial Δf when the gyro is at rest.

Without biasing, sensing rotation below several thousand degrees per hour is difficult. With biasing, rates as low as 0.01° per hour even in small gyros are thought to be feasible. But, Honeywell engineers are quick to add, internal biasing schemes bring on secondary problems such as the need for higher gain to overcome added losses, additional backscatter that will raise the threshold Δf even higher and the requirement for bias stability of about one part in 10^6. As a result, Honeywell feels that external biasing schemes are far more satisfactory.

Another limitation of the laser gyro is null shift—an unwanted shift in the input-output zero. Its effect can be minimized by a counterbalancing discharge current. Noise may be introduced when the beams oscillate at more than one mode, but careful design or adjustment of gain can usually avoid the problem.

The input-output curve is extremely linear up to very high rotation rates (above 75 revolutions per second), at which point it deviates about one part in 10^6 from a straight line.

Readout techniques haven't caught up to the high sensing speeds of which the laser gyro is capable, Honeywell reports. At Sperry, engineers put temperature stability at the head of the list of problems to overcome. Honeywell confirms this, pointing out that the laser gyro is instant starting from a mechanical-electronic standpoint, but that thermal effects are still a problem.

V. Triple threat

For some applications, Honeywell thinks, the construction of the three sensing axes in a single quartz block could be an advantage. In the model of a triple-axis spherical laser gyro, shown on page 185, each triangular path is identified by color. One reason, Honeywell notes, for selecting three separate single-axis components mounted orthogonally is that one unit can be replaced easily.

The concept of the spherical three-axis laser gyro was originated by Honeywell. It may be pursued in a $500,000 contract awarded to the company by the Advanced Research Projects Agency. The contract will be managed by the Army Missile Command.

The ring laser principle is not limited to gyroscope applications. Sperry is studying the device for measuring gas flow where true mass flow...
Pick a peck of plastic zeners at the volume price
NEW 1 watt molded design...3.3 to 15 volts

There's a harvest of value in this bumper crop of the new International Rectifier 1ZM molded plastic zener line. In addition to low cost, IR's new one-watt plastic design offers best selection in the most widely used voltage ranges, from 3.3 to 15 volts, with 5%, 10% and 20% tolerances available in quantity in every rating.

Performance of the 1ZM zener features sharp knees, low thermal impedance and excellent dielectric characteristics. Environmental features include superior shock, vibration and thermal shock capabilities. Moisture resistance to the stringent MIL-STD 202C, Method 106A further demonstrates the structural integrity available in the 1ZM plastic design. In all, this new zener line offers full economy plus the assurance of a lifetime guarantee—exclusive with all IR zeners.

Fast delivery of your particular requirement has been assured by full "stocking" by the 50 Authorized Industrial Distributors IR maintains across the nation, and by extensive inventories ready at the El Segundo plant.

INSPECT THE SPECS ON PLASTIC ZENERS. Whatever your need: process control, instrumentation, switching, measurement, modulation, energy conversion, transmission or generation—you'll discover time and dollar savings by getting all the details. Write for IR's new 1ZM zener bulletin C-102, and full line Catalog C-66, it's free and loaded with complete data. For immediate help, contact your nearest IR Sales Office or Authorized Industrial Distributor.
INTEGRATED CIRCUITS?

•

Our flatpack stampings
give you
that critical edge

Must metal parts for integrated circuits be produced by chemical etching . . . slowly . . . expensively?

No. Volkert stamps and forms these thin, critically precise components—in high volume, and at less cost. No secondary forming is needed.

Volkert's specialized facilities meet your most exacting tolerances for lead frames, frames and bases. We are aware of your design and production requirements as to burr, flatness, finger widths and center distances. And we work with Kovar, Rodar and clad materials. Lead frames can be formed in a continuous strip for automatic assembly.

For your next big job, in flatpacks or any other microminiature electronic components, think Volkert. Where your small stampings get that critical edge.

Call or write today.

...laser gyros have been delivered to the Air Force and NASA...

would be recorded. Sperry is also considering the ring laser sensor as a precise incremental shaft encoder and as a precision anemometer.

Drag effect. In flowmeter experiments conducted by Sperry, use is made of the fact that light propagating through a moving transparent medium undergoes a change in velocity, or a dragging effect, proportional to the velocity of the medium. In Sperry's work, the drag effect was used in a ring laser to produce frequency mode splits, or differences, when sensing the movement of solids, liquids and gases along the axis of the laser beam. The frequency differences are caused solely by the axial component of velocity of the moving medium. To measure accurately the flow velocity, the density of the medium must be known, since the frequency split is proportional to its refractive index. The measurement technique shows great promise since it avoids the pressure drops, turbulence, corrosion and cleaning problems of conventional flowmeters.

Other ways. Though they have not built a quartz block laser gyro like Honeywell's, Sperry engineers have refined their ring laser to a small-perimeter, rugged unit. Sperry has delivered laser gyros to the Air Force and to the National Aeronautics and Space Administration and is working on a three-axis unit.

As a rotation rate sensor, Sperry says, its units can handle up to 600° per second, compared to 30° per second for a typical, strapped-down, conventional gyro. On the other hand, the threshold sensing rate for its laser units ranges from 100° to 300° per hour, compared with 0.1° per hour for the others.

Sperry concludes that the laser gyro is superior where high rates are experienced, but that it must give way to the spinning gyro—for the present at least—where low rates must be measured.

First experimental ring laser by Sperry was outsized: it had a perimeter of 4 meters. The square configuration required a laser tube at each side.
The devil's advocate

That's one of the many roles played by our Corporate Director of Reliability. He's responsible for the reliability of all IRC products. He double-checks basic designs. Keeps an eagle eye on production. Never goes easy on inspection and testing.

He's not above stopping a shipment at the door if it doesn't meet IRC's standards. Even if it does meet the customer's specifications.

This IRC attitude toward total reliability has practical advantages for you. Now you can choose from several optimum economical levels of reliability in resistors, potentiometers and semiconductors. And IRC is the first to publish prices for standard metal films at three reliability levels.

At IRC, reliability is a management responsibility . . . not just a specification gesture. For top management attention, address your questions on reliability to our Director of Reliability.

IRC, Inc., Philadelphia, Pa. 19108

IRC, Inc., Philadelphia, Pa. 19108
A Growing Force in the World of Electronic Components

SUBMINIATURE CAPACITORS • EMI FILTERS • SEMICONDUCTORS • THICK FILM INTEGRATED CIRCUITS •

ERIE, PENNSYLVANIA • OFFICES IN MOST PRINCIPAL CITIES •
Components

Transistors face an invisible foe

Can a cheaply made film of glass do the work of two transistors?
New patent for junctionless semiconductor switch says it can

By George Sideris
Senior Editor

In 1963, the head of a small electronics laboratory in Troy, Mich., announced he was developing a radically new semiconductor device, an alternating-current switch. Unlike conventional semiconductor switches, his had no rectifying junction and was made of homogeneous film.

Was it a true bulk-effect device, sought like the philosopher's stone by semiconductor researchers, or were there two transistors in that little black box? The man, Stanford Ovshinsky, wouldn't say how the switch worked or identify the material. The device got little publicity, coming as it did on the heels of his Ovitron liquid switch and his ball relay, neither of which got off the ground.

Until now, Ovshinsky has kept the secret to himself, his staff and his licensees, one of which is the giant International Telephone & Telegraph Corp. Secrecy clauses are written into the license contracts. At ITT, the word was passed that any employee caught leaking information on the development project would be fired.

This month, Ovshinsky got a patent (number 3,271,591) and was able to let the cat out of the bag. His company, Energy Conversion Devices, Inc., calls the device by its trade name, Ovonic.

Molecular circuits. The films, often so thin they are invisible, are amorphous compounds. For all practical purposes they are glasses made from semiconductors and other materials. The semiconductor mechanisms are akin to those described in the article on page 129 of this issue, but magnified many times by avalanche effects similar to those in zener diodes. When a threshold voltage starts an avalanche of carriers, the glass's resistance drops as low as 30 ohms from as high as 300 megohms, and the glass conducts current.

Ovshinsky predicts his invention will shake the semiconductor industry. His devices can perform a-c or d-c switching or logic, measure temperature and pressure, make nondestructive-memory elements and adaptive components. And he says he is working on bulk-effect oscillators, modulators and filters. The switches are already being sold commercially.

If the others pan out, the molecular devices will span most important classes of electronic circuits. The technical and financial stakes are huge, as indicated by Isidor I. Rabi's joining ECD's board of directors this month and financial backing of the enterprise.

Switch, switch, who made one first?

Besides his patent, professional pride prompted Stanford Ovshinsky to talk.

During the editing of the article on page 129, a striking similarity was noted between the announced characteristics of Ovshinsky's devices and elemental glass devices reported by the Bell Telephone Laboratories, Inc., in 1962 [see p. 135]. This raised questions about who invented what first and indicated Ovshinsky also used elemental glass. The editor wanted to insert an explanatory footnote. Queries drew this reaction from Ovshinsky:

"Nobody's going to use my work as a footnote to somebody else's work! It's entirely different. Look at the Lissajous patterns. Come on out to Detroit and I'll tell you all about it."

In his book-lined office in Troy, a suburb of Detroit, he said that although Bell Labs patented a glass memory device, it is not the same as his. The switch resemblances are only superficial, he continued, as indicated by the diagrams above and on page 135. Voltage-threshold devices like his were never reported by anyone, he maintained.

Ovshinsky claimed his work antedates Bell's by many years, that he got the idea for a two-terminal a-c switch in the early 1950's. As a designer of machine tools, he knew such a device did not exist, but would have wide use as a control. In 1956, he went on, he made his first amorphous semiconductor, tantalum oxide, and was granted a patent for it in 1961. The patent granted Sept. 6 was applied for in 1961, a year before the Bell Labs paper referenced on page 135.

His final argument was that his company's licensees didn't go to Bell Labs, but sought him out. If Bell had continued its work on glassy semiconductors, he said smiling, it might have been a different story. "Now, if they want to reenter the field, they will run up against our company's inventions and patent rights."
... the whole idea of a homogeneous film is to eliminate the convenient p-n junction ...

by the National Lead Co. Rabi won the Nobel Prize in 1944 for his work in atomic physics.

Mum's the word. The company's licensees are primarily major manufacturers of communications equipment. Besides ITT, there's ITT's British affiliate, Standard Telephones and Cables, Ltd., L.M. Ericsson & Co., of Sweden, and Danfoss AS, of Denmark. How far they have progressed has not been disclosed.

Apparently keeping to the letter of the secrecy clause, an STC spokesman disclaimed knowledge of the devices, nor how to make them, and that Ovshinsky is the man to ask. Stewart Flaschen, reportedly the ITT project chief, isn't answering his telephone.

1. Two for the price of one

"Our patent," Ovshinsky contends, "will dominate the entire field of nonrectifying switching" —an enormous field because of the almost universal use in industry of a-c power.

The switch is far cheaper to fabricate than devices made by a sequence of junction-formation steps, he says. Devices such as transistors are inherently rectifiers handling d-c, he adds, and it usually takes a complementary pair to control a-c. Ovshinsky figures he has at least a two-to-one price edge.

He also asserts that any junctionless two-terminal switch is covered by the patent. "Our device puts the phenomena between two electrodes, so the patent is as simple and as broad as possible."

Ovshinsky was so insistent about retaining patent control that he asked, and got, licensees of ECD to agree to feed back development information to him.

Submicron, subnanosecond. "The whole idea of using a homogeneous film is to eliminate the conventional p-n junction or barrier," he explains, thus eliminating junction hot-spot problems and finite junction size so the glass devices have neither size or power limits. The devices, including lab models, handle up to 100 volts and 10 amperes and can survive 75-amp surges, he says.

Switching speeds range from several microseconds to subnanoseconds. The switching action occurs through the film, which need be only 0.1-micron thick versus about 1 micron for junctions. "We will be able to build integrated circuits handling watts, not micro-watts," he says.

The empty can. The potential versatility of the "Ovshinsky effect" was his reason for secrecy. The effect is a natural one that can't be patented, but now the patent covers devices that exploit the effect. He feared that early disclosure would prompt competing inventions, citing commercial introduction of a Gunn-effect device by a company that did not do the research [Electronics, Aug. 8, p. 221], as a case in point.

He has avoided government contracts because they would require disclosures. The Air Force wants to try the switches as drivers for electroluminescent displays, he says. Another military use could be memories, since the glass memory switches do not lose data if power fails nor if they are irradiated.

One way he has baffled investigators is to deposit an invisible film inside a transistor case. Any switch is to deposit an invisible film on two electrodes are fused while, he has avoided government contracts because they would require disclosures. The Air Force wants to try the switches as drivers for electroluminescent displays, he says. Another military use could be memories, since the glass memory switches do not lose data if power fails nor if they are irradiated.

One way he has baffled investigators is to deposit an invisible film inside a transistor case. Any switch is to deposit an invisible film on two electrodes are fused while, he has avoided government contracts because they would require disclosures. The Air Force wants to try the switches as drivers for electroluminescent displays, he says. Another military use could be memories, since the glass memory switches do not lose data if power fails nor if they are irradiated.

Deposited dots. Only a few people are needed on a production line. The mixtures are melted, cooled and vacuum deposited as dots on the ends of electrodes. The dots on two electrodes are fused while the device is encapsulated in insulating glass.
To make multiswitch devices, the glass could be deposited on a steel-strip common electrode. The number of switches would depend on the number of contacts or wiring cross points on the glass side. Such arrays could be formed behind an electroluminescent plate to switch in the a-c power needed to produce patterns of thousands of glowing spots for a tv-like display.

One switch’s input voltage can’t trigger an adjoining switch, Ovshinsky says, because of the high resistance of the intervening film. Ovshinsky says he can make devices of glass thread. He showed experimental ones made of powder, paint and a rubbery mixture. The powder device sometimes rectifies, the only one that does. The rubber is a transducer whose output is varied by squeezing it.

II. Avalanche of carriers

The jargon of a semiconductor physicist is required to explain the semiconductor action. Some terms are explained in the article on page 129. However, the hopping mechanism believed to cause electronic conduction in other semiconducting glasses does little work in his materials, Ovshinsky says. “Our carriers don’t hop, they pole vault and leapfrog.” Impurities, basic promoters or deterrents of conduction in crystals, have no effect, he adds.

He selects materials with strong covalent bonds. This locks the carriers—electrons and holes—into position. The amount of locking depends on the energy band-gap structure of the materials. In turn, this determines the amount of field, or threshold voltage, required to knock the carriers out of position.

“The carriers are grabbed by the field, hit other carriers and knock them loose, causing avalanche multiplication of carriers.” The glass becomes a conductor, allowing current to rush through it.

Ovshinsky believes the effect is basically a hot-carrier one like the Gunn effect. Most physicists think a periodic structure of atoms in a crystal is needed, but Ovshinsky thinks the job is done by definite spatial relationships among atoms in glass’s local structure. Theorists in Russia indicate this, he says.

Free carriers may want to hop in the glass, but can’t move through
Texas Instruments Incorporated, P. O. Box 5474, M-111, Dallas, Texas 75222.

We challenge you... TO APPLY YOUR TECHNICAL PROFICIENCY IN THE FIELD OF MULTILAYER CIRCUIT BOARDS

Immediate openings for:

MANUFACTURING ENGINEER
Complete responsibility for all phases of manufacturing engineering associated with the fabrication of multilayer circuit boards. Assignment includes layout of board construction, specifying raw materials, establishing fabrication schedules and insuring that schedules are met, and establishing a real time computer-controlled production control system. Requires engineering degree plus 2 to 5 years' experience in electronic component or assembly manufacturing.

PROCESS ENGINEER
Provide process control for the manufacture of multilayer circuit boards, initiate programs for process optimization, evaluate new production techniques, and evaluate new materials. Initial field of concentration will be in the wet processing area to assist in bringing new plating facility on stream. Requires degree in mechanical engineering, chemical engineering or chemistry plus 2 to 5 years' experience as plating engineer. Experience with circuit boards highly desirable.

QUALITY ASSURANCE ENGINEER
Assignment includes maintaining a QA system that is compatible with NPC 200-3 and MIL-Q 9858A, directing a long term reliability program, and establishing an inspection and control system for radically new multilayer board fabrication techniques. Requires engineering degree (MS in quality control or statistics highly desirable) plus 2 to 5 years' experience in quality assurance or quality control.

Growth with TI — a company determined to maintain technical leadership in industries whose rapidly growing and changing technologies provide continuing opportunity for personal development. MEET OUR CHALLENGE WITH YOUR QUALIFICATIONS. Send your confidential resume to Shelly Leva, Dept. M-111, Texas Instruments Incorporated, P. O. Box 5474, Dallas, Texas 75222. An equal opportunity employer.

Texas Instruments Incorporated

Engineers! We challenge you... TO APPLY YOUR TECHNICAL PROFICIENCY IN THE FIELD OF MULTILAYER CIRCUIT BOARDS

Immediate openings for:

MANUFACTURING ENGINEER
Complete responsibility for all phases of manufacturing engineering associated with the fabrication of multilayer circuit boards. Assignment includes layout of board construction, specifying raw materials, establishing fabrication schedules and insuring that schedules are met, and establishing a real time computer-controlled production control system. Requires engineering degree plus 2 to 5 years' experience in electronic component or assembly manufacturing.

PROCESS ENGINEER
Provide process control for the manufacture of multilayer circuit boards, initiate programs for process optimization, evaluate new production techniques, and evaluate new materials. Initial field of concentration will be in the wet processing area to assist in bringing new plating facility on stream. Requires degree in mechanical engineering, chemical engineering or chemistry plus 2 to 5 years' experience as plating engineer. Experience with circuit boards highly desirable.

QUALITY ASSURANCE ENGINEER
Assignment includes maintaining a QA system that is compatible with NPC 200-3 and MIL-Q 9858A, directing a long term reliability program, and establishing an inspection and control system for radically new multilayer board fabrication techniques. Requires engineering degree (MS in quality control or statistics highly desirable) plus 2 to 5 years' experience in quality assurance or quality control.

Grow with TI — a company determined to maintain technical leadership in industries whose rapidly growing and changing technologies provide continuing opportunity for personal development. MEET OUR CHALLENGE WITH YOUR QUALIFICATIONS. Send your confidential resume to Shelly Leva, Dept. M-111, Texas Instruments Incorporated, P. O. Box 5474, Dallas, Texas 75222. An equal opportunity employer.

Texas Instruments Incorporated
only hints at how a glass oscillator might work: it would be an avalanche device; carriers would move from one energy level to another and be excited; the glass’s capacitance would sustain oscillations of less than a nanosecond. "If I'm right, it will compete with the Gunn effect."

What about filters? "All I care to say is that we do have resistance and capacitance in the same device." And modulators? "All that requires is breaking up a sine wave."

III. Amplifiers and controls

Lionel Robbins, vice president of the company, says the switches could be used in a class-D audio amplifier [Electronics, July 25, p. 43]. The circuit would lower battery drain in portable equipment. The pulse-width modulation can be done, he says, by using a capacitor and a switch as a relaxation oscillator. The time it takes the audio signal to charge the capacitor to the switch firing voltage is the pulse width. This pulse would trigger a dual-switch amplifier that would draw current from the battery only when it is on. The switch-amplifier can be made, he says, as a three-terminal device: film on a metal control electrode, with two contacts on the film. The device, still experimental, functions like a pnpn diode.

Simple a-c logic controls for industrial use have been made in model form. For example, when the voltages on two transformers add up to switch threshold level, the switch becomes an AND gate that closes each time the sine wave crosses zero. Another major use, Robbins expects, is a-c phase control, now a stronghold of silicon controlled rectifiers. Picking a switching voltage level on the sine wave serves the same purpose as picking a phase angle.

Timepiece. One idea that intrigues Robbins is to arrange contacts on a film to form a series of switches that fire in sequence according to pulse times set by an oscillator or tuning fork. A set of these ring counters would tick off seconds, then trigger minute counters, which trigger hour counters. As the switches fire, they would also activate an electroluminescent display. Voilà—a solid-state watch.
How you can be one of America's foremost authorities on magnetic shielding:

Read this free book.

Here's a 36-page seminar on magnetic shielding... and high-permeability Westinghouse Hipernom®

This new book on magnetic shielding is the first of its kind. It gives you the fruit of 50 years of Westinghouse leadership in magnetics research. It sums up the experience of the largest group of metallurgists specializing in magnetic alloys. It's a full seminar in when, why, and how to use magnetic shielding in low frequency applications. You get all the theory, formulae, practical tips, and technical data needed to design and evaluate shielding. One of the useful things this book documents is Hipernom magnetic alloy. It has the highest permeability available of any magnetic alloy. Result: you can design lighter, lower-cost magnetic shielding for even your most sensitive components. This is just one sample of what you can do with this free book and Hipernom. Send for your free copy.

Write: Westinghouse Metals Division, Dept. A, Box 868, Pittsburgh, Pennsylvania 15230.

You can be sure if it's Westinghouse.
Mars flyby drawing closer

The space agency has almost finished choosing the contractors to build the Mariner '69 spacecraft for a close flyby of Mars in 1969

By Robert Henkel

Electronics Washington Bureau

The industry team should be assembled by next month to build the spacecraft for the next Mars exploration mission—the Mariner launch that sprang forth late last year out of the ashes of a 1971 Voyager mission. The spacecraft, an upgraded brother of the Mariner 4 which successfully sent back photos of the red planet last year, will be launched in 1969.

The National Aeronautics and Space Administration hadn't planned any additional Mariner flights following the successful flyby of Venus in 1962 and Mars in 1965. But last year the follow-on Voyager program was pushed back two years to 1973 because of a NASA budget squeeze caused by the rising cost of the war in Vietnam. The space agency—with some prompting from Congress—decided this was too long a gap in its planetary exploration program and added the Mariner-Mars '69 mission. It also dusted off a spare Mariner spacecraft left over from the 1964 Mars shot to try for a single Venus flyby in 1967.

New breed. Mariner '69 is a "different breed of cat" than any previous Mariner, says Newton W. Cunningham, Mariner-Mars '69 program manager at NASA headquarters. It will be "much more ambitious" than the 1964 Mariner 4, he adds. The spacecraft will weigh at least half again as much and carry more sophisticated experiments.

But the space agency doesn't have enough time or money to do a complete redesign job on the old Mariner 4. Even so, total cost of updating the design and building the spacecraft for the 1969 mission will run from $95 million to $111 million.

A bigger, improved version of Mariner is possible because of a more powerful booster, the Atlas-Centaur. The Atlas-Agena vehicle left no room for margin in lifting the 530-pound Mariner 4 and this resulted in most of the subsystems being weight limited. "We took more risk than we'd like because of this," Cunningham acknowledges.

Because the 800-pound 1969 spacecraft will not tax the full lifting capability of the Atlas-Centaur, there is no urgent need to lighten the payload by going to microminiaturization. Integrated circuits will be used in many parts of the spacecraft for the gain obtained in over-all reliability, not for any reduction in size or weight.

Like father, like son, Mariner '69 will look almost exactly like Mariner 4, above. NASA officials use Mariner 4 drawings and pictures to brief officials. However, updating the spacecraft will cost from $95 million to $111 million.

I. After Mariner comes Voyager

Cunningham points out that everything NASA is doing with Mariner '69 is aimed at the multi-billion-dollar Voyager program, the United States' major unmanned planetary exploration effort to soft land on Mars and Venus in the 1970's. For example, the primary object of the 1969 launch is to find out more about the atmosphere and surface of Mars for the Voyager spacecraft, which is now in the preliminary design stage. Current Voyager plans call for three modules—a bus orbiter, a retropropulsion system and a soft landing capsule.

The larger and more sophisti-
For higher resolution, lower noise, better terminal linearity, smaller size, and lower price, you simply can’t beat the new Fluke 24A vernier precision potentiometer!

The unique Fluke 24A takes 8½ turns off your 10 turn precision pot and still offers better resolution than any unit of comparable size and price. Terminal linearity is excellent with no offset at either zero or 100 per cent. Noise is less than 100 ohms ENR. End resistance is less than 1 ohm. Over a wide frequency range, phase shift is zero.

It’s a tough pot, too, built to meet MIL spec requirements. Cost is only $8.50 per unit. Quantity discount applies.

For complete information, please write P. O. Box 7428, Seattle, Washington, Phone: (206) PR 6-1171.

...NASA plans to keep Mariner 2,000 miles away from Mars; any closer and craft would crash...

cated Voyager will perform a detailed study of the atmosphere, surface and body characteristics of Mars and Venus. With Voyager, NASA hopes to learn about such things as the origin and history of the solar system and whether there is some sort of life beyond earth.

Industry's part. In contrast with earlier Mariner efforts, industry will get most of the dollars and a larger say in the design of the Mariner '69 spacecraft. All earlier Mariner spacecraft, including the one for the 1967 Venus shot, were designed and built totally in-house at the Jet Propulsion Laboratory in Pasadena, Calif. It's a different story with the 1969 model.

"We're making greater use of industry by letting them help us in the design, and we've broken out each major subsystem and set it up as a separate contract," Cunningham notes.

About one-third of the Mariner '69 dollars will go to 10 subsystem contractors and another $25 million or so will go to industry for subsystems for the scientific experiments. In Mariner 4, no one company was responsible for a complete subsystem. In the power subsystem, for example, all items, such as logic and solar cell panels, were designed in-house at JPL. This time a contractor will be in charge of the entire subsystem, including such things as screening parts, a task JPL has had trouble with before.

Shortcut. The interplanetary trip will be shorter for the new Mariner than it was for Mariner 4, since Mars will be much closer to earth in 1969. Mariner '69 will take about six-and-a-half months to make the journey compared with Mariner 4's eight-and-a-half months. NASA also will aim a lot closer to Mars this time. Plans are to fly within 2,000 miles of the planet sometime in late August or early September, 1969. Any closer and the spacecraft would be pulled into the planet by gravity.

Biggest boon from the shorter distance between the two planets during the Mariner '69 flyby is that a stronger radio signal will be received on earth which means NASA can go to a higher bit rate for digital transmission. Mariner 4 sent back information at 8½ bits per second. In 1969, the bit rate at encounter will be 66½ bits per second. This is based on the same 85-foot ground antennas used in the 1965 flyby.

There are no plans to use NASA's new 210-foot antenna at Goldstone, Calif., even though the giant dish picks up an 8-decibel increase in signal. Money has never been allocated to build the two additional 210-foot receivers needed to complete a global network.

II. Mariner '69 on tight schedule

Six Mariner '69 spacecraft will be built: three for proof test, structural test and thermal test, and three flight models including a spare. Because the opportunity to launch a Mars mission comes only once every 25 months, NASA will launch two identical spacecraft to Mars, as it did in 1964, during the 30-day 1969 window.

NASA hopes to complete detailed designs for the entire spacecraft by July, 1967. The proof test model should be ready by January, 1968. "Then we'll start putting flight hardware together about midyear," Cunningham says. In January, 1969, JPL will begin tests and ground operations with flight models.

Contracts awarded. Late in June, NASA picked the first subcontractor, the Northrop Space Laboratories of Northrop Corp., Hawthorne, Calif., to design, develop, fabricate and test the engineering subsystems, including the craft's flight electrical cabling, mechanical devices and temperature controls. Northrop, which was building an advanced Ranger series for JPL before the program was cancelled to save money, was one of the three firms to bid on the $5-million contract. The others were the Sperry Rand Corp. and the General Dynamics Corp.

Several other contractors have now been selected and most of the others are scheduled to be awarded shortly.

* Texas Instruments Incorpo-
rated, Dallas, has won a $1.25-million award for ground, checkout and test equipment, as well as the on-board gear to process data from scientific experiments. TI also is designing and building the data storage subsystem on the 1969 craft under a contract in excess of $2 million.

- Motorola Inc.'s Western Electronics Center in Scottsdale, Ariz., is designing and building the command subsystem for the 1969 mission under a $2-million award. Motorola is also scheduled to get a $2-million award for the central computer and sequencer on the spacecraft. These will initiate spacecraft events in the mission, such as launch, mid-course correction and encounter.

- Philco Corp.'s Western Development Laboratories will design and fabricate the radio subsystem, including a transponder, transmitter, receiver and high and low gain antennas. Philco, a subsidiary of the Ford Motor Co., has a contract for more than $2 million for the work. This equipment will "not be too different" from the Mariner 4 equipment, according to Earl Glahn, program engineer at NASA headquarters, since NASA is not planning any increase in transmitter power. One change is that the 1969 version will carry two 10-watt, traveling-wave tubes. The Mariner 4 hybrid system had one twt and one triode. The 1969 spacecraft will use the same S-band frequencies: 2.113 megahertz to receive and 2.295 MHz to transmit.

- Honeywell, Inc., Minneapolis, has been selected to build the attitude control and scan control subsystems. Costing in excess of $5 million, this equipment consists of inertial and optical reference gear and a cold gas stabilization system.

III. More experiments planned

Due to be awarded shortly is the contract for the power subsystem. NASA is still working out power requirements and is in the process of defining the subsystem. "What we'd like to do is not have to redesign the solar cell panels," Glahn said. "But we can't be sure until we get the power requirements nailed down." More power will be needed, however—as much as 25% more. This could mean adding more solar cell area, changing the power distribution system or perhaps using more than one battery.

Some 28,224 solar cells covering 70 square feet converted solar energy into electricity on Mariner 4. Mariner 4 required anywhere from 147 watts during picture playback to 197 watts during encounter; Mariner '69 will need as much as 250 to 300 watts. Mariner 4 solar cells could deliver about 310 watts at Mars encounter.

