DIRECT WAFER BONDING BOOSTS LINEAR-IC UHF PERFORMANCE

- THE TOP 100 PRODUCTS FOR 1991
The leader in PC based EDA tools.

Why? Because we never stop improving our products. One example is our world famous Schematic Design Tools package with the ESP framework.

OrCAD has just released version 4.10 with these new features.

- dramatic increase in capacity
- utilities like netlist output have increased speed
- introducing new "hotkeys" in the ESP framework

The ESP Framework
The ESP framework is the first PC based framework that allows seamless integration between OrCAD tools and those of third party vendors. ESP framework is a part of Schematic Design Tools; no need to pay extra.

The OrCAD Difference
Schematic Design Tools still comes with the features you'd expect to pay more for:
- A library of over 20,000 unique parts you can browse through in a breeze.
- Utilities to generate Bill-of-Materials, electrical rules check, create custom library parts.
- Support for over 30 netlist formats.
- Over a hundred supported display adapters, 50 printer drivers, a dozen plotter drivers.
- User definable "smart" macros

As ever, all OrCAD products come with one year of product updates, telephone technical support and 24 hour BBS, and a subscription to The Pointer newsletter.

Call (503)690-9881 or write today for your FREE demo disk!
New Switched Integrator IC
Light Years Ahead of Discrete Designs!

Unique IC Beats Discrete Designs

When you need to convert low-level current signals to precision voltage outputs, try our unique ACF2101 dual switched integrator. It’s the only complete IC solution on the market, with Difer® op amps, 100pF capacitors, HOLD and RESET switches, and output multiplexers on a single chip.

ACF2101 eliminates problems often encountered with discrete integrator circuits, including leakage current errors, noise pickup, and charge injection. The resulting performance is several magnitudes better than discretes, plus it saves on board space and requires fewer parts!

Direct Photodiode Interface

ACF2101 interfaces directly to phototubes, photodiodes, and other low-level current sources.

The result is your best choice for a wide range of precision medical, scientific, and industrial instrumentation applications, including:

- Airport luggage scanners
- Blood gas analyzers
- Chemical analyzers
- CT scanners
- Digital X-ray equipment
- Electrometers
- Nuclear particle detectors
- Pulse oximeters

Key Specifications

- Low bias current, 100fA
- Low noise, 10µVrms
- Wide dynamic range, 120dB
- Low charge transfer, 0.1pC
- ≤100µA inputs
- Two complete integrators
- -40/+85°C
- $18* in 100s

Free Samples Fast

Contact your local Burr-Brown sales representative for evaluation samples and data sheets, or call 1-800-548-6132 for immediate assistance.

Burr-Brown Corp.
P.O. Box 11400
Tucson, AZ 85734
Let your fingers do the you-know-what through our PLD databook, and see what we mean. In it you'll find everything you'll ever need in a CMOS PLD. Available now and in quantity from AMD.

Which shouldn't surprise you, coming from the undisputed leader in programmable logic. After all, we invented the PAL device and the 22V10, and established them as industry standards in programmable logic. In fact, we sell more programmable logic devices than all of our competitors combined.

What's more, we offer the widest variety of CMOS PLDs of any vendor. Everything from our high speed, high density MACH™ Family, to low density commodity parts. Even PLDs for specialized applications.

All of which are supported by the design, test, and programming tools you're already familiar with, through our FusionPLD™ program.

Our new Submicron Development Center in Sunnyvale represents our commitment to innovation and performance in CMOS technology. That's where we continue to develop CMOS PLDs with the highest systems performance.

In short, everything from A to Z in CMOS PLDs is always right at your fingertips. So reach for your AMD databook, and place an order today. Or call 1-800-222-9323 for more information.
35 **LINEAR ICS ATTAIN 8-GHZ NPNS, 4-GHZ PNPS**
From op amps and ASICs to ATE pin drivers, a new DI wafer-bonding process ups the speed and bandwidth of precision linear ICs.

47 **THE TOP 100 PRODUCTS OF 1991**
Last year's 100 most important products, as selected by Electronic Design's editors, are reviewed.

73 **CHECK YOUR DESIGNS WITH VHDL TEST BENCHES**
Engineers can use VHDL to verify both the specification and implementation of a design.

97 **INTELLIGENT OPTOELECTRONIC SENSOR CUTS DESIGN COSTS**
Adding light sensors to a mixed-signal cell library creates a sensor chip with integrated support circuitry.
Technology Briefing

Tracking trends in T&M

- Supercomputer smashes all speed records
- Super-cooled 6-bit ADC IC samples at 14 GHz
- Wafer-bonded silicon on insulator arrives
- CB process builds 10-GHz npns, 4-GHz pnp s
- Link transfers 100 Mbytes/s minus host bus
- Triple video ADC has 30-MHz scan rate
- Transistor for PCN base stations develops 32 W

Technology Newsletter

83 Ideas for Design

- Simplest driver yet for stepper motors
- Diode stabilizes gated oscillator
- Getting real-world data into Spice

95 Pease Porridge

- What's all this PSRR vs. frequency stuff, anyhow?

New Products

- 101 Digital ICs

 Configurable RISC processors solve embedded needs

- 102 Instruments

- 104 Computer-Aided Engineering

- 106 Computers & Peripherals

Technology Advances

27 Technology Advances

- Highly integrated RISC CPUs simplify system design, deliver 60-90+ MIPS
- High-speed serial bus looks to tap industrial applications

Quick Look

89 Quick Look

- Tales from the Skunk Works: Trusting people
- Start measuring time to market before promoting concepts
- Switch market ekes out profits from narrow margins
- Offers you can’t refuse

Coming Next Issue

- Special Report: 1992 Technology Forecast
- Exploring the foundations of future technology advances in:
 - Digital semiconductors
 - Analog, power, and mixed-signal semiconductors
 - Optoelectronic devices and systems
 - Multichip packaging
- Networks’ key role in concurrent engineering
- Assessing the impact of multichip-module design automation
- Future developments in:
 - CISC and RISC microprocessors
 - Magneto-optical disk drives
 - Computer boards
 - Power supplies
 - Passive components
 - Displays
 - Test probes
 - Electromagnetic interference
 - Instrument accuracy
 - Micromachined devices
- PLUS:
 - Ideas for Design
 - Pease Porridge
 - Technology Advances
 - QuickLook

Jesse H. Neal Editorial

Achievement Awards:
- 1967 First Place Award
- 1968 First Place Award
- 1972 Certificate of Merit
- 1975 Two Certificates of Merit
- 1976 Certificate of Merit
- 1978 Certificate of Merit
- 1980 Certificate of Merit
- 1986 First Place Award
- 1989 Certificate of Merit

Electronic Design (USPS 172-088; ISSN 0013-4872)

Printed in U.S.A. Title registered in U.S. Patent Offce. Copyright © 1991 by Penton Publishing Inc. All rights reserved. The contents of this publication may not be reproduced in whole or in part without the consent of the copyright owner.

Permission is granted to users registered with the Copyright Clearance Center Inc. (CCC) to photocopy any article, with the exception of those for which separate copyright ownership is indicated on the first page of the article, provided that a base fee of $1 per copy of the article plus $.50 per page is paid directly to the CCC, 27 Congress St., Salem, MA 01970 (Code No. 0013-4872/91 $1.00 + $.50). (Can. GST #: R12631964) Copying done for other than personal or internal reference use without the express permission of Penton Publishing, Inc. is prohibited. Requests for special permission or bulk orders should be addressed to the editor.

For subscription change of address and subscription inquiries, call (216) 696-7000.

POSTMASTER: Please send change of address to ELECTRONIC DESIGN, Penton Publishing Inc., 1100 Superior Ave., Cleveland, OH 44114-2543.
Challenging the limits of is the core of our success.

For NCR, it's defined by the very things that drive our industry. The changing technology that is the core of what we do. And people who join you in a partnership and provide service that actually exceeds customer expectation.

Because our designers avidly pursue new ideas, they can help make the complex a bit simpler.

And when your challenge is to design a system that goes beyond known boundaries - they will provide myriad resources to help you push that design to the limit.

Those resources include industry-leading products like mixed-signal ASICs, Ethernet and SCSI, already considered standards. Or, when your latest design requires a custom solution, these products become the cores for unique devices - providing ever-increasing levels of integration in ever-decreasing space. Moreover, because you can design systems at higher levels of abstraction... you're free to explore a universe of limitless applications... and still save time, money and reduce the...
risks associated with new product introductions.

And your design, when completed, will test and perform exactly as agreed. After all, your success, and ours... depends on it.

For more information, call NCR Microelectronics Division: 1-800-334-5454.
12 BIT Programmable Pulse Generator

Features:
- .5 ns to 10 ns incremental steps
- Inverted & non-inverted outputs
- Precise pulse width
- Rising-edge triggered
- 40 pins DIP package
- Low profile

CIRCLE 102 FOR U.S. RESPONSE
CIRCLE 103 FOR RESPONSE OUTSIDE THE U.S.

DISPOSING OF EQUIPMENT

No Quicker, Better Way Than UEN
"USED EQUIPMENT NETWORK™"
An ON-LINE Computer Service

FREE ACCESS. Thousands of items. Hundreds of Categories.
NO CHARGE for Surplus or Wanted Equipment listings by end-users.

INDUSTRIAL • TELECOMMUNICATIONS • OFFICE • AUDIO VISUAL

UEN is a service of Used Equipment Directory, a monthly Penton publication listing thousands of items by hundreds of dealers in available equipment.

Use your modem now to dial 201-625-2636 to find needed equipment or to list your wanteds. (or contact directly by fax or mail)

USED EQUIPMENT NETWORK™
P. O. Box 823, Hasbrouck Hts., NJ 07604-0823
201-393-9558 • 900-526-6052
FAX 201-393-9553

"UEN - A FREE SERVICE for End-Users"

CIRCLE 188 FOR U.S. RESPONSE
CIRCLE 189 FOR RESPONSE OUTSIDE THE U.S.
For a Spectacular VGA Display...

It's the Least You Can Do.

Introducing the LCD VGA that rivals CRT displays

Your next LCD display will look great with the CL-GD6410. Proprietary color mapping techniques offer 64 shades of gray on monochrome LCD panels or a palette of 24,000 colors on 512-color active-matrix LCD panels, with virtually no flickering. Linear gray scales give you display images unmatched by any other LCD VGA controller.

For a palette of up to 256,000 brilliant colors, simply add our CL-GD6340 Color LCD Interface Controller.

SimulSCAN: Exclusive! Drive notebook and external displays simultaneously

This hot new feature is ideal for portables used in audience presentations. Get it now for the first time in a single-chip LCD controller without extra external circuitry. Any notebook computer without it will be unpresentable.

One-chip LCD VGA control for smaller, lighter notebooks

Integrated features give you the smallest form factor available. Simply add DRAMs and a clock synthesizer and you have a complete solution in 5 ICs, requiring less than 4 square inches of board space. Making it the ideal solution for your next notebook design.

Lowest power requirements for longer battery life

Our frame accelerator architecture allows you to run the LCD with clock frequencies half those of other solutions and with half the power consumption. Operating down to 4.5 V extends battery life as much as 10%. Three on-chip power-down modes and a variety of system design options provide flexibility in power management.

The least you can do to get a most impressive image is to look into the CL-GD6410.

Whether you fax it, fire it, send it, measure it, wire it, compute it,

The Analog family of

Precision
With the AD840, AD841 and AD842, there's no need to trade speed for accuracy. All three settle to 0.01% within 100 ns (840/842) and 110 ns (841) – critical in data acquisition and instrumentation applications – and offer low offset voltages and drifts, and fast slew rates.

FET Input
For op amps requiring low input current, the OP-42, OP-44, AD845 and AD843 are all remarkably fast – slew rates are 58, 120, 100 and 250 V/µs, respectively. In addition, they offer offset voltages of less than 1 mV and extremely low current noise.

Transimpedance Amplifiers
The OP-160, OP-260, AD844, AD846, AD9617 and AD9618 all utilize a current feedback architecture to achieve slew rates from 450 to 2000 V/µs without compromising stability – even in hostile environments. Other benefits include low power dissipation and high unity-gain bandwidth.

If whatever it is you’re trying to do involves high-speed op amps, Analog Devices is the company to call. With our current products and new introductions, we have the broadest line of high-speed op amps available. A line that gives you the right combination of speed, precision, noise and price. So chances are, we’ve got exactly what you need for
shoot it, launch it, land it, test it, display it or air it, we've got it.

high-speed op amps.

Whatever application you're working in. Call us at 1-800-262-5643, or write to Analog Devices, P.O. Box 9106, Norwood, MA 02062-9106, for a complete high-speed op amp selection guide and a free copy of our SPICE model library.
BiCMOS technology shifts our speedy, powerful SRAMs into high gear. Who'd have thought you could speed past your competitors' designs at 10-12ns access times? Toshiba, of course. Our new, faster SRAMs are helping the latest generation of high performance applications get a quick start. The range of uses for these parts include 32-bit workstations, fast cache, buffer memory and telecommunications. You can probably add a few ideas of your own.

Toshiba's CMOS-based SRAMs are no slouches, either. Our new 1Mb, 15ns SRAM is more than 25% quicker than anyone else's. It's establishing new speed limits. Available in a x16 configuration to fit into today's wider applications. The revolutionary pinout has been used to reduce wire lengths and cut noise. And it's based on the same 0.7 micron process as our 4Mb DRAM, so it will be following another established leader on Toshiba's CMOST Expressway.

Now, we wouldn't want you to think there are just a few densities and organizations to choose from. You can also light a fire under your design with 10ns 256K BiCMOS, or 10ns 64K BiCMOS organized in x4 or x8. You choose. And ultimately, you win.

Of course, if your design doesn't require such breathtaking speed, Toshiba also offers 1Mb SRAMs at 80-100ns, or Pseudo Static RAM up to 4Mb.

When you're ready to really get moving on your next design, call Toshiba.

For technical literature, call 1-800-321-1718.
Look at what you get with the new CY545 single chip stepper motor controller:

- 40-pin, CMOS, +5v chip
- Speeds up to 27K Steps/sec
- 16 Million steps per motion
- Programmable start rate, accel/decel, slew rate
- Pulse and Direction Output
- Separate Limit Switches
- Jog operation
- Home seek command
- ASCII or binary commands
- Parallel or Serial interface
- 8 General Purpose I/O lines
- External memory control
- LCD & LED Display interface
- Thumbwheel Switch interface

Break the single chip speed barrier and the high performance price barrier. You can’t afford to pass up this latest innovation from the company that, ten years ago, brought you the first stepper motor controller on a single chip! Order by Fax or phone or call today for free info.

Cybernetic Micro Systems
PO Box 3000 • San Gregorio CA 94074
Ph: (415) 726-3000 • Fax: (415) 726-3003

EDITORIAL

Here’s To A Better 1992

Looking back on 1991, technology continued to exhibit outstanding gains in all areas. This issue contains our annual look at the top 100 products covered by Electronic Design this year (selected from the 1000-plus covered throughout the year). Many technology breakthroughs are included on this list. Among the top headliners were the all-analog memory device from Information Storage Devices, introduced to the industry on Electronic Design’s cover of the January 31, 1991 issue; the Analog Devices accelerometer IC on the cover of the August 8, 1991 issue; the Star Semiconductor DSP chip of the October 10, 1991 issue; and the bonded-wafer linear ICs from Harris Semiconductor on this issue’s cover. These, plus 96 other groundbreaking products, are revisited in our report beginning on p. 47.

This past year, though, gains on the business side of electronics were anything but outstanding. The semiconductor industry seldom saw its book-to-bill ratio break through the 1.00 level; reduced defense spending has triggered waves of layoffs; general unemployment and the resulting consumer uncertainty in all types of purchases has undercut capital spending in most businesses. All in all, there aren’t many encouraging signs, despite the quickening pace of technology.

