READY FOR SKY HOOK
Three-ton telescope will dangle fifteen miles up, p 47

(photograph right)

PHASE-LOCKING DEMODULATOR
Telemetry unit rejects sidebands, p 52

BACK DIODE HELPS TUNNEL
Circuit reduces storage-time delays, p 56

CIRCULAR SLIDE RULE
Cutout device for noise calculations, p 64
Identical to 5243L except counts
DIRECT TO 50 MC—$3,250.00

- Display storage for continuous readout
- Automatic decimal and units indication
- Frequency extender and time interval plug-ins
- BCD outputs
- 8 standard output frequencies
- Modular design—rack, stack or carry

NEW PLUG-INS INCREASE VERSATILITY AND PERFORMANCE OF BASIC COUNTER

These frequency converters increase the range of the 5243L Counter and retain counter accuracy. They plug in directly and are extremely easy to operate. The stability and accuracy of the basic counter is retained because the converters use a multiple of the 10 MC signal from the electronic counter to beat with the signal measured. So simple to use even non-technical personnel can make frequency measurements quickly and accurately.

- 5253A 512 MC Frequency Converter, $500.00
- 5251A 100 MC Frequency Converter, $300.00

Converts the 5243L Counter into an accurate time interval counter with a resolution of 0.1 microsecond. Also can measure pulse length, pulse spacing and time between electrical events. Time is read directly on the counter with the units and decimal indicated. Also can be used as an amplitude discriminator for the counter. 5262A, $300.00.

SPECIFICATIONS

- Registration: 8 digits in-line with rectangular Nixie tubes and display storage. Automatic decimal and units indication
- Input Sensitivity: 100 mv rms, minimum
- FREQUENCY MEASUREMENTS
 - Range: 0 to 20 MC (100 to 512 MC with 5253A plug-in; 20 to 100 MC with 5251A plug-in)
 - Gate Time: 0.1 μsec to 10 seconds in decade steps
 - Reads-in: KC or MC with positioned decimal point
 - Accuracy: ±1 count ± time base accuracy

- PERIOD AVERAGE MEASUREMENTS
 - Range: Single period, 0 to 1 MC; multiple period, 0 to 300 KC
 - Reads-in: Sec, msec, μsec, with positioned decimal point
 - Accuracy: ±1 count ± time base accuracy ± trigger error/periods averaged

- RATIO MEASUREMENTS
 - Displays: (f1/f2) times period multiplier
 - Range: f1, 0 to 20 KC; f2, 0 to 1 MC in single period; 0 to 300 KC in multiple period; periods averaged 1 to 10 in decade steps

- Accuracy: ±1 count of f1 ± trigger error of f2, divided by number of periods averaged
- Scaling: Factor, by decades up to 10¹, 0 to 20 MC, switch selected on rear panel
- Time Base: Internal time base frequency, 1 MC
- Stability, aging rate less than ±2 parts in 10¹/week. Less than ±3 parts in 10¹/day
- As a function of temperature, less than ±2 parts in 10¹ per °C from −20°C to +55°C
- As a function of line voltage, less than ±5 parts in 10¹ for ±10% change in line voltage from 115 v rms
- Short term, less than ±5 parts in 10¹ peak-to-peak with measurement averaging time of one second under constant environmental and line voltage conditions
- Output Frequencies: 0.1 cps to 10 MC in decade steps, switch selectable at rear panel

- Operating Temperature Range: −20°C to +65°C
- Size: 16¼" wide x 5¼" high x 16½" deep
- Weight: Less than 40 lbs.
- Price: $2,950.00

HEWLETT-PACKARD COMPANY

1501 Page Mill Road, Palo Alto, California, Area Code 415, DA 6-7000
Sales and service representatives in all principal areas;
Europe, Hewlett-Packard S.A., 54-54bis Route des Acacias, Geneva;
Canada, Hewlett-Packard (Canada) Ltd., 8270 Mayrand Street, Montreal

CIRCLE 900 ON READER SERVICE CARD
Makes more measurements with greater accuracy than any other counter available today. New hp 5243L Electronic Counter

PLUS NEW 50 MC MODEL

- Measures frequency, time interval, period, multiple period average, ratio, multiple ratio, scales by decades
- Stability: 3 parts in 10^9/day; 5 parts in 10^{10}/short term
- Measures to 500 MC with plug-in, to 20 MC directly
- Solid state, just 5 1/4” high including plug-ins
- Full storage display on easy-reading, close-spaced Nixies

TURN PAGE FOR DETAILS
New 5243L Electronic Counter measures frequency, period, multiple period average, ratio, and multiples of ratio. Unprecedented accuracy is attained through new proportional oven-controlled crystal time base with stability of ±3 parts in 10^9/day.

The basic counter without plug-ins offers a maximum counting rate greater than 20 MC, with 8 digit resolution. Plug-in units insert directly into the 5¼" high modular cabinet and extend frequency measurements to greater than 500 MC. Completely solid state, the counter weighs less than 40 pounds with plug-in and can be carried easily in one hand.

Full display storage permits a continuous display of the most recent measured quantity, even while counting. The display changes only if the measured count changes thus permitting faster sample rates. Sample rate is adjustable and is independent of gate time. New, close-spaced rectangular Nixies reduce the 8 digit line length to an easy-to-scan 6", while preserving full digit size.

Built-in features of the 5243L include:
- Remote programmability of the time base and function controls.
- BCD output for printer, systems use.
- Display storage that gives a continuous readout and allows faster sampling.
- Multiple period average to 10^5 periods for highly accurate low frequency measurements.
- Operating temperature range from -20°C to $+65^\circ\text{C}$ for high accuracy under mobile, remote, or extreme environmental conditions.
- Signal scaling 0 to 20 MC by decade factors up to 10^8.
- 8 switch-controlled standard outputs with time base stability, for local standard applications.
- Space-saving modular design that racks in 5¼", stacks on your bench, gives full access to removable etched circuit boards.
CHECKING OUT the three-ton Stratoscope II telescope. Its optical system can distinguish two objects 30 inches apart at 1,000 miles. The system developed by Perkin-Elmer for Princeton University will be lofted 80,000 ft over Texas by an unmanned balloon this month. See p 47

PROJECT APOLLO'S MISSION: Get Two Americans to the Moon. Here's how it will be done: after Mercury, rendezvous and docking techniques and equipment needed for the moon flight will be tried out in Gemini. This report outlines the equipment being bought to do the job

COUNTERMEASURES Equipment Eyes Cuba. Atlantic Missile Range and Air Force planes joined the hunt for missile sites in Cuba and probably served as spotters for camera planes. Indications are that this surveillance is still continuing

COMPUTER PROCUREMENT Is Revamped by Air Force. New EDP Equipment Office will now select computers for user commands. Another procurement shift will be purchase, not rental, of "off-the-shelf" computers

OPTICAL TECHNIQUES Will Steal the Show at Paris. In an interview with ELECTRONICS, the chairman of the scientific program for the Quantum Electronics Conference points up the shift to optical research. The clue to many practical devices, he predicts, will be nonlinear optics

MORE ATOM-SMASHERS Wanted. Three more big accelerators are under consideration—one might have beam energies up to 1,000 Bev. These huge machines are expected to stimulate developments in high-power electronics

AIMING A THREE-TON TELESCOPE As It Hangs From a Balloon. Servo system responds to radio signals and points telescope at chosen stars. Three axis servo system with coarse and fine correction stabilizes target image in photographic film within 0.02 second of arc. By E. R. Schlesinger, Perkin-Elmer

NEW PHASE-TRACKING DEMODULATOR Will Not Lock on Sidebands. Telemetry demodulator searches for and locks on to carrier signals in 10-Kc band around receiver intermediate frequency. Two tuned detectors at band edges prevent demodulator from locking onto sidebands.

By W. H. Casson and C. C. Hall, Vitro Electronics

BACKWARD-DIODE CLAMP Reduces Tunnel-Diode Delays. When a tunnel diode operates above valley voltage, principal flow is diffusion not tunneling current. This makes it difficult to switch rapidly to and from the high-current, high-voltage state. The backward diode clamp permits efficient switching and fast recovery. By W. T. Rhoades, Hughes Aircraft

Contents Continued
CONTENTS continued

HIGH-SPEED SERVO POSITIONER Bonds Mesa Transistors. Attaching the gold base and emitter wires to small metalized contacts presents serious problems in transistor mass production. Here an optically controlled servo positioner and logic circuits control automatic thermocompression bonding.

By R. L. Moore, IBM 58

DESIGNING SERVO AMPLIFIERS For High Efficiency. These amplifiers use unfiltered, rectified alternating current for their collector supply and have higher collector efficiency than conventional class-B push-pull stages. They need neither transformer nor center tap to deliver 2 w to the control winding of a servo motor.

By J. A. Walston and J. E. Setliff, Texas Instruments Incorporated 62

By R. Larosa, T. Cafarella and C. E. Dean, Hazeltine 64

DEPARTMENTS

Crosstalk. How to Improve Testing 3
Comment. Electronics Markets. Cameras Over Cuba 4
Electronics Newsletter. Stalemate Strategy May Level DOD Budgets 7
Washington This Week. Nike X and Sprint Now Rush-Rush Projects 12
Research and Development. Nuclear Blast Effects on Communications 74
Components and Materials. New 40-mm Silicon Crystals Permit Larger-Capacity Devices 84
Production Techniques. Checking Connector Production 94
New Products. Reed Relays Simplify Digital Voltmeter 106
Literature of the Week 113
New Books. Transistor Circuit Design 115
People and Plants. Western Electric Opens Research Center 118
Index to Advertisers 130
How to Improve Testing

THERE ARE FEW INDUSTRIES that do more testing and evaluation than the electronics industry. And there are few industries that waste so much time and money in these activities. An important reason is that electronics engineers generally have yet to appreciate fully the value of statistical techniques in setting up and evaluating experiments.

Although electronics engineers working in information theory or applications of quantum physics are indeed well versed in statistics, the average engineer has little appreciation of these very useful methods for coping with the inherent contrariness of nature. Thus some engineers will work out their circuits, carefully take readings with their trusty vtvms and then wonder why the circuits don't work next time they plug them in. Many circuits are not designed to cope with even slight changes in operating conditions.

More than forty years ago agricultural experiment stations began using statistically designed experiments to determine the effects of applying certain fertilizers, plowing to different depths or both. These and many other experiments have contributed in no small measure to our present-day agricultural-product surpluses that are the wonder of the rest of the world. At least twenty years ago, chemical engineers started to use statistical techniques with similar success in plastics and petrochemicals. Life scientists also have made good use of statistically designed experiments in developing new vaccines.

Many of the more vexing problems of the electronics industry—reliability of equipment and components, manufacture of microcircuits with uniformly high performance and good yield, more dependable communications—might be solved by intelligent application of modern statistical techniques.

Parameter-point estimation, tests of hypotheses, confidence limits, analysis of variance, correlation and regression, factorial designs, response surfaces and even nonparametric techniques are all powerful tools that belong in the electronics engineer's bag of tricks.

We are no longer fiddling around breadboarding relatively inexpensive equipment items. In the missile and space business particularly, experiments such as launching interplanetary probes or building huge and complex antenna systems are far too expensive for us not to get all the useful information possible out of every test.

MINIATURIZATION has been a continuing goal of electronics engineers since the earliest days of our industry. As we all know, however, with the growth of solid-state technology the trend has accelerated in recent years so that now we are faced with a whole new technology of microelectronics.

We ran the first comprehensive technical report on this new art in our issue of November 25, 1960, and have since carried many articles on important developments in microelectronics.

Next week, we take another broad look at the field. We think you will find, as we did, that remarkable progress has been made. For one thing, some people didn't expect microelectronics to show up so soon in major equipments. Furthermore we found a wide awareness that success in this field will call for some new thinking by management and working engineers. For example, the device physicist and the circuit designer will no longer be able to remain separate.

On the technical front we found many significant trends, such as the stress on field-effect devices and phenomena. Next week's article highlights the new techniques, applications, design problems and research trends. We think you will find it "must" reading.
COMMENT

Electronics Markets

I want to congratulate you and your associates on the splendid wrap-up of the electronics industry's outlook for 1963 (Electronics Markets, p 43, Jan. 4).

The succinct yet complete analysis of the industry's prospects will, I am sure, prove most helpful to all those who look to ELECTRONICS magazine for assistance in their planning and projections.

Jack Galub

Robert Mullen, Inc.
New York, New York

How To Win Students?

In reference to your Dec. 14, 1962, Crosstalk editorial (p 3), I agree the engineering curriculum is tough, but my biggest problem has been classroom semantics.

I've yet to get an instructor who knows how to put himself across to the students (E.E. classes at a local university). I'm impressed by their brilliance but certainly not by their grasp of basic teaching and psychological principles.

We need smaller, shorter classes and instructors versed in Dale Carnegie, or, at least, with some personality.

Larry Osterman
South Milwaukee, Wisconsin

Cameras Over Cuba

I read with interest your article, Electronically-Controlled Cameras Watch Cuba (p 20, Nov. 30, 1962). Unfortunately there was no discussion of the camera's electronic controls, the stabilized camera mounts that allowed the cameras to make extremely sharp photographs while flying at treetop level.

These mounts are installed in every major reconnaissance aircraft, including the U-2 and the RF-101 Voodoo, which are most probably the aircraft used in the reconnaissance missions recently flown over Communist Cuba.

The function of these mounts is to maintain the camera absolutely steady while the photographs are being taken. Vertical gyros and Schuler tuned earth's-rate pendulums provide position reference and sensitive servo systems maintain camera steadiness in roll, pitch and yaw.

The LS-19 Schuler tuned vertical reference, made by Aeroflex Laboratories Inc., senses verticality to within ±1.5 minutes of arc rms, with a slow 84-minute period of oscillation. During camera exposure, this error causes a camera motion of only one or two seconds of arc, barely enough to disturb even the best photographic resolution.

Irving A. Greenfield
Groody Advertising Co.
New York, New York

Sunflower Optics

In the article, Sunflower Optics: A New Concept in Color TV Display (p 33, Dec. 14, 1962), a theoretical illustration was given (p 36, top) of the fact that the luminance of a projection color display can be greater than that of an equivalent direct-viewed display. The following corrections should be made:

- Delete π in Eq. 1 and 3.
- Multiply the right side of Eq. 2 by Q and of Eq. 3 by 1/Q.
- In place of “The ratio of luminances ... projection” (following Eq. 3), substitute: “Typical approximate luminance ratios follow from Eq. 3. For a single-gun color display, Q = 0.163. This Q is the product of losses in luminance due to back-excitation of the phosphor (0.65), the duty ratio of the phosphor strips (0.5), and the lowered phosphor efficiency (0.5) necessary to achieve white balance. The ratio of projection to direct-viewed luminance is then 3.0 in favor of color projection. For aperture mask color displays, Q = 0.11. This Q is the product of aperture mask transmission (0.17) and back excitation (0.65). The luminance ratio is then 4.4 in favor of color projection. For monochrome, Q = 0.65 and represents the loss in luminance due to back-excitation.”

In the second paragraph of column 2 of the box, delete “same” in “The same result ...” and delete S in Eq. 4.

On p 37, under Luminance, change “1.5” to “3 to 4.”

On p 35, first column, change “200” to “18.5 watts” to “2.200” and “42” to “42 watts” for a 23.6-inch diagonal screen. The mean wattages are 3 to 5 watts.

J. H. Owen Harries
Harries Electronics Corp., Ltd.
Devonshire, Bermuda
How To Select An RI/FI Meter

In noise-and-field-intensity measurement, Polarad has three major competitors. They are all competent. They build good equipment. Give or take an adjective, they describe and rate their equipment accurately. We respect their designs, their equipment, and their integrity as manufacturers. We believe they return that respect.

As an engineer, you know that no two design groups ever produce exactly the same instrument for a specific purpose. Experience and backgrounds differ. Approaches differ. Even basic concepts differ. Then, too, each group has its own view of the needs of the user. In a complex design, one approach will favor sensitivity over bandwidth, or, perhaps, cost over durability. We all must draw the line somewhere, in reaching each design decision. In an RI/FI meter, there are dozens of such decisions. The final “mix” of characteristics is, at best, an intelligent compromise . . . never the ultimate.

We believe that the two instruments described on this page represent by far the best “mix” of performance, economy, and versatility for the majority of applications. You don’t buy an RI/FI meter every day. Once you buy it, however, you may use it every day, for many years. Therefore, we urge you to consider the “mix” carefully. Limited range or restricted utility may seem tolerable now, but what about next month, or next year? Initial cost may dominate your thinking now, but how much does an extra man-hour a day (or one questionable result a week) cost . . . over five years?

Consider the “mix”. We think you’ll choose Polarad.

We can’t resist listing the outstanding features of our “mixes”, below — but don’t decide until you have the complete technical data in front of you.

Call your Polarad Field Engineer.

- Portable, Rugged, Compact
- Battery and AC Operation
- Direct Reading without Charts
- Directly Calibrated Long-Life Impulse Calibrator
- Digital Frequency Display
- 85 dbm Minimum Sensitivity
- 70 db Dynamic Range
- Standard Calibrated Horn Antennas
- Air Force Approved

CIRCLE 5 ON READER SERVICE CARD

Polarad's new “Project Mohammed” will be bringing the "Mountain" (our new Mobile Microwave Calibration Laboratory) to "Mohammed" (your microwave instruments) starting next month. Be sure to take advantage of this opportunity to have your gear checked — at your doorstep. Save weeks of delay and needless expense. Call your Polarad field engineer for details and schedules!
There goes the air out of a Corning capacitor. It's pure enough to breathe, but in a capacitor it's a possible contaminant. We put the squeeze on this last measurable impurity when we fuse glass, foil, and leads together. Superimpose techniques like this on our ability to control the makeup of raw materials down to 0.00006 and you see why Corning capacitors give you superior stability and reliability. Ask your Corning distributor, or write us, for technical data sheets.
Stalemate Strategy May Level DOD Budgets

WASHINGTON—Defense Secretary McNamara last week underscored a shift in U.S. strategic thinking—that a state of mutual or stable deterrence is emerging. This could mean a leveling off new defense contracts in the near future.

He told Congress that “even if we were to double or triple” the size of U.S. strategic forces it could not “ensure the destruction of any very large portion” of Soviet nuclear striking power.

McNamara said military spending has reached a point of “diminishing returns”—another tip-off that some Pentagon officials see at least a plateau, perhaps even a downslide in new defense business in two years or so.

Military electronics procurement is leveling off in fiscal 1964 (p 18, Jan. 25), primarily because of the phasing out of bombers and completion of the Atlas and Titan missile programs and the early-warning radar lines.

The new strategy is reflected in decisions not to produce any more manned bombers, to cancel Skybolt and not to expand Polaris and Minuteman production beyond last year’s goals. Contracts to complete the 41-vessel Polaris force will be awarded in fiscal 1964. Final Minuteman production is scheduled for fiscal 1965—150 more will be made in fiscal 1964.

The big question marks in the military electronics outlook are decisions still to be made on anti-ICBM’s, antisubmarine warfare, military space, Army modernization and the Navy’s ship modernization program.

If funds saved by trimming strategic retaliatory forces are diverted to these programs, the rapid rise in military electronics contracting will be resumed.

The new budget, McNamara explained last week, places a new emphasis on anti-ICBM development with a push for the Nike X system (see p 12), expands ASW efforts (funds are provided for a prototype of a new class of ASW destroyer escorts), and acceleration of Army modernization.

However, military space R&D continues at what Air Force considers to be very low gear and Navy’s ship modernization program is deferred again.

Laser May Find New Role in Navigation

NEW TYPE of laser, apparently suitable for gyro applications, was to be demonstrated yesterday by Sperry Rand scientists. It is reportedly a radically new “closed-circuit” laser in which counter-rotating light beams are used to measure rate and degree of rotation of a vehicle. The Sperry group is predicting that the laser will provide a new method for stabilizing and navigating aircraft and space vehicles, missiles and ships.

Sensor Problems Sent Midas Back into R&D

WASHINGTON — Technical difficulties with infrared sensors were what forced the Air Force to return its Midas early-alert satellite system back to the research stage (p 7, Feb. 1).

The sensors are to pick up blastoff heat signals from Soviet missiles to give the U.S. a 30-minute alert. The sensors are supposed to scan a wide sector of the ground as the satellite orbits across Soviet territory, locking on to any “hot spots” detected, according to sources close to the project. The sensors occasionally picked up the “hot spots,” but have not locked on.

Air Force’s Midas budget for fiscal 1964 is cut to some $30 million for further sensor research. The service is not expected to spend all of the $100 million appropriated for fiscal 1963.

Tracking Ship Troubles Delay Syncom Launching

DELAYS in checking out electronic equipment aboard the new tracking ship USNS Kingsport have postponed for one week the launching of Syncom I (p 28, Oct. 27, 1961; p 30, Aug. 17, 1962). It is now set to go up by Feb. 13 at the earliest.

Syncom, developed by Hughes, will mark the first U.S. attempt to place a satellite into 22,300-mile-high synchronous orbit. Unlike later models, the satellite will not appear to hover over one spot on the earth but will move in an elongated figure-8 pattern about 30 degrees north and south of the equator.

Syncom is designed for two-way voice, teleprinter and facsimile transmissions. Starting about five

Optical Computer Slated for Command Systems?

MILITARY command and control systems may be the first large-scale applications for computers using lasers and optical fibers. Command and control systems must handle large quantities of data rapidly. Extremely high speeds have been predicted for optical computers (p 7, Dec. 7, and p 30, Nov. 9, 1962).

Scientists and engineers working on laser computers stress that principles and effects are under study now, that hardware is still in the future. Much of this work is being done for Air Force.

Conventional lasers are being used in the feasibility studies, but injection diode lasers will be considered for systems because of their small size and low power requirements.
days after launch, Army personnel will attempt to use Syncom—to relay messages between the Kingsport, anchored at Lagos, Nigeria, and Lakehurst, N.J.

System Will Tune Out Telemetry Interference

CHICAGO—Self-adapting communications system being tested at Purdue University promises to tune distortion and interference out of telemetry channels.

Purdue's 7090 computer will be used to break up and process composite signal from a transmitter at Collins Radio, 290 miles away at Cedar Rapids, Iowa. The computer measurements will automatically tune the campus receiver to near optimum reception. Purdue's transmitter will report channel distortions and interference back to Collins' receiver. Collins' transmitter will modify its subsignal patterns to compensate for the distortion or interference and thus will trigger a new cycle of even finer adaptive tuning. The system operates at 900 to 1,000 Mc.

The team, headed by John Hancock, which developed the composite signal theory is also working on anti-jamming techniques.

Switch Reportedly Uses Dielectric Semiconductor

LONDON—Switching device said to employ a new dielectric-semiconductor material was unveiled here last week by Energy Conversion Laboratories, Detroit, and its British and Canadian licensees. Its properties closely resemble those of conventional back-to-back SCR's and pnpn switches.

Intended primarily for a-c power switching, the experimental unit is reportedly capable of switching up to 150 watts in microseconds. It can be triggered at a fixed threshold by an external triggering source, or in series with its load, by a rise in the a-c voltage. Resistance is said to be 100,000 megohms in the nonconducting state and 1 ohm in the conducting state.

At the press conference, little or no details were given on its construction (a wafer of the material between conducting plates), threshold levels, what prevents it from switching off during each cycle when the a-c voltage falls below the threshold, the dielectric switching action, nor the hysteresis characteristic.

British solid-state experts expressed surprise at claims made for the device. One said that field emission effects could account for the change in state, but that more facts are required for assessment.

Ikara ASW Missile

Eyed by U. S. Navy

MELBOURNE—An unofficial source here says that the new antisubmarine missile, the Ikara, will compete with Asroc (p 28, July 8, 1960) for U. S. Navy use. It's adoption as a standard weapon by the British and U. S. navies is likely, he said. Range is reportedly 15 miles.

Officially, the Australian Defence Ministry has said the U. S. contributed $4 million to Ikara's development, that Ikara could deliver the U. S. Mark 44 torpedo and have twice the range of any known similar weapon.

The missile is guided by radar in helicopters, surface ships and submarines. Ikara will go on 3 new Australian destroyers. Ikara has passed its land tests and will be sea-tested within six months.

Stable Plasma Raises Fusion Reactor Hopes

NEW YORK—Stable plasma has been achieved at Oak Ridge National Laboratory, raising hopes for controlled fusion reactors. However, the other necessary condition, raising plasma temperature to about 100 million deg C, still requires much more work, Arthur H. Snell reported at the first meeting of the IEEE last week.

In the experiment, headed by R. A. Dandl, a foot-long copper cavity was placed between two mirror coils (p 47, July 14, 1961) and 5 Kw of power at 10 Gc was fed in through a waveguide. A visible ball of plasma was seen after deuterium gas was bled in a 10⁻¹ torr. X-ray and 8-mm noise measurements gave evidence of plasma stability.

In Brief . . .

AIR FORCE is inviting industry proposals to develop medium-altitude communications satellite system development. A number of identical satellites would be placed in polar orbits. Proposals are due March 11.

TWO NEW COMPUTERS were introduced last week, the GE-215, a general purpose computer that can use programs of the larger GE-225, and the Minneapolis-Honeywell 1400, a business and scientific system. Monthly rentals are from $2,390 for the GE-225 and from $10,000 for the 1400.

TAIWAN will start exporting transistor radios this year, chiefly to Southeast Asia.

RICE UNIVERSITY has established a department of space science.

COMMUNICATIONS SATELLITE CORP. received its certificate of incorporation last week.

ALLIED RESEARCH ASSOCIATES and Baird-Atomic are planning to merge. Two subsidiaries of Allied Research are Araccon Laboratories and Mark Systems.

STANDARD KOLLSMAN has acquired The Grigsby Company.

NATIONAL SEMICONDUCTOR and Clark Semiconductor Corps. plan to merge.

BRAZIL'S RCA Victor has begun exports to Latin America Free Trade Area countries with a shipment of 20,680 tubes to Mexico.

MEMBERSHIP of the IEEE's Electronic Computer Group has reached 10,000. Group sees 20,000 membership by 1970.

IMPROVED Ship's Inertial Navigation Systems (SINS) will be put aboard 6 more Polaris submarines by Autonetics.

NASA'S Deep Space Network is getting a new 210-foot-diameter antenna that will permit communications with future Voyager spacecraft to the edge of the solar system, a factor-of-10 improvement in the net's capability. Rohr will install the antenna at Goldstone, Calif., for $12 million.
SPRAGUE HYREL® ST
SOLID TANTALUM CAPACITORS
Meet Minuteman Goal April, 1962

...AND NOW HYREL® FT
FOIL TANTALUM CAPACITORS
NOVEMBER, 1962

SPRAGUE HYREL® FT
FOIL TANTALUM CAPACITORS
SURPASS MINUTEMAN PROJECT GOAL!

SPRAGUE successfully meets 2nd of two Minuteman targets,
having previously achieved solid tantalum capacitor goal

Failure Rate Goal of .001%/1000 hrs.*
has been bettered by wide margin!

Sprague HYREL FT Foil Tantalum Capacitors have exceeded Minuteman’s component development objective, attaining a use condition failure rate of .00045% per 1000 hours in recently completed tests. Sprague’s qualification to the Minuteman Foil Tantalum Capacitor Specification, like its earlier qualification to the Minuteman Solid Tantalum Capacitor Specification, is unrestricted and “across-the-board.”

Backing this performance is Sprague’s record of pioneering in highly reliable capacitors, which earned the opportunity to participate in the Air Force’s Minuteman Component Development Program at Autonetics, a division of North American Aviation, Inc.

All of the special processes and quality control procedures that make HYREL FT Foil Tantalum Capacitors so reliable can now help improve the dependability of your military and aerospace electronic equipment. A tantalum capacitor engineer will be glad to discuss the application of these capacitors to your projects. For engineering assistance without obligation, write to Mr. C. G. Killen, Vice-President, Industrial and Military Sales, Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

SPRAGUE COMPONENTS
CAPACITORS
TRANSISTORS
MAGNETIC COMPONENTS
RESISTORS
MICROCIRCUITS

INTERFERENCE FILTERS
PULSE TRANSFORMERS
PIEZOELECTRIC CERAMICS
PULSE-FORMING NETWORKS
TOROIDAL INDUCTORS

HIGH TEMPERATURE MAGNET WIRE
CERAMIC-BASE PRINTED NETWORKS
PACKAGED COMPONENT ASSEMBLIES
FUNCTIONAL DIGITAL CIRCUITS

February 8, 1963

'Sprague' and ® are registered trademarks of the Sprague Electric Co.
HF oscilloscope GM 5600

Y amp: DC to 5 Mc/s, sensitivity 50 mV pp/cm to 20 V pp/cm, acc 4%, rise time 70 ns; attenuator probe 10:1 (10 MΩ/8 pF).

Time base: sweep speeds 0.5 µs/cm to 180 ms/cm.

X amp: 5 sc/s to 2 Mc/s, sensitivity 3 V pp/cm.

C.R.T.: 7 cm tube, 1.6 kV accelerating voltage.

Dimensions: 250 x 160 x 340 mm.

HF oscilloscope GM 5601

Y amp: DC to 5 Mc/s, sensitivity 100 mV pp/cm to 5 V pp/cm, acc 3%, rise time 70 ns; attenuator probe 10:1 (10 MΩ/8 pF).

Time base: sweep speeds 0.5 µs/cm to 200 ms/cm, acc 3%, magnification 5 x.

X amp: DC to 300 kc/s, sensitivity 1 V pp/cm.

C.R.T.: 10 cm tube, 3 kV accelerating voltage.

Dimensions: 300 x 215 x 400 mm.

LF oscilloscope GM 5606

Y amp: DC to 200 kc/s, sensitivity 100 mV pp/cm to 50 V pp/cm, acc 3%.

Time base: sweep speeds 2.5 µs/cm to 1 s/cm, acc 3%, magnification 5 x.

X amp: DC to 300 kc/s, sensitivity 1 V pp/cm.

C.R.T.: 10 cm tube, 3 kV accelerating voltage.

Dimensions: 300 x 215 x 400 mm.

universal trigger

available

now

PHILIPS electronic measuring

Sold and serviced by Philips Organizations all over the world

Further information will gladly be supplied by:

N.V. Philips' Gloeilampenfabrieken, EMA-Department, Eindhoven, the Netherlands

For Canada: Philips Electronic Equipment Ltd., 116 Vanderhoof Ave., Toronto 17, Ont.
XY oscilloscope GM 5639
X and Y amp (identical): DC to 1Mc/s, sensitivity vert
100mVpp/cm, hor 200mVpp/cm, acc 3%/o, relative phase shift 2°.
Time base: sweep speeds
2µs/cm to 0.5 s/cm.
C.R.T.: 10cm tube, 2kV accelerating voltage.
Dimensions: 300 x 215 x 450mm.

Wide band oscilloscope GM 5602
Y amp: DC to 14Mc/s, sensitivity
50mVpp/cm to 5Vpp/cm, acc 3%/o, rise time 25ns, signal delay 300ns; attenuator probe 10:1 (10MΩ//8pF) DC coupled
cathode follower probe 0.5M Ω// 6pF.
Time base: sweep speeds 0.2µs/cm to
1s/cm, magnification 2x, 5x.
X amp: DC to 1.8Mc/s, sensitivity
1Vpp/cm.
C.R.T.: 10cm tube, 4kV accelerating voltage.
Dimensions: 370 x 270 x 530mm.

Wide band oscilloscope GM 5603
with differential input
Y amp: DC to 14Mc/s, sensitivity
50mVpp/cm to 5Vpp/cm, acc 3%/o, rise time
25ns, signal delay 300ns, rejection 300x; 2 att.
probes 10:1 (10MΩ//8pF); 2 DC coupled
cathode follower probes 0.5M Ω//6pF.
Time base: sweep speeds 0.2µs/cm to
1s/cm, magnification 2x, 5x.
X amp: DC to 1.8Mc/s, sensitivity 1Vpp/cm.
C.R.T.: 13cm tube, 10kV accelerating voltage.
Dimensions: 400 x 300 x 600mm.

facilities

The trigger performance of every Philips oscilloscope is of such high stability that it ensures a completely jitter free trace for any signal within its design specification.

Trigger facilities in the various models range from auto-triggering to very high stability circuits, requiring no external stability controls.

instruments: quality tools for industry and research

PHILIPS

February 8, 1963
WASHINGTON THIS WEEK

HERE IS THE BACKGROUND on the Pentagon’s decision to push development of the Nike X anti-ICBM system:

The Office of the Director of Defense Research & Engineering found that four major improvements could be made in the Nike Zeus system within the state of the art: (1) using Zeus discrimination radar as a high-volume, lower-accuracy target tracker; (2) modifying the Zeus missile to reduce the minimum intercept altitude; (3) developing a new higher-acceleration missile, Sprint (ELECTRONICS, p 12, Dec. 21, 1962), to increase available discrimination time, and (4) developing a new advanced radar to simultaneously acquire, evaluate and track numerous objects.

These major alternatives were considered: (1) continue development and test of the present Nike Zeus system and do limited development of the new radar, or (2) proceed with all four major improvements and deploy a system initially incorporating only the first two improvements. Both plans were scrapped. It was decided to skip the first two improvements and proceed on an “urgent basis” with development of Nike X—incorporating Sprint and advanced radars—and again deferring decisions to deploy the system and begin component production.

NEW DEFENSE BUDGET allots funds for what Defense Secretary McNamara cryptically describes as “enhancing our detection and tracking capability against submarine-launched missiles.” So far, Pentagon officials are mum about details.

MILITARY PROCUREMENT officials will soon be authorized to use a new “multiple-year buy” procedure. Purpose is to assure contractors of long production runs, so they can quote lower unit prices.

It will apply to fixed-price hardware (such as communications and electronic end items) bought competitively and produced essentially in contractor-owned facilities. It will not apply normally to spare parts procurement or when, for strategic reasons, the military wants multiple sources of supply.

Potential suppliers will be asked to submit two prices—based on a one-year production run and on a three-year run. The latter bid will include “maximum ceiling charges”—that is, termination payments for cancellation of production after one or two years.

The Pentagon assumes that the long-term unit prices would be lower since the contractor could amortize his tooling and other investment over three years without fear that a competitor would be selected after the first year for follow-on buys.