Also to be let is the contract for the data automation system that will control and synchronize the experiments. "This will be a bigger job than Mariner 4 because there will be more scientific experiments on board the 1969 mission," Cunningham says. The request for proposals on the last subcontract to be awarded—propulsion—will go out either this month or next. This subsystem will be identical to the JPL-built Mariner 4 motor.

All six experiments on board Mariner '69 will be seeking data only during the relatively short Mars flyby. Mariner 4, on the other hand, had only two flyby experiments—S-band occultation and television—while the other six were principally cruise experiments to make measurements on the long trip to the red planet.

Twins. Dual recorders will give Mariner '69 much more storage than its predecessor, says Glahn. The 1969 mission will take "considerably more pictures," he says, the exact amount depending on the allocation of bits among the experiments. Mariner 4 sent back 20 photos of Mars and had an endless loop tape recorder with a storage capacity of 5.2 megabits. Mariner '69's capacity will be 200 megabits.

Mariner '69 will have a 200-line, low resolution tv camera "very similar" to the JPL-built Mariner 4 system to take pictures as the spacecraft passes the planet. A second television camera will take 500-line pictures, or about 10 times the resolution of the 20 pictures received from Mariner 4.

NASA expects to pick up features on the Martian surface as small as 500 feet in size. Just who will build the advanced tv camera is up to the principal investigator, Robert B. Leighton, of the California Institute of Technology, Pasadena. JPL will build the low resolution unit.
FAIRCHILD
cleans the beam!

New electron optics provides unassisted focus and astigmatism correction

- NO DEFOCUSING WITH DEFLECTION
- NO ASTIGMATISM
- HIGH WRITING SPEED

Breakthrough at Fairchild! The Fairchild clean-beam tube, KC 2656, is a new 12-inch electrostatic deflection and focus CRT with a new electron gun. The electron gun design represents a major breakthrough. This design provides increased writing speed and significantly reduced deflection defocusing and astigmatism, with increased resolution.

Fairchild calls this "the clean beam tube" because of the excellent spot size over the entire useful screen area. Dynamic or programmed correction is not required to compensate defocusing or astigmatism resulting from deflection.

This tube is the result of extensive research and development which produced new departures in deflection structure and electron gun design. The design changes have improved the compatibility between the beam generation and beam deflection functions.

Write or call for informed application assistance on the new KC 2656, or ask for our new 48-page catalog listing over 4,000 tubes that we make.

WORLD'S LEADING MANUFACTURER OF DISPLAY TUBES

FAIRCHILD

DU MONT ELECTRON TUBES
A DIVISION OF FAIRCHILD CAMERA AND INSTRUMENT CORPORATION
CLIFTON, N.J.
Air Force junks custom-built computers in 473L command information system

Pentagon official says special-purpose data processing equipment for large command-and-control systems is outdated by the time it's operational; industry-sponsored machines are cheaper and do the job better

"We bought three Edsels. It was a bad mistake but we're doing something about it."

The Air Force colonel at the Pentagon was referring to three large-scale, custom-made computers, built to be the backbone of 473L, the top Air Force command information system.

Whether the fault lies with the Air Force or the manufacturer isn't clear.

The computers were incompatible with the way the 473L was evolving, the colonel explained. Also, he said, the system was not reliable once it got to the Pentagon. A third problem, he cited, was that the manufacturer, the Librascope division of General Precision, Inc., had decided to quit the large-computer business, leaving the Air Force without technical support or a follow-on computer. Librascope denies this. It says it has no plans to leave the large, special-purpose computer field.

The solution, decided upon about a month ago, was to junk the Librascope computers. Other government agencies can pick them up if they want to—"possibly for some kind of research."

Two of the three computers are at the Pentagon and the third is at the Librascope plant in Glendale, Calif., for development of peripheral equipment including a self-diagnostics program. The three machines cost $7.2 million.

Other companies affected by the Air Force decision are the International Business Machines Corp., responsible for systems analysis and programing; ITT Federal Laboratories, a division of International Telephone & Telegraph Corp., for the display system; and Bunker Ramo Corp. for communications consoles and display buffers. Mitre Corp. is technical advisor to the Air Force Electronic Systems division, Bedford, Mass., which manages development and procurement of the 473L system.

Replacement. In place of the Librascope computer, which the company calls the L-3055 and the military has designated the AN/FYQ-11, the Air Force will rely on the smaller capacity 1410 made by IBM. The 1410 has been operating for two years in the Pentagon as part of a scaled-down 473L for training purposes and to provide an interim capability.

Program plans had called for the larger L-3055 eventually to take over full system operation. Instead, additional 1410's will be installed alongside the existing machines, advancing the system beyond an interim capability. According to the Air Force, the two additional 1410's—which cost about $900,000 each—will give 75% to 90% of the performance expected with the FYQ-11. They will be used until follow-on development of the 473L begins in the 1970's.

I. Incompatibility

The Air Force and Librascope hold widely divergent views on the cause of problems and, in some cases, appear not even to know what action the other has taken.

A Librascope official—who, along with Air Force officials, asks that his name not be used—says the company had not, as of Sept 12, received official word that its computer had been pulled out of the

Last of the breed

The Air Force experience with its headquarters command system apparently was the final blow in a series of losing bouts with tailor-made military computers.

Says Leo E. Berger, a high civilian official at the Pentagon: "In Sage (Semiautomatic Ground Environment), we developed the AN/FSQ-7 and 8, in the Strategic Air Command's 465L system we developed the AN/FSQ-31, in the 473L, the AN/FYQ-11, and other computers in other systems. In each instance, during the time it had taken us to accomplish all the steps from specification to operation of these military computers, industry-sponsored hardware development has produced a commercial off-the-shelf model with greater speed and capacity which was cheaper and more advanced."

Berger, who works for Maj. Gen. Gordon T. Gould, Jr., director of Command Control and Communications at Air Force headquarters, revealed this bit of military intelligence at the national meeting of the Armed Forces Communications and Electronics Association in Washington. Except for certain mobile and airborne requirements, he said, experience with existing systems teaches that optimum use should be made of 'proven families of modular off-the-shelf, commercially available computers.'

According to Berger, time was wasted and costs soared further when the Air Force tried to check out unproven hardware with equally unproven, newly developed software. The third lesson is that it is a mistake to acquire hardware from one company and the software which makes it perform from another company. "It is most difficult," he says, "to pin down responsibilities when either the hardware or the software fails to perform according to specification or advertisement."
Librascope and the Air Force agree the 473L system wasn't well thought out...

473L system. He did say, however, that such a move is expected.

As for incompatibility, Librascope points out that this isn't its fault. The company charges, and the Air Force admits, that the 473L system was not thought out properly on a long-range basis.

If Defense Secretary Robert McNamara's program definition phase contracting requirement had been in effect when the computers were ordered, they probably would have remained compatible with the 473L system as it grew. One purpose of program definition is to spell out long-range requirements.

According to the Air Force, the computers for 473L were the first procurement made under the Pentagon's two-step formal advertising procedure. After the unpriced technical proposals were screened, three companies were asked to put price tags on their proposals: Librascope, IBM and the Burroughs Corp. Librascope's bid was lowest. Under the two-step procedure, says the Air Force, the government agency is required to select the lowest bid, since only companies with acceptable technical proposals are invited to bid.

Another example of lack of forethought was equipping the major commands with IBM 1410 computers because the computer in the interim system at the Pentagon was 1410. The units would later be incompatible with the Librascope computer at headquarters. The 1410's were installed at the headquarters of the Tactical Air Command, the Military Airlift Command, Air Defense Command, U.S. Air Forces in Europe and the Pacific.

Software packages for the command computers were developed from the software already prepared for the 1410 in the Pentagon.

To make these computers compatible with the Librascope computer would have required a massive job of program writing, says the Air Force. Of the $42 million spent on 473L, the largest dollar amount went into programming, IBM, the programming subcontractor, received $21.5 million in the last five years for systems analysis and for writing programs to Air Force specifications. A final $2 million payment is still due.

The IBM contract to provide software for the Librascope computer is being terminated and the Air Force is using its own personnel to work on the 1410 programming at the present time. The Air Force estimates that software for the expanded 1410 system will be completed in September of 1968. Programming for the full system using the L-3055 was scheduled to be ready by November, 1967.

Still another software package would have been needed for the follow-on system for the 1970's and this would have to be compatible with other military networks as well as with the existing 473L.

II. Reliability

As for reliability, Librascope says that although they've received no word that there are maintenance problems, the Air Force made a mistake in not contracting Librascope to do the maintenance work.

Although Librascope does not say that inexperience of the Air Force's maintenance personnel was responsible for any malfunctions, the spokesmen do comment that, if Librascope's self-diagnostic program had been in operation at the Pentagon the Air Force would not have had any problem keeping the equipment going.

The company points to the swing-out plates on which disk memory heads are mounted. These plates are critical, says a Librascope spokesman, and only designated persons at the Librascope plant may handle them. Yet the Air Force turned them over to regular maintenance personnel, says Librascope. The company does not admit, however, that the disk memory was giving the Air Force trouble.

Expensive. The Air Force claims an 18-month delay in delivery cost the government additional money in keeping programmers on the payroll.

According to Librascope, the company received a contract to build three systems in June, 1962. The first machine was delivered in June, 1964—one year late. It was accepted by the Air Force in October, says Librascope, and the second machine, delivered in September of the same year, was accepted in December. In April, 1965, Librascope says, the third system was completed and stayed in Glendale.

Librascope claims that add-on requirements by the Air Force were costly, sometimes constituting major design changes. The company gives this example: originally, the tape drives were intended for off-line duty where some bit error could be tolerated. Then they were made on-line and in that mode the same amount of bit error could not be tolerated. New electronics had to be installed in the drives subsystem.

The Air Force says, however, that it paid for all the changes it asked Librascope to make.

III. Predecessor.

About eight years ago, Librascope designed another large, special-purpose computer, the L-3020, for the Federal Aviation Agency. Six were ordered and three delivered to FAA's National Aviation Facilities Experimental Center at Atlantic City, New Jersey. FAA realized before the last three came in that the memory capacity was far too small for the agency's new plans. The other three computers were diverted to the Air Force and two of the computers FAA already had were sent to Utah State University. Two of those the Air Force got were sent back to Librascope to help develop the L-3055.

According to Librascope, the L-3020 helped generate wiring diagrams for the L-3055 and was used as a design aid in other ways. But there was very little transfer of design concept, one spokesman says. The 3020, he points out, is a very limited machine designed for a special purpose—air traffic control. The 3055, according to Librascope, is much more flexible and could probably be converted to general-purpose applications at a reasonable cost. Even some of the basic design concepts, such as circuit card layout, are radically different in the two machines, Librascope says.
GET THESE TI DESIGNERS' KITS FROM EW

Here's everything you need to get a head start in modern integrated circuit design — integrated circuits in Mech-Pak carriers, breadboarding sockets, applications information, sample circuit diagrams, and complete device data — all for much less than the price of the items if purchased separately. Start now to design and breadboard both digital and linear assemblies — and demonstrate for yourself the many economies and the high performance inherent in integrated circuit systems.

SERIES 74 KIT

CONTENTS
One SN7420 Dual 4-input positive NAND gate
Two SN7450 Dual EXCLUSIVE-OR gates with expander inputs
Four SN7470 Single-phase JK flip-flops
Four MPC-1 14-pin Mech-Pak Sockets

APPLICATIONS
• 4-bit Binary to Gray-code Converter
• 4-bit Binary Comparator
• Divide-by-5 Counter
• Binary Coded Decimal Counter

SERIES 73 KIT

CONTENTS
Three SN7331 Triple 3-input NAND/NOR gates
Two SN7302 Dual JK flip-flops with preset
One SN7360 Quadruple 2-input NAND/NOR gate
One SN7370 Dual EXCLUSIVE-OR gate
One SN7380 "one-shot monostable multi-vibrator
Six MPC-1 14-pin Mech-Pak Sockets

APPLICATIONS
• Full Adder
• One shot Clock Inhibit
• Up-down Binary Counter

SERIES 72 KIT

CONTENTS
One SN723 General purpose differential amplifier
Three SN724 General purpose operational amplifiers
Two MPC-1 14-pin Mech-Pak Sockets

APPLICATIONS
• Variable gain a.c amplifier
• Stable gain circuits
• Isolation amplifiers (buffer)

"SERVING THE ENTIRE SOUTHEASTERN U.S."
Engineers:

1. If you're looking for money, our $470,000,000 backlog of orders tells its own story.

2. If you're looking for challenge, we offer you pioneering in a brand-new ocean.

3. If you're looking for a career, we offer you stability and rapidly expanding opportunities for growth.

If you're looking for all three, we're looking for you.

We need qualified engineers for responsible jobs—challenging positions with commensurate pay—in all eight categories listed below.

Money? If you're a capable and imaginative engineer who is willing to take responsibility, we'll offer you a high starting salary plus wide-open promotional opportunities and liberal fringe benefits.

Challenge? We're in the forefront of revolutionary technological advances that are taking place in, under, and on the ocean. Nuclear submarine building, Oceanography, Engine room automation, Aircraft carrier design. You name it—we're in it. And we'll give you a chance to put your abilities to work—all your abilities.

Career? Newport News offers you permanence and a solid future. With us, you can build a lifetime career in your chosen field of engineering—and you can build it to any size. We want you to move ahead. How high you climb is entirely up to you.

If you're interested in advanced study, we are close to some outstanding institutions. Next door is Virginia Associated Research Center with one of the world's largest synchrocyclotrons, where you can study in high-energy physics. Across the harbor is Old Dominion College, offering graduate courses in such subjects as Microwave Theory, Solid State Electronics and Nuclear Engineering. Within easy driving range are Virginia Institute for Scientific Research—a world leader in solid state physics—and the University of Virginia, with its new nuclear laboratory.

Sound interesting? Then act now to get details on immediate, specific career openings in your field. Our $470,000,000 order backlog, up $50,000,000 in three months, makes our need for qualified engineers urgent. Write or phone John J. Gaughan, employment manager. You'll get fast action.

IMMEDIATE OPENINGS IN THESE ENGINEERING CATEGORIES

<table>
<thead>
<tr>
<th>Mechanical Engineers</th>
<th>Naval Architects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineers</td>
<td>Nuclear Engineers</td>
</tr>
<tr>
<td>Marine Engineers</td>
<td>Civil Engineers</td>
</tr>
<tr>
<td>Industrial Engineers</td>
<td>Metallurgical Engineers</td>
</tr>
<tr>
<td>Systems Analysts</td>
<td></td>
</tr>
</tbody>
</table>

Newport News
NEWPORT NEWS SHIPBUILDING AND DRY DOCK COMPANY
Newport News, Virginia 23607 Phone: (703) 247-1211
Write or phone for illustrated, fact-packed booklet, "Blueprint of Your Future."
An Equal Opportunity Employer

Electronics | September 19, 1966
Smaller and smaller and smaller parts... tighter and tighter tolerances... in larger and larger quantities... this is the story of microceramics. Regular production includes substrates so tiny that a teaspoon holds more than 8,000 parts! Coors offers a complete facility for creating small, consistent, ceramic substrates—in several Coors Alumina and Beryllia ceramics, metallized or unmetallized. To assure economy, "as-fired" parts are produced in quantity, to extremely close tolerances (as shown at right). Let Coors provide the special help you need. Write for "Ceramic Substrate Design," Data Sheet No. 7002, or call your nearest Coors Regional Sales Manager: SOUTHERN CALIFORNIA: R. E. Osley, (213) 347-3069, Los Angeles, Calif. BAY AREA AND NORTHWEST: W. Everitt, (408) 245-2958, Sunnyvale, Calif. MIDWEST: Tom Daly, (312) 529-2519, Chicago, Ill. CENTRAL: Don Lewis, (216) 228-1009, Cleveland, Ohio; EAST COAST: Robert F. Doran, (516) 427-8506, Huntington, N.Y.; Herbert W. Lariusch, (215) 583-4487, Philadelphia, Pa.; NEW ENGLAND: Warren G. McDonald, (617) 222-9050, Attleboro, Mass.; SOUTHWEST: William H. Ramsey, (713) 864-6369, Houston, Tex.; John West, (214) AD 1-4661, Richardson, Tex.
From the expanding line of Sigma relays...

Miniature 4PDT relay switches
Try the new Series 67—or any

We'd like to give you a new Sigma Series 67—or any of our other standard relays. Test and compare it against the brand you may now be using. It's the best way we know to prove what we say about Sigma relay performance.

Test the new Series 67, for example. This rugged AC-DC relay, only slightly larger than a cubic inch, brings new reliability and versatility to precision switching. Each of its four poles can switch a low-level to 3-ampere load 100,000 times minimum.

The relay's in-line contact arrangement extends mechanical life to 100 million operations DC, and 50 million operations AC.

Completely versatile, the Series 67 is available for either direct solder-terminal installation or fast, easy, socket mounting with choice of solder or printed-circuit-terminal connections. The socket can be installed in seconds, with no need for screws or fasteners. It simply snaps into the face of the panel and four spring clips lock it.
3 amps 100,000 times minimum. Sigma relay—absolutely free.

Put Sigma relay performance to the test yourself, free of charge. Just send for the new Preferred Standard and Stock Relay Catalog of the expanding line of Sigma relays. Then select the relay you want to test and compare, and your Sigma representative will see that you get it. Offer limited to original equipment manufacturers having applications for relays.

SIGMA DIVISION SIGMA INSTRUMENTS INC
Assured Reliability With Advanced Design / Braintree, Mass. 02185

Need Sigma relays fast? Call your Sigma distributor for off-the-shelf delivery of our most popular types.
CIRCUIT CONTROL AND PROTECTION BY AIRPAX

AIRPAX ELECTRONICS INC.
SERIES 50
TYPE APL1

AIRPAX ELECTRONICS INC.
SERIES 50
TYPE APL3

AIRPAX ELECTRONICS INC.
SERIES 50
TYPE APL4

COMPLETELY MAGNETIC TIME DELAY AND TRIP. CONTAINS NO HEATING ELEMENTS.

AVAILABLE 50 MA TO 50 AMPERES AC OR DC. 50, 60 AND 400 CYCLES.

TRIP TIME IN SECONDS vs. PERCENT OF RATED CURRENT

<table>
<thead>
<tr>
<th>Delay 60</th>
<th>Delay 61</th>
<th>Delay 62</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Trip</td>
<td>No Trip</td>
<td>No Trip</td>
</tr>
<tr>
<td>.120 max.</td>
<td>.1.0 - .6.0</td>
<td>.15.0 - 70.0</td>
</tr>
<tr>
<td>.035 max.</td>
<td>.240 - .800</td>
<td>.3.0 - 9.0</td>
</tr>
<tr>
<td>.030 max.</td>
<td>.40.1 - .80</td>
<td>.30 - 15.0</td>
</tr>
<tr>
<td>.020 max.</td>
<td>.012 - .050</td>
<td>.018 - .080</td>
</tr>
<tr>
<td>.018 max.</td>
<td>.010 - .040</td>
<td>.010 - .040</td>
</tr>
</tbody>
</table>

AIRPAX ELECTRONICS INCORPORATED
Cambridge, Maryland (301) 228-4600

AIRPAX ELECTRONICS INCORPORATED
Ft. Lauderdale, Fla. (305) 587-1100

AIRPAX ELECTRONICS INCORPORATED
Van Nuys, Calif. (213) 781-2821

AIRPAX ELECTRONICS incorporated Cambridge Division, Cambridge, Maryland
New Products

Boom in TTL integrateds

A second generation, promised . . .

A surge in new transistor-transistor logic (TTL) circuits is becoming evident from recent announcements by electronics firms. One manufacturer, in perhaps a harbinger of what's to come, is promising a second generation of TTL integrated circuits operating at propagation delays as much as 20% lower than competitive saturating-type devices.

The Sprague Electric Co. says two basic circuits will be available next January in 14-lead flatpacks: a high-speed dual 4-input NAND gate, the first device of series UEX-1100, and an ultrahigh-speed dual 4-input NAND gate, the first of series UEX-1070. The propagation delay of the UEX-1100 will be 8 nanoseconds, that of the UEX-1070 5 nsec. Sprague claims the best now on the market bottoms at 6 nsec.

Later in 1967, Sprague will offer the monolithic silicon substrates in two types of low-profile dual inline packages—one hermetically sealed and the other in low-cost epoxy. Both will plug into printed-circuit boards. Eventually a family of TTL devices is planned to include almost all the types found in first-generation TTL circuits.

Sprague also plans to produce first-generation TTL circuits and both SE800 military series and the NE800 commercial series are to be available by next month. The circuits were originally developed by the Signetics Corp.

Sylvania Electric Products, Inc. has announced an addition to its line of TTL logic circuitry known as Sylvania ultrahigh level logic (SUHL): dual J-K flip-flops. The company, a subsidiary of General Telephone & Electronics Corp., is offering two configurations. The first, the SF-120 series, allows a separate clock input for each of the dual J-K functions in the package. This package offers the separate clock lines necessary for ripple counters in digital communications subsystems.

The second configuration, the SF-130 series, is designed with a clock line and reset line common to both J-K's in the package. This is useful for temporary storage of data trains, such as found in shift register and serial counter applications.

Available in military premium and standard units, and in industrial premium and standard units, both series exhibit the same specifications.

Fairchild Semiconductor, a division of Fairchild Instrument and Camera Corp., has entered the TTL arena with a family of integrated circuits known as Transistor-Transistor Micrologic (TTµL) circuits. The circuits are electrically and mechanically compatible with Fairchild's diode transistor Micrologic 930 series (DTL) circuits. Fairchild says it operates at moderate speeds with low power consumption, but has not specified the date. Pricing for industrial grade devices in quantities of 100 and up range from $6.05 to $8.95.

Features include a logic one level noise immunity of 1.3 volts and zero level noise immunity of 0.8 volts; two transistors in the output instead of the usual one transistor and diode, providing greater output current at a higher output voltage. The devices are available in either flatpack or ceramic dual in-line package.

Fairchild is planning to come out with a plastic dual in-line package, and standard units, and in industrial premium and standard units, both series exhibit the same specifications.

Specifications

<table>
<thead>
<tr>
<th>Propagation delay</th>
<th>1st generation</th>
<th>2nd generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power dissipation</td>
<td>10 mw</td>
<td>50 mw</td>
</tr>
<tr>
<td>Clock frequency</td>
<td>35 Mhz</td>
<td>50 Mhz</td>
</tr>
<tr>
<td>E-I noise immunity</td>
<td>1.7 volts</td>
<td>1.3 volts</td>
</tr>
<tr>
<td>D-C noise immunity</td>
<td>0.8 volts</td>
<td>1.3 volts</td>
</tr>
<tr>
<td>Fanout</td>
<td>12</td>
<td>6-15</td>
</tr>
<tr>
<td>Power supply</td>
<td>5 v</td>
<td>5 v</td>
</tr>
<tr>
<td>Voltage</td>
<td>5 v</td>
<td>5 v</td>
</tr>
</tbody>
</table>

Sylvania Electric Products, Inc., 730 Third Avenue, New York, N.Y. [349].

Electronics | September 19, 1966
The heartbeat heard around the world.

A vital link in monitoring heartbeat and pulse rate, the tiny MICRO-K™ connectors worn by our men walking in space today are only one dramatic example of countless CANNON® Plugs delivering superior performance in many challenging environments. Engineers everywhere have learned when environments are tough to look to ITT Cannon Electric for production and engineering know-how... backed by over 50 years of experience, capability and service. Whatever the environment—space, shock, vibration, corrosion, undersea, high or low temperature... and whatever the connector configuration—microminiature, subminiature, miniature, circular, rectangular... look only to ITT Cannon for solutions!

ITT Cannon Electric, 3208 Humboldt Street, Los Angeles, California 90031. A Division of International Telephone and Telegraph Corp.
New Components and Hardware

Tiny X-ray tubes zero in

For X-ray analysis of materials and equipment in hard-to-reach places, Ampex Electronic Corp.’s Tube Division is offering two tiny flash X-ray tubes. The tubes were developed last year, with the military, so that X-ray diagnosis could be made during destructive testing of weapons.

Ampex believes the X-ray tubes are the smallest available commercially. The larger of the two, designated FX-30, has a diameter of 1\(\frac{1}{2}\) inches, an envelope length of 2\(\frac{1}{2}\) inches, and, with its 9 pins, an over-all length of 3\(\frac{1}{2}\) inches. The FX-30M is \(\frac{1}{2}\) inch around and 1\(\frac{1}{2}\) inch long, with the single pin adding a half inch.

Their sizes, project manager Jerry Pricherts says, allows the source to be placed extremely close to the material being radiated, giving fine measurements. Long-distance analysis can be done, but the intensity of radiation varies inversely with the square of the distance from the source.

Both tubes have tungsten targets; other materials can be ordered. In air the maximum applied plate voltage is 30 kvols. Up to 100 v per millimeter can be obtained with oil or other high dielectrics.

For an X-ray tube, Tel (915) 566-2936, El Paso; (713) 727-2312, Houston; or (203) 364-9311, Westport, Conn.

Wiring system permits design flexibility

Conflex, a wiring system of convoluted tubing and specially designed end fittings, terminates the tubing directly at electrical connectors. The system is offered in Teflon tubing with aluminum end fittings to accommodate all circular connectors conforming to MIL-C-5010, MIL-C-26842, MIL-C-26500 and NAS1599. Fittings are also available for rectangular rack and panel type connectors such as...
New Barnstead Purity Meters take the work out of being right!

The new solid-state Barnstead instruments greatly simplify measuring, monitoring and controlling water purity. In accuracy, speed and economy they are way ahead of other models.

The Model PM-5 (foreground), an inexpensive workhorse for testing distilled and demineralized water, is a good example. To test water purity, you merely set one knob to water temperature; turn the other until both red and amber signal lights come ON. Then read the dial, calibrated 0 to 1.5 Megohms and .01 to 10 ppm. (A)

The red light indicates that water is below desired purity settings — the amber above — thus permitting hi/lo tests. Price: $88 (not including conductivity cell).

Other stars in the new foursome:

PM-20 — same as PM-5, but calibrated 0 to 18 Megohms. Price: $118 (not including conductivity cell). (B)

PM-50 — direct-reading, 0 to 18 Megohms; three large scales — 0 — .18, 0 — 1.8 and 0 — 18 Megohms. No temperature settings needed; temperature compensation is automatic.

Price: $148 (not including conductivity cell). (C)

PMC-50 PUROMATIC® Controller Type Purity Meter — same as PM-50, with built-in relay and "above/below" monitor lights added. Protects against distribution of substandard water by activating valves, alarms. (D)

Price $198 (not including conductivity cell).

Write for information.

Helping you get more out of water!

Barnstead
Still and Sterilizer Company
Two Lanesville Terrace, Boston, Massachusetts 02131

New Components

DPX, DPA, DPD and D-subminiature.

The Conflex system offers all the advantages of a closed, sealed system, yet end fittings can be uncoupled for termination inspection or modifications, the manufacturer states. Additional conductors may be added and the entire system resealed by recoupling end fittings to the connectors. Significant space and weight savings are also claimed through deletion of connector end bells and potting, and reduction of insulation on wiring within the Conflex conduit.

Conflex tubing is extremely flexible and can withstand continuous flexing. Long conductor life during flexing can be expected because the individual wires are free to find their own positions of minimum stress, according to the manufacturer.

Terminations of the tubing are made with a set of simple, lightweight aluminum fittings which form a tight mechanical seal. Panel and connector adaptors screw into basic fittings, as required, and special locking devices can be specified when vibration is a factor. Included in the range of fittings are units which allow for the termination of a small wire bundle in a larger connector shell size.

Teflon Conflex wiring systems can withstand severe environmental punishment.

Icore Electro-Plastics, 680 E. Taylor Ave., Sunnyvale, Calif., 94086. [352]

Heater-cooler for electronic systems

Model M2EB302526 cools or heats electronic systems in field installa-
The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.

The new Brinkmann Precision Balances are the very first all-digital Micro Torque Weighing Systems. Weighing speed is increased at least 50% over other (non-digital) systems, reading errors eliminated, and operator fatigue in serial weighings reduced substantially.

Scale ranges from 0-1 mg. (digital reading to 0.001 mg.) to 0-10 gm. (digital reading to 10.0 mg.) are available.

Mechanical taring is offered for the first time and permits instantaneous application of counterweights (to extend the scale range) or compensating weights (for pans and object holders) without risk of damage to the mechanism.
High reliability circuits produced for the Lunar Excursion Module

BUNKER-RAMO CUSTOM HYBRID MICROCIRCUITS

DESIGN AND PACKAGING FREEDOM
Mix integrated circuits, precision resistors, tunnel diodes—whatever you need to get the function you want in the package you want.

SPEED
Digital logic circuits to 250 megacycles; other circuits to microwave frequencies.

POWER
Up to 40 watts per square inch of resistor area without heat sink.

LOW COST, QUICK DELIVERY
Simplified processes mean lower tooling and start-up costs even for short runs or prototypes; faster delivery, too.

PRECISION RESISTORS
Production-run thin-film resistor tolerances to ±0.01% initial adjustment, with ±0.05% tracking accuracy at full load for 10,000 hours; ±5ppm/°C temperature coefficient control.

APPLICATION ENGINEERING
To explore solutions to your circuit problems, call or write our application engineers.