In the face of such widespread economic malaise, our best bet may be that the upcoming presidential election will stimulate some deep thinking inside both political parties on what the federal government can do to kickstart our struggling high-technology industries. Let’s hope that next year’s presidential candidates recognize the importance of the high-tech establishment to this country’s economic well-being, thus developing programs that set up a framework for growth in productivity and overall business.

The capital-gains-tax issue will surely generate some heated discussion. The electronics industry is more and more a capital-intensive business, for design as well as for manufacturing. It’s not all that difficult to figure out: If you want productivity increases, you’ve got to invest in today’s — and tomorrow’s — productivity-enhancing tools. And the federal government must act to stimulate such capital investment. However, it’s the long-term capital investors that will make this industry a potent force again, driving the whole country’s economy. The quick-buck decade of the 1980s did not serve this industry well, nor does a short-term, quarterly bottom-line management approach. Let’s also hope those days are over; the U.S. electronics industry can learn a lot in the area of patient market growth from its counterparts in Asia and Europe.

With the right tools and incentives in place, 1992 can be another banner year for the technology, and a watershed year for the renewal of this country’s most important industry — electronics.

Stephen E. Scarpelli
Editor-in-Chief
Finally... precision attenuation accurate over 10 to 1000MHz and -55°C to +100°C. Standard and custom models are available in the TOAT(pin)- and ZFAT(SMA)-series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels.

The 50-ohm components perform with 6µsec switching speed and can handle power levels typically to +10dBm. Rugged hermetically-sealed TO-8 units and SMA connector versions can withstand the strenuous shock, vibration, and temperature stresses of MIL requirements. TOAT pin models are priced at only $59.95 (1-9 qty); ZFAT SMA versions are $89.95 (1-9 qty).

Take advantage of this striking price/performance breakthrough to stimulate new applications as you implement present designs and plan future systems. All units are available for immediate delivery, with a one-yr. guarantee, and three-sigma unit-to-unit repeatability.

<table>
<thead>
<tr>
<th>TOAT-R512</th>
<th>ZFAT-R512</th>
<th>TOAT-124</th>
<th>ZFAT-124</th>
<th>TOAT-3610</th>
<th>ZFAT-3610</th>
<th>TOAT-51020</th>
<th>ZFAT-51020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>(+/-dB)</td>
<td>Accuracy</td>
<td>(+/-dB)</td>
<td>Accuracy</td>
<td>(+/-dB)</td>
<td>Accuracy</td>
<td>(+/-dB)</td>
</tr>
<tr>
<td>(dB)</td>
<td></td>
<td>(dB)</td>
<td></td>
<td>(dB)</td>
<td></td>
<td>(dB)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.12</td>
<td>1.0</td>
<td>0.2</td>
<td>3.0</td>
<td>0.3</td>
<td>5.0</td>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2</td>
<td>2.0</td>
<td>0.2</td>
<td>6.0</td>
<td>0.3</td>
<td>10.0</td>
<td>0.3</td>
</tr>
<tr>
<td>1.5</td>
<td>0.3</td>
<td>3.0</td>
<td>0.4</td>
<td>9.0</td>
<td>0.6</td>
<td>15.0</td>
<td>0.6</td>
</tr>
<tr>
<td>2.0</td>
<td>0.2</td>
<td>4.0</td>
<td>0.3</td>
<td>10.0</td>
<td>0.3</td>
<td>20.0</td>
<td>0.4</td>
</tr>
<tr>
<td>2.5</td>
<td>0.3</td>
<td>5.0</td>
<td>0.5</td>
<td>13.0</td>
<td>0.6</td>
<td>25.0</td>
<td>0.7</td>
</tr>
<tr>
<td>3.0</td>
<td>0.4</td>
<td>6.0</td>
<td>0.5</td>
<td>16.0</td>
<td>0.6</td>
<td>30.0</td>
<td>0.7</td>
</tr>
<tr>
<td>3.5</td>
<td>0.5</td>
<td>7.0</td>
<td>0.7</td>
<td>19.0</td>
<td>0.9</td>
<td>35.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Price $ (1-9 qty) TOAT $59.95/ZFAT $89.95

bold faced values are individual elements in the units

finding new ways...
setting higher standards

Mini-Circuits
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6852844 or 620156

CIRCLE 130 FOR U.S. RESPONSE CIRCLE 131 FOR RESPONSE OUTSIDE THE U.S.
IN THE ERA OF MegaChip™ TECHNOLOGIES

We've squeezed more ABT Widebus as fast
speed from our logic.
as 4.1 ns!

With our new Advanced BiCMOS interface logic (ABT) family, you get the speed, drive and low power you need to optimize the performance of processors operating at 33 MHz and above.

Fabricated in our 0.8-micron BiCMOS process, this new family delivers maximum speeds down to 4.1 ns over recommended operating conditions. Typical performance of the devices is in the 2.5- to 3.0-ns range.

Other critical performance parameters are as impressive. Drive capability is 32 to 64 mA. Static power consumption is typically 2 mA (IccH, ICC2) and 30 mA (ICC1). Ground bounce is less than 800 mV typ.

All this in Widebus

Our ABT family, a second-generation advance of our leadership BiCMOS (BCT) family, includes versions of our 16-, 18- and 20-bit-width Widebus functions.

Among the many ABT Widebus functions released is the 'ABT16244, a 16-bit buffer and line driver. It exhibits much greater stability of propagation delay (see chart), which results in a lower derating factor across the number of outputs switched.

Also in volume production are the Widebus' 'ABT16245 16-bit bidirectional bus transceiver and the 'ABT16543 and 'ABT16952 16-bit bidirectional registered bus transceivers.

As in our successful Advanced CMOS Logic (ACL) Widebus family, these devices come in our leadership surface-mount shrink small-outline package (SSOP) that gives you twice the number of I/Os as a standard small-outline package in the same space.

Unique additions included

There are also new devices in our ABT Widebus family featuring greater density and functionality. Our 'ABT16500A is a good example. An 18-bit registered transceiver, it combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

Squeeze more out of your system with a free sample 'ABT16500A:

Call 1-800-336-5236, ext. 3009

To complement our full line of Widebus products, our ABT family will include at least 39 octal buffers/drivers, flip-flops, transceivers and registered transceivers.

To learn firsthand how our new ABT family can boost the performance of your bus-interface designs, get a free 'ABT16500A transceiver and data sheet. Just complete and mail the return card or call the number above.

© 1991 TI
Technology Briefing

Tracking Trends in T&M

The end of the year is always a good time to sit down and reflect. In the electronics test and measurement area, this year-end introspection uncovers two trends. One involves the VXIbus backplane and how it's being used, perhaps in a different way than some people had expected. The other concerns the impact Windows 3.0 is having on test and measurement.

When VXIbus was introduced about four years ago, some people saw it as an eventual replacement for IEEE-488 rack-and-stack instruments. The comparison was inevitable. Here was a standard that allowed you to buy instruments-on-a-card from different manufacturers and integrate them in a high-performance test system. The standard was also designed for computer control; the modules themselves had no front panels. Moreover, the size and weight advantages over IEEE-488 devices were significant, as were the performance increases. But VXIbus hasn't replaced IEEE-488 and probably won't in the near future.

The problem is that VXIbus instruments are still somewhat expensive. A test engineer must have a serious need for the size, weight, and performance advantages of VXI to justify switching to the new standard. And integrating a VXIbus system isn't an easy task.

As a result, the use of VXIbus instruments by engineers who develop their own test systems seems to be growing slower than initially predicted. However, VXIbus seems to be thriving in another area: automatic test equipment. In recent months, at least five ATE manufacturers—GenRad, Giordano Associates, Hewlett-Packard, Hilevel, and Schlumberger—have introduced VXI-based systems to test various devices and boards. The match seems to be ideal. The VXIbus offers not only high performance but also flexibility. OEMs can create high-performance testers whose configurations can readily be customized for specific applications and upgraded as a user's needs change.

Another important trend in test and measurement is the increasing use of Microsoft Windows-based user interfaces to program and execute tests. Software is an integral part of any new test system. Today, it sometimes seems that there are as many software products aimed at test applications being introduced as there are hardware products. In particular, many manufacturers are incorporating Windows 3.0 into their systems. The software offers some features that may change the way measurements are made and analyzed.

Teradyne recently added a Windows 3.0 graphical user interface to the Victory 2.0 boundary-scan test software. Fluke's Hydra Data Logger applications software can now be used with Windows 3.0. Last month, IOtech and National Instruments announced Windows-based drivers for their IEEE-488 data-acquisition hardware. Both drivers take the form of a dynamic link library, a standard method for integrating a library into a Windows 3.0 application or end-user program. Additional products are scheduled for introduction within the next several weeks.

The dynamic link library and the dynamic data exchange features of Windows 3.0 will change the way engineers perform test and measurement tasks. With these functions, users can share data among different Windows packages, enhancing Windows' multifunction capability. Users can easily cut and paste code from one program to another and quickly transfer acquired data into popular spreadsheet programs or other software for analysis. In addition, the new Visual Basic and C for Windows languages make it much easier to write programs in Windows.

As more Windows-based measurement software in introduced, test programming and analysis will become a modular process. Rather than being tied down to one large acquisition package and one analysis package, engineers will be able to select modules that fill specific needs and quickly build a custom test and measurement program.
Tek’s new encore TDS 400. Extraordinary 4-channel power. Ordinary 2-channel price.

Now you can pick up where Tek’s breakthrough TDS 500 Series left off — with a compact, versatile new series that puts the TDS platform’s 4-channel acquisition, multiprocessing and intuitive operation within easy reach of digital, analog and electro-mechanical design, production test, field service, and many other demanding tasks.

For the usual price of two channels, you can now have:
- 100 MS/s sampling on each of four channels.
- On-the-fly signal processing with up to 12-bit vertical resolution.
- Record lengths to 30,000 points.
- Video trigger option with back-porch clamp and dial-up line/field selection.
- 22 time-saving automatic measurements.
- The unique graphical user interface that lets most TDS manuals stay shrink-wrapped on the shelf.

Call 1-800-426-2200 Ext. TDS4, for more information on either the new TDS 400 or the recently-announced TDS 500 Series — with up to 4 channels, 1 GS/s sampling and 500 MHz bandwidth — and for the number of your nearest Tek sales office. We’ll put you through to all the right channels, fast!

Tektronix
Test and Measurement

Copyright © 1991, Tektronix, Inc. All rights reserved.
dc to 3GHz from $1145

lowpass, highpass, bandpass

- less than 1 dB insertion loss
- greater than 40 dB stopband rejection
- surface-mount
- BNC, Type N, SMA available
- 5-section, 30 dB/octave rolloff
- VSWR less than 1.7 (typ)
- rugged hermetically-sealed pin models
- constant phase
- meets MIL-STD-202 tests
- over 100 off-the-shelf models
- immediate delivery

low pass, Plug-in, dc to 1200MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Passband Mhz</th>
<th>Stopband Mhz</th>
<th>VSWR</th>
<th>Group Delay Variations, ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL-5</td>
<td>25 to 625</td>
<td>6 to 100</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PL-17</td>
<td>30 to 1250</td>
<td>10 to 200</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PL-31</td>
<td>70 to 1250</td>
<td>200 to 400</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PL-70</td>
<td>125 to 1250</td>
<td>400 to 800</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PL-100</td>
<td>250 to 1250</td>
<td>800 to 3000</td>
<td>1.5</td>
<td>2000</td>
</tr>
</tbody>
</table>

Price: (1-9 qty), all models: $11.45, BNC $32.95, SMA $34.95, Type N $36.95

Surface-mount, dc to 570MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Passband Mhz</th>
<th>Stopband Mhz</th>
<th>VSWR</th>
<th>Group Delay Variations, ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-21</td>
<td>20 to 570</td>
<td>570 to 1200</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>SC-30</td>
<td>20 to 570</td>
<td>570 to 1200</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>SC-45</td>
<td>10 to 570</td>
<td>570 to 1200</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>SC-135</td>
<td>10 to 570</td>
<td>570 to 1200</td>
<td>1.5</td>
<td>2000</td>
</tr>
</tbody>
</table>

Price: (1-9 qty), all models: $11.45

Flat Time Delay, dc to 1870MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Passband Mhz</th>
<th>Stopband Mhz</th>
<th>VSWR</th>
<th>Group Delay Variations, ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-39</td>
<td>20 to 390</td>
<td>390 to 780</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PHP-66</td>
<td>60 to 660</td>
<td>660 to 1320</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PHP-75</td>
<td>75 to 750</td>
<td>750 to 1500</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PHP-100</td>
<td>100 to 1000</td>
<td>990 to 2000</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PHP-150</td>
<td>150 to 1500</td>
<td>1490 to 2000</td>
<td>1.5</td>
<td>2000</td>
</tr>
</tbody>
</table>

Price: (1-9 qty), all models: $11.45, BNC $36.95, SMA $38.95, Type N $39.95

high pass, Plug-in, 27.5 to 2200MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Passband Mhz</th>
<th>Stopband Mhz</th>
<th>VSWR</th>
<th>Group Delay Variations, ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-4</td>
<td>20 to 400</td>
<td>400 to 800</td>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>PHP-100</td>
<td>100 to 1000</td>
<td>990 to 2000</td>
<td>1.5</td>
<td>2000</td>
</tr>
</tbody>
</table>

Price: (1-9 qty), all models: $11.45, BNC $36.95, SMA $38.95, Type N $39.95

bandpass, Elliptic Response, 10.7 to 70MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Passband</th>
<th>Stopbands</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-10</td>
<td>10 to 70</td>
<td></td>
</tr>
<tr>
<td>PHP-20</td>
<td>20 to 140</td>
<td></td>
</tr>
<tr>
<td>PHP-40</td>
<td>40 to 280</td>
<td></td>
</tr>
<tr>
<td>PHP-60</td>
<td>60 to 420</td>
<td></td>
</tr>
<tr>
<td>PHP-80</td>
<td>80 to 560</td>
<td></td>
</tr>
</tbody>
</table>

Price: (1-9 qty), all models: $11.45, BNC $40.95, SMA $42.95, Type N $43.95

Constant Impedance, 21.4 to 70MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Passband</th>
<th>Stopbands</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-21</td>
<td>21 to 70</td>
<td></td>
</tr>
</tbody>
</table>

Price: (1-9 qty), all models: $11.45, BNC $36.95, SMA $38.95, Type N $39.95

Finding new ways... setting higher standards

Mini-Circuits™

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661

Distribution Centers
NORTH AMERICA 800-654-7849 • 417-335-5935 Fax 417-335-5945 EUROPE 44-252-830904 Fax 44-252-637010

CIRCLE 128 FOR U.S. RESPONSE CIRCLE 129 FOR RESPONSE OUTSIDE THE U.S.
IR announces Ultra Fast IGBTs: our 600V power transistors that switch faster and run cooler than any you've ever used. Forget about bipolar. Put these breakthrough devices in your high-voltage, high-current, medium-frequency applications and get performance unparalleled for the price. Which should come as no surprise. IR IGBTs build on the same proprietary technology that made IR's HEXFETs world leaders.

Call I (213) 640-6534 and ask about Standard, Fast or Ultra-Fast IGBTs, optimized for your operating frequency. And available from 10A to 70A, in commercial or hi-rel packages. We'll be happy to arrange a screening.
SUPERCOMPUTER SMASHES ALL SPEED RECORDS
By combining 16 CPUs, the Y-MP C90 supercomputer from Cray Research Inc., Eagan, Minn., operates at four times the speed of the company's previous fastest system. The company says that its parallel-vector system is now the industry's fastest. Each CPU has four double-width memory ports and a memory bandwidth of more than 250 Gbytes/s. This leads to a peak performance of 1 GFLOPS for each CPU. A 16-GFLOPS system is achieved by combining 16 of these CPUs with 2 Gbytes of main memory. The high performance is attained by using 64-way parallelism and a dual-vector pipeline. The pipeline allows each of the 16 CPUs to deliver two vector results for every clock cycle. An optional solid-state disk has a storage capacity of up to 16 Gbytes and offers a bandwidth of 7.2 Gbytes/s.