DEFENSE DEPARTMENT has decided to go ahead with construction of an underground “post-attack command and control center” at an undisclosed site. Staffed by top-echelon officials and crammed with communications and computer equipment the center would function if a nuclear attack on the U. S. knocked out major military command and control installations. It would augment the airborne post-attack command and control system, KC-135 command aircraft and B-47’s equipped as communications relay planes.
How Sylvania produced a 100-watt TWT in a PPM package...in only 4 months

Our microwave engineers pride themselves on being able to redesign an existing traveling-wave tube in a short time to meet new specifications of a customer. “Quick reaction,” they call it.

In the case of our 100-watt CW X-band tube, the reaction took only four months—something of a record for a power increase of such magnitude. They started with a pulsed Sylvania tube of 10 watts average power, modified the internal structure, and incorporated a new helix design. The result is a whopping 100-watt CW output that system designers have been needing for ECM, long-range space communications, and special equipment for testing high-power components.

“Quick reaction” means being able to come up with fast solutions and render on-the-spot engineering assistance. And it requires production lines that can handle either long runs of standards or small runs of special-purpose tubes. That’s exactly the way we are set up—a result of our work on the B-58 “Hustler” tube program.

Care to give us a try on your traveling-wave tube requirements?

Write to Microwave Device Division, Sylvania Electric Products Inc., P.O. Box 87, Buffalo, New York.
What won't you think of next?

A battery-operated rotating "whisk-er"? To replace the ever present whisk broom of the plate umpire? Hardly. It's part of the time-honored ritual of the game—to relax while the ump meticulously whisks every corner. That makes the elimination somewhat improbable.

Our point is this—your present design problem may seem just as improbable, just as the drill, shaver, mixer and other cordless products did a few years ago. But Gould-National research engineers developed a package of concentrated power using NICAD® Hermetically Sealed Rechargeable cells that helped to make these products a reality.

Have a design problem that could be solved with NICAD portable power? Write us, we may be able to help you solve your problem.

Gould-National BATTERIES, INC. / St. Paul 1, Minnesota
What's unique about these connectors?

- Insulation support crimp eliminates small wire flexing problems.
- Closed entry prevents probe damage.
- Retention spring provides maximum conductivity and longer insertion/extraction life.
- Independent cantilever-beam contact.
- Pre-assembly plating of all parts assures greater corrosion resistance.
- Alignment stabilizer.
- Bell-mouthed socket permits easy pin alignment.
- Wire range—24-16 AWG.
- 3 contact sizes—20, 18 and 16.

This stamped and formed contact!

This is the AMPin-cert* TYPE III pin and socket contact—an exclusive development of AMP Incorporated. With it, you can now get reliable connector performance at a much lower initial cost... at the lowest applied costs in the industry. Consider these facts:

- Performance characteristics conform to all dimensional and mechanical requirements of MIL-C-8384A.
- Contacts are crimp, snap-in type for assured uniformity and quick, easy connector assembly.
- Strip-mounted, reel-fed termination with our automatic crimping machine provides rates of 1,600 uniformly crimped contacts per hour.
- Contacts are available for a wide range of housing block types and configurations—including AMPin-cert "M" (MIL-C-8384), "D" and "D-D" and "W" Series Connectors.
- Standard AMP Contact Plating:
 - .00003" non-porous gold over .00003" nickel, special platings available on request.
- Put an end to solder-pot uncertainties, hit-or-miss connections, production slow-ups due to time-consuming inspection steps. Get consistently reliable connectors and at the lowest applied costs in the industry. Specify AMPin-cert TYPE III contacts. There is no equivalent! Write today for more information.

AMP Incorporated
Harrisburg, Pennsylvania

*Trademark of AMP INCORPORATED

February 8, 1963

AMP products and engineering assistance are available through subsidiary companies in:
Australia • Canada • England • France • Holland • Italy • Japan • Mexico • West Germany

CIRCLE 15 ON READER SERVICE CARD 15
ANNOUNCING FOR 1963
a tremendous
electronics BUYERS' GUIDE Issue

NEW LOW CATALOG RATES ALLOW SUFFICIENT SPACE FOR YOU TO PROVIDE COMPLETE BUYING INFORMATION ON YOUR ENTIRE PRODUCT LINE

Take complete advantage of marketing's MAGIC COMBINATION electronics every Friday - to create preference for your products...

The 1963 BUYERS' GUIDE to make product preference pay off in buying action

For 22 years of sales-minded effectively and economically than ever before. Your electronics representative has full information on how this can be accomplished. Look at these new eBG catalog rates:

<table>
<thead>
<tr>
<th>CATALOG ADVERTISING RATES PER PAGE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Without “EARLY BIRD” Discounts</td>
<td></td>
</tr>
<tr>
<td>Space Used</td>
<td>Rates</td>
</tr>
<tr>
<td>1 page</td>
<td>$900</td>
</tr>
<tr>
<td>2-3 pages</td>
<td>740 per page</td>
</tr>
<tr>
<td>4-5 pages</td>
<td>670 per page</td>
</tr>
<tr>
<td>6-7 pages</td>
<td>630 per page</td>
</tr>
<tr>
<td>8-11 pages</td>
<td>590 per page</td>
</tr>
</tbody>
</table>

ACT NOW!			
Rates with “EARLY BIRD” Discounts			
1 page	$837.00	12-15 pages	$506.85
2-3 pages	688.20	16-19 pages	460.15
4-5 pages	623.10	20-23 pages	433.45
6-7 pages	585.90	24 or more	409.20
8-11 pages	548.70		

"EARLY BIRD" Closing Dates (For Discounts)
Reservations for space Feb. 15th / Copy to set April 16th / Complete plates April 25th

For Complete Information, Contact Local Sales Offices Listed on the Last Page of This Issue
Transitron announces a new series of low current silicon planar controlled switches in the TO-18 package with specifications and ratings exceeding anything now available. The stepped-up performance of these premium devices makes possible many new applications for controlled switches, especially where temperature and switching speeds are critical.

Now in full production, this series, 2N2679-2N2682, features 150°C ambient temperature operation with no voltage derating; 300 nanoseconds total turn-on time; extremely high gate sensitivity; plus the added feature of having all key parameters specified at -65°C and 150°C wherever applicable.

Furthermore, the planar construction features extremely low leakage — 100 nanoamperes @ 25°C, 100 microamperes @ 150°C — thereby offering increased reliability. These new switches also offer increased current-carrying ability of 350 mA @ 55°C ambient and 75 mA @ 130°C ambient.

For further information, write for Transitron’s “planar switch” bulletins.

Specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Breakover Voltage @ 150°C</td>
<td>V_{BO}</td>
<td>200</td>
<td>—</td>
<td>volts</td>
</tr>
<tr>
<td>Reverse Voltage @ 150°C</td>
<td>V_R</td>
<td>200</td>
<td>—</td>
<td>volts</td>
</tr>
<tr>
<td>Forward and Reverse Currents @ 25°C</td>
<td>I_{F}, I_{R}</td>
<td>0.1</td>
<td>100</td>
<td>µA</td>
</tr>
<tr>
<td>@ Rated Voltage @ 150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Current to Fire @ 25°C</td>
<td>I_{GTR}</td>
<td>0.7</td>
<td>100</td>
<td>µA</td>
</tr>
<tr>
<td>@ —65°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Voltage to Fire @ 25°C</td>
<td>V_{GTR}</td>
<td>0.2</td>
<td>—</td>
<td>volt</td>
</tr>
<tr>
<td>@ —65°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holding Current @ 25°C</td>
<td>I_H</td>
<td>0.5</td>
<td>2.0</td>
<td>mA</td>
</tr>
<tr>
<td>@ —65°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage @ 200mA @ 25°C</td>
<td>V_F</td>
<td>1.25</td>
<td>—</td>
<td>volts</td>
</tr>
<tr>
<td>Turn-On Time @ 25°C</td>
<td>$t_{F} + t_{v}$</td>
<td>300</td>
<td>—</td>
<td>nanoseconds</td>
</tr>
</tbody>
</table>

1. 30, 60, and 100 volt types are also available as the 2N2679, 2N2680 and 2N2681 respectively.
2. With 10K ohm bias resistance between gate and cathode.
3. For maximum limit of 300 nanoseconds, add suffix /A to type designation. For example 2N2682/A.
PROJECT APOLLO’S MISSION:

Get Two Americans to

Here are the latest details on electronic equipment to be used

By MARVIN REID
McGraw-Hill World News

HOUSTON—As early as 1967 or 1968, a huge Saturn rocket will lift off its launch pad at Cape Canaveral, Fla. Riding on the tip of this fireball, in an 80,000-lb spacecraft, will be three astronauts off on the most hazardous and expensive space journey ever undertaken by Americans. Their mission will be to go to the moon, make a landing and return home.

Here at the National Aeronautics and Space Administration’s Manned Spacecraft Center (MSC), the success of this manned lunar excursion is the single major goal.

Electronics will play a major role, both in preliminary flights and in the big one.

There are two major programs leading to manned lunar flight: Project Gemini will test theories, systems and hardware; Project Apollo will conduct more tests, then make the big shot.

LUNAR MISSION—For the manned lunar mission, a lunar orbit rendezvous (LOR) technique is planned (ELECTRONICS, p 22, Aug. 3, 1962). A three-element spacecraft will first orbit the earth, then go to near the moon and orbit 100 miles above the lunar surface.

The spacecraft will consist of a lunar excursion module (LEM), propulsion module and command module. The astronauts will make the trip to lunar orbit in the command module. Two astronauts will land on the moon in the LEM while one continues in orbit in the mother craft. The two astronauts will explore the moon for one to four days, then relaunch the LEM, rendezvous with the main vehicle, and rejoin the third astronaut for the trip home.

Before such a mission is undertaken, much must be learned about rendezvous and docking, deep-space navigation and communications.

Experience in these requirements will be gained in Gemini flights, scheduled to start early next year. Equipment and other requirements for Gemini have been established, but some equipment decisions for Apollo are still not made.

Gemini, operating on a $700-million budget, is the intermediate step between Mercury and Apollo. One MSC official says: “If Gemini equipment will do the job for Apollo, much of it will be used.”

Plans call for 12 flights of the two-man Gemini spacecraft, mostly in 1964 and 1965. The first will be unmanned to check out equipment. Others will be manned. Flights will range from 2 to 14 days.

For rendezvous and docking, an Agena D target vehicle will be launched separately into earth orbit.

ENVIRONMENT—Gemini spacecraft will resemble Mercury capsules, but will be twice as heavy and 20 percent larger.

Most instrument packages will be housed in space between the crew compartment and the external surface. There will be more electronic gear on board to do more jobs than in Mercury, but not the complete redundancy of Mercury gear.

“We learned with Mercury,” says Scott Simpkinson, technical advisor to the Gemini project manager, “that electronic systems are reliable if properly checked out.”

Gemini astronauts will have much greater control of the flights. There will be less automatic control because Mercury proved man can do it.

Gemini will have a fuel cell to function normally in space flights.
the Moon

supply power, a guidance system, computer, radar unit, and a sophisticated communications system. The fuel cell, to be supplied by GE, can lose half its power and still supply the spacecraft's needs.

Cooling will have to be provided for the fuel cell and all electronic equipment will have to be mounted on cold plates. Gemini will also carry a 1.5-orbit-capability storage battery to supply power to get the craft home if the fuel cell fails.

COMPUTER—Another innovation will be an automatically programmed electronic computer that can be fed manually if necessary.

This 65-lb, general-purpose, binary, serial, fixed-point computer, being developed by IBM, can be programmed with 159,744 bits of information. It will have a 500-Kc clock rate, 250-Kc memory cycle, take about 1 cu ft of space outside the crew compartment, and will function on less than 100 watts.

The computer is primarily for rendezvous missions, but it can also determine at any time a reentry impact point and what flight corrections are needed to land at a desired point.

During rendezvous and docking the computer will figure the amount, direction and timing of thrust needed to automatically or manually guide the spacecraft toward the Agena D target vehicle.

After retro-firing during reentry, an external sensor will feed data so the computer can supply landing site information. The computer will be preprogrammed to continually work out retro-fire and landing data. However, variables can be fed into it manually through a keyboard.

RADAR—Gemini radar will have a range of up to 250 miles.

This 2-cu-ft, 60-lb, 100-watt unit will be used in rendezvous and dock-
capacity and playback, Simpkinson says. It will be a pulse-code-modulation system accurate to 0.4 percent, able to handle 300 parameters and with greater range than telemetry used on Mercury.

Collins Radio was a communications contractor for Mercury, also has Gemini and Apollo contracts.

CHECKOUT — A computer controlled check-out system for equipment and systems will be all new.

Simpkinson says this will be semiautomatic with an operator in control. The system will have 900 test parameters, and will "tell what part or what black box is bad."

A video cable will hook-up the capsule to the computer check-out system. The computer complex will be 10 miles away. Actual checkout will be done from a blockhouse viewing room. The system will have a 20-crt display system.

MSC says Gemini check-outs should require a little over 2½ months. Mercury often took 6 or 7 months.

The computer control check-out system will carry over into the Apollo program. Apollo check-out tests will start in the factory.

APOLLO—Apollo will draw heavily on Gemini flight experience, but will be a much bigger and more complex program. Equipment delivery will begin around mid-1965.

MSC officials, such as David W. Gilbert, chief of guidance and control for Apollo, say they are remaining flexible at this stage to take advantage of any breakthroughs.

Deep-space navigation, Gilbert says, "is the only thing we will have to do on Apollo that hasn't been done before," in guidance and control.

Astronauts on the lunar mission will have to make navigational measurements in flight, then feed the information into their computer so it can automatically make mid-course guidance correction maneuvers.

Apollo's optical instruments, such as space sextants and telescopes will be servo driven, but can also be operated manually.

Gemini equipment scheduled for Apollo includes the fuel cell, airborne computer, inertial guidance platform and radar. Most will be in both the command module and the LEM.

Apollo capsules will have more system redundancy than Gemini, although Gilbert says the number of spares is not yet determined.

Nor has it been decided just how much ground control will be provided Apollo missions. Chances are considerable ground control backup will be provided, but mission success will still depend substantially on functioning of on-board systems.

There will be an evolutionary series of tests on Apollo before its big mission—including both unmanned and manned rendezvous and docking practice with the LEM while in earth orbit.

PROCUREMENT: $20 BILLION-PLUS

HOUSTON—Putting two Americans on the moon will cost $20 billion to $40 billion. The Procurement Section at MSC, headed by D. W. Lang, handles the major contracts—most of which will have been placed by 1964.

There are six major buying groups: Apollo, Mercury/Gemini, Control Systems, General Research, Center Facilities and Construction, and Support.

The latest major contract is the $30-million one now being negotiated with Philco to develop and equip the $50-million mission control center. IBM is providing the computer complex, presently funded at $3 million.

Major Apollo contracts include: MIT, navigation and guidance; AC Sparkplug-GMC, ground support equipment, inertial guidance unit and integrating gyro, power servo assembly, and systems assembly and test; Raytheon, computer; Sperry Gyro, plus integrating pendulum for guidance, and Kollsman Instruments, optics. Fiscal 1963 funding for these contracts totals about $18 million. These are contracts handled at MSC.

Prime contracts for spacecraft are: McDonnell Aircraft, Gemini; North American Aviation, Apollo command and propulsion modules, and Grumman Aircraft, the LEM. Total funding for fiscal 1963 is $334 million.
Who sticks its nose into 1451 cities?

We do. Via a vast new interconnected shipping system. It's called Skyroad. And, as its very name implies, it combines the speed of airfreight with the most direct mode of surface transportation.

We think it's the road you should travel. If you want the speed of airfreight as close as your shipping dock. Door-to-door service in 1451 cities and towns. Cross-country deliveries within 24 hours. A teletype network that monitors your shipments every step of the way.

And just one bill. Which, in many cases, will be less than you paid before these combined services.

So why not let us stick our nose into your business? To help you save time, money and worry.

first in airfreight with airfreight first FLYING TIGER LINE
RB-66 DESTROYER. This type of twin-engine reconnaissance jet was flown over Cuba by the Tactical Air Command.

Countermeasures

Equipment Eyes Cuba

Atlantic Missile Range and Air Force planes hunt for missile sites

Electronics learned last week that electromagnetic analysis and countermeasures equipment used in Atlantic Missile Range operations and by the Air Force's Tactical Air Command (TAC) definitely were used for electronic surveillance of Cuba during the crisis last fall.

The information bears out previous indications (Electronics, p. 20, Nov. 30, 1962) that data developed through electronic reconnaissance helped pinpoint the missile sites in Cuba for the camera planes.

Although a security lid has been placed over present operations, indications are that electromagnetic surveillance of that troubled island is still being continued and more equipment is being moved into the area.

Officials decline to comment on present operations. However, at his press conference two weeks ago, President Kennedy indicated that "daily" intelligence checks of Cuba are being made.

Missile range and TAC spokesmen have revealed to Electronics the standard ECM and analysis equipment that they use. More sophisticated equipment is in the works and is presumably being put to use as surveillance continues.

CAPE CANAVERAL — This sprawling test site and the whole Atlantic Missile Range (AMR) played an important but heretofore unsung part in the electronic reconnaissance and monitoring of Cuba.

Just how big a part AMR played is unknown, since officials are bound by security regulations.

AMR operations in such reconnaissance is headed by the Frequency Control and Analysis (FC&A) Branch, which monitors the r-f spectrum to detect any emissions which might interfere with missile testing at the Cape and along the 6,000-mile range.

Equipment operated by FC&A in normal missions is the same type of instrumentation used in electronic reconnaissance.

EQUIPMENT — This equipment includes the APR-9 electronic countermeasures receiver, capable of monitoring the electromagnetic spectrum from 1 to 10 Gc, and a companion unit, the APR-14, which covers 30 to 1,000 Mc.

Pulse analyzers are also used on the range. Although specific types were not revealed, there is a strong indication that the APA-74 pulse analyzer, a confidential piece of equipment, is in use by FC&A. The ALA-6 direction finder is also part of FC&A’s operating gear.

There are two roving vans and one fixed station in operation at Cape Canaveral. The only downrange equipment admittedly in operation is a van at Antigua containing equipment “like” the APR-14 and APR-9.

When asked what “like” meant, an AMR official said: "Well, it's classified ECM equipment and all I can say is 'like' the APR-14 and APR-9.”

The Antigua receiver goes to 10.7 Gc. Some of the equipment has been modified by the use of traveling-wave tubes in the front end and with parametric amplifiers. All equipment operates within about 4 to 6 db.

In addition to the ground stations, FC&A has five range aircraft at its disposal that are outfitted with the same equipment as the ground stations. Some of the latest passive ECM equipment is being used on the range.

DATA GATHERED — The type of information derived from incoming signals by the pulse analyzers probably includes: bandwidth, signal-to-noise ratio, antenna polarization and beamwidth, and modulation type as well as percent amplitude modulation, f-m derivation, duty cycle, analog determination of pulse repetition frequency, number of frequency multiplex channels, pulse width, pulse repetition frequency, pulse intermodulation and pulse group count.

As one range official put it: "You can practically see the equipment transmitting the signal.”

AIR RECONNAISSANCE — Tactical Air Command uses a number of the equipments employed by AMR. Confirmation that TAC aircraft also participated in the Cuban reconnaissance operation was received last week, but TAC will dis-
cuss present operations only in
general terms.

The Douglas-built RB-66C De-
stroyer is the workhorse of TAC's
9th Tactical Reconnaissance Squad-
ron electronic reconnaissance mis-
sions. Other versions of the plane
are also used for photo and weather
missions.

The RB-66C carries four elec-
tronic warfare officers (EWO) in
addition to the basic three-man
crew. Each EWO monitors a spe-
cific frequency band. EWO's are
generally navigators with added, in-
tensive training in electronic de-
tection.

Their primary mission is to mon-
itor, ferret and pinpoint the loca-
tion of hostile radar and other elec-
tronic systems.

Ferreting equipment on RB-66C's
includes the APR-14, APR-9, ALA-6,
APA-74, and the ALA-5 pulse analyzer
and the ANH-2 wire
recorder.

With the equipment, such infor-
mation as type of radar, frequency,
range and use can be obtained. An-
alyzed and plotted on map overlays,
the information becomes the basic
source of intelligence for estab-
lishing and maintaining an up-to-date
hostile electronic order of battle.

AIRLIFT — During the Cuban
 crisis Rome Air Development
Center airlifted electronic equip-
ment to the crisis area. RADC air-
crew and maintenance personnel
remained on the alert during the
Cuban quarantine and made many
additional flights to crisis areas.

Rechargeable Batteries
Power New Appliance

CHICAGO—Flameless lighters and
portable mixers, as well as cord-
less electric shavers, were the new-
est consumer products powered by
nickel-cadmium batteries at the
Chicago housewares show.

The lighter, introduced by Gulton,
is said to light 3 packs of cig-
aretttes on one charge. Similar bat-
teries will power an a-m—f-m tran-
sistor radio the company plans to
introduce this summer.

A battery pack built into Sun-
beam's portable Mixmaster is re-
ported to be rechargable for the
normal life of the appliance.
Air Force Revamps

Computer Procurement

Selection of edp systems centralized in new office

BEDFORD, MASS. — The computer industry's biggest single customer—USAF—is revamping its shopping habits.

From now on, choosing computers to fill Air Force needs, domestic and foreign, will be centralized at the new EDP Equipment Office, Hanscom Field.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.

The new operation is headed by Col. Edward McCloy, formerly chief of data system planning in the Logistics Command at USAF Headquarters.

Expected to be operational in March, the office will have a staff of 46. Computer manufacturers will be briefed on the office February 27.
New $1 1/2 million electronic facility marks spectacular Carborundum development program

Almost doubling the size of the original plant, a new addition to Carborundum's electronic product manufacturing facilities is now in operation at Niagara Falls.

The new facility provides for greatly increased production of the line of non-metallic resistors, thermistors and varistors. It will also allow for greater diversification resulting from new products developed out of Carborundum's extensive research in solid-state materials, particularly for high temperature applications. Several significant developments in this field are expected to be announced shortly.

Modern manufacturing facilities provide for improved quality control, aimed at precise reproducibility of physical and electrical characteristics of all electronic products. Expanded technical services will be available to assist in the solution of industry problems.

If your product could benefit from application of symmetrical varistors, positive or negative temperature coefficient thermistors, or high temperature ceramic resistors, write for technical data to Dept. ED-12G, Electronics Division, Carborundum Company, P. O. Box 339, Niagara Falls, New York. For evaluation or quotations covering your particular application, please include the necessary particulars.

Heavy duty glass-to-metal seals pass stringent tests . . .

2 1/2 million without rejects!

The heavy duty seal illustrated is one of hundreds of types manufactured by Carborundum's Latrobe Plant, for use in electrical and electronic components. This particular example is a refrigerator seal. It must withstand wide swings in temperature and seal against refrigerant leakage.

Quality control checks include cyclic testing for thermal shock resistance from freezing to 500°F., resistance to gas leakage at 350 psi and a flash-over test at 2500 volts. Despite these requirements, 2 1/2 million have been supplied to the refrigerator industry without a single reject. Automated production equipment keeps costs of these seals exceptionally low.

Typical of other critical hermetic sealing applications solved with Carborundum's metal-bonded ceramic-to-metal assemblies and metal-bonded ceramics are those involving space capsules and guided missiles, pressure vessels, canned nuclear pumps, thermopile lead-thrus, nuclear reactors, and housings for silicon and germanium rectifiers.

Carborundum's Latrobe plant specializes in all types of glass-to-metal and ceramic-to-metal seals. For helpful suggestions in solving a variety of difficult sealing problems, contact Dept. ED-12S, Electronics Division, Latrobe Plant, The Carborundum Company, Latrobe, Pennsylvania.
Optical Techniques Will

Scientific program chairman comments on conference's new look

BOSTON—That major emphasis in quantum electronics has moved into the optical region will be driven home next week at the Third International Conference on Quantum Electronics, in Paris.

MAN AND CRYSTAL. One of the pioneers in the solid-state maser, Prof. Nicolaas Bloembergen is now investigating the properties and behavior of crystals in maser beams.

"This shift to the optical area is the most significant feature of the 1963 program," Prof. Nicolaas Bloembergen, chairman of the scientific program, told ELECTRONICS. There are some review and systems application papers on microwave, reported the Harvard physicist, but microwave "is really in the realm of technical operations."

NONLINEAR OPTICS—The only double session at the conference (for program details see the accompanying report from Paris) will be on nonlinear optics. The advent of coherent light sources has focused more attention on this field.

Are Masers Going Out of Style?

Here's a quick preview of Quantum Electronics Conference highlights

PARIS—The maser will be practically old hat to speakers at the Third Quantum Electronics Conference, to be held next week at UNESCO House here.

The 150-odd papers screened by the conference scientific committee point to an overwhelming emphasis on the laser.

In addition to these papers, conference goers—estimated at more than 700—will hear nearly 50 state-of-the-art lectures by world-ranking experts. They will sum up quantum electronics theory as it stands today, plus potential applications. Two lectures on phonon masers, the coherent-sound branch of the maser-laser family, should attract considerable attention.

LASERS—Much of the work to be reported is directed at developing practical radar and communications hardware using the laser. This accounts for a strong accent on nonlinear optics, key to demodulation of coherent light.

Among demodulation techniques that conference goers will hear about are second-harmonic and third-harmonic generators based on crystals such as calcite and cadmium sulfide.

One paper, for example, describes third harmonic generation in calcite from 0.2-joule/30-nanosecond output pulses from a ruby laser. Still another paper reports the development of f-m/a-m optical frequency converters with traveling-wave phototubes as key components.

RECEIVERS—Several reports cover superheterodyne optical receivers. Underlying principle—mix modulated coherent light with a local laser oscillator to get a microwave beat frequency suitable for a conventional microwave receiver. Beat techniques have also made possible single far-infrared (160-micron wavelength) pulses from a laser, a British paper indicates.

Along with modulation and demodulation, methods for propagating coherent light will come in for a lot of attention. A variety of light pipes will be described.

DIODE LASERS—Third principal field of interest at the conference is research in new laser materials.

Here, theory dominates but nevertheless some devices using semiconductor materials for direct conversion of d-c into coherent light should turn up. A French research team, for one, hopes to have an indium arsenide laser operating by the time the conference starts.

RUSSIAN WORK—A paper on inverted population in semiconductors has been invited from Russia. Researchers at the Academy of Sciences in Moscow, have also reported advanced work with gallium arsenide, but apparently had not yet achieved laser action.

One of the contributed-paper slots, on Friday, is reserved for post-deadline papers of exceptional interest. It should provide the setting for some late announcements on gallium arsenide and other semiconductor lasers, since the first successes with these in U.S. labs came after the conference paper deadline.

Immediately after this session, the conference will close with a summing up, by C. H. Townes, of MIT.
Star at Paris

Bloembergen emphasizes the possibilities of developing nonlinear optical devices that run the gamut of r-f and microwave devices.

"How many of these devices will be practical and useful is another matter," Bloembergen said. "But the general theory supports the existence of nonlinear processes in the optical as well as other parts of the spectrum."

"Modulators, demodulators, harmonic generators, subharmonic generators, parametric amplifiers of all kinds—these can be built in the light region."

If light waves are to be used for communications, nonlinear elements will have to be engineered and the propagation of light waves in various media explored, he pointed out.

Exploring the nonlinearity of light waves is also important scientifically, he adds. His special area now involves the properties and behavior of crystals in the intense light fields produced by optical maser beams.

Bloembergen will be speaking at the Paris conference on the interaction between light waves in nonlinear media.

Guarding Against Flats

TRUCK DRIVER locates low tire with indicator by Magnavox. Indicator is used after transistor radio transmitters on wheels signal cab when pressure is low, as determined by valve pressure switch

TI has what you need in pulse programming!

Versatility — Custom combination of modules for any desired performance characteristics. Portability — Compact, lightweight, easy to carry. High Rep Rate — Repetition rates of 100 cycles to 100 megacycles.

Texas Instruments Series 6000 Pulse Generators are the smallest instruments available with the advantages of modular construction plus a wide range of operating features which include variable width and delay, variable rise and fall times, plus and minus outputs, pulse mixing, programmed and random word generation.

TI Pulse Generators combine dependable performance with a high degree of versatility and convenience. Circuitry is all solid state with compact controls. Write for complete information.

Texas Instruments INCORPORATED
P. O. BOX 66027 HOUSTON 6, TEXAS

THE INSTRUMENTS OF TEXAS INSTRUMENTS

INDUSTRIAL PRODUCTS GROUP

Sensing - Recording - Testing - Digitizing Instruments

CIRCLE 27 ON READER SERVICE CARD

Your electronics BUYERS’ GUIDE should be kept in your office at all times—as accessible as your telephone book.
More Atom-Smashers Wanted

Three more big accelerators are being considered

NEW YORK—Growing research in nuclear physics is generating demand for a variety of high-energy particle accelerators.

Throughout the world, there are about 20 accelerators with energies of 1 billion electron volts (Bev), or greater, in use or under construction. Their requirements for advanced components and circuit design are expected to stimulate advances in electronics.

The biggest to date is Stanford University's two-mile, $114-million, 20-Bev linear accelerator, scheduled for operation in 1966. Excavation is underway, reported R. B. Neal at the American Physical Society meeting here, and component installation should start in about 14 months. It will have 240 klystrons, each with average power of 22 Kw and peak power of 24 Mw. Going to 960 klystrons would double beam energy.

J. P. Biewett, of Brookhaven National Laboratory, described a design study for a 300-Bev to 1,000-Bev proton accelerator, scaled up from the 33-Bev alternating gradient synchrotron at Brookhaven. Estimated cost is about $1 million per Bev—about 20 percent of which would be for the electronics. A typical 600-Bev accelerator (see sketch) would require rapid-tuning, high-power transmission tubes, isolators capable of handling several megawatts and other 200-Mc parts.

Funds Asked—An AEC and President's Scientific Advisory Committee panel is reviewing Brookhaven's request. Requests by University of California and Midwestern Universities Research Association, for 100-Bev and 10-Bev machines, are also under study.

National Science Foundation is calling for a doubling of federal support of low-energy nuclear structure research in the next five years. Federal support of unclassified basic research in nuclear structure physics has risen to $40 million in the past five years.

NSF asks for a stepup in development of electrostatic accelerators with energies variable to 36 Mev, in installation of commercially available 20-Mev tandem Van de Graaff machines, and in design and construction of cyclic particle accelerators above 40 Mev.
FALL IN!

New-type recorder assembles slow or random data, spaces it uniformly on tape for computers

If your digital computer is as finicky as most, it won’t listen to a magnetic tape that

talks like this

It will insist on characters uniformly spaced on the tape like this

Which means that life can be difficult for people who have data that is otherwise perfectly reputable, but just doesn’t happen to occur at the right time intervals to suit the computer.

Now comes a wonderful device that will gladly accept irregular data—such as the output of a teletypewriter or an analog-to-digital converter—and put it on magnetic tape just the way the computer wants it. The secret is incremental tape motion. Our new recorder stands still awaiting each character, records it, then moves the tape a uniform distance to await the next. As a result, whether characters arrive 100 per second or 1 per month, they are recorded in a proper, uniform packing density.

The PI incremental recorder shown here records 200 bits per inch (556 BPI optional), a recording fully compatible with the input requirements of IBM computers.

To tell you more, we’ve put together a brochure fully compatible with the input requirements of discriminating users. Send for bulletin #73; address us at Stanford Industrial Park, Palo Alto 20, California.
MICROPIX® multi-purpose cathode ray tubes, used in high-resolution applications, are part of the extensive line of Litton display devices and microwave tubes. San Carlos, California. In Europe, Box 110, Zurich 50, Switzerland.

LITTON INDUSTRIES
ELECTRON TUBE DIVISION

FREDDY
by ROPE

I GUESS IT TAKES GOOD STRONG EYEBALLS TO SEE A HUNK OF QUARTZ VIBRATE!

True, Freddy, true! But whether you can see it or not, you know by its performance record that a REEVES-HOFFMAN CRYSTAL OSCILLATOR vibrates dependably and with precise frequency. That's why so many Reeves-Hoffman frequency sources are used in missiles and satellites, where it's rather difficult to get a maintenance man on the job. We've got "hunks of quartz" ready to refine and package to your specifications, from 1 cps to 100 mc. Feast your eyeballs on bulletin QCO.

REEVES-HOFFMAN
CARLISLE, PENNSYLVANIA
DIVISION OF DYNAMICS CORPORATION OF AMERICA

CIRCLE 200 ON READER SERVICE CARD

MEETINGS AHEAD

ELECTRONIC COMPONENTS INTERNATIONAL EXHIBITION, Fédération Nationale des Industries Electroniques; Unesco House, Paris, France, Feb. 8-12.

ELECTRONIC MARKETING CONFERENCE, Electronic Sales—Marketing Association; Americana Hotel, New York City, Feb. 11-13.

ELECTRICAL & ELECTRONIC EQUIPMENT EXHIBIT, ERA, FBC; Denver Hilton Hotel, Denver, Colo., Feb. 18-19.

PACIFIC COMPUTER CONFERENCE, AIEE; California Institute of Technology, Pasadena, Calif., March 15-16.

BIONICS SYMPOSIUM, United States Air Force; Biltmore Hotel, Dayton, Ohio, March 18-21.

IEEE INTERNATIONAL CONVENTION, Institute of Electrical and Electronics Engineers; Coliseum and Waldorf-Astoria Hotel, New York, N. Y., March 25-28.

ENGINEERING ASPECTS OF MAGNETOHYDRODYNAMICS SYMPOSIUM, IRE-PGNS, AIEE, IAS, University of California; UCLA, Beverly, Calif., April 10-11.

OHIO VALLEY INSTRUMENT-AUTOMATION SYMPOSIUM, IIE, et al; Cincinnati Gardens, Cincinnati, Ohio, April 16-17.

CLEVELAND ELECTRONICS CONFERENCE, IRE, AIEE, Case Institute, Western Reserve University, IEE; Hotel Sheraton Cleveland, April 16-18.

INTERNATIONAL NONLINEAR MAGNETICS CONFERENCE, IRE-PGEC, PGIE, AIEE; Shorham Hotel, Washington, D. C., April 17-19.