New Components

A group of p-c board connectors, with 0.156-in. centers, combine the contact reliability of heavily gold-

tation, unheated military huts, unattended control stations and automatic telephone switching systems. The heater-cooler keeps an enclosure at an even 65° F with surrounding temperature in still air as low as 10° F. It also will flush and cool electronic cabinets when the remote thermostat indicates that cooling is required.

When moderate heating is required, internal dampers are changed to recirculate air within the enclosure without drawing in fresh air. Heat comes from internal electronic units. When substantial heating is required, an internal relay energizes a 1,000-watt electric heater to maintain a set temperature.

The front panel contains a circuit breaker to protect heating elements. Three pilot lights indicate when the power is on, the damper open or the heat on. A terminal trip on the rear is provided for power input and for 3-wire connection to the 2-step thermostat.

The MIL-SPEC centrifugal blowers and motors are said to provide continuous uninterrupted, service-free operation for thousands of hours. Power requirements are 115 v, 50/60 Hz a-c. Dimensions are 10 ½ in. high x 19 in. wide x 10 ½ in. deep.

McLean Engineering Laboratories, 70 Washington Road, Princeton Junction, N.J., 08550. [353]

P-c connectors boast rigid terminations

THE BUNKER-RAMO CORPORATION
DEFENSE SYSTEMS DIVISION
6433 FALLBROOK AVENUE • CANOGA PARK, CALIFORNIA 91304 • (213) 346-6000, EXT. 546

214 Circle 214 on reader service card

Electronics | September 19, 1966
1/3 more torque—same size package. Don’t be fooled by the small size of Globe’s Type UCS Spur Gearmotor: It’s power-packed, producing up to 10 lb. in. of torque from a package only 2 5/16” dia. by 3 1/2” long. That’s 33% more torque than same size look-alikes. If you manufacture motor-powered small equipment, check these features:
- hysteresis synchronous or induction
- 115 v.a.c., 60 cps or 230 v.a.c., 60 cps
- life-lubricated bearings (no oil holes)

- 13 standard reduction ratios, 6:1 to 1,800:1
- 1,800 and 3,600 rpm motor speeds
- interchangeable mounting

When power, compactness, economy, and unfailing dependability are important, try a Globe Type UCS Spur Gearmotor. Many units are in stock and can be shipped in 24 hours. Request Bulletin UCS.
Globe Industries, Inc.
2275 Stanley Ave., Dayton, Ohio 45404, U.S.A., Tel: 513 222-3741

Count on us for laminated plastics (Join the thousands who do)

Thousands of companies buy laminated plastic sheets, rods, tubes or fabricated parts from us. Why? Because Synthane is a reliable and continuous source of supply. In these days of strikes and shutdowns you need a source for laminated plastics you can count on. In our 37 years of operation we have not lost one hour because of labor trouble. 66% of our employees have had 10 years or more of experience with us. We have complete control of your part from raw materials through tools made in our own tool room to the finished part. We have a modern plant, completely fire-protected. And we maintain a tremendous inventory of materials ready to ship or process. Synthane Corporation, 36 River Road, Oaks, Pa.
FOR APPLICATIONS REQUIRING
PRECISE VOLTAGE STABILITY

YOU NEED
VOLTROL* STABILIZERS
WITH EI LAMINATIONS

With thin gauge EI laminations the magnetic core of a voltage stabilizer can be adjusted to compensate for variation in electrical parameters. The addition or removal of one or more EI laminations to or from the core stack, while the unit is under construction, can correct minor voltage differences. This then permits that the output voltage can be set precisely and stabilized to a specified nominal value.

When the proper functioning of electronic equipment is dependent upon the stabilization AND VALUE of the voltage supply, then Voltrol Stabilizers built with EI laminations and precisely adjusted to specified voltage are the solution to this problem.

New Components

plated, flexing bifurcated contacts with the stability of a rigid 0.045-in. square-tail termination. The combination is achieved by using the appropriate flexible contact material required for the bifurcated contact section and forming it around a wire core to make the termination section of the contact. The 0.045-in. square-tail connector formed has the extremely sharp corners needed for reliable wire wrap attachment.

The manufacturer’s selective process of gold plating reduces gold requirements in the contacts over 60% while maintaining contact reliability and durability of electrical performance. A 50-microinch gold plating is applied to the contact mating surface area while 10 microinches is applied to the remainder of the contact.

The connectors are designed to meet the exact wire wrap standards of such programmed applications as systems control centers and data-processing equipment. Normal production handling will not bend the extremely rigid termination.

Cinch Manufacturing Co., 1026 S. Homan Ave., Chicago, Ill., 60624. [354]

Rectangular trimmer meets military specs

A precision rectangular wirewound trimmer, type 600, is designed to perform under environmental requirements of MIL-R-27208. A specially designed wiper block system, similar to the one on the company’s type 400 series, effectively isolates electrical elements.

The unit is housed in a rugged, dialyl phthalate case and is offered with either printed-circuit
GOOD FORTUNE AND PROSPERITY AWAIT ENGINEER ORDERING E-T POTS

E-T 3/4" 10-turn precision pots:
- cost $4.50 or less, in production quantities
- meet or exceed existing, accepted specifications
- resistance range from 25 to 250,000 ohms
- linearity tolerance ±0.25% (special to ±0.05%)
- life expectancy (shaft revolutions) 2,000,000
- operating temperature range -55°C to +125°C

Want more details? Write or phone the company that gives you more for your money in quality, price and world-wide delivery...

11301 E. Ocean Ave., La Habra, Calif. 90631/(213) 691-0741

MFRS. OF LINEAR AND NON-LINEAR PRECISION POTENTIOMETERS SINCE 1959
Circle 298 on reader service card

DELAYS
FROM 10 TO 10,000 µS

deltime
MAGNETOSTRICTIVE DELAY LINES

Deltime, with over a decade of experience in precision magnetostriuctive delay line technology, offers models to fill virtually every delay requirement. Complete input-output circuit modules for carrier and R2 or NRZ digital systems...torsional, longitudinal, tapped and adjustable models as well as high vibration and shock withstanding delay lines for airborne applications are included in the standard line.

If your application requires a signal delay or extremely economical delay line memory element, contact us, our application engineers are at your service...or write for our complete technical catalog.

SUB-SYSTEMS DIVISION
SEALECTRO CORPORATION
HOYT STREET • MAMARONECK • NEW YORK
PHONE 914-889-5600 • TWX 710-566-1110
Sealectro Ltd., Portsmouth, Hants, England
Circle 299 on reader service card

Send for Engineering Data Book
523 Hillgrove Avenue
LaGrange, Illinois 60526
Area Code 312, Phone 354-1040

"PIONEERS IN MINIATURIZATION"
Our crystal ball told us you'd be needing inductors like these!

Because Nytronics pioneered the concept of standardized quality components by anticipating your circuitry requirements — you can now order immediate, off-the-shelf, delivery from a wide range and immense inventory of standardized inductors.

WEE DUCTOR — Magnetically shielded with inductance range 0.1 to 180,000uH, designed to MIL-C-15305, Grade 1, Class B. Encapsulated Envelope: 0.157” diameter x 0.450” length.

SUPER WEE DUCTOR — Magnetically shielded with inductance range 0.1 to 100,000uH all ±10% tolerance. Meets MIL-C-15305. Molded Envelope: 0.157” diameter x 0.410” length.

WEE WEE DUCTOR — Magnetically shielded with inductance range 0.1 to 1000uH. Designed to MIL-C-15305. Encapsulated Envelope: 0.125” diameter x 0.335” length.

DECI-DUCTOR — Subminiature with inductance range 0.1 to 1000uH. Designed to MIL-C-15305, Grade 1, Class B. Molded Envelope: 0.100” diameter x 0.250” length.

S-M-L INDUCTORS — Non-shielded with inductance range 0.1 to 10,000uH. Designed to MIL-C-15305, Grade 1, Class B. Molded Envelope: “S” Type — 0.188” diameter x 0.44” length, “M” Type — 0.25” diameter x 0.60” length, “L” Type — 0.31” diameter x 0.90” length.

VARIABLE INDUCTOR — Unshielded with adjustable range 0.1 to 4700uH. Designed to meet MIL-C-15305, Grade 1, Class B. Encapsulated Envelope: 0.400” diameter x 0.500” length. Vertical or Horizontal mounting.

WEE V-L — Magnetically shielded, adjustable range 0.1 to 100,000uH. Designed to MIL-C-15305, Grade 1, Class B. Epoxy Molded 0.300” diameter x 0.400” length.

90537 TYPE — Manufactured in accordance with MS90537, Molded, Magnetically shielded with inductance range 0.1 to 100,000uH ±10% tolerance. Molded Envelope: 0.157” diameter x 0.410” length.

Our inventory of other standardized, high quality components includes capacitors, delay lines, and resistors. Custom component capability is also available. Write today for complete engineering data.

New Components

- pins or Teflon-insulated leads.
- Resistance values offered are 10 to 50,000 ohms, ± 5% tolerance.
- The units are rated at 1 watt at 70°C. Price is $3.56 each in lots of 100; delivery, 4 weeks.

IRC, Inc., 401 N. Broad St., Philadelphia, Pa., 19108. [355]

Transistor holder accepts 5 leads

A press-fit transistor holding device, designated RTC-0505SL, is designed to accept five-lead components contained in TO-5 packages. The component is mounted on the shoulder of the Teflon bushing while the leads are inserted into the five through holes.

On the back side of the holder, the leads are placed into mating slotted terminals and soldered into position along with additional components. Lugs are of brass, plated with silver and then gold flash. The insulation is of 100% pure Teflon in any of the 10 standard EIA colors for ease of circuit coding.

The company’s circuit hardware have a common mounting method. They are press-fitted into prepared holes in a chassis. For this part, insertion tool B-42 is available for installation at production rates.

Sealtech Corp., Mamaroneck, N.Y., 10543. [356]

Reversible sync motor delivers high torque

A synchronous reversible motor has been developed for use in timing and drive applications. Series designation is 81300.

This motor delivers an output torque of 0.75 oz in. at 300 rpm di-
DIALS, DIALS, and MORE DIALS
Theta catalogs over 432 sizes and styles, with continuous motion, vernier control and 0.1° accuracy. Our new 28-page engineering catalog has all the details.

NEW FROM CRAMER...
LIFT-LOK Stools
adjust to every worker like fine tools!
Because Cramer Lift-Lok is infinitely adjustable! Just lift the seat and stop at the most comfortable height. It takes less time than to read this sentence. Since fatigue is a critical factor in efficiency of seated workers, it makes good sense to provide tools that minimize fatigue. With Lift-Lok every worker can seek exactly his own efficient level. Available in four base types, steel, wood or plastic seats, contoured or flat, adjustable or flexible backs. To find out about the stools that qualify as production tools, write: V.P. Sales, Cramer, 625 Adams, Kansas City, Kan. 66105.

THE TEMPERATURE RANGE OF SANGAMO'S NEW TYPE 557 ALUMINUM AXIAL LEAD CAPACITOR IS -55°C to +125°C
The new, wider range is accomplished by vacuum impregnating the capacitor with an exclusive Sangamo electrolyte. Built in accordance with MIL-C-39018, Type 557 provides these additional benefits:

- Voltage ratings up to 250 VDC at 85°C or 200 VDC at 125°C.
- Both positive and negative leads and tab connections are welded to prevent open circuits and high contact resistance.
- Electrical characteristics comparable to tantalum foil capacitors.

Write for Bulletin 2240 detailing Type 557 specifications.

SANGAMO ELECTRIC COMPANY
Pickens, South Carolina

Circle 308 on reader service card
Circle 309 on reader service card
Electronics manufacturers looking for a quality work force, low-cost western factory sites, new sources of raw materials, and strategic transportation facilities to serve the growing West and the world can find them all – in UTAH.

Good workers... The availability of engineers, scientists, and other skilled workers is just one of the reasons for looking at Utah. Utah's education standards pace the nation in many respects. Utah produces more engineers and scientists per capita than any other state. Bring your plant to Utah; we'll guarantee the scientists!

Plant sites... Low-cost plant sites are available in industrial or in rural areas adjacent to rail and interstate highways and intercontinental airlines.

Location... Utah is right in the middle of western America and just hours away from most of the leading markets.

Transportation... Utah is the hub of a modern, efficient transportation wheel, the crossroads of the West.

Freeport state... Utah has one of the most liberal freeport-export laws in the nation offering welcome tax savings to manufacturers.

Natural resources... Utah has more types of industrial raw materials than any other comparable area, as well as many finished and semi-finished products.

Utah also offers a delightful four-season climate with low humidity, unusually fine recreational facilities in the Center of Scenic America.

Now is the time to get in on the ground floor of Utah's surging industrial growth.

FREE... Write for information on "The New Industrial Utah" or ask for special recommendations tailored to your industry.

To order reprints: Fill in, cut out coupon below, insert in envelope and mail to: Electronics Reprint Dept., 330 W. 42nd Street, New York, N.Y. 10036

Reprint order form
For listing of reprints available see the Reader Service Card.
Communications Satellites Part II
Send me reprints of Key no. R-90 at 75¢ each.
For reprints of previous special reports fill in below:
Send me reprints of Key No. (s) @ 68 each. (For prices, see Reader Service Card)
Name __
Number of street ___________________________________
City, State, Zip code ________________________________

Thermoelectric module cools components

A thermoelectric module has been announced for temperature control and cooling of transistors, diodes, infrared detectors and other small components. Model H9-65 module has a maximum loaded heat pump capacity of 3.9 watts, an unloaded
Circle 310 on reader service card

MADE ANY GOOD CONTACTS LATELY?

You don't have to any more...you can get your contacts from a specialist and save yourself a lot of time, money and aggravation. Most electrical manufacturers know this, of course, but you'd be surprised how many still try to make their own contacts or sub-assemblies.

What many people don't know is this: besides know-how, it takes a wealth of specialized equipment and specialized people to economically turn out contacts as good as Deringer's. It takes years of study and cumulative experience in successfully solving countless contact problems and the development of special equipment and processes to produce such a wide variety of electrical contact types and sizes.

To deliver the right contact for a given application...to deliver promptly and at the right price...these things take what Deringer has: specialized capability plus the newest, most modern contact manufacturing facilities and plant.

Contact Deringer the next time you have contact problems. It's your best bet for quick, economical solutions.

Circle 311 on reader service card
Reliability and Quality are a product of experience. Jennings has 24 years experience manufacturing vacuum capacitors.

Time enough to design a lot of them. Here are a few:

<table>
<thead>
<tr>
<th>Model</th>
<th>Capacity (Range)</th>
<th>Peak Test Voltage</th>
<th>RF Current Rating</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADB 30</td>
<td>3-30 pf</td>
<td>15 KV</td>
<td>40 Amps RMS</td>
<td>4.55"</td>
<td>1.312"</td>
</tr>
<tr>
<td>USLS 465</td>
<td>5-465 pf</td>
<td>5 KV</td>
<td>42 Amps RMS</td>
<td>5.52"</td>
<td>2.312"</td>
</tr>
<tr>
<td>VMMC 5000</td>
<td>100-5000 pf</td>
<td>15 KV</td>
<td>125 Amps RMS</td>
<td>21.31"</td>
<td>9.25"</td>
</tr>
<tr>
<td>JSLF 5000</td>
<td>5000 pf</td>
<td>5 KV</td>
<td>100 Amps RMS</td>
<td>2.875"</td>
<td>4.125"</td>
</tr>
<tr>
<td>CVJW 200</td>
<td>25-200 pf</td>
<td>100 KV</td>
<td>250 Amps RMS</td>
<td>15.50"</td>
<td>8.00"</td>
</tr>
<tr>
<td>CVHC 650</td>
<td>25-650 pf</td>
<td>45 KV</td>
<td>250 Amps RMS</td>
<td>10.75"</td>
<td>7.56"</td>
</tr>
</tbody>
</table>

Close to 100% of the Free World's high frequency transmitters use vacuum capacitors of Jennings design. In fact, practically every major advancement in vacuum capacitors has originated at Jennings. These include capacitor designs ranging from 100 watts to over a megawatt power ratings. Which means that in all likelihood the capacitor you need has already been designed, field tested, and proven reliable—plus possessing all the latest advances in vacuum capacitor design.

The vacuum capacitors shown here are only a few of the hundreds of standard designs available from Jennings to fit practically every RF application. If a new design is necessary however, Jennings has an experienced applications engineering staff and Quick-Reaction Laboratory ready to solve your problem in the shortest possible time. Jennings also offers the only complete rf lab in existence for proper testing of vacuum capacitors in high power rf circuits through 100 kw that duplicate actual operating conditions.

Galvanometer relays with direct switching

A line of plug-in, modular galvanometer relays is being manufactured with a new switch design. The microsensitive relays now feature direct switching with 5-watt capacity up to 125 v a-c or d-c. The switches are electrically isolated from the coil assemblies. Switch life is one million operations with high deflection. Pull-in dropout resolution is within 1.5% of coil deflection.

The new switch design allows direct control of the highest powered scr's or multicontact external relays. Sensitivities as low as 2 µa or 1.5 mv are available, eliminating the need for external electronic amplifiers.

Sensitak Instrument Corp., 531 Front St., Manchester, N.H. [359]
DRAMATIC REDUCTION
formerly 77" h. x 33" w. x 33" d.
now only
29" h x 17" w x 17" d
(5 KW Audio Power Amplifier)

All other models similarly reduced...but in size only!
For instance, 10 KW Model, formerly 78" h. x 78" w. x 36" d., now only 48" h. x 34" w. x 24" d.

CML Audio Power Amplifiers produce tremendous power in the smallest packages. Wide frequency range. Low distortion. Ideal for CW and pulsed operation, acoustic testing, vibration testing, plasma tubes, ion propulsion engines. Perfect for marine installations. All units with wide range of output impedance taps. Air-cooled and vapor-cooled units. Full power available into low power factor loads. Call or write today for details.

CML, Inc.
A subsidiary of Tenney Engineering, Inc.
350 Leland Avenue - Plainfield, New Jersey
(201) 754-5502 - TWX: 201-754-2064

Solid-Status Report 9/66

NF < 12 db at 10 Kc i-f frequency.
For the backward diode alone?

No...for the whole receiver.

Up to now the exploitation of the state-of-the-art noise figures of Philco's backward diodes has been held back by the problems of designing a matching amplifier at audio i-f frequencies. Not any more. We now make available the P301, a compatible low-noise amplifier, to offer you a package with over-all receiver noise figures below 12 db at X-band for an i-f frequency of 10 Kc.

The P301, designed specifically for use with the L4150/60 series of backward diodes, is available in a hybrid microcircuit configuration which permits packaging the entire amplifier within the P955 holder assembly.

Consider for a moment what this little package can do for you:
You can now use the relatively simple CW Doppler receiver configuration for applications that were previously impossible because of the high noise figures of conventional diodes.

And in addition to the low noise characteristics you get inherently greater reliability and temperature stability. Philco backward diodes are available with operating temperatures to 150°C.

If you're a designer of CW Doppler mixers, altimeters, radiometers, spectrometers, etc.—you'll want more information on this new Philco package. Call, write or wire Spring City Operation Marketing Department. Or circle the Reader Service Card. (Phone: 215-948-8400.)

New plant site?
JOIN THE SUCCESSFULS
on the Niagara Frontier

SIZE DOESN'T COUNT. Of 66 electronics and electrical producers in Erie County, 45 employ under 50. Big and small benefit from ample supplies of skilled talent...raw material...cheap power...and easy access to both U.S. and Canadian markets. For full details write Erie County Executive Edward Rath, Erie County Hall, Dept. E-1, Buffalo, N.Y. 14201. He'll send the new book that tells why Erie County offers the best profit opportunities for your new plant.

The future is here
on the Niagara Frontier

(Buffalo and Erie County)
An IC amplifier for everybody

New Semiconductors

A low-cost integrated circuit amplifier that is a jack-of-all-trades has been announced by Fairchild Semiconductor, a division of Fairchild Camera & Instrument Corp. Before it is packaged, the new integrated circuit is only 20 mils square —smaller than 90% of all transistors now available, says Fairchild.

The radio-frequency/intermediate-frequency amplifier comes in three versions for three markets—military (A703), industrial (A703C), and consumer (A703E). All three versions come off the same production line, marketing manager Jack Gifford explains, but the military version is subjected to stringent testing, the industrial version undergoes somewhat less testing and the consumer version, still less testing. All three versions are packaged in sealed, 6-lead TO-5 metal cans.

The high cost of testing is reflected in the prices of the units. For quantities of 100 and more, the military model is $9.75 each; the industrial, $3.00 each. No price has been set for the consumer unit, but Gifford reports that “it will be competitive with the cost of equivalent circuitry made of discrete components.” And it should be noted that Fairchild also lists television sets as a potential market for the solid state amplifier.

Fairchild gives the following applications for its silicon planar linear device:

- R-f power amplifier to 150 megahertz. At 100 Mhz, the amplifier has a typical noise figure of 7 decibels and a power gain of 20 db.
- R-f, video logarithmic amplifier for radars. It limits without saturation, Fairchild says, hence it minimizes overdrive recovery problems and pulse distortion.
- Local oscillator in amplitude-modulated and frequency-modulated receivers to 150 Mhz. Input and output impedance characteristics are stable over large signal-range excursions, giving low-drift operation.
- A-m and f-m i-f amplifiers from 5 kilohertz to 100 Mhz. The self-
Great editorial is something he takes home
(What a climate for selling!)

COMPET Model CS-20A

Quietly, efficiently. When office traffic mounts up. That’s when you’ll be glad you invested in COMPET CS-20A ELECTRONIC DESK CALCULATOR. And these unique features show why—a special mechanism to ensure that no two keys can be pressed simultaneously • instant calculation up to 14 digits • +, - and decimal symbols displayed automatically • no breakdowns, even when misused • and plug-in circuits for easy maintenance. COMPET ELECTRONIC DESK CALCULATOR CS-20A...used in modern offices the world over.
We couldn't think of a good word to dramatize the competitive economy of Foamflex coaxial cable, so we made one up.

Foamflex is a semiflexible cable construction consisting of a copper inner conductor, a formed polyethylene dielectric and thin wall outer aluminum conductor. A black pigmented polyethylene jacket can be supplied for added protection. As the original "foamed" dielectric, Foamflex is the ideal low cost answer in extremely demanding applications: telemetry, missile guidance, microwave, delay lines and an endless variety of airborne and GSE installations where high performance, light weight and absolute reliability are required.

You'll find Foamflex available, from stock, in 1/4", 3/8", 1/2", 7/8" and 11/8" diameters, 50 ohm impedance. Lengths may also be custom cut or fabricated into highly sophisticated assemblies, to your specification.

May we tell you more about Foamflex? Write for Bulletin FF, Issue 3.

New Semiconductors

biased device has a reverse gain of 0.002 millihms providing good isolation between stages. Parasitic capacitance is at a minimum.

- Voltage-controlled oscillator in phase lock loop receivers.

The specifications listed below are for the military version. Some of these parameters are relaxed in the industrial and commercial versions. For example, the military operating temperature range is -55°C to 125°C; the industrial and commercial, 0°C to 70°C. Listed by military, industrial and commercial versions, the typical input conductance at 5 MHz is 0.20, 0.35 and 0.33 millimhos; the typical output capacitance is 2.0, 2.0 and 2.6 picofarads and the maximum output conductance is 0.04, 0.05 and 0.1 mmho.

Specifications

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>20v, max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output collector voltage</td>
<td>24v, max.</td>
</tr>
<tr>
<td>Voltage between input terminals</td>
<td>±0.5v max.</td>
</tr>
<tr>
<td>Internal power dissipation</td>
<td>200 mw, max.</td>
</tr>
<tr>
<td>Peak-to-peak output (input = 400 mv rms)</td>
<td>3.2 mamp min.</td>
</tr>
<tr>
<td>Output saturation voltage</td>
<td>1.7 v, max.</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>9.0 pf</td>
</tr>
</tbody>
</table>

Fairchild Semiconductor Division, Fairchild Camera and Instrument Corp., Mountain View, Calif. [361]

Industrial DTL IC's in molded packages

Digital integrated circuits in the 930-series DTL configuration are available in a molded plastic package. The package was announced
For solderless wrapped connections, a new automatic wire stripper

The Model 841 Solderless-Wrap Wire Stripper offers high speed preparation of 20-30 AWG solid conductor wire for insertion in a wrapping tool. It cuts wire to lengths of 1" to 50' and fully strips 1/8" to 1 9/16" from each end without nicking or scraping, whether the insulation be PVC or something as tough as Mil-Ene, Teflon or Kynar. With optional assemblies, you can also use it for shorter stripping of 10-32 AWG stranded wire. Write for information on this and other Eubanks wire strippers.

What's NEW in laminated plastics?
Synthane FR-16!
It’s a lower-cost flame-retardant, glass epoxy laminate
Designed specifically for printed circuits used in computers

Does a laminated plastic tube always have to be round?

Not on your life. Synthane laminated plastic tubing may be round, square, oval, rectangular, round inside and hexagonal outside or vice versa. "U"-shapes, "L"-shapes, and multi-shapes. You name it and we have it in stock or can make it for you. Many grades, sizes. In standard round tubes—the widest ranges of sizes in the industry. Round tubes 1/4" ID to 26½" OD, in lengths of 36" to 96". Synthane Corporation 36 River Road, Oaks, Pa.
New Semiconductors

in March for the manufacturer's series 74TTL integrated circuits.

The 930-DTL family, designed for operation in the industrial temperature range (0°C to 75°C), has been designated series 15830N. The complete family of 11 DTL circuits is molded packaged, including dual, triple, and quadruple gates, buffers, expanders, binary elements and a one-shot.

The transfer-molded plastic unit features 14 plug-in pins on 100-mil centers for fast, economical flow-soldering and wire wrap techniques. The two rows of pins are 300 mils apart, providing sufficient space to run ground and power-supply strips directly under the body of the package. The rigid plug-in pins are adaptable to high-speed automatic or manual insertion.

The solid molded construction provides maximum protection against shock and vibration. Excellent heat dissipation (70°C/watt in free air) results from full contact of the molding compound around the silicon bar. The package meets or exceeds MIL-STD-202C, Method 106B for moisture protection.

Typical gate propagation delay for series 15830N is 25 nsec; power dissipation, 5 mw; fan-out, 3; d-c noise margin, 750 mv; and supply voltage, 4.5 to 5.5 v. Integrated circuits in the 930-DTL configuration are also available in the standard TO-84 14-pin flatpack for operation over the full military temperature range of -55° to +125°C.

Series 15830N circuits are priced an average of 25% less than previous packages.

Texas Instruments Incorporated, 13500 North Central Expressway, Dallas, Texas. [362]

Variable attenuators
made of monolithic IC's

Variable electronic attenuators consist entirely of tiny monolithic integrated circuits. The controllable-loss circuits were designed for use in automatic gain control circuits...
in electronic equipment. They operate on a new principle that permits control of the gain of an amplifier without changing its operating parameters. This greatly diminishes the chance of distortion or of phase shifts in amplifiers.

Type ULX-0101 and ULX-0102 age blocks can attenuate signals by up to 60 db at frequencies as high as 65 MHz. The circuits are insensitive to power supply variations. In automatic gain control, there is virtually no distortion for a constant output of 1 mv rms over a 60-db attenuation of the input signal. The maximum input voltage is 1 volt of signal.

The ULX-0101 requires only 2 mw of control power and has a rated circuit dissipation of 110 mw, while the ULX-0102 integrated circuit attenuator has a circuit dissipation of 65 mw but requires 36 mw control power.

The units are being offered in both hermetically-sealed TO-5 style transistor cases and in flatpacks.

Zener diodes serve as voltage regulators

A line of zener voltage regulators, the molded LZM series, offers a low cost, insulated package claiming excellent resistance to moisture, thermal shock and vibration in the standard DO-27 outline. Voltage ratings are from 3.3 to 15 v with maximum current ratings from 300 ma to 60 ma.

The molded 1-watt zener diodes

Wisconsin is a good place to raise children. The cities are clean and have ample public parks. Inviting summer and winter recreational areas, only minutes away from almost every neighborhood, help prevent troublesome teen-age turmoil. So does Wisconsin's elementary and secondary school system which has a per pupil expenditure of $498 . . . $43 higher than the U.S. average. You see, Wisconsin youngsters stay in school. In fact, the state has one of the nation's lowest dropout rates. This means a wealth of educated and highly trainable manpower available to industry. Making a profit is important, but so is the good life for employers and employees, too! Wisconsin offers both. Check the facts!

Write Industry Development Dept. H, Wisconsin Power and Light Company, P.O. Box 192, Madison, Wis. 53701.
EDGEWISE PANEL METERS

...we've got your number

1122 flat, stackable, self-shielding; 1.24" scale in less than a square inch of panel.

1136 scale length (2") of a 3 1/2" conventional meter in a stackable, 2.6" wide edgewise. Easy to read, too: bi-level scale, optional internal illumination.

1145 2.7" scale, bi-level, for easy reading. A completely shielded, 3 1/2" stackable meter, ideal where you need a bigger readout.

1147, 2520, 2150, 1120, 2500 military models, dual-scale meters, 5" scales, economy versions, meters with interchangeable scales, specials to order.

The move is on to edgewise. Equipment designers everywhere are realizing that edgewise meters give as much as three times the scale readout as conventional meters in the same panel space.

We're the leaders in edgewise meters, have been since we pioneered the concept years ago. Now we offer industry's broadest line of up-to-date, space-saving edgewise models. Our new edgewise catalog, Bulletin 391, has all the details. Write for a copy.