SUPER-COOLLED 6-BIT ADC
By operating at 4.2K (the temperature of liquid helium), a monolithic 6-bit analog-to-digital converter can operate at a mind-boggling 14 gigasamples/s—the world's fastest, according to its developer Hypres Inc., Elmsford, N.Y. Moreover, 5-effective-bit (5-eb) accuracy has been obtained on 2-GHz sine waves, and 4- and 3-eb accuracy on 4- and 8-GHz sine waves, respectively. Aperture uncertainty time (jitter) is estimated to be a mere 5 ps. And power dissipation is a minuscule 10 mW, thanks to an architecture that uses one periodic comparator per bit of resolution. That power usage would be considered low even for a 6-bit, 40-MHz ADC. This superconducting IC is built from Josephson-junction devices called SQUIDs (Superconducting Quantum Interference Devices), which are made with a 10-layer, thin-film niobium process that can be deposited on any flat substrate, such as a silicon or gallium-arsenide IC. The converter's design expands easily to provide 8- or even 10-bit resolution (conventional flash ADCs need 2^n - 1 comparators per bit, where n is the resolution in bits). Hypres' next step will be to add a 1-kbit shift-register storage element to the converter chip to form a transient digitizer that can sample at 20 Gsamples/s. Such a circuit can become the heart of a sampling oscilloscope or a radar receiver. Hypres has already built 16-bit shift registers clocking at 11.5 GHz. The ADC IC was developed for the Strategic Defense Initiative Organization under a contract with Rome Laboratories at Hanscom Field, Bedford, Mass. FG

WAFFER-BONDED SILICON ON INSULATOR ARRIVES
Before the end of next year, expect Analog Devices Inc., Norwood, Mass., and Unitrode Corp., Merrimack, N.H., to introduce wafer-bonding processes for high-speed analog-IC designs to improve existing product lines. Thus, the two firms will join Harris Semiconductor in the wafer-bonded silicon process arena (see "Linear ICs Attain 8-GHz npns, 4-GHz pnpns," p. 35). Analog Devices, which will start with high-speed op amps, plans to buy its wafers already bonded from Japan's Shinitsu. Shinitsu's complementary-bipolar (CB) process, designed specifically for bonded wafers, provides npn and pnp transistors with fTs greater than 4 and 3 GHz, respectively. Unitrode will go for high-speed switching-regulator controllers, using wafers from their joint development and manufacturing program with Motorola Inc., Phoenix, Ariz.

One key element in Unitrode's decision to go to bonded wafers is to simultaneously increase the speed and packing density of its present products. As a result, Unitrode's first products from the bonded wafers may be on a non-complementary, bipolar process. But the process' vertical npns will still sport fTs beyond 1 GHz. Moreover, the pnp transistors from the CB process that follow the non-complementary bipolar process should have similar fTs. Additional information on next-generation analog and mixed-signal IC processes, particularly CB processes using wafer bonding, will be available in our Jan. 9, 1992 Technology Forecasting issue. FG

CB PROCESS BUILDS 10-GHZ NPNS, 4-GHZ PNPNS
In a major switch, AT&T Microelectronics is now ready to offer its junction-isolated CBIC-V process to merchant-market IC users in various standard-product and ASIC forms. The process offers npn transistors with an fT of 10.2 GHz, and more-difficult-to-build vertical pnp transistors with an fT of 4.3 GHz. AT&T has used this manufacturable process internally for several years to build transmitters, receivers, and clock-recovery circuits for glass-fiber transmission systems. AT&T will start with a family of analog and mixed-signal (metal-mask programmable) tile arrays, discrete quad-transistor arrays, and ultra-fast comparators, all due early next year. These will be followed by a family of wideband amplifiers in late spring. The summer will see high-speed buffers, transimpe-
dance amplifiers, and analog switches and multiplexers. Sampling amplifiers will appear later in the year.

Three quad-transistor arrays holding four npns, four npns, and a pair of each will be first off the process. Offset voltages will match within 1 mV, and betas (current gains) will match within ±2.5%. The comparators can handle ±5 V, have propagation delays below 1 ns, and are 8-bit accurate. The op amps, which will offer bandwidths reaching to 500 MHz and 15-ns settling times to within 0.01%, need just 250 mW of power. The analog arrays will offer macros with performance similar to the standard products. For additional information, call 1-800-372-2447, ext. 823 (in Canada, 1-800-553-2448, ext. 823).

Link Transfers 100 Mbytes/s Minus Host Bus

Direct data transfers of up to 100 Mbytes/s can be achieved on DT-Connect II, a 32-bit interconnect scheme. The new standard, from Data Translation, Marlboro, Mass., eliminates the host computer from the data-acquisition or image-processing loop. This lets time-critical data bypass the bottleneck in the host bus. Data acquired from an I/O board can be transferred at 25 MHz to other boards for immediate processing and analysis through DT-Connect II. The standard enables time-critical, compute-intensive applications to be performed on a PC/AT or compatible system. Up to five I/O, processor, or memory boards can be tied together on DT-Connect II.

The free specification is an extension of the company's previous interconnect scheme, DT-Connect. The new version is logically and electrically backward-compatible with its predecessor. Because the standard's 32-bit modes are symmetrical, any board can transfer data to and from any other board within the connection. For example, processors can talk to other processors, and data-acquisition boards can interface with frame grabbers, etc. A broadcast mode lets any board send data to multiple processor boards for parallel processing. With additional lines for interrupts and general communications, processor boards can exchange timing and control information, independent of the host. For more information, contact Data Translation at (508) 481-3700.

Triple Video ADC Has 30-MHz Scan Rate

A scanning rate of 30 MHz makes a video analog-to-digital converter the fastest such device, according to its developer. Intended to handle TV's three color components, the SDA 9205-2 from Siemens AG, Munich, Germany, integrates three 8-bit video ADCs on a chip. The device permits oversampling, which means it uses a scan rate of more than twice the signal frequency. External antialiasing filtering can be simplified, thanks to internal digital filtering. The new Siemens converter, developed at the company's facilities in Villach, Austria, features internal clamping and separately selectable scanning data formats that conform to the CCIR/Rec. 601/656 international standard. To accommodate the three converters on one chip, the SDA 9205-2 uses CMOS for high speed and high integration density at low power consumption. With a signal-to-noise ratio of 46 dB, the device is suitable for digital image processing in PCs, TV sets, and video recorders, as well as studio equipment and video printers. The chip is supplied in a plastic leaded chip carrier PLCC-68 package. Samples are available now.

Transistor for PCN Base Stations Develops 32 W

An output power 50% higher than any previous level of the company's transistor types promises to turn Philips Semiconductors' 32-W LXE18300X into a new standard for transmitting transistors. Aimed at personal-communications-network (PCN) base stations, the bipolar transistor will give a big boost to the power needed to service mobile phones in densely populated areas, particularly during peak hours. The common-emitter device also has a high power gain—typically 10 dB—to reduce the transmitter's amplification stages. The LXE18300X is a microwave silicon power transistor that works as a high-performance amplifier in class-AB transmitters. The output power is 32 W for 1-dB compression, measured at 1.85 GHz at a 24-V supply and 300 mA of collector current. Intermodulation distortion is below -30 dBc at an average output power of 15 W. Efficiency is a high 44%. Besides reducing end-user equipment running costs, the device allows operation with a junction temperature of only 98°C, which lengthens the device's operating life. Samples of the transistor, which comes in an FO-91 hermetically sealed metal ceramic envelope, are available now.
Setting the New Standard in PC Data Acquisition

It takes a serious commitment to quality to deliver data acquisition boards that reliably meet the most demanding specifications. The National Instruments AT-MIO-16F-5 board creates a new standard in excellence with features not found on typical data acquisition boards. These features include:

- 200 ksamples/sec sampling rate
- Software-configurable analog input and gain
- Optimum noise control
- True self-calibration
- Dither generator for extended resolution
- RTSI® bus for multi-board synchronization
- Custom instrumentation amplifier
- Microsoft Windows and DOS driver software

Software for programming the AT-MIO-16F-5 ranges from drivers for Microsoft Windows and DOS to LabWindows® application software. The quality, innovation, and performance of the AT-MIO-16F-5 sets the new standard in PC data acquisition. For more information on the AT-MIO-16F-5, our complete line of data acquisition boards, signal conditioning products, or software, call us.

(512) 794-0100 or (800) 433-3488
(U.S. and Canada)

See Us At ATE And Instrumentation
Booth #108

© Copyright 1991 National Instruments Corporation. All rights reserved.

CIRCLE 136 FOR U.S. RESPONSE CIRCLE 137 FOR RESPONSE OUTSIDE THE U.S.
We Admit This Test Of Our Slimline Display Is Stacked In Our Favor.

Our new LED dot matrix Intelligent Display® has proven once again why Siemens is at the forefront of display device technology. And has left the competition at a loss for words.

Because its package size is 60% smaller, the Siemens SLx2016 Slimline allows you to say a lot more, in a lot less space. The Slimline family features a .4-inch package height, rather than the .8-inch height industry standard, while keeping a .19-inch character height. Plus, our displays are X and Y stackable, to give you maximum flexibility in your design.

The SLx2016 is the first in a series of Siemens Slimline Intelligent Displays, all of which will give you on-board display drivers with control logic and easy addressability.

And it’s available now, in four bright colors including red, yellow, green, and High-Efficiency Red.

So if you’re looking for the slimmest Intelligent Display available, compare us to the competition. You’ll see that they just don’t stack up.

For more information, call (408) 725-3423, FAX (408) 725-3439, or write: Siemens Components, Inc. Optoelectronics Division 19000 Homestead Road Cupertino, CA 95014-0799

HIGHLY INTEGRATED RISC CPUS SIMPLIFY SYSTEM DESIGN, DELIVER 60-90+ MIPS

As developers create newer generations of top-performing reduced-instruction-set computers, the architectural directions for RISC chips converge to a common set of features. The latest highly integrated RISC CPU chips discussed at last month's Microprocessor Forum in Burlingame, Calif., appear to have discussed these devices at length, judging from the similarity of their features. Also released at the conference were the first architectural details of the joint IBM-Apple-Motorola PowerPC processors. Both the TI-Sun and Motorola processors employ dual integer units along with on-chip IEEE-compliant floating-point units, dual caches, and JTAG test ports (see the figures). Furthermore, each processor will be supported by a second-level cache control chip that addresses up to 1 Mbyte of second-level cache. A quick perspective of the R4000, described in a previous issue of ELECTRONIC DESIGN, positions the chip as being similar to the SuperSparc chip but containing only one integer unit and smaller caches of 8 kbytes each for both data and instructions.

However, that's where the similarities between the chips ends. The one observable high-end difference is that Motorola's RISC chip also includes a graphics coprocessor that enables the processor to perform interactive 3D rendering without a separate graphics engine. As the actual implementation details surface, it's clear that designers took radically different approaches. Because the SuperSparc was designed as a high-end upgrade to existing Sparc systems, the chip includes a direct MBus II interface, which includes the 64-bit-wide data path. With the highly parallel architecture, three instructions can be issued every cycle. Overall performance is about three times that of a SparcStation 2 system (60 to 80 MIPS). Initial versions of the 3.1-million-transistor chip will be implemented with TI's 0.8-µm biCMOS triple-level-metal process. The chip will execute old Sparc binaries as well as binaries compiled for the SuperSparc pipeline.

As one might expect, Motorola's 88110 will execute programs written for the 88000 processor at throughputs peaking at 97 MIPS. It will initially be fabricated in a 1-µm triple-level-metal process. But there are plans underway to shrink the 1.3-million-transistor chip by employing 0.8-µm design rules.

One major difference in design approaches can be seen in the on-chip caches defined by both manufacturers. Motorola's designers opted for balanced two-way set-associative caches of 8 kbytes each for their second-generation RISC processor. TI designers decided to tip the scales in favor of large uneven caches—the instruction cache contains 20 kbytes of five-way set-associative memory; the data cache 16 kbytes of four-way set-associative memory.

The SuperSparc's cache employs nearly 1 million more transistors than the cache of the 16-kbyte M88110. To move data quickly into and out of the caches, TI employs a 128-bit-wide internal bus for its instruction cache and a 64-bit bus for the data cache. Motorola's caches both employ 64-bit internal interfaces. Furthermore, both TI-Sun and Motorola employ 64-bit external data interfaces to secondary off-chip caches, while MIPS designers opted for a 128-bit-wide interface to speed cache updates.

In the area of floating-point math, the FPU on the SuperSparc performs double-precision 64-bit calculations. The FPU on Motorola's processor can execute 80-bit extended-double-precision operations, as well as the single- and double-
A three-stage pipeline in the 88110 enables the processor to issue both Multiply and Add instructions on every clock. Although that causes a three-clock latency for all precisions, it reduces data-dependency stalls and allows the FPU to achieve a maximum throughput of 64 MFLOPS. In addition, a radix-8 divider minimizes the time for division operations. The SuperSparc FPU also has a three-cycle latency and delivers a throughput similar to that of the M88110.

Integer operations are approached with different resolutions as well. TI employs dual 32-bit ALUs that can be concatenated to form a 64-bit ALU, while Motorola opted for wider data paths and has dual 64-bit ALUs that produce 80-bit-wide results. The general register files supporting the ALUs include four 80-bit-wide read ports and two 80-bit write ports. A history buffer on Motorola’s processor records the machine state so that if an instruction fault occurs, the entire state of the processor can be backed up to the previous instruction. True speculative execution is performed by the 88110 on branches, which accelerates execution flows.

The SuperSparc and M88110 perform dynamic grouping and scheduling—on the SuperSparc, groups of up to three instructions can be formed from the next three instructions after the program counter value. The size of the group that will execute simultaneously is based on dependency and resource requirements. Motorola designers dubbed their architecture a Symmetric Superscalar approach because it has very few issue restrictions—it has no ordering, pairing, or alignment restrictions—and has multiple execution units to improve parallelism.

The IBM-Apple-Motorola PowerPC architecture, when implemented as a single-chip RISC processor, will retain many of the features of the nine-chip set IBM used in its original RS/6000 workstations. The design goals include a faster cycle time than the original, a better implementation of the multi-issue capability, and user state-storage locking. It will also incorporate multiprocessor support. In addition, IBM unveiled two surprises. First, there will be four silicon implementations of the PowerPC architecture, one each for low-end desktops, laptops, high-end desktops as well as file servers.

Second, to simplify the architecture to fit on one chip, several features were deleted. They included a few floating-point instructions, especially those for double-precision operations. Several pieces of the architecture were also modified to simplify the fabrication. Furthermore, several instructions were extended to multi-cycle execution rather than keep them at single-cycle execution. Instructions that were removed can be emulated by a trap to a subroutine, which then executes that instruction. Operations on 64-bit data can be done, and several new instructions were added to make handling large integer numbers easier. The first of the PowerPC chips—the one aimed at low-cost desktops, is targeted for release in the second half of 1992. It's an offshoot of a single-chip RISC processor that IBM developed internally.

That chip will have a simpler instruction format and fewer instructions. For example, extended-precision shifts and 64-bit multiply-and-divide operations were deleted. Some rarely used commands, such as Absolute, Negative Absolute, and others, were also deleted. However, all existing programs that meet the application binary interface can be run. Almost all will run well; only a few may have to be recompiled to regain performance.

Contact The Microprocessor Forum, 874 Gravenstein Highway South, Suite 14, Sebastopol, Calif. 95472. Phone (707) 823-4004.

DAVE BURSKY
Within budget. Without compromise.

Get more of what you want in a 6½ digit DMM for just $995*.

It has more standard features. Like HP-IB, RS-232 and built-in SCPI commands for more system flexibility. Plus ten extended functions including continuity, diode test, limit test, reading hold, dB and null to give you greater flexibility on the bench.

What more could you want? The HP 34401A also comes with a 3-year warranty, standard.

For more information or same-day shipment from HP DIRECT, call 1-800-452-4844**. Ask for Ext. T512 and we'll send you a data sheet.