ADVANCE REPORT
CIRCUIT THEORY SYMPOSIUM, University of Wisconsin, U of W, Madison, Wis., May 6-7. March 15 is the deadline for submitting papers to: T. J. Higgins, Chairman, Arrangements Committee, Sixth Midwest Symposium on Circuit Theory, Department of Electrical Engineering, University of Wisconsin, Madison 6, Wisconsin.

AUTOMATIC PRODUCTION IN ELECTRICAL AND ELECTRONIC ENGINEERING SYMPOSIUM, Science and General Division of the Institution of Electrical Engineers; IEE, Savoy Place, London, England, October 24-25. March 31 is the deadline for submitting suggested title and outline of less than 150 words to: Secretary, The Institution of Electrical Engineers, Savoy Place, London W. C. 2., Covent Garden 1871, England.
75% smaller than the smallest (by volume)

new size Y Ohmite tantalum slug capacitor

Size Y Actual Size Size U MIL Size T1 Size F MIL Size T2 Size G MIL Size T3

Size Y is the tiniest hat-shaped capacitor ever developed. Its case measures only \(\frac{1}{8} \)" long with a flange diameter of \(\frac{15}{64} \)" and body diameter of \(\frac{1}{8} \)". Yet this miniature unit offers characteristics equal to any of the larger sizes. Size Y meets all requirements of MIL-C-3965B.

Eleven stock values from 0.91 to 15 mfd (125 volts DC max.) are available for fast delivery. Tolerances of ±10% (K) and ±20% (M) are offered in all values. Operating temperature range is \(-55^\circ\) to \(+85^\circ\)C.

WRITE FOR BULLETIN 159

Ohmite Manufacturing Company
3610 Howard Street, Skokie, Illinois

CIRCLE 31 ON READER SERVICE CARD 31
NOW—BOURNS PRECISION POTENTIOMETERS IMMEDIATELY AVAILABLE FROM THESE DISTRIBUTORS

ALABAMA
BIRMINGHAM
MG Electronics & Equip. Co.
3112 6th Ave. South
P.O. Box 2308
Phone: 322-0449

HUNTSVILLE
Electronic Wholesalers, Inc.
2310 Rob Wallace Ave., S.W.
Phone: 534-2461

ARIZONA
PHOENIX
Krefft Electronics
917 North Seventh St.
Phone: Alapine 8-0121

CALIFORNIA
INGLEWOOD
Liberty Electronics Corp.
339 S. Isla Ave.
Phone: Orregon 8-1111
Newark Electronics Co., Inc.
4747 W. Century Blvd.
P.O. Box 4217
Phone: Orchard 4-8440
Orregon 8-0441

LOS ANGELES
K-Tronics, Inc.
1030 S. Byram St.
Phone: RI 8-3281
Westales Electronics Corp.
6544 Arizona Circle
Phone: 776-1600

OAKLAND
Elmar Electronics
146 Eleventh St.
Phone: Templebar 4-3311

PALO ALTO
Pentor Electronics
410 Sherman
Phone: Davisport 6-3366

PASADENA
Allied Radio of Calif., Inc.
2085 E. Foothill Blvd.
Phone: Sycamore 5-5901

SAN DIEGO
Atlas Electronics, Inc.
4618 Santa Fe St.
Phone: Broadway 4-3313
Western Radio & TV Supply
1415 India St.
Phone: Belmont 9-0361

SAN FRANCISCO
Pacific Wholesale Co.
1830 Mission St.
Phone: Underhill 1-3743

COLORADO
DENVER
Denver Electronic Supply Co.
2170 South Grape Street
Phone: Skyline 7-3351

CONNECTICUT
HAMDEN
Cramer Electronics, Inc.
60 Connoly Parkway
Phone: AT 8-3581

D.C.
WASHINGTON
Electronic Wholesalers, Inc.
2345 Sherman Ave. N.W.
Phone: Hulton 3-5200

FLORIDA
MIAMI
Electronic Wholesalers, Inc.
9390 N. W. 27th Ave.
P. O. Box 47-190
Phone: OX 6-1620

MELBOURNE
Electronic Wholesalers, Inc.
P. O. Box 1655
1301 Hibiscus Blvd.
Phone: Parkiy 3-1441

ORLANDO
Electro Air of Florida, Inc.
Lake Linden Industrial Park
410 27th St.
Phone: 241-5461

Hammond Electronics, Inc.
533 W. Central Ave.
P. O. Box 3671
Phone: GA 2-0511

GEORGIA
ATLANTA
Electro Air Corp.
645 Antoine St., N. W.
P. O. Box 16072 Sta. N.
Phone: Trinity 3-1651

ILLINOIS
CHICAGO
Allied Electronics Corp.
Marketing Div.
111 N. Campbell Ave.
Phone: Taylor 9-9100

Meriquip Electronics, Inc.
4939 North Elston Ave.
Phone: Avenue 2-5400

Newark Electronics Corp.
223 W. Madison St.
Phone: State 2-2944

INDIANA
FORT WAYNE
Fort Wayne Electronics Supply, Inc.
3600 Maxmen Ave.
Phone: Eastbrook 3431

INDIANAPOLIS
Graham Electronics Supply, Inc.
122 S. Senate Ave.
Phone: HEline 4-8486

SOUTH BEND
Radio Distributing Co., Inc.
1212 High St.
Phone: Atlantic 7-2911

IOWA
CEDAR RAPIDS
Deeco, Inc.
P. O. Box 1568
618 First St., N. W.
Phone: EMpire 5-7551

KENTUCKY
LOUISVILLE
P. I. Burks Co.
659 S. 9th Street
Phone: 583-2871

MARYLAND
BALTIMORE
B & H Distributing Co.
2025 Wester St.
Phone: LE 6-2225

Wholesale Radio Parts Co., Inc.
308 West Redwood St.
Phone: Mullenby 5-2134

MASSACHUSETTS
BOSTON
Radio Shack Corporation
730 Commonwealth Ave.
Phone: Regent 4-1000

CAMBRIDGE
Electrical Supply Corp.
201 Alway Brook Pkwy.
Phone: 491-3300

MICHIGAN
DETROIT
Newark-Ferguson Electronics
20700 Houbell
Phone: AT 4-5490

GRAND RAPIDS
Industrial Electronic Supply, Inc.
704 Jefferson Ave., S. E.
Phone: 452-1411

MINNESOTA
MINNEAPOLIS
Lew Bon Co.
1211 LaSalle Ave.
Phone: Taylor 9-9100

Mississippi
JACKSON
Ellington Radio
824 South Gallatin Street
P. O. Box 8038
Phone: 355-0561

MISSOURI
ST. LOUIS
Electronic Components
Industrial Co.
2605 So. Hanley Rd.
Phone: Mission 7-5505

NEW JERSEY
CAMDEN
General Radio Supply Co., Inc.
600 Penn St.
Phone: Woodlawn 4-8560

CLIFTON
Eastern Radio Corp.
312 Clifton Ave.
Phone: Gregory 1-6600

MOUNTAINEER
Federal Purchasing, Inc.
1021 U. S. Route 22
Phone: Adams 2-8500

NEW MEXICO
ALBUQUERQUE
Electronic Parts Co.
222 Truman St., N. E.
Phone: 256-0946

NEW YORK
BINGHAMTON
Federal Electronic, Inc.
P. O. Box 208
Phone: Pioneer 8-8211

BUFFALO
Radio Equipment Corp.
147 Genesee St.
Phone: TL 6-1410

MINEOLA, L.I.
Schweber Electronics
P. O. Box 669
60 Herricks Rd.
Phone: Pioneer 6-6520

NEW YORK
Harvey Radio Company, Inc.
103 W. 43rd Street
Phone: Jefferson 2-1500

Milo Electronics Corporation
530 Canal St.
Phone: Beekman 3-2980

Terminal-Hudson Electronics, Inc.
236 W. 17th St.
Phone: Chelsea 3-5200

SYRACUSE
Harvey Electronics-Syracuse, Inc.
Pickard Drive
Box 185
Phone: Glenview 4-9282

NORTH CAROLINA
WINSTON-SALEM
Electronic Wholesalers, Inc.
928 Burke St.
Phone: Park 5-8711

OHIO
AKRON
Akron Electronic Supply, Inc.
107-117 S. Arlington St.
Phone: 762-8818

CINCINNATI
Herrlinger Distributing Co.
112 E. Liberty St.
Phone: GA 1-5282

DAYTON
Esco Electronics, Inc.
3130 Valleywood Drive
Phone: 295-7461

OKLAHOMA
TULSA
Engineering Supply Co.
1124 E. 4th St.
P. O. Box 3007
Phone: Lithia 8-3121

PENNSYLVANIA
PHILADELPHIA
Aime Industrial Electronics, Inc.
412 N. 6th St.
Phone: Waltham 2-5918

PITTSBURGH
Corbett Elec. Co.
1121 Penn St.
Phone: Express 1-4000

WARRINGTON
Atlas Electronics
125 Titus Ave.
Warrington Industrial Park
Phone: Diamond 3-1860

RHODE ISLAND
PROVIDENCE
Wm. Dandrasc & Co.
28 Wolcott St.
Phone: Union 1-2800

TENNESSEE
NASHVILLE
Electro Distributing Corp.
1914 W. End Ave.
Phone: 255-8444

TEXAS
DALLAS
Engineering Supply Co.
5000 Deno St.
Phone: Fletwood 7-6121

EL PASO
McNicol, Inc.
811 N. Estrella
Phone: Udan 6-2936

HOUSTON
Harrison Equipment Co., Inc.
1422 South Main St.
P. O. Box 1505
Phone: Capitol 4-9131

SAN ANTONIO
The Perry Shankle Co.
1801 S. Flores St.
Phone: Capitol 3-1801

UTAH
SALT LAKE CITY
Standard Supply Co.
225 E. Sixth South St.
P. O. Box 1047
Phone: Elgin 5-2971

WASHINGTON
SEATTLE
C & G Electronics Co.
2221 3rd Ave.
Phone: MAIN 4-4355
Seattle Radio Supply, Inc.
2117 Second Ave.
Phone: MA 4-2341

WISCONSIN
MILWAUKEE
Taylor Electric Co.
4080 N. Port Washington Rd.
Phone: Wodruff 4-4321

TEAR OUT THIS INSERT FOR YOUR FILES

It's the new Bourns Precision Potentiometer Summary, containing specifications, dimensions and prices for the entire Bourns precision potentiometer line. (If someone has already torn it out, circle the reader service card or write us, and we'll send you a copy promptly.)

BOURNS, INC.
1200 Columbia Ave., Riverside, Calif.

32 CIRCLE 30 ON READER SERVICE CARD

CIRCLE 33 ON READER SERVICE CARD →
BOURNS PRECISION POTENTIOMETERS

... represent a completely new approach in precision potentiometer design. The same reliability concepts that have made Bourns TRIMPOT® Adjustment Potentiometers the undisputed leaders in their field, have been incorporated into Bourns precision units. Single wire termination – the precision potentiometer industry's No. 1 cause of failure – has been eliminated by Bourns exclusive SILVERWELD® termination. Sealed construction—previously unavailable — is a standard feature of all Bourns precision types. And resistance elements have been lengthened, while overall size has been reduced! These and many other quality design features, combined with the most stringent reliability assurance program in the industry, make Bourns precision potentiometers the answer to the industry's long awaited need for completely dependable precision components.
7/8 INCH DIAMETER PRECISION POTENTIOMETERS. THREE, FIVE, AND TEN TURN TYPES. Bourns Models 3510, 3520 and 3500, comprise the most complete 7/8-inch line in the industry. These three, five, and ten turn units combine military reliability with reduced size, yet contain a resistance element 20 percent longer than comparable types. This longer element provides better resolution, cooler operating temperatures through improved power-heat dissipation, and higher total resistance. Molded, all plastic moisture resistant cases ensure excellent humidity resistance. Standard units exceed steady state requirements. Optional units meet cycling requirements of MIL-STD-202B, Method 106.

Model 3500 — ten turn

<table>
<thead>
<tr>
<th>Resistance Values</th>
<th>500 to 125K ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance Tolerance</td>
<td>±0.2% standard, closer tolerances available</td>
</tr>
<tr>
<td>Linearity (Independent)</td>
<td>±0.2% standard</td>
</tr>
<tr>
<td>Electrical & Mechanical Rotation</td>
<td>360° (+10°; −0°)</td>
</tr>
<tr>
<td>Power Rating (70°C)</td>
<td>2.0 watt</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>−65 to 125°C</td>
</tr>
<tr>
<td>Vibration</td>
<td>MIL-STD-202B, Method 204, 20G</td>
</tr>
<tr>
<td>Shock</td>
<td>MIL-STD-202B, Method 202, 100G</td>
</tr>
<tr>
<td>Mechanical Life</td>
<td>100,000 cycles (2,000,000 shaft revolutions)</td>
</tr>
<tr>
<td>Size</td>
<td>3/4" diameter, 1" case length</td>
</tr>
<tr>
<td>Weight</td>
<td>Approximately 1.0 ounce</td>
</tr>
</tbody>
</table>

PRICES:

<table>
<thead>
<tr>
<th>Model</th>
<th>1-9</th>
<th>10-24</th>
<th>25-99</th>
<th>100-249</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500</td>
<td>11.99</td>
<td>11.30</td>
<td>10.79</td>
<td>9.59</td>
</tr>
</tbody>
</table>

Model 3510 — three turn

<table>
<thead>
<tr>
<th>Resistance Values</th>
<th>200 to 50K ohms (3510)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance Tolerance</td>
<td>±3% standard, closer tolerances available</td>
</tr>
<tr>
<td>Electrical and Mechanical Rotation</td>
<td>1080° (3510)</td>
</tr>
<tr>
<td>Power Rating (70°C)</td>
<td>1.0 watt (3510) 1.5 watt (3520)</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>−65 to 125°C</td>
</tr>
<tr>
<td>Vibration</td>
<td>MIL-STD-202B, Method 204, 20G</td>
</tr>
<tr>
<td>Shock</td>
<td>MIL-STD-202B, Method 202, 100G</td>
</tr>
<tr>
<td>Mechanical Life</td>
<td>100,000 cycles (2,000,000 shaft revolutions)</td>
</tr>
<tr>
<td>Size</td>
<td>Diameter 3/4"; 0.649" case length (3510) Diameter 3/8"; 0.678" case length (3520)</td>
</tr>
</tbody>
</table>

PRICES:

<table>
<thead>
<tr>
<th>Model</th>
<th>1-9</th>
<th>10-24</th>
<th>25-99</th>
<th>100-249</th>
</tr>
</thead>
<tbody>
<tr>
<td>3510</td>
<td>14.99</td>
<td>14.49</td>
<td>13.49</td>
<td>12.74</td>
</tr>
<tr>
<td>3520</td>
<td>13.50</td>
<td>13.10</td>
<td>12.30</td>
<td>11.10</td>
</tr>
</tbody>
</table>

©1963, Bourns, Inc.
DIAMETER KNOBPOT® POTENTIOMETER, READOUT DIAL, KNOB — ALL IN FRONT OF PANEL.

The Model 3600 KNOBPOT potentiometer — an exclusive Bourns design — introduces a new component concept in precision potentiometer-dial applications. A 10-turn precision potentiometer, readout dial, and knob in a single compact package measuring only ¾" in diameter by 1 inch long. The potentiometer mechanism, built inside the knob, occupies no space behind the panel. The easy to read, integrated ¾" clock dial eliminates assembly and phasing during mounting.

Resistance Values
- 1K to 100K ohms

Resistance Tolerance
- ±5% standard, closer tolerances available

Electrical & Mechanical Rotation
- 360° (±10°; ±0°)

Dial Accuracy (Including Linearity)
- ±0.5% standard

Repeatability of Dial Reading
- 0.1% voltage ratio

Power Rating (95°C)
- 1.50 watts

Operating Temperature Range
- -65 to 125°C

Humidity
- MIL-STD-202B, Method 103

Vibration
- MIL-STD-202B, Method 204, 10G

Shock
- MIL-STD-202B, Method 202, 50G

Mechanical Life
- 10,000 cycles

Size
- ¾" diameter; 1" case length

Weight
- 0.62 ounce

Part No. Description

<table>
<thead>
<tr>
<th>H412</th>
<th>H416</th>
<th>H417</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake</td>
<td>Brake</td>
<td>Brake</td>
</tr>
<tr>
<td>8.95</td>
<td>8.50</td>
<td>8.08</td>
</tr>
<tr>
<td>8.61</td>
<td>8.06</td>
<td>7.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H419</th>
<th>H420</th>
<th>H421</th>
<th>H425</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake</td>
<td>No Brake</td>
<td>Brake</td>
<td>No Brake</td>
</tr>
<tr>
<td>9.50</td>
<td>8.84</td>
<td>8.37</td>
<td>7.91</td>
</tr>
<tr>
<td>7.50</td>
<td>7.29</td>
<td>6.89</td>
<td></td>
</tr>
</tbody>
</table>

Part No. Description

<table>
<thead>
<tr>
<th>H53</th>
<th>H54</th>
<th>H55</th>
<th>H56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Color</td>
<td>Color</td>
<td>Color</td>
</tr>
<tr>
<td>Snap-Ring</td>
<td>Slip-Over Knob</td>
<td>Stainless Steel Skirt</td>
<td>Locking Device (Brake)</td>
</tr>
<tr>
<td>35</td>
<td>1.25</td>
<td>1.50</td>
<td>1.25</td>
</tr>
<tr>
<td>36</td>
<td>1.07</td>
<td>1.25</td>
<td>1.07</td>
</tr>
<tr>
<td>39</td>
<td>0.97</td>
<td>1.00</td>
<td>0.97</td>
</tr>
</tbody>
</table>

3¼" DIAMETER KNOBPOT® POTENTIOMETER READOUT DIAL, KNOB — ALL IN FRONT OF PANEL.
QUALITY DESIGN. The construction details shown in the cut-a-way drawings of the Model 3500 are not necessarily descriptive of all models, but are typical of the design features found in Bourns precision potentiometers. These high-reliability features have evolved through Bourns long experience in the potentiometer field — specifically through the Company’s capability in producing quality miniature parts, precision plastic moldings, and dependable seals.

QUALITY CONTROL. All units are individually inspected to guarantee full conformance to all key physical and electrical specifications. One hundred percent inspection for contact pressure (wiper and both collector ring pickoffs) also assures low noise levels and reliable performance for a minimum of 100,000 cycles or 2 million shaft rotations.

RELIABILITY ASSURANCE. A final measure of quality is Bourns Reliability Assurance Testing Program — the most stringent in the potentiometer industry. Random samples are selected from stock and checked for stability and performance under extreme conditions of cold, humidity, shock, and vibration — each condition at the limit of published specifications. Load life and rotational tests are also performed. This unique reliability program is your final guarantee that Bourns components will always meet or exceed published standards of performance and reliability. In addition to precision potentiometers, Bourns manufactures a complete line of leadscrew actuated adjustment potentiometers and relays. Write for the TRIMPOT Summary Brochure or contact your nearest Bourns sales representative or distributor for price and delivery information.
Special skills are important in the wiring of today’s sophisticated assemblies for electronic and telemetry systems. Klein has developed special pliers to assist in solving difficult assembly problems.

- For instance, there is a plier with a blade as hard as a file for cutting nickel ribbon wire (No. D230-4C).

- For instance, there is an oblique cutter, specially designed for printed circuits...it cuts and crimps the end to hold wire in place for soldering. (D 052-C).

- For instance, there is a needle nose plier with the tip bent to facilitate reaching into confined spaces. D 338-5½ C.

In all, there are over 100 different styles and sizes of pliers available from stock. Klein will be glad to discuss with you the development of a special tool to solve a particular problem you may be facing.

ASK YOUR SUPPLIER

Mathias KLEIN & Sons
Established 1857
INCORPORATED
7200 McCormick Road, Chicago 45, Ill.
Save Time and Trouble by standardizing on BUSS Fuses—You’ll find the right fuse every time…in the Complete BUSS Line!

By using BUSS as your source for fuses, you can quickly find the type and size fuse you need. The complete BUSS line of fuses includes: dual-element “slow-blowing”, single-element “quick-acting”, and signal or visual indicating types…in sizes from 1/500 amp. up—plus a companion line of fuse clips, blocks and holders.

BUSS Trademark Is Your Assurance Of Fuses Of Unquestioned High Quality

For almost half a century, millions upon millions of BUSS fuses have operated properly under all service conditions.

To make sure this high standard of dependability is maintained…BUSS fuses are tested in a sensitive electronic device. Any fuse not correctly calibrated, properly constructed and right in all physical dimensions is automatically rejected.

Should You Have A Special Problem in Electrical Protection…BUSS fuse engineers are at your service—and in many cases can save you engineering time by helping you choose the right fuse for the job. Whenever possible, the fuse selected will be available in local wholesalers’ stocks, so that your device can be serviced easily.

For more information on the complete line of BUSS and FUSETRON Small Dimension Fuses and Fuseholders, write for BUSS bulletin SFB.
Custom-built or EIA space-saving circuits feature welded connections, transfer-molding encapsulation, and three-stage testing

From more than 630 standard Motorola zener diodes and rectifiers, you can now custom design your own circuit and have the components factory-assembled and encapsulated into a compact package ready for soldering into conventional or printed circuits. Series strings, full wave bridges and zener clippers . . . these are only a few of the circuits possible. These assemblies also offer you a reliable source for extended component values such as 10,000-volt rectifiers and 50-volt temperature-compensated reference diodes.

Reliability of Motorola molded diodes assemblies is insured by:

- Strong, welded-lead connections
- High-pressure, void-free transfer molding
- Three-stage quality control testing

Motorola factory welding, with its extremely short duration of heating, yields strong bonds while preventing heat damage to the components.

Motorola's high-pressure, transfer-molding process prevents the formation of voids that occur with ordinary open mold casting and produces a package of exceptionally high mechanical strength that is highly resistant to the absorption and collection of moisture.

In Motorola's three-stage quality control testing, not only are the components individually tested, but the welded circuits are tested before and after encapsulation to insure desired performance.

For further information, write for this new 6-page brochure describing Motorola's line of EIA assemblies as well as providing complete instructions for ordering your own custom circuits.

Motorola molded diode assemblies are available in many standard package styles similar to those above . . . for either single-ended or axial lead connection. Custom packaging can be designed to fit your exact space requirements.

February 8, 1963

Motorola Semiconductor Products Inc.
A SUBSIDIARY OF MOTOROLA INC.
5005 EAST McDOWELL ROAD • PHOENIX 8, ARIZONA

CIRCLE 39 ON READER SERVICE CARD
BARKER & WILLIAMSON
MATCHING TRANSFORMERS
AND RECEIVING BALUNS...

BROADBAND
High Frequency
MATCHING
TRANSFORMERS
(1 KW to 20 KW)

Unbalance to Balance or Vice-Versa
and Impedance Matching . . .

Frequency range: 2 to 30 mc.
Power ratings: 1 KW, 5 KW and 20 KW.
These high frequency transformers are ideal
for matching unbalanced radio transmitter out­
puts to balanced amplifiers and balanced an­
tennas. Standard impedance transformations:
50 to 70 ohms unbalanced to 150, 300 or 600
ohms balanced as required. Other impedance
ratios available on special order.

RECEIVING
BALUNS
FOR
COMMERCIAL APPLICATIONS
Balanced to Unbalanced

Couples a balanced antenna to unbalanced
coaxial cable.
Frequency Range: 2 to 32 mc.
Ideally packaged — acts as a center insulator
in a doublet antenna. The coupling transformer
is sealed inside a rugged aluminum casting pro­
viding shortest possible connections to both an­
tenna and coaxial cable.
Insertion loss less than 1/2 db.
Available in twelve impedance transformations.
Pioneers in the development of baluns
and unique RF coupling devices B&W
again sets a standard.

Drop us a card requesting Spec Sheets.
BARKER & WILLIAMSON, Inc.
Radio Communication Equipment Since 1932
BRISTOL, PENNSYLVANIA •Stillwell 8-5581
now get
SSB with optimum performance
over the entire HF spectrum

Continuous tuning with extreme accuracy—that's what you get with Collins' 51S-1 HF receiver.

Most advanced in a famous series of general coverage receivers, this SSB/CW/AM unit delivers: visual dial setting within 1 kc throughout the range • high frequency stability, 70 cycles per week, ideal for pre-assigned frequencies • sharpest selectivity, from Collins Mechanical Filters • highest sensitivity for difficult monitoring assignments.

Features like these, packaged into a compact unit specifically designed for commercial application, make this receiver ideal for both general communication and lab uses. Contact Collins today for complete information. COLLINS RADIO COMPANY • Cedar Rapids • Dallas • Los Angeles • New York • International Division, Dallas
HITACHI TRANSISTORS
SPECIFY "MESA" TYPE TRANSISTORS FOR HIGH FREQUENCY USE
2SA233, 2SA234, 2SA235

Hitachi PNP germanium diffused "Mesa" type transistors provide outstanding high frequency characteristics compared with conventional alloy junction or drift transistors.

Exclusive "Mesa" type transistors are indispensable for FM receivers used in tuner circuits and intermediate frequency amplifiers and also in TV receivers in intermediate frequency amplifiers. They can be used effectively in short-wave converters, medium wave converters and all high frequency applications.

For superior performance, specify Hitachi "Mesa" type transistors . . . another engineering achievement from one of the world leaders in electronics.

<table>
<thead>
<tr>
<th>Maximum Ratings (Ta=25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Voltage</td>
</tr>
<tr>
<td>Emitter Voltage</td>
</tr>
<tr>
<td>Collector Current</td>
</tr>
<tr>
<td>Emitter Current</td>
</tr>
<tr>
<td>Junction Temperature</td>
</tr>
<tr>
<td>Collector Dissipation</td>
</tr>
<tr>
<td>Ambient Temperature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics (Ta=25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>ICBO</td>
</tr>
<tr>
<td>IEBO</td>
</tr>
<tr>
<td>hfe</td>
</tr>
<tr>
<td>fαm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typical Operation (Ta=25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Power Gain at FM Radio Frequency</td>
</tr>
<tr>
<td>Mixer Gain at FM Radio Frequency</td>
</tr>
</tbody>
</table>

10.7 Mc Intermediate Frequency Amplifier Circuit

Hitachi New York, Ltd.
501, 5th Avenue, New York 17, N.Y., U.S.A.
Sole Agent:
International Importer Inc.
2242 South Western Avenue, Chicago 8, Illinois, U.S.A.
News from Bell Telephone Laboratories

WE'RE "FINGERPRINTING" VOICES...TO FIND BETTER WAYS OF TRANSMITTING THEM

Acoustics scientists at Bell Telephone Laboratories study voices to learn how one voice differs from all others, what makes yours instantly recognizable to friends and family, and what the elements of a voice are that give it the elusive qualities of "naturalness."

To enable us to examine speech closely, we devised a method of making spectrograms of spoken words. We call them voiceprints. They are actual pictures of sound, revealing the patterns of voice energy. Each pattern is distinctive and identifiable. They are so distinctive that voiceprints may have a place, along with fingerprint and handwriting identification, as an important tool of law enforcement.

The shape and size of a person's mouth, throat and nasal cavities cause his voice energy to be concentrated into bands of frequencies. The pattern of these bands remains essentially the same despite modifications which may result from loss of teeth or tonsils, the advancement of age, or attempts to disguise the voice.

Study of voiceprints and recognition factors is part of our exploration of new techniques to extract and transmit the minimum essentials of a person's voice and from these reconstruct the original voice at the receiving end, retaining its factors of naturalness.

Our ultimate goal, as always, is to learn how to improve your telephone service and make it a better value.

BELL TELEPHONE LABORATORIES
World center of communications research and development
AEROCOM PRESENTS
VHF AM TRANSMITTERS
and RECEIVERS

AEROCOM communications equipment is designed with both performance and reliability in mind, and is produced by experienced personnel using high-quality materials. The following features are found in all three transmitters: Single crystal controlled frequency (plus an additional frequency \(\pm 0.003\% \) away from main frequency); stability \(\pm 0.001\% \) over temperature range of \(-20^\circ C\) to \(+55^\circ C\), any humidity up to 95%; audio system incorporates high level plate modulation, with compression; forced ventilation with air filter is employed. Welded steel cabinets.

Model 10V1-A—1000 Watts output—Successfully being used in Troposcat service for communications with aircraft beyond the optical horizon. Frequency range 118-153 mc. Can be completely remote controlled by using AEROCOM's remote control equipment. All tuning from front panel by means of dials. Power requirements 210-250 V 50/60 cycles, single phase.

Model VH-200—200 Watts output in range 118-132 mc. Excellent for both point-to-point and ground-to-air communications. Press-to-talk and audio input may be remoted using single pair of telephone lines. Power requirements 105-120V 50/60 cycles. Also available for use above 132 mc; output drops gradually to 150 watts at 165 mc.

Model 85 VHF Receiver. A high performance, low noise, single channel crystal controlled, single conversion VHF receiver. Stability normally \(\pm 0.001\% \) (with oven crystal \(\pm 0.0005\% \)) over temperature range \(-20^\circ C\) to \(+55^\circ C\). Sensitivity \(1/2 \) microvolt or better for 1 watt output with 6 db signal to noise ratio. Standard selectivity bandwidth 30 kc; other widths available. Spurious response down 90 db. Frequency range 118-154 mc. Power requirements either 115 V or 230 V 50/60 cycles. Made for standard rack panel mounting.

As in all AEROCOM products, the quality and workmanship of this VHF equipment is of the highest. All components are conservatively rated. Replacements parts are always available for all AEROCOM equipment.

Complete technical data available on request

AEROCOM

FCC Type Accepted for Aviation Service

3090 S. W. 37th Avenue—Miami 33, Florida

44 CIRCLE 44 ON READER SERVICE CARD electronics
PERSPECTIVE ON RELIABILITY

DESIGN FEATURES OF BABCOCK
RELIABILITY-RATED RELAYS

Vycor activated getter. Exclusive to Babcock, this porous glass getter prevents contact contamination by adsorbing all outgassed organic substances, following production degassing at 200°C under less than 5 microns vacuum.

Self-wiping, gold-plated contacts. Contacts of AgMgNi alloy with specially-designed configuration assure miss-free performance under load and minimize low level contact resistance.

Welded-header construction. Automatic sealing process gives stronger header-case bond and prevents solder flux contamination. Leakage rate is less than 10^-8 c.c. per sec. by mass spectrometer.

Not all relay applications demand "millions of miss-free operation." Yet for every level of reliability, one requirement is mandatory—consistent performance within predictable limits of accuracy.

Babcock's pioneering work on relay reliability has evolved a statistical test procedure which verifies reliability by combining Darnell Report methods with proprietary testing techniques. Result: the design engineer can obtain any desired level of relay reliability with assurance of uniform predictable operation at a cost no greater than the need justifies.

In classifying relay reliability by failure rate level, Babcock provides the user with a universal yardstick for specifying and evaluating requirements. High reliability units are presently testing to failure rates under .01% in 10,000 operations with a 90% confidence factor.

Babcock reliability verification procedures offer other benefits, too. With testing carried on continuously, ratings are based on cumulative data, preventing any possibility of quality deterioration. In addition, the use of uniform reliability test standards enables the user to eliminate costly evaluation testing...each rated relay is shipped with a certificate documenting reliability test results.

General catalog BR-6200, describing the complete line of Babcock Relays, is available upon request. For reliability information pertaining to specific applications, please write directly, outlining requirements.
IBM computers get 5½ miles of wiring reliability with insulation of Du Pont TEFLON®

A typical large-scale IBM data-processing system, like that shown here, uses 1,200 feet of hookup wire in each of twenty-four back panels—a total of roughly 5½ miles of wiring. One of the ways in which IBM builds the highest possible reliability into its systems is by using Du Pont TEFLON fluorocarbon resins—the most reliable of all insulating materials—on all back-panel hookup wire.

TEFLON resins provide the unvarying insulating characteristics needed in high-speed circuits, mechanical toughness to minimize the danger of cut-through and short circuiting, and unexcelled resistance to unfavorable environments. Most significantly, insulation of TEFLON maintains its desirable properties through year after year of operation. This is not merely the hopeful projection of short-term laboratory tests—this is reliability in use, which TEFLON resins have demonstrated in thousands of demanding applications ranging from computers to missile wiring.

That's why you're likely to find insulation of TEFLON in electronic equipment specifically designed for long-term, trouble-free service.

E. I. du Pont de Nemours & Co. (Inc.), Div. E-2-8-63TE, Room 2526 Nemours Bldg., Wilmington 98, Del. In Canada: Du Pont of Canada Ltd., P. O. Box 660, Montreal, Quebec.

TEFLON® TEFLON is Du Pont's registered trademark for its line of fluorocarbon resins. TEFLON is made from tetrafluoroethylene (TFE) and PTFE (perfluorinated ethylene propylene) resins.

BETTER THINGS FOR BETTER LIVING . . . THROUGH CHEMISTRY
Aiming a 3-Ton Telescope Hanging From Balloon

Servo system responds to ground signals and points telescope at chosen stars; resolution of resulting photographs approaches theoretical limit. Night temperatures make operating environment more severe than an earth satellite's.

By E. R. SCHLESINGER
Senior Staff Engineer,
Perkin-Elmer Corp.,
Norwalk, Conn.

ONE of the most serious limitations to astronomical research has been the earth's atmosphere, which limits the astronomer in several ways, including (1) the atmospheric transmission loss, which is a function of wavelength and contains relatively narrow spectral windows; (2) air turbulence, which limits the resolution obtainable with even the best of equipment.

One of the first major steps in overcoming these problems was the construction of Stratoscope I, an unmanned balloon-borne 12-inch-diameter solar telescope, built under the direction of Professor Martin Schwarzschild of Princeton University. This telescope was flown at an altitude of 80,000 feet (above approximately 96 percent of the earth's atmosphere) in 1957 and provided photographs of the sun with record detail. The success of this and subsequent flights led to the construction of Stratoscope II, an unmanned balloon-borne 36-inch-diameter astronomical tele-
How's the View?