New Semiconductors

are designed as regulators and protection devices for control, regulating and monitoring functions. Industrial applications include process control, instrumentation, switching, measurement, modulation, energy conversion, energy generation and energy transmission.

Price range is from 60 cents to $1.10 in lots of 100 to 999.

International Rectifier, 233 Kansas St., El Segundo, Calif., 90245. [364]

Germanium rectifiers minimize power losses

Extremely low forward voltage drop (0.45 v for low power loss) plus high rectification efficiency (75% at 100 khz) are exhibited by a series of germanium rectifiers. Both performance characteristics of the 1N91-93, 1-ampere device series are claimed to be 50% better than comparable low-current silicon rectifiers and are improvements over the ratings of a previously available, limited-source, Jede-registered, 1-ampere germanium type.

At ambient temperature of 75°C, output current of 0.1 amp, the rectifiers will block 80% of their 100-, 200- or 300-v peak-inverse voltage ratings. Up to 55°C, output current to 1 amp, 100% reverse blocking is sustained.

Applications can be found in low-power circuits where voltage losses must be minimized, such as low-current battery-charging and am-
plifier/voltage-biasing circuits.
The 1N91-93 series is packaged in the DO-13 flangeless case.
Motorola Semiconductor Products Inc., P.O. Box 955, Phoenix, Ariz. [365]

Epoxy-encapsulated silicon transistors

Low-cost, epoxy-encapsulated silicon transistors have been announced for large-volume consumer (radio-tv), computer and industrial applications. They are priced as low as 15 cents per unit in large production quantities.

The new line covers the entire frequency spectrum from d-c to uhf and includes six medium power amplifier/switching devices registered with the EIA, for applications in computers and industrial instruments. The full line also includes other device families for small-signal audio amplifier, high speed switching, low-noise/low-level, r-f/ i-f amplifier and medium-power general-purpose applications.

The manufacturer's registered EIA devices include: 2N4140 and 2N4141 (npn), which are electrical equivalents of the industry-standard 2N2221 and 2N2222; the 2N4142 and 2N4143 (pnp) which are electrical equivalents to the 2N2906 and 2N2907; and 2N4227 and 2N4228, which are npn and pnp complementary devices featuring tighter gain specifications (75 to 150 at 150 ma) than the other four types mentioned.

The devices are packaged in an epoxy-encapsulated ceramic case, with the three leads in a 100-mil circular configuration equivalent to the conventional JEDEC TO-18. This facilitates direct mechanical plug-in replacement of metal-can units in sockets or p-c boards already tooled to accept TO-18 transistors.

General Instrument Corp., Semiconductor Group, 600 W. John St., Hicksville, N.Y., 11802. [366]
New Instruments

Instrument measures impedance and phase

R-f vector impedance meter model 4815A measures the complex impedance of any circuit element or component in a single test by a single probe. Over the frequency range 500 kHz to 108 MHz, the instrument presents impedance directly in ohms on one front-panel meter, phase angle directly in degrees on another. A single, thin probe excites the test element and simultaneously measures its impedance and phase angle. No supplementary equipment is required.

An internal oscillator supplies a low-level exciting signal through a 5-ft cable to the probe; a unique sampling, automatic gain control loop maintains the current constant at 4 μA. At the same time, the voltage response of the tested element is sensed and converted by a second sampling channel, located within the same probe, to read out directly in impedance. A phase detector monitors the difference between voltage and current channels to yield the phase angle of the impedance vector.

The built-in continuous-tuning oscillator, the frequency of which is displayed clearly alongside the readout, requires no balancing or data interpretations; it has controls only for band and frequency.

The impedance-reading range of the 4815A is 10 ohms to 100,000 ohms; phase angle range is 0 to ±90°, and 180° ± 90°. Resolution is better than 2°.

Accuracy of the instrument is fully specified. Frequency accuracy is within ±2% of reading. For impedance, accuracy is within ±4% of full scale ± \left(\frac{F}{30 \text{ Mhz}} + \frac{Z}{25,000 \text{ ohms}} \right) % of reading, where F is the frequency in MHz and Z is in ohms; the reading includes probe residual impedance. Accuracy for phase angle measurements is within ± \left(\frac{3 + F}{30 \text{ Mhz}} + \frac{Z}{50,000 \text{ ohms}} \right) °.

The manufacturer says model 4815A applications can determine the self-resonance point of capacitors, the series and parallel resonance points of crystals or the characteristics of high-frequency transformers and transducers.

Model 4815A is priced at $2,650. Delivery estimates are expected to be 30 to 60 days.

Phase meter/computer is highly accurate

This phase meter/computer measures a-c signal bursts as short as 700 μsec to 0.1% accuracy. Sample and hold circuitry maintains readings as long as 1 minute.

Phase angle is displayed on a 5- x 2½-in. rectangular mirrored scale D'Arsonval meter calibrated from 0° to 360° full scale. A phase reversal switch allows 0° to be at midscale on the meter, eliminating ambiguous readings for lead-lag measurement. An analog output from 0 to 3.6 v d-c provides a capability for driving chart recorders or digital voltmeters.

Phase comparison between the two a-c input channels is made by...
Ballantine Sensitive DC/Volt/Ammeter

Model 365
Price: $525

Extremely Wide Voltage and Current Range
Unmatched Accuracy for all Indications
Built-in Calibration Standard

Measures 1 µV to 1,000 V dc
0.001 µA to 1 A dc

Now you can measure with unmatched accuracy dc voltages with an extremely wide range of 1 µV to 1 kV and currents from 0.001 µA to 1 A.

Ballantine’s Model 365 Sensitive DC Volt/Ammeter, an analog indicator with a single logarithmic scale and range selector, measures voltages above 1 mV with a constant accuracy of 1% of indication. It measures currents above 0.1 µA with an accuracy of 2% of indication.

The Model 365’s accuracy is supported by a high order of stability gained by ac and dc feedback techniques and conservative operation of all components. If you need further assurance of accuracy, a reliable internal standard is available to check its calibration, which can be switched on in a second.

Signal-ground isolation of the Model 365 allows floating measurements to 500 volts above panel ground, and ac rejection is provided to reduce the effects of common-mode signals.

PARTIAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
<th>Impedance</th>
<th>Impedance Between Signal and Panel Grounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µV — 1 kV</td>
<td>1 nA — 1 A</td>
<td>1 MΩ above 1 µV; 5 MΩ above 0.1 mV; 10 MΩ above 0.1 V</td>
<td>R > 100 MΩ, C = 0.1 µF, 500 V Peak Max</td>
</tr>
</tbody>
</table>

Available as DC Amplifier: 90 dB max gain, 0.1 to 1 V output for each decade input range

Member Scientific Apparatus Makers Association

Ballantine Laboratories INC.
Boonton, New Jersey

CHECK WITH BALLANTINE FIRST FOR LABORATORY VACUUM TUBE VOLTETERS, REGARDLESS OF YOUR REQUIREMENTS FOR AMPLITUDE, FREQUENCY, OR WAVEFORM. WE HAVE A LARGE LINE, WITH ADDITIONS EACH YEAR. ALSO AC/DC LINEAR CONVERTERS, CALIBRATORS, WIDEBAND AMPLIFIERS, DIRECT-READING CAPACITANCE METERS, AND A LINE OF LABORATORY VOLTAGE STANDARDS 0 TO 1,000 VCC.

Circle 233 on reader service card

Electronics | September 19, 1966
From **BENRUS**

a versatile scope for panel mounting...

Type RA850
DC - 500 KHz

small enough to save important space...

big enough screen to allow easy reading...

with performance...

Advanced solid state circuitry assures optimum reliability and stability, and minimizes thermal problems. In general, use of top-quality ruggedized components provides conformance to military requirements.

and **economy!**

44 amplifier and sweep plug-ins are available in a large number of ranges; the user buys only the operating ranges that will be required.

Request full information. You’ll receive our latest catalog, giving complete data, with prices, on the comprehensive Benrus line of modular system instrumentation.

New Instruments

flies most general-purpose applications requiring the use of a miniature low mass vibration transducer.

The 4336 is available as a single unit with low-noise cable and comprehensive calibration data at $105 or as a “five-pack” at $475 (model 4356). It is also available with mounting accessories in a fitted mahogany case at $135 (model 4316).

B&K Instruments, Inc., 5111 W. 164th St., Cleveland, Ohio, 44142. [373]

Rapid and accurate low-resistance tester

A quality control device has been developed that allows rapid testing of resistances in a 0.001 to 0.2-ohm range to determine if a prespecified limit is exceeded. The VT-1160 is designed to provide inexpensive yet accurate production line tests of such things as connectors, spot welds, printed circuitry, semiconductor rectifiers, etc. These tests can be performed at rates of one per second.

Semiautomatic in operation, the device simply requires the successive positions of two probes on the parts being tested, signaling reject parts by means of an audible alarm. The tester automatically switches on a self-contained test current after the probes have been positioned on a part, but only after proper contact has been made, eliminating any arcing with subsequent probe damage or arc marks.

BENRUS

TECHNICAL PRODUCTS DIVISION

30 CHERRY AVE. • WATERBURY, CONN. 06720 • PHONE (203) 756-4621

Circle 234 on reader service card

Electronics | September 19, 1966
on the part under test.
When proper contact is made, the operator immediately hears a low tone. If the tone stops, the resistance is acceptable; but if the tone changes to a distinctly higher pitch, the resistance of the reject part has exceeded the preset maximum.

Calibration of the instrument for the test limit is done by first dialing the desired test current on an ammeter (5 to 25-amp range), then setting the maximum allowable voltage drop (and thus the maximum allowable resistance) on a digital dial, which is graduated in millivolts over a zero to 1.0-v range. The ammeter reading is accurate to ±2%, and the maximum voltage setting is accurate to ±0.3% or 2 mv, whichever is greater.

The VT-1160 operates on standard current and requires 300 watts. It is available from stock at $600. The Vari-Tech Co., 546 Leonard St., NW, Grand Rapids, Mich., 49504. [374]

Frequency standard generates time code

Model 19000 is a frequency standard and time code generator designed for applications where frequency stabilities as great as 1 part in 10^9 per day and a power consumption of as low as 7 watts are required. In addition, the system can provide 115-v, 60-hz frequency-regulated power at levels of 10, 100, or 1,000 v-a.

The standard system generates the time code and calibration programs required by short-period and long-period seismographs, and the Vela Uniform code for use in magnetic tape recording applications. Alternatively, the system can be modified to generate other time programs such as those adopted by IRIG and NASA.

The system can be furnished with either a binary-coded decimal frequency standard, generates time code
Repairing expensive printed circuit boards with AIRBRASIVE

Circuit boards costing up to $4,000.00 are repaired, on a job-shop basis, by Pacific Metaplate Co., Redwood City, California. Successful repair depends upon precision local plating and precision cleaning by Airbrasive.

Breaks and scratches can be repaired; gold, nickel, tin-nickel and rhodium plating of contact tabs, reinforcing of soldered contacts, and refinishing defective electroplating can all be done without dismantling or rewiring. Pacific Metaplate can control electroplating deposits to within 0.0001 inch. This is possible, according to the Company, only by the meticulous preparation of the area to be plated. Airbrasive, which gas-propels a supersonic stream of aluminum oxide particles through a hypodermic-size nozzle is used to abrade gently away defective plating. Airbrasive’s cool, shockless cutting action removes the hardest plating metals without damage to the substrate, leaving a matte finish, ideal for bonding or sensitizing. The Airbrasive method is many times faster than laborious hand scraping, and eliminates the possibility of irreparable damage to the substrate.

Low-cost Airbrasive — under $1,000 sets up a production unit — may also be used to cut, abrade, clean, etch, drill a wide variety of hard, brittle materials — germanium, mica, glass, ceramics, tungsten, silicon, stainless steel.

Have you a possible application for Airbrasive? Find out by sending samples of your proposed work for a free evaluation.

New Instruments

or decimal in-line readout of time in days, hours, minutes and seconds. Other outputs supplied are frequency-regulated square wave trains at 100 kHz, 10 kHz, 100 Hz, 60 Hz, and 1 Hz.

Precision frequency standards of 1 part in 10⁷ or 1 part in 10⁹ per day are available. To expedite setting up the frequency standard, a low-level signal at the internal standard frequency is available for heterodyning with a radio-derived standard frequency.

A time comparator employing a built-in oscilloscope is optional.

Model 19000 is available as a rack-mounted unit on a standard 5½ x 19-in. panel or as a suitcase-sized portable unit. Prices range from $4,250 to $6,500, depending on options. Delivery is 90 days after receipt of order.

Integrating dvm

measures to 1,000 v

An integrating digital voltmeter, model 520, measures low-level transducer outputs from strain gages, load cells and thermocouples directly without additional amplification. The 10-mv full-scale range provides readings with 0.001% (0.1-mv) resolution. Other ranges measure full-scale signals to 1,000 v.

Guarded input and active integration provide 150-db common mode noise rejection at all frequencies, with infinite rejection of power-line frequencies and multiples. Automatic overranging is
provided on all ranges except the 1,000-v range and automatic selection of the correct input range is available with a plug-in autoranging accessory.

Usable as a bench or rack-mounted test instrument, the 520 is also suited for data acquisition systems where multiple inputs are scanned and output is read out by a high-speed printer, tape punch, or by similar devices. Output is 8421 BCD for reading, decimal location, polarity and function. Complete remote programing through contact closures provides maximum flexibility for data-logging or production-measurement applications.

Model 520 is also a frequency counter, offering two operating modes: direct counting of frequencies from 10 Hz to 2 MHz; and period measurements (1, 10 and 100-period averages) for high-accuracy measurement of frequencies from 10 Hz to 25 kHz.

The unit measures 5 1/4 x 16 3/4 x 22 in. and weighs 45 lbs. Power requirement is 115/230 v, 50/400 Hz; approximately 110 w.

Vidar Corp., 77 Ortega Ave., Mountain View, Calif., 99041. [376]

Sweep generator spans
100 kHz to 100 Mhz

Sweep generator model 610 covers the frequency band from 100 kHz to 100 Mhz. Its frequency stability, minimum harmonics and spurious signals and minimum incidental f-m set it apart from all other broadband sweepers in this range, the manufacturer says.

This generator has accurately set power level, calibrated attenuation and a variety of modulation capabilities. Another feature of the model 610 is its ability to independently set the start and stop frequency rather than to sweep around a center frequency. This feature previously has been avail-
NOW! A PRACTICAL WAY TO MONITOR CLEAN ROOMS...

AUTOMATICALLY ... ACCURATELY ... DEPENDABLY

New Bausch & Lomb Aerosol Dust Counting System

The 40-1 Dust Counter with Digital Readout and Printer is a direct indicating, electro-optical system for the detection and monitoring of airborne contamination in clean rooms.

Features include:

- Directly reads and prints any particle concentration up to one million per cubic foot.
- Selective counting of all particles greater than each of seven set sizes—0.3, 0.5, 1.0, 2.0, 3.0, 5.0 and 10.0 microns.
- Size versus concentration—plotted easily.
- Near forward light scattering principle gives greater accuracy.
- Surrounding sample with a column of filtered clean air—prevents turbulence, permits continuous self-flushing.
- Concentric optical system is efficient—shape and orientation of particles doesn’t affect count.
- Rapid, on-line calibration checks with built-in Bausch & Lomb Fiber Optics Light Wires.

The Bausch & Lomb Aerosol Dust Counting System offers superior performance features at substantially lower cost than other commercial units. For complete information ask for our Catalog 38-2190, Bausch & Lomb, 61433 Bausch Street, Rochester, New York 14602.

BAUSCH & LOMB

Sold and serviced exclusively in United States by Air Control, Inc.

New Instruments

A tunable f-m discriminator now available is capable of being controlled manually or by computer. Model 4140 is intended for f-m telemetry instrumentation systems where it can be used for system checkout, on-line, and backup applications. It provides ±1% center-frequency accuracy, 0.1% linearity and has an internal tape-speed-compensation delay network. It can be rack mounted or supplied as a portable unit.

The 4140 accommodates all telemetry subcarriers from 100 Hz to 1.5 Mhz. Center frequencies are selected by thumbwheel switches or by remote signal. A rotary switch controls the choice of deviation ratio—±7.5%, ±15%, ±30%, or ±40%. When it is used in an automatic data reduction system, all operational parameters can be controlled remotely by digital program control or computer.

Output filter cutoff frequency is selected by a switch, the 3-db point being adjustable from 1 Hz to 300 kHz. The roll-off characteristics available are 42, 36, or 18 db/octave. The filter is switchable from a constant-amplitude (Butterworth) to a constant-delay (Bessel) characteristic.

The tape-speed compensation improvement of wow and flutter for the 4140 is in excess of 26 db. Electro-Mechanical Research, Inc., Box 3041, Sarasota, Fla., 33578 [378]

Wiltron Co., 930 East Meadow Drive, Palo Alto, Calif., 94303 [377]

Tunable discriminator for 100 Hz to 1.5 Mhz

Electronics | September 19, 1966
New Subassemblies and Systems

Communications terminal plus computer

A communications terminal with two bonuses—some computational ability and a basic pricetag of $9,600—is now available from a new company, Business Information Technology, Inc.

The basic 480 Processor has one read-write channel and includes a teletypewriter with its own paper tape punch and reader. The 8-microsecond, random-access, magnetic-core memory contains 1,024 eight-bit bytes. One additional bit in each byte permits parity checking for error detection and another bit serves as a word mark, for identifying the division between variable-length words.

As a communications terminal, the 480 can be connected to a wide variety of devices, such as card punches and readers, magnetic discs, drum and tape storage, analog-to-digital converters, digital-to-analog converters, and so forth. The manufacturer also sells printed-circuit boards for designing interfaces to other company's peripheral equipment.

As a small computer, the machine can execute a stored program of arithmetic and logical operations on either data from the communications link or from the local peripheral devices. The arithmetic can be either binary or decimal. The operations are performed through an accumulator that can be varied in length to fit the specific problem.

A total of six devices, including the teletypewriter, may be connected to the read-write channel, but in most applications, only one can address the computer at a time. An exception would be in phototypesetting applications, where the computer could work fast enough to justify and hyphenate the output from six teletype writers operating simultaneously. Up to three additional channels can be added at a cost of about $2,000 each. The channels can be addressed simultaneously with computation, for a total of five independent operations simultaneously. A priority interrupt feature is available as an option.

The memory can also be expanded incrementally to a total of 65,536 bytes. A faster cycle time—2 microseconds—is also available. One possible application for the

HIGH-VOLTAGE CABLE INSULATED WITH G-E SILICONE RUBBER SURVIVES 3 TOUGH CONDITIONS

One, it carries high currents at 7,000 volts rms. in an airborne power supply.

Two, it withstands temperatures that continuously fluctuate between −55°C and 125°C.

Three, it operates at altitudes as high as 70,000 feet.

Of all the cable insulating materials checked by the manufacturer, G-E silicone rubber proved reliable under every condition. Resisting ozone and corona, it extended cable life to at least 1,000 hours.

Saves $2.00 per unit

By using silicone rubber as both a dielectric and a potting sealant for a standard connector, the manufacturer got a bonus—a void-free, all silicone system with a minimum of labor.

Compared to installation of individual insulating sleeves for connector contacts, cost savings amounted to $2.00 a unit. And reliability was improved.

FREE NEW DATA BOOK

For more ways on how G-E silicone rubber can save money, get Technical Data Book CDS-592, a comprehensive 36-page guide to high performance wire and cable.

Hot Line for Pot Wire

Secon has more than doubled its capacity to produce high quality, precision potentiometer wire. This was almost immediately reflected in speedier delivery of our customers’ orders.

You get the precious metal alloy wire you need, engineered to meet your exact requirements — from 37 to over 600 ohms/cm; low temperature coefficient of resistance — with excellent roundness and linearity.

This high tensile strength wire is engineered to facilitate uniform winding — available to .0004” diameter. Supplied bare or enameled.

If your requirements are for high quality, fine potentiometer wire you should write for a copy of our comprehensive brochure on wire for the potentiometer industry.

Please write on your letterhead; no obligation of course.

SECON METALS CORPORATION
7 INTERVALE STREET, WHITE PLAINS, N.Y. 10606 • (914) WH 9-4757

Circle 240 on reader service card

New Subassemblies

basic processor is in schools to teach the fundamentals of digital computers. When the students weren’t using the machine, it could perform various accounting and programming tasks.

Other applications are in industrial process control, either directly or by relaying the process data to another computer for analysis and control. The processor can be used in engineering and scientific laboratories for small-scale computation. Business applications include replacing a tabulating installation or as peripheral equipment for a larger computer.

Delivery is 75 days.

Business Information Technology, Inc.,
3 Erie Drive, Natick, Mass. 01760

[381]

Servos convert voltage into shaft rotations

The 900 series pot repeaters are unitized, precision servossemblies that convert an input command voltage into a shaft rotation. The compact packages include servomotor, gear train, feedback pot, servoamplifier and power supply. Operation is directly from the 117-v line, and the servos are completely self-contained, requiring no additional components.

This versatile line includes 48 standard models, with customer options on: 60 or 400 hz line power; d-c, 60 or 400 hz command voltage; single, three or 10 turn feedback potentiometers; and four motor to pot gear ratios. In addition, the customer may specify any extra
computing pot sections required.

With the output shaft provided, the servo can drive a digitizer, synchro, counter, chart table, or dial. With additional pot sections it performs as a servomultiplier or function generator. The small package size permits up to four servos across a 19-in. rack panel. These standard units cut development time and cost when incorporated into a larger system, and are built to MIL-E-6400.

Price is approximately $920, and normal delivery is six weeks.
Industrial Control Co., Central Ave. at Pinelawn, Farmingdale, L.I., N.Y., 11735. [382]

Data multiplexer features stepper drive

A Step/Scan data multiplexer now available uses an aerospace-proven sampling switch with stepper-motor drive for more reliable contact closure, simplified synchronization and easy programming. The unit lowers cost per-channel in process data scanning, data logging, computer time sharing, plant-wide monitoring and similar applications.

Stepper drive improves contacting reliability because wipers move quickly from segment to segment, then remain stationary during data-sampling period. Wipers have multiple redundant contact surfaces to further enhance reliability.

Phase and speed synchronization of several physically separated multiplexers requires only a simple master clock and a reference pulse generated once each frame. Dependence on motor speed controls is eliminated.

Programed scanning is equally simple. The stepper motor can be programed to drive quickly past undesired data points, or to dwell longer on points of special interest. Both functions are accomplished.

HOLE A SECOND!

This punching is by a brand new turret punch press. Electrically linked to a floating stylus. You simply trace the template, press the button — punch your holes, count your profits. Change jobs as fast as you can drop in a new template. Call your Di-Acro distributor or write us for the big 44-page Punching Catalog.

Di-Acro

A Division of Houdaille Industries, Inc.
439 Eighth Ave., Lake City, Minn. 55041
MAGNETIC SHIELDS TO YOUR SPECS

About 80% of all magnetic shield designs now in use originated here.

Maybe it's because our designs work. Maybe our designs work because we've had the most experience. All are good reasons to contact us.

Netic and Co-Netic magnetic shields are the recognized standard all over the world for military, laboratory, industrial and commercial applications. They are insensitive to ordinary shock, do not require periodic annealing, and have minimal retentivity. A few typical applications are illustrated. Our design department is yours.

Photocell Decay Problems?

Try Type 7H

Clairex Type 7H Photocells now offer decay times of .006 sec @ 100 ft-c. Couple this with 240 ohms @ 100 ft-c, CdS stability, and your problems are solved. Available in TO-18 and TO-5 cases. And 6 resistance ranges.

CLAIRED

"The LIGHT Touch in Automation and Control"

1239 Broadway, New York, N.Y. 10001

212 MU 4-0940

New Subassemblies

with simple digital logic circuitry.

One standard Step/Scan multiplexer can contain up to six independent contact rings, each with up to 90 contact segments—providing a total of 540 input data channels. As many as 10 multiplexers can be combined into a coordinated system that provides fully synchronized scanning of 5,400 data channels. Standard scanning rate is 100 channels/sec.

Contacts are rated at 10 ma, 10 v d-c. Contact resistance is less than 1 ohm. With maintenance every 2,500 hours, a life of 10,000 hours is guaranteed.

The standard package meets aircraft instrumentation standards and weighs under 24 oz. for 540-channel capacity. Flexible printed wiring connects commutator segments to circuit-card jacks on the outside of the case. Other connector and packaging configurations are available.

Fifth Dimension Inc., Route 206 Center, Princeton, N.J., 08540. [383]

Dual power supply in a single package

Model TW5005 power supply features current ranges with automatic current-limit and meter-scale transfer. This all-silicon semiconductor unit provides two independent sources of 50 v, 500 ma in a single package. Each supply may be operated as a constant-voltage source with adjustable current limiting, or as a constant-current source with adjustable voltage compliance.

Each source has a regulation bet-
Voltage regulator is suited for aerospace

A lightweight, microminiature, solid-state voltage regulator is especially adaptable to aerospace applications. Model BR-801 has a regulated d-c output range of from 10 to 25 v and is extremely stable; the output varies only 15 mv with a 10-v input variation.

The regulator compares the output voltage to a temperature-compensated zener reference voltage and provides regulating current to a series-regulated transistor at a rate greater than 10 μa per millivolt of error. It can be used to provide up to 75 ma of load current with a single power transistor. Using a Darlington pair, load currents over 1.5 amps can be achieved.

The regulator is 0.5 in. long, 0.4

SAVING .06'' +
WHERE IT COUNTS!

And it counts on this programming module. Its two reed relays are the "tallest" components on the board. But if both were Struthers-Dunn relays (as the one on the left), 0.06'' could be saved and 10 modules would stack in the space now required for 9.

Like to save space this way too? Struthers-Dunn Type MRRS 1, 2 and 4 pole reed relays are available in single and dual-coil models. They're magnetically shielded and encapsulated into rigid homogeneous structures. Detailed information is contained in Data Bulletin MRR-3A. Write:

STRUTHERS-DUNN Inc.
Pitman, New Jersey 08071
tel: 609-589-7500
twx: 609-589-1548

SALES ENGINEERING OFFICES IN: Albuquerque • Atlanta • Belmont, Calif. • Birmingham, Ala. • Boston • Buffalo • Cedar Rapids • Charlotte • Cincinnati • Clearwater, Fla. • Cleveland • Clifton • Dallas • Encino • Englewood • Glen Ellyn, Ill. • Houston • Kansas City • Las Vegas • Memphis • New York • Phoenix • Pittsburgh • Richardson, Tex. • Rome, N.Y. • St. Louis • St. Paul • Salt Lake City • Seattle • Southfield • Towson, Md. • Wichita • Wilmette. Canadian Licensee: Henfrew Electric Co., Ltd. Export Dept.: 1505 Race St., Philadelphia, Pennsylvania 19102, U.S.A.
Dress up your product

It's handsome, now, sure. But wouldn't your product have even more sales appeal if you fit it out in some new finery? Like, maybe, General Electric glow lamps?

Whether you're in coffee makers or computers, G-E glow lamps add utility and value. Their long life, rugged design and unique color make them ideal as indicators. Designed into circuitry, they're widely used as triggering devices to control power for resistance or low induction loads.

Chances are you'll reduce cost for mounting fixtures, too, because glow lamps are compact, simpler, easier to fit in.

Economy? They operate off line voltage for an average rated life of 25,000 hours.

New Subassemblies

in. high, and 0.19 in. wide. Its weight is 2 grams. Absolute maximum ratings are: storage temperature, $-65^\circ C$ to $+200^\circ C$; operating temperature, $-55^\circ C$ to $+85^\circ C$; input d-c voltage, 40 v. The BR-801 is priced in quantities of 1 to 9 at 65 each, 10 to 24 at 59.50 each; 25 to 99 at 53.10 each; and 100 to 499 at 35.10 each.

The Bunker-Ramo Corp., 8433 Fallbrook Ave., Canoga Park, Calif. [385]

Video amplifier works in crt systems

Model VA548 is a d-c coupled, 10 Mhz, all-silicon, solid-state amplifier featuring plug-in convenience and low cost. It is designed for application in any cathode-ray tube or storage-tube display system where up to 40 volts of grid drive is required.

The unit is a feedback amplifier to provide optimum linearity and gain stability, and may be directly coupled to the crt grid or a-c coupled to a d-c restoring level. The amplifier is fully compatible with all other modular display system components manufactured by the company.

Availability is three weeks after receipt of order.

βeta Instrument Corp., 377 Elliott St., Newton Upper Falls, Mass. [386]

H-v power supply for lab and industry

A line of d-c power supplies has been introduced to provide low-cost high power for laboratory and industrial applications. It includes units with voltages up to 100 kv.

Pictured is the model BF20-300,
whose output is continuously variable from 0 to 20 kv d-c with currents from 0 to 300 ma at either positive or negative polarities. Over-voltage and over-current protection are provided by the use of sensitive, fast-acting meter relays. The unit contains complete controls and safety features.

Priced at approximately $3,000, the BF20-300 can be delivered within 30 to 60 days.

Cober Electronics, Inc., 7 Gleason Ave., Stamford, Conn., 06902. [387]

Miniature delay line computer memory

A series of miniature delay line computer memory modules has been developed. Called Delcoms, they are designed to be conveniently assembled into a multichannel memory stack. The MA2064 memory illustrated consists of eight MS2064 Delcom channels, each capable of storing up to 2,000 bits of data in a 3.5 x 6.37 x 4 in. package.