<table>
<thead>
<tr>
<th>HP 34401A Digital Multimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Accuracy (1 year)</td>
</tr>
<tr>
<td>AC Accuracy (1 year)</td>
</tr>
<tr>
<td>Maximum input</td>
</tr>
<tr>
<td>Reading speed</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

* U.S. list price
** In Canada call 1-800-387-3867, Dept. 434

There is a better way.
HIGH-SPEED SERIAL BUS LOOKS TO TAP INDUSTRIAL APPLICATIONS

A four-year quest to pack as much computing power as possible into the smallest physical volume has led London, England-based Psion plc to develop a robust and novel high-speed serial data-transmission bus architecture that looks to find a place on the industrial shop floor. The bus, which can operate with a wide range of peripheral devices, is part of Psion's series 3 palm-top computer introduced last fall.

Psion claims that the 6.5-by-3.6-by-0.9-in. computer is the most powerful palm-top computer available *(see the photograph)*. This claim rests partly on the use of a proprietary multitasking operating system running on a static version of the Nippon Electric Corp V-30H processor, which is equivalent to Intel Corp's 80C86 16-bit CPU.

Colly Meyers, Psion's technical director, says that the development started from a conviction that Flash EPROMs would be the ideal solution for data storage for a range of pocket, hand-held and notebook computers.

Series 3 sports 256 kbytes of user memory and 384 kbytes of ROM in which are embedded operating-system and user applications. What gives the palm-top computer its true power and makes it interesting is the technology Psion invented, which allows an almost unlimited ability to read and write from solid-state memory cartridges with many megabytes of data-storage capacity.

At the heart of the system is the SIBO bus, which was devised so Psion could use solid-state disks (SSDs)—high-capacity, high-integrity, low-power and physically rugged solid-state memory cartridges. SIBO can also provide connectivity with a wide range of peripherals, such as bar-code and magnetic-card readers, voice-recognition and processing systems, radio pagers, and RS-232 communications devices including modems.

Although developed specifically for Psion's own portable computers, the transmission system and the SSDs are sufficiently physically and electrically robust to survive the rigors of environments such as factory floors and delivery trucks. Psion plans to share SIBO technology with third parties and is already working with five companies who want to use the system in such applications as test and measurement, production machinery, and commercial data collection.

The SIBO bus features a "hot-insertion" capability, which allows the insertion and removal of SSDs and peripherals while the host system is fully powered. "Since most of the applications envisioned for our system are event-driven and are therefore multitasking, it is imperative that devices could be connected and disconnected without affecting running programs," Meyers further explains.

The SSDs are matchbook-sized cartridges measuring 63 by 52 by 6 mm. The cartridges are metal-cased and are fully screened. They use either Flash EPROM, ROM, or battery-backed static RAM. In the two years that Psion has made them, data capacity has kept pace with semiconductor memory chip technology. Now Psion is selling SSD cartridges—Meyers calls them "packs"—with capacities of 1 Mbyte of RAM and 2 Mbytes of Flash EPROM. Meyers promises that those figures will be quadrupled by mid-1992. All SSDs, including the Flash-EPROM-based version, use a file structure that's compatible with the MS-DOS.

The master chip, ASIC-2, is a serial link controller. It contains an on-chip crystal oscillator, which can be made to run at frequencies between 2 and 20 MHz, from which a clock signal can be derived at rates dependent on the system requirements. The chip sets up and controls eight separate virtual channels, each of which can be addressed independently, and if necessary at different clock rates. Four of the channels are used to address SSD memory cartridges and

TECHNOLOGY ADVANCES

DECEMBER 19, 1991

Design to production, Philips offers you more discrete semiconductor options.

For designers there's the flexibility of choosing from one of the industry's broadest ranges of discretes. Small signal products and power devices, optoelectronic, CATV, RF and microwave products—in standard surface mount, leaded glass, metal and plastic packages.

For specifiers and purchasers, we offer the economies and convenience of a stable long-term single source. And cost-cutting quality-assuring programs to help meet your production goals.

Philips Components
Discrete Products Division
2001 W. Blue Heron Boulevard
P.O. Box 10330
Riviera Beach, FL 33404
1-800-447-3762

Oh no. Please, not now. Not with manufacturing release next week.

The Prototype Doesn’t Work.

Six ASICs, fifteen PLDs and the whole thing’s gone south. Maybe I should go south too. Yeah, hop a bus. Head for Mexico.

The Prototype Doesn’t Work.

Software? Could be. Hardware? Might be. So where do I start? At the beginning, of course. And just where is that, smart guy?

The Prototype Doesn’t Work.

And my performance review comes up next month. Maybe they’ll just forget about all this, right? Yeah. Sure.

The Prototype Doesn’t Work.

Wait. What about that glitch in the handshake on the first pass? Couldn’t reproduce it. Maybe it just reproduced itself.

The Prototype Doesn’t Work.

These are just a few of the reasons Tek makes a complete line of scopes, logic analyzers and signal sources. Instrumentation that can quickly get to the core of your prototype’s problems. Whether they’re digital, analog or software. Because even when your prototype doesn’t work, Tek does. **TALK TO TEK/1-800-426-2200**
four are used with peripheral devices—although the last four channels can also be used to access SSDs and for writing.

A newer version of ASIC-2, now nearing production, also has the equivalent of a slave device on-chip so that a pair can provide a high-speed, bi-directional, time-multiplexed serial link that’s capable of transferring data at 1.5 Mbits/s. That version will be offered to third parties.

More importantly, the PC card will include a port for the Psion 1.5-Mbit/s serial link. Interconnecting this link with a similar port on a portable computer allows the PC to be read from and to write to SSDs directly without the SSDs being removed from the portable terminal. The eight virtual channels on each card can each be used to collect or load data from a separate memory pack through this high-speed link at rates of up to 100 kbytes/s. The number of packs that can be addressed over a single bus is limited only by the 32-address limit imposed by the 1/0 circuits—so four such cards can be used in a single PC.

Physically, the link comprises six wires: ground, clock, data, and three power lines. Power lines carry 5.5 V, which are dropped through a diode within the SSDs to provide the 5-V main power supply for the memory chips. Next is a 17-V line. A regulator built into the SSD reduces that to the 12.5 V the Flash chips need for erasure. The third power line is used to sustain RAM chips while the SSD is plugged into its host, bypassing the lithium back-up battery that keeps memory alive away from the computer. The arrangement is similar for peripherals, except that one of the unwanted power lines is replaced with an additional signal line that can carry an interrupt signal from the peripheral device to switch the computer’s CPU out of standby.

Hot insertion is handled by using a specially designed connector in the SSDs. The connector is a female plug with its contacts staggered to ensure that when it is plugged into the host, the ground connection is made first, followed by the signal lines, and then the power rails. “On the system side, the designer can use a standard 0.1-in. flat-pin male connector,” Meyers says. He adds that these types of connectors are good for tens of thousands of make-break insertions. These connectors are also less susceptible to dirt and electrical noise than multiway parallel connectors.

Plug-in cards on the market using solid-state memories are compatible with the Personal Computer Memory Card International Association (PCMCIA) standard that was adopted by several other pocket-computer makers—a standard that Psion’s card does not adhere to. However, Psion does not see its approach competing with the PCMCIA standard and believes that it is more complementary.

“The PCMCIA standard calls for a parallel connector that’s really an extension of the standard IBM-compatible PC internal bus,” says Meyers. That means that a PCMCIA cartridge is placed right in the machine’s memory map, and makes memory access faster than Psions’s serial system. However, Meyers points out that the standard is defined especially for IBM-compatible machines, whereas Psion’s can be used with virtually any processor or microcontroller architecture.

For more information, contact Psion plc at Alexander House, Frampton St., London, NW8 8NQ England, or call 44 (0)81 262 5580.

PETER FLETCHER
Siemens provides computer and peripheral manufacturers with a worldwide connection for state-of-the-art integrated circuits.

Siemens is building on a tradition of innovation with state-of-the-art technology in the workplace. And we back it with worldwide service and support, providing a global partner for all your system designs.

For applications such as laptop PCs, printers and disk drives, which require lower power consumption, we offer CMOS 8-bit microcontrollers based on the 8051 architecture. Like the SAB80C537, with advanced features such as 16-bit hardware multiply/divide, and 8 data pointers.

We’re also the only European DRAM manufacturer, providing high-quality 1-Mb and 4-Mb DRAMs. In fact, we’re one of the world’s leading suppliers, with DRAMs available worldwide, in volumes which have doubled since 1989. And we’re continuing to advance this technology with our 16-Mb and 64-Mb DRAM programs.

Siemens has a wide range of ICs for PCs. Our powerful 80286 microprocessors include a super-fast 16 MHz design. And we provide the 82C206 and the NEAT™ chipset for optimized, low-cost solutions.

Plus, Siemens offers an extensive line of CMOS ASIC devices.

For innovative solutions for computer and peripheral manufacturers, Siemens is the best connection you can make.

For details, call (800) 456-9229, or write:
Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514

Ask for literature package M14A013.

© 1991 Siemens Components, Inc. M14A013 NEAT is a trademark of Chips and Technologies, Inc.

CIRCLE 152 FOR U.S. RESPONSE
CIRCLE 153 FOR RESPONSE OUTSIDE THE U.S.
FROM Op Amps And ASICs To ATE Pin Drivers, A NEW DI Wafer-Bonding Process Ups The Speed And Bandwidth Of Precision Linear ICs.

LINEAR ICs ATTAIN 8-GHZ NPNs, 4-GHZ PNPs

FRANK GOODENOUGH

By using a multi-disciplinary team of marketing, process- and IC design, and manufacturing members, Harris Semiconductor becomes the first to move direct wafer bonding, one of the newer silicon-on-insulator (SOI) technologies, into the merchant-market linear-IC arena. The team's process designers have also unleashed UHF-1, a UHF complementary-bipolar IC technology, on these bonded wafers. The UHF-1 process is targeted at making analog ICs (particularly amplifiers and other linear circuits) which require not only fast npn transistors, but also fast pnp transistors.

SOI processes, which are semiconductor processes using dielectric isolation (DI), have been around since the early 1960s. In such processes, individual or groups of transistors are galvanically isolated from each other and from the semiconductor (usually silicon) substrate wafer by a true-dielectric layer, such as silicon dioxide. SOI processes make possible higher-performance devices than are obtainable with conventional junction-isolated (J) processes.

However, multiple problems occur with conventional DI/SOI processes, not the least of which is a wafer-diameter limit of four inches, making them unsuitable for the mass production of ICs, which in turn means lower IC costs. In addition, the DI/SOI process requires device-specific wafers. That is, each type of IC must have a wafer specifically designed for it after the IC itself is designed (see "A brief review of SOI technologies and their advantages," p. 40). The fabrication of the basic wafer becomes part of the IC fabrication process, but is outside the standard process flow.

To combat these problems, Harris Semiconductor's designers developed the wafer-bonding technology and the UHF-1 process along with it (see the opening illustration, this page). The UHF-1 process features vertical npn transistors sporting f_{max} of 8 GHz, while the f_{max} of its vertical pnp siblings attain a high of 4 GHz. Moreover, these unity-gain frequencies are achieved at operating volt-
ages between 1 and 10 V, and even at collector currents under 1 mA.

As their first shot out of the box, the team’s chip designers started standard-product op-amp and ATE pin-driver IC families, as well as five-transistor arrays containing discrete devices. Harris has also created an analog tile-array family and an analog cell library on the wafer-bonded UHF-1. All of these first products offer performance, and/or features, equal or superior to those of any competitive ICs.

Process to Products

The HFAll00/1120/1130 op amps from the UHF-1 process are its flagship products. These unity-gain-stable current-feedback IC op amps offer the widest bandwidths for a monolithic device. They feature a 2500-V/µs typical slew rate, 850-MHz 3-dB bandwidth, and 11-ns settling time to within 0.1% for a 2-V step (Table 1).

A quick look at their specifications gives a strong indication of where these op amps will find homes. They will be used to handle fast analog pulses (pulses containing information in their amplitude), and handle baseband video waveforms plus IF and RF signals. The built-in voltage clamps are needed in various applications, such as driving flash and other video-speed ADCs. By providing specifications for distortion, third-order intercept, noise figure, and 1-dB compression, these op amps are ready for the designer of systems processing RF signals.

All three op amps are available in 8-pin DIPs and SOICs. The HFAll00 is offered in the standard pinout, with pins 1, 5, and 8 uncommitted. The HFAll20 has the ability to trim the 6-mV offset voltage, through zero at pin 5, by adjusting the bias current. All three models provide an internal clamp to ensure fast recovery from saturation due to signal transients. The HFAll00/1120 clamp at the supply rails. The HFAll30’s negative and positive limits of its clamp voltage can be set by the user (with pins 5 and 8, respectively). The positive limit can be set between −5 and +3.5 V; the positive

1. **Bonded Wafers** and their oxide-isolated islands of silicon are produced by growing oxide on a pair of wafers (a). Next, the wafers are clamped together in a hot oxygen atmosphere and a chemical bond forms between them (b). One of the wafers is then thinned by lapping (c). After that, a diffusion is driven into the thinned wafer, lowering its resistance, and an epitaxial layer is grown on it (d). Finally, vertical trenches are etched to the oxide layer, the trench sides are oxidized, and the trenches are filled with polysilicon (e).
BONDED-WAFER HIGH-PERFORMANCE LINEAR ICs

TABLE 1: HFA1100/1120/1130 OP AMP SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset voltage</td>
<td>mV</td>
<td>±6</td>
</tr>
<tr>
<td>Transfer</td>
<td>dB</td>
<td>+0.01</td>
</tr>
<tr>
<td>-3-dB bandwidth with (V_{out} = 0.2) V pk-pk</td>
<td>MHz</td>
<td>500, (850 t)</td>
</tr>
<tr>
<td>Gain flatness to 100 MHz</td>
<td>dB</td>
<td>0.14</td>
</tr>
<tr>
<td>Gain flatness to 30 MHz</td>
<td>dB</td>
<td>0.01</td>
</tr>
<tr>
<td>Output</td>
<td>V/mA</td>
<td>±2.8/±40</td>
</tr>
<tr>
<td>Output voltage/current</td>
<td>dBc</td>
<td>±50(t)</td>
</tr>
<tr>
<td>2nd-harmonic distortion at 30 MHz, (V_{out} = 2) V pk-pk</td>
<td>dBc</td>
<td>±67(t)</td>
</tr>
<tr>
<td>3rd-harmonic distortion at 30 MHz, (V_{out} = 2) V pk-pk</td>
<td>dBm</td>
<td>32</td>
</tr>
<tr>
<td>3rd-order intercept at 100 MHz</td>
<td>dBm</td>
<td>15</td>
</tr>
<tr>
<td>1-dB compression at 100 MHz</td>
<td>dBm</td>
<td>15</td>
</tr>
<tr>
<td>Transient response</td>
<td>V/µs</td>
<td>2000</td>
</tr>
<tr>
<td>Slew rate, gain = +2, (V_{out} = 5) V pk-pk</td>
<td>ns</td>
<td>11(t)</td>
</tr>
<tr>
<td>SETTLING time to 0.1% for a 2-V step</td>
<td>ns</td>
<td>11(t)</td>
</tr>
<tr>
<td>Power supply</td>
<td>V</td>
<td>±4.5 to ±5.5</td>
</tr>
<tr>
<td>Voltage range</td>
<td>mA</td>
<td>24</td>
</tr>
<tr>
<td>Quiescent current</td>
<td>mA</td>
<td>24</td>
</tr>
</tbody>
</table>

All specifications are maximums or minimums at 25°C unless noted typical (t).