Although we wouldn't get along too well without the earth's atmosphere, astronomers don't regard it in the same benevolent light because it upsets their observations of the universe. To have an unobscured look at the stars, the observatory must be hoisted above the earth's atmosphere, or at least above 90 percent of it. Using a balloon to lift a three-ton telescope and its control equipment aloft is no mean task, especially when the telescope must be kept on-target within 0.1 second of arc throughout photographic exposure. Since observations are made at night, all equipment experiences extreme cold unrelieved by the "nights" and "days" which enable an earth satellite to warm up periodically.
scope motions. The fine guidance servo, however, keeps these excessive E_x and E_y errors from degrading photographic quality. The method used is explained by Fig. 1 (right), an optical diagram of the telescope. Light enters the main tube from the left, strikes the primary mirror and is reflected toward the secondary mirror, directed by the secondary mirror towards the following flat, passes through the field lens and is brought to a focus at the f/50 focal plane by the transfer lens. When the telescope is correctly pointed at the target, an image of the target is formed on the optical axis of the instrument. Outside the target area (approximately 2 min x 2 min arc) and within the 50-minute diameter field of view, will be the images of stars, two of which are used for stellar guidance. One of the two star images strikes the apex of a four-way reflective beam splitter (or retrodivider). The light division is such that the energy reflected to each of four multiplier photo tubes is equal indicating correct telescope pointing. If the telescope develops an X or Y pointing error, the light division becomes unequal. The four multiplier phototube output signals are processed to derive electrical error signals proportional to the mispointing. Such signals drive the transfer lens off axis in a direction to return the star image to the apex of the retrodivider. This action fixes the image of the guide star with respect to the retrodividers in spite of E_x and E_y errors. Several other advantages are provided by this guidance scheme.

The transfer lens, being relatively low in mass, allows a high frequency capability (20 cps) without the huge expenditure of power required to similarly move the whole telescope.

AQUISITION—Without the fine guidance servo, multiplier phototube sensed errors would be proportional to pointing errors over a range of approximately ±0.1 second of arc. The acquisition problem would be extremely difficult since error rate damping would not be highly effective. The fine guidance servo, however, can rapidly move the transfer lens off axis to capture the star image and track it over a range of ±1 minute of arc. Signals proportional to off-axis distances (or pointing error) allow damping over a range approximately 600 times larger. Although the star image could be defocused to similarly increase the linear sensing zone, signal to noise ratio would be reduced.

Optical focus quality can be checked by introducing a small fixed amplitude dither signal to the servo amplifier. At best focus, the star image is of minimum diameter and the sensed transfer lens excursions (or rates) will become minimum as the secondary mirror is axially moved to the correct focus position.

Figure 3 is a single axis block diagram of the fine servo system. The nonlinearities provide a constant high slewing speed when large errors exist and a high static gain with good damping around null. The servo thus displays rapid star image acquisition followed by good tracking performance.

The other guide star is used in similar fashion to sense rotation errors E_z, but the electrical error signal is simply amplified and fed to the coarse guidance servo.

The guidance electronics is transistorized except for the eight multiplier photo tubes, and contains many interesting circuits. Noteworthy among these are the multiplier phototube preamps, and the error-rate compensation amplifiers.

The multiplier phototube circuit Fig. 2 (left) uses a conventional bleeder string arrangement modified to include a static modulator circuit (connected to pin 14). Capacitor C, and resistor R_n phase-correct the incoming 26-v, 400-cps signal applied to the primary step-up transformer T. The secondary of T, feeds the zener diode D_1 (110 v) through C_n. These latter two elements clamp the dynode voltage during alternate half cycles, to the normal voltage determined by the bleeder string elements. On the other half cycles, the dynode voltage is driven by the trapezoidal

AUXILIARY BALLOON hoists assembly aloft preparatory to take-off. Once aloft, gas in auxiliary balloon inflates main balloon (hanging limply below it) carrying instrumentation package to 80,000 feet.
modulator voltage to the voltage existing at one of the adjacent dynodes. This causes the gain of the multiplier phototube to be varied in square-wave fashion between nominal gain and approximately 1 percent of nominal gain. Signal conversion to a-c is thus accomplished without the use of optical chopping mechanisms whose vibration might shake the telescope and cause photographic degradation.

The preamplifier receives the a-c signal from the multiplier phototube V, and amplifies it by a factor between 0.2×10^2 and 1.2×10^2 volts/ampere, depending upon the setting of R_1. The gain is set to achieve an overall transfer factor of 0.6×10^2 volts rms per input lumen. The 3-db passband of the amplifier, 130 to 800 cps, reduces the output noise caused by the multiplier-phototube shot effect and by the higher harmonics of the otherwise square-wave output signal.

Transistor Q_1, is operated with a low collector voltage, approximately 4 volts, and a collector current in the microampere region to achieve a preamplifier noise contribution negligible when tracking dimmest stars (ninth magnitude). The d-c collector voltage of Q_1 is nominally at signal ground to allow the large output signals which prevail when tracking the brightest stars (fifth magnitude).

The error rate compensation amplifier, Fig. 2 (left), contains the lead-lag compensation network for servo-system stabilization, plus components for manual and inflight adjustment of gain. The signal output is restrained by nonlinear feedback from exceeding 5 v peak; a requirement dictated by servo performance considerations. Resistors R_m, R_n and R_s give the desired nominal gain while presenting equal input and output impedances of 10,000 ohms. The load on the preceding 400-cps demodulator filter combination is thus constant while the 10,000-ohm output impedance is used as part of the lead lag network that follows. This network provides the chopper modulator with a d-c signal that is 3.5:1 lead corrected with C_1 and C_2.

The chopper output to transformer T_1, provides a signal modulation prior to subsequent amplification. Transistor Q_1, receives the T_1 output and furnishes it at high impedance level to the base of Q_1. The base of Q_1 acts as the amplifier summing point and also receives the feedback signal. A motor driven potentiometer, R_m, allows in-flight gain adjustment over a range of $\pm \sqrt{3}$ about the nominal gain setting. A maximum nominal gain of 2.73 v. rms per volt d-c is achieved with less than 5 percent gain variation over the temperature range of -65 to $+50$ C. Components D_s, D_e and R_s provide the feedback to accomplish 5 v clamping, while D_e and D_s block the small feedback signal through the capacitance of D_s and D_e prior to zener conduction.

COMMAND SUBSYSTEM — Remote control of the various portions of the telescope is accomplished by two normally operative parallel command rf links and associated equipment. The subsystem receives on-off commands from operator-controlled switches, and produces corresponding airborne relay closures. The relays provide d-c bipolar on-off signals to the decoder, which routes these signals to the loads. Complete control of the telescope, with added burden on the ground operator, is also possible with only one rf link operative.

TELEMETRY SUBSYSTEM — This subsystem provides the ground operator information on telescope reactions to the transmitted on-off commands and other data such as

MULTIPLIER PHOTOTUBE has gain switched between maximum and one percent values by 400-cycle modulating input (left), error-rate compensating amplifier (right) uses zeners D_s and D_e to anchor output within 5-volt peaks—Fig. 2
temperatures and battery voltages. Telemetry input signals, in proportional voltage form and between ±2 v d-c in amplitude, can be reproduced on the ground with accuracy and frequency response of approximately one percent and ten cycles respectively. Two sixty-four channel multiplexers simultaneously receive up to 60 input signals from the sources directly, from each of two sequentially sampling stepping switches, and from the three command stepper pairs.

Each multiplexer is a solid-state scanning commutator operating at a clock rate of 4,000 cps to achieve a 62.5 cps sampling frequency for each input channel. The input signals are sequentially sampled to obtain the composite PAM signal required to frequency-modulate the transmitter. The transmitter is a precision multivibrator forced to deviate in frequency by the PAM input signal, followed by frequency multiplier and power output stages. The transmitter output signal is routed to the antenna through the polyplexer.

RECEIVER—The Nems Clarke receiver high sensitivity-crystal controlled unit, receives the transmitted signal and produces an output PAM signal proportional to the multiplexer output signal. A tape recording of this signal during flight allows later playback to reenact the flight history with reduced accuracy. The oscilloscope displays the PAM signal directly in bar graph form for display of the less critical data transmitted on channels 33 through 64. Provided on the scope is a photographic negative mask through which the bar presentation is viewed and upon which appear the individual bar presentations. Since certain of these bars represent known reference voltages, the scope gain controls can be used to calibrate the display.

The demultiplexer, also receiving the PAM signal, synchronizes its internal clock frequency on a 2.5-v reference pulse transmitted over channel 1 and adjusts its internal scale factor and clamps the composite signal at the d-c reference level by data transmitted on three other channels.

The composite signal, so processed and amplified, is used to drive thirty-one box-car detectors, each provided with gating pulses time referenced to the synchronizing pulse. Thirty of the demodulated output lines are equal to given transmitted signals and are primarily used to drive associated meters calibrated in terms of the original quantities. The other demodulated output is derived from a box car whose input gate is pushbutton selectable and so can provide, in demultiplexed form, any one of the 64 original input signals.

The sequential data, derived through the one-second airborne steppers, is normally recorded on paper tape by a strip-chart recorder. Each of these two steppers generates an easily recognized signal pattern, when passing over several consecutive known positions, to form a decoding reference. In addition, a ground command is provided with which stepping can be halted at any position for closer inspection of a desired signal.

CONCLUSION — The scientific package has been modified, for the first flight, to perform the nonphotographic mission of measuring the infrared spectra from the planet Mars and possibly Venus with similar measurements of the Moon spectra planned as controls for the Martian observations. Later flights will be devoted to photographic missions with Venus, Jupiter, Saturn, gaseous nebulae of our galaxy, globular clusters, and the center of the Andromeda galaxy representing a few of the many possible targets.

The scientific package and the other portions of Stratoscope II, were developed under the direction of Professor Martin Schwarzschild of Princeton University and sponsored by NSF, ONR and NASA.

The author would like to express his appreciation for the assistance of J. R. Pascucci and D. Hoefnner, in the preparation of this article.

REFERENCES

(1) Martin and Barbara Schwarzschild, Balloon Astronomy, Scientific American, May 1959
(2) H. S. Hemstreet, Space Astronomy, Space Science, Sept. 1962
(3) A. B. Wiesinger, Stratoscope II Telemetry and Command, Astronautics, May 1961
(4) TV Photomultipliers to Aim Stratoscope II Electronic Design, Jan. 18, 1961
(5) J. D. R. Bahng, High Flying Astronomy, Princeton Alumni Weekly, February 17, 1961
TO LOCK OR NOT TO LOCK

When receiving phase-modulated signals, as in telemetry, demodulators having acquisition thresholds less than -150 dbm often lock on to first and higher order sidebands. It is usually impossible to assure carrier lock until the signal level exceeds the information channel threshold when the extreme distortion-at- tending sideband lock is apparent. By using f-m discriminator type techniques in an a-m detector, it becomes possible to cancel the effects of the sidebands until necessary for use.

New Phase-Tracking Demodulator
Will Not Lock on Sidebands

While the tracking loop is automatically searching for signals around the i-f frequency, an antisideband circuit rejects sideband locking. After signal acquisition, the device provides both p-m and a-m demodulation.

By W. H. CASSON
C. C. HALL
Vitro Electronics
Silver Spring, Maryland

IN RECENT YEARS, a number of tracking filters and demodulators using phase-lock techniques have been developed for use with telemetry and related signals. Although sophisticated in design, these devices suffered from difficult or time-con- suming changing of carrier frequency with associated narrow frequency range, inability to distinguish between a carrier and associated

OUTPUT of a telemetry receiver is fed to the phase-tracking demodulator that scans the i-f frequency for a signal. The antisideband circuit prevents locking on any associated sidebands—Fig. 1.
sidebands and the necessity of separate receivers of other auxiliary equipment.

CIRCUIT — To minimize incidental phase jitter, the receiver first and second local oscillators must be crystal controlled.

As shown in Fig. 1, receiver 5-Mc output is applied to a double-tuned, 5-Mc amplifier having 100-Kc bandwidth. Besides increasing signal amplitude, it also provides additional age and at least 60-db attenuation of image frequency.

TRACKING LOOP — The tracking loop is also supplied with a 455-Kc, crystal-controlled reference frequency.

The phase detector is a balanced or multiplying type that generates an error voltage proportional to the cosine of the phase difference between the 455-Kc reference signal and a locked received signal \(E_r = K \cos \Delta \phi \). At \(\Delta \phi = 90 \) degrees, the error voltage is zero and at phase angles near 90 degrees the detector output is approximated by \(E_r = K (90 - \Delta \phi) \). In the unlocked condition, the output of the phase detector consists of the beat frequency between the received signal and the reference signal and contains no d-c component.

The error voltage output of the loop-phase detector is applied to the loop filter. This is an active circuit using a highly-stable, solid-state operational amplifier with open loop gain in excess of 20,000. Feedback circuits give the loop the overall transfer function \(H(S) = \phi_{vs} / \phi_{ix} = 1 - (\sqrt{2}/\omega_s) S/1 + (\sqrt{2}/\omega_s) S + (1/\omega_s) S' \) where \(\omega_s = 2\pi f_s \) = loop natural frequency, \(2B_{r.o} = 1.06 \omega_s = \) loop bandwidth at threshold and

\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} |H(S)|^2 \, ds = \text{equivalent noise bandwidth.}
\]

The d-c output of the loop filter is applied to a voltage-variable capacitor in the frequency determining elements of the vco. When the loop is phase-locked on a received signal, the frequency of the vco, determined by capacitor voltage, is such that the frequency difference between the received signal and the vco input to the mixer equals the frequency of the 455-Kc reference oscillator. In addition, if other than a 90-degree phase difference exists between the received signal applied to the phase detector and the reference signal, the error voltage will drive the output voltage of the loop filter in a direction to reduce phase error. This operation is shown in Fig. 2. With a constant frequency shift with respect to center frequency, the phase error and the error voltage from the phase detector will be zero and the output of the loop filter will be constant. Also, a constant rate-of-change of frequency will produce a constant phase error, error voltage and a linearly changing output.

Thus, the phase-lock loop performs a double integration on phase-error voltage, the first integration taking place in the vco and the second in the loop filter. Phase tracking loops have been designed using a third-order loop transfer function that is three integrations. However, a second-order loop is the best compromise between acquisition of a signal in the presence of noise and maintaining lock on a weak signal.

The voltage-controlled oscillator incorporates a second voltage-variable capacitor controlled by a 10-turn potentiometer to vary the center frequency of the vco approximately \(\pm 15 \) Kc with respect to the nominal frequency of 5.455 Mc. This range is sufficient to accommodate tolerance in the transmitter and receiver crystals. A vernier adjustment is the manual sweep control.

SWEEP CIRCUITS — When the unit is switched to the automatic sweep mode and before a signal is acquired, vco frequency is continuously swept \(\pm 5 \) Kc with respect to the center frequency. Sweep is accomplished by applying a step function to the input to the loop filter (integrator). The output of the integrator will be a linear ramp function applied to the loop voltage-variable capacitor in the vco. This voltage is also sampled by a limit detector which reverses the polarity and changes the amplitude of the step function when a voltage corresponding to the high- or low-frequency limit is reached. The sweep rate is determined by the amplitude of the step function. The band is swept from the high-to the low-frequency end at three selectable sweep rates, 75, 250 and 500 cps per second. Sweep retrace is approximately 5,000 cps per second.

As the unit is about to acquire a signal in the search band, a d-c voltage is produced by an a-m synchronous detector and applied to a threshold detector. This circuit removes sweep voltage from the input to the loop filter and allows the loop to lock on the signal. A panel light is also energized. If the signal drops below the locking threshold, the sweep function will be resumed after a delay of approximately three seconds.

DEMODULATORS — The modulated signal from the i-f amplifier...
is applied to both the a-m and p-m synchronous demodulators. The 455 Kc reference signal is applied to each demodulator through an adjustable phase-shifting network. The a-m demodulator consists of a balanced phase detector to which the received signal and the reference signal are applied in phase, producing an output proportional to the product of the two signals. This type of a-m demodulation is free from threshold effects associated with envelope detectors.

AGC—The agc voltage for the 5 Mc amplifier and earlier stages of the receiver is obtained from a diode detector and stabilized d-c amplifier connected to the output of the 4-Kc filter to reduce the agc threshold considerably below that of the modulated signal. With 90-degrees phase deviation from locking on to sidebands of the carrier frequency will equal 458 Kc. The asymmetrical spectrum applied to the discriminator generates an error signal which overrides the loop phase detector voltage and continues the search sweep voltage.

The output signal from the 455 Kc i-f amplifier is applied through a 4-Kc double-tuned band-pass filter to emitter follower Q, as shown in Fig. 3. The filter lowers the threshold level of the discriminator (as well as the age detector) well below that of the information channel, thus assuring carrier lock at the information threshold. The emitter follower drives the first limiter and Q, which in turn supplies signal to the discriminator and loop phase detector. Two stages of limiting are necessary for satisfactory operation with a-m signals.

The discriminator consists of emitter followers Q, and Q, each driving a series-tuned circuit and diode detector. The tuned circuit resonant frequencies are 5 Kc above and below 455 Kc. The d-c output of the two detectors are opposite in polarity and the circuit is tuned so the two voltages cancel at the base of emitter follower Q, when the input frequency is 455 Kc. For off-tune frequencies, the resulting difference voltage is applied to a logic circuit that produces a constant positive output voltage whenever the positive or negative voltage at the emitter of Q, exceeds the breakdown voltage of the base-emitter junction of Q, or Q,, in series with diodes D, and D,. This antisideband error signal is applied to the loop filter input.

The discriminator also generates a voltage due to the off-center signal, as a carrier is approached and before lock takes place.

The output of the logic circuit will add to the sweep voltage at the loop filter input and greatly accelerate sweep rate. The diodes in Q, and Q, emitters provide a dead space of approximately ±300 cps around the center frequency where the discriminator error voltage is insufficient to produce the accelerating voltage. Thus, the sweep rate is greatly accelerated until the carrier is within 300 cps of lock, then the sweep is reduced to the normal rate. The result is that acquisition times are greatly reduced for useful signal strengths.

PM DEMODULATOR AND RESHAPING CIRCUIT—This circuit
PHASE DEMODULATOR has high degree of linearity with deviations as large as 85 degrees. The reshaping circuit makes output symmetrical—Fig. 4

exhibits a high degree of linearity with phase deviations as high as ±85 degrees without using transformers or tuned circuits.

The basic elements of the system are symmetrical clipping of both the received signal and reference voltages, the application of two signals 90-degrees out of phase to a coincidence circuit and the integration of the output pulses of the coincidence circuit to obtain the information.

The 453 Kc phase modulated signal from the i-f amplifier is fed to a linear amplifier Q, (see Fig. 4) where the level is increased approximately 20 db. The sine-wave output is applied to the symmetrical clipper Q, and Q,. The same d-c bias is applied to both transistors, but the base of Q, is at ground potential for signal voltage. A positive signal voltage applied to the base of Q, will raise the emitter voltage of both transistors and cut off Q,. However, the fixed bias on the base of Q, will prevent the emitter voltage from dropping below the steady-state value and, thus, a negative voltage on the base of Q, will cut it off. The result is that with peak signal voltage in excess of about ±0.5 v applied to the base of Q, one or the other transistor will be cut off and the collector current of Q, will switch between zero and some steady value. With a 10-v peak-to-peak signal applied to the circuit, a symmetrical square-wave signal is obtained at Q, collector.

The 455-Kc reference signal is passed through an adjustable phase-shift network, L, and C, and then is clipped to a square wave by silicon diode D, and the base-emitter junction of Q, with C, providing the necessary series impedance.

Phase demodulation takes place in coincidence circuit Q, and Q,. The modulated signal, after being squared by the clipping circuit, is applied to the base of Q,. The reference signal, also squared, is applied to the base of Q, and the phase-shift circuit adjusted to obtain a 90-degree phase difference between the two signals. For current to flow in the series circuit consisting of Q, Q, and load resistor R, a positive saturating voltage must be applied simultaneously to the bases of both transistors. Thus, with exactly a 90-degree phase difference between the two signals, current will flow through R, for 0, 180 cycle or 90 degrees. If the phase difference is 180 degrees, current never flows and if the signals are in phase, the current will flow for 180 cycle or 180 degrees. As the relative phase between the reference voltage and the received signal is varied (as during modulation) from 0 to 180 degrees or 90 ± 90 degrees, the length of the voltage pulse produced at the collector of Q, will be linearly proportional to the phase difference, varying between 180 degrees and zero. The pulses from the coincidence circuit are applied to the integrating network where the modulation is separated from the i-f frequency components.

The reshaping circuit consists of a low-pass filter, a symmetrical clipper and a symmetry-sensing circuit. The output of the p-m demodulator is first passed through a low-pass filter with a cutoff frequency of 4 Kc. The filter improves the signal-to-noise ratio, and the attending loss in pulse rise time is restored in the following clipper. Clipping circuit Q, and Q, functions similarly to the symmetrical clipper Q, and Q,. However, in this circuit the base voltage of Q, instead of being equal to that of Q, is derived from the symmetry-sensing circuit D, and D,. This circuit consists of two peak detectors, one for positive pulses and one for negative pulses, the polarity with respect to the d-c level at the circuit input. The network is connected so the voltage applied to the base of Q, is equal to the difference between the output of the two detectors superimposed on the d-c level at the input to the circuit. This voltage determines a reference about which clipping takes place. This maintains the clipping level symmetrically between the positive and negative peaks of the input signal independent of signal amplitude, pulse length or d-c level.

For example, if the input signal contains positive pulses twice the amplitude of the negative pulses with respect to the d-c level, the voltage applied to the base of Q, will equal the d-c level at the base of Q, plus a positive error voltage equal to the difference between the positive and negative pulses. The result is that reshaped pulse width is maintained equal to the width of the input signal at one-half the peak-to-peak amplitude and a maximum amount of noise is sliced off the information.

Application for patent is in process.

BIBLIOGRAPHY

Proceedings Symposium on Active Networks and Feedback Systems, Vol. X.
When a tunnel diode operates above valley-voltage the principal current flow is diffusion rather than tunneling current. This clamp circuit reduces time delays by limiting diffusion current.

TUNNEL DIODES have three different types of current flowing throughout their I-V curves. When the tunnel diode operates above valley-voltage, the principal current flow is diffusion rather than tunneling current. This creates a problem in switching the tunnel diode to and from the high-current, high-voltage state. At high current levels, a fast increase in diffusion current is opposed by an inertial inductance, while a fast decrease in diffusion current is opposed by diffusion capacitance. The switching time is a function of the $R-C$ product, where R is the negative resistance of the tunnel diode and C is the capacitance measured at the valley point of the diode current-voltage characteristic. When the total switching time of a tunnel diode circuit is much greater than $R-C$, time delays due to inertial inductance and diffusion-capacitance can be neglected; however, when the switching time approaches $R-C$, reactances account for a significant portion of total switching time.

CLAMP—To prevent minority carrier-storage in the base region of transistors, Baker used a clamp as shown in Fig. 1A. The operation of this clamp depends upon the difference in forward drops between silicon and germanium diodes as shown in Fig. 1B. This method however, cannot be used for nsec speeds because of diffusion current storage in the clamp diodes.

BACKWARD DIODE CLAMP—A circuit that provides the desired clamping action is shown in Fig. 3A. The clamp has no effect until the tunnel-diode voltage rises to the clamp voltage V_c. The backward diode conducts above the clamp voltage and has no storage-time effects, since appreciable minority carriers are not permitted to flow. The composite load line on the tunnel diode I-V characteristic curve, is determined by R_c and the backward-diode characteristics. An inductance L is connected in series with the backward diode to prevent it from capacitively loading the diode. The inductance must be large enough to prevent loading the tunnel diode and small enough to permit the clamp to function.

I_c/L RATIO—Since all backward diodes have a degenerate tunnel-

| Normal monostable gate (A), I-V operating trajectory (B) and output-voltage waveform (C)| Fig. 2 |
Tunnel-Diode Delays

By W. T. Rhoades
Staff Engineer,
Hughes Aircraft Co., Fullerton, Calif.

DIFFUSION CURRENT INCREASES TIME DELAYS
When principal tunnel-diode current flow is diffusion instead of tunneling current, a problem arises which makes switching the diode to and from the high-current, high-voltage state difficult.

Switching time is a function of the R-C product. When the total switching time exceeds R-C, time delays from inertial inductance and diffusion capacitance are negligible. When switching time approaches R-C, however, reactances account for a considerable portion of the total delay.

This clamp circuit reduces switching time by limiting diffusion current flow.

TUNNEL DIODE clamp circuit that reduces diffusion current (A) and relative magnitudes of input current with linear and nonlinear biasing (B)—Fig. 3

REFERENCES

February 8, 1963
High-Speed Servo Positioner

Assembling mesa transistors requires attaching a gold lead to an extremely small metalized contact assembly. This can present a serious problem in mass production. An optically controlled servo positioner and associated logic is used to control automatic thermocompression bonding.

TO AUTOMATICALLY ATTACH lead wires to the stripes of a mesa transistor, the bond location was fixed in reference to the frame of the machine and the stripes of all incoming units were referenced to this location. The positioning mechanism determines the location of the stripes and moves the semiconductor in the appropriate direction until the stripes are in position to be bonded. For high speed and simplicity, a repetitive optical scan was chosen to locate the stripes.

Maximum amount of luminous contrast between the stripes and their surroundings is obtained when the unit is illuminated from an angle approximately 45 degrees from the vertical as shown in Fig. 1. Since the unit is viewed from the vertical, the polished, specular surface of the semiconductor material appears black, while the matte surface of the stripes reflects light diffusely. Some of the light is reflected in the vertical direction and makes the stripes appear brighter than the background.

To gather as much light as possible and reduce the effects of minor imperfections, scanning spot area is made large as possible. Dimensions of the scanning spot are limited in the direction of scan by the small positioning tolerance (±0.00015 in.) and the requirement that the space between the two stripes be distinguished. To satisfy these conditions, a scanning spot 0.0002-in. in width is used. The height of the scanning spot is set at 0.002-in., limited primarily by the loss of discrimination resulting from image skew.

The characteristic pattern of variations in light intensity derived from a scan of the mesa transistor is shown in Fig. 2A. Figures 2B, 2C and 2D show variation in the pattern caused by vertically displacing the image. Between the displacements shown in Fig. 2C and 2D, the pattern caused by the mesa and stripes disappears. Two such scans, if separated by 0.002-in. as in Fig. 3A, will result in a condition where displacement of the image either up or down will cause the characteristic pattern to appear in either one or the other of the scans. When the image is correctly centered, as in Fig. 3A, the pattern will occur in both sweeps, or neither, depending on the actual length and reflectivity of the stripes. Since displacement of the image either up or down will result in the characteristic pattern occurring in one or the other of the scans, an indication of error and the direction of error can be obtained by determining which scan reveals the pattern.

Positioning in the horizontal (X) axis is accomplished by a third center scan, shown in Fig. 3B. When positioning in the Y axis is nearly complete, the characteristic pattern caused by the mesa and stripes will appear in this center scan. Since the scan proceeds in serial fashion, the light intensity pattern may be checked for conformity to a preprogrammed pattern indicative of a scan of the mesa and stripes. The pattern requirements have been fulfilled by the time the scanning slot has passed over the edge of the mesa and the emitter stripe and exposes the edge of the base stripe. At the instant of exposure of the edge of the base a recognition signal is generated. The location of the scanning slot when this recognition signal occurs thus represents the location of the base stripe.

The direction of scan is assumed as left to right in Fig. 3D and E. The desired location of the base stripe (point A) is defined by a zero timing signal occurring at the time the scanning slot is viewing point A.

ATTACHING contact leads to active elements of a mesa transistor is difficult when contact areas are 0.002 X 0.003 inches, separated by 0.0005 inch.
Bonds Mesa Transistors

A FLEA ON A FLEA ON A FLEA...

High-speed assembly of physically small items can become mechanically difficult. When such small items are further complicated because they have even smaller parts to be attached, the process can become a mechanical nightmare. To preserve sanity, electronics and a servo positioner can be used to sort out the parts, position them properly and stick ‘em together.

To determine positioning error and direction in the horizontal axis, the time of occurrence of the recognition signal can be compared with the time of occurrence of the zero signal. Recognition after the zero signal indicates that the image is displaced to the right of center (Fig. 3D) while recognition before the zero signal indicates that the image is displaced to the left of center (Fig. 3E).

SCANNING MECHANISM — The method of positioning determines design of the scanning mechanism. Scanner requirements are: an optical system to form an enlarged, real image of the transistor; a scanning mechanism to sample the light intensity across the image; a means of converting variations in light intensity to variations in an electrical signal; and a timing system to determine the location of the scanning spot.

The optical system selected consists of commercially available microscope elements. A 2× microscope objective was chosen to permit sufficient working distance between the lens and transistor. A linear magnification of 50 was chosen to prevent the positioning accuracy from being overpowered by normal mechanical tolerances. The combination of a 25× eyepiece and a projection distance of 10 inches provides the required magnification, while holding the length of the system to a reasonable dimension.

The real image formed by the lens system is limited to a 1-inch square by an aperture plate and is focused on the surface of a hollow, rotating drum. Slots cut through the surface of this drum perform the scanning function by allowing light from progressive portions of the image to pass through the drum where it is collected by a multiplier phototube as shown in Fig. 3C. The output of the multiplier phototube is the equivalent of that shown in Fig. 2A, with the light intensity axis changed to electrical current and the displacement axis changed to time. To preserve the equivalence of time and displacement, the scanning drum is driven by a synchronous motor at 1,800 rpm.

The surface of the scanning drum, shown in Fig. 4, contains eight slots equally spaced around its periphery. The slots are staggered axially along the drum in the order: center, top, center, bottom. The drum is of sufficient diameter so that only one of the slots can be within the 1-inch image area at any time.

The scanner of Fig. 4, illustrates the method of obtaining required timing information. Center slot (C-1) is ready to begin its traverse of the image. At this same instant, a corresponding center slot (C-3) 180-degrees away exposes a photodiode to the light from an incandescent lamp. The photodiode, under the stimulus of this light, emits a signal which identifies the following scan as being through the center of the image. Continued rotation of the drum brings slot C-1 to the center of the image. At this instant, another center slot (C-4) 90 degrees away exposes a photodiode to the sharply focused light from another incandescent lamp. The output signal from this photodiode defines the desired location of the base stripe in the X direction. Since reproducibility of the timing of this signal is essential for accurate positioning in the X axis,
the light is sharply focused on the drum surface. This results in a fast-rising signal whose timing is only slightly affected by aging of the lamp and variations in gain.

Since positioning in the \(X \) axis is accomplished only with the center sweep, no zero signal is required during the top and bottom sweeps. However, an indication of when these sweeps begin is necessary.

Therefore, at this time a signal is required just preceding the start of either of the top sweeps and another signal just preceding either of the bottom sweeps. These signals are obtained from the top and bottom photodiodes. When the first top slot \(T' \) is ready to start its scan of the image, drum slot \(B' \) uncovers the top photodiode. When the second top slot \(T' \) is ready to start its scan, drum slot \(B \) uncovers the top photodiode, resulting in an output signal from this photodiode preceding each of the top scans. A similar action occurs with bottom photodiode preceding each sweep.

FUNCTIONAL ORGANIZATION

The functional organization of the positioner is shown in Fig. 5. The output of the multiplier phototube is amplified and converted to signals representing two different levels of light intensity. These two signals are directed to a recognition circuit where they are examined for conformance to the preset recognition pattern. The output of this circuit consists of a single pulse beginning at the instant a drum slot exposes the edge of the base stripe and ending at the start of the next scan. This pulse is compared with the timing signals in a direction circuit. This direction circuit provides four outputs that correspond to the four possible directions of error. The top output is activated when the recognition signal occurs during the top sweep and not during the previous bottom sweep. The bottom output is energized when the recognition signal occurs during the bottom sweep and not during the previous top sweep. The left output is activated when the recognition signal occurs during the center sweep and before the zero signal. The right output is present when the recognition signal occurs during the center sweep but after the zero signal.

To prevent continual hunting in the \(X \) axis, the recognition signal is compared with a null signal generated from the zero signal. A recognition signal occurring within the time period of the null does not result in an error signal either right or left. The null represents a dead area within which \(X \) axis positioning requirements have been satisfied. The duration of the null signal is adjusted to be the equivalent of 0.0002 in. on the transistor. The above and below outputs of the direction circuit are directed to the \(Y \)-drive ring. The left and right direction outputs are applied to the \(X \)-drive ring. These rings generate the sequence of pulses that determines the direction of rotation of the drive motors. The outputs of these rings are amplified by the motor drives to provide power to the windings of the Slo-syn stepping motors.

Through a lever and cam linkage,
FUNCTIONAL organization of positioner showing logic circuits. Loop is closed through optical link between mesa transistor and scanner input. At the conclusion of the positioning cycle, a stop signal prevents further stepping and initiates a check on positioner performance—Fig. 5.

rotation of the stepping motors is converted to linear motion of the transistor in the two mutually perpendicular axes of positioning. The linkage is designed so that one step of the motors (1.8 degrees) results

TIMING—The timing circuit is straightforward. The three timing signals (top, bottom, and center) are used to set the appropriate storage triggers. Reset for the top and bottom triggers is accomplished by the center signal and reset for the center trigger is obtained by oring the top and bottom signals.

To allow fine adjustments in the X-axis positioning, the zero signal initiates an adjustable length delay. At the conclusion of the delay the zero trigger is turned on. By varying the length of this delay, the zero location can be varied according to the equivalence $13.25 \mu s$ equals 0.0001 inch. The zero trigger is reset by the top or bottom signal.

RECOGNITION—This circuit provides a standard to which scan signals are compared. The preprogram is essentially a logic train corresponding to the major features of the scan output of the mesa and stripes. Adjustment is provided in the form of delay circuits to allow for changes in the dimensions of the units. Scan outputs corresponding to the program pass through this logic train and energize a recognition trigger when the edge of the base stripe is exposed.

DIRECTION—The direction circuit gates the output of the recognition trigger to the appropriate direction trigger under control of the timing signals. A recognition signal occurring during the top sweep turns on the above direction trigger. Recognition during the bottom sweep turns on the below direction trigger. Similarly, recognition during the center sweep is compared with the null signal. If the recognition signal occurs before the null, the left direction trigger is turned on; if the signal occurs after the null, the right direction trigger is turned on. The direction triggers retain their information until a common transfer time at the conclusion of the sweep then the information in the direction triggers is transferred to four storage triggers. These triggers hold this location data until contradictory information is received.