Each MS2064 Delcom contains a magnetostrictive delay line and microelectronic read, write and

Heinemann has a simple way to handle the problem.

The Heinemann PFC Power Failure Control unit can't actually prevent a power failure, but it can brace you for what happens next: the chaos of multiple-load restarts.

The PFC, in conjunction with a specially modified Heinemann circuit breaker, takes protected equipment off the line when power fails. Automatically. Because reset is manual, you can sequence the restart to avoid the overloading caused by simultaneous start-up of all equipment. You can also avoid possible injury to personnel caused by an unexpected restart.

Special circuit design within the PFC prevents restarting equipment unless power has been restored.

The PFC is available with a number of our breaker models—its shown here with our 100-amp E-frame breaker. When used with a multi-pole breaker, the PFC provides normal overload and short-circuit protection along with the automatic shutdown feature.

High Power TWTs for Hostile Environments

When you specify high power TWTs to work against improved radar, fire control, or guidance complexes, tube performance must be dependable, repeatable, and efficient.

MEC's militarized high power tubes were developed to meet every one of these requirements. Octave and special band TWTs from L through X band have been designed and delivered for systems operating up to 70,000 feet. Conduction cooling with heat sink temperatures of 100 °C, and full MIL-spec compliances are standard. Operating efficiency normally exceeds 20%. These tubes not only combine light weight and small size as individual components, but when mated with MEC's solid state power supplies, make a combination that is ideal for systems where space and weight are at a premium.

Check the table below. There's probably a tube to satisfy your requirements for electronic warfare, communications, or telemetry systems. For complete information on standard and special tubes, please address Microwave Electronics, a Division of Teledyne, Inc., 3165 Porter Drive, Palo Alto, California.

Exceptional opportunities exist on our technical staff for qualified scientists and engineers. An equal opportunity employer.

Table: TWT Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Freq (GHz)</th>
<th>Min. Psat (Watts)</th>
<th>Min. Gain @ Psat (db)</th>
<th>Focus</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS311</td>
<td>1-2</td>
<td>100</td>
<td>30</td>
<td>PPM</td>
<td>Conduction</td>
</tr>
<tr>
<td>MS312</td>
<td>2-4</td>
<td>100</td>
<td>30</td>
<td>PPM</td>
<td>Conduction</td>
</tr>
<tr>
<td>MS313</td>
<td>4-8</td>
<td>100</td>
<td>30</td>
<td>PPM</td>
<td>Conduction</td>
</tr>
<tr>
<td>MS462</td>
<td>4-8</td>
<td>200</td>
<td>30</td>
<td>PPM</td>
<td>Conduction</td>
</tr>
<tr>
<td>MS314</td>
<td>7-11</td>
<td>100</td>
<td>30</td>
<td>PPM</td>
<td>Conduction</td>
</tr>
</tbody>
</table>

All tubes will operate with heat sink of 100 °C max.
All tubes meet full MIL-E-5400 Cl. II environment.
Alternate cooling methods available.

Microwave Electronics
3165 Porter Drive, Palo Alto, California
a division of Teledyne, Inc.

New Subassemblies

Logic circuitry. They are supplied with delays of up to 1,000 µsec and for use at bit rates of up to 1 Mhz in the return-to-zero, and 2 Mhz in the non-return-to-zero modes.

Inputs and outputs are designed to match into Fairchild Micrologic flip-flops (913) and each module consumes less than 0.3 w of power. Individual MS2064's are easily mounted to p-c boards. Their size is 3.5 x 6.37 x 0.5 in., and weight is 11 oz.

Price of the MS2064 is $350 in small quantities, and delivery is 4 to 5 weeks after receipt of order.

Computer Devices Corp., 6 W. 18 St., Huntington Station, N.Y. [388]

L-f serial memory

can store 20,000 bits

A series of low-frequency serial memories has been introduced for use as buffer memory systems between high-speed computer and low-speed periphery equipment, in typewriter systems programmed to type statistical information for storage in computers and in video-screen display.

The device offers storage capacity of up to 20,000 bits and data rates up to 2 Mhz. Logic levels are available from 3 to 12 v (± 3 v to ±12 v) of either polarity. The system also offers both micrologic and fully transistorized circuitry.

Anderson Laboratories, Inc., 501 New Park Ave., West Hartford, Conn., 06110. [389]
New Microwave

Stable noise source via satellite

Developmental work on a space satellite amplifier has resulted in a small, stable tunnel diode noise source, believed to be the first on the market. It is only a few inches in each dimension, has an output relatively independent of temperature and can operate for over 250 hours from a single flashlight battery. The manufacturer, the International Microwave Corp., Cos Cob, Conn., a subsidiary of Microwave Associates, Inc., says the device can supply incoherent, white noise over any 20% bandwidth in the frequency range from 2 to 12 gigahertz.

Although not a direct replacement for highly temperature stable devices, such as the argon noise lamp, the tunnel diode source can be used where low power and small size are more important than overall accuracy. Norman Chasek, president of International Microwave, says the source is small enough to build into test equipment for monitoring the receiver noise figure of long-range radars, troposcatter systems and satellite ground terminals. The gain of negative resistance devices such as parametric amplifiers will not be changed whether the unit is on or off because the voltage standing wave ratio is the same in either state; consequently noise measurements are simplified. Chasek says the device is also suitable for portable test units since it is light and does not generate high spurious signals that need shielding.

The units supply noise powers 15 decibels above that developed by a resistor at room temperature—the basis for noise comparison. If the unit's temperature is stabilized by a small oven, the noise power will be stable to ±0.5 db over an ambient temperature range from -55° to 85°C. Without an oven, noise power variations can be held to ±1 db over a temperature range from -20° to 50°C.

Other combinations of power, bandwidth and temperature stability can be supplied. In general reducing the noise power requirements allows the units to operate over an extended temperature range for a given bandwidth.

The primary source of noise in the unit is the shot noise developed by electrons crossing the junction of a tunnel diode. Shot noise is independent of the diode's junction temperature. Chasek says there is a temperature-dependent noise source within the diode, but that it only accounts for 10% of the power output.

Since the noise power developed across the tunnel diode's junction is only about 4 db above that de-
MAGSENSE®
Control/Alarm for Temperature, Pressure, Speed, Flow

Save time and money solving control problems with this proven short-cut. Just connect your thermocouple, tach generator, thermistor or other input to the isolated input of a MAGSENSE unit, and a relay or power contactor to the other. It's about that simple to control accurately and reliably. Solid-state MAGSENSE units have 100-billion power gain and accept the output of transducers directly without amplifiers.

NO MORE WORRIES ABOUT OVERLOAD OR COMMON MODE VOLTAGE
Continuous overload capability is 1000 times nominal full-scale input without damage. Common mode voltages as high as 110 AC can be present without affecting trip point.

SPECIFY YOUR NEEDS
- Set point or dual set point
- Remote set point
- Solid state ground leg switching or pulse outputs for SCR's
- Transducer excitation voltage
- Latching, non-latching, proportional or differential gap control
- Cold junction, copper compensation

BRIEF SPECIFICATIONS
- Inputs: Will reliably alarm and/or control with signal levels as low as 1 microamp or 10 microvolts.
- Power required: 12V DC or 28V DC ±10%, at 30 milliamps.
- Repeatability: ±0.8% of full scale input (typical) for temperature variation of 0 to 50°C and line voltage variation of ±10% from nominal.
- Size: 3" x 4" x 1 1/4"
- Weight: 3 oz. maximum
- Price: From $35 to $175. Quantity discounts.

CONTACT: MAGSENSE PRODUCTS, Dept. 801, La Jolla Division, Control Data Corporation, 4455 Miramar Road, La Jolla, Calif. 92037. For immediate action, phone (714) 453-2500.
point, 0 dbm; power input, -15 V d-c at 25 ma. Size is 4 x 1.4 x 2 in.; weight, 10 oz.

Because of "almost infinite" shelf life, the ability to provide extremely close gain matching, a mean-time-between-failure of 200,000 hours and no fine grain noise variations, the units are said to offer substantial advantages over twt amplifiers.

The accompanying illustration shows, on the left, the full octave wide AM-1000, a companion to the telemetry series. It covers 1 to 2 Chz, with 6-db noise figure and 25-db gain, and is designed for electronic warfare, radar and communications systems.

Avantek Inc., 3001 Copper Road, Santa Clara, Calif. [392]

Traveling-wave tube delivers 30 watts

A traveling-wave tube is available with 30-w output in the 3.6-to-4.2-Chz band. The W7/5G tube was designed for 1,800-channel microwave links.

With a typical gain of 43 db at a working output of 20 w, saturated output is 30 w. In an existing system, the W7/5G can be substituted for a 40-db-gain tube with an output of 10 w and, using the same drive power, the W7/5G will produce twice the previously obtained output.

The W7/5G operates in a rugged, periodic-permanent-magnet mount, type WM110A. Incorporated in the mount are: r-f input and output waveguide connections (a choice of WG12A or WR229 is offered); mechanical alignment; deflection and matching adjustments; tube ejection control at either end of the mount; a convection cooler, and facilities for easy field replacement of tubes.

ITT Electron Tube division of International Telephone and Telegraph Corp., Box 100, Easton, Pa., 18043. [393]

LIKE SILVER DOLLARS— WORTH MORE THAN FACE VALUE...

New Duncan Model 3233 — a Commercial, 1/2" 10-Turn Precision Wirewound Potentiometer. (Actual Size)

...AND THEY’RE NOT SCARCE— BUT AVAILABLE OFF THE FACTORY SHELF!

CHECK THESE VALUES...

- 2,000,000 Shaft Revolutions
- ±0.25 Linearity
- 10 Ω to 200K Ω (±3%) Resistance Range
- 2.5 Watts at 40°C
- -55°C to +105°C Temperature Range
- 100 oz.-in. Stop Strength
- Uniform Torque

AND THESE BONUSES...

- High-Impact Plastic Housing
- Rugged Metal Lid and Clamp Bands
- ¼" Stainless Steel Shaft
- ½-32 Coated Brass Bushing
- Welded Terminations
- Gold Plated Terminals

COST?...ONLY 7 CARTWHEELS and CHANGE—

$7.13, that is, when you buy 250 at a crack ... and that’s less than you’d pay anywhere for a comparable pot.

Now for the first time, a rugged high-performance 10-turn precision potentiometer — backed by Duncan’s engineering and production capability as one of the nation’s leading manufacturers of high-reliability potentiometers for aerospace systems— available for your commercial/industrial applications. Don’t flip a coin to select your pot source. Contact Duncan for complete technical data or prompt off-the-shelf delivery.

Look to Duncan for your “spec pots” too: linear, non-linear, single-turn multi-turn and multi-section.

DUNCAN electronics, inc.
2865 Fairview Rd., Costa Mesa, California • Tel.: (714) 545-8261 • TWX: 910-595-1128

Circle 249 on reader service card
New Production Equipment

Quick trims, either thick or thin

Sandblasting—the popular but inexact term for abrasive trimming of thin- or thick-film resistors for hybrid integrated circuits—can now be done with an off-the-shelf automated system. In the past, users of the Airbrasive equipment made by S.S. White Co. had to prepare custom setups to trim at high production rates.

Up to 1,000 resistors an hour are trimmed by the new system, demonstrated last month at Wescon. Instrumentation added to the basic equipment allows it to adjust a resistor's value in 1 to 3 seconds, depending on the size of the resistor and the amount of material to be removed. Removing some of the film narrows the resistive path or lengthens a U-shaped resistor, raising the resistance value. The finished tolerance can be less than 1%.

The first model, AT-701, trims one resistor at a time. Future models will trim several resistors simultaneously.

The resistor is positioned under tungsten-carbide probes, held by an adjustable, 18-position mounting ring. The initial value is measured by a precision, four-wire resistance-limit bridge. If the resistance is within an acceptable initial range, the resistor is automatically trimmed until a preset stop value is reached. Trimming is done by a jet of fine alumina powder propelled by gas through a tiny nozzle. The nozzle is moved by a slide mechanism started by a trim command and stopped by a stop command from the instrumentation. After a time delay, the resistance is again checked and the resistor is accepted if the value is within the programed tolerance.

If the initial value is outside the specified range for trimming, the machine does one of two things. It immediately tests the resistor for acceptance or rejection if the resistor value is above the trimming range. Or, it rejects the resistor if the value is too low for trimming.

Four trimming ranges from 0 to 10 kilohms through 0 to 10 meg-
ohms can be selected. The tolerance range is 0 to ±11% with a resolution of 0.1%. Stop value is programmed as a negative percentage of final value, from 0 to 11.1% with a resolution of 0.01%. The position and travel limit of the nozzle-slide mechanism can be set electronically; motion is accurate to within 9.5 microinches per inch of travel at 68°F.

Trimming stages are displayed on the control panel. The operator can manually override the programmed trimming cycle, adjust the time delay before final test and take manual readings of the final value.

Price of the system will vary with tooling for holding and positioning the resistor substrates, but the basic price is $17,000. The company expects to begin deliveries in January.

Industrial Division, S.S. White Co., 201 East 42 St., New York, N.Y. 10017

Nailhead bonder produces IC's fast

High-speed production of flatpack and TO-can integrated circuits is achieved by the model 1136 thermocompression nailhead bonder. The unit has a production rate of 125 finished IC's per hour with 24 bonds per circuit (3000 bonds per hour).

All flatpack or can headers are automatically handled from storage rack through heater station and returned to a storage rack for further processing. Model 1136 utilizes a stacking system for the rack and carries 10 strip carriers in a storage rack. The elevator system presents each carrier as it is required instantly, precisely and ready for passage through the automatic transfer system with the heat column on command of the operator.

The preheat time is relatively

Maybe the Parsons DR 1200 is what you've been looking for. This new digital recorder is compact, weighs only 45 pounds, operates with only 100 watts of power and reads and writes IBM computer compatible tapes with tape speeds up to 120 inches per second. Recording format is 7 or 9 track data on IBM reels. Overall dimensions: 19 in. x 14 in. x 7.5 in.

Its rugged construction, precision performance and fail-safe features make the DR 1200 an ideal instrument for field or fixed installations in virtually any kind of environment. Best of all, it is priced considerably lower than you would expect to pay for a comparable unit. It is now in production and deliveries can be made within six weeks.

Dial 213-681-0461 (or drop us a line) and tell us what you need. Chances are the DR 1200 can be adapted to meet your optional requirements at a price you are ready to pay. For the white glove treatment, contact Jim Valley, Sales Manager, at
WITH MAXIMUM RELIABILITY

Modular Display

$4.75

per digit
1000 lot quantities

Need more data? Ask for Catalog L-181.

DIALIGHT READOUTS

BRIGHT BOLD CHARACTERS

Production Equipment

slow on the new bonder, thus assuring minimum glass seal failures. The racks are hard stainless steel with a heat insulating shield to prevent heat from affecting both performance of the operator and of machinery.

The bonder is provided with a new trouble-free wire handling system as well as a time-saving pigtail puller. After bonding, pigtails are automatically removed during the flame-off cycle. Heads can be changed rapidly.

Temperature of the headers in the heat tunnel is controlled within ±2°C up to a maximum temperature of 400°C. While 117 v, 60 hz operation is standard for the bonder, the unit can be furnished for 220 v, 50 hz operation on special order.

Heavy-duty weld head still has precision

A lean profile, vertical weld head assembly is designed for heavy-duty, precision resistance welding operations that require larger weld configurations. Model 2-129-01 is said to offer the largest electrode clearance and throat depth currently available in addition to a total flexibility of adjustment for both electrodes and the weld head. This design can accommodate outsized or complex configurations. To increase production versatility, the head is detachable from the base,
permitting fixturing capability.

Force settings are direct readouts on the front-mounted scale to enable close process control. Force range is adjustable from 8 oz. to 100 lbs. Maximum energy rating is 500 watt seconds.

A force sensor in the weld head discharges energy from the power supply the instant that preset electrode force is applied to the weld piece. Electrode arms travel on a newly designed raceway that assures a lower minimum force setting, while also increasing sensitivity and improving follow-up characteristics. Rotation or misalignment at high force settings which could cause "wiping" or "skidding" weld characteristics is eliminated. Electrode index indexing is also featured.

The lean profile not only makes the head more flexible as a unit, but also increases flexibility for clustering many weld heads for special production requirements.

Electrode stroke is 1 in., and throat depth on the assembled unit is 7 1/4 in. Maximum vertical work opening is 5 3/8 in. The unit measures 20 3/4 in. high x 3 1/8 in. wide x 10 in. deep.

Weldmatic Division/Unitek, 950 Royal Oaks Drive, Monrovia, Calif., [397]

Bonding capillaries made of heated glass

Heated glass capillaries achieve fast, effective thermocompression bonding of microcircuits and interconnects. Designed for standard tapered magnetic holders without modification or adaptation of existing equipment or fixtures, the manufacturer says the new heated glass tips provide significant operational savings. Initial cost is said to be 30% to 55% less than for metal capillaries.

A number of other operating ad-

Who says this is the finest trimmer available for the money?

Only the users!

If we were to claim that the Model 84 is better and less expensive than any comparable trimmer available today, you would doubt us. If we said that we are offering in this half-inch, single-turn, wire-wound trimming potentiometer quality features unavailable anywhere else, you would suspect we were breast beating. You might even doubt us when we stated that this trimmer really meets MIL-SPECS without faking — that is, with comfortable margins to spare.

And when we told you that the Model 84 price was half that of many larger square and rectangular models that perform to the same environmental specs, you would be sure we were exaggerating.

So we won't tell you any of these things. Instead, we will just say that the Model 84 has been widely accepted as a standard in many important military applications and that our civilian users are enthusiastic in their praise. Beyond that, we won't try to sell you.

If you'd like a data sheet, contact us or your local Spectrol representative or distributor. Note that the Model 84 is rated at 1 ½ W. at 70°C, has a standard resistance tolerance of ±4%, and is completely immersible.

Spectrol Electronics Corporation
17070 E. Gale Ave., City of Industry, California 91745.

Circle 253 on reader service card

Electronics | September 19, 1966
Syntronic Yoke Specialists have more yoke knowledge and provide more engineering assistance than anyone else in the field.

The most extensive line of deflection yokes available is offered by Syntronic...in production quantities or custom designed to special requirements. See the BIG Difference for yourself the next time you specify a yoke.

Free Convection / Compact Conduction

Both the 2700 and 2800 series Astrodyne heat sinks provide easy, secure mounting of transistors for printed circuit board and other applications. Model 2700 series have a thermal resistance of 10 to 30°C/watt. Fins permit optimum free air flow and minimum conduction losses. This series is well suited for close card packaging.

Model 2800 units provide sufficient surface contact with chassis or other metal mounting surface to assure good heat dissipation not provided by conventional transistor mounting clips. They offer a temperature difference between transistor case and chassis of 2°C/watt per transistor.

Both the 2700 and 2800 series feature split mounting hole with screw clamps to permit compensation for transistor case tolerances and maximum effective contact area between the case and sink. The units, as pictured, will accommodate both TO-5 and TO-9 transistor cases. Mounting holes for other transistors can be made to customer specification.

The black-anodized aluminum units are available from stock. Technical data and price information will be sent on request.

Production Equipment

vantages are also offered, many exclusive with glass. Glass is naturally smooth; there are no burrs, machine marks, or other roughness as with metal. This inherent smoothness and the “stepless” taper of the bore assures continuous, unbroken wire feed. The result is less down time and higher production rates.

Another advantage of glass is its transparency. Clogging dirt can be quickly spotted before it causes troublesome galling and binding. In addition, transparency permits visual threading.

When not in use, the capillary lies horizontally. The tip does not contact the work surface.

Tip bores can be as small as 0.0005 in. in diameter and are accurate to ±0.0001 in. Tip outside diameters are held ±0.0005 in.

Specialty Glass Products, Inc., 2557 Wyandotte Road, Willow Grove, Pa., 19090. [398]

Hot melt dispenser for wax potting

A piece of semiautomatic machinery has been designed for potting electrical components in wax. The temperature of the wax is automatically maintained at up to
300°F by thermostatic controls in an electrically heated, stainless steel 6-gallon hopper; rotating stainless steel agitator blades keep the molten wax in motion to assure uniformity of flow.

Operation consists of inserting an electrical/electronic assembly into a heated fixture and mechanically clamping it in position. A remote foot switch actuates the machine; however, the assembly is automatically preheated for a preset time to assure full potting of the cavity. A pneumatic lift mechanism raises the jig into the dispensing position and the component is accurately potted under pressure with a uniform volume of wax.

Pottings may be accomplished at rates of 180 per hour with shot volumes of 21 grams. Shot volume is easily adjusted by setting a calibrated dial and may be varied between 5 grams and 150 grams.

Approximate price, less fixture tooling, is $4,900.

G. Diehl Mateer Co., 776 W. Lincoln Highway, Wayne, Pa., 19087. [399]

Machine straightens component leads

A lead-straightener, model 1110, for transistors, integrated circuits and other components features a rapid-action lead positioner that expedites the routine production handling of components. Components are dropped into a carrier and two combs advance to segregate the leads at the component base. The operator combs the leads apart for their total length, advances the ends into the Delrin receiving insert of the motor-driven lead straightener, retracts the combs, and advances the component leads into and out of the lead straightener. The component is then dropped into the receiving

JUST HOW SMALL CAN YOU MAKE A SUB-MINIATURE POWER RESISTOR?

![Image of SAGE SILICOMH® 1 watt unit](image)

PRETTY SMALL!

Consider this SAGE SILICOMH® 1 watt unit in comparison to the vintage grid leak drip pan* pictured above. What's more, this tiny resistor, designed to operate hot, provides stability and precision features ordinarily associated with the finest of low power precision resistors.

SAGE Type SB styles feature superior heat dispersion by means of beryllium oxide cores, as first used in Advanced Minuteman parts. Assigned wattage ratings are 1 to 15 watts at 25°C ambient, thus offering dramatic new circuit miniaturization possibilities for commercial and regular military applications.

As a matter of fact, we don't make grid leak drip pans.

Write for complete details.
tray and the tool is ready for re-loading.

The component leads touch no metal but are gently flexed between one orbital and two stationary Delrin inserts. A variety of inserts can be installed to accommodate the leads of various components such as 8-lead TO-5, 4-lead TO-18, and 10-lead TO-5 semiconductor packages. Standard combs available on current production models of the lead positioner are for 8-lead TO-5 devices, but special combs for other configurations will be developed as required.

Model 1110 component lead straightener, including the new lead positioner, is priced at $850.

Macronetics, Inc., 220 California Ave., Palo Alto, Calif. [400]
electrodes during the solder cooling phase. Rapid positioning and angular alignment are maintained with an X-Y workblock system.

The completely automatic soldering cycle is controlled with an actuator switch located on the positioning workblock, eliminating the problem of foot and hand coordination and allowing the operator to position the work and cycle the unit by hand.

Price is $1,990, with four week delivery available.

Browne Engineering Co., 2003 State St, Santa Barbara, Calif. [401]

Wire stripper operates thermally

A thermal wire stripper, model TWC-1 Stripall, is supplied complete with a solid-state temperature control unit. Temperatures of the insulation-stripping blades are adjustable from 100° to above 1,700°F, adapting this Stripall model to a wide range of insulation materials, including Teflon and other high-temperature wire coverings. Blades heat to full temperature in less than two seconds. The unit is valuable in manufacturing military and NASA standards, where thermal wire stripping is required.

The temperature-control unit of the TWC-1 plugs directly into an electrical outlet, eliminating workbench clutter. Otherwise, the unit is completely self-contained, using no remote transformers or power supplies.

The entire stripping function, including removal of the wire covering, is accomplished in one quick continuous motion. A gage stop, adjustable to the size of the wire in process, prevents the Stripall's blades from exerting any pressure on the conductor. This eliminates nicks or wire damage. Furthermore, the stripper does not heat the wire and thus protects the remaining insulation.

Stripped wire is entirely oxide-free and ready for soldering. No insulation melts into wire strands. The blades themselves are high-strength alloy to provide long service.

The TWC-1 is priced at $79.95.

Kinetics Corp., 410 S. Cedros Ave., Solona Beach, Calif. [402]
Do you think this Epitaxial Slice unusual?

CLUES:

- It has less than 3% thickness variation.
- It gives you from 20 to 30% higher yield.
- Your profit potential is even more unusual.

You can have these new Epi slices in N/N+, P/P+ and combinations of multilayers now. From Semimetals... only. (We've developed and perfected the new process technique.)

Write for brochure. Better yet, send us your specs and let us quote. You'll get the brochure anyway.

New Materials

High-temperature ceramic coating

Ceramacast 505, a high-temperature casting ceramic, is being used as a spray or brush coated insulation coating for metals such as stainless steel and aluminum to offer thermal insulation and improved oxidation resistance to temperatures as high as 3,000°F.

It is a high alumina coating material that is applied by mixing with water and then brushing or spraying on the metal to be coated. In a typical production procedure for coating aluminum, the metal is preheated to 500°F, and the Ceramacast is sprayed on the heated base metal. The Ceramacast gels immediately and forms a hard coating on the base metal with no further curing required.

In addition to applications as thermal and oxidation resistant coatings for high-temperature work, the Ceramacast offers some possible use as a dielectric base for thick-film circuits.

Aremco Products, Inc., P.O. Box 145, Briarcliff Manor, N.Y., 10510. [406]

Protective coating adheres to all metals

Development of a protective coating has eliminated harmful corrosion to all metals exposed to nitrogen tetroxide, a rocket fuel oxidizer. HumiSeal type 332 provides complete protection against the fumes of, or immersion into, the oxidizing agent. The material is a multiple polymer resin said to have outstanding adhesive characteristics to all metals and most plastics. Its chemical and moisture resistance indicates excellent protection for printed circuit board assemblies against chemical corrosion and high humidity environment.

Type 332, because of good flexibility and adhesion to polyurethane, is being used for sealing the surfaces of foam. The one-can system can be applied by dip, brush or spray and is completely cured at room temperature. The cured coating is transparent and has excellent light stability.

HumiSeal type 332 has an alcohol solvent that will not affect plastic-encased electrical components, Mylar film and printing inks. Price is $18 per gallon and delivery is from stock.

Columbia Technical Corp., 24-30 Brooklyn-Queens Expressway, West, Woodside, N.Y., 11377. [408]

Foamable polyethylene insulates co-ax cable

An expandable compound, MPE27, consists of a patented combination of ingredients based on low-density polyethylene. As the pellets are extruded, gas inside the compound uniformly expands the polymer into a structure of small, closed cells.

Foamable polyethylene is used to insulate co-axial cables found in community antenna television systems and radar installations. Since the gas cells afford excellent electrical insulation, only about half as much foam compound is needed in comparison with conventional polyethylenes.

MPE27 is said to be substantially less sensitive to changes in extruder operation with improved diameter control. Its quality performance over a wider range of extrusion conditions also cuts scrap loss, the company says.

Monsanto Co., 800 N. Lindbergh Blvd., St. Louis, Mo., 63166. [407]

Conductive paint needs no formulating

An electrically conductive polymer alloy, Dynaloy 350, is a silver filled paint that adheres readily to con-
New Materials

Conventional solder, metals, plastic, glass, rubber and ceramic surfaces.

Anticipated usages include coatings for tantalum anodes, electrostatic shielding and component grounding—to name a few. Maximum volume resistivity is reported at 0.001 ohm-cm.

Prior to its introduction, commercially available solderable conductive paints were, according to the manufacturer, characterized by low temperature resistance, poor adhesion and inconsistent solderability.

Dynaloy 350 requires no formulating and can be applied directly from the container by dip, brush, or roller coating, in addition to silk screening.

Air drying accomplishes the cure, however, optimum adhesion and conductivity is assured by forced air drying (10 minutes at 125°C or 30 minutes at 105°C).

Trial quantities of Dynaloy 350 are available at $10 for a 3-oz. can. Commercial quantities, including pints, quarts and gallons are available.

Henry Mann Co., Box 104, Cornwells Heights, Pa., 19020. [409]

Photoresist offers coating latitude

An improved photoresist, KPR type 3, offers increased coating and processing latitude. It is designed primarily for use in the production of printed circuits and chemical milling of parts from copper and high copper alloys such as brass and bronze. It provides excellent adhesion to substrates and coating uniformity with dipping, whirling, spraying or roller coating.

This photoresist is slightly faster than KPR, and about the same speed as KPR2. KPR3 has long tank life and great development latitude in a trichlorethylene vapor degreaser.

Type 3 is available in quarts, 40-lb. cans (4½ gallons) and 450-lb. drums (50 gallons).

Eastman Kodak Co., Rochester, N.Y., 14650. [410]
New Books

Radio engineering
Non-Linear Transformations of Stochastic Processes
Edited by P.I. Kuznetsov, R.L. Stratonich and V.I. Tiknov
Pergamon Press, 498 pp., $20

It is rare that a book has a logical sequence when it is compiled from a series of independent papers. But here the 39 papers on non-linear transformations of stochastic processes, originally published in Soviet technical journals between 1953 and 1961, not only stand alone but, frequently and surprisingly, two or three papers provide a broad look at a subject area.

In addition, the book presents original solutions which complement but do not duplicate Western literature. Apparently some of the early work of American and British mathematicians such as Wiener, Rice, Middleton and Woodward was known, but the Soviet work doesn’t reflect their methods. In some cases, the authors report on areas that have not been covered in the West as yet.