TABLE 2: COMPARING THE UHF-1 PROCESS WITH CONVENTIONAL PROCESSES

<table>
<thead>
<tr>
<th>Process</th>
<th>Units</th>
<th>UHF-1</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta ((\beta))</td>
<td>(\text{pm})</td>
<td>150/100</td>
<td>110</td>
<td>175</td>
</tr>
<tr>
<td>t (\text{pnp})</td>
<td>(\text{ns})</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>V (\text{npp})</td>
<td>V</td>
<td>12</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Practical operating voltage</td>
<td>V</td>
<td>10</td>
<td>11</td>
<td>32</td>
</tr>
<tr>
<td>Early voltage ((V_{E}))</td>
<td>V</td>
<td>60</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>(\mu \times V_{A})</td>
<td>V</td>
<td>9000</td>
<td>4000</td>
<td>4400</td>
</tr>
</tbody>
</table>

DECEMBER 19, 1991

HOW IT'S DONE

To achieve wafer bonding, Harris takes two wafers and grows thermal oxide (typically 0.5-µm thick for high-speed analog ICs) on one surface of each wafer (Fig. 1a). The wafer bonding process is finished after the bonding and dicing process is completed. The wafers can then be diced into individual chips or assembled into packages. This technique is useful for high-volume production of microelectronic devices and can be a cost-effective alternative to traditional wafer bonding methods.
At Gould, we're so sure about the reliability of our new 4060 family of high-performance digital storage oscilloscopes, we back them with the longest warranty in the industry. You're fully covered for as long as we manufacture the product—or five years—whichever is longer.

How can we make that promise?
With complete confidence.

Because we control quality every step of the way. Everything from our ASIC and advanced surface-mount technology to our sophisticated burn-in process is designed to provide you with the most reliable DSO made.

And the high performance you need for both repetitive and transient signal capture.

Available in 2- and 4-channel versions, the 4060 gives you 400MS/sec sampling at a 150MHz.
bandwidth, 8-bit resolution, on-screen signal measurement and analysis, plus glitch capture. What's more, you can get IEEE-488.2 and RS-423 interfaces, and an integral 4-color pen plotter or thermal array printer for instant hardcopy. Our intuitive push-button panel makes everything strikingly simple to use.

In fact, about the only thing we haven't built into the 4060 series is a high price. It's about half of what you're used to paying.

And you'll find the same advantages across Gould's entire line of new oscilloscopes.

For an on-site demonstration, and details regarding the warranty, call Gould at (216) 328-7000. You'll be glad you did for years to come.
fiers are next clamped together with the oxide surfaces in contact and heated in an oxygen atmosphere to about 700°C (the exact temperature is proprietary). A continuous atomic bond forms between the wafer and the oxide interface, with a strength equal to that of the wafer and silicon dioxide bond (Fig. 1b).

One of the wafers is then thinned by a combined etching-lapping technique, and the other becomes the "handle" wafer that provides mechanical support (Fig. 1c). Harris turns the thin wafer into selective low-resistance n+ and n- silicon, via two diffusion steps, ultimately forming the buried layers (or as they're sometimes called, the buried collectors) of the IC's transistors (Fig. 1d).

A layer of n-type epitaxial silicon is then grown on the surface of the future buried layers (Fig. 1d, again). The UHF-1's transistors are built into and on this epitaxial layer. These are the basic bonded wafers, ready for the lithography and standard IC process flow.

At this point, reactive-ion etching (RIE) divides the wafer into dielectrically isolated islands of silicon, with the size and shape required for a specific IC. RIE forms narrow vertical trenches from the surface of the epitaxial layer to the oxide layer. The walls of the trenches are then oxidized to complete the isolation, and their centers are filled with polysilicon to form a flat surface that's planar with the top of the epitaxial layer (Fig. 1e). The wafer can now carry out its primary mission: Building a high-performance linear IC on the UHF-1 process. It should be noted that neither these wafers, nor the wafer-bonding technology, is limited to just analog ICs. In fact, increasing oxide thickness and trench width adapts the technology to high-voltage ICs, such as SLICs (subscriber-line interface circuits) connected to every phone line and off-line power-control chips.

This wafer-bonding process isn't as simple as the previous description sounds. Though in wafer-bonding work first tried by IBM about six years ago and followed up by Harris and others, some early wafers looked like the rippled potato chips used for party dips, and voids in the oxide bond caused the die to fall apart (delaminate) when diced. However, Harris thanks to proprietary techniques, was able to solve these problems.

What are the advantages of wafer bonding over conventional Harris DI? To start, any bonded wafer built to take the UHF-1 process can be used for any IC needing the UHF-1 process (prior to the trenching operation), or potentially for other processes. Wafers of 5 and 6 in. can be built, rather than 4-in. wafers, making the process more cost-effective. Moreover, the narrow trenches raise packing densities significantly. The shallow construction minimizes the heat required to drive in (diffuse) the buried layer, which eliminates thermal effects.

In a conventional DI process, those effects would have made it impossible to achieve the transistor's mix of performance features. The shallow construction also permits a

A BRIEF REVIEW OF SOI TECHNOLOGIES AND THEIR ADVANTAGES

 junction-isolated (JI) IC semiconductor processes suffer from a number of dc and ac problems. Every new design thus represents a series of compromises and sometimes presents designers with mind-boggling challenges. These challenges, though severe for digital circuits, are often exacerbated by orders-of-magnitude for high-speed analog ICs and high-voltage ICs, regardless of application. As a result, early on, process designers developed several technologies offering multiple dielectrically isolated (DI), individual, active, and passive devices on one chip. The DI and silicon-on-sapphire (SOS) processes developed by Harris represent the first two, and until recently, the only silicon-on-insulator (SOI) processes readily available. In the Harris DI processes, oxide tubes completely enclose islands of monocrystalline silicon from a wafer. The tubes are formed by etching and lapping. In the SOS process, transistor-quality, monocrystalline silicon is grown epitaxially on sapphire wafers.

SOI processes, regardless of type, offer IC designers many advantages. Much like a chip-and-wire hybrid, virtually any kind of active or passive device in the process engineer's bag of tricks can be included in the same IC without the usual compromises. That is, the op-amp designer can have fast vertical npn's with performance approaching that of the processes' pnp's. The transistors' f's, are limited only by the inherent lower mobility of p-type devices. The analog-IC designer can also call for JFETs, Zener diodes, Schottky diodes, and non-voltage-sensitive oxide capacitors. Speed is inherently superior to ICs built on DI processes due to lower parasitic capacitance between devices and between the collector of the transistors and the substrate wafer. In addition, this capacitance isn't modulated by collector voltage. The reduced capacitance also increases the speed-power product of ICs built on SOI processes because this capacitance need not be charged.

All JI IC transistors contain parasitic silicon-controlled rectifiers, which can cause latch-up if inadvertently triggered by transients or by the application of excessive dc voltage. SOI processes completely eliminate such parasitic problems. In fact, SOI processes can achieve device-to-device breakdown voltages exceeding 2000 V. Because virtually all of these parasitics become worse as the junction temperature is raised or if the IC is subjected to ionizing radiation, ICs built on SOI processes tend to have superior performance at high temperature and to offer resistance to such radiation.
More guaranteed good news.

Good news travels fast. Because now you can get the industry's longest warranty on the fastest digital storage oscilloscope in its class.

The new Gould 465 portable DSO.

The 465 gives you 100MHz bandwidth with a full 200MS/sec sampling on two channels—which is up to 20 times faster than similarly priced DSOs. Combined with 2GS/sec equivalent time sampling, the 465 excels at capturing both repetitive and transient signals.

That's in addition to all the advanced features packed into this small DSO, like automatic on-screen measurements, persistence mode, glitch capture, IEEE-488.2 (SCPI) and RS-423 interfaces, and a built-in 4-color pen plotter. All intuitively simple to use.

And like the rest of Gould's new line of DSOs, the 465 is warranted as long as Gould manufactures the product—or a full five years—whichever is longer.

For an on-site demonstration, and details regarding the warranty, call Gould today at (216) 328-7000. You'll like what you see. Guaranteed.

Yes! □ Rush me a free 465 brochure □ Have a Gould representative call to arrange a demonstration □ Send me a free DSO catalog

Name: ___________________________
Title: ___________________________
Company: ________________________
Street: __________________________
City: __________ State: ______ Zip: __
Telephone: ________________________

Send to: Gould Inc., Test and Measurement Group, 8333 Rockside Road, Valley View, Ohio 44125.
Fax: (216) 328-7400.

CIRCLE 113 FOR U.S. RESPONSE
CIRCLE 115 FOR RESPONSE OUTSIDE THE U.S.
When it comes to high performance, high volume, and high frequency, no one matches Avantek. For over 25 years, we’ve been the leader in developing new levels of circuit performance for communications systems across the spectrum. Avantek provides cost effective solutions for the most particular design requirements. Our product line is continuously growing both in process and application leadership. We offer both Si and GaAs based products providing the best performance/price choice for any high-frequency design. Discreet devices, ICs, hybrids, or system subassemblies, Avantek has the broadest line of standard components—literally thousands—for kilohertz to Gigahertz applications, and lightwave components too.

- Surface-mount plastic integrated circuits
- Low-noise amplifiers
- High-power amplifiers
- Active and passive mixers
- DRO, VCO, and YIG tuned oscillators
- Limiters
- Attenuators
- Switches
- Frequency converters
- Multiplexers

We Can Help Today

Your local Avantek sales engineer is an engineer, trained and experienced in critical RF/microwave design-in situations and uniquely qualified to support you. Ready to provide design literature, CAD modeling software, or prototype samples. Backed by application engineering teams, your Avantek sales engineer makes the design-in process fast, reliable, confident, and affordable.

The Largest RF/Microwave Component Distribution Network

With over 20 major stocking locations, and a worldwide redistribution operation, Avantek delivers millions of parts every month. We meet the demands of the most demanding JIT program, or supply a critical single prototype with the same matchless service and support. Call us today to hear how we can support your great designs.

Call 1-800-AVANTEK

CIRCLE 90
BONDED-WAVER
HIGH-PERFORMANCE LINEAR ICs

2. THE SHALLOW STRUCTURE of the UHF-1 transistors, made possible by wafer bonding, permits the diffusion of a sinker between the collector and the buried layer.

low-resistance sinker to be diffused, connecting the collector contact to the buried layer and lowering collector resistance (Fig. 2). In high-voltage applications, the shallow construction helps remove the heat from the chip. In addition, parasitic capacitance is lower (half that of a J1 process), increasing the slew rate and thus full-power bandwidth.

As noted earlier, the UHF-1 process was designed specifically to go on trench-isolated SOI wafers. However, the primary mission of its developers was to come up with a process that could build the fastest-slewing and widest-bandwidth precision linear ICs. Bipolar transistors and their processes are truly application-specific. The npn transistors used on fast SRAMs differ from those on ECL chips, and the transistors needed for top-of-the-line analog ICs, regardless of speed or bandwidth, must differ significantly from those used in either of the SRAM and ECL digital applications.

PARAMETER OPTIMIZATION

For starters, today's applications still demand an operating voltage of at least 10 V. But the analog-IC designer also demands optimization of three device parameters: beta (β) or current gain, the Early voltage (V_A), and the product of beta and the Early voltage (β × V_A). Yet the last two parameters are rarely talked about outside the hallowed halls of analog IC and process designers.

Both β and V_A degrade as the transistor designer attempts to raise the device's f_t. The use of transistors, each of which are individually oxide-isolated, helps Harris' designers achieve the speed as well as precision performance required for npn and pnp transistors when compared with transistors made from today's fastest JI complementary-bipolar processes (Table 2).

Note the superiority in both V_A and the β-V_A product of UHF-1 transistors over those of process X, which offers half the f_t at about the same operating voltage. Note also that the f_t of UHF-1 is 6 to 12 times that of process Y, but process Y's V_A's, and its β-V_A product, are about the same as that of UHF-1.

But what's the big deal with Early voltage and the product of it with beta? If you're an analog circuit designer who enjoys designing "neat"
Frankly Fenton, when I named you Manager of excess inventory, this isn’t what I had in mind.

Turn your excess inventory into a substantial tax break and help send needy kids to college as well.

Call for your free guide to learn how donating your slow moving inventory can mean a generous tax write off for your company.

Call 708-690-0010
Peter Roskam
Executive Director

P.O. Box 3021, Glen Ellyn, IL 60138
Fax (708) 690-0565

Excess inventory today...student opportunity tomorrow

BONDED-WAFER HIGH-PERFORMANCE LINEAR ICs

circuits, it will give you some compassion for linear-IC designers stuck with a process based on compromises. In addition, if you decide to someday use UHF-1 in its ASIC guise, that will start you on the road to thinking like an IC designer.

In the simplest terms, the Early voltage represents a function of the practical, and therefore non-infinite, output resistance of a transistor at its collector and its ability to function as a current source. Maintaining a high beta-VA product helps eliminate gain stages, helps produce higher-speed, faster-settling amplifiers, and permits the creation of high-speed circuits without giving up any precision.

In an IC, the VA of an npn typically runs about 130. The higher the VA, the higher the transistor’s output resistance and the nearer it approaches an ideal current source. Thus, the better it biases an amplifier or acts as an amplifier’s active load in a typical analog IC. A differential-pair amplifier with an active load can have very high gain, but only if its transistors have sufficient VA. For example, the gain of a classic npn differential-pair transistor with a pnp active load is the product of the npn-pair’s transconductance and the parallel combination of the output resistance (VA/collector current) of the npn and the pnp transistors.

UHF-1 offers more than just high speed and gain. Its speed-power product permits it to build tomorrow’s products at the collector currents of today’s fastest linear ICs. Alternatively, it can build versions of today’s high-speed ICs that operate with quiescent currents of only a fraction of those required by existing devices. For example, dropping the collector current of an npn transistor that’s operating at an fT of 8 GHz by a factor of 100, say from 1 mA to 10 µA, still leaves the designer...
ATTENTION MARKETERS!

REACH DESIGN AND DEVELOPMENT ENGINEERS

ELECTRONIC DESIGN subscribers are highly educated engineers and managers in the electronics original equipment market.

Select by:
Job Function, Type of Industry, Project Responsibility, Purchasing Influence, Employment Size and Geography

Guaranteed 99% deliverable
100% BPA audited

Call the List Department at 216(696)7000 for your FREE catalog

Penton Lists

BONDED-WAFER HIGH-PERFORMANCE LINEAR ICs

with an f₃ of an amazing 1 GHz, high enough to create some very fast, micro-power op amps.

The UHF-1 process also offers n-channel JFETs with an f₃ of 4 GHz, a buried Zener diode, oxide capacitors, laser-trimmable thin-film nichrome resistors, and double-metal interconnects. The JFET makes possible analog multiplexers, sample-and-hold amplifiers (SHAs), and low-bias-current, low-current-noise op amps for integrators and current-to-voltage converters. The buried Zener diode builds high-quality references. The oxide capacitors not only stabilize op amps, but can also store the SHAs' samples. The thin-film resistors create fast ICs offering dc precision. Finally, the double metal cuts die size and helps minimize parasitic capacitance, while its polysilicon emitters increase emitter efficiency (Fig. 2, again).

PRICE AND AVAILABILITY

The HFA1100/1120/1130 family of current-feedback op amps and the HFA1110 closed-loop buffer come in 8-pin plastic and ceramic DIPs and 5-pin SOICs. They're rated for commercial, extended-industrial, and military-temperature ranges. Pricing for all four in plastic DIPs starts at $9.95 each in 100-unit lots. They will be available in March 1992, with the lower-power family due out about a month later. CIRCLE 511

The HFA2550 ATE pin-driver IC comes in a 28-pin SOIC and in die form. It's rated for the commercial-temperature range. Pricing for the SOIC version begins at $6.75 each in 1000-unit lots. Small quantities will be available in February 1992. CIRCLE 512

The HFS1XXX family of transistor arrays come in 16-pin plastic and ceramic DIPs and are rated for the commercial, extended-industrial, and military-temperature range. Pricing in quantities of 100 for the SOICs and plastic DIPs starts at $1.05 each. Small quantities will be available in April 1992. CIRCLE 513

Typically, non-recurring engineering (NRE) costs for the HTE3000 tile array run under $100,000, and for the HD/3000 Device Level Design System about $130,000. CIRCLE 514

Harris Semiconductor, P.O. Box 883, Melbourne, FL 32901; 1-(800) 4-HARRIS, ext. 1047

CIRCLE 515

How VALUABLE?