DETECTOR OUTPUT—Storage trigger outputs are sampled by a ring-drive pulse generated from the timing signals and occurring every 81 ms, slightly after the end of each center sweep. The logic of the sampling system is constructed such that an above output is present only if the above trigger is on and the below trigger is off. Similarly, a below signal occurs if the below trigger is on and the above trigger is off. The same rules are applied to the right and left outputs.

RETURN TO ZERO—At the conclusion of the bonding operation, the stepping motors are returned to home position to prevent accumulation of error tolerances. This operation is performed under control of cam-operated switches driven by the stepping motors.
Designing Servo Amplifiers

 Besides having higher efficiency than conventional class-B, push-pull types, these servo amplifiers eliminate the output transformer and require no centertap on the servo-motor control winding.

By JOSEPH A. WALSTON
JAMES E. SETLIFF
Texas Instruments Incorporated,
Dallas, Texas

SERVO AMPLIFIERS using unfiltered, rectified a-c for the collector supply voltage have higher collector efficiency than conventional class-B push-pull amplifiers.

The higher efficiency results in greater transistor reliability, smaller heat sinks or higher ambient temperatures. An additional advantage is the absence of distortion that would be caused by overdriving the amplifier. The type of clipping that occurs in conventional push-pull amplifiers when overdriven, will not occur in this amplifier and the output remains sinusoidal even if driver output is many times that required to produce full output.

OUTPUT STAGE—The unconventional output stage operation is explained in Fig. 1A. Assume input signal V_{in} is in phase with supply voltage V_s. During the first half cycle, transistor Q_1 is turned on and Q_2 is off. Half-cycle current I_1 flows from A through D_1, Q_1, and R_L back to C. During the next half cycle, Q_1 is off and Q_2 is on. Half-cycle current I_2 flows from C through R_L, Q_2, and D_2 back to A. Figure 1B shows the voltage and current waveforms versus time when V_{in} is in phase with V_s, while Fig. 1C shows voltage and current waveforms versus time when V_{in} is 180-degrees out-of-phase with V_s. In both cases, load current is in phase with V_{in} which should be either in phase or 180-degrees out of phase with V_s.

2 WATT AMPLIFIER—The circuit of Fig. 2 provides 2 w output for ambient temperatures between

AT OUTPUT power of 2 w, change of gain due to temperature variations between -55 and +125 C is less than 3 db. Output distortion is about 7 percent when input is 30 db greater than that required to produce full power—Fig. 2
For High Efficiency

-55 and +125°C with output stage operation the same as for Fig. 1. To minimize crossover distortion, filter and divider network \(R_n, R_o, C, \) and \(D \), provides d-c base bias for transistor \(Q \), while \(R_n, R_o, C, \) and \(D \) provide a similar bias for \(Q \). Temperature coefficients of \(D \) and \(D \), match those of \(Q \) and \(Q \), so that correct bias is provided over the entire temperature range. Emitter resistors \(R_e \) and \(R_n \) provide temperature stabilization and distortion reduction.

Preamplifier and driver stages are direct coupled and use d-c feedback to ensure stability of bias conditions. Both positive and negative voltages (20 v) are obtained from fullwave rectifiers.

Negative feedback is applied to emitter of \(Q \) through \(R_e \) and to emitter of \(Q \), from emitter of \(Q \), through \(R_n \).

Voltage gain of the amplifier with feedback loop closed is approximately 10,000. Input impedance is 10,000 ohms and output impedance is about 150 ohms. At 2-w output, change in gain due to temperature variations is less than 3 db. Maximum power output decreases slightly with increasing temperature due to positive temperature coefficient of the saturation resistance of the output transistors. Output distortion is only 7 percent when input voltage is 30 db greater than that required to produce full power output. At rated output, efficiency is greater than 50 percent.

6 WATT AMPLIFIER—Figure 3 shows a six-watt amplifier using the same circuit concept as the previous amplifier. Here, overall efficiency is 55 percent.

DESIGN INFORMATION—Maximum power output is given by

\[
P_{\text{max}} = \frac{(0.5 \ V_d)/(R_L+R_o+R_e)}{V_d/2}\]

(1)

where \(R_L \) is the load resistance presented by the control winding of the servo motor, \(V_d \) is the rms value of the full secondary voltage from \(T_1 \) (see Fig. 2). \(R_o \) is the collector-emitter saturation resistance of \(Q \) and \(Q_o \), and \(R_e \) is the emitter circuit resistance of \(Q \) and \(Q_o \).

In Eq. 1, voltage drop across the rectifiers is neglected, and the peak value of supply voltage \((\sqrt{2} V_d)\) should not exceed transistor maximum collector-emitter voltage ratings. Peak collector current of each transistor is given by

\[
I_C(\text{max}) = \frac{(0.707 V_d)}{(R_L+R_o+R_e)}
\]

(2)

The value of \(R_o \), used in both equations should be the maximum value encountered in a production spread of the transistor type used over the temperature range for which the amplifier is designed to operate.

Peak base current to be supplied by the driver transformer is

\[
I_B(\text{max}) = \frac{I_C(\text{max})}{h_{FE}}
\]

(3)

The driver transformer must provide the peak base voltage necessary to produce peak collector current given in Eq. 2. Collector current versus base voltage characteristics are usually given on the transistor data sheets.

Peak driver transformer output voltage is given by

\[
V_d(\text{max}) = V_{BE}(\text{max}) - V_{BE} + (1 + h_{FE}) I_B(\text{max}) R_e
\]

(4)

where \(V_{BE} \) is the zero signal bias voltage developed across diode \(D_o \). Since signal current through \(D_o \) is in the opposite direction to the bias current supplied through \(D_o \), bias must be at least equal to \(I_d(\text{max}) \) given in Eq. 3. The same is true for \(D_o \).

REFERENCES

A PEEK INTO THE FUTURE

The McGraw-Hill Book Company has just published "Transistor Circuit Design" written by the engineering staff of Texas Instruments, Transistor Products Division. We have already given our readers one glimpse into this useful book (Electronics, Aug. 17, 1962, p 46) and now present extracts from the section on the design of high-efficiency servo amplifiers. The book itself should be of great interest and utility to all engineers concerned with the design of transistor circuits.
GET YOUR SCISSORS READY
These *electronics* pages you cut out, you don’t tear out. Dials A and B can be pasted on to cardboard stiffeners to form the front scales of the slide rule. Dial C fits back-to-back with Dial A completing the rule’s reverse side. The two front scales give noise temperature values, the back scale converts the readings to noise figure in decibels.

CUT-OUT SLIDE RULE
Simplifies Noise Calculations

By R. LAROSA, T. CAFARELLA and C. E. DEAN
Hazeltine Research Corporation, Little Neck, New York

The noise figure of a receiver or amplifier can be obtained by measuring its power output when connected successively to two sources of different temperature, as shown in the illustration p. 66, and making calculations with this slide rule. The noise figure is obtained in

Dial A forms the outer scale of the slide rule’s front, dial B, p. 66, is the inner scale.

CUT-OUT SLIDE RULE

Simplifies Noise Calculations

By R. LAROSA, T. CAFARELLA and C. E. DEAN
Hazeltine Research Corporation, Little Neck, New York

The noise figure of a receiver or amplifier can be obtained by measuring its power output when connected successively to two sources of different temperature, as shown in the illustration p. 66, and making calculations with this slide rule. The noise figure is obtained in

Dial A forms the outer scale of the slide rule’s front, dial B, p. 66, is the inner scale.

CUT-OUT SLIDE RULE

Simplifies Noise Calculations

By R. LAROSA, T. CAFARELLA and C. E. DEAN
Hazeltine Research Corporation, Little Neck, New York

The noise figure of a receiver or amplifier can be obtained by measuring its power output when connected successively to two sources of different temperature, as shown in the illustration p. 66, and making calculations with this slide rule. The noise figure is obtained in

Dial A forms the outer scale of the slide rule’s front, dial B, p. 66, is the inner scale.
KNOW OF A SMALL, RUGGED METAL-CERAMIC TRIODE WITH HIGH P_0 THROUGH 1600 MCS?

HAVE'NT YOU HEARD?

COME ON, YOU CAN'T HEAR PICTURES

THIS ONE IS WORTH LISTENING TO. IT'S GENERAL ELECTRIC'S NEW ZP-1026, a triode amplifier with the highest known power-handling capability of any tube its size through 1600 mc. Its peak power capabilities include 2 KW at 0.02 duty, and 750 watts at 0.03 duty.

This G-E triode was designed for use in applications such as TACAN, IFF, steerable arrays, Doppler radar and altimeters, and is only one of a complete line of metal-ceramic tubes General Electric has for a variety of military applications. Its features include long pulse and high duty capabilities, long life, small size and heat-sink cooling.

HERE ARE SOME CHARACTERISTICS OF OTHER TYPICAL G-E TUBES . . .

<table>
<thead>
<tr>
<th>TYPICAL APPLICATION</th>
<th>ZP-1030 METAL-CERAMIC TETRODE</th>
<th>ZP-1016B METAL-CERAMIC TRIODE</th>
<th>ZP-1029 METAL-CERAMIC DIODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM and CW Communications, SSB, Satellite Communications, Tropo-Scatter</td>
<td>Series Regulator</td>
<td>RF Switching</td>
<td></td>
</tr>
</tbody>
</table>

BRIEF DESCRIPTION

<table>
<thead>
<tr>
<th>ZP-1030 METAL-CERAMIC TETRODE</th>
<th>ZP-1016B METAL-CERAMIC TRIODE</th>
<th>ZP-1029 METAL-CERAMIC DIODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 W carrier linear amplifier @ 225-400 mc, 300 W CW @ 225-400 mc, 200 W CW @ 900 mc.</td>
<td>$E_b = 10$ kV dc; $\mu = 10$; $P_0 = 300$ W.</td>
<td>$E_b = 0.300$ A dc; $P_{IV} = 5500$ v.</td>
</tr>
</tbody>
</table>

SOUNDS LIKE A PICTURE WORTH HEARING ABOUT
two steps, the first step giving the excess noise temperature contribution T_e of the receiver, a quantity widely used to describe the quality of ultra-low-noise equipment. The second step, if desired, is to convert the value of T_e into the equivalent noise figure, the quantity generally used for expressing the performance of medium-low-noise equipment.

NOISE TEMPERATURE
Since in each of the two power measurements the power is proportional to the sum of the source and the receiver temperatures, the observed power ratio is

$$Y = \frac{T_2 + T_e}{T_1 + T_e}$$

Adding and subtracting T_1 in the numerator

$$Y = \frac{T_2 - T_1}{T_1 + T_e} + 1$$

or

$$T_1 + T_e = \frac{T_2 - T_1}{Y - 1} \quad (2)$$

The front side of the slide rule, outer dial A, inner B, is arranged to give the value of T_e from this formula as follows

1. Locate the known difference of source temperatures ($T_1 - T_e$) on the outer scale, dial A.
2. Set the inner scale, dial B, to bring the known value of Y (in decibels) to the particular ($T_1 - T_e$) point.
3. Read-off ($T_1 + T_e$) on the outer scale, dial A, at the point on dial B designated “read $T_1 + T_e$ here”.
4. Subtract the known value of T_e, leaving the desired temperature T_e.

NOISE FIGURE—The receiver temperature is converted to noise figure by the scales on the back of the slide rule, dial C. Locate the particular value of T_e on the inner scale of dial C and read the corresponding noise figure in decibels at the same point on the outer scale. This is the noise figure and is a solution of

$$F_{in} = 10 \log \left(1 + \frac{1}{Y} \right)$$

EXTREME VALUES—To obtain good accuracy, the Y scale, extending around the entire 360 degrees, has been devoted to values from approximately 1.2 db...
with a new
DUAL-TRACE
Tektronix Type 82
Plug-In Unit
in a Type 581/585
Oscilloscope

Typical frequency response and triggering characteristics of 580/82 combination—showing minimum number of centimeters necessary for triggering.

OTHER CHARACTERISTICS
of plug-in and oscilloscope

- RISETIME — nominally 4.3 nsec at 10 mv/cm and 4.0 nsec at 100 mv/cm.
- CALIBRATED STEP ATTENUATION—variable between steps.
- 4 OPERATING MODES—with independent controls for each channel for individual attenuation, positioning, inversion, and ac or dc coupling as desired.
- INTERNAL AND EXTERNAL TRIGGERING—to beyond 100 Mc.
- WIDE SWEEP RANGE—10 nsec/cm to 2 sec/cm.
- SINGLE-SWEEP PHOTOGRAPHY—at 10 nsec/cm for recording fast transients.
- CONVENTIONAL PASSIVE PROBES—for measurement convenience.
- COMPATIBILITY WITH 17 LETTER-SERIES PLUG-INS—to permit differential, multi-trace, sampling, other laboratory applications — when used with Type 81 Adapter.
- BRIGHT, HIGH RESOLUTION DISPLAY—with small spot size.

Call your Tektronix Field Engineer for a demonstration of the new dual-trace unit in a Type 581/585 Oscilloscope.

Supplied small size passive probes provide high input impedance characteristics. Probes increase input R to 10 megohms and decrease input C to approximately 7 pf. Risetime of supplied probe, plug-in unit, oscilloscope) at overall sensitivity of 0.1 v/cm is approximately 5¾ nsec.

Tektronix, Inc. / P. O. BOX 500 • BEAVERTON, OREGON • Mitchell 4-0761 • TWX—503-291-6805 • Cable: TEKTRONIX.
Tektronix Field Offices are located in principal cities throughout the United States. Please consult your Telephone Directory.
Tektronix Canada Ltd: Montreal, Quebec • Toronto (Willowdale) Ontario • Tektronix International A. G., Terrassenweg 1A, Zug, Switzerland.

February 8, 1963

CIRCLE 67 ON READER SERVICE CARD 67
to 15 db. For very noisy or very quiet receivers dial B has been extended by inner scales to 0.2 db and to 18 db. These extended values can be used, whenever needed, by making an approximate setting of dial B, to the known \((T_s - T_f)\) value on dial A.

ARGON AND NEON SOURCES

A frequent case is where the \(T_s\) source is an argon or neon bulb and \(T_f\) is room temperature. The corresponding values of \((T_s - T_f)\), which are 10,100 - 300 = 9,800 degrees and 18,600 - 300 = 18,300 degrees respectively, are marked on the outer scale for convenient use. Small variations of \(T_s\) have no effect on the location of these marks. However, the correct value of \(T_s\) must be subtracted from (\(T_s + T_f\)) to obtain \(T_f\).

CASCADED STAGES

The overall temperature of a cascaded group of stages, each of known temperature and power gain, is

\[
T_e = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1G_2} + \cdots + \frac{T_{en}}{G_1G_2\cdots G_{n-1}}
\]

dan. (4)

QUIET EXAMPLE

Suppose that testing with an argon source and room temperature gives a \(Y\) of 13 db. Dials A and B show (\(T_s + T_f\)) to be 516 K, whence \(T_s\) is 216 K (if \(T_f\) is 300 K). Dial C converts this to a noise figure of 2.4 db.

OTHER EXAMPLES

Suppose that with an argon source and room temperature, a \(Y\) of 2.0 db was obtained. The value of \((T_s + T_f)\) is found to be 16,800 K, therefore \(T_s\) is 16,500 K. On dial C this is found to be a noise figure of 17.7 db.

For measurement equipment having \(T_s = 373 \text{ K}\) and \(T_f = 77 \text{ K}\), the difference \((T_s - T_f)\) is 296 K. Suppose that \(Y\) is 1.4 db. Dials A and B give \((T_s + T_f)\) as 780 K, whence \(T_s\) is 703 K. Dial C gives 5.4 db as the noise figure.
This economical new 30-channel operations monitor provides immediate, permanent recording of on-off events on dry, electrosensitive charts — using "pulsed writing" for maximum clarity, stylus life and economy of power. Six different interchangeable, plug-in 10-channel solid-state Writing Control cards are available to match your signal voltage and recording requirements. Included are types which operate with logic levels between +6 and +40 volts or −6 and −40 volts. Also, "precision types" for monitoring low level signals are available with adjustable threshold or balanced input (with respect to signal return). Model 361 system, for rack mounting or portable case, is 8¾" wide x 19" wide x 14¾" deep, weighs approx. 50 lbs. Complete 30-channel system, with either +6 v to +40 v or −6 v to −40 v Writing Control, is $2050 F.O.B. Waltham, Mass. Prices with other Writing Controls on request.

FOR UP TO 120 CHANNELS of on-off recording, Model 360 uses 16" wide, 450-foot charts; has 9 standard and 9 optional additional speeds; takes only 14" of panel space complete with integral cooling system. Solid-state plug-in Writing Control cards described above are optional. Model 360 120-channel Recorder alone, $3900; prices with various Writing Controls on request.

Call your nearby Sanborn Sales-Engineering Representative for complete specifications and application assistance. Offices throughout the U.S., Canada and foreign countries.
IN WIRE & CABLE CONSTRUCTIONS

Wiring problems can’t always be answered by standard materials, even from the broad range of wire products available today. Markel’s capacity for engineering high temperature wire and cable constructions to meet particular needs has grown steadily with the demand. The toughest requirements in temperature, corrosive atmospheres, flexing, corona effect, etc., can be solved—with long range economy and reliability—by specially designed products from our FLEXLEAD Division.

Teflon, Silicone Rubber, Fiberglass, Nylon

Any combinations of insulations, shielding, fillers, liners, and jacket materials—for temperatures from −90° to 260°C—with single, twisted pair, or multiple conductors. May we help you solve your wiring problems?

Norristown, Pa. L. FRANK MARKEL & SONS

HIGH TEMPERATURE WIRE AND CABLE

Get more facts. Write or call for a FLEXLEAD Wire and Cable Selector
Cubic announces first low-cost militarized digital voltmeter

Cubic Corporation has designed and is producing the first low-cost digital voltmeter based on military specifications. This new Model V-72 is now in continuous production and is available for all applications requiring a militarized instrument. It features all-solid-state plug-in circuitry. The virtually lifetime reed relays used for bridge switching are good for more than 200 million operations. The package is compact, rugged and lightweight, weighing only 22.5 lbs. A special snap-out replacement readout insures minimum down-time, should maintenance be required. The V-72 sells for approximately $3,400 and quotations on special configurations are available upon request. For additional information, write to Department B-112.

SPECIFICATIONS

Absolute Accuracy .01% of reading, ±1 digit
Sensitivity 1 mv
Reference Stability .005% for 1 month; .01%, 1 year
Bridge Linearity .003%
Temperature Range
Non-operational: −50°C to +72°C
Operational: 0°C to +55°C
Input Specs (Floating)
Z ≥ 10 meg at balance

CMR AC 80 db @ 400
100 db @ 60 cps
DC 120 db
Range & Polarity 0.001 VDC to 999.9 VDC, completely automatic
Average Balance Time 400 msec; worst case, 800 msec
Calibration Cycle 6 months
Input Power 115 VAC 400 cps
Dimensions 16" wide, 5.25" high, 9.75" deep
Weight — 22.5 pounds
Special Configurations Quoted upon request

STANDARDS

MIL-STD-16B Electrical and Electronic Reference Designations
MIL-STD-167 Mechanical Vibrations
MIL-STD-202B Test Methods

OTHER OFFICES: LOS ANGELES, CALIFORNIA — ROME (CUBIC EUROPA S.p.A.) REPRESENTATIVES IN PRINCIPAL U.S. AND CANADIAN CITIES

February 8, 1963
FOR OUTER SPACE...THE COG AND THE WHEEL. Program-oriented approach to space age problems lets engineers and scientists at Philco Western Development Laboratories play an important...and totally satisfying role in communications and control projects associated with major U.S. satellite programs. The typical Philco WDL program starts with careful analysis of the mission requirements and ends with field activation of equipment, plus test and...in many cases...continued operation. Thus, the engineer and scientist who begin the project are "on the spot" when theory and advanced techniques become operational equipment. Every cog in the Philco WDL space achievement is an integral part of the wheel.

Write in confidence for information on how you can find your career at Philco WDL, with the additional rewards of ideal living on the San Francisco Peninsula and professional and monetary advancement commensurate with your own ability. Requirements include B.S. or advanced degree (electronics, mathematics, physics), and U.S. Citizenship or currently transferable D.O.D. clearance. Address Mr. Patrick Manning, Department E-2.

PHILCO
A SUBSIDIARY OF
Ford Motor Company,

WESTERN DEVELOPMENT LABORATORIES
3875 Fabian Way, Palo Alto, California

an equal opportunity employer
These three Micropot® potentiometers illustrate how you can pack as much trimmer into just about as small a space as you'll ever require.

The middle trimmer (our 1.25 x .28 x .19" 2700 series) gives you 47% more density than the one on the left (1.25 x .28 x .36" 2800 series); the trimmer on the right (1 x .32 x .19" 2700 series) offers 86% more density than the one on the left.

Environment a problem? No more. We have a trimmer to provide the solution—be it temperature, humidity, or what-have-you. (See chart at right.)

Delivery? Authorized Amphenol-Borg Industrial Distributors located throughout the country can now deliver as many Borg trimmers as you need from their stock at factory prices. There's bound to be one near you.

However you look at trimmers—from component density, environment, reliability, delivery, or price—the Micropot line is a good bet to meet your requirements. And if you need specials, take advantage of our Quick Reaction Facility. You can get prototypes built to your own specifications almost as fast as you can ask for them.

Save time, money, and embarrassing trimmer failures by contacting your nearby Borg representative or distributor. Or a note to R. K. Johnson, Sales Manager, will bring you complete information by return mail.

<table>
<thead>
<tr>
<th>Series</th>
<th>Miniature</th>
<th>High Temperature</th>
<th>Humidity Proof</th>
<th>Wire-wound</th>
<th>Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>2700</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2750</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>990</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>992</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>993</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>994</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>995</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Nuclear Blast Effects on Communications

Scientists interpret satellite observations of radiation effects

EFFECTS OF NUCLEAR explosions on radio communications, on satellite functioning, and on radiation fields surrounding the earth were reported in several papers at the New York meeting of the American Institute of Physics.

Nuclear effects on the Van Allen radiation belts, as detected by Telstar and Explorer XIV and XV satellites, were described by W. L. Brown of Bell Telephone Laboratories. The normal Van Allen belts, shown in Fig. 1, exhibit a natural gap between the inner and outer belts, in which little radiation is normally encountered; the reason for the existence of the gap is not known. Immediately following the Russian nuclear explosions on October 22 and 28, 1962, satellite instruments detected a 1,000-fold increase in the flux of high-energy particles in the slot, thus “filling the slot” nearly to the same intensity as the two belts; there was less of an increase of electrons in the belts themselves, see Fig. 2.

RADIATION DECAY — Within several days following the Russian explosions, the slot was again cleared of electrons; decay time constant was calculated as two days for these explosions. The U.S. nuclear shot in space, Starfish, on July 9, apparently had a similar effect on the radiation slot, with a much longer decay time; however, since no data are available prior to July 9 it is controversial how much of the radiation increase was due to natural variations rather than the Starfish blast.

Telstar, which passes through portions of both radiation belts, has telemetered radiation data from its sensors (see Fig. 2). A circuit failure on November 23 was due to radiation damage, possibly caused partially by the cumulative effect of the nuclear explosions. High-energy electrons penetrating Telstar’s skin caused a radiation level inside about 100 times as great as had been anticipated.

Brown suggested several ways in which a communications satellite can be made immune to radiation damage of this kind. One

INTERPRETING SATELLITE DATA

To date, Telstar has returned to earth about two million radiation measurements. Quantities of similar data stream in daily from other orbiting instruments; interpreting all these, relating them to each other and plotting them in a three-dimensional, continually changing sea of radiation belts is a massive scientific project.

The papers described here present some of the first coherent conclusions drawn from satellite measurements relating to the effects of recent nuclear blasts on our communications and on space itself.
LOW COST
POWER SUPPLIES
WIDE RANGE
FLEXIBILITY

CHECK KEPCO

10 MODELS
from O-2V/1A
to O-2500V/2ma

STABILITY: Less than 0.05% or 3 mv, whichever is greater, over a period of 8 hours at constant ambient temperature.

RIPPLE: Less than 0.5 millivolt rms.

RECOVERY TIME: 50 microseconds.

AMBIENT OPERATING TEMPERATURE: -20°C to +50°C maximum.

TEMPERATURE COEFFICIENT: Output voltage changes less than 0.05% per °C.

INPUT REQUIREMENTS: 105-125v ac, 50-440 cycles.

PROMPT DELIVERY . . . MOST MODELS FROM STOCK

FOR DETAILED SPECIFICATIONS ON MORE THAN 250 STANDARD MODEL POWER SUPPLIES SEND FOR KEPCO CATALOG B-621
Not one Mallory Type T silicon rectifier that we made all last year has been sent back to us so far, because of electrical failure. So we'll have to wait until one finally fails until we can tell you how long they'll last. We think this is a remarkable record. But this happens to be a remarkable rectifier... exceptionally high in reliability and performance, yet competitively priced.

One reason for its success is the unique method we have developed for manufacturing the silicon cell. This construction results in unusually low forward voltage drop (maximum 0.5 volt full cycle average at full load)... low leakage current (maximum 0.1 microamperes full cycle average)... and excellent high temperature stability. Superior encapsulation techniques give humidity protection comparable to hermetic seal.

Another reason is the extreme care we take in pre-testing rectifiers at every stage of construction. As part of this procedure, for example, each rectifier is given complete electrical tests at 85°C under full load—not once, but three separate times!

The Type T is available in PRV values from 50 to 600 volts, rated 0.5 amperes at 85°C, and operable up to 100°C. JEDEC types are 1N2090 to 1N2096. Get complete data by writing for Bulletin 11-7.

Mallory Semiconductor Company
Du Quoin, Illinois
a division of
Silicon rectifiers• Packaged rectifier circuits• Zener diodes• Silicon controlled rectifiers
is to choose an orbit avoiding the high-radiation regions, such as an orbit within the slot. Another is shielding of the entire satellite; this would produce a resistance increase of about 10; the third is to develop components that are intrinsically radiation-proof. The Syncom satellites, operating at a 22,000-mile height, will be beyond the high radiation region of the Van Allen belts.

VLF LINKS DISTURBED—John Hopkins Applied Physics Laboratory scientists A. J. Zmuda, B. W. Shaw and C. R. Haave reported on the effects of nuclear explosions above 50 kilometers on vlf (3 to 30-Kc) radio communication channels. A perturbation in the velocity of propagation of a vlf signal is a result of changes in the ionosphere stemming from the nuclear burst. Measurements were made on three different vlf paths following the July 9, 1962 explosion over Johnston Island.

The lower ionosphere normally acts, with the earth's surface, as a waveguide for long-distance vlf radio; effective ionosphere height varies between 70 kilometers in daytime and 90 km at night. A daily change in propagation time results, of the order of microseconds, which is characteristic of a given vlf path. Perturbations may be superimposed by solar flares or ionospheric irregularities due to magnetic disturbances.

Ionizing agents such as x-rays, gamma rays and high-energy electrons and protons are formed in the radioactive decay of neutrons and fission fragments due to a nuclear explosion. These particles will ionize atoms at D-layer altitude, and thus disrupt any vlf path directly exposed to the high-altitude nuclear blast; this effect is almost simultaneous with the explosion. Also, a simultaneous disturbance occurs on any vlf paths that are themselves shielded from the blast by the earth's curvature, but are on the terminations of geomagnetic field lines passing through the location of the burst; in this case charged particles are channeled into the vlf path geomagnetically.

DELAYED DISTURBANCES—A third kind of disturbance caused by a high-altitude blast is a delayed perturbation, observed by John Hopkins Labs on vlf paths far enough removed from the burst that the entire path and the geomagnetic field lines terminating over the path are shielded by the earth and the atmosphere from direct radiation. These perturbations are caused by a slow drifting, from the burst to the vlf path, of particles formed in radioactive decay of neutrons and fission fragments, trapped in the earth's magnetic
Says Sy Golub, Manager of Design and Advanced Packaging at United Aerospace, a division of United ElectroDynamics, Pasadena, Calif.

"Used in production welding of battery packs for the telemetry system of a high reliability missile, our Weldmatic Model 1038 head permits electrode accessibility from one side. It welds varying material thicknesses of battery cases without loss of strength in weld junction. In addition to excellent reliability and increased production, we find the short pulse in each weld prevents thermal shock to battery cells. Also, the minimum pressures required to make the weld prevent displacement or injury to the battery seals, avoiding a possible point of corrosion. Equally important is the absence of flux or interface materials, reducing to a minimum the possibility of contamination."

Weldmatic welding gets the job done better. If you are planning to weld, discuss your requirements soon with a Weldmatic representative. Or write Weldmatic Division/Unitek, 950 Royal Oaks Dr., Monrovia, Calif.

Weldmatic Equipment

REDUCES

SUBASSEMBLY TIME

BY 50%

field. The particles spiral around the magnetic field lines, are then reflected back along the field lines at some altitude above the earth (the magnetic mirror point) and so oscillate back and forth between mirror points in the northern and southern hemispheres. Due to magnetic field inhomogeneity and centrifugal force, the trapped particles also drift in magnetic longitude, westward for protons and eastward for electrons.

MIRRroring EFFECT — Those particles that mirror at high altitudes remain trapped and form a relatively stable radiation belt; those that penetrate deeply into the atmosphere lose energy by collisions and do not remain trapped, but cause ionization at low enough altitudes to affect the vlf transmission as they drift over the vlf channel. As the trapped particles drift azimuthally from the burst point, an energy separation takes place, since the higher energy particles have the higher drift rate; also, particles of equal energies drift more rapidly at higher geomagnetic latitudes. A 1-Mev electron, mirroring at 80 km altitude, has a drift rate from 6 degrees a minute at a geomagnetic latitude of 20 deg N to about 100 deg a minute at an 80 deg N geomagnetic latitude.

A test vlf path between Balboa, Panama (NBA, 18 kc) and APL/JHU, forms a well-defined north-south boundary for marking the passage of the drifting particles. Perturbation on this path began 13 minutes after the high-altitude explosion on July 9, and peak deviation was reached between 7 and 8 minutes after the burst. John Hopkins Lab scientists attribute the onset to the arrival of electrons with energies exceeding 10 Mev, but relatively low total energy; the maximum is correlated with the arrival of 3-Mev electrons, representative of the peak in the spectrum of the total overhead energy.

Perturbations at the time of the explosion over three different vlf paths are illustrated in Fig. 3.

Radiant Cage May Smooth Heart Patients' Slumber

CHICAGO—A radiant cage, coupling r-f energy to an implanted coil, may
allow patients with artificial heart stimulators to shed their battery packs for sounder slumber, J. Schuder, University of Missouri, told the Conference on Engineering in Medicine and Biology.

Efficiencies of a few percent have already been achieved, using mutually orthogonal coils measuring 2 meters on a side and centering the 9-cm-radius receiving coil within a 1-cubic meter area inside the cage, where the patient's chest is.

Simultaneous excitation of the external coils with 1 Kw at 422, 425 and 428 Kc transported 25 to 90 watts to monitor equipment loading the implanted coil. Artificial hearts would require 35 watts input or more, Schuder said. More than 50 watts have been transferred regularly inside one dog over the past 8 months, in experiments to evaluate tissue damage.

Superconducting Generator

MAGNETO - HYDRODYNAMIC power generator, using a superconducting solenoid to produce the necessary magnetic field, was shown feasible by Westinghouse Research Laboratories. The niobium zirconium superconducting coil operates at -452 deg F, produces 30 kilogauss. In its 1-inch hollow core, thermally insulated by liquid nitrogen, ethylene and oxygen are passed at 4,500 deg F and interact with a small component of the magnetic field (swirling action). A voltage is developed between a center electrode and a wall electrode. This type of generator is said to open possibilities as a space vehicle propulsion unit; because superconducting magnets consume no power to produce a field, they will be more efficient than conventional MHD generators.

Phil Greenstein can show you...

how to measure in-phase, quadrature and angle while sweeping frequency to 100 kc

North Atlantic's latest addition to the PAV line of Phase Angle Voltmeters* enables you to make measurements while frequency is varying over half-decades without recalibration. The VM-301 Broadband Phase Angle Voltmeter* provides complete coverage from 10 cps to 100 kc, and incorporates plug-in filters to reduce the effects of harmonics in the range of 50 cps to 10 kc with only 16 sets of filters. Vibration analysis and servo analysis are only two of the many applications for this unit. Abridged specifications are listed below:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Range</td>
<td>1 mv to 300 volts full scale</td>
</tr>
<tr>
<td>Voltage Accuracy</td>
<td>2% full scale</td>
</tr>
<tr>
<td>Phase Dial Range</td>
<td>0° to 90° with 0.1° resolution (plus 4 quadrants)</td>
</tr>
<tr>
<td>Phase Accuracy</td>
<td>0.3°</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10 megohms, 30μf for all ranges</td>
</tr>
<tr>
<td>(signal and reference inputs)</td>
<td></td>
</tr>
<tr>
<td>Reference Level Range</td>
<td>0.15 to 130 volts</td>
</tr>
<tr>
<td>Harmonic Rejection</td>
<td>50 db</td>
</tr>
<tr>
<td>Nulling Sensitivity</td>
<td>less than 2 microvolts</td>
</tr>
<tr>
<td>Size</td>
<td>19" x 7" x 10" deep</td>
</tr>
<tr>
<td>Price</td>
<td>$1750.00 plus $120.00 per set of filters</td>
</tr>
</tbody>
</table>

North Atlantic's sales representative in your area can tell you all about this unit as well as other Phase Angle Voltmeters* for both production test and ground support applications. Send for our data sheet today.

*Trademark

NORTH ATLANTIC industries, inc.
TERMINAL DRIVE, PLAINVIEW, L. I., NEW YORK • OVerbrook 1-8600

February 8, 1963
MINCOM SERIES CM-100 RECORDER/REPRODUCER

Built-in reliability inspires confidence everywhere in this Mincom Wideband Instrumentation Recorder/Reproducer. CM-100’s reputation for minimum downtime stems from its rugged simplicity—only twelve moving parts, four easy adjustments, dynamic braking. Plus, of course, overall electronic craftsmanship and the extreme precision achieved by Mincom’s longitudinal recording with fixed heads. Versatile, too: Seven or fourteen tracks, 1.2 megacycles at 120 ips for analog data storage or simultaneous post- and predetection capabilities in FM/FM modulation, PCM, PCM/FM and other FM-type carrier systems. Write today for complete specifications.