Although the applications discussed are in radio and communications engineering, people in other disciplines who use statistical analysis can profit from the book. The techniques are adequate for any technical problems that can be represented by similar mathematics. A strong background in probability theory and stochastic processes and some knowledge of the mathematical description of linear and nonlinear radio devices are necessary.

Most of the papers in the first section investigate the parameters that describe random functions when transformed by various nonlinear systems, such as higher-order moment functions, semi-invariants and quasi-moment functions. Formulas are developed to convert one set of descriptive functions to another. The parameters describing the nonlinear transformation can be determined by a corresponding linear transformation of the quasi-moment functions.

Other work includes the investigation of Markov processes and a generalization of the Focker-Planck equation that can be applied to random functions with short correlation time intervals. The results are important in determining the effect of a delay or memory on a nonlinear transformation. The effects of linear transformations on random functions are also discussed but in rather standard fashion and in only two papers.

Two chapters apply the theory to noise effects, spectral representations of narrow-band random processes and almost-harmonic fluctuations. The effects of noise on detectors and the effect of random fluctuations in oscillators are explored in some depth.

Investigations of the zero-crossing problem, the distribution function of the interval between the random functions’ successive zeros and transformations on the expected number of crossings are reported. The last chapter introduces the problem of optimum filtering and prediction in both linear and non-linear systems.

Other techniques developed include:
- Methods to make a linear approximation of a nonlinear transformation, permitting application of correlation theory.
- A quasi-static approximation to reduce a nonlinear transformation with memory to one without memory. (A transformation without memory is independent of past and future values of the random variable.)
- An analysis of random functions constructed from random points that are correlated in time and space.

Sidney J. Korn
Airborne Instruments Laboratory
Deer Park, N.Y.

Oscilloscopes
Oscilloscope Measuring Technique
J. Czech
Springer-Verlag New York Inc., 620 pp., $15.90

A definite advantage of this book is that a simple oscilloscope and auxiliary equipment will suffice to perform most of the measurements.
There are many ways to measure frequency. This one was shown in my Father's high school text book:

Today, we do it electrically in less than two cubic inches, for you to use in your airplanes and other flying machines. The range: 50 Hz to 3600 Hz.

We also make voltage sensors, 25 millivolts to 440 volts AC and DC.

Current sensors ranging from 2.5 milliamperes to 250 amperes DC and to 500 amperes AC.

Phase sequence or open phase detectors for systems up to 400 volts.

Time interval sensors from fifty milliseconds to minutes, hours, or days.

We also make special sensors for values such as R.P.M., temperature and others. If any of these interest you, please write us.

There are many ways to measure frequency. This one was shown in my Father's high school text book:

Today, we do it electrically in less than two cubic inches, for you to use in your airplanes and other flying machines. The range: 50 Hz to 3600 Hz.

We also make voltage sensors, 25 millivolts to 440 volts AC and DC.

Current sensors ranging from 2.5 milliamperes to 250 amperes DC and to 500 amperes AC.

Phase sequence or open phase detectors for systems up to 400 volts.

Time interval sensors from fifty milliseconds to minutes, hours, or days.

We also make special sensors for values such as R.P.M., temperature and others. If any of these interest you, please write us.
IF YOU CAN'T IDENTIFY THIS

IT'S NO WONDER,
because you've probably never seen fiducial marks generated this way before.

HOW COULD YOU?

We used the TRW Model 46A Trigger Delay Generator, just coming on the market. It's brand new, with some inherited virtues of its predecessor, TRW Model 2A — nanosecond accuracy, high power trigger to override random noise, clear digital display, selectable triggering threshold — plus plug-in capability so you buy exactly the triggering input you need, exactly the sensitivity and spectral range your application calls for.

ASK US FOR A TECHNICAL DATA BULLETIN AND APPLICATION NOTES giving the characteristics of the TRW Model 46A and the plug-ins, and illustrating how you can use the TRW Trigger Delay Generator, as we did, to generate fiducial marks, to measure delay lines, calibrate oscilloscopes, and trigger the TRW Image Converter Camera or countless other laboratory instruments.

TRW INSTRUMENTS
139 Illinois Street, El Segundo, California AC 213, 679-9101 Extension 22884.

Developers and manufacturers of state of the art diagnostic instruments for basic and applied research.

New Books

topics included in this handbook. Other areas covered are: mathematics of IC design, digital and linear IC's and future capabilities of IC techniques.

Charts, graphs, cross sections of IC's and schematics are abundant. The book is intended to keep the working engineer, purchasing agent and company president informed on this fast moving technology.

Although this is the fourth edition of the book, it is the first to appear in hard cover. It was originally prepared as part of a $250 course on IC's. Previous editions, in a loose-leaf binder, were available only to those attending the course.

Recently published

Electronics, Roy H. Mattson, John Wiley & Sons, Inc., 620 pp., $12.95

Approximate Analysis of Randomly Excited Nonlinear Controls, Harold W. Smith, The M.I.T. Press, Research Monograph 34, 138 pp., $7.50

Introduction to Electronics, Theodore Korneff, Academic Press, 545 pp., $11.75

Engineers' Relay Handbook, sponsored by the National Association of Relay Manufacturers, Hayden Book Co., 300 pp., $11.95

A Fortran Introduction to Programming and Computers: Including Fortran IV, Marvin L. Stein and William D. Munro, Academic Press, 122 pp., $3.95

Electron Tubes, Royce Gerald Kloeffler, John Wiley & Sons Co., 262 pp., $5.95

Radio Astronomy, John D. Kraus, McGraw-Hill Book Co., 481 pp., $13.75

Handbook of Stroboscopy, Frederick Van Veen, General Radio Co., West Concord, Mass., 116 pp., $1

Proceedings of the Fifth Annual Symposium on Nondestructive Evaluation of Aerospace and Weapons Systems Components and Materials, Southwest Research Institute, San Antonio, Texas, 364 pp., $10

RCA Linear Integrated Circuit Fundamentals, Technical Series IC-40, Radio Corp. of America, Electronic Components and Devices, Harrison, N.J., 240 pp., $2

SINE/SQUARE OSCILLATOR

MODEL 311 $71.50 (FOB JAPAN)

5Hz - 560kHz, 600Ω

HIGH SENSITIVE AC VTVM

MODEL 121 $66.50 (FOB JAPAN)

full scale 1.5mV - 500V, 5Hz - 500kHz

REGULATED DC POWER SUPPLIES

29 models are available. For particulars, please apply for catalog.

RIPPLE: 3mVpp

MODEL VOLTS AMPS REGULATION FOR JAPAN

521A 1~18V 0.5A ±20mV 41.50

541A 1~35V 0.25A ±20mV 46.50

543 1~35V 0.5A ±20mV 73.50

531B 0~35V 1A ±10mV 84.00

535C 0~35V 5A ±3mV 250.00

Specialized dealers wanted:

Write today for details.

Circle 322 on reader service card
Technical Abstracts

Ferroelectric memory

Ferroelectric ceramic logic and NDRO memory devices
D.C. Schueler, Sandia Laboratory, Albuquerque, N.M.

Ferroelectric elements are looking better and better for applications where simple, small-capacity memories are needed for compatibility in size with semiconductor integrated circuitry.

Interest in them has increased for several reasons:
- Ferroelectric ceramics have been developed that can be used over a wide temperature range.
- Material coefficients can be determined as precise functions of the ceramic composition.
- New hot pressing techniques allow improved control of material homogeneity and density.

Capitalizing on these improvements Sandia Laboratory built a seven-bit ferroelectric memory of lead zirconate-titanate that can fit into a quarter-inch square integrated circuit flatpack. The memory itself is in the shape of a disk, 150 mils in diameter and 3 mils thick.

A circular or dot electrode at the center of the disk is surrounded by seven pie-shaped segments—the bits of the memory.

The dot electrode is used to excite the piezoelectric vibrational mode. Its polarization is constant at saturation remanence. (Like ferromagnetic materials, the ferroelectrics have a square-shaped hysteresis loop when polarization is plotted versus electric field.) The back surface of the disk is a single electrode.

Sandia fabricated the memory from bulk ceramic material that has been precisely ground into cylinders having the finished diameter. The cylinder is then sliced into disks, lapped and polished to the desired thickness. Each is ultrasonically cleaned and heat-treated at 750°C. Thin aluminum or chromium-gold electrodes 3,000 to 5,000 angstroms thick are vacuum-deposited on the major surfaces; the pattern is defined by metal shadow masks.

Gold wire leads 1 mil in diameter are then nailhead bonded to each cured in a microcircuit flatpack with a 25-mil layer of RTV Silastic. The electrode leads are wedge-bonded to the package lands.

For storing binary information, the phase relationship of the dot and segment voltages is the only polarization-sensitive parameter. The segment voltage changes phase by 180° when the direction of the remanent polarization is reversed. Nondestructive readout is readily obtained by detecting the phase of the segment voltage relative to a reference voltage. Disk drive levels can be adjusted so that a segment can drive a logic gate directly at about 3 volts rms.

High-speed write-in is generally not needed for applications where ferroelectric memories are useful. Write-in times range from 1 to 10 milliseconds. This allows the power source to have a higher impedance (10 to 100 kilohms per bit) and lowers the amplitude of the critical polarization voltage.

In writing, a negative pulse is first applied to the write line so that all bits are negatively polarized. A positive voltage pulse is then applied to the write line, with the input register determining which of the bits are polarized positively. Write in of a word is in parallel and takes a few milliseconds. Breakdown voltage of the transistors in the NOR gates of the write-in circuit must be as high as 150 volts, requiring this part of the circuitry to be composed of hybrid elements.

Presented at the Western Electronics Show and Convention, Los Angeles, August 23-26, 1966

Voltage statistics

Random sampling—a statistical measurement approach
John T. Boatwright, Hewlett-Packard Co., Loveland, Colo.

A voltmeter that samples input radio-frequency signals randomly, functioning somewhat like a sampling oscilloscope, is free of the limitations inherent in conventional broadband voltmeters. Incoherent sampling permits measurement of a signal from 1 kilohertz to 1 gigahertz tuning.

Conventional techniques with
For testing, life aging, breadboarding, production...

ONLY CHEMELEC DUAL IN-LINE TFE SOCKETS HAVE 3-LEAF CONTACTS FOR EXTRA RELIABILITY

Unique contact design gives Chemelec sockets their extra reliability: In each pin hole are three beryllium copper leaves that bow in toward the center. When you insert a lead, the leaves deflect to let it slide in easily—but press firmly against it to assure good contact. A built-in barb keeps the contact in when you pull out the lead.

- 14, 16, 18, 20, 22, 24 pins
- contacts are hard gold plate over nickel plate on beryllium copper
- TFE fluorocarbon plastic bodies are practically "everything proof"
- long life—100,000 insertions
- low contact resistance—0.10 ohm

Write for literature.

Technical Abstracts

Synchronized samplers can recover complete information about the sampled signal so long as the signal is periodic, or almost periodic, so that coherent sampling is possible. The random or incoherent sampler loses the time information about the sampled signal but retains statistical information, even if the signal is not periodic. The sampler requires no synchronization circuitry.

A noncoherent sampler has been constructed to measure the average value of a broadband of high-frequency signals. The instrument's output is displayed on a meter and the output of the zero-order or sample-hold circuits are made available by means of a jack at the back of the instrument. Sampling is performed in the measurement probe to keep the physical lengths in the sampling-bridge element short. The samples from the probe are fed through an attenuator and amplifier before processing by the sample-hold circuits and the average detector.

The pulse generator that drives the sampler assembly is controlled by a repetition-rate modulator so that the sampler is always asynchronous with any input signal.

The signal recovered from the random sampler is basically a relatively broadband signal whose spectral energy is uniformly distributed over a specified low-pass bandwidth. This uniform distribution—unlike the harmonically related intervals of the spectral energy from the recovered signal in a synchronous sampler—does limit the instrument's sensitivity, since simple matched filter techniques can no longer be used to reduce the total noise power from the sampler or zero-order hold circuit.

The instrument's absolute average detector can be modified with appropriate circuitry to make root-mean-square or peak value measurements. But it then becomes necessary to assure that statistical reliability exists—that enough samples are taken so that the recovered signal is truly representative of the sampled signal.

Presented at the Western Electronics Show and Convention, Los Angeles, Aug. 23-26, 1966.

You can display anything with IEE series 10 rear-projection readouts

numbers, letters, words, symbols, even colors!

IEE readouts display anything that can be put on film, even colors! Single-plane presentation makes for visual crispness; bright, bold characters (up to 1" in height) for remarkable clarity. So if readability and versatility are what you're after, look into IEE Series 10 Readouts. Five other models available with maximum character heights from 3/8" to 33/8".

Send today for complete information on IEE rear-projection readouts and accessories!

Operational amplifiers. Analog Devices, 221 Fifth St., Cambridge, Mass., 02142. A four-page short-form catalog describes 13 operational amplifier models and gives specifications covering 22 units. [421]

Trimming potentiometer. Helipot division, Beckman Instruments, Inc., 2500 Harbor Blvd., Fullerton, Calif., 92634. Data sheet 66191 covers the model 63P trimming potentiometer, a ¾-in.-square military trimmer with Cermet resistance element. [422]

Rotary thumbwheel switches. Engineered Electronics Co., 1441 E. Chestnut, Santa Ana, Calif., 92702. The industrial Blue Cover line of economical rotary thumbwheel switches is described in a four-page brochure. [423]

Rosin core solder. Alpha Metals, Inc., 56 Water St., Jersey City, N.J., 07304. A technical bulletin describes Reliacor No. 11, a mildly activated rosin core solder designed to provide more effective soldering under type RMA of Federal Specification QQ-S-571d. [424]

Transistor test set. Baird-Atomic, Inc., 33 University Road. Cambridge, Mass., 02138. Brochure EP-2 deals with the company’s latest version of its model PB-1 automatic transistor test set that performs up to 10 tests in less than 1 second in any sequence. [425]

Pc board holders. Taurus Corp., Academy Hill, Lambertville, N.J., 08530, has published an eight-page catalog on its line of printed-circuit board holders in plastic, steel and beryllium copper. [426]

Vacuum catalog. Andar Corp., 185 E. Evelyn Ave., Mountain View, Calif., 94041, has available a vacuum catalog that includes a complete price list and technical data on ion pump systems, flanges and fittings for high-vacuum applications. [427]

Photoconductive cells. Epic, Inc., 150 Nassau St., New York 38, N.Y., has available descriptive literature on photoconductive cells, the sensitive material of which consists of cadmium sulphide with doping materials of cadmium combined with elements of the sixth group of the periodic system. [429]

DTL circuits. Signetics Corp., 811 E. Arques Ave., Sunnyvale, Calif. Design data and applications for 17 diode-transistor-logic circuits are featured in a brochure on the SE100J series integrated circuits. [430]

Pulse generator. E-H Research Laboratories, Inc., 163 Adeline St., Oakland, Calif., 94607. A technical data sheet covers the model 120E pulse generator, which features a fast rise time and high repetition rate. [431]

Data transmission system. Lenkart Electric Co., Inc., 1105 County Road, San Carlos, Calif., has available a four-page brochure on the SE100J series data transmission system, which can be arranged for a wide variety of multichannel telegraph and intermediate-speed data applications. [432]

Stepper motors. The A.W. Haydon Co., 232 North Elm St., Waterbury, Conn., 06720. Product information sheet No. 127 provides data on high torque, general duty and miniature stepper motors. [433]

Potentiometer wire. Sigmund Cohn Corp., 12 South Columbus Ave., Mount Vernon, N.Y., 10553, offers a brochure outlining the advantages of the company’s L.T.C. gold alloy potentiometer wire, its corrosion resistance, high tensile strength, low-noise level and length of life. [434]

Tuning forks. Riverbank Laboratories, P.O. Box 65, Geneva, Ill., 60134. A 20-page catalog, No. 966, covers many lines of precision audio-frequency standards. [435]

Reed switch. Solid State Electronics Corp., 15321 Rayen St., Sepulveda, Calif., 91343, has published a bulletin on the model 7001 spdt Microreed relay. [436]

Capacitors for transistorized tv. Nuclienic Products Co., Inc., 3133 E. 12th St., Los Angeles, Calif., 90023, has published a four-page application note titled “Metalized Lacquer Film Capacitors in the Horizontal Deflection Circuit of Transistorized T.V.”. [438]

Miniature recorders. Thomas A. Edison Industries, McGraw-Edison Co., West Orange, N.J., 07051. A six-page illustrated brochure, No. 3091, describes miniature circular chart recorders available in D’Arsonval or moving iron move-
New Literature

ments for current, voltage, or temperature recording. [439]

IC logic modules. Wyle Laboratories, Products division, 133 Center St., El Segundo, Calif. The series M line of integrated-circuit logic modules is described in a set of detailed specification sheets. [440]

Hermetically sealed relays. Guardian Electric Manufacturing Co., 1550 W. Carroll Ave., Chicago, Ill., 60607, has released a 16-page bulletin giving complete information on hermetically sealed relays, contacts and control switches that meet or exceed military specifications. [441]

Static frequency converters. The Louis Allis Co., 427 E. Stewart St., Milwaukee, Wisc., 53201. Bulletin 7050 presents information on a line of static frequency converters, the company's advanced solid state complete power package for precise, adjustable speed control of single or multiple a-c motors. [442]

Pressure transducers. American-Standard, Advanced Technology division, 1401 South Shamrock Ave., Monrovia, Calif., offers a four-page, short-form catalog on its complete line of bonded, strain gage pressure transducers. [443]

Differential operational amplifier. Analog Devices, 221 Fifth St., Cambridge, Mass., 02142. An application sheet covers basic principles, uses and technical specifications for model 301 varactor bridge differential operational amplifier. [444]

Test sockets for TO devices. Barnes Development Co., Lansdowne, Pa., 19050. Data sheet 178B shows a line of Quik/Sert sockets for test, aging and breadboarding of 3 to 14 lead transistors and integrated circuits packaged in TO housings. [446]

Coaxial and waveguide switches. E&M Laboratories, 7419 Greenbush Ave., North Hollywood, Calif. A four-page bulletin describes coaxial and waveguide switches that cover the frequency range of d-c through 26.5 Ghz.[447]

Carriers and contactors. Barnes Development Co., Lansdowne, Pa., 19050, has issued a data sheet on the series 029 carriers and contactors, which provide convenience, speed and protection for handling and test of 14-lead flatpack integrated circuits. [448]
ATTENTION: ENGINEERS, SCIENTISTS, PHYSICISTS

This Qualification Form is designed to help you advance in the electronics industry. It is unique and compact. Designed with the assistance of professional personnel management, it isolates specific experience in electronics and deals only in essential background information. The advertisers listed here are seeking professional experience. Fill in the Qualification Form below.

STRICTLY CONFIDENTIAL: Your Qualification form will be handled as "Strictly Confidential" by Electronics. Our processing system is such that your form will be forwarded within 24 hours to the proper executives in the companies you select. You will be contacted at your home by the interested companies.

WHAT TO DO, (1) Review the positions in the advertisements. (2) Select those for which you qualify. (3) Notice the key numbers. (4) Circle the corresponding key number below the Qualification Form. (5) Fill out the form completely. Please print clearly. (6) Mail to: Classified Advtg. Div., Electronics, Box 12, N.Y. 10006.

COMPANY PAGE KEY

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>PAGE</th>
<th>KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMECO SKM-CONDUCTOR</td>
<td>268</td>
<td>1</td>
</tr>
<tr>
<td>ATOMIC PERSONNEL INC.</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>BENDIX CORPORATION</td>
<td>184*</td>
<td>3</td>
</tr>
<tr>
<td>CONSLOTH & WESCOTT INC.</td>
<td>194*</td>
<td>4</td>
</tr>
<tr>
<td>GENERAL DYNAMICS Fast Worth</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>CRUMIAN AIRCRAFT</td>
<td>270-271</td>
<td>6</td>
</tr>
<tr>
<td>LAWRENCE RADATION LABORATORIES</td>
<td>194*</td>
<td>7</td>
</tr>
<tr>
<td>LEAR SIEGEL INC.</td>
<td>268</td>
<td>8</td>
</tr>
<tr>
<td>LOCKHEED CALIFORNIA COMPANY</td>
<td>144*</td>
<td>5</td>
</tr>
<tr>
<td>LOCKHEED MISSILES & SPACE Corpo</td>
<td>180-10</td>
<td></td>
</tr>
<tr>
<td>MARTIN Orlando</td>
<td>277</td>
<td>11</td>
</tr>
<tr>
<td>NATIONAL CASH REGISTER</td>
<td>264</td>
<td>12</td>
</tr>
<tr>
<td>NEWPORT NEWS SHIPBUILDING</td>
<td>268</td>
<td>13</td>
</tr>
<tr>
<td>PAN AMERICAN</td>
<td>267-14</td>
<td></td>
</tr>
<tr>
<td>ROHR CORPORATION</td>
<td>172</td>
<td>15</td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS</td>
<td>194</td>
<td>16</td>
</tr>
<tr>
<td>U. S. NAVY Naval Ordnance Lab</td>
<td>269-12</td>
<td></td>
</tr>
<tr>
<td>UNION CARBIDE CORP.</td>
<td>268</td>
<td>18</td>
</tr>
<tr>
<td>UNIVAC Div.</td>
<td>269-19</td>
<td></td>
</tr>
<tr>
<td>AMELCO—Personnel Inc.</td>
<td>268</td>
<td>1</td>
</tr>
<tr>
<td>BENDIX CORPORATION</td>
<td>184*</td>
<td>3</td>
</tr>
<tr>
<td>CONSLOTH & WESCOTT INC.</td>
<td>194*</td>
<td>4</td>
</tr>
<tr>
<td>GENERAL DYNAMICS Fast Worth</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>CRUMIAN AIRCRAFT</td>
<td>270-271</td>
<td>6</td>
</tr>
<tr>
<td>LAWRENCE RADATION LABORATORIES</td>
<td>194*</td>
<td>7</td>
</tr>
<tr>
<td>LEAR SIEGEL INC.</td>
<td>268</td>
<td>8</td>
</tr>
<tr>
<td>LOCKHEED CALIFORNIA COMPANY</td>
<td>144*</td>
<td>5</td>
</tr>
<tr>
<td>LOCKHEED MISSILES & SPACE Corpo</td>
<td>180-10</td>
<td></td>
</tr>
<tr>
<td>MARTIN Orlando</td>
<td>277</td>
<td>11</td>
</tr>
<tr>
<td>NATIONAL CASH REGISTER</td>
<td>264</td>
<td>12</td>
</tr>
<tr>
<td>NEWPORT NEWS SHIPBUILDING</td>
<td>268</td>
<td>13</td>
</tr>
<tr>
<td>PAN AMERICAN</td>
<td>267-14</td>
<td></td>
</tr>
<tr>
<td>ROHR CORPORATION</td>
<td>172</td>
<td>15</td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS</td>
<td>194</td>
<td>16</td>
</tr>
<tr>
<td>U. S. NAVY Naval Ordnance Lab</td>
<td>269-12</td>
<td></td>
</tr>
<tr>
<td>UNION CARBIDE CORP.</td>
<td>268</td>
<td>18</td>
</tr>
<tr>
<td>UNIVAC Div.</td>
<td>269-19</td>
<td></td>
</tr>
<tr>
<td>AMELCO—Personnel Inc.</td>
<td>268</td>
<td>1</td>
</tr>
<tr>
<td>BENDIX CORPORATION</td>
<td>184*</td>
<td>3</td>
</tr>
<tr>
<td>CONSLOTH & WESCOTT INC.</td>
<td>194*</td>
<td>4</td>
</tr>
<tr>
<td>GENERAL DYNAMICS Fast Worth</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>CRUMIAN AIRCRAFT</td>
<td>270-271</td>
<td>6</td>
</tr>
<tr>
<td>LAWRENCE RADATION LABORATORIES</td>
<td>194*</td>
<td>7</td>
</tr>
<tr>
<td>LEAR SIEGEL INC.</td>
<td>268</td>
<td>8</td>
</tr>
<tr>
<td>LOCKHEED CALIFORNIA COMPANY</td>
<td>144*</td>
<td>5</td>
</tr>
<tr>
<td>LOCKHEED MISSILES & SPACE Corpo</td>
<td>180-10</td>
<td></td>
</tr>
<tr>
<td>MARTIN Orlando</td>
<td>277</td>
<td>11</td>
</tr>
<tr>
<td>NATIONAL CASH REGISTER</td>
<td>264</td>
<td>12</td>
</tr>
<tr>
<td>NEWPORT NEWS SHIPBUILDING</td>
<td>268</td>
<td>13</td>
</tr>
<tr>
<td>PAN AMERICAN</td>
<td>267-14</td>
<td></td>
</tr>
<tr>
<td>ROHR CORPORATION</td>
<td>172</td>
<td>15</td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS</td>
<td>194</td>
<td>16</td>
</tr>
<tr>
<td>U. S. NAVY Naval Ordnance Lab</td>
<td>269-12</td>
<td></td>
</tr>
<tr>
<td>UNION CARBIDE CORP.</td>
<td>268</td>
<td>18</td>
</tr>
<tr>
<td>UNIVAC Div.</td>
<td>269-19</td>
<td></td>
</tr>
<tr>
<td>AMELCO—Personnel Inc.</td>
<td>268</td>
<td>1</td>
</tr>
<tr>
<td>BENDIX CORPORATION</td>
<td>184*</td>
<td>3</td>
</tr>
<tr>
<td>CONSLOTH & WESCOTT INC.</td>
<td>194*</td>
<td>4</td>
</tr>
<tr>
<td>GENERAL DYNAMICS Fast Worth</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>CRUMIAN AIRCRAFT</td>
<td>270-271</td>
<td>6</td>
</tr>
<tr>
<td>LAWRENCE RADATION LABORATORIES</td>
<td>194*</td>
<td>7</td>
</tr>
<tr>
<td>LEAR SIEGEL INC.</td>
<td>268</td>
<td>8</td>
</tr>
<tr>
<td>LOCKHEED CALIFORNIA COMPANY</td>
<td>144*</td>
<td>5</td>
</tr>
<tr>
<td>LOCKHEED MISSILES & SPACE Corpo</td>
<td>180-10</td>
<td></td>
</tr>
<tr>
<td>MARTIN Orlando</td>
<td>277</td>
<td>11</td>
</tr>
<tr>
<td>NATIONAL CASH REGISTER</td>
<td>264</td>
<td>12</td>
</tr>
<tr>
<td>NEWPORT NEWS SHIPBUILDING</td>
<td>268</td>
<td>13</td>
</tr>
<tr>
<td>PAN AMERICAN</td>
<td>267-14</td>
<td></td>
</tr>
<tr>
<td>ROHR CORPORATION</td>
<td>172</td>
<td>15</td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS</td>
<td>194</td>
<td>16</td>
</tr>
<tr>
<td>U. S. NAVY Naval Ordnance Lab</td>
<td>269-12</td>
<td></td>
</tr>
<tr>
<td>UNION CARBIDE CORP.</td>
<td>268</td>
<td>18</td>
</tr>
<tr>
<td>UNIVAC Div.</td>
<td>269-19</td>
<td></td>
</tr>
</tbody>
</table>

PERSONAL BACKGROUND

<table>
<thead>
<tr>
<th>Name</th>
<th>[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Address</td>
<td>[]</td>
</tr>
<tr>
<td>City</td>
<td>[]</td>
</tr>
<tr>
<td>Zone , State</td>
<td>[]</td>
</tr>
<tr>
<td>Home Telephone</td>
<td>[]</td>
</tr>
<tr>
<td>Personal Background</td>
<td>[]</td>
</tr>
<tr>
<td>Professional Degree(s)</td>
<td>[]</td>
</tr>
<tr>
<td>Major(s)</td>
<td>[]</td>
</tr>
<tr>
<td>University</td>
<td>[]</td>
</tr>
<tr>
<td>Date(s)</td>
<td>[]</td>
</tr>
</tbody>
</table>

EDUCATION

<table>
<thead>
<tr>
<th>Field(s)</th>
<th>Experience</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>9/19/66</td>
<td>9/19/66</td>
</tr>
<tr>
<td>Antennas</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Microwave</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Packaging</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Radar</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Radio TV</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Simulators</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Solid State</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Telemetry</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Transformers</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

CATEGORIES OF SPECIALIZATION

<table>
<thead>
<tr>
<th>Category</th>
<th>Experience (Months)</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESEARCH (pure, fundamental, basic)</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>RESEARCH (Applied)</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>SYSTEMS (New Concepts)</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT (Model)</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>DESIGN (Product)</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>MANUFACTURING (Product)</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>FIELD (Service)</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>SALES (Product & Product)</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

CIRCLE KEY NUMBERS OF ABOVE COMPANIES' POSITIONS THAT INTEREST YOU

<table>
<thead>
<tr>
<th>Key</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

We thought you might appreciate a little inside humor. The truth of the matter is that our down range island stations for the Eastern Test Range offer a lot more solid ground to move around in than is available on the ships in the operating fleet. The situation is usually the other way around. When one of the tracking ships is in the area, the Base Operations Manager is issuing the invitations. And not always to a movie.

The point is that both jobs are vital ones in our overall responsibility during a launch. Be it missile, manned space craft, satellite or space probe, both the BOM and SOM make important split-second decisions with the chips down. A multi-million dollar mission may depend on their know-how.

They know their technology. They take full responsibility for directing the real-time monitoring of vehicle performance in flight; using pulse and CW radar, telemetry, infrared, timing, command/control, data encoding and transmission equipment of the latest design. They perform in-flight trajectory measurements, utilizing digital computers and inertial navigation systems.