CIRCLE
HIGHLY 526
MODERATELY 527
SLIGHTLY 528

Electronics, Inc.
453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552
Call Toll Free 800·431·1064
IN NEW YORK CALL 914·699·5514

CIRCLE 144 FOR U.S. RESPONSE
CIRCLE 145 FOR RESPONSE OUTSIDE THE U.S.
HT216 Local Bus VGA Controller
The industry's first local bus VGA controller, the HT216, dramatically improves the performance of all graphics applications.
By placing the VGA graphics controller on the CPU local bus and incorporating Windows® raster operations functions, the HT216 displays Windows applications two to four times faster than standard VGA controllers—at very little added cost.

HTK320—A 386DX-based High Performance Chip Set
The HTK320 significantly improves 386DX systems performance with a high degree of systems integration and support for local bus peripherals.

A High Degree of Systems Integration
This two-chip set design, which supports internal tag RAMs and reaches systems frequencies of up to 40MHz, consists of an ISA Bus controller chip and a Memory Controller Unit (MCU). With many features integrated directly into the chip set, a high performance, fully compatible IBM PC/AT can be developed with only four external TTL devices.

Local Bus CPU Implementation—The Bus of the Future
The chip set architecture supports the connection of high-speed I/O devices such as VGA, SCSI and LAN controllers directly on the 386DX local processor bus. This design eliminates the 8MHz ISA Bus bottleneck.

Advanced Cache Design
The cache controller of the HTK320 features integral tag RAMs, which allow for two-way set associativity for higher performance, while reducing component count and cost. A unique supporting feature of the cache architecture is a five-deep write buffer with byte gathering. DRAMs may be freely configured using 256K to 16MB devices.

Catch the Bus of the Future
Call Headland Technology to find out more about the HTK320, the HT216 and our other local bus core logic and graphics products.

Catch the local bus now. Don't get left behind.
The following pages contain ELECTRONIC DESIGN's editors' selections of the top 100 products reported by the magazine during 1991. Of this year's Top 100, 23 were cover stories in ELECTRONIC DESIGN, as is shown by some of the covers illustrated on this page. Because our basic criterion for cover treatment is true, ground-breaking innovation, those 23 were obvious choices for the list. The remaining 77 were more difficult to select—we had to sift through a thousand or so excellent products that appeared in our pages during the year. Nevertheless, the choices were made, albeit with the full knowledge that some of the year's important products would not be revisited in this report.

The product write-ups are organized into eight categories: digital semiconductors; analog; computer-aided engineering; power; test and measurement; computers, peripherals, and boards; communications; and components and packaging.

For more details on any of this year's "Best of '91," refer to the issue and the page number cited at the end of each product description.
DIGITAL SEMICONDUCTORS

COMBO CPU AND DSP CHIP PERFORMS A SEA OF TASKS

Working from different downloaded control programs, the 1.1-million-transistor, 100-MIPS Swordfish processor can quickly switch its function from serving as, say, a laser-printer controller to a fax-modem processor, data modem, or an image processor. Thus, it could replace many separate dedicated controllers. The processor, which runs from a 25-MHz external clock, has a full 64-bit internal architecture with two four-stage integer pipelines. An on-chip IEEE-754-compatible double-precision floating-point unit (FPU) has its own pipeline, so both integer and floating-point computations can be done in parallel. Electronic Design, February 14, p. 41.

NATIONAL SEMICONDUCTOR CORP.
2900 Semiconductor Dr., P.O. Box 85890, Santa Clara, CA 95052-8590; (408) 721-6816. Circle 561

BUILD SCSI RAID SYSTEMS TO BOOST DATA AVAILABILITY

Raid architectures, which are storage subsystems based on redundant arrays of inexpensive disks, offer higher I/O throughput to keep up with fast processors. With Raid, data is also better protected against drive failures, and large “virtual” disk drives can effectively be created. The industry’s first commercial chip set for building small and large Raid systems include a 16-bit, fast SCSI-2 controller (the 53C916), and a bus extender (the 53C932) to build 32-bit-wide and fast SCSI channels. At 10 MHz and with 32-bit words, the SCSI channel has four times the throughput of the fiber-optic I/O channels used on mainframes. For larger drive-array systems, up to 90 drives, the company has four additional new chips, plus the 53C916, to supplement the 53C916. Electronic Design, March 14, p. 35.

NCR CORP., 1635 Aeroplaize Dr., Colorado Springs, CO 80916; (719) 396-5612. Circle 602

FAST BUS LINKS CPUs, DSPS FOR MULTIMEDIA SYSTEMS

By adding a new system bus, bottlenecks in most DSP systems can be overcome. The bus, dubbed Media Link, forms a high-speed interconnection that permits DSP chips, a host processor, and I/O peripherals to communicate, independent of the host-system bus. As a result, multiple processors can be interconnected to form systems that can add processing power or I/O functions, much as memory is added to a computer. A custom chip, the Media-Link Controller (MLC), transfers 16-bit-wide data at sustained rates of 66 Mbyte/s. The first version of the chip matches the control signals of a host Intel 80386 32-bit processor, or the Texas Instruments 32-bit TMS320C31 floating-point DSP chip. The on-chip logic permits a direct connection to the processor through a simple interface. Electronic Design, May 9, p. 185.

SPECTRUM SIGNAL PROCESSING INC., 3700 Gilmore Way, No. 301, Burnaby, British Columbia, V5G 4M1 Canada; (604) 383-7266. Circle 663

COMBINATION RAM/PLD OPENS NEW APPLICATIONS

Data storage cells (registers or memory blocks like FPIPs, dual-port RAMS, or even standard static RAMs) are typically implemented inefficiently on most PLDs. However, the HS110 Inteligent data buffer, a CMOS PLD chip, incorporates dedicated but configurable blocks of RAM, thus improving utilization efficiency. The chip includes four blocks of RAM. Every block is organized as 64 words by 9 bits and is configurable either as an independent block or combined in any mix to form deeper or wider memory blocks. Each 4-word block can serve as a dual-port RAM or two 32 by 9-single-port RAMS. Control logic associated with each block enables users to configure the memory function. Electronic Design, May 23, p. 138.

PLUS LOGIC INC., 1255 Parkmoor Ave., San Jose, CA 95126; (800) 253-7357. Circle 604

IN-SYSTEM PROGRAMMABLE LOGIC KEEPS DELAYS SHORT

Except for RAM-based FPGAs, which must be loaded with their configuration data each time the system powers up, current alternatives can’t be reconfigured in a system that’s being upgraded or fixed. A family of in-system programmable large-scale-integration (ispLSI) logic arrays fills this reconfiguration gap. The isplLSI chips use 0.8-μm CMOS EEPROM technology that’s also employed on the company’s high-speed GAL programmable-logic devices. The chips run at system speeds up to 70 MHz, and have an input-to-output propagation delay (including I/O buffers) of just 15 ns through one logic level. The submicron process produces chips with 2000 to 8000 equivalent PLD gates, and 32 to 96 I/O leads. Electronic Design, June 27, p. 137.

LATTICE SEMICONDUCTOR CORP., 5555 N.E. Moore Ct., Hillsboro, OR 97124; (503) 681-0118. Circle 665

X-TERMINALS EVOLVE TO NEXT LEVEL: NO ENCLOSURE

An X-terminal controller board designed with one of two new ASICs, the DD1-4029 or DD1-4129, replaces many other chips and reduces the board size so that it can be placed directly inside the monitor housing, eliminating the need for a separate enclosure. The differences between the parts involve resolution and clock rate. The 4129 supports color resolutions up to 1280 by 1024 pixels and a dot/pixel clock rate up to 120 MHz, while the 4029 supports color resolutions up to 1024 by 1024 pixels and a dot/pixel clock rate up to 80 MHz. The 4129’s higher clock speed is needed to maintain higher refresh rates and resolution levels. Electronic Design, July 25, p. 185.

DOCTOR DESIGN INC., 5145 Oberlin Dr., San Diego, CA 92121; (619) 457-4545. Circle 606

CHIP SET ADDRESSES LOW-COST WORKSTATIONS

A new motherboard logic chip set, called microCORE, packs all of the base-level functionality for Sparc-based workstations into just two to four VLSI chips. By carefully tuning the system architecture to optimize the chips’ functionality, the chip set’s designers have compressed the control for a monochrome system into two chips (including the video support), and for a color system into four chips. With the TMS651 System Controller Unit (SCU) and the TMS620 I/O Controller (IOC), designers can build a system with equivalent functionality to a 25-, 33-, or 40-MHz Sparestation SIC. Electronic Design, July 25, p. 46.

TERA MICROSYSTEMS INC., 5200 Great America Pkwy., Suite 250, Santa Clara, CA 95054; (408) 987-5600. Circle 607

ASIC PUSHES LASER PRINTER TO ITS LIMIT

With the RIDA (raster image device accelerator) ASIC, a laser-printer can run at its rated engine speed and support a much faster engine. The chip accelerates the creation of outline fonts, line-art graphics, and half-tone images. RIDA supports even-odd and nonzero winding fills, as well as Type 1, Intellifont, Bitlet, TrueType, and Speedo font formats. It also can create characters with a 1000-point size maximum. As a hard-copy controller, it offers fast page composition, even at resolutions above 300 by 300 dots/in. Because RIDA is accessed through the host bus, an existing board design can be modified by adding a daughter-card containing RIDA. Electronic Design, September 12, p. 159.

DESTINY TECHNOLOGY CORP., 300 Montague Expy., Suite 150, Milpitas, CA 95035; (408) 262-9400. Circle 666

80X86-COMPATIBLE FAMILY OUTSPACES ORIGINAL CPUs

The Super386 ChipSystem Architecture consists of four 32-bit microprocessors, two math co-processors, and an all-in-one “PC-on-a-chip” CPU. Two 32-bit processors, the 38600SX and DX, are pin-compatible with Intel microprocessors but deliver about...
10% higher throughput. The other two 32-bit CPUs, the 88006SX and DX2, include a 512-byte on-chip instruction cache for about 40% higher throughput than the equivalent-speed original 80386. On one chip, the F8680 PC-on-a-chip combines a 16-bit CPU that delivers 80286-equivalent throughput with a 4-stage pipeline, direct support for memory cards, a 26-bit address space, CGA graphics control for CRT or flat panels, and other features. Electronic Design, September 26, p. 63.

CHIPS AND TECHNOLOGIES INC.
3050 Zanker Rd., San Jose, CA 95134; (408) 451-0600. Circle 609

PARALLEL-PROCESSING DSP CHIP DELIVERS TOP SPEED
A single-chip DSP with a multi-processor architecture, supported by easy-to-use development tools, may open up wide areas of signal-processing system design to DSP implementations. The Spro 1400 has a multi-processor architecture optimized for real-time performance and can handle real-time signal bandwidths of 250 kHz when clocked at 50 MHz. A shared central memory unit, which is surrounded by four independent general-signal processors, consists of 1024 words (24 bits wide) of RAM for data storage and a similar-sized RAM for code storage. Development tools, which are based on a signal-flow design approach, can automatically generate the code that controls and configures the chips. Electronic Design, October 10, p. 43.

STAR SEMICONDUCTOR CORP.
25 Independence Blvd., Warren, NJ 07059; (201) 679-9400. Circle 610

CONTROLLER CHIP TIES IN MEMORY CARDS
The MBS86301 IC reduces the amount of logic needed to connect a memory card to a host system on a motherboard or adapter card. The chip supports various semiconductor memory-card types, including SRAM, flash, UV EPROM, EEPROM, and ROM cards. It’s compatible with the 88-pin memory-card standards from the Personal Computer Memory Card International Association and the Japan Electronic Industry Development Association. The chip offers a 26-bit memory address space and can handle memory cards with data-path widths ranging from 8 to 16 bits. It ties into host processors with 8-to-16-bit data buses, and includes byte-swap logic to adapt to both Intel- or Motorola-style buses. Electronic Design, September 26, p. 63.

FIJITSU MICROELECTRONICS INC.
IC Div., 3545 N. First St., San Jose, CA 95134; (408) 922-9405. Circle 611

SECOND-GENERATION MAX BOOTS DENSITY FIVEFOLD
The Max 700 family of ultraviolet-erasable programmable-logic devices gives designers from 4000 to 40,000 available gates. Logic-propagation delays are as short as 15 ns from one input, through the array, and to an output. To permit the short delays and permit global clock speeds of 70 MHz, designers developed a low-skew programmable interconnect array that keeps skew to less than 2 ns. An enhanced macrocell supports complex logic functions with up to 32 product terms. The macrocell includes a new logic structure called parallel logic expanders, which permit complex logic functions to be implemented without incurring significant additional gate delays. Electronic Design, May 5, p. 146.

ALTERA CORP.
2610 Orchard Pkwy., San Jose, CA 95134; (408) 984-2800. Circle 612

CUSTOM MEMORY CHIPS BOOST CACHE HIT RATES
With the concurrent-writeback cache architecture, system designers can achieve write hit rates of 99.8% and read hit rates of 96% for 80386- or 80486-based systems. The Simulcache chip set achieves such high hit-rate levels by optimizing for zero-wait-state performance on CPU writes and reads. Concurrency enables the CPU to read and write back to the cache while the cache simultaneously performs “housekeeping” tasks in the background. The chip set consists of a controller and dedicated cache-RAM chips. Initial versions of the chip set support CPUs running at 25 to 33 MHz with zero-wait-state memory access. Electronic Design, April 25, p. 115.

MOSEL CORP.
914 W. Maude Ave., Sunnyvale, CA 94086; (408) 733-4556. Circle 613

CHIP SET COMPRESSES, TRANSFERS VIDEO DATA
Transferring video data to computers often requires high-speed channels, due to the large quantity of data involved. However, with a two-chip set, real-time video-data transfers over networks becomes economical and practical. The B291 is the RGB-to-Y/CrCb compressor, while the B294 decouples the Y/CrCb data back to RGB data. The video-converter standards conform to CCIR 601 and SMPTE RP-125. The chips permit video sources and displays, such as cameras, tape decks, and monitors, to be connected to computers through real-time digital interfaces. Electronic Design, March 28, p. 145.

BROOKTREE CORP.
9950 Barnes Canyon Rd., San Diego, CA 92121; (619) 452-7580. Circle 614

SMART CONTROLLER RESTARTS SYSTEMS
The Micro Softener chip can prevent microprocessor systems from crashing by maintaining the current state of the CPU in battery-backed-up memory. It can also initiate an emergency call for help to a remote system so that diagnostic software can be downloaded. Embedded in the chip is power monitoring logic, a watchdog timer, an nonvolatile controller, an address decoder, bootstrap memory, parallel I/O ports, a dual-ported register file, and an interrupt controller. Versions of the DS53XX Softener—the DS5340, 5311, 5396 and 5303—will be available for the 8086-compatible high-integration NEC V40, the Motorola 68HC11, the Intel 80C196, and the Hitachi HD8301/6303. Electronic Design, January 31, p. 118.

DALLAS SEMICONDUCTOR CORP.
4550 South Beltwood Pkwy., Dallas, TX 75244-3292; (214) 450-0400. Circle 615

FPGA MIRROR MASKED GATE-ARRAY ARCHITECTURE
A combination of low-impedance anti-fuse technology, a novel interconnection scheme, and small transistor-pair building blocks yields a field-programmable alternative to gate arrays. Based on a gate-array-like architecture, the six-chip family of CP20K field-programmable gate arrays has densities from 2200 to 20,000 available gates, and offers designers gate-array configurability. Like some gate arrays, the CP20K series chips include many I/O pins and can efficiently implement small blocks of memory. The arrays also permit automatic or interactive place-and-route tools to interconnect the elements. The interactive tools allow the user to maximize performance and improve gate utilization. The chips include an IEEE 1149.1-compatible JTAG (Joint Test Automation Group) interface. Electronic Design, November 21, p. 63.