Mincom Division 3M COMPANY
2049 South Barrington Avenue, Los Angeles 25
425 13th Street N. W., Washington 4, D. C.
Chances are you'll “plug-in” this power supply only once!

Forget all your old ideas about how long a precision power supply will last . . . how much abuse it can take and still stay accurate.

Once installed, you'll probably never even touch a Con Avionics transistorized power supply again during the life of the equipment it operates.

Many of these power supplies have survived 20,000 hours under the worst possible conditions without the slightest sign of failure.

The reason? Con Avionics unique design principle “Worst Case” Analysis.

It eliminates 90% of the causes for power supply failure. Increases the accurate life of a power supply substantially. Assures virtually failure-proof performance.

Learn how Con Avionics transistorized power supplies can give you extra protection against costly shutdowns, and substantially reduce your supply cost per operating hour. Write for bulletin on Con Avionics complete line of Transistorized Power Supplies. Or call your local Con Avionics representative.

CONSOLIDATED AVIONICS CORPORATION

800 SHAMES DRIVE, WESTBURY, L. l., NEW YORK

CIRCLE 81 ON READER SERVICE CARD
HIGH GAIN I.F. PENTODES

When improved i.f. performance is required, the first choice of television designers is the EF183, EF184 combination.

In i.f. amplifier circuits the frame-grid construction of these two tubes gives outstanding advantages of reduced microphonics, uniformity, better controlled characteristics and high gain—twice the slope of conventional tubes.

Both tubes are available with 6·3V, 0·45A or 0·6A heater ratings.

For full technical data on the EF183 and EF184, write to the address below.

CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>EF183</th>
<th>EF184</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_m</td>
<td>14</td>
<td>15.6</td>
</tr>
<tr>
<td>E_b</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>E_c</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>I_b</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>E_d</td>
<td>-1.8</td>
<td>-2.0</td>
</tr>
</tbody>
</table>

Full details on the Mullard range of tubes for television, stereo and high-fidelity available from:

INTERNATIONAL ELECTRONICS CORPORATION,
81 SPRING STREET, NEW YORK 12, N.Y.
Worth 6-0790

Mullard ELECTRONIC TUBES

Mullard is the trade mark of Mullard Limited

CIRCLE 82 ON READER SERVICE CARD
Photoconductive chopper, all-transistor circuitry permit reliable low-level measurements with the wide-band, high-gain DY-2460A.

Here's a completely solid state high-gain DC amplifier for only $395. Exceptional reliability is achieved on low-level measurements with a specially designed photoconductive chopper and all-transistor circuitry.

The DY-2460A will supply an output of ±10 v peak at 10 ma. Zero drift is less than 1 µv per week, noise less than 4 µv peak to peak. Fast settling time (as little as 25 µs to 0.01%) and rapid overload recovery (only 20 µs, plus settling time) make the amplifier ideal for systems use.

Long life is assured for the DY-2460A because of advanced solid state design. The photo chopper is unaffected by external vibration and is inherently a long-life device. Power consumption is only 4 watts, so that heat problems are non-existent.

Plug-in versatility is offered in the DY-2460A, with interchangeable plug-ins available for systems use (5 fixed gains, 10 to 1000); bench use (fixed gain in decade steps 1 through 1000); for special individual situations (patch panel brings input, output, summing point and feedback circuit to the front panel), and plus-one amplifier uses (input resistance greater than 10^10 ohm, high gain accuracy).

PRICE: DY-2460A Amplifier, $395.00. DY-2461A-M1 Data Systems Plug-in, $85.00. DY-2461A-M2 Bench-use Plug-in, $125.00. DY-2461A-M3 Patch Unit Plug-in, $75.00. DY-2461A-M4 Plus-one Gain Plug-in, $35.00.

Write or call today for complete details and specifications. *Data subject to change without notice. Prices f.o.b. factory.*
New 40-mm Silicon Crystals Permit Larger-Capacity Devices

Increased diameters promise higher ratings, lower cost for devices

HYPERPURE silicon has been used to make quality semiconductor devices for over six years. Improved methods for fabricating devices have greatly increased the uniformity, reliability and performance characteristics of devices. Silicon of increasing quality also contributed to improvement of semiconductor devices.

Development of new silicon production techniques have resulted in higher and more uniform purity, improving resistivity and lifetime of components. In addition, development of zone-refining techniques for silicon, pioneered by both Bell Telephone Laboratories and Siemens Schuckertwerke, have resulted in the availability of high purity crystals uniform from end to end and from center to surface.

NEW TECHNIQUE—Dow Corning now claims a major advance in silicon production with zone-refining techniques. Previously, high-quality zone-refined silicon crystals were available in maximum diameters of only about one inch or 26 mm. Now crystals can be grown routinely to diameters of 1¼ inches or 40 mm, a practical limit for present methods for slicing silicon crystals.

This new zoning technique also improves the uniformity of resistivity and dislocations in the radial direction, from the crystal center to surface. This would not be expected by extrapolation of crystal properties from previous diameters up to 1½ inches.

One application that is foreseen for the large-diameter crystals will be in manufacture of power diodes. At the IEEE meeting held in New York last week, discussion of a 50 megawatt silicon rectifier installation illustrated demand for higher current ratings. At present, these rectifier assemblies are usually made up from a group of silicon diodes with a 250 ampere rating. This is said to be the largest diode that is made in quantity. These rectifiers are made from float-zoned crystal with diameters of about ½ inch. With the larger crystal diameters, development of power diodes with current ratings up to 1,000 amperes may be expected.

RECTIFIERS—Another application for large diameter crystals would be for the manufacture of silicon controlled rectifiers. These devices, basically solid-state switches, operate in microseconds, have potential application wherever a switch is found in an electrical circuit. Silicon controlled rectifiers are highly desirable since there are no moving parts, there is no arc when the switch is opened, no fire hazard and the devices are highly reliable. With large diameter silicon crystals, increases in current ratings for silicon controlled rectifiers are expected in the same order as for power diodes.

Dow Corning's C. G. Currin pointed out that high power devices are not usually made from Czochralski crystals, which are pres-
NEW LEACH HALF-SIZE CRYSTAL CAN RELAY

NOW IN
PRODUCTION QUANTITIES

It's only .400 inches high, .400 wide and .800 in length. This smallest of the Leach relay family is also the lightest — only .25 ounces. Most important is its performance. It gives full-size results in low level to 2 amp. switching and is completely interchangeable (including internal terminal connections) with standard crystal can relays. A wide variety of mountings and terminals are available. Which reminds us, Leach has a complete line of standard size subminiature crystal can relays, too. Yes, when it comes to relays, any way you look at it, you should

LOOK TO LEACH CORPORATION
18435 SUSANA ROAD, COMPTON, CALIFORNIA
STOP. You've found it. Name is Electroset. Sets up to 4200 terminals per hour. Very reliable. Performance tested and proven by leading electronics firms.

BLACK & WEBSTER, INC.

LOOKING FOR THE IDEAL AUTOMATIC TERMINAL SETTER?

STOP, You've found it. Name is Electroset. Sets up to 4200 terminals per hour. Very reliable. Performance tested and proven by leading electronics firms.

LONG RUNS: Model FST-1 — raceway-fed, for split-lug, feedthrough, and other terminals. Up to 4200 per hour. All electric. (Model FST 1 Automatic Terminal Setter, not shown, a tube-fed model, achieves even faster production rates.)

SHORT RUNS: Electropunch — sets hand-fed terminals twice as fast as conventional methods, solves terminal setting problems for as little as $163. All electric. Foot-switch operation.

What's your problem? Black & Webster can help. Send sample terminal and requirements. Write today for 14-page catalog describing our complete line of production tools.

Contact Arrangement Simplifies Design

<table>
<thead>
<tr>
<th>DECIMAL</th>
<th>BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 4 2 1</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>4</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>7</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
</tr>
</tbody>
</table>

IDEA, devised by Robert B. Werden while working on a design for Atomic Energy of Canada, Ltd., solves space, cost and complexity problems over present switches which usually require two wafers. Computer and data handling equipment often require manually-operated switches that are set on a decimal scale, 0 to 9, but which deliver the equivalent binary code, 0000 to 1001. A single wafer, illustrated above, can be used for this purpose. Standard 30 deg indexing switch has a 1 pole, 11 position contact arrangement on one side, and a 3 pole, 3 position contact arrangement on the other side. Drawing is viewed from knob end with switch in extreme counter-clockwise position. Rotor blades of the single-wafer design are through-hole, fed, for split-lug, feedthrough, and other terminals. Up to 4200 per hour. All electric. Foot-switch operation.

RESISTIVITY — Large diameter flat-zone crystals in most respects have properties quite similar to previous float-zone silicon crystals. Using phosphorus or boron, crystals are doped to resistivities between one and 200 ohm-cm. Resistivity is uniform, not only in axial or lengthwise direction, but also in the radial direction.

Previous experience indicates, according to Dow Corning spokesmen, that crystal perfection deteriorates as crystal diameter increases. Extrapolation of these data would indicate that a 1-in. diameter crystal, if it could be developed, would be useless due to its poor crystal structure. However, the Dow Corning process is said to produce an entirely different crystal characteristic. A reasonable number of crystal imperfections are found for diameters as great as 1½ inches. The average dislocation density is approximatively available in diameters up to 1½ inches. Power applications require greater uniformity of electrical and crystallographic properties than are normally obtained from Czochralski crystals. The important uniformity of these characteristics, now obtained by zone-refining, is improved by the advance made in forming large crystals.

SIGNAL DEVICES — Competition among manufacturers of small signal devices—transistors and low-power diodes—require that they be mass produced at minimum prices. Thus, cost is extremely important. One of the major costs is in the diffusion process, by which most of these devices will be made. One major transistor manufacturer stated that savings in cost by using a 1½-in. slice from a Czochralski crystal was so great that it could not be justified economically. Therefore, most manufacturers of these devices use large diameter Czochralski crystals instead of small-diameter float-zone crystals previously available. Using large float-zone crystals, now available, greater yield and greater uniformity can be obtained.

RESISTIVITY — Large diameter flat-zone crystals in most respects have properties quite similar to previous float-zone silicon crystals. Using phosphorus or boron, crystals are doped to resistivities between one and 200 ohm-cm. Resistivity is uniform, not only in axial or lengthwise direction, but also in the radial direction.

Previous experience indicates, according to Dow Corning spokesmen, that crystal perfection deteriorates as crystal diameter increases. Extrapolation of these data would indicate that a 1½-in. diameter crystal, if it could be developed, would be useless due to its poor crystal structure. However, the Dow Corning process is said to produce an entirely different crystal characteristic. A reasonable number of crystal imperfections are found for diameters as great as 1½ inches. The average dislocation density is approximatively available in diameters up to 1½ inches. Power applications require greater uniformity of electrical and crystallographic properties than are normally obtained from Czochralski crystals. The important uniformity of these characteristics, now obtained by zone-refining, is improved by the advance made in forming large crystals.

SIGNAL DEVICES — Competition among manufacturers of small signal devices—transistors and low-power diodes—require that they be mass produced at minimum prices. Thus, cost is extremely important. One of the major costs is in the diffusion process, by which most of these devices will be made. One major transistor manufacturer stated that savings in cost by using a 1½-in. slice from a Czochralski crystal was so great that it could not be justified economically. Therefore, most manufacturers of these devices use large diameter Czochralski crystals instead of small-diameter float-zone crystals previously available. Using large float-zone crystals, now available, greater yield and greater uniformity can be obtained.

IDEA, devised by Robert B. Werden while working on a design for Atomic Energy of Canada, Ltd., solves space, cost and complexity problems over present switches which usually require two wafers. Computer and data handling equipment often require manually-operated switches that are set on a decimal scale, 0 to 9, but which deliver the equivalent binary code, 0000 to 1001. A single wafer, illustrated above, can be used for this purpose. Standard 30 deg indexing switch has a 1 pole, 11 position contact arrangement on one side, and a 3 pole, 3 position contact arrangement on the other side. Drawing is viewed from knob end with switch in extreme counter-clockwise position. Rotor blades of the single-wafer design are through-connected, and wafer is a Steatite miniature PA 2000 type.
The Honeywell Visicorder oscillograph & GUNPOWDER records forces in circuit breaker bushings

Wham! Forces imposed by the operation of oil-filled circuit breakers—especially during short-circuit interruption—are destructive enough to damage bushings. Engineers at the Ohio Brass Company have devised an ingenious method of simulating this explosive force in order to analyze bushing loads.

On a typical bushing, they mounted a dummy interrupter, in which they exploded gunpowder to propel from the interrupter fist-sized metal projectiles.

Strain gages, installed on the bushing ground sleeve, were connected to a Honeywell 119 Amplifier. A Honeywell 906 Visicorder oscillograph was chosen to record the test data because of the extremely high speed and transient nature of the signals to be measured.

A typical record of this test, shown at right, was made at a record speed of 50″/second.

These Ohio Brass tests have opened the way to the development of standards for the mechanical performance of bushings (AIEE papers 62-153, 60-107).

This application is only one of thousands where the Visicorder is called upon daily as a basic research, test, and development tool. One of the six different Visicorder models should be a basic instrument in the management of your data acquisition.

Schematic at left diagrams method for duplicating bushing loads during short-circuit interruptions. Projectile (A) produces lateral forces at right angles to bushing axis; projectile (B) produces axial load on bushing terminal. At right, squibs have just detonated charges propelling projectiles from dummy interrupter. Below, Honeywell Model 906 Visicorder Oscillograph records circuit breaker bushing test for Ohio Brass.

For full details on all Visicorder Oscillographs, tape systems, and signal conditioning equipment, write to Honeywell, Platte Division, Denver 10, Colo., or phone 303-794-4311.

DATA HANDLING SYSTEMS

Honeywell
Intellux multilayer circuit boards are electroformed in three dimensions. This exclusive process enables the construction of solid copper feed-thru busses and land areas. Reliability is assured by proven performance and they make economic sense.

ADVANTAGES ARE MANY:

- Higher circuit density
- Blind subsurface layer/layer interconnections
- Freedom in ground plane design
- Board may be flexed without circuit damage
- Pads can be wave, dip or iron soldered and series welded
- Design changes can be readily made at minimum expense

Write for complete Intellux multilayer data and specifications.

OUTPUT power of experimental Duotron-amplifier is over 230 watts at 2.8 Ge—Fig. 1

MICROWAVE OSCILLATOR HAS HIGH EFFICIENCY

By RYOKAWA SAWADA,
Hitachi Central Research Laboratory
Tokyo, Japan

CALCULATIONS and experimental results of a novel microwave-oscillator tube, called Duotron, indicates promise as high-efficiency oscillator.

The important building blocks of the tube are gaps and cavities. The resonator is formed by mutually-coupled cavities, so that the r-f oscillator produces π-mode electric field in the resonator. At any instant, the two gap fields are opposite in phase.

An electron gun produces an electron beam which traverses, in succession, the first and the second gap. The resonator can oscillate powerfully and the maximum theoretical beam conversion efficiency is approximately 30,000 per sq centimeter, which was typical of the zone-refined crystals supplied to device makers a few months ago.

SOLUTION—Key to the new zone-refining process centers around overcoming a surface tension problem that is normally encountered in formation of large diameter crystals. No loss of other vital semiconducting properties occur with the new technique. Currin estimates that about 250,000 dollars worth of silicon is now used in electronics. When Dow Corning entered the silicon market, about three years ago, there were about 12 suppliers of silicon. Since then there have been 7 dropouts. Still a large producer of silicones, Dow Corning now has set sights on the ever growing silicon market.
Wire and cable insulated with Kynar—the new fluorocarbon resin from Pennsalt Chemicals—delivers premium performance in your product and on your production line. Kynar-insulated hook-up wire has high dielectric strength and resistivity... strips cleanly, won’t tear or cut-through in automatic assembly equipment. Kynar has a useful temperature range of −80°F to +300°F, and Kynar-insulated wire forms strong, tight seals with epoxy-base potting compounds. As a jacketing material, Kynar offers superior resistance to abrasion, corrosion, weathering, and radiation... extrudes readily over single or multi-strand constructions as well as vinyls, PTFE and metallic shields. It can be pigmented and striped to identify circuits. Typical properties of 10-mil Kynar insulation extruded over AWG 24 solid soft copper conductor:

- Dielectric strength, volts: 10,000
- Insulation Resistance, meg-ohm/M: > 1,000
- Cold bend, % dia., 1 lb. weight at −70°F, volts: 8,000
- Abrasion Resistance, Janco Tester grade 400 alumina, inches of tape: 50
- Cut through, anvil at 90°, 350 gm. hours at 270°F: > 500
- Soldering test, flare back: None
- Flammability: self extinguishing

a unique tool for
WORST CASE ANALYSIS

DATAPULSE 106 SOLID STATE PULSE GENERATOR

10 MC PULSE ±10V INTO 50 OHMS SIMULTANEOUSLY

LINEAR RISE AND FALL TIMES SEPARATELY VARIABLE FROM 10NS.

COMPLETE SIMULATION OF WAVEFORMS GENERATED FROM SOLID STATE CIRCUITRY./END POINT COMPUTER DESIGNED./DUTY CYCLE UP TO 70% ACROSS FULL RANGE./HIGH POWER OUTPUT CAN BE DIRECTLY MIXED WITH OTHER SIMILAR PULSE GENERATORS./PRICE $980.00

ABBREVIATED SPECIFICATIONS

FREQUENCY — 10cps to 10mc.
EXTERNAL TRIGGER — From pos. or neg. signals with controllable sensitivity.
AMPLITUDE — Simultaneous pos. and neg. pulses 10v max. into 50 ohms (200 ma).
RISE AND FALL TIMES — 10 ns to 1 ms continuously and separately variable.
PULSE DELAY — 50 ns. to 5 ms. continuously variable.
PULSE WIDTH — Less than 50 ns. to 5 ms. continuously variable.
SIZE AND WEIGHT — 5¼"h x 17"w x 16"d, approx. 25 lbs.

See the Datapulse Line at IEEE Display Booth 3945

Receiving Tubes Utilize
Rhenium Tungsten Heaters

ALTHOUGH tungsten is basic in the construction of tube heaters, incorporation of rhenium enhances strength and reliability during the heating and cooling that occurs during off-on cycling of electronic tubes, according to Sylvania. Company says 14 types of receiving tubes will use a rhenium-tungsten alloy in the future. Alloy is said to offer lower current density, more reliable high line operation and reduced damage to surge currents. Improved ductility helps prevent heater insulation cracking and reduced incidents of heater cathode shorts, according to company.
Laminates you can trust

Silicone resin laminates offer constant electrical properties

Dow Corning silicone resins help create a variety of laminated parts with a unique combination of electrical properties. Silicone-glass laminates are very low loss materials with low dielectric constant. More important, however, is the fact that both dissipation factor and dielectric constant stay low as a function of both temperature and frequency.

Moisture is no problem either. Silicone-glass laminates maintain their low loss characteristics under heat and moisture conditions. For example, silicone-glass laminate with a dissipation factor of 0.002 was aged for 200 hours at 250°C, then immersed in water for 24 hours. Tests showed no change in dissipation factor. Other outstanding electrical properties are: surface resistivity, electric strength and arc resistance.

Design engineers have found these constant low loss properties invaluable in modern electronic design. For regardless of environmental conditions, electrical parameters stay constant ... equipment performs as designed.

Silicone-glass laminate sheet in a variety of thicknesses is immediately available from many fabricators. Some also offer help with special designs of finished laminated parts. Ask your present source about silicone-glass laminates made with Dow Corning Silicones.

For list of fabricators of silicone-glass laminates write Dept. 3914, Engineering Products Division, Dow Corning Corporation, Midland, Michigan.
Said Pierre de Fermat:

"The optical length of an actual ray between any two points is shorter than the optical length of any other curve which joins these points and which lies in a certain regular neighborhood of it."

The continuing requirements of space exploration projects for larger and more accurate antennas have resulted in the construction of a number of enormous parabolic reflector antennas. Each costs many millions of dollars. This tremendous expense is due to the difficulty of maintaining reflector accuracy as the huge structures are moved and tilted, and as wind forces and temperature changes distort the surface.

Lockheed Missiles & Space Company's Electromagnetic organization is developing a far more economical and practical solution to the problem. A 120' reflector antenna working model now is being erected. Its shape is spherical instead of parabolic, and it is firmly mounted on the ground. Only the feed is moved to change the beam angle. This type of antenna design now is feasible, thanks to successful Lockheed research in spherical aberration correction. The concept should find applications in radar systems, satellite communication systems, and systems for data reception from deep space exploration probes.

Many comparable scientific break-throughs are being evolved at Lockheed because scientists and engineers find here the creative freedom needed to pursue and perfect original ideas. Lockheed Missiles & Space Company is located on the beautiful San Francisco Peninsula in Sunnyvale and Palo Alto. If you are interested in correlating your specialty to one of Lockheed’s many challenging assignments, please write: Research & Development Staff, Dept. M-39A, 599 North Mathilda Avenue, Sunnyvale, California. Lockheed is an equal opportunity employer.
TELSTAR WOULDN'T WORK WITHOUT OUR WIDGETS

(Mycalex is one of only hundreds of companies that can make this claim)

Telstar is a triumphant achievement for the entire Free World. It has enormous potential for improving communications between peoples everywhere. Bell Telephone Laboratories initiated and guided this vast undertaking, but some 1955 companies contributed their special skills to making it a success. Mycalex Corporation of America was one of them.

Mycalex developed dielectric parts fabricated of our SUPRAMICA® 555 ceramoplastic that are used in 13 different series of adjustable inductors and transformers that operate in both the receiving and sending sections of the Telstar satellite. Both physical and dielectric specifications were rigid.

SUPRAMICA (we make three kinds designated 555, 560 and 620 "BB") is only one of the products we produce as the world's leading specialists in high-temperature, high-reliability ceramic insulation materials and components. We are proud to have had a hand in Telstar. If we can give you a hand in some electrical or electronic insulation project—large or small—that you are about to embark on, please fill out the coupon below and send for our new 36-page color catalog. No obligation.

MYCALEX CORPORATION OF AMERICA

World's largest manufacturer of ceramoplastics, glass-bonded mica and synthetic mica products

Mycalex Corporation of America
Dept. G, Clifton Blvd., Clifton, New Jersey
Please send me information on SUPRAMICA 555 ceramoplastic and other Mycalex products.
My specific interest is ________________________________

Name ________________________________ Title ________________________________
Company ________________________________
City ________________________________ State ________________________________
Speer’s newly-developed RC 07 1/4 watt resistors—available in a range of values from 10 ohms and up—to meet or exceed all MIL-R-11D specifications. What’s your chief concern—load life? Moisture resistance? Temperature coefficient?

How does Speer do it? All this is made possible by Speer’s intensive research and development program and an unsurpassed quality control and inspection system that subjects resistors to rigorous control every step of the way from incoming raw materials to final shipment of finished product. Would you like to see certified test data? A request on your company letterhead will bring it. Have you seen “How a Speer Resistor Wins its Stripes”? Ask your Speer Representative to arrange a showing of this film of Speer’s Q. C. & I. system. Ask your Speer Representative to arrange for samples, too. Most values available from stock right now.
What does a systems engineer do at Hughes?

Responsibilities: Determine systems requirements for manned airborne electronic systems and supporting ground equipment to carry out necessary technical direction to assure system integrity. Responsibilities include logical design, signal flow designs and circuit interface requirements between portions of the system. Must be able to create control documents for technical and financial visibility.

Experience: Two years experience in one or more of the following:
1. Electronics circuit design
2. Electronics packaging
3. Installation, testing, etc., of electronics equipment for an airframe manufacturer or a missile systems manager
4. Systems engineering
5. Field engineering experience on Airborne F.C.S.

Academic qualifications should include B.S.E.E. or equivalent degree from an accredited university. U.S. citizenship a requirement.

For immediate consideration, please airmail your resume to:

MR. ROBERT A. MARTIN
Head of Employment
Hughes Aerospace Divisions
11940 W. Jefferson Blvd.
Culver City 76, California

Creating a new world with Electronics

An equal opportunity employer.
Checking Connector Production

Techniques and equipment improve statistical check-out tests

By W. F. BONWITT
T. SHAHN AZARIAN
Burndy Corporation
Norwalk, Conn.

CONNECTOR - RELIABILITY — measuring techniques and equipment have been developed to overcome problems generated by the sheer number of samples and measurements needed for statistical, or lot-to-lot, evaluation. Time and cost are significantly less than design-qualification testing. Deviation from qualification tests can be detected statistically.

Six test sequences (Fig. 1) are followed using three basic environments — temperature, moisture, vibration-shock. Before each sequence and after each environmental test, various connector characteristics are checked in the following order: contact retention, capacitance, probe damage, contact separation, connector separation, contact resistance, high potential, insulation resistance.

VARIATIONS — The foregoing sequential environmental testing can be improved upon. For example, one might consider monitoring contact resistance through a minimum time period of temperature, moisture, or vibration and shock. Or, one might consider exposure to simultaneous environmental affects such as moisture and vibration for a given length of time. Continuous monitoring of these will show a variable distribution of results. An accompanying graph (Fig. 2) shows that although individually moisture and vibration tests would pass contact-resistance requirements, jointly ap-

AUTOMATIC-STEPPING switches in automatic potential-drop test equipment simultaneously hook-up 20 connectors. Panel lights indicate which connectors are under test.

CONNECTOR ACCEPTANCE CHECKING

Connector manufacturers can perform stringent lot-to-lot tests to check whether high-volume production variables — material variations, operator variability, machine variability — have affected designed-for reliability. Testing program described here was formulated by Burndy and a major customer.

SIX test sequences check-out various connector characteristics measured after each environmental exposure — Fig. 1.
How low-cost Raytheon X-L Reliability Program cuts “hidden” semiconductor failures by 10:1

Many transistors and diodes good enough to pass today’s reliability tests can still drift out of spec limits and fail tomorrow. Now, for the first time, Raytheon’s X-L reliability technique can detect these future drifters before they fail — at exceptionally low cost. Result: a reduction in failure rate of as much as 10:1 over conventional ultra-reliability levels — 100:1 over Military Specifications.

To qualify for X-L certification, devices must first pass the rugged requirements of the Raytheon MARK X and MARK XII reliability programs. Then, each semiconductor is carefully measured — electrically exercised for 100 hours — and measured again for changes in characteristics. A parameter change of as little as 2 nanoamps can cause rejection — even though the device is still within initial spec limits. Potential failures, which would have passed conventional electrical tests, are eliminated.

These low-cost, “tight yardstick” benefits of X-L certification are a direct result of proprietary techniques and specialized equipment developed at Raytheon and proven over 10 million unit-hours of major program experience.

When your equipment or system requires this kind of semiconductor reliability — without the high cost of circuit redundancy — please contact your nearest Raytheon Field Office for full information or write Semiconductor Division, Lowell, Massachusetts.
FORCE

Con

98

L

CHICAGO OFFICE:

55th

A

Holders for block

tations

pressure to cause

localized

induction heating in an evacuated

crystals

placed

nest,

heating minimizes distortion. Induction

smoothing produces consistently sound joints with

guides.

tube is joined to a brass

glass-coated

lent

Induction brazing has proved to be an

method for production assembly of wave

glass

held

in plate-type induction

base,

Quartz

are sealed at one time.

heating.

in Fig. 3) having a

system (Fig. 3) having a

connector-evaluation
test is the standard checking

method. However, a single measure-

ment has been developed to

combine the check on the retention

of a smaller weight by the socket

and the check on its inability to

lift a larger weight. A test pin is

mounted over a socket in the

connector assembly. Pin is part of a

system (Fig. 3) having a

screw drive to vertically move the

pin into the socket and a calibrated

strain gage connected to a bridge

circuit for measuring insertion

force. Screw drive rapidly inserts

the pin to a predetermined socket

depth and withdraws it at a slow,

steady rate. Bridge circuit includes

an alternating vacuum tube

voltmeter with automatic voltage

range selector within the range

observed. As the pin is withdrawn,

the maximum voltmeter value and

range are observed. A calibration

graph then provides conversion to

force. This arrangement is pre-

ferred to mechanical spring gages.

PROBE DAMAGE—Insertion of a

weighted contact pin into a socket,

followed by rotation, tests the con-

nector-socket resistance to distor-

tion by test probes of contact finge-

ers and contact spring in preserv-

ing adequate contact force. Awk-

ward rotation by hand lessens test

reproducibility. To eliminate this

factor and to increase test speed,

a fixture of cylindrical shape was

designed to mount the connector

at one end at right angles to the

rotation axis (Fig. 4). A weighted

test pin is placed in one connector

socket at a time and the cylinder

rotated through 360 degrees.

CONTACT RETENTION—Con-

tact-retention force is that force

which can be resisted by the con-

nector contacts before they are

either pushed out or dislodged. In

testing, a force is applied axially

against the tip of the connector

pin, or the entry of the socket,

maintaining full load for a speci-

fied period. Doing this with a

calibrated spring gage or in a ten-

sion tester is difficult because
The only VOM with 100,000 OHMS VOLTS SENSITIVITY

Here's a VOM with so much capability, you'll find yourself using it more than any tester in the lab or shop. The 10 microampere movement handles tests other VOMs can't touch... even outdoes a VTVM on some checks. And, because the movement in the 269 is built with springbacked jewels, you don't have to baby it. Through the toughest service, it's always accurate and sensitive. The 269 is handy, too. Being self-powered, there's no plug-in required. You can make tests anywhere. A big, wide 7-inch scale makes the 33 ranges easy to read and you select them merely by turning a knob. Your Electronic Parts Distributor will be glad to demonstrate these and other features like the Adjust-A-Vue handle and explain the self-shielding of its rugged core-type movement. Call him up about this super-sensitive VOM today.

DC Volts: 1.6, 8, 40, 160, 400, 1600, 4000...100,000 ohms per volt.
AC Volts: 3, 8, 40, 160, 800...5000 ohms per volt.
AF Output Voltage: 3, 8, 40, 160 volts.
Volume Level in Decibels: -12 to +45.5 DB in 4 ranges.
DC Resistance: 0-2K ohms (18 ohms center); 0-20K ohms (180 ohms center); 0-200K ohms (1800 ohms center); 0-2 megohms (18K ohms center); 0-20 megohms (180K ohms center); 0-200 megohms (1.8 megohms center).
DC Current: 0-16, 0-160 ua; 0-1.6, 0-16, 0-160 ma; 0-1.6, 0-16a.
Model 269 with Leads and Operator's Manual...... $89.95

Simpson Electric Company
5203 W. Kinzie St., Chicago 44, Illinois
Phone: EStebrook 9-1121
In Canada: Bach-Simpson Ltd., London, Ontario

Simpson

Simpson ELECTRIC COMPANY
5203 West Kinzie Street • Chicago 44, Illinois
Phone: (312) ESTebrook 9-1121
In Canada: Bach-Simpson Ltd., London, Ontario
Representatives in Principal Cities...
See Telephone Yellow Pages
PLOT 2 AGAINST 1 SIMULTANEOUSLY!

DC signals representing related functions plot cartesian coordinate curves on standard 11" by 17" graph paper on the new 2 pen Moseley Model 2FR. 10 input ranges, 0.5 mv to 10 v/in.; alternatively, X-axis internal sweep permits plotting two variables against time, 0.5 to 50 sec./in. Accuracy better than 0.2% of full scale, resettability better than 0.1% of full scale. Servos isolated and free of ground. Event marker pen is optional. Rack mount 19½" high. $3,575.

F. L. MOSELEY CO. 409 N. Fair Oaks Ave., Pasadena, California & an affiliate of Hewlett-Packard

alignment and rate-of-force-increase control is inadequate. Fig. 5 illustrates an automatic device that meets the needed requirements and that also includes process reversal to unload test samples. An electrical-cycle control (timer) actuates a solenoid to let air enter at a predetermined pressure into a cylinder that provides the axial test force. When the maximum force is reached, it is maintained for a given period by a bleeder valve. At the end of this period, the timer cuts-off the solenoid valve so as to retract the cylinder's pushrod.

POTENTIAL DROP — Determining potential drop across connections has been completely automatized because of the many life-test measurements required. A transistorized test device was developed that includes eleven automatic stepping switches which provide for simultaneous hookup for 20 connectors, each with 35 connections and which can concurrently energize three connectors. Lights indicate which connectors are energized and which position is being measured. All 35 positions of each connector are wired in series through the test device. A direct current of 7.5 amperes is used with a potential drop of 45 millivolts. A mechanically programmed tensile tester engages and disengages the connectors with measurements made after every 50 such cycles. This life-cycling is continued to failure. An amplifier and a metering circuit having an indicating circuit and overvoltage trigger, measure potential drop. Set at 44.5 millivolts, the trigger circuit automatically stops the test when this level is exceeded, actuating a light and buzzer alarm. Meter is then read and test started again manually. Measurements begin after one minute of current flow when thermal stabilization is achieved. Measurement speed can be varied from 4 second to 5 seconds. This is advantageous: for example, assuming an average life of 10,000 test cycles, for 221 connectors with 35 connections each, measurements in excess of one million would be required.
QUALITY SPECS CHECKED
By Computer System

By E. F. THIBEAULT
Clevite Transistor Division
Clevite Corporation
Waltham, Mass.

THREE separate tests each are made of diodes' forward voltage and reverse current leakage by automatic equipment that records data on punched cards for computer evaluation. Testing rate is 1,500 diodes per hour.

RIGID SPECIFICATIONS on mass-tested silicon-alloy diodes—forward voltage less than 1 volt and reverse current leakage less than 100 milli-micro amperes—have prompted the use of a Univac Step 80 Card System in Clevite's Waltham, Mass. plant. Diode checking requires that forward and reverse readings be taken over 3 time intervals during high-temperature and operational-life tests. Readings are recorded by automatic equipment on identifying punched cards. Computer uses cards to calculate whether difference between smallest and largest of forward-voltage readings exceeds 50 millivolts and whether the smallest-and-largest reverse-current difference exceeds 10 na.

This information is recorded on individual cards and used to tabulate histograms: For example, with forward voltage, a 0.50 to 1.00 volt range is divided into 20 intervals (.50, .51, etc.). Readings falling in different intervals are used to calculate arithmetic mean and variance of the three voltage-reading distributions.