If you have engineering management ability, can make instantaneous decisions, a strong technical background in any of these areas, and an EE degree, write to Manager of Professional Employment, Guided Missiles Range Division, Pan American World Airways, Inc., Dept. 281-3, 750 S. Orlando Avenue, Cocoa Beach, Florida. An Equal Opportunity Employer.

GUIDED MISSILES RANGE DIVISION

PAN AMERICAN WORLD AIRWAYS, INC.
With all the companies offering the same positions, how do you find the right one?

Look to the company consistently active in major projects. Lear Siegler hardware is involved in all the significant aerospace programs. LSI Instrument Division products are currently in use on over 70 aircraft, spacecraft and missiles. And, we have been actively applying new concepts in the design and production of advanced flight navigation and reference systems and cockpit displays for more than 30 years.

Exercise and elbow room are what you get at LSI. In a half-million square feet of newly-completed aerospace facilities. For the right position:

CIRCUIT DESIGN ENGINEERS — TEST EQUIPMENT DESIGN ENGINEERS —
NAVIGATION & COMMUNICATIONS SYSTEMS ENGINEERS — A.G.E. DESIGN ENGINEERS . . . send your resume in confidence, or write for information to:

E. B. Mellinger
Professional Employment Manager

LEAR SIEGLER, INC. / INSTRUMENT DIVISION
414 EASTERN AVE., S.E., GRAND RAPIDS, MICHIGAN 49508

R.U. answering more than advertisement? Then please send a separate reply to each box number. It will help you get an answer sooner.

EMPLOYMENT SERVICES
Your Resume-Make it sell You! Instructions: samples: 82, Executive, Box 246EL, Montclair, N.J. 07042.

BUSINESS OPPORTUNITY
Leading English Electronic Instrument Business No competition—unique. Owner wishes to sell Know-how and Patents. Price $1,000,000 or less, according to assistance required. Principals write to:

SPRINGHEAD MANOR
SHIBDEN, HALIFAX, YORKSHIRE, ENGLAND

FOR SALE:
ELECTRIC, GAS, AND VACUUM FURNACES

INSTRUMENTS & MACHINES INC.
1200 Grove Street
Irvine, N.J.
201-371-7900

SEARCHLIGHT SECTION:
- CLASSIFIED ADVERTISING
- BUSINESS OPPORTUNITIES
- USED OR SURPLUS EQUIPMENT

RADAR AUTO-TRACK & TELEMETRY ANTENNA PEDESTALS 3.5 to 10 C.A. 100 to 200 AUTOTRACK RADAR, 9.5 to 6000 TVP-50 SEARCH IMP-45 TP500 HD, FINDERS WX RADAR, FPM-303CA APR-10 APR-15C APR-27 ANNT SEARCH, B F
APM-102 DIPLOPPER DOZENS MORE CARCINOGENS, PENK's, SAR-5.1-5.2-5.3 WERMARK WAVE MODULATORS, CAVITIES, WAVE TRANSFORMERS, IF STRIPS, WAVEGUIDE, BENDS 200 M.C. 1 KMC. 5 KMC. 6 KMC. 9 KMC. 9 KMC. 28 KMC. IF PICKS
RADIO RESEARCH INSTRUMENT CO.
550 5TH AVE., NEW YORK 36, N.Y.
CIRCLE 896 ON READER SERVICE CARD

Color DIAL TELEPHONES $10.95
Factory rebuilt Western Electric Complete in style, brawn, every plug, screw, or blade. If a phone plug is re- used and B.S.O. Fully guaranteed. Write for free list. All shipments F.O.B.
SURPLUS SAVING CENTER
Dept. E-5106
Waymart, Pa.

CIRCLE 896 ON READER SERVICE CARD

CIRCLE 967 ON READER SERVICE CARD

CIRCLE 968 ON READER SERVICE CARD

CIRCLE 969 ON READER SERVICE CARD

ELECTRONICS | September 19, 1966
engineering opportunities

AT THE U.S. NAVAL ORDNANCE LABORATORY
— one of the largest laboratories in the world located on an 875-acre "campus" in the rolling hills of Maryland near the Nation's Capital.

ELECTRONIC ENGINEER (Instrumentation)
To design and develop the electronics for new types of instrumentation for ballistics ranges and facilities for aerospace simulation. Duties will include developing new electronic instrumentation for measurement of aeroballistic phenomena, consulting with associates on requirements of new instrumentation, and developing new electronic techniques for obtaining data. A Bachelor's degree in electronic or electrical engineering required. In addition, appropriate experience required at higher salary levels. $8,479 to $10,927.

MECHANICAL ENGINEER
To design and develop supersonic and hypersonic wind tunnel models, balances and instrumentation. Duties will include performing stress analyses, dynamic loading computations and mechanical design layouts. The position will normally involve responsibility for a task from its inception through design, drafting, manufacturing and shakedown phases to completion and release to the using activity. A minimum of a Bachelor's degree in mechanical engineering or allied field required. At higher salary levels appropriate professional experience also required. $7,729 to $9,536.

ELECTRICAL ENGINEER
To work in data acquisition laboratory. Duties will include designing special purpose data setups using computer type peripheral equipment such as analog and digital tape units, analog to digital converters, paper tape readers and punches, and buffers. Bachelor's degree in electrical or electronic engineering required plus at least one year of experience involving both logical design and computer programming. With a Master's degree no experience is required. $8,479.

MECHANICAL ENGINEER
To conduct research on problems of responses of basic structures to static and dynamic (particularly explosion) loading. Duties will include applied analytical and experimental research on such basic structures as cylinders, spheres, plates, beams, etc., to provide generalized information on response which will be useful for the design of blast resistant construction. Bachelor's degree in mechanical engineering required. Training in the areas of stress analysis, dynamics, and strength of materials, and knowledge of the basic principles of compressible and incompressible flows and thermodynamics desirable. Also, experience or interest in computer and mathematical analysis would be helpful in the analytical portion of the research work. $7,729 to $8,479.

These are career Civil Service positions with regular salary increases, liberal benefits.

Send resume or SF-57 to: Professional Recruitment Division, U. S. Naval Ordnance Laboratory, White Oak, Maryland 20910.
projects of modern times. A typical area of opportunity is deep submersibles where the uncharted world of the deep oceans and the vehicles and equipment with which Grumman has been long familiar, contribute to our scientific staff.

Deep submersibles require the application of techniques, materials, and equipment with which Grumman has been long familiar. Contributing to this transfer of skills is our demonstrated ability to deal with the complex man-machine life support interface required by advanced aircraft (e.g., EA-6B) and manned space vehicles (e.g., LM—Lunar Module) and the systems engineering and design skills needed for their development.

The challenge continues in these latter areas unabated. Engineers and scientists who enjoy a challenge can just about "hard pick" from the wealth of opportunities.

FOR ENGINEERS & SCIENTISTS

WHOSE BEST RESPONSE IS TO A CHALLENGE!

...will find it at Grumman, engaged in some of the most advanced projects of modern times. A typical area of opportunity is deep submersibles where the uncharted world of the deep oceans and the vehicles that can maneuver in them is undergoing the hard scrutiny of our scientific staff.

Deep submersibles require the application of techniques, materials, and equipment with which Grumman has been long familiar. Contributing to this transfer of skills is our demonstrated ability to deal with the complex man-machine life support interface required by advanced aircraft (e.g., EA-6B) and manned space vehicles (e.g., LM—Lunar Module) and the systems engineering and design skills needed for their development.

The challenge continues in these latter areas unabated. Engineers and scientists who enjoy a challenge can just about "hard pick" from the wealth of opportunities.

Computer Liaison Engineers—B.S. in Engineering, Physics or Math. Thoroughly familiar with military computer memory power supplies. Duties: vendor liaison for monitoring design & performance including testing, component selection & scheduling. Will coordinate efforts of supporting groups such as Maintainability, Reliability, etc.

Computer System Engineers—Engineers & Mathematicians with 1-5 years experience in the analysis, design and development of digital computer systems.

Programmers—Experienced in both general purpose and special purpose techniques, to work on complex systems for aerospace vehicles.

Digital Systems Engineers—BSEE with a minimum of 3 years experience in military digital and data processing equipment. Should be capable of performing a comprehensive analysis of digital equipment to establish support concepts and define support requirements.

Aircraft Electro-Mechanical Designers—Designers with experience in aircraft electrical/electronic circuit design, installation, liaison, packaging to military specifications.

Electro-Mechanical Designers—Requires a minimum of 5 years experience in the packaging of Military Electronic ground support equipment & capable of developing designs from engineering schematics and/or logic diagrams. Must be knowledgeable in electrical isolation and shielding techniques associated with EMI problems and capable of designing suitable electrical harnesses & familiar with the application and selection of electrical components. Knowledge of printed circuit design desirable.

Circuit Design Engineers—BSEE, with 3 to 10 years experience in solid state circuit design to military specifications. Experience with broad band amplifiers, A/D or D/A Converters for high speed (10 mc) switching circuits, desirable. Knowledge of packaging techniques for cordwood construction and integrated circuits, helpful.

Aerospace Navigations Systems Engineers—BSEE with a major in control theory and 3-5 years experience with small analog computers, inertial sensors and solid-state circuit design. Knowledge of aircraft navigation systems, required; capable of designing small analog computer and investigating total navigation system problems.

Inertial Navigation Systems Engineers—BSEE (MSEE preferred) with major in control theory and 3-5 years experience in the design & development of navigation systems hardware. Should be capable of directing major systems redesign program. Circuit design experience desirable but not essential.

Armament Control Engineers—BSEE with a minimum of 3 years experience in the design of arming & releasing systems for airborne armament.

Aircraft Autopilot Engineers—BS in EE, ME or AE with a minimum of 5 years experience in autopilot systems with emphasis on automatic control theory. The assignment covers the system from concept to hardware, through bench checkout to flight test of autopilot.

Aerospace Electrical Power Systems Engineers—B.S. in E.E. or Physics with a minimum of 2 years experience in design, development, or integration of aircraft or spacecraft electrical, power systems. Positions available in aircraft programs, manned & unmanned spacecraft programs; aircraft & spacecraft advanced systems.

Display Systems Engineers—BS & 4 or more years experience in the design of display systems for radar target tracking, control, ASW or reconnaissance. Applicant should have experience with various types of cathode-ray tube devices.

ECM Subsystems Engineers—B.S. in E.E. or Physics with 2 to 6 years experience in design of ECM receivers &/or jamming or applicable radar communication background.

Radar Development Engineers—BSEE with a minimum of 4 years experience in the analysis, design and development of airborne radar systems. Should be capable of analyzing the radar system with end view of integrating the equipment into a complex space vehicle system. Will fully participate in laboratory and flight development program conducted in the finest facilities available in a professional atmosphere.

Communications Systems & Equipment Engineers—BSEE with a minimum of 2 years experience in Communication and Radio Navigation Hardware Engineering. Familiarization with the following equipments is desirable: H.F. (SSB), VHF/FM & AM, UHF/FM & AM, Voice & Data Link Communications Equipment, ADF, Voice Terminal, Radar Altimeter, and Doppler Navigation. Duties include: Systems integration, analysis of equipment design, circuit & component analysis, generation of equipment specifications, interface and test procedures information, liaison with subcontractors & contractors, laboratory checkout.

ASW Electronic Systems Engineers—B.S. or M.S. degree with a minimum of 2 years experience with problems associated with subsonic detection. Duties will include conceptual sub-system performance analysis in Advanced System Section including trade-off studies. for: sonar, radar, ECM, IR, sensory and signal processing equipment; aircraft navigation integrated data processing, display and control systems.

Human Factors Engineers—MA or PHD in Experimental Psychology with at least 2 years Human Factors experience. BS in Engineering with appropriate experience will be considered. Positions available in Aircraft Systems Analysis, Display & Control Design, Cockpit Layout, Design for Maintainability, Training Requirements, Training Devices and Experimental Studies.

Programmers—BS in Math or Engineering (or equivalent), capable of converting engineering information (in the form of test requirements specifications into flow charts) into the format necessary to permit card punching, magnetic tape preparation, computer input, output statement listings and production of perforated tapes.
RF Engineers—BSEE (or equivalent) with a minimum of 4 years' experience in radar, communications or electronic countermeasure systems to determine support equipment requirements and/or design and development of electronic support equipment to checkout & fault isolate aircraft or space vehicle RF systems.

Logic & Switching Engineers—BSEE with minimum of 3 years experience in digital logic, timing and control, with digital elements and time sharing systems. Must be capable of developing a detailed logic diagram from a system specification. Should be able to perform detailed system analysis to minimize hardware, eliminate hazards & timing problems & to specify testing requirements.

Calibration & Maintenance Engineers—BSEE or ME preferred with a minimum of 5 years experience in establishing procedures for Ground Support equipment calibration and maintenance. Must be proficient in measurements & familiar with Standards & Calibration equipment. Sound knowledge of commercial and military specifications concerning calibration & maintenance of electrical, electronic, electro-mechanical, fluid manufacturers of motors & other components.

Instrumentation Design Engineers—BSEE with a minimum of 3 years experience in digital logic & system design. Experience with telemetry & analog multiplex tape systems, highly desirable. Will be responsible for complete checkout of airborne instrumentation from component procurement to systems checkout.

Instrumentation Application Engineers—BS in ME, EE or Physics with a minimum of 2 years experience in transducers, recorders, data gathering systems, & interested in lab type work.

BS in ME, EE or Physics with a minimum of 2 years experience, to work with telemetry, digital systems & tape recorders as applied to Flight Test Development Programs.

BSEE with a minimum of 2 years experience in electronics circuit application with knowledge of digital techniques. Will operate analog & digital data acquisition systems.

BS or MS in ME, EE or Physics with a minimum of 5 years applicable experience to work on advanced development of scientific measurements associated with lunar exploration. Assignments available in Bethpage & Cape Kennedy, Florida.

Instrumentation Measurement Engineers—BS in ME, AE or CE with at least 3 years experience in design and calibration of multi-component strain gage balances, thrust stands, or weighing systems. Assignments will include design of wind tunnel balances, complex structural component gaging and high temperature, high vacuum strain gaging studies.

BS in ME, EE or Physics with 4 years experience in Instrumentation measurement problems. A good theoretical and practical knowledge of transducers, their specifications and application to measurement of force, pressure, flow, acceleration, rate, force, is required.

BS in ME, EE, Physics or equivalent experience in calibration of test instruments & laboratory standards.

Test Data Reduction Specialist—B.S. & minimum of 2 years experience with telemetry ground station operation, digital computer processing of test data, airborne & ground test data acquisition systems including range instrumentation, data reduction, hardware/software interfaces, analog signal processing & data processing planning, scheduling & estimating. Assignments available at Bethpage, Cape Kennedy, White Sands, Patuxent, Md. & Savannah, Ga.

Digital Computer Programming Analysts—B.S. or equivalent with minimum of 2 years experience in developing programming requirements for airborne data acquisition. Knowledge of CDC 160, CDC 3600, &/or IBM 7094 computers, required. Assignments available at Bethpage, Cape Kennedy & Houston.

Electronics Field Engineers—B.S. in Electronics or Physics with a minimum of 6 years experience desirable, but candidates demonstrating the equivalency will be considered. In-plant training will be provided. Must be experienced in one or more of the following areas: search & track radars, digital computers, inertial guidance systems & transistor theory & application.

Guidance & Control Integration Engineers—BS or advanced degree with experience in design, analysis and integration of vehicle guidance & control systems. Applicants should possess a working knowledge of both analog & digital feedback system & design techniques. System test or hardware design experience desirable. Position entails conceptual work in defining guidance & control systems, establishing subsystem and component requirements, system development and verification.

Reliability Test Engineers—with experience in test planning, test equipment, reliability test procedures, overstress testing, and other related test disciplines essential in establishment of reliability test equipment & measurements and evaluation of vendor generated and evaluated products. An Engineering degree with several years work in a related field is desired.

NOTE: Positions also available in the above areas to Recent Engineering Graduates

Use the attached inquiry form to arrange a mutually convenient interview.
Now...a single source for every tape recording and oscillograph need

CEC, a leading manufacturer of magnetic tape recorders and oscillographs, is the only company which offers single source responsibility for all tape, paper, and chemical needs.

Result: a substantial contract advantage to the user—combined with assured quality control, convenience, and delivery.

A complete family to serve you

CEC Magnetic Tapes. Created and produced by Eastman Kodak, these tapes offer significant advances and benefits unmatched by any others.

☐ Only CEC tapes are color-coded on the box, can, reel; even digitally numbered on the tape itself for instant identification and traceability.

☐ Only CEC tapes are divided into four specific categories to meet the exact requirements of every data recorder.

☐ Only CEC tapes come shielded in metal containers—packed in cardboard filing boxes covered with protective plastic sleeves.

☐ Only CEC tapes are protected from shipping and storage damage by means of a plastic waffle hub, thus preventing tape serration and flange deformation.

DATACOLOR 88. A two-color red and cyan emulsion paper which produces traces in distinctly different hues for rapid and positive identification.

DATAFLASH 55. The extreme sensitivity of this paper now makes it possible to obtain perfect oscillograph records at writing speeds in excess of 75,000 ips.

DATAFLASH 56. A high writing speed product which produces superb traces, timing, and grid lines where Zenon lamps are used.

DATAFLASH 57. High writing speed Dataflash 57 features a "develop-out" option for oscillograms of archival quality.

DATATRACE 11 & 31. Heat sensitive recording papers for use with CEC’s DG-5511 Portable Two-Channel Thermal Writing Recorder. High contrast or reproducible types are available.

DATARITE 33. DATARITE refers to CEC’s Datarite Magazine in which oscillograms are automatically developed and dried as quickly as data is recorded. DATARITE 33 is ideal for high writing speed applications.

DATARITE 22. Type 22 has less sensitive emulsion than Type 33. At low writing speeds, it will give excellent oscillograms.

Type 49943-3 Datarite Developer Solution is a non-ammonia, general purpose formula which provides exceptionally high trace contrast and high writing speed capability.

Type 49943-4 Datarite Developer Solution is an ammonia-type formula which combines high writing speeds with reduced paper staining in high humidity environments.

Hi-Speed Chemical Kit — No. 217050. Designed for use in CEC’s new 23-109B and 23-109A Processors. Easily capable of processing more than 1500 square feet of oscillographic paper without replenishment, it’s the logical choice where numerous rolls of recorded material must be processed.

Liquid Concentrate Chemical Kit — No. 156455. The “economy” package for use with the 23-109A. Processes up to 500 square feet of paper, on an intermittent basis, thereby avoiding costly waste of solutions.

For all the facts about CEC tapes, oscillographic papers, and chemicals, call or write for CEC Bulletin Kit 9050-X7.
Soviet Union

Computer show

Soviet leaders stoutly maintain they’ll soon have a network of supercomputers running the country’s industries and solving its economic problems. But judging from the Interorgtechnica Automation Show held in Moscow earlier this month, the engineers who have to design and build the supercomputers aren’t faring too well at the game of follow the leaders.

Far from supercomputers, the few new Soviet machines unveiled at the show were small, easy-to-use models. And the most elaborate demonstrations in the Soviet pavilion—largest at the 18-nation exhibition—featured the two-year-old Minsk 22 computer [Electronics, July 26, 1965, p. 133].

To be sure, the Soviets keep their advanced computer technology very much unto themselves. So Western showgoers who had hoped for a glimpse of the BESM 6, reportedly the largest and best Russian digital computer, found only a small ancestor on display, the BESM 4. It’s known, however, that the first nonmilitary BESM 6 went into service last month at the meteorological center in Moscow. But even after discounting Soviet secrecy, Western observers remain convinced that the emphasis in production clearly centers on small machines.

Industrywide. In the drive to put whole industries under computer control, Russian data-processing experts apparently haven’t waited for the advent of supercomputers. One display at the Soviet pavilion indicated the Russians are trying to control their entire fertilizer industry with a system built around the Minsk 22.

According to the Interorgtechnica display, the Minsk 22 system handles data processing for the production of 28 different kinds of fertilizer and its supply to 20 customers—Soviet republics and export agencies—across the country. A Soviet computer specialist at the show said that about 100 such systems currently are in operation in the USSR, controlling everything from material flow to bookkeeping.

At the Lvov television works in the Ukraine, for example, a Minsk 22 system schedules work flow throughout the plant on the basis of inputs from several dozen counters and some 30 teletype writers.

Transistorized. The best transistorized machine in sight at the Soviet pavilion was the KBM 1, kingpin element for an industrial management and control system the Russians call COY 1. The system consists of modular units and can perform up to 100,000 operations a second from a repertoire of 256 different operations. It has compilers for two computer languages plus a supervisory program that allocates priorities for multiprogramming among as many as 80 asynchronous requests. The fast-access memory has a capacity of 4,096 words.

Another fully transistorized computer shown was a hybrid—a combination of a Dnieper digital control computer and up to three MN-10 analog machines. The combination works especially well for continuous process control, the Soviets say.

Slow and easy. The Soviets at Interorgtechnica also displayed a pair of small, slow, easy-to-operate machines that were designed, seemingly, to cope with a lack of trained computer personnel.

One, the Vilnius, accepts only keyboard inputs. Its basic computing elements are relays, diodes and electromechanical counters, limiting its speed to 300 operations a minute. It adds, subtracts, multiplies and divides automatically but is only semiautomatic when it comes to taking square roots or raising to a power.

About in the same class is the MIR family of machines for solving engineering problems, developed by the Kiev Institute for Cybernetics. This computer has a battery of 200 programs and the user simply types out the problem to feed it into the computer for solution.

East Germany

Cut to fit

Driving to boost the output of the state-run electronics industry despite a labor shortage, East German economic planners are turning increasingly to automatic production techniques. So determined are the planners to step up productivity, for example, that they’ve converted an aircraft factory in Dresden to develop automatic production equipment solely for plants that turn out electronic and electrical components.

The effort seems to be paying off. The new plant, called VEB Elektromat, now is producing automatic stator-winding machines, fuse assemblers, resistor-grinding machines and wire-harness makers.

Elektromat officials make con-

Punched paper tape programs East German machine that forms harnesses automatically.
siderable ado about a 66-foot long automatic resistor production line they developed in just 15 months. And they have high hopes for some of their machines in Western markets. Already they've sold resistor-grinding equipment to British and French manufacturers. They also expect to turn up Western customers for their automatic wire-harness forming machine. With both these machines Elektromat maintains it has come up with equipment no one else yet produces.

Best seller. Elektromat's best export seller so far is its $25,000 automatic resistor-grinder that cuts spirals on film resistors to adjust their resistance to a tolerance of ±0.5%. A small computing network in the grinder varies the pitch of the cut so that the spiral takes up at least 70% of the active length of the film.

The grinder can handle film resistors with values as low as 10 ohms and as high as 10 megohms. All the operator has to do is dial in the nominal unground value, the desired value and the tolerance. After that, the machine takes over.

Unground resistors are fed automatically from a vibrating hopper to a spindle that rotates the resistor as the cutting tool advances along it to produce a spiral. When the spindle grips a resistor, it's initial value is accurately measured. Based on this measurement, the computing network sets the speed of the cutting tool feed. Then the resistor is switched into a bridge circuit; the cutting operation continues until the bridge is balanced. If the desired value can't be obtained with a cut between 70% and 100% of the active film length, the machine rejects it. If 10 resistors in a row are rejected, the machine shuts down and flashes a warning light indicating that the operator should recheck his settings.

Harnessless. Elektromat thinks it may have another export winner in its automatic wire-harness machine. The machine lays out wires for harnesses according to a paper-tape input. It can handle layouts up to 21 inches wide and 48 inches long involving up to 20 different size of wire.

Harnesses are laid out on a drum studded with pins. Wires are fed to the layout drum from a magazine of spools. They are wrapped around the pins and are cut according to the tape program as the drum rotates and shifts up and down, also under tape control.

Maximum harness-forming speed is about 33 feet a minute.

Great Britain

Computer on the rails

British Railways has put a computer on the rails as part of its effort to hold the line on roadbed maintenance costs, now running slightly over $75 million a year.

For more than a decade, the government-owned railroad has been checking out alignment of its 27,000 miles of tracks with recording trolleys that produce accurate—but voluminous—chart records of track conditions. The sheer volume of the charts, which require painstaking evaluation by experts to spot faults, loomed as a bottleneck in British Railways' plans to automate maintenance equipment.

To eliminate the bottleneck, British Railways and Derwent Electronics Ltd. jointly developed a system that automatically spots track faults. The equipment costs $34,400, but apparently will pay for itself many times over in maintenance savings. After running tests on a prototype, British Railways ordered an additional 11 systems and plans to have them checking track throughout the country within the next year.

Superimposed. The so-called Neptune system (for North Eastern Electronic Peak Tracing Unit and Numerical Evaluator) superimposes a fixed-program digital computer on the traditional electromechanical track-checking trolley. The trolley picks off data for five parameters—right- and left-hand top (smoothness of the rails), right- and left-hand rail curvature and cross level (difference in height between rails). The data for each parameter is fed into a separate channel in a data logger with a floating peak analyzer. Output of the data-logger channels passes to arithmetic units that analyze statistically the recorded peaks.

The peaks are stored and printed out every quarter of a mile. Cycle time of the arithmetic units is 11 microseconds and storage capacity is 70 eight-bit words. Whenever a parameter strays outside the acceptable limits, the printout shows it with a symbol alongside the out-of-limits value. In addition to the digital printout, Neptune produces a punched tape that can program automatic tamping machines. For serious deviations in cross level,
the track fault that makes railroad
cars sway, the system develops an
output signal that actuates a paint
sprayer. It marks the track within
9 inches of the defect.

With Neptune, British Railways
has carried electronic analysis of
rail conditions a step beyond the
system installed in early 1965 on
the private car assigned to the vice-
president for engineering of the
New York Central Railroad. The
New York Central system uses
strain gages fitted between the
body frame and the axle journal
box to obtain a rough analysis of
cross level.

But New York Central engineers
can get a better idea of how
smooth their passenger cars ride at
high speeds over a stretch of rail-
road. Their system can handle
speeds from 40 miles per hour all
the way up to 120 mph. Neptune,
by contrast, has a top speed limit
of 40 mph for checking cross level.
When all five track parameters are
checked, top speed for the trolley is
20 mph.

Accent on avionics

The British aviation industry is
beset by a big problem—too much
capacity and too few airplanes to
build—but the woes of the airframe
makers haven’t grounded the
country’s avionics producers.

At the bustling Farnborough Air
Show this month, it was clear that
much of the industry’s vitality is
coming from high-flying avionics
manufacturers. The stress now is
on aircraft control and instrumen-
tation, but British companies re-
main active in communications,
surveillance and testing equip-
ment.

Avionics, in fact, accounts for a
big chunk of Britain’s electronic
production. Of a total of $750 mil-
lion last year, avionics covered al-
most a third—some $238 million.
The proportion is even higher when
it comes to exports. British sales of
airborne equipment and ground
navigational aids last year came to
$81 million out of total electronics
exports of $238 million.

Mobile. There was plenty of evi-
dence at Farnborough that British

Electronics Abroad

Avionics manufacturers are devel-
oping world-class equipment even
though the country’s aircraft pro-
duction is declining. Marconi Co.,
for example, introduced a mobile
military radar system that can
handle several flight interceptions
at speeds up to Mach 2. Marconi
says the three-trailer system can
be operating within two hours after
it arrives at an unprepared site.

The Marconi system consists of
three elements—a C-band height
finder, plus S-band and L-band
surveillance radars. The S-band
radar has a moving target indica-
tor that eliminates “blind speeds”.
The C-band height finder has a
dual transmitter-receiver unit with
scan pattern controlled by the
Myriad computer that rides herd
on the over-all system.

No hands. Another set of hard-
ware that figures to boost Britain’s
avionics exports is a new instru-
ment landing system developed by
Standard Telephone and Cables
Ltd., an affiliate of the Interna-
tional Telephone & Telegraph Corp.
The solid state system uses a patented
technique to prevent bends caused
by reflections from buildings or
high ground in the azimuth and
guide-slope beams.

STC says it has virtually de-
signed routine maintenance out of
its new ILS system; a monitoring
system handles routine checks and
tests. The system carries a price
tag of just over $120,000, lower
than most ILS systems now in use.
STC already has in hand more
than $1 million worth of orders for
the new system from British and
Australian aviation authorities.

Well spaced. The Farnborough
Air Show also provided a sampling
of the space hardware British man-
ufacturers have developed as part
of their effort to keep from being
grounded by the slowdown in air-
craft production. Associated Elec-
trical Industries Ltd. for instance,
showed a working model of the
latest British satellite-tracking
radio telescope—which boasts an
82-foot dish antenna—built for the
Chilbolton station of the Science
Research Council.

Elliott-Automation Ltd. showed
what it has proposed to the Euro-
pean Space Research Organization

for a pair of 800-pound scientific
satellites ESRO plans to launch in
1969 or 1970. For this ESRO pro-
posal, Elliott is project leader for
an international team that includes
companies from France, Holland,
Italy, Sweden and the U.S.

Japan

Breaking in

A solid market in England for com-
puter peripheral equipment may be
in the offing for Fujitsu Ltd., the
lone Japanese computer maker that
has achieved any significant suc-
cess so far with exports.

Fujitsu will deliver late this year
to Elliott-Automation Ltd. a trial
shipment of four magnetic tape
handlers and one high-speed line
printer. Elliott plans to test the
units on a 503 computer; if they
work out, the Japanese peripherals
stand to become standard equip-
ment on Elliott’s new 4100 series.