CROSSPOINT SOLUTIONS INC.
5000 Old Ironsides Dr., Santa Clara, CA 95054; (408) 998-1834. Circle 616

CHIPS RENDER WORKSTATION GRAPHICS INEXPENSIVELY
A chip set that comprises five 8-µm CMOS ICs delivers high-end workstation graphics with architectures that are designed to ease system scaling. The five chips are the GC1201 bit-block-transfer unit and 3D vector processor, CG1201 frame-buffer controller, CG1203 video controller, CG1204 depth buffer with shading processor, and the COT120 pixel accelerator. A low-end system with eight bit planes and a 4096-by-2048 pixel frame buffer could be built with as few as three of the chips (not counting RAM), drawing 3D vectors at 35...
You Design Actel FPGAs.

Use PLD Tools.
You design Actel FPGAs using the same tools as you would a PLD: ABEL™, CUPL™, LOG/I™, and PGADesigner™. But that's where the similarity ends.

Our FPGAs are real speed demons. Whatever application you may be working on, our parts will give you the kind of performance you're looking for.

100% Automatic Place And Route.
Coupled with your PLD tools, Actel’s Action Logic™ System (ALS) software lets you create your own FPGAs—using a 386 PC or workstation—right at your own desk. With Auto Place and Route, Auto-Place and Route that's proven in thousands of applications.

Announcing A Simple Way To Get From PLDs To FPGAs.

If you're a PLD designer with an interest in fast, flexible FPGAs, but you think you don't have time to learn new design technologies, we'd like to change your mind.

First of all, you don't have to give up your existing PLD design tools or Boolean equations. Actel's ALES™ 1 program translates the output of PLD tools like CUPL™ and LOG/I™ into logic optimized for our ACT™ devices. ABEL™ 4.0 includes optimization for Actel devices. Entire FPGA designs can be developed with PGADesigner™.

Actel devices offer everything you want in an FPGA. Like high I/O and flip-flop counts. And 100% automatic place and route gets you to market fast.

Once your FPGA is designed, our Action Logic™ System (ALS) converts the captured design into a completed device in minutes. To give you true, high-density, field-programmable, channeled gate arrays.

Other FPGA manufacturers fall short on design verification. Our exclusive Actionprobe™ diagnostic tools, give you 100% observability of internal logic signals. So you don't have to give up testability for convenience.

It's never been easier to make your innovative designs a reality. We offer you a complete family of powerful FPGAs, like the A1010 and A1020, available in 44, 68 and 84 pin PLCC versions and implementing up to 273 flip-flops or up to 546 latches. And the first member of our ACT 2 family, the pow-
As The Same Way The Similarity Ends There.

More Flexibility And Capacity.
Designing with Actel FPGA's gives you more freedom than you ever imagined. More gates. More flip-flops. More I/O. In fact, our new A1280 is the largest FPGA in the world.

Small Footprint.
Actel FPGA's give you far more gates per square inch. As much as ten times as many as the densest PLD's. That can save a lot of real estate.

More Fun.
Designing Actel FPGA's is so simple that you'll have more time to do the things that made you want to become an engineer in the first place. Or just relaxing. You've earned it.

ful A1280. With 8,000 gates, up to 998 flip-flops, and 140 I/O pins, it's the highest capacity FPGA today. And our A1240-1 is the fastest. In the A1240-1, 16-bit counters run at 75 MHz, 16-bit accumulators at 33 MHz. Enough capacity and speed to handle almost any application. The superior speed, capacity, and auto place and route capabilities of our FPGA's are made possible by Actel's revolutionary PLICE® antifuse programming element. The advanced technology that makes our family of FPGA's an ideal way to unleash your engineering creativity.

The superior speed, capacity, and auto place and route capabilities of our FPGA's are made possible by Actel's revolutionary PLICE® antifuse programming element. The advanced technology that makes our family of FPGA's an ideal way to unleash your engineering creativity.

Call 1-800-228-3532 for your free FPGA Design Guide.

Broad Family With High Capacity

Actel Risk-Free Logic Integration

CIRCLE 80 FOR U.S. RESPONSE CIRCLE 81 FOR RESPONSE OUTSIDE THE U.S.

YLLW CORP. OF AMERICA, Systems Technology Div., 981 Ridder Park Dr., San Jose, CA 95131; (408) 433-3132.

Circle 617

MEMORY-BASED IDENTIFIER TAG PROVIDES DIGITAL ID

The DS199X series "Touch Memory family" contains nonvolatile memories consisting of either ROM or ROM plus battery-backed RAM, scaled in a 16-mm diameter steel package. The memory's contents can be read or written with one signal line and a ground connection. The Touch Memory could serve as an identifier on a pc board or other product. However, unlike a bar code, the DS199X devices can be updated. Similar to a button-battery case, the steel shell has two isolated sections: one for ground and the other (the lid) for signal. On-chip data storage will range from 64 bits to 4096 bits—as much as 100 times the amount of data in a bar code. Electronic Design, July 25, p. 153.

DALLAS SEMICONDUCTOR CORP., 4401 South Beltwood Pkwy., Dallas, TX 75244-3292; (214) 450-0448.

Circle 618

ANALOG DEVICES SEMICONDUCTOR CORP., 901 Thompson Pl., P.O. 3543, Sunnyvale, CA 94088; (408) 723-2470. Circle 618

Circle 617

Circle 618

Circle 618
Now catch the bugs that defy logic.

The HP16500A logic analysis system shows what's bothering your designs.

Power up a new design and you're in for a battle. That's when you need the HP 16500A logic analysis system. With one modular system, you can focus measurement power on those pesky problems. Before things get out of hand.

Choose from a wide range of modules. The state/timing module provides advanced capabilities, including 100 MHz state speed for debugging RISC and high-end CISC processors.

There's a 1 GSa/s scope for single-shot troubleshooting. A 1 GHz timing module for precision time-interval measurements. And pattern generation for functional testing.

And you get the industry's broadest microprocessor and bus support...more than 100 solutions to speed and simplify debugging of virtually any microprocessor based design. Plus an intuitive full-color, touch-screen interface to make setup and operation easier too.

So take control of the debugging process. Call 1-800-452-4844. Ask for Ext.2601 and we'll send a brochure on the analysis system that can catch the toughest bugs before they start bothering you.

There is a better way.

The HP16500A logic analysis system shows what's bothering your designs.
SINGLE-SUPPLY OP AMPS RUN OFF ONE RAIL EASILY

The TLE2425 sets up a virtual ground that allows an op amp, with its power pins connected between a positive supply rail and ground, to handle bipolar input signals—those that swing plus and minus with respect to ground. This 2.5- V, 20- mA voltage source also lets inverter-connected, single-supply op amps handle positive input voltages without clipping. The three-terminal TO-92 packaged IC, with its input pin connected to +5 V and the common pin to common, provides an output that’s a well-regulated ±20 mA of 2.5-V—a virtual-ground reference of 2.5-V. Electronic Design, April 11, p. 55.

INTEGRATOR IC CONVERTS PICAMPERS TO VOLTS

The ACF2101, a switched integrator (the chip actually holds two identical integrators) is basically a form of sample-and-hold amplifier. The current source is connected to the summing point of a very low bias current op amp operating as an integrator. The chip’s 100-pF oxide capacitor integrates the input current. The IC was developed for the front-ends of CAT scanners that contain 500 to 1000 X-ray detectors. Each detector’s output is a photodiode—a current source. Maximum full-scale current is 100 µA, and dynamic range with a fixed integration time is 120 dB. Electronic Design, June 13, p. 132.

LOW-VOLTAGE MICROPOWER OP AMPS COME OF AGE

Three different op amps now offer less power, lower power, and the ability to operate from lower voltage supply rails. The CMOS MAX406 from Maxim Integrated Products Inc. has a maximum quiescent current of just 12 µA. Advanced Linear Devices (ALD) Inc. offers the CMOS quad AD7406 that needs just 50 µA per op amp. And from Signetics Corp. comes the NE2344, a bipolar quad that can slew at 0.5 V/µs, while needing a huge 700 µA of quiescent current per op amp. All three op amps work with potentials of less than 2 V between their plus and minus power-supply pins, making them ideal in various low-power applications. Each of the three op amps is unique and fills its own application niche. For example, the MAX406 op amp won’t oscillate, regardless of load and capacitance. The AD7406 op amp is a standard cell in an ASIC library. And the output signal from the NE234 op amp doesn’t invert when the common-mode voltage exceeds the power-supply rail. Electronic Design, June 13, p. 135.

MIXED-SIGNAL CELLS USE BREADBOARD, SIMULATION

Each member of a family of CMOS ICs, which includes op amps, comparators, 555-type timers, and bandgap voltage references, is part of a growing mixed-signal standard-cell library that also includes standard CMOS logic, n-channel and p-channel MOS transistors, diodes, resistors, and capacitors. Users can start with a breadboard or with Spice simulation on a 286-based PC (preferably a 386-based PC), using the company’s library of Spice macromodels. The models can be used with Spice for either of two purposes: to assist in the design of a low-volume or very simple circuit for pcb-board mounting (using standard parts), or to assist in the design of a chip. Electronic Design, July 25, p. 159.

AIRBAGS BOOM WHEN IC ACCELEROMETER SEES 50 G

The need for a reliable, low-cost, 0-to-±50-g IC accelerometer to actuate automotive airbags spurred the development of the ADXL50. The device’s sensor is built with surface micromachining and combines all of the signal-conditioning circuitry on the chip, which is just 120 mils on a side. The sensor consists of a variable differential air capacitor whose plates are etched from a 2-µm-thick polysilicon film. The capacitor plates are simple cantilever beams supported 1 µm above the chip, in free space, by polysilicon anchors. The accelerometer’s proof mass (the effective mass whose inertia transforms an acceleration along an input axis into a force) moves relative to the rest of the chip when sensing acceleration. The sensor and circuit form a closed, force-balance feedback loop. Electronic Design, August 8, p. 45.
TRW is proud to offer the highest performing line of synthesizer D/A converters: the TDC1041, TDC1141, TDC1012 and TDC1112. The absolute best monolithic D/A converters you can buy for Direct Digital Synthesis applications.

And just another example of the affordable, quality products that give TRW its legendary reputation for setting standards.

<table>
<thead>
<tr>
<th>TTL, 20 Msp</th>
<th>12 Bit (high performance)</th>
<th>10 Bit (low cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDC1012</td>
<td>SMD #5962/G5306</td>
<td>TDC1041</td>
</tr>
<tr>
<td>ECL, 50 Msp</td>
<td>TDC1112, SMD #5962/91652</td>
<td>TDC1141</td>
</tr>
</tbody>
</table>

TRW's proprietary segmented architecture produces incredibly low glitch energy and quick settling time. With low data feedthrough, the result is a spurious free dynamic range as high as 80 dB.

And there's no need for output amplifiers. These D/A converters feature complementary current outputs, each of which drive 1 volt into doubly terminated 50 ohm loads.

The bottom line is that these D/A converters are available and ready to ship.

So when you need a D/A converter you can rely on for DDS, vector and raster graphics, or high resolution video applications, call or write:

TRW LSI Products Inc., P.O. Box 2472, La Jolla, CA 92038 (619) 457-1000, FAX (619) 455-6314 (800) TRW-LSI (800) 879-5747

TRW LSI Products Inc.

STANDARDS SET. STANDARDS TO BE MET.
DOZING IC OP AMPS WAKE UP FOR INPUT SIGNAL

In applications where amplifiers aren't required to drive the output load continuously, they can save battery life if they consume just enough power to detect incoming signals, and shift to a high-performance mode when they detect a signal. The MC33102, a "Sleep Mode" dual op amp with a standard minimum power pinout, represents the first of a family of ICs using this new technique. Guaranteed to run off supply rails from ±2.5 to ±15 V, each of the MC33102's two op amps draws a maximum of 65 µA from the supply rails under no-load conditions. When the load current of either op amp exceeds 200 µA, internal circuits automatically increase each op amp's operating current to 900 µA. Each op amp can then put ±13.6 V of 20-kHz audio across 600 Ω without crossover distortion. Electronic Design, December 3, p. 49.

MOTOROLA INC., Bipolar Analog IC Div., El Segundo, CA 90245; (213) 434-1212. Circle 634

12-BIT IC ADCS SAMPLE SIGNALS AT UP TO 20 MHZ

Two companies have each produced monolithic 12-bit ADCs: The SPT7912 produces 12-bit digital words of sampled analog voltages at 20 MHz, while the AD872 does the same at 10 MHz. Each has one or more 10-bit versions that employ similar architectures. Both converter families employ pipelined, multistep architectures. The proprietary patented architecture of the SPT converters use a set of algorithms called "trigonometric interpolation." The 3-step/4-step (10-bit/12-bit) ADI architecture might be considered conventional because it's an extension of most present two-step designs, although it incorporates numerous patented circuit-design innovations. Electronic Design, October 24, p. 47.

SYNTHESIS TOOLS COMPLETE FRONT-TO-BACK EDA SYSTEM

Second-generation logic-synthesis technology completes Cadence Design Systems' toolset for designing ICs, ASICs, and PLDs. The Improvisor and Optimizer synthesis tools, developed as integral parts of a framework-based design-automation system, handle synthesis of designs with over 20k gates and use one library for all simulation, verification, and analysis functions. They also allow timing-driven constraints throughout the entire design cycle. The tools are integrated into the company's EDA System Design Series and Opus IC Design Series, operating under the Design Framework II. Electronic Design, February 28, p. 91.

HARRIS SEMICONDUCTOR INC., P.O. Box 5890, Melbourne, FL 32901; 1-(800) 4-HARRIS, ext. 1047. Circle 642

8-BIT VOLTAGE-OUTPUT DACS SPORT 11-BIT RESOLUTION

A family of 8-bit voltage-output digital-to-analog converters, the ML2940/41 and ML50/51, give 11 bits of resolution and dynamic range. The key feature is that a 2-bit input word on the gain-control inputs sets the output op-amp gain at 1/4, 1/2, 1, and 2. Thus, changing the gain-control bits from 00 through 10 and 11 doubles the full-scale output voltage three times. Each doubling essentially adds a bit of resolution and dynamic range to give a final effective resolution and dynamic range of 11 bits. With a 30-ns maximum write time and no hold time, the DACs can keep up with the latest microprocessors. The DACs operate from a single power supply. Electronic Design, October 24, p. 125.

MICRO LINEAR CORP., 2092 Concord Dr., San Jose, CA 95131; (408) 433-5300. Circle 637

VOLTAGE-CONTROLLED IC AMPLIFIERS SEEK NEW JOBS

Two voltage-controlled amplifiers focus on widely different applications. The SSM-2018 was developed for professional audio equipment, and the AD600/602 for ultrasonic (medical) scanners. The SSM-2018 controls signal levels from dc through the audio-frequency band, while the AD600/602 performs similar functions from dc to well beyond 35 MHz. A dc control voltage can change the gain of the SSM-2018 from -100 dB to over +40 dB. Similarly, a dc control voltage changes the input-to-output gain of both amplifiers in the AD600 from 0 dB to +40 dB and the gain of the amplifier pair in the AD602 from -10 to +30 dB. Electronic Design, November 7, p. 122.

ANALOG DEVICES INC., Semiconductor Div., 181 Ballardvale St., Wilmington, MA 01887; (617) 937-3250. Circle 639

LINEAR ICs ATTAIN 6-GHZ NPNs, 4-GHZ PMOS

The first commercial linear ICs to be built by direct wafer bonding, one of the newer silicon-on-insulator (SOI) technologies, are based on a new UHP complementary-bipolar IC technology called UHP-1. It features vertical npn transistors sporting f3 of 8 GHz, while f3 of its vertical pnp siblings attain a high of 4 GHz. The company has also created a new analog array family and an analog cell library on the wafer-bonded UHP-1. The HFA1100/1130/1130 op amps are unity-gain stable current-feedback IC op amps, attaining the fastest speeds for a monolithic device. They feature a 2500-V/µs typical slew rate, 800-MHz 3-dB bandwidth, and 11-ns settling time to 0.1% for a 2-V step. A fourth device is the HFA1110 closed-loop buffer, which aims at applications similar to those of the op amps and has similar specifications. Electronic Design, December 19, p. 35.