Arithmetic mean and variance of all six distributions (forward voltage and reverse-current leakage) are used to determine significance of spread about the mean. Cards for those diodes not having readings representative of the total population are sorted into a separate output stacker on a high-speed reader.

February 6, 1963

SOLVES BROADBAND ANTENNA BALUN PROBLEMS

The Model H20 is a unique power splitting device that features:
- extreme broadband performance (over two octaves)
- low insertion loss (less than ½ db)
- high isolation (over 25 db)
- excellent phase and amplitude balance.

Its compact size of 5" x 4" x 1" lends itself to tight packaging in a complex system.

For further information and specifications, write for HF Hybrid Data Sheet.

ADAMS-RUSSELL CO., INC.
280 BEAR HILL ROAD • WALTHAM 54, MASS. • TEL. 899-2540

CIRCLE 101 ON READER SERVICE CARD
Makes the Smallest Sound

SO000 BIG...

LEL SERIES TP
Antenna Preamplifiers

Whether you're talking to TelStar, directing satellite traffic or trying to set a new distance record for the cross-cosmos signal sprint...LEL's TP Series Preamps provide top-flight performance for amplifying signals at the antenna with 23db minimum gain and noise figures of 2 to 6db. Sun shields for outdoor use in tropical areas are optional. Self contained power supplies operate from 115V, 50-400 cps, 30 watts. Performance is comparable to that of parametric amplifiers in VHF systems.

There's a specific model just right for the job of improving reception in Telemetry, Space Vehicle Communications, Range Extension for Air Communications.

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. Range (Mc)</th>
<th>Bandpass (Mc)</th>
<th>N.F. (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-5</td>
<td>215-260 (Fixed)</td>
<td>45</td>
<td><4</td>
</tr>
<tr>
<td>TP-6-136</td>
<td>136 (Fixed)</td>
<td>10</td>
<td><2</td>
</tr>
<tr>
<td>TP-6-400</td>
<td>400 (Fixed)</td>
<td>10</td>
<td><4</td>
</tr>
<tr>
<td>TP-7-108</td>
<td>108-162 (Fixed Tunable)</td>
<td>6</td>
<td><2</td>
</tr>
<tr>
<td>TP-7-160</td>
<td>160-225 (Fixed Tunable)</td>
<td>6</td>
<td>2.3</td>
</tr>
<tr>
<td>TP-7-225</td>
<td>225-400 (Fixed Tunable)</td>
<td>6</td>
<td>2.5-4.5</td>
</tr>
<tr>
<td>TP-7-400</td>
<td>400-500 (Fixed Tunable)</td>
<td>6</td>
<td>4.5-6.5</td>
</tr>
</tbody>
</table>

Also available are high gain, fixed-tuned, rack mounted models TP-1P, TP-2P and TP-3P.

Send now for details...be sure to inspect the TP Series and other quality LEL equipment at Booths 2106-8, the IEEE Show.

Available! Ultra-Modern Bldg.
AIR CONDITIONED AND HUMIDITY CONTROLLED

ONE STORY
64,500 SQ. FT.
NEWARK, DELAWARE

Ground for expansion. Excellent loading and shipping.

BINSWANGER CORPORATION • INDUSTRIAL LOCATION SPECIALISTS
1420 Walnut Street, Philadelphia 2, Pa. • PE 5-0202
New York City • Charlotte, N. C. • Yemassee, S. C. • Birmingham, Ala.
Will space vehicles of the future be launched on a ready-set-go basis? "Yes," says Robert A. Bailey, chief spacecraft engineer of Lockheed-California.

"Refinement of current launch procedures is inevitable in the years ahead if we are to achieve greater efficiency for America's space assault. New techniques in spacecraft launching are essential if we are to rendezvous with manned space-based vehicles."

As visualized by Lockheed-California scientists, automatic launching of "flight ready" probes depends on completing a maximum number of pre-flight operations before the spacecraft moves to its launching pad. Mating, assembly, tests and erection would be performed off the launch site. Result? Between-firing periods would be cut to hours instead of days or weeks.

This new concept in spacecraft and missile launchings — rapid-fire liftoffs that meet selected, split-second schedules — typifies the challenging problems that engross the attention of those who work here.

SCIENTISTS AND ENGINEERS of top-level talent and training are invited to explore the immediate openings at Lockheed-California in: Antennas and Propagation; Advanced Systems Planning; Bioastronautics and Space Medicine; RF Equipment; Astrophysics; Communications Analysis; Aerophysics; Tracing, Telemetry, Command Engineering; Weapons Effects; Operations Research; Theoretical Physics; Radar Systems; Dynamics (Flutter, Aeroelasticity); Thermodynamics; Flight Test; Guidance and Control.

Write: Mr. E. W. Des Lauriers, Manager, Professional Placement Staff, Dept. 1502, 2408 N. Hollywood Way, Burbank, California. An equal opportunity employer.
Silicon Choppers

Silicon Differential Amplifiers

feature matched characteristics... extreme stability with life
Some assignments that come to us are in soft focus... general... still at the idea or problem stage. To these the people at Erie look at broadly. Then narrowly. Finally precisely and sharply. Then deliver to exact specification.

Other assignments reach us in clear, sharp focus. Already thought-out, already precisely specified. These we manufacture to the exact specification.

Whether your problem requires development and precision production, or precision production alone, Erie Resistor has the high-competency people and complete, modern facilities to handle the job... perfectly.
Reed Relays Simplify Digital Voltmeter

Portable instrument uses novel approach to reduce physical size

RECENTLY announced by Princeton Applied Research Corp., P.O. Box 565, Princeton, N.J., the model CS-3.1 miniature digital voltmeter uses both solid-state devices and reed relays, floating differential input, automatic polarity indication, automatic ranging and has no stepping switches. Range is d-c from 0.001 to 999 v with voltages greater than 100 mv displayed with three significant digits. Accuracy is within 0.1-percent of reading ±1 count, input impedance is 10 meg-ohms except on lowest range where it is 1,000 megohms and common-mode rejection is greater than 100 db. Balancing time is one to three seconds depending on change of range desired and sample rate is one reading per second. Output is available with ten-line decimal code for digital print-out. Unit is 6½ x 5 x 8 inches and weighs 9 lb. The device compares a sample of unknown d-c potential with an internally-generated ramp of 1 mv steps, then displays accumulated ramp step count on in-line readout tubes. The ramp is generated by a solid-state charge pump feeding a Miller integrator. The charge pump is driven by an oscillator which also drives a three-digit decade counter. Integrator input receives quantized charge in amounts just sufficient to raise integrator output 1 mv for each oscillator cycle. Automatic ranging programs an attenuator to charge a memory capacitor which is switched between attenuator and comparator to isolate attenuator from rest of instrument.

CIRCLE 301 READER SERVICE CARD

Converter Uses Novel Duty-Cycle Regulation

INTRODUCED by Astronetic Research, Inc., P.O. Box 397, Nashua, New Hampshire, the model ARI 168 constant-voltage power supply uses special duty-cycle regulation techniques to develop efficiencies of 85-percent over input voltage variations of two to one. Input voltage is 23.5 to 33.5 v d-c, output voltage is +28 v d-c and regulation is within 1-percent at output currents between 0.1 and 1.5 amperes. Output ripple is 0.2 v peak-to-peak, efficiency is better than 80 percent at 1.5 amperes, the unit is 6½ x 4 x 6 inches and weighs 12 ounces. As shown in the sketch, a square wave is applied to the bases of two switch transistors and a variable-width gate pulse is applied to a series emitter switch. The resulting signal across the transformer is a variable pulse-width a-c waveform whose frequency is that of the square-wave drive. The a-c waveform is rectified and passed through a low-pass filter and the average d-c value is recovered. Thus, a gate pulse whose width is inversely proportional to varying input supply voltage can be used to maintain a constant output voltage. (302)

Solid-State Data Relay Operates Within 10 μsec

NEW from Data-tronix Corp., Penn and Archer Streets, Norristown, Pennsylvania, the model 5000 is a solid-state, high-impedance switch whose input is ±5 v at 100 μamp, resistance to ground is 5,000 meg-
Simplex Electronic Cables

Float at Sea
Eliminate Hosing Problems
Link Rockets to Ground Control

Many inner space projects require cable that will not sink to the ocean floor. To meet such requirements, Simplex has designed and produced special cables with built-in flotation. If desired, cables can be designed with plastic tubes to be used as gas, pneumatic or hydraulic lines.

For the growing number of installations where hosing of water through a cable could cause serious trouble, Simplex offers a "non-hosing" cable construction. Cables with this construction contain a special filler compound which eliminates wicking action even if the cable jacket is damaged.

Umbilical cables manufactured by Simplex are used to connect rockets to their sites before firing. Essential characteristics of these cables include flexibility, exceptional reliability, resistance to mechanical damage and chemical attack by exotic fuels.

There's a Simplex electronic cable to meet virtually every existing application involving the transmission of power, control and communications. And Simplex has unique capabilities for solving any problems you may encounter in these areas. For further information, write Department 365, Simplex Wire & Cable Co., Cambridge, Mass.
This manufacturer finds the Model 6RSA-10 the best tool for its particular problem. Your nearest CLECO Representative will be glad to discuss your production problem. He can help you.

"Fully warranted for one year by the GOLDEN CIRCLE guarantee"

R-F Switch Combines Isolator and Diode

ANNOUNCED by Sylvania Electric Products, Inc., 1100 Main Street, Buffalo 9, N. Y., the SYS-3213 is a solid-state component for radar receiver protection in 13.26 to 13.36 GHz band doppler systems. It combines a ferrite isolator and a fast diode switch within a single unit. The diode switch prevents the pulse from entering the receiver and the isolator acts as an absorber so that the pulse is not reflected back to the transmitter. Minimum isolation is 40 db, maximum insertion loss is 1.5 db, vswr (on) is 1.5 and r-f power rating is 10 w peak and 1 w average. Switching time is 50 nsec. Power requirement is approximately 80 mw. The ferrite isolator prevents local oscillator signals from reaching the diode switch. Normally, this would not be a problem but due to high switching speed, signals of many frequencies are generated during switching cycle. If these are allowed to combine with the signal generated by local oscillator and returned to the receiver input, they would be amplified and displayed with the signal received at the antenna. (304)

MATERIAL BEING MEASURED

Transducer Measures Temperature to 1,200 F

MANUFACTURED by Trans-Sonics, Inc., P. O. Box 328, Lexington 73, Massachusetts, the T4151 alumina temperature transducer has an operating range of 0 to 1,200 F with brief transients to 1,500 F, accuracy within 2 percent, repeatability of 0.2-percent of range interval, operating current of 15 ma and a thermal time constant less than 500 milliseconds (63 percent of full range) when measured in agitated liquid. Insulation resistance is greater than 2 megohms at 100 v and room temperature, and a calibration card is supplied with each unit. The device consists of a platinum winding on an alumina card. The wire is flame-sprayed with aluminum oxide to provide a high-temperature insulation resistance. Composition of the sprayed coating may be varied to obtain thermal conductivity close to the material being measured. The unit is mounted as shown in the sketch. The transducer’s stem is sufficiently removed from the internal winding to insure that the leads will not transmit heat to or from the platinum winding thus creating a false reading. Physical size is 0.47 x 0.34 x 0.035 inches, stem is 1-in. long and the device weighs less than 0.25 ounce. (305)
UHF Bandpass Filter Uses Helical-Line Resonators

ON THE MARKET from Dorne and Margolin, Inc., 29 New York Ave., Westbury, New York, the DM F5 bandpass filter has a center frequency between 100 and 500 Mc, midband vswr of 1.30:1, impedance of 50 ohms and an insertion loss of 1 db. Bandwidth is 2 to 5 percent, rejection is 40 db at \(f_0 \pm 10 \) percent, and no spurious responses up to 4 \(f_0 \). The device uses three coupled end-loaded helical line resonators. Units incorporating additional resonators and still higher selectivity can be furnished. Unit body length is 3.90 inches and connectors extend overall length to 6 inches. Height is \(\frac{1}{2} \) inches, width is 1.31 inches and the device weighs 8 oz. (306)

Sonic Analyzer
Spans 6 Cps to 23 Kc

PROBESCOPE CO. INC., 211 Robbins Lane, Syosset, N. Y. Model SS-20L covers the frequency range from 6 cps to 23 Kc. Unit incorporates log sweep. This permits a quick analysis of all the information contained in the range of frequencies from 40 cps to 20 Kc. Incorporated in the log sweep function are three markers—60 cps, 1 Kc, 20 Kc—which

NEMS-CLARKE MODULE
Searches and locks carrier to −145 dbm

When missile and satellite signals are the hardest to find, and hold, this new PCM/PM Module is at its best. It is a phase lock tracking demodulator with anti-sideband lock-out. It searches, tracks and locks onto a carrier signal as low as −145 dbm and will maintain the lock at −150 dbm. AGC of this equipment has been maintained for signal strength lower than locking threshold. Ultra linear phase detector guarantees low distortion reception with a signal modulation as high as 1.4 radians. These new units demodulate either true phase or amplitude modulated signals.

The module is designed to plug into Nems-Clarke 1455-1456A receivers as well as the 1037 deep space probe receiver.

For further information, write: Dept. 550 Vitro Electronics, 919 Jesup-Blair Drive, Silver Spring, Maryland. Sales Offices: Houston and Los Angeles

A Division of Vitro Corporation of America

Specifications:

<table>
<thead>
<tr>
<th>Operation Modes</th>
<th>Automatic, Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Sweep Range</td>
<td>±5 kc min of YCO center frequency</td>
</tr>
<tr>
<td>Manual Sweep Range</td>
<td>±15 kc of nominal YCO frequency 5,445.00 kc</td>
</tr>
<tr>
<td>Tracking Loop Bandwidth</td>
<td>20 & 60 cps (selectable from front panel)</td>
</tr>
<tr>
<td>Tracking Loop Sensitivity</td>
<td>Minimum: −150 dbm (Maintain lock), −140 dbm (Automatic search & Lock)</td>
</tr>
</tbody>
</table>

February 8, 1963
Discover new reliability in molded variable coils. Eliminate the "weak link" in your system. Most variable coils (and transformers) are designed and built today exactly as they were 10 years ago. With the Delevan Molded "Variable," the state-of-the-art for variables is advanced to equality with all other reliable components. Available with either powdered iron or ferrite cores, each coil is designed for minimum capacity and optimum Q. Delevan is proud of this achievement in high-reliability programming.

SPECIFICATIONS: SERIES 4000 MOLDED VARIABLE COILS

- Size: 0.40" Diameter; 0.93" Molded Length
- Mounting: Chassis or Printed Circuit
- Inductance: .18 ohm to 70,000 ohm
- Environment: Grade 1, Class B, MIL-C-15305

Delevan Electronics, Corporation
A Subsidiary of American Precision Industries, Inc.
270 Quaker Rd., E-2 - East Aurora, N. Y.

HERE ARE 2 NEW COIL ENGINEERING KITS THAT EQUIP YOU WITH THE RIGHT COIL FOR ANY DESIGN APPLICATION.

KIT No. 1 supplies 15 Series 4000 molded variable coils.
KIT No. 2 provides components to design your own variable coils.

Write for further information on these engineering kits today.

CIRCLE 110 ON READER SERVICE CARD

HELP YOUR POST OFFICE TO SERVE YOU BETTER
BY MAILING EARLY IN THE DAY
NATIONWIDE IMPROVED MAIL SERVICE PROGRAM

permit calibration of the screen at all times. The SS-20L is valuable in the field of vibration and distortion analysis.

CIRCLE 307 READER SERVICE CARD

Subcarrier Oscillator
For Space Vehicle Use
TELE-DYNAMICS DIVISION, American Bosch Arma Corp., Garden City, N. Y. Designed to operate with differential signals as low as ± 5 mv full scale, model 1284 subcarrier oscillator combines high common mode rejection with high input impedance. Its inherently high linearity and thermal stability are further enhanced by its extremely rugged mechanical construction capable of withstanding severe environments such as: random vibration of 30 g, 25 to 2,000 cps; shock of 150 g; acceleration of 150 g; unlimited altitude and temperatures from -20 to +85 C. It is available for all IRIG channels. (308)

R-F Transmitters
From 200 to 1,000 Mc
MICROWAVE CAVITY LABORATORIES, INC., 10 North Beach Ave., La
Grange, Ill. High power c-w r-f transmitters from 200 to 1,000 Mc are available on a custom basis. Power supplies and protective circuitry are common to all models while r-f racks are designed for particular frequency applications. Units have been life-tested and are extremely reliable. Coaxial cavities are used to generate power at maximum efficiency. (309)

Coaxial Attenuators Rated 2 W Average

ELC ELECTRONICS, INC., Port Chester, N.Y. Model A-10 miniature fixed coaxial attenuators are available with a range of attenuation values of 1 db to 60 db. They are power rated 2 w average, peak 2 Kw. Maximum vswr is 1.25 from d-c to 2,500 Mc. Attenuation accuracy from 1 to 5 db is ± 1db, 6 to 25 db ± 1/2 db, 30 to 60 db ± 1 db. Conservatively operated over a temperature range of −55 C to +125 C, units are fabricated from silver plated brass. They are designed for 50 ohm lines. (310)

Input Scanner Has Limit Control

DYMEC, a division of Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif. The DY-2900A input scanner sequentially transfers data from a group of external sources to one set of measuring and recording equipment. It permits up to 50 single-wire or 25 2-wire inputs to be scanned at speeds up to...
25 channels per sec. A scan limit control permits simple omission of unwanted input points. Unit can be externally programmed for a fixed delay time at each channel position before a read command is issued to the measuring device.

CIRCLE 311 READER SERVICE CARD

Ceramic Capacitor For P-C Use

HI-Q DIVISION, Aerovox Corp., Olean, N. Y. The MC-70 ultraminiature ceramic capacitor is available in a range from 10 µf to 20,000 µf in a single case size. It is ideally suited for automatic insertion in printed circuits, and is especially compatible for cordwood packaging. All units are rated for 100 v d-c at 85 C, except those between 10,000 and 20,000 µf which are rated at 50 v d-c, derated 50% at 125 C. (312)

Tunable Coil Form Has Live P-C Leads

CAMBRIDGE THERMIIONIC CORP., 445 Concord Ave., Cambridge 38, Mass., announces a molded diallyl phthalate printed circuit tunable coil form. It has live p-c leads, is mounted and tuned horizontally and, with its above board height of just 0.300 in. when mounted, is ideal for drawer-type installations. The new form mounts on a 0.250 in. by 0.500 in. p-c grid. (313)
CTS now offers Type 211 selector switch to meet Amendment 1 of MIL-S-3786A. Designed for precision military and industrial applications requiring long life and accurately controlled torque. Color orientation on each wafer virtually eliminates danger of reassembly errors. Contact positions are easily identified by numbers on the rear plate. Unprecedented switch uniformity and elimination of human error are achieved through automated wafer manufacture. Terminal lugs, center contact ring and stator contacts remain an integral circuit pattern because they are stamped from a single metal piece. Insulation is not affected by soldering. Available with one-to-twelve wafers.
CIRCUIT DESIGNERS!

HOW SMALL CAN YOU THINK?

Electronic Sub-Micro-Miniaturization... a big challenge! Make it smaller. Make it more precise. Make it more reliable. Make it smaller.

Now—begin again... Make it smaller!

A TYPICAL PROBLEM: Design a current supply with the following characteristics: Stability; 0.01% within fifteen minutes, with load variations of 10%. Capacity; 200 ma. Temperature Environment; —40° to +200° F.

SIZE: 12 CUBIC INCHES!

Intriguing? Then there's a rewarding career opportunity for you at Honeywell in Florida.

Familiarity with "state-of-the-art" circuit techniques and components as applied to miniaturized circuits is just one area of our present requirements. Circuit designers experienced in design and development of analog servo circuits, digital and/or switching circuits as applied to airborne or spaceborne inertial systems are also needed.

Other opportunities exist in the following related areas:
- Systems Engineers / Logic Designers / Systems Analysts / Programmers / Packaging Engineers / Rotary Component Designers / Systems Test Engineers / Materials & Component Engineers / Test Equipment Designers / Manufacturing Prototype Development Engineers / Reliability Engineers / Quality Control System Engineers.

To inquire about a career assignment leading to professional and personal advancement, write to Mr. L. A. Ericson. Your inquiry or resume will be answered promptly.

Honeywell

13350 U.S. Highway 19, St. Petersburg, Florida

A Good Place to Live... A Good Place to Work

To investigate professional openings in other Honeywell facilities, send your resume to H. F. Eckstrom, Honeywell, Minneapolis 8, Minnesota.

Honeywell Engineers Are Doing Things in Florida
There's nothing so simple or satisfactory as recording with

ALFAX

Tone shading derived from Alfax Paper captures more information in this recording of the ocean bottom than ever before possible.

"Electricity is the ink"

Progressive innovators are obtaining vital information never before possible and often unsuspected in such fields as . . .

- **LONG RANGE RADAR DETECTION**
 - As opposed to scope cameras, operator sees returns instantly, evaluates more rapidly, gets permanent record with increased sensitivity.
- **RADAR SAMPLING**
 - Tone shades keyed to signal intensity provide vivid "picture" of radar return even when bulk of data is gated out.
- **SONAR ACTIVE AND PASSIVE**
 - Unparalleled identification and location of returns even in poor signal to noise ratio through integrating capability of Alfax paper.
- **OCEANOGRAPHY**
 - High resolution capability, dynamic tone shade response with Alfax recording techniques adding synchronizing ease provide "optimization" of underwater sound systems.
- **FREQUENCY ANALYSIS, SAMPLING AND REAL TIME**
 - Intensity modulation and frequency vs. real time provide continuous vital information with permanence and past history to achieve previously unattainable evaluation.
- **SEISMIC STUDIES**
 - Dynamic response at high writing speeds yields discrete geological data at resolution never before possible.
- **HIGH SPEED FACSIMILE**

Why? Because of ALFAX EXCLUSIVES

- broad, dynamic response of 22 distinct tone shades
- remarkable expansion at low level signal, where slight variation may provide critical information
- records in the sepias area of the color spectrum where the eye best interprets shades in diminishing or poor light
- writing speed capabilities from inches per hour up to 2400 inches/second
- captures 1 microsecond pulse or less
- dynamic range as great as 30 db
- integration capability for signal capture in signal to noise ratio conditions worse than 1 to 4
- resolution capabilities of 1 millisecond = 1 inch of sweep
- accuracy capabilities of few thousandths of an inch
- sensitivity to match most advanced sensing devices

By merely passing a low current through Alfax everything from the faintest trace signal of microsecond duration to slow but saturated signal can be seen instantly, simultaneously.

Alfax Paper, roll-in presentation recorder labs and component recorders for your own experimentation are all readily available.

NEW BOOKS

Transistor Circuit Design

By the engineering staff of Texas Instruments Inc., Semiconductor Components Division

This will be a valuable addition to the circuit designer's working library. It is a comprehensive collection of solutions to a wide range of basic circuit design procedures, compiled by thirty-two engineers.

Topics include a classification of all commercially available transistors, measurement of transistor parameters, and thermal effects on transistor circuits, as well as a very large number of practical circuit-design procedures ranging from amplifiers to digital servo systems. Each circuit is analyzed mathematically and described by step-by-step procedures; many tested circuit designs are included as illustrations.

An appendix dealing with field-effect transistors and their applications should gain added usefulness in the near future.—G.V.N.

Space Radio Communication

Edited by G. M. BROWN

This book contains a bilingual (French and English) collection of

Instant Graphic Recording

For the first time . . . ultra high speed and precision accuracy in binary graphic display! 600 inches/second recorded at 40 lines/inch. Sweep information is amplitude measured to 15 microseconds or .010" against a grid generated at recorder.

Simple, reliable Alfax "flying spot" helix recording techniques—combined with ALFAX electro-sensitive paper produce visible, informative "pictures" of sonar, radar, infrared and other instrumentation outputs. Pulse length, relative strength and timing of electronic signals are continuously integrated on a single real-time recording. Data from sampling arrays, time-base signals, or scan or sweep sources are synchronized with the Alfax "flying spot" helix and presented as scale model "visual images" of observed phenomena, with new and essential meaning instantly revealed.

Why? Because of EXCLUSIVE ALDEN RECORDING TECHNIQUES

Resilient helix provides low inertia, constant electrode pressure over a wide range of recording speeds. Endless loop electrode deposits ions on the Alfax Paper when a signal appears on the helix. The electrode "blade" moves continuously to provide a freshening of its surface, for thousands of feet of continuous recording. Precision blade stops maintain precision, straight-line electrode relationship to the resilient helix, while protecting paper sensitivity by acting as paper chamber seal-off.

Alden "flying spot" recorders are available . . .

- for any recording speed from 8 rpm to 36,000 rpm
- with any helix configuration — linear 360° sweep or nonlinear — reciprocating — multi-helix
- in any record size — 2", 5", 8", 11", 19" . . . to five foot widths
- plus plug-in modular construction — interchangeability with a high degree of flexibility and adaptability

It's simple to get started.

Alden "flying spot" Component Recorders, detachable drives, plug-in electronics, accessories are available to incorporate the Alden instant graphic recording techniques into your instrumentation.

Alden instant graphic recording laboratories — complete with all plug-in units and accessories for fast set up — to cover a variety of recording modes — are available.

ALDEN ELECTRONIC & IMPULSE RECORDING EQUIPMENT CO., INC.

Westboro, Mass.

CIRCLE 106 ON READER SERVICE CARD 115

CIRCLE 115 ON READER SERVICE CARD 115
Precision Programmable Voltage Reference Supplies for 465-L

465-L Strategic Air Command Control computer system power supplies are designed and built by ITT.

These units can regulate from poor quality input and maintain MTBF of 8000 hours to 90% confidence.

ITT power for high reliability.

For further information write Power Equipment and Space Systems Department for Data File E-1858-2.

Digital Computer Principles
By Staff of Technical Training Dept, Burroughs Corporation

A non-mathematical introduction to the modern digital computer, that attempts to evaluate the underlying concepts of computer logic and circuitry for an over-all understanding by the engineer, technical executive or programmer.

The three principal parts of the book deal with the physical fundamentals (components, Boolean algebra, number systems), with computer circuits (switching circuits, flip-flops, amplifiers, ferromagnetic cores), and with entire computer units and systems (registers, decoders, arithmetic units, input and output equipment and programming).

Appendices include a table of computer symbols, a general bibliography, and a good glossary of computer terms.—G.V.N.

Automatic Control Systems
By BENJAMIN C. KUO

A comprehensive treatment of the principles and techniques involved
in the use and design of feedback control systems. The book begins with basic mathematical concepts and feedback theory, then introduces the components of a feedback system and develops techniques for the analysis of a system's time response and frequency response. The Nyquist criterion and the generalized root-locus technique are next covered in considerable detail, followed by compensation of feedback control systems, Z-transformations, sampled-data systems and a chapter on non-linear systems.

Some of the necessary mathematical foundations of control theory are briefly given in the appendix; a number of problems follows each chapter.

Environmental Testing Techniques For Electronics And Materials

By GEOFFREY W. A. DUMMER and NORMAN B. GRIFFIN

A broad-level text covering most aspects of environmental test and evaluation procedures with emphasis on techniques. While the book is intended for a diversified audience, it is heavy on testing aspects applicable to the manufacture of military products, in particular those with space goals.

Chapters cover subjects such as planning, test methods and instrumentation, high-humidity environments, galvanic corrosion, high and low-temperature environments, mechanical hazards and effects, acoustical noise, transport and storage difficulties and environmental stresses and strains. The section on high-altitude and space environments is particularly detailed and discusses the aspects of arcing, corona effects, orbital simulations and the effects of nuclear and ultraviolet radiations, to mention a few.

The text is well appended with charts, tables and diagrams and has numerous graphs for reference.

The work ends with a well-stocked bibliography that will permit ready reference to works more detailed on specific points of interest.—B.A.B.
Western Electric Opens Research Center

WESTERN ELECTRIC'S new Engineering Research Center near Princeton, N.J., where some of the company's research scientists and engineers study telephone equipment manufacturing techniques, was recently officially opened.

Work at the Center involves research into machines, systems and processes for manufacturing Bell System communications equipment. Western Electric is the manufacturing and supply unit of the system.

The Research Center staff works closely with members of Bell Telephone Laboratories technical staff to develop manufacturing processes for new products designed by the Laboratories, and with engineers from the company's own plants to translate these designs into useful applications in the plants.

The Center's three-story main building, with the administrative offices and laboratories and a one-story building, containing heavy equipment laboratories, an auditorium, the power plant, and record storage facilities, provide a total of 138,000 square feet of floor space.

The Engineering Research Center was established in 1958 when the first staff arrived to set up offices and laboratories in a building formerly occupied by the Princeton Film Center. The building (shown in background) of 23,000-square foot floor space is currently used for the company's graduate engineering training program being conducted in cooperation with the Graduate School of Engineering of Lehigh University. This program leads to the Master's degree in either solid-state physics or operations research.

The present staff numbers more than 300, almost equally apportioned among scientists and engineers, technical support, and administrative support personnel.

Robert Wood Takes Additional Post

ROBERT M. WOOD, vice president and general manager of Keleket X-Ray, a division of Laboratory For Electronics, Inc., has also been named vice president and general manager for LFE's Tracerlab division in Waltham, Mass.

Wood will now be responsible for all engineering, quality control, manufacturing, technical products and marketing activities for Tracerlab's local operations, as well as continuing to perform a similar function for Keleket X-Ray.

Wright Appointed Astropower President

JOHN P. WRIGHT has been appointed president of Astropower, Inc., Newport Beach, Calif., a subsidiary of the Douglas Aircraft Co.

He had been executive vice president of Electra Manufacturing Co., Kansas City, Mo.

Packard Bell Names Wendell Sell

WENDELL B. SELL, group vice president and member of the board of directors of Packard Bell Electronics, Los Angeles, Calif., has been named to the newly created post of executive vice president.

As group vice president Sell directed three divisions of the company. In his new assignment he will be the chief operating executive supervising all line and staff managers of the company. The position of group vice president will be eliminated, according to Robert S. Bell, president.
An idea grows from one mind to another.

It may begin with nothing important. Just a word. Or a notion. But as each succeeding mind brings a fresh viewpoint, the idea begins to grow and mature.

If you like working in an atmosphere that breeds ideas, you'll like working at Northrop. Stimulating minds and stimulating projects are all a part of the climate here. We have more than 70 active projects in work, and we're constantly evaluating new lines of inquiry. Present programs cover such fields as interplanetary navigation and astro-inertial guidance, aerospace deceleration and landing, man-machine and life support systems for space, automatic checkout and failure prediction systems, laminar flow control techniques, undersea technology and world-wide communications.

Why not get in touch with us, and talk things over? Write to Dr. Alexander Weir, Northrop Corp., Beverly Hills, California, and tell us your field of interest. You'll receive a prompt reply.
DYNAMICS TEST EQUIPMENT
for
-integrity of test data
-reliable operation
-quality construction

Model 4072—dc micro volt-ammeter. Fully isolated, this instrument operates from an automatically rechargeable nickel-cadmium battery—hence eliminates the power line from low-level measurements in sensitive circuits.
Wide voltage and current range: 100 µV to 1,000 V, and 0.1 µamps to 1.0 amp.
Mirror-back scale eliminates parallax. Scale is 7.2" long, for easy reading.

Accuracy: ±1.0% of full scale on all ranges.
Typical applications: Potentiometric measurements, null indication, measuring thermocouple output and contact potentials... diode matching.

Dynamics manufactures a wide variety of microvoltmeters, micro volt-ammeters, micromultimeters, and general test equipment. Write for complete literature on Model 4072, or the entire line.

DYNAMICS INSTRUMENTATION COMPANY
583 Monterey Pass Road, Monterey Park, Calif. • Phone: Cumber land 3-7773

General Precision Names Weiner
JAMES R. WEINER has been appointed director of advanced systems at General Precision's newly formed Information Systems Group. He will be responsible for the development of advanced computing, data-processing, and data-display systems for commercial and military applications.

Weiner's previous affiliations include Hughes Aircraft Co., Philco Corp., and Lockheed Missiles and Space Co., all in management capacities.

Litton Industries Advances Varnum
GORDON D. VARNUM has been named vice president, production, of Mc-
THE DECI-CAP
New Subminiature Ceramic Capacitor—0.100" Diameter by
0.250" Molded Envelope—24 Hour Delivery

10 PER LINEAR INCH,
100 PER SQUARE INCH

5 pf to 470 pf in 19 values, 200 WVDC
Epoxy molded for highest reliability and performance—less than 7½% capacitance change from
−55°C to +125°C
FEATURES:
Standardized size for high density cordwood packaging
Designed to meet all the requirements of MIL-C-11015

The DECI-CAP is the latest addition to Nytronics’ DECI Series—a series that does consist of inductors, capacitors and resistors in a uniform envelope to facilitate point-to-point assembly in cordwood, printed circuit and other high density module assemblies.

For complete engineering data, write Dept. WL-60, or phone 201-464-9300.

Nytronics, Inc.
550 Springfield Ave., Berkeley Heights, N.J.

Design Leaders STANDARD components to meet CUSTOM requirements
CIRCLE 207 ON READER SERVICE CARD

Are you selling the whole buying team

Tough competition demands that the electronics man be reached and sold wherever you find him: Research, Design, Production, and Management. Only advertising in electronics reaches all four... the same men your salesmen call on. Put your advertising where it works hardest......

in electronics

February 8, 1963
WE'RE LOOKING FOR A RARE BIRD!

As a matter of fact, we're looking for five rare birds.

To one I.E. and four B.S.E.E.'s we offer RESPONSIBLE ENGINEERING ASSIGNMENTS in a highly creative atmosphere where your ideas can take wing ... and your career can flourish.

We are a rapidly growing manufacturer of peripheral equipment for the Digital Data Processing field serving both Commercial and Military markets. We are currently budgeting Research and Development expenditures at approximately 10% of sales.

Qualified candidates must have degree with experience in solid state digital circuitry and electro-mechanical components.

We offer excellent salaries, a wide range of company paid benefits and an ideal location on Long Island's North Shore.

POTTER INSTRUMENT CO., INC. 151 Sunnyside Boulevard * Plainview, New York

Kiernan-Terry Corp., of Litton Industries, Radcom division. He assumes responsibility for the company's manufacturing operations at Harrison and Dover, N. J.