The tape handlers are Facom 603
models, which have a transfer rate
of 60,000 characters per second and
feature a single capstan with direct
drive through a Minertia motor
produced by the Yaskawa Electric
Manufacturing Co. The line printer
is a Facom 642, which has a maxi-
imum speed of 1,500 lines per min-
ute with up to 136 characters per
line.

Elliott, a heavyweight in the
British computer industry, will be
switching suppliers—rather than
changing production policy—if it
adopts the Fujitsu equipment as
standard. For the computers it mar-
kets, Elliott produces the central
processor and generally relies on
United States companies like the
Ampex Corp., Potter Instrument
Co., the Anelex Corp. and the Na-
tional Cash Register Co. for pe-
ripheral equipment. This is in line
with the British government’s
policy to bolster the computer in-
dustry by concentrating on central
processors.

The trial order was worth only
$110,000 to Fujitsu but it could be
the entree to substantial and steady
sales in Britain over the next few

275
years. Along with the tape handlers and high-speed line printer, Elliott also may buy magnetic disk memories, drum memories and paper tape units from Fujitsu.

Belgium

Victory at sea

Hardly a week goes by without some Japanese electronics company snapping up a contract in somebody else's backyard. But last month, a small Brussels-based firm turned the tables on the Japanese. The company, SAIT Electronics, waltzed off with an order worth more than $6 million to fit out with marine electronics gear 60 "Freedom" cargo ships that will be built in Japan by the Ishikawajima industrial group.

SAIT (an acronym for Société Anonyme Internationale de Télégraphie sans Fil) managed to underbid its Japanese competition largely because SAIT produces a standard line of bridge consoles, navigational radars, direction finders, fathometers and the like that fit Ishikawajima's bill with little modification. Along with its edge in price, SAIT clinched the deal because it could offer worldwide maintenance service for the equipment. Together with the Marconi Co. of Great Britain and the Radio Corp. of America, SAIT runs a globe-girdling service network called Radio Marine Associated Companies.

Secretive. SAIT is little known outside maritime circles and apparently likes it that way. Even the company's annual report to stockholders doesn't disclose sales figures, although SAIT admits that 80% of its business comes from marine electronics.

When it can't sell marine gear outright—as it did to Ishikawajima—SAIT often leases it. Something between 20% and 25% of its annual output of marine equipment is leased. Along with the equipment, a SAIT maintenance man often goes aboard to keep it serviced. Even SAIT's competitors admit the Belgian company has built a solid reputation among ship operators with its equipment and service.

Looking landward. Although marine equipment will be SAIT's mainstay for a long time to come, company chairman Gilbert Périer in recent years has charted a course that has landed SAIT considerable business ashore. SAIT already has supplied, for example, a flight simulator for Eurocontrol and portable microwave links for the government-run Belgian television networks. And SAIT won the contract for the high-speed data-logging equipment used in a prototype small reactor recently completed at Belgium's nuclear research center in Mol.

SAIT also expects to expand its maritime sales to Soviet-bloc countries. After about 15 years of cultivating potential East-bloc customers, a payoff has started to come. This month, the second of three freighters being built in Antwerp for Yugoslavia was launched. All three ships will carry SAIT gear.

New markets on land and at sea, Périer feels, will keep the company's sales growing steadily. Profits have climbed over the past four years from less than $400,000 in 1961 to $800,000 last year. To finance the expansion, which is backed up technically by four specialized research teams, SAIT is increasing its capital substantially. Even so, only 25% of the company's shares will be publicly owned and SAIT figures to remain closemouthed about its operations.

Italy

The plot quickens

Rome's carabinieri are famous for getting to the scene of a crime in record time. Their speed comes in large part from a continuous plot of patrol car locations that shows the duty officer at headquarters which car is closest to a trouble spot.

Now the carabinieri (roughly the equivalent of a uniformed FBI) are testing a system that will make the plot even more of an occupational hazard for criminals. Instead of keeping tabs on cruising patrol cars by position reports radioed in, the new system automatically interrogates the cars at a rate of one per second. The tests—on 10 patrol cars—will wind up this month. By the end of the year, the carabinieri expect to have the automatic plot in full operation with 40 cars. The system, developed by Selenia S.p.A., can handle up to 64 cars.

Coded. In the new system, patrol car locations are plotted automatically on a king-size wall display so close up to 2,000 position sectors. Each car is interrogated in turn with a nine-bit code transmitted in the 40-megahertz band used also for police voice communications.

The patrol car transceiver responds automatically when it picks up its code signal. It transmits back a 15-bit code that shows its sector location and whether or not the car is cruising, stopped or in action. At the display, the response is decoded and fed into a memory that switches the wall display's position-indicating lamps on and off.

One method of getting the fixes on patrol car locations would be a triangulation among two fixed receiving stations and the interrogated patrol car. For the Rome system, Selenia adopted a less complex technique.

When a patrol car goes on station, the carabinieri aboard punch pushbuttons to feed the sector number into the memory of the transceiver. As the car passes from one sector to another, the new number is punched in to keep the automatic plot up to the minute.
Destination? Orlando, Florida!...To conduct a successful career interview with Martin Company

Picture yourself on this journey. Within hours you'll be shaping your future with the top engineering team now designing and producing Sprint, Walleye, RADA, Shillelagh, Pershing and many other advanced systems.

In flight, you can prepare for that important interview by considering these discussion points. Our conversation will focus on the importance of the engineer at Martin, and how the Company has invested eight million dollars in new R&D facilities in the past three years alone just to aid him in his quest for knowledge. It will also include mention of the 150 special programs underway to help acquire additional long-term business. Your side of the conversation? You should make a bid for a front-row seat on this team by showing how you can contribute to the high standard of technical excellence that characterizes Martin.

And by the way. Just before your plane touches down, look out the window and see how Orlando is situated in the heart of Florida's lake country. It's a great place for your family.

Put yourself in this picture by making an appointment today. Call us collect. Phone 305/855-6100 and ask for Don Parsons, Manager, Professional Staffing.

An Equal Opportunity Employer.
Electronics advertisers
September 19, 1966

- AMP Incorporated 181
 - Garceau, Hargrave & McCullough Inc.
- Acme Electric Company 216
 - School Advertising Agency Inc.
- Acopian Corporation 266
 - Mort Barish Associates Inc.
- AdVu Electronics 280
 - P & G Advertising Agency
- Airplex Electronics Inc. 208
 - Welch, Mirable & Company Inc.
- Alco Electronic Products Inc. 221
 - Marketronics Advertising
- Allen Bradley Company 57, 58
 - Fensholt Advertising Agency Inc.
- Amana Wire Corporation 177
 - Campbell-Electric Company
- Amelco Semiconductor Company 73
 - S & F, Inc.
- American Optical Company 97
 - Fuller & Smith & Ross Inc.
- American Machine 80, 81
 - Marsteller Inc.
- Andrew Corporation 64
 - Fensholt Advertising Inc.
- Astrodyn Incorporated 254
 - Tech/Research
- Automatic Electric Company 99
 - Tatham-Laird & Kudner Inc.
- Babcock Relays Company 107
 - Ballantrae Laboratory
- Ballantine Laboratories 233
 - Lang-Lawrence Adv. Inc.
- Bandeau Indus. & Sterlizer Company 212
 - Creamer Trowbridge & Case Inc.
- Bausch & Lomb Inc. 238
 - AcmeMetals Association
- Bell Telephone Laboratories 100
 - N.W. Ayer & Son Inc.
- Bendix Balzers Vacuum Company 170
 - Hutchins Advertising Company Inc.
- Bendix Semiconductor Corporation 9
 - E. F. Bausch, John & Adams Inc.
- Benux Watch Company, 234
 - Technical Products Division
- S & S Creative Services
- Borden Chemical Company, 137
 - Mystic Industrial Division
- Conahay & Lyon Inc.
- Bourns Incorporated 15, 66, 67
 - Trimpt Division
- The Lester Company
- Brinkmann Instruments 213
 - The Shaller-Rubin Company
- Brush Instruments Division 82, 83
 - Cleveland Electric Company
- Carr Littiggett Advertising Inc.
- Bunker-Ramo Corporation 214
 - Bertrand Advertising Agency
- Burndy Corporation 167
 - Corporation of Gerber
- Burn-Brown Research Corporation 232
 - N.W. Winter Advertising Agency
- Burnoughs Corporation 108
 - Conti Advertising Agency Inc.
- Bussmann Mfg. Company 54, 55
 - Div. of McGraw-Edison Company
 - Henderson Advertising Company
- C & L Incorporated 223
 - Keyes, Martin Company
- C.S.F. 7
 - SPI
- CTS Corporation 87
 - Burton Brown Browne Advertising
- Cambridge Thermionic Corporation 98
 - Chirn & Cains Inc.
- Calzone Corporation of America 96
 - Weir & Bartel Inc.
- CELCO, Constantine Engineering Laboratories Inc. 138
 - Stano Advertising Inc.
- Christie Electric Corporation 256
 - Len Woodford Company
- Clairex Corporation 242
 - Michel Gather Inc.
- Colorado, State of 283
 - Buchen Advertising Inc.
- Consolidated Avionics Corporation 38
 - The Stanley Schwartz Company
- Consolidated Electrodynamics Corporation 272
 - Hixson & Jorgensen Inc.
- Control Data Corporation 248
 - Barnes Champ Advertising
- Coors Porcelain Company 205
 - Tallant/Yates Advertising
- Corning Glass Works 179
 - Electronics Division
- Company Inc.
- Creamer Industries Inc. 219
 - Bryan/Donald Advertising Inc.
- Derlinger Metallurgical Corporation 221
 - Roy E. Bishop Advertising
- Di-Acro Corporation 241
 - Charles E. Brown Advertising Agency
- Dialight Corporation 252
 - H.J. Gold Company
- Dimco-Gray Company 250
 - Weber, Geiger & Kalat Inc.
- Dorne & Margolin Incorporated 193
 - Snow & Deeter Advertising Inc.
- Dow Corning Corporation 149
 - Dow Corning Corporation
- Church & Guisewite Advertising Inc.
- Duncan Electronics Inc. 248
 - Lelier Oliver Company Inc.
- DuPont De Nemours & Company 77
 - From Division
- Du Pont De Nemours & Company 105
 - Batten, Barton, Durstine & Osborn Inc.
- Eagle Signal Div. 68, 69
 - E.W. Bliss Company
 - Fosler Advertising Agency Inc.
- Eastman Kodak Company 78, 79
 - J. Thompson Company
- Ebert Electronics Corporation 266
 - Flann Advertising Agency
- Emac Division of Varian Corp. 178
 - Hoffer Dietrich & Brown Inc.
- Electro Techniques 217
 - Advertising Direction by Mitchel
- Electronic Communications 284, 285, 286, 3rd Cover
 - Neals & Hickok Inc.
- Erie County, 223
 - of Comstock & Company
- Erie Technological Products 190
 - Company
- Altman Hall Associates
- Eubanks Engineering Company 227
 - Moore-Bergstrom Company
- Fairchild Controls Division 231
 - Dunwoodie Associates Inc.
- Fairchild Dumatonti Division 200
 - Conti Advertising Agency Inc.
- Fairchild Instrumentation Division 36, 37
 - Faust/Day Incorporated
- Faust/Day Incorporated 39, 40, 182
 - Fairchild Semiconductor Inc.
- Faust/Day Incorporated 171
 - Teflon Division
- Feltman-Everett Advertising
 - Reincey, Meyer & Finn Company
- Ferroxcube Corporation of America 72
 - Solow Products
- John Fluke Mfg. Company 198
 - Bonfield Associates Inc.
- Formica Corporation 62
 - Perry Brothers Div. of Clinton E. Frank Inc.
- Garlock Company Inc. 264
 - Richardson, Thomas & Bushman Inc.
- General Dynamics, General Atomic Division 221
 - Barnes Champ Advertising
- General Dynamics, Fort Worth Division 176
 - Glenn Advertising Inc.
- General Electric Company 257, 259, 261, 263, 265
 - George R. Nelson Inc.
- General Electric Company, Component Division 88
 - George R. Nelson Inc.
- General Electric Company, Miniature Lamp Division 244
 - Batten, Barton, Durstine & Osborn Inc.
- General Electric Company, Polymer Products Division 169
 - Ross Roy Inc.
- General Electric Company, Silicone Products Division 239
 - George R. Nelson Inc.
- General Electric Company, Specialty Control Division 161
 - George R. Nelson Inc.
- General Radio Company 6
 - K.E. Morang Company
- Giannini-Voltech Company 261
 - Feldman-Everett Advertising
- Globe Industries Inc. 215
 - Odieme Industrial Inc.
- Grayhill Incorporated 217
 - Merchandising Advertisers Inc.
- Gudebrod Brothers Silk Company 104
 - Ramsdell-Buckley & Company

Classified advertising
F. J. Eberle, Business Mgr.

EMPLOYMENT OPPORTUNITIES
(Used or Surplus New)

FORE SALE

ADVERTISERS INDEX

Amelco Semiconductor 268

Atomic Personnel Inc. 268

Grumman Aircraft 270, 271

Instruments & Machines Inc. 268

Lear Siegler Inc. 268

Pan Am 267

Guided Missiles Range Div. 267

Radio Research Instrument Co. 268

Springhead Manor 268

Surplus Saving Center 268

U.S. Navy Naval Ordnance Laboratory 269

Union Carbide Corp. 268

Univac Corp. 269

Sprerry Rand Corp. 269

For more information on complete product line see advertisement in the latest Electronics Buyers' Guide

Advertisers in Overseas Advertising Section
Electronics advertisers

September 19, 1966

Haysakawa Electronics Company Ltd. 225
Dai-ichi International Ltd. 245
Heinemann Electric Company Thomas R. Sundheim Inc.
Hewlett Packard Associates Lennen & Newell Inc.
Hewlett Packard Company, Colorado Springs Division Tallant, Yates Inc.
Hewlett Packard Company, Harrison Division Healy Advertising Agency
Hewlett Packard Company, Leland Division Lennen & Newell Inc.
Hewlett Packard Company, Moseley Division Lennen & Newell Inc.
Hewlett Packard Company, Rockaway Division George Homer Martin Associates
Hewlett Packard Sanborn Division Culver Advertising Inc.
Hoffman Electronics Corporation 20, 21
J Chait & Associates 160
IRC Incorporated 189
Gray & Rogers Inc. 264
Industrial Electronics Engineers Inc. Gumpertz, Bentley & Dolan Inc.
International Instruments Inc. Thomas R. Sundheim Inc.
International Rectifier Corporation 187
Broadwood, Constantine, & McCarthy Inc.
ITT Cannon Electric Inc. 210, 211
West Weir & Bartel Inc.
ITT Semicorporation Inc. Neals & NiKolk Inc.
ITT Standard Telephone & Cable Ltd. Brockie Haslam & Company
J F D Electronics Corporation 92
Michel-Cather Inc.
Kaye & Company Inc., The Joseph Martin F. Gabine Inc.
Kepco Incorporated 22
Weiss Advertising Agency
Keystone Carbon Company 91
Downing Industrial Advertising
Lambda Electronics Corporation 70, 71
Lapp Insulator Company Inc. 174
Wolff Associates Inc.
Lockheed Missiles & Space Company McCann Erickson Company
McCoy Electronics Company 162
Buchek Advertising Inc.
McGraw-Hill Book Company 268
Machlett Laboratories Div. of Raytheon Company 11
Fuller & Smith & Ross Inc.
P.R. Mallory & Co. Inc. 12, 13
Leverett & Curtis Ltd.
Marin Company 277
Shattuck Roether Advertising
Maryland Telecommunications Inc. 94
Neils & Newell Inc.
Memorex Corporation 65
Duker Sign Advertising
Metal Removal Company 228
Advertising Producers Associates
Metallix Division 262
Standard Advertising Ltd.
Microwave Electronics Corporation Bonfield Associates
Monsanto Company 38B & 38C
Foote, Cone & Belding Inc.
Motorola Semiconductor Products Inc. 18, 19, 84, 85
Lane & Bird Advertising Inc.
Mullard Ltd. 175
Roles & Parker Ltd.
Murata Mfg. Co. Ltd. 257
Dentsu Advertising Ltd.
National Cash Register 224
Allen, Donaldson & Hartfield Inc.
Navigation Computer Corporation 213
Industrial Public Relations Inc.
Newport News Shipy uilding & Dry Dock 204
Cargill Wilson Acree Company
North Atlantic Industries Inc. 16
Murray Heyert Associates
Norton Associates Inc. 256
Parsons Electronics Company Ralph M. 251
Hammer & Ormsby Advertising
Perfection Mica Company 242
Magnetic Shield Division
Burton Browne Advertising
Perkin Elmer Corporation 86
Gaynor & Duches Inc.
Phelps Dodge Electronic Products Corp. 226
Smith, Dormer & Durman Inc.
Philo/Ford Company 95
Microelectronics Division
Hoefner, Dieterich & Brown Inc.
Philo Corporation Lansdale Division 223
Batten, Barton Durstine & Otborn Inc.
DPhilips Eindhoven 12
Technical Advertising
Photocircuits Corporation 102
Duncan-Books Inc.
Plessey Electronics Company 206
OAS 3, OAS 10 & 11
Roles & Parker Ltd.
Polaroid Electronics Corporation 89, 90
Keyes, Markham & Company
Polaroid Company 173
Dylan, Dane, Bernbach Inc.
Potter Brumfield Incorporated 24
Grant, Schwenck & Baker Inc.
Princeton Applied Research Corporation 42
Mor Barrish Associates Inc.
R H G Incorporated 8
S.M. Sachs & Associates
Radio Core Inc. 14
Sander Rodkin Advertising Agency
Radio Corporation of America 38A, 165, 4th Cover
Al Paul Lefont Company
Radio Materials Company, Div. of P.R. Mallory Co. 237
Gallay Advertising Inc.
Rally Dumesnil Publicite 150
Raytheon Company
Components Division
Fuller & Smith & Ross Inc.
Rhode & Schwarz Incorporated 128
Armand Richards Advertising Agency
Sage Electronics Corporation 255
Mathison Advertising Inc.
Sangamo Electric Company 219
Winjus-Brandon Company
Scientific Data Systems 51
Doyle, Dane, Bernbach Inc.
Sealco Corporation 217
Lescaubre Advertising Inc.
Second Metals Company 240
Walter J. Zimmerman Associates
Semimetals Incorporated 258
Duncan-Books Incorporated
Semtech Corporation 166
Burrus Advertising
Servo Corporation of America 163
Basford Incorporated
Sigma Instruments Inc. 206, 207
Marschalk Company Inc.
Signetics Corporation 159
Cunningham & Walsh Inc.
Silic. OAS 1
Wallace & Draeger
Simpson Electric Company 103
The Fensholt Advertising Agency
Slater Electric Incorporated 106
Kane Light Ltd.
Soliton Devices Inc. 41
Haselmire & Pearson Advertising
Spectral Dynamics Corporation 38D
Mesa/Copy
Spectrol Electronics Inc. 253
Jones, Mather Roberts Advertising
Spertry Electronic Tube Advertising
Nells & Nickock Inc.
Spyry Rand Corporation 172
Reach, McClinton & Company
Sprague Electric Company 5, 10
Harry P. Bridge Company
Stackpole Carbon Company 189, Thomas Inc.
Struthers-Dunn Incorporated 243
Harry P. Bridge Company
Sylvania Electric Products Inc. 27 to 34
Tatham-Laird & Kudner Inc.
Synthane Corporation 215, 227
Arndt, Preston, Chapin, Lamb & Keen Inc.
Syntronic Instruments Inc. 254
Burton Browne Inc.
TRW Instruments 262
Fuller & Smith & Ross Inc.
TRW Semiconductor 47
Fuller & Smith & Ross Inc.
Tektronix Incorporated 49
Ralph Davies Advertising Inc.
Tempress Research Company Inc. 35
Hall Lawrence Inc.
Texas Instruments Incorporated 194
McCarty Company/Rice Inc.
Texas Instruments Incorporated 203
Semicorporation Division
Don L. Baxter Inc.
Theta Instrument Company 219
Armand Richards Advertising Agency
Thomson-Houston Company 56
Mitchell McKown Inc.
Trygon Electronics 247
Selow/Weston Company Inc.
Ultra Corporation 199
Church & Guisevite Advertising
United Aircraft International 200
Cunningham & Walsh Inc.
United Transformer Company 2nd Cover
Philip Stogel Company
Universal Instruments Corporation 195
Caroe Marketing Inc.
Utah Industrial Promotion Commission 220
David W. Evans & Associates
Vector Electronics Company 259
Van Der Cathen Company
Victory Engineering Corporation 7
Black-Russell-Morrison Inc.
Vitramon Inc. 235
Ted Sommers Inc.
Volkart Stamping Company 188
Fred Witterner Inc.
Wayne George Corporation 164
Studio D. Incorporated
Westinghouse Metals Division 196
Westeon Company Inc.
West Penn Power Company 260
Fuller & Smith & Ross Inc.
W.S. White Company 236
Will T. Stone Company Inc.
Wisconsin Power & Light Company 229
Ralph Timmons Inc.
Zippertubing Company 192
Edward S. Kellogg Company
Zug & Cie S.A. OAS 6
Schleifenbragg
For more information on complete product line see advertisement in the latest Electronics Buyers’ Guide
Advertisers in Overseas Advertising Section
ULTIMATE PHASE METER

TYPE 524A3

Accuracy ± 0.03° on 20 CPS to 500 KC

FEATURES:
- Phase directly represented in 11-digit digits. Phase reading independent of the ratio of signal amplitude.
- Analog (or digital) output available for external recorder or programmable systems. No frequency adjustments from 20 cps to 500 kc. No amplitude adjustments from 0.3 volts to 50 volts rms.

USES:
- Plot phase curve. Plot envelope delay curve. As standard phase meter.
- Traceable to National Bureau of Standards. No error due to loading of both output signals.

WIDEBAND PHASE STANDARD

TYPE 209

Accuracy 0.015° on 50 CPS to 10 KC

FEATURES:
- Resolution in micro-degree (10⁻⁶°). Self-calibration, self-checking by means of fundamental bridge balancing, without an external standard. Phase shift 0° to 360° with 7-digit resolution. Frequency coverage continuous from 50 cps to 10 kc. Directly traceable to National Bureau of Standards. No error due to loading of both output signals.

USES:
- As primary wide-band phase standard in standard laboratories. For accurate measurement of phase shift of unknown networks. For calibration of phase meters and phase sensitive equipment. As a precision phase meter, measures phase shift between two voltages.

ADYU ELECTRONICS INC.

240 TERHUNE AVE., PASSAIC N. J.
PHONE 472-5622 (AREA CODE 201)

Advertising sales staff

Frank E. LeBeau [212] 971-6464
Advertising sales manager

Atlanta, Ga. 30309: Michael H. Miller, 1375 Peachtree St., N.E., [404] TR 9-0523

Cleveland, Ohio 44113: William J. Boyle, 55 Public Square, [216] SU 1-7000

Dallas, Texas 75201: Richard P. Poole, 1800 Republic National Bank Tower, [214] R 7-9721

Houston, Texas 77002: Kenneth George, 2270 Humble Bldg., [713] CA 4-8381

Minneapolis, Minn. 55402: J. Bradley MacKimm, 1104 Northstar Center [612] 332-7425

New York, N. Y. 10036:
Donald R. Furth [212] 971-3615
James R. Pierce [212] 971-3615
George F. Werner [212] 971-3615
500 Fifth Avenue

Philadelphia, Pa., 19103:
William J. Boyle, Warren H. Gardner, Jeffrey M. Preston, 6 Penn Center Plaza, [215] LO 8-6161

Pittsburgh, Pa., 15222:
Warren H. Gardner, 4 Gateway Center, [412] 391-1314

Portland, Ore., 97204:
James T. Haughtt, Pacific Building, Yamhill Street, [503] CA 3-5118

Saint Louis, Mo., 63105:

San Francisco, Calif. 94111:
James T. Haughtt, 255 California Street, [415] DO 2-4600

London W1: John W. Patten, Edwin S. Murphy Jr., 34 Dover Street, Hyde Park 1451

Milan: 1, via Baracchini Phone: 86-90-617

86-90-656

Frankfurt/Main: Gerd Hinske, Joseph Wencescu, 85 Westendstrasse Phone: 77 26 65 and 77 30 59

Geneva: Michael R. Zeynel, 1, rue du Temple Phone: 31 95 60

Paris VIII: Denis Jacob, 17 Avenue Matignon ALMA-0452

Osaka: Ryosio Kobayashi, 163, Umegoe-cho, Kita-ku [362] 8771

Wallace C. Carmichael [212] 971-3191 Manager Electronics Buyers’ Guide

David M. Tempest [212] 971-3199 Promotion manager

Milton Drake [212] 971-3485 Research and circulation manager

Walls Clarke [212] 971-2187 Assistant to sales manager

Wallace C. Carmichael [212] 971-3191 Business manager

Stephen R. Weiss [212] 971-2044 Production manager

Thomas M. Egan [212] 971-3140 Production manager Electronics Buyers’ Guide
... where people have a reason to be more productive...
To work harder. To be conscientious and stable. To make more effort
to do a good job for you.

Consider Colorado's labor force, 750,000 strong. Well-trained in
widely diversified fields. People who are willing to work hard because
there's a lot to live for in their State. A stimulating climate. A myriad of
recreational activities easily accessible to all. Their attitude is reflected
by unemployment and compensation rates which are among the lowest
in the nation.

Consider opinions of companies with multi-state facilities about
Colorado employees. "An enthusiastic and cooperative group of em­
ployees." "A stable work force." "Less absenteeism." "Productivity higher
than other divisions." The average employee in the 25 and older age group
has better than a high school education. 10.7% of that group with 4 years
of college, the highest percentage in the nation. Each year 80,000 workers
improve themselves through adult education programs.

If these are qualities you want in your employees, consider Industrial
Colorado for your expansion or relocation.

Skilled, unskilled, or highly specialized, Colo­
radoans are well educated, conscientious, anx­
ious to improve themselves and help their
company – an asset to any employer. Write for
a complimentary copy of Industrial Colorado,
a revised-to-the-minute, factual, 74-page
spiral-bound portfolio. It covers 11 important
considerations pertinent to plant expansion or
relocation in any part of the State. Address in­
quies to Dwight E. Neill, Director, Division of
Commerce and Development, 01 State Serv­
ces Building, Denver, Colorado 80203.
Miniaturization of RF communications equipment has opened a broad new range of space- and weight-saving opportunities for systems designers. Consider these examples:

AN/ART-47 and AN/ARR-71 — an airborne transmitter/receiver combination covering 3500 UHF channels with AM or FSK duplex capability. Transmitter output is 1 kW. Transmitter and receiver, embodying latest solid-state techniques, fit into 2.65 cubic feet.

AN/GRC-112 — 1-kilowatt data link radio, all solid-state except power amplifier stages, selectable AM or FM, in a tactical configuration occupying only 9.5 cubic feet for duplex operation.

AN/SRC-27 — a shipboard transceiver now being evaluated by the U. S. Navy, this ECI development requires only 5 cubic feet. Yet it delivers 100 watts of AM UHF power and permits communication on 3500 channels, 20 of them preset.

AN/GRC-134 — in the Marine Tactical Data System, this transceiver offers 50 watts of UHF AM power and covers 3500 channels from a 2.6 cubic foot package.

You can probably use ECI’s outstanding solid-state design capability on your next communication system. Use the coupon at left for full details.
A two-year head start on your miniaturized multiplex system

Please send me information on □ airborne □ shipboard
□ ground transportable multiplex equipment.

Name:
Title:
Company:
Address:
City:
State ______________________ Zip __________

You can cash in on more than two years of production experience with miniaturized solid-state multiplex already accumulated by Electronic Communications, Inc. Reliable ECI multiplex is field proved through service with the Post Attack Command and Control System (ACC-1 and ACC-3), and with Marine Corps and U.S.A.F. troposscatter communication terminals (AN/GCC-5 and AN/GCC-6). This means that you can design your system around multiplex gear that's ready to go without costly, time-consuming engineering and development. ECI multiplex is available in building-block units of 3, 4, 12 and 24 channels. The equipment is fully qualified to military specifications. Whether you're working on airborne, shipboard or air transportable multiplex systems you can enjoy a free design head start. For full details, use the coupon above.

ELECTRONIC COMMUNICATIONS, INC.
P.O. BOX 12248, ST. PETERSBURG, FLORIDA

Circle 285 on reader service card
ECI's microelectronic flight control computer now under development for advanced space programs.

Learn how Saturn experience has proved reliability of ECI space instrumentation

ECI's capabilities in the field of space instrumentation have been clearly demonstrated by the Company's success in assigned responsibilities for Saturn.

ECI flight control computers flew aboard the last six Saturn I vehicles and have performed well within mission requirements. Improved triple-redundant versions are part of the Saturn IB and Saturn V programs. ECI now has under development a microminiaturized flight control computer for follow-on space programs.

In telemetry, ECI has produced solid-state transmitters from VHF to L and S band for the U.S. Air Force, U.S. Navy and NASA's Saturn program.

ECI meets NASA's MSFC 200-4 specification for fabrication and assembly facilities.

ECI missile system experience includes the design, development and manufacture of special solid-state receiver equipment for the Minuteman program.

To learn how ECI's successful space instrumentation background can be applied to your system, use the coupon above.