Varnum, who joined McKiernan-Terry in 1956 as a project engineer, had been assistant chief engineer prior to his recent promotion. He directed the Telstar horn antenna program which produced identical antennas for Bell Laboratories at Andover, Me., and Pleumeur-Bodou, France.

PEOPLE IN BRIEF

Are you a COMPLETELY INFORMED electronics engineer?

Today you may be working in microwaves. But on what project will you be working tomorrow? You could have read electronics this past year and kept abreast of, say, microwave technology. There were 96 individual microwave articles between July, 1961 and June, 1962!

But suppose tomorrow you work in some area of standard electronic components, in semiconductors, in systems? Would you be up-to-date in these technologies? Did you read the more than 3,000 editorial pages that electronics' 28-man editorial staff prepared last year?

electronics is edited to keep you current wherever you work in the industry, whatever your job function(s). If you do not have your own copy of electronics, subscribe today via the Reader Service Card in this issue. Only 7½ cents a copy at the 3 year rate.
ATTENTION:
ENGINEERS, SCIENTISTS, PHYSICISTS

This Qualification Form is designed to help you advance in the electronics industry. It is unique and compact. Designed with the assistance of professional personnel management, it isolates specific experience in electronics and deals only in essential background information.

The advertisers listed here are seeking professional experience. Fill in the Qualification Form below.

STRICTLY CONFIDENTIAL
Your Qualification form will be handled as "Strictly Confidential" by ELECTRONICS. Our processing system is such that your form will be forwarded within 24 hours to the proper executives in the companies you select. You will be contacted at your home by the interested companies.

WHAT TO DO
1. Review the positions in the advertisements.
2. Select those for which you qualify.
3. Notice the key numbers.
4. Circle the corresponding key number below the Qualification Form.
5. Fill out the form completely. Please print clearly.

(Continued on page 126)
LET’S TALK About the New Field of
AEROSPACE GROUND
ELECTRONICS!

The rapidity with which we are reaching further and further into outer space . . . the many new and as yet completely unexplored related technologies . . . are giving birth to a vital new field—Aerospace Ground Electronics.

To be sure, ground support equipment, test equipment design and the like are involved. But the enormity of the tasks which lie ahead require different approaches than before and can only be described in new terms, and by the creation of a new master-field.

General Dynamics/Electronics is very active in Aerospace Ground Electronics and expects to become even more heavily involved. Our preliminary ideas in the field evolve from the disciplines listed below. If you have the required background, we would like to explore the possibilities of AGE with you.

SYSTEMS ENGINEERING
Broad knowledge of Aerospace Ground Electronics design. Will analyze aerospace electronic sub-systems for test requirements and determine test equipment needs. Experience in Air Force Shop or Naval Carrier Installations desirable, with emphasis on equipment layout, intercabling, work flow analysis, operational and calibration procedures.

PROJECT ENGINEERING
Project Engineers to supervise design and integration of test equipment and test stations. Should be familiar with all types of testing equipment and techniques in one or more of the following areas.
- Flight Control Systems
- Radar
- HF-UHF Navigation & Communication Equipment
- Microwave Equipment
- Antenna Systems
- Electronic Countermeasures
- Digital
- Pulse
design work where cost is an important consideration; ability to cooperate with other engineers in integrating designs into complete receivers.

Sweep Circuit Design (BS/MSEE)
Work in advanced development display systems group conceiving and developing novel sweep systems techniques and applying them to circuit development. EXPERIENCE: Practical experience with either digital circuits, computers, digital scopes and meters, encouters or deflection circuits—T.V., radar or transistor circuits. An aptitude for circuit work and originality.

Electrical Product Design (BS/MSEE)
Conceive and design electrical circuits and components for mass production of monochrome or color T.V. receivers. EXPERIENCE: Familiarity with circuit design, IF, AGC, Pulse Circuits, APG loops and video amplifier or applicable experience in radar design.

This is a compact engineering operation where each man can assume full responsibility for specific developments, designs or devices . . . where individual initiative and creativity become highly visible . . . where opportunities for growth and advancement are multiplied.

INQUIRIES ARE INVITED. Your confidential resume will receive careful attention and a prompt reply. Write to Mr. Fred Piber, T.V. Receiver Department, General Electric Company, Dpt. 69-W, Electronics Park, Syracuse, New York.

GENERAL DYNAMICS/ELECTRONICS
AN EQUAL OPPORTUNITY EMPLOYER

1400 N. Goodman St., Rochester 1, New York

124 electronics

IN EXPANDING
COMMERCIAL TV
RECEIVER PROGRAM

Engineers with experience in advanced circuitry, digital techniques, radar and related technologies are invited to contribute to diverse approaches in:

Deflection Circuit Design: (BS/MSEE)
Design deflection and convergence circuits for color T.V. Evaluate and approve vacuum tubes and other circuit components. Monitor pilot run and production run of completed designs. Achieve specified performance at minimum costs. EXPERIENCE: Color T.V. deflection and convergence circuit experience desired; experience in vacuum tube or transistor circuits, deflection circuits or closely related work, e.g., magnetic sweeps for T.V. cameras or radar flying spot scanners. Familiarity with and aptitude for product design work where cost is an important consideration; ability to cooperate with other engineers in integrating designs into complete receivers.

Sweep Circuit Development (BS/MSEE)
Work in advanced development display systems group conceiving and developing novel sweep systems techniques and applying them to circuit development. EXPERIENCE: Practical experience with either digital circuits, computers, digital scopes and meters, encouters or deflection circuits—T.V., radar or transistor circuits. An aptitude for circuit work and originality.

Electrical Product Design: (BS/MSEE)
Conceive and design electrical circuitry and components for mass production of monochrome or color T.V. receivers. EXPERIENCE: Familiarity with circuit design, IF, AGC, Pulse Circuits, APG loops and video amplifier or applicable experience in radar design.

This is a compact engineering operation where each man can assume full responsibility for specific developments, designs or devices . . . where individual initiative and creativity become highly visible . . . where opportunities for growth and advancement are multiplied.

INQUIRIES ARE INVITED. Your confidential resume will receive careful attention and a prompt reply. Write to Mr. Fred Piber, T.V. Receiver Department, General Electric Company, Dpt. 69-W, Electronics Park, Syracuse, New York.

GENERAL ELECTRIC
An Equal Opportunity Employer
IBM asks basic questions in character recognition

How can we help computers read more?

Upper or lower case, typewritten or printed, good registration or bad, these letters are all recognizable to IBM’s experimental multi-font reader.

The experimental system can also

Written in different styles, these numbers can be recognized by an experimental reader whose scanning beam detects line edges by traveling a circular path around the characters.

Transforming source information into machine codes is the slowest step in data processing. To make it possible to enter data directly, optical-scanning and magnetic character-sensing devices have been developed. However, most of these machines have been able to read only specially designed type faces. Now IBM has built experimental devices for optically reading a wide variety of printed and typewritten material—and even handwritten numbers.

The chief obstacle to automatic print reading is the variation in type styles found in printed and typewritten information. To overcome this obstacle, IBM scientists have developed an experimental character recognition system which can accept many different type fonts, sizes, and printing qualities in both the Cyrillic and the Latin alphabets. The system determines its own criteria for distinguishing among characters. As it identifies characters, it estimates the reliability of its recognition. After a few minutes it can read text in type styles for which it had not previously been adjusted.

An equally important step toward more direct entry of data has been the development of an experimental system which recognizes handwritten numbers despite variations in individual writing styles. This system thus solves one of the most difficult problems in character recognition. It differs in its optical reading technique from the multi-font reader, making use of “recognition logic” derived from statistical summaries of the contours of sample handwritten characters. These samples were collected under uncontrolled writing conditions. The scanner in this experimental system generates voltage wave forms analogous to character outlines. The system analyzes these wave forms and records its identification on IBM cards. In a recent test at Tufts University, 200 people, after brief instruction on avoiding excessive distortion in their writing, submitted more than 100,000 numerals to the system. It recognized 98.5% of them correctly, indicating that it may possess the flexibility required to sense large volumes of handwritten numerals in computer systems of the future.

If you have been searching for an opportunity to make important contributions in character recognition, programming systems, space, or any of the other fields in which IBM scientists and engineers are finding answers to basic questions, please contact us.

IBM is an Equal Opportunity Employer. Write to: Manager of Professional Employment, IBM Corporation, Dept. 554B2, 590 Madison Ave., N.Y. 22, N.Y.
To Men Who Can Look Deep Into Tomorrow

SENIOR LEVEL POSITIONS ARE OPEN NOW IN SPACE ELECTRONICS

ADVANCED R&D ENGINEERS
For work beyond the state-of-the-art associated with diversified product lines, involving solid state, control, and communications.

ADVANCED SYSTEMS ENGINEERS
For advanced systems work involving inertial guidance, command and control, radar and data link for application in armed helicopters, lunar landing, earth satellites, weapons, and moon excursion vehicles.

LASER DEVELOPMENT ENGINEERS
For project engineering in the investigation of laser applications, and for theoretical analyses involving molecular quantum mechanics.

RADAR DEVELOPMENT ENGINEERS
For R&D work in solid state, circuit design, systems analysis and radar systems integration in both military contracts and company funded programs.

CONTROL SYSTEMS ENGINEERS
For systems and analysis work involving air traffic control, target locator, space electrical, visual simulator, and feedback control systems.

OPTICAL SYSTEMS DEVELOPMENT ENGINEERS
For assignment to a variety of programs including visual simulators for space applications, fire control systems, telescopes and digital-to-voice converters.

Top echelon positions are open to men with vision at Bell Aerosystems Co. This growing organization today needs more senior scientists and engineers who can perceive where technology should go to meet tomorrow's aerospace requirements—and lead the way to advances beyond the existing state-of-the-art.

Vision coupled with sound engineering judgment has always been characteristic of this Company, as exemplified by such achievements as:

- HIPERNAS (High PERformance Navigational System), the most accurate, pure inertial, self-compensating navigation and guidance system known, diversely applied in strategic and tactical missiles, aircraft, space vehicles, ships and submarines.
- The FIRST all-weather, automatic aircraft landing system which can touch down 2 planes a minute even through dense fog.

Engineers and Physicists with thorough background in any of the areas listed are invited to inquire about these high level opportunities. Please address Mr. T. C. Fritschi, Dept. G18.
Electronic Technology

We need a versatile, creative, technically oriented writer to interpret and report on new product, market and growth developments. In one year we will have practically doubled our plant size (to 1 million square feet), introduced many exciting new developments in the semiconductor field integrated circuits, field-effect transistors, SCR's and bi-stable switches), and opened up vast new applications in the automotive, consumer and controls field.

This is an excellent opportunity to contribute to a better understanding of these highly technical areas by initiating and generating all types of written material with particular emphasis on feature stories. This opening requires an excellent writer and electronics background with a desire to teach and communicate. If you consider yourself an expert in this area write to:

CHARLES H. WETMORE, Manager
Professional Recruitment and Training
MOTOROLA INC.
Semiconductor Products Division

FOR MORE INFORMATION
about Classified Advertising
contact the McGraw-Hill office nearest you.

ATLANTA 9, I. Hill
1375 Peachtree St., N.E.

BOSTON 16, O. Davis
Copley Square
Cornell University

CHICAGO 11, W. J. Higgins
640 N. Michigan Ave.
Machow 4-5800

CLEVELAND 13
1164 Illuminating Bldg.
Superior 1-9000

DALLAS 2, F. LeBeau
1320 Commerce St., Vaux Bldg.
Riverside 7-7921

DENVER 2, J. Patten
1700 Broadway, Tower Bldgs.
Alpine 5-2981

DETROIT 16, E. Cisek
1000 Penobscot Bldg.
Woodward 2-1793

HOUSTON 25, J. Page
Prudential Bldg., Room W-724 Holcomb 7-3978

LOS ANGELES 17, R. McGinnis
201 N. Broadway
Huntley 2-5450

NEW YORK 38, H. T. Buchanan
450 Eighth Ave.

PHILADELPHIA 3, Wm. D. Sullivan
R. Lewis
Six Penn Center Plaza

PITTSBURGH 22, J. Williams
4 Gateway Center

ST. LOUIS 3, J. Crowe
777 California Avenue

SAN FRANCISCO 11, J. A. Harley
225 California Street

SPECIAL PURPOSE TUBES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA2</td>
<td>4-125A . . .</td>
<td>$0.00</td>
</tr>
<tr>
<td>OA2W</td>
<td>4-250A . . .</td>
<td>$0.00</td>
</tr>
<tr>
<td>OA3</td>
<td>4-1000A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O82</td>
<td>4-AP10</td>
<td>$0.00</td>
</tr>
<tr>
<td>OA3W</td>
<td>4-125A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O83</td>
<td>4-38</td>
<td>$0.00</td>
</tr>
<tr>
<td>O84</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O85</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O86</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O88</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O91</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O92</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O93</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O94</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O95</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O96</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O97</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O98</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
<tr>
<td>O99</td>
<td>4-300A</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

SEARCHLIGHT SECTION

CIRCLE 950 ON READER SERVICE CARD

western engineers

ELK GROVE, CALIFORNIA

TELEX or TWX: 916-601-3081
Telephone: 916-668-3682

SUPPLIERS OF ELECTRON TUBES SINCE 1923

PRICES FOB

Min order $10
SCR 584 RADAR AUTO-TRACK

300 TO 2400MC RF PKG
300 to 2400MC CW. Tuneable. Transmitter 10 to 15 Watts. Output: 1500 V. 500 kHz. $800.00

AN/TPS-10 RADAR

AN/TPS 100 HEIGHT FINDER
25 CM X Band. 60 & 120 mile ranges to 60,000 feet. Complete.

AN/APS-138 3 CM RADAR

AN/APS-27 BAND RAKDAR
Complete AN/APS-27 radar system using 4425 magnetron, PPI, antenna 36 degree rotation azimuth, 60 degree elevation coverage. Complete installation including gear & AMTI $2800.

L BAND RF PKG.
20kw peak 900 to 1800mc. Pulse width 2 to 10 microseconds. Rep. rate 180 to 480 pps. Input 115 vac 60 cycle. Rept. $99.95

CARCINOTRON
Type CINCM96A, Free. 2000 to 4000 mc. Type CINCM95A Free. 2400 to 3100 mc. CW. Output: 20 Watts minimum. New. $1200

AN/CPS-5 WEATHER RADAR
256 kw. 3 cm. 360 deg. az. 90 deg. elec. scan. PPI, RHI A scopes.

RADIO RESEARCH INSTRUMENT CO.
550 FIFTH AVE., NEW YORK
JUDSON 6-4591

NEW DUAL REGULATED P/S
19" Rack Type
Input: +1500 V. @ 500 ma.
Output: +1500 V. @ 500 ma.

PRICE: $199.95

LIKE NEW HI VOLTAGE P/S
Input: 220-240 V 3ph 55-65 cycles 26.2 AMPS
Output: 1500 VDC @ 270 ma
Type: 9 type 317B Rectifiers in 3ph full wave. Overall Dimensions 9 x 9 x 7 1/2" H
Military type $1000.00

Plate transformer has primary for Hi Volt center.

PRICE $395.00

WRITE OR CALL
SELECTRONICS CO.
1206-18 SOUTH NAPA ST.
PHILADELPHIA, PENNA.
PHONE H0-4645 AREA 215

CIRCULAR 596 ON READER SERVICE CARD
FOR RESEARCH - DEVELOPMENT & EXPERIMENTAL WORK

CIRCULAR 597 ON READER SERVICE CARD
POTTING APPLICATORS
6cc 12cc 30cc
FOR MINIATURE INCULPATING AND SEALING OF MINIATURE COMPONENTS
PHILIP FISHMAN CO.
7 CAMERON ST., WELLESLEY HILLS, MASS.

CIRCULAR 598 ON READER SERVICE CARD
Searchlight Equipment Locating Service
No Charge or Obligation
This service is aimed at helping you, the reader of "SEARCHLIGHT SECTION", to locate surplus new and used Electronic equipment not already advertised. (This service is for USER-BUYERS only.)

How to use: Check the dealer ads to see if what you want is not already advertised. If not, send a reproduction of the above coupon below, or on your own company letterhead to:

Searchlight Equipment Locating Service
c/o ELECTRONICS
P. O. Box 12, N. Y. 36, N. Y.

Your requirements will be brought promptly to the attention of the equipment dealers advertising in this section. You will receive replies directly from them.

Searchlight Equipment Locating Service
c/o ELECTRONICS, P.O. Box 12, N.Y. 36, N.Y.

Please help us locate the following equipment components:

NAME

COMPANY

STREET

CITY

2/8/63
SIMPLE DIFFERENTIAL WITH BALL-BEARING SUN GEARS

The 1:1 reverse ratio spur gears are 48-tooth, 32 pitch brass with 3/16" available face. On one side, the shaft is 23.44" dia. for 11/16" and has a pin hole, then increases in dia. to 37/16" for the remainder of 31/16" length. On the other side, the shaft is 37.77 dia. x 3/16. A-4115, price $15.00

RCA 6022 IMAGE-CONVERTER TUBE

Combined with suitable optical systems, the 6022 A.C. tube permits viewing of scene with infrared radiation. Scene to be viewed is imaged by optical object upon semi-transparent photocathode. Spectral resp., 5:1; good response up to about 1200A. Max. ratings, absolute, grid #2, 20,000VDC or peak ac, grid = 21V.

MINOR SWITCH 10-position, 3-pole, with stopper & reset coil 6-12 V. D.C. off-normal non-bi-polarizing, wt.: 1 lb. $1.95

400-CYCLE MOTOR GENERATOR, PU-20

The generator assembly consists of a 1400-watt, 120-volt, 400-cycle inductor-alternator and a 400-cycle, 27/2 volt D.C. governor. The alternator rotor and the D.C. generator armature are mounted on a common shaft which is dual-belt-driven by a 3-H.P., 1750 R.P.M., 150/100 volts, 4-pole, single-phase 60-cycle electric motor. Weatherproof output box is mounted on top of the upper rotor shaft. It contains a rheostat, adjustable resistor, two pin jacks for plugging in an A.C. voltmeter. Size: 28" W, 32" H, 18" D. Weight, approx. 220 lbs. Price $397.00

8-DAY ELAPSED-TIME SURPLUS AIRCRAFT CLOCK

Here's an accurate time-control center that will help you win your next race. It not only tells you the time of day right to the second, it's a stop watch that gives you elapsed time in seconds, minutes, and hours! The 24-hour clock simplifies adding and subtracting elapsed time for your navigator. Manufactured by Elgin Watch Co. to exacting military specifications, it will remain accurate in spite of road bumps and vibrations. Uses no electrical connections. Does a job of high-cost equipment. Jeweled/Sweep Second Hand/Luminous Hands and Numbers/24-Hour Dial/Black Face and Plastic Cate/mit Mounting. Cost the Government $185.00. Only $39.95 Postpaid

SPEARCY VERTICAL GYRO

VARIABLE SPEED BALL DISC INTEGRATORS (All Shafts: Motor Bearing Supported)

No. 145 Forward & Reverse 2/3-1/2, Input shaft spline gear 11/32" dia. 15/32" long. Control shaft 11/32" dia. 15/32" long, Cost aluminum construction. Approx. size 3" x 3" x 3½". Price $17.50

No. 146 Forward & Reverse 4-0-4, Input shaft 5/16" dia. 1/8" long. Output shaft 15/32" dia. 15/32" long. Control shaft 11/32" dia. 11/16" long, Cost aluminum construction. Approx. size 3½" x 3½" x 4½". Price $18.50 ea.

SMALL DC MOTORS

(approx. size, above, dia. x size, ¾ dia. x 11/16"

10 Pcs 2000 RPM Delco, 12 VDC PM 1 X 1 X 2" $10.75

50076 Delco PM 27 VDC 125 RPM Governor Controlled 15.00 ea.

506660 Delco PM 27.5 VDC 250 rpm 15.25

2564925 Delco, 27 VDC governor controlled 15.00

506930 Delco PM 27.5 VDC 100 RPM Governor Controlled 15.00

5066850 Delco 27.5 VDC 160 rpm w. brake .65

5068571 Delco 27.5 VDC 10,000 rpm 1½ x 1½

5069790 Delco, 27 VDC, 100 RPM Governor Controlled 15.00

2546980 575 rpm, mfr. Delco, 27 VDC PM reversible governor controlled, equipped with 27 VDC clutch .17

5077735 Delco 27 VDC 200 rpm governor controlled 15.00

584A118 GE 24 VDC 110 rpm .10

584A337 GE 24 VDC 150 rpm reversible 10.50

584A252 27 VDC 145 rpm reversible 12.00

584A150, 12V, 149 rpm 13.00

584A181, Q.E., 27 VDC, 215 rpm, 10 oz. fl. 15.00

584A143, 27 VDC, 4 rpm, reversible 15.00

6 oz. fl. 65 am. 15.00

400 CYCLE PM GENERATOR

115/200 volts A.C., 1- or 3-phase, 200 watts. 4000 rpm, Approx. dimensions: 4½ x 3½ x 8½" long; ½ shaft, AN connector, $75.00

9KVA 400-CYCLE GENERATOR

120/208 volts, 3-phase power factor 1.0 CCW rotation. Approx. 13/4 X 8" dia. 4000 rpm, Bendix Aviation P/N 1453-1A. Price $150.00

MINNEAPOLIS-HONEYWELL RATE GYRO (Control Flight)

Port no. J007005A, 115 volts ac., 400 cycle, single phase generator, take off resistance 530 ohms. Speed 21,000 r.p.m. Angular momentum 2½ million, C.M./V. Sec. Weight 2 lbs. Dim. 2 3/4 x 2 3/4 x 3/4" Price $287.00

SELSYN- SYNCHROS

120 VAC, .5 MFD, 220 VAC, .3 MFD, 250 VAC, .2 MFD, 270 VAC, .1 MFD, 480 VAC, .1 MFD, 500 VAC, .05 MFD

MINIATURE SWITCH 10-position, 3-pole, with stopper & reset coil 6-12 V. D.C. off-normal non-bi-polarizing, wt.: 1 lb. $1.95

MINIATURE SWITCH 10-position, 3-pole, with stopper & reset coil 6-12 V. D.C. off-normal non-bi-polarizing, wt.: 1 lb. $1.95

OIL CAPACITORS

1 MFD, 25000 V, DC Westinghouse Intern type FP style 1313854. 10 or more, $35.00 each.

HONEYWELL VERTICAL GYRO MODEL AG7044A17

115 volts, 400 cycles, single phase, 35 watts. Pitch and roll potentiometer pickups. 890 ohms, 400 volts, 400 cycle, 120/208 VAC. Speed 20,000 rpm, amp. moment 1 in., 500,000 gm-cm 1/2/sec. Erection angle 4° 30' peak, 120/208 VAC, 400 cycles, time 5 min. to ½ jog; caging mecha-nism operates on 24 VDC. Price $49.50

24 VOLT DC POWER SUPPLY

Input: 115/110 volts A.C., 60 cycle, single phase. Output: 24 volts D.C. with 15 amp tapped generator and secondary voltage unit contains 6-30 volt D.C. unit and 0-50 volt D.C. unit. voltage regulator and control breaker. Output element type noted above, approx. dim. 1½ x 1½ x 2½. Weight 3/8 lbs. Stabilized, wt.: 10 lbs. PRICE $40.00 each

CIRCL~ 999 ON READER SERVICE CARD

February 8, 1963
INDEX TO ADVERTISERS

Audited Paid Circulation

- AMP Incorporated 15
- Acme Electric Corp. 131
- Adams-Russell Co., Inc. 101
- Aerocom 44
- Airpax Electronics, Inc. ... 23
- Aiden Electric & Impulse Recording Equipment Co., Inc. 115
- Alifax Paper & Engineering Co., Inc. 115

Babcock Relays, Inc. 45
- Ballantine Laboratories, Inc. 111
- Barker & Williamson, Inc. 40
- Bell Telephone Laboratories 43
- Binwanger Corp. 102
- Birtcher Corporation, The. 130
- Black & Webster, Inc. 86
- Borg Equipment Division, Amphenol-Borg Electronics Corp. 73
- Bourns Inc. 32, 33, 34, 35, 36
- Bussemann Mfg. Co., Div. of McGraw Edison Co. 38

- CTS Corp. 113
- Carbide & Carbon Chemicals Corp. 26
- Cisco Division of Rockefeller Center Co. 108
- Collins Radio Co. 41
- Consolidated Electronic Co. 81
- Corning Electronics Div. of Corning Glass Works 6
- Cubic Corp. 71

- Datapulse Inc. 90
- Delevan Electronics Corp. 110
- Di Acro Corp. 24
- Dew Corning Corp. 91
- d'Pours de Nemours & Co., Inc. E. L. 46
- Dynac A Division of Hewlett-Packard Co. 83
- Dynamics Instrumentation Co. 120

- Electronic Instrument Co., Inc. (EIICO) 112
- Erie Resistor Corp. 105

- Flying Tiger Line 21

Hayes, Inc., C. L. 117
- Holland Division, Honeywell 87
- Hewlett-Packard Company Inside Front Cover
- Hitachi, Ltd. 42
- Honeywell 114
- Hughes Aircraft Co. 95
- Intelex Inc. 88
- International Telephone and Telegraph Corp. 116
- I Triple E 46, 78, 102, 121

- Keithley Instruments 112
- Repco, Inc. 75
- Kistler, A Division of Cubo Electronics Inc. 3rd Cover
- Klein & Sons, Mathias 57

- Leach Corporation 85
- LEL, Inc. 102
- Lebel High Frequency Laboratories, Inc. 98
- Linen Thread Co., Inc., The 46
- Litton Industries Electronic Tube Div. 30
- Lockheed Calif. Co. 162
- Lockheed Missiles & Space Co. 92

- Mallory and Co., Inc., P. E. 76, 77
- Markon Instruments 78
- Markel & Sons, L. Frank 70

for maximum reliability
SPECIFY BIRTCHEr HEAT RADIATORS

LOW-COST HEAT RADIATOR FITS 75% OF SEMICONDUCTORS

Bircher's new compact, low-cost 3AL-771 heat radiator has a universal hole pattern for mounting 75% of most popular semiconductors including TO-3, TO-36 and all 1/4-in. stud mounted cases. You don't have to stock a variety of heat radiator for different case sizes now—one design, from stock does the job of keeping junction temperatures well within safe limits at highest wattage dissipation even in free-air mounting. No protruding fins or fingers to get in the way. A total of 15 sq. in. of effective radiating surface in a clean design. Material is .063 aluminum alloy 1100-H14 per QQ-A-561c and black anodize finish per MIL-A-8625A Type II.

Available from authorized distributors
Write today for certified comparison test reports

THE BIRTCHEr CORPORATION
INDUSTRIAL DIVISION
745 S. Monterey Pass Road, Monterey Park, Calif. Angelus 8-8384
TUBE/TURBOSISTOR/COMPARTMENT COOLING AND RETENTION DEVICES

130 CIRCLE 130 ON READER SERVICE CARD
PROFESSIONAL SERVICE 126

CLASSIFIED ADVERTISING
F. J. Eberle, Business Mgr.

EMPLOYMENT OPPORTUNITIES 124-127

SPECIAL SERVICES 128

EQUIPMENT
(Used or Surplus New)
For Sales 127, 128, 129

INDEX TO CLASSIFIED ADVERTISERS
Atomic Personnel Inc. 126
Barry Electronics Corp. 128
Bell Aeronautics Co., Div. of Bell Aerospace Corp. 126
C & H Sales 129
Communications Equipment Co. 128
Engineering Associates 128
Fishman Co., Philip 128
General Dynamics/Electronics 124
General Electric Company 124
International Business Machines Corp. 125
Lifschutz Fast Freight 128
Motorola Semiconductor Products Div. 127
Radio Research Instrument Co. 128
Scope, Professional Placement Center 126
Selectronics Co. 128
TAB 128
Western Engineers 127

- See advertisement in the July 25, 1962 issue of Electronics Buyers' Guide for complete line of products or services.

This index and our Reader Service Numbers are published as a service. Every precaution is taken to make them accurate, but electronics assumes no responsibilities for errors or omissions.

WILL ANY OF THESE

Acme Electric
STANDARD STOCK

POWER SUPPLIES
Meet Your Needs?

Why pay the extra
cost of custom built power supplies if
your needs can be accommodated by
one of these Acme Electric stock models?
These units have all the "most
wanted" features of circuitry and per­
formance; continuous duty, negligible
thermal drift, constant output voltage,
fast recovery on line voltage variations
and load changes, current limiting and
ever so many other advantages. Check
the specs and write for catalog 174.

Input: 100-130 volts, 60 cycles
Output: Regulated ±1% for
line voltage variation
Ripple: Less than 1% RMS

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Watts</th>
<th>Amps</th>
<th>D.C. Volts</th>
<th>Effi­ cacy</th>
<th>Approx. Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ship</td>
<td>Lbs.</td>
</tr>
<tr>
<td>PS-41427</td>
<td>50</td>
<td>2.08</td>
<td>24</td>
<td>72</td>
<td>14</td>
</tr>
<tr>
<td>PS-41423</td>
<td>150</td>
<td>6.25</td>
<td>24</td>
<td>76</td>
<td>23</td>
</tr>
<tr>
<td>PS-41424</td>
<td>200</td>
<td>4.15</td>
<td>48</td>
<td>81</td>
<td>25</td>
</tr>
<tr>
<td>PS-41425</td>
<td>250</td>
<td>2.50</td>
<td>125</td>
<td>85</td>
<td>26</td>
</tr>
<tr>
<td>PS-41426</td>
<td>300</td>
<td>5.50</td>
<td>86</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>PS-41427</td>
<td>200</td>
<td>1.00</td>
<td>200</td>
<td>80</td>
<td>25</td>
</tr>
<tr>
<td>PS-41428</td>
<td>250</td>
<td>1.00</td>
<td>250</td>
<td>85</td>
<td>26</td>
</tr>
</tbody>
</table>

Dependable Construction Features
Continuous duty, constant voltage transformer;
computer grade electrolytic filter capacitors;
silicon rectifiers; input and output connections
on terminal board; heavy gauge, structurally
braced relay rack panel.

SIGNAL DEVELOPER POWER SUPPLY
A reliable, solid
state rectifier, sup­
plying 5 ma, 0.25 volts direct current for
manual control of a magnetic amplifier or
other application requiring low current values.
Manual regulator gives stepless control of dc
output from 0 to 25 volts. Compact, light­weight.
Our stock model PS-39787, full de­
tails in catalog 174. Write for your copy.

ACME ELECTRIC CORPORATION
312 WATER ST., S.A.A. 3645/3000 CUBA, N.Y.
In Canada: Acme Electric Corp., 50 Northline Rd., Toronto, Ont.

CIRCLE 131 ON READER SERVICE CARD 131
NYLON COIL BOBBINS
WIDE RANGE OF STOCK SIZES
— from 1/4" diam. x 11/4" long to 1-1/16" diam. and 1-1/16" long. Round, square, rectanglar to your specs. Any thermoplastic, any shape, any size. (No minimum size. Maximum to 1-1/16" x 1-1/16").

YOU SAVE thru GRC's exclusive mass production methods—single cavity techniques—on fully automatic, patented machines. GRC's one-piece nylon molded bobbins are highly uniform-accurate. Speed winding, make the most out of nylon's outstanding properties.

When you need bobbins, you want GRC. Send for standard stock sheet or quotes on sizes, shapes, and materials to your order.

Write now for prices and new GRC fastener catalog.

Gries Reproducer Corp.
World's Foremost Producer of Small Die Castings
151 Beechwood Ave. • New Rochelle, N. Y.
Phone: (914) New Rochelle 3-8600
FIRST TO BRING YOU 5 READINGS-PER-SECOND SPEED WITH MERCURY-WETTED RELAYS!

If you want accuracy and speed in a voltmeter/ratiometer, KINTEL’s Model 551 is for you. It has more than just sufficient speed for most data logging and bench applications. In fact, it is the fastest, most accurate unit on the market with mercury-wetted relays and all-solid-state construction.

ACCURATE. DC measurements between 0.0000 and ±999.99 volts are accurate to within 0.005% of full scale ±0.005% of reading. AC measurements from 30 to 10 kc between 0.0000 and 999.99 volts are accurate to within 0.05% of full scale ±0.05% of reading. Ratio accuracy is 0.005% of full scale ±0.001% of reading. All measurement circuits are fully isolated from the case, power line, and output devices. This exceptional accuracy makes the 551 ideal for laboratory use.

ADAPTABLE WITHOUT MODIFICATION to fit in a variety of digital data-logging systems. Printer output driver circuits provide electrical signals or contact closure in either binary-coded decimal or 10-line parallel form for virtually any type of digital recorder.

For complete technical information, or a demonstration without obligation, write direct. Price (without optional visual readout) for the basic 5-digit instrument with buffer register and auto/manual/command range: $4150. F.O.B. San Diego. Export charge 5%. Accessories include projection readout, BCD mercury-relay output, 10-line mercury-relay output, and AC converter.

Representatives in all major cities.

For the first time the proven advantages of the famous RCA nuvistor tubes are available in a type specifically designed for low-voltage operation. The new RCA-8056, designed to operate from a plate supply of between 12 and 50 volts, is suitable for a wide variety of industrial and military applications, including mobile and aircraft communications, employing low-voltage circuits.

The 8056 is recommended for use in low-noise rf and if amplifier circuits, control and multivibrator circuits, cathode-follower circuits, and in other special applications requiring a device having a high input impedance and capable of operating at low plate supply voltages. When used with a low-voltage power supply, the 8056 can provide high gain with low noise in small-signal amplifier applications at frequencies up to 350 Mc.

Design advantages include:
- Small size and light weight
- High input impedance to minimize impedance-matching problems
- Relatively high voltage gain (amplification factor = 11.5 in Class A1 amplifier service)
- Low power drain
- Very high resistance to nuclear radiation fields
- Excellent stability
- Ability to withstand severe mechanical shock and vibration
- Exceptional uniformity of characteristics from tube to tube
- Stable operation over a wide thermal range
- Stable operation at any altitude

For full information on the 8056 nuvistor, talk to your RCA Field Representative or write: Commercial Engineering, Sec. B-19-DE-2, RCA Electron Tube Division, Harrison, N. J.