HARRIS SEMICONDUCTOR, P.O. Box 883, Melbourne, FL 32901; 1-(800) 4-HARRIS, ext. 1047. Circle 642

ANALOG DEVICES INC., 181 Ballardvale St., Wilmington, MA 01887; (617) 937-1297. Circle 641

HARDWARE, SOFTWARE SIMULATORS BLEND

Although workstation MIPS ratings are increasing, simulations aren't getting faster because of the limitations of the workstations' cache architectures. A hardware accelerator helps alleviate this bottleneck. The XLIProcessor (XLP) is a gate-level accelerator that implements Cadence's XL simulation algorithm in hardware. The XL algorithm powers gate-level simulation in the company's Verilog-XL and VHDL-XL software simulators. XLP can handle designs with up to 1 million gates, and operates at up to 2 million events/s. Electronic Design, May 23, p. 133.

CADENCE DESIGN SYSTEMS INC., 555 River Oaks Pkwy., San Jose, CA 95134; (408) 943-1234. Circle 843

ELECTRONIC DESIGN DECEMBER 19, 1991
OPTIMIZE AND RETARGET EXISTING LOGIC DESIGNS

Engineers often need to merge PLDs and standard logic, then retarget the combination into an ASIC. An optimization and re-mapping tool called Retargeter can simplify that process. The tool can, for instance, merge several existing logic designs, determine the function the group was performing, optimize the design, and retarget that same logic into a field-programmable gate array (FPGA) or an ASIC. It accepts designs as existing net lists (also called wire files), standard EDIF net lists, and PLD JED-DEC files. Electronic Design, May 23, p. 135.

SPREADSHEET-LIKE TOOL EASES VHDL PROGRAMMING

In the Humtable, a spreadsheet-like tool used to create VHDL models, the first and second columns are the control and object columns. Words in the control column (such as when, and, if) determine whether or not the identifiers in the object column (clk, SO) are control objects or assignment objects. Identifiers or operators in the remainder of the columns define conditions that produce a result assigned to the identifier in the object column. Events are "read" down each column. Humtables are expanded into a native Hum language called Humbase, which is less elegant than VHDL, but easier to use. Electronic Design, March 14, p. 106.

BUILD MIXED-SIGNAL ASICS WITHOUT ANALOG CELLS

A combination of software and silicon called the MSDS (Mixed-Signal Design Solution) lets system designers create a high-performance mixed-signal CMOS ASIC with on-chip testability that's added prior to layout. With the system, the mixed-signal design process more closely resembles digital design. Designers can incorporate custom analog functions into the design and simulate those functions to ensure that they work as specified. The analog functions supported include filters, oscillators, bandgap references, inverting and noninverting gain stages, voltage regulators, comparators, data converters, and multiplexers. Electronic Design, September 12, p. 163.

ONE TOOLSET CREATES FPGAS IN ANY TECHNOLOGY

A set of device-independent FPGA CAD tools, called FPGA Foundry, support technology-transparent design, which is designing without targeting a specific architecture implementation during schematic capture. FPGA Foundry includes a timing estimator, circuit optimizers, device mappers, timing-driven automatic place-and-route capability, a graphical editor, back-annotation, and report-file generation. The tools are built on a device-independent data struc-
Designers of today’s high-performance power distribution systems (PDSs) need a practical way to take advantage of the compact size, thermal efficiency, and low inductance of insulated flat copper power cable.

Our newest invention not only makes flat conductors practical, it adds powerful new options to the way you can design your 'flat power' PDS.

AMPOWER Wave Crimp
Assemblies let you specify direct taps on flat cable wherever you'd like, for efficient branching. And they give you a true modular approach to power—with separable printed circuit board connectors and sequenced Blind Mate drawer connectors—for fast assembly, and easy service and upgrade.

The exclusive crimp termination contacts an area 50% greater in cross section than the conductor itself. Result: no thermal penalties, no current restrictions, no compromise in the inherent low-noise properties of flat conductors. Electrical characteristics are consistently predictable.

To realize all the new opportunity in flat power right now, call 1-800-522-6752 (fax 717-986-7575) and ask about AMPOWER Wave Crimp Assemblies. In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.
COMPUTER-AIDED ENGINEERING

ture, which lets them support multiple device architectures while still supporting device-specific features. A software backplane uses a hierarchy of algorithms, cost tables, and routines to perform device-independent place-and-route routines without sacrificing performance or functionality. Electronic Design, December 5, p. 129.

HARDWARE ACCELERATOR SPEEDS VHDL SIMULATION

A VHDL simulation accelerator combines the features and flexibility of a software simulator with higher speed and capacity. It accepts VHDL source code as input, and supports about 90% of the language's constructs. The product accelerates simulation speed by 100 to more than 1000 times to perform device-independent place-and-route routines without sacrificing performance or functionality. Electronic Design, November 7, p. 133.

SOFTWARE MANAGES CONCURRENT ENGINEERING

A controller IC, the ML4818, uses a new topology—phase modulation—to boost efficiency and cut size and cost for 250- to 2500-W switchers. Phase modulation involves zero-voltage switching; the MOSFET switch's drain-to-source voltage is zero when the gate of each n-channel FET is driven positive to turn it on. ML4818, which can operate to over 1 MHz, typically increases the power density of today's switchers by at least 50%. By changing topologies, for example, a 400-W supplying now switching at 100 kHz can move to 50 kHz. Electronic Design, April 25, p. 39.

DC-DC CONVERTER HANDLES DISTANT 200-A/6 LOADS

With system-clock speeds climbing beyond 50 MHz, and an increasing number of applications featuring pulsed-load current, slow rates that exceed 5 to 100 A/µs, today's power supplies can hardly keep up. A family of modular dc-dc converters called TachoMods, based on Vicor's earlier VI-200 family, guarantees that during a 10- to 90% load change, at 200 A/µs, the maximum voltage deviation at the point of load is less than ±5%. The TachoMods eliminate the effects of parasitic inductances by removing capacitance from the converter's output filter. Electronic Design, May 9, p. 59.

ENERGY-MANAGEMENT CHIP AIDS PC POWER-CONTROL ICs

The bq2001 energy-management unit, a 24-lead BiCMOS chip, is a battery-system manager for portable PCs. It determines battery capacity and available charge, and maintains capacity at the highest possible level for the greatest number of recharge cycles. With 11 bytes of electrically erasable, nonvolatile storage, the chip can store basic battery characteristics that can be overridden or rewritten if system characteristics change. The chip operates as a standalone controller when powered directly from a system's de-charging supply, or as a microprocessor peripheral when it uses the 5-V logic supply. The chip works with battery stacks having nominal voltages of 4.8 to about 12 V. Electronic Design, June 27, p. 125.

MICROCONTROLLER POWERS SMALL MOTORS

Eight n-channel DMOSFETs, each rated at 300 mA and 6 V, have been added to a version of the popular 68HC05 CMOS microcontroller. Called the model 68HC05H2, the chip opens up new applications in data and power control—in driving lamps, relays, and small motors, for example. Moreover, the chip can drive external power FETs to control higher voltages and/or currents. In a 44-pin plastic lead chip carrier, each of the chip's eight power devices can carry up to 300 mA continuously and switch a maximum of 6 V. The current rating drops to 200 mA in a 40-pin plastic DIP or a 42-pin plastic SOP (a shrink-DIP with the pins on 70-mil centers). Four of the power devices can be on at once to control up to 7.2 W. Electronic Design, July 11, p. 149.

Circle 652

Circle 654

Circle 655

Circle 656

Circle 657

Circle 658

Circle 659

Circle 660
For everyone who's tried to copy our AD574, here's your assignment for the next ten years.

A decade ago, we revolutionized the 12-bit a/d converter market when we created the original AD574. It delivered higher levels of functional integration and performance, yet at half the cost of alternative solutions.

And we didn't stop there. We went on to add the AD674 and AD774 to create a full range of pin-compatible converters. Each as popular as our AD574 which, since its introduction, has left a lot of other companies playing catch-up.

Now these companies have a new goal. Because now there is the AD1674.

As a member of our AD574 family, the pin-compatible AD1674 offers designers unparalleled performance and integration. With the added benefits of an on-chip sample/hold amplifier, DC and AC guaranteed specs, faster throughput, and a list of other features too long to mention here.

In other words, the AD1674 redefines 'industry standard' the same way the AD574 did ten years ago.

Why wait for an imitation when you can have the real thing now? Get more information today on the AD1674, AD574, AD674 or AD774 converter family by writing us at the address below. Or by calling 1-800-262-5643.
POWER

ICs BUILD OFF-LINE ISOLATED SWITCHERS

A pair of controller ICs, the LT1103 and LT1106, together build a 100-W, universal, off-line switching-regulator supply with 1% line and load regulation. All that's needed besides the IC are a power MOSFET, a transformer, diodes, and a handful of passive parts. No negative feedback is required across the isolation barrier from output to control circuitry. The controllers can handle voltages limited only by the rating of the power FETs. FETs of 1000-V are now available. The LT1103 is rated for control of up to 100 W of power. Electronic Design, August 22, p. 35.

LINEAR TECHNOLOGY CORP., 1630 McCarthy Blvd., Milpitas, CA 95035-7487; (408) 432-1900. Circle 661

ICs LEVEL-SHIFT 3-PHASE MOTOR-DRIVE PWM ~500 V

A high-voltage motor-drive chip contains just seven pnp transistors, two Zener diodes, and three resistors in an innovative circuit topology. The chip's 20-pin skinny DIP holds only 15 pins, allowing the high-voltage input pins to be spaced wider apart. Thus, those pins can handle 115- or 230-V ac line voltage. When used with two other ICs and power MOSFETs or insulated-gate bipolar transistors (IGBTs), the chip simplifies the drive and speed-control requirements of 1/3- to 1-horsepower brushless dc motors. The new IC comes in two versions: the MDC2125 and the MDC2150. They are differentiat-ed by voltage ratings of 250 V and 500 V, respectively. Electronic Design, October 10, p. 112.

MOTOROLA INC., Discrete & Materials Technology Group, MD 2201, 5006 E. McDowell Rd., Phoenix, AZ 85008; (602) 244-9810. Circle 662

SURFACE-MOUNT 2-W DC-DC CONVERTER SAVES SPACE

The industry's first surface-mounted 2-W dc-dc converter, the PM6501/02, measures just 0.337 in. high by 1.100 in. long by 0.850 in. wide. It replaces a through-hole part that measures 0.475 by 1.3 by 0.8. The SMT part is a full-featured part for the local-area-network market. Its 9-V output powers the coaxial-transceiver interface IC in Ethernet and Cleapernet applications. The converter's switching frequency is 1.2 MHz, which makes headroom for monolithic ceramic capacitors of just 0.1 µF. Electronic Design, September 28, p. 172.

VALOR ELECTRONICS INC., 6275 Nancy Ridge Dr., San Diego, CA 92121-2445; (619) 458-1471. Circle 663

TEST AND MEASUREMENT

DIGITAL SCOPES AIM AT CONFIRMED ANALOG USERS

Two 100-MHz portable digital scopes, the HP 54600A (two channels) and HP 54601A (four channels), take direct aim at analog-user holdouts. With front panels similar to those on analog scopes, the instruments have dedicated knobs to adjust vertical sensitivity, position, time base, horizontal delay, trigger level, and hold-off. Buttons control storage, measurement, and utility functions. Other specs include a 20-Msample/s sampling rate with 8-bit vertical resolution and peak-detection capability; vertical sensitivity of 2 mV to 5 V/div; and edge, line, and TV triggering. Electronic Design, March 14, p. 105.

NEWLETT-PACKARD CO., Colorado Springs Div., P.O. Box 2197, Colorado Springs, CO 80901-2197; (800) 732-0090. Circle 664

ICON-BASED SOFTWARE EASES TEST PROGRAMMING

Object-oriented, icon-based programming tool lets designers concentrate more on the test at hand and less on programming. The visual engineering environment (VEE) software frees users from the need to know high-level-language syntax, semantics, or rules. Designers link icons into an intuitive block diagram on the display, and the software executes the block diagram. HP VEE-Engine, general-purpose software, analyzes and presents data that has been either collected from a file or generated mathematically. HP VEE-Test, for instrument control, allows data collection from more than 170 HP instruments, as well as from non-HP instruments through direct I/O elements. Electronic Design, May 9, p. 140.

NEWLETT-PACKARD CO., Measurement Systems Operations, P.O. Box 301, Loveland, CO 80539; (800) 752-0900. Circle 665

SCOPES COMBINE DIGITAL POWER WITH EASE OF USE

Digging through multilevel menus can be a chore for designers debugging their latest handiwork. By including an intuitive graphical interface, a pair of full-featured, mid-range digital scopes that introduce the Tektronix Digitizing Scope (TDS) platform are easier to use. The platform is a high-speed acquisition system with advanced triggering and a multiprocessor architecture. In addition, the TDS250 and TDS540 have a 640-by-480 VGA display. The scopes feature a 500-MHz bandwidth, 8-bit vertical resolution, 1% accuracy, and 4-ns glitch capture. The TDS250 digitizes signals at 250 Msamples/s on two channels or 500 Msamples/s on one channel. The TDS540 samples from 250 Msamples/s on four channels to 1 Gsamples/s on one channel. Electronic Design, June 27, p. 131.

TEKTRONIX INC., P.O. Box 19638, Portland, OR 97219-0638; (800) 426-2200. Circle 666

50-MHZ DSO MELDS WITH FULL-FEATURE DMM

A 50-MHz, 25-Msample/s dual-channel digital storage oscilloscope (DSO) is combined with a feature-rich digital multimeter (DMM) and even a limited-function signal source. The 90 Series handheld ScopeMeter's DSO captures waveforms in real-time or equivalent-time sampling modes. In real-time, the 25-Msample/s rate delivers a 40-ns timing resolution. For repetitive signals, the equivalent-time sampling mode allows 400-ps resolution. Rise time is 7 ns, vertical resolution is 8 bits, and record length is 512 samples. The 240-by-240-pixel, 5-in. super twisted LCD screen displays up to four waveforms. Electronic Design, September 12, p. 167.

JOHN FLUKE MFG. CO. INC., P.O. Box 9090, Everett, WA 98206; (206) 347-6100

PHILIPS TEST AND MEASUREMENT, Bldg. TQIII-4 5600 MD, Eindhoven, The Netherlands. Circle 667

TEST STATION DELIVERS ATE-LIKE PERFORMANCE

A new test station, Logic Master ATS, delivers the accuracy and performance of traditional main-frame automated test equipment (ATE) at a fraction of the cost. Clock speeds go to 200 MHz and data rates to 400 Mbits/s. Edge placement is within 50 ps, and accuracy of up to ±100 ps is possible. Other features include programmable slew rates and current loads. Working with a Sun SparcStation host, the system performs digital tests on standard ICs, ASICs, and multichip modules, primarily for low-voltage production. Electronic Design, October 10, p.118

INTEGRATED MEASUREMENT SYSTEMS INC., 9323 S.W. Gemini Dr., Beaverton, OR 97005; (503) 636-7117. Circle 668

PORTABLE DSO FEATURES 10-BIT RESOLUTION

With its dual 10-bit, 100-Msample/s ADCs, the LeCroy 9430 portable oscilloscope is suitable for a wide range of precision measurement applications. Using its capabilities, operators can increase resolution eightfold (from 10 to 13 bits). And dc accuracy is within a state-of-the-art 1%. Each of the 9430's two channels has a nonvolatile, 50-k acquisition memory. These very long memo ries permit high sample rates on slow time-base settings, as well as horizontal expansion of up to 1000 times. As a result, users can...
has a maximum repetition rate of 250 MHz, edge times from 1 ns to 1 ms, and a 5-V pk-pk output into 50 Ω. The Model 9212 features a maximum repetition rate of 200 MHz, edge times from 300 ps to 1 ns, and a 5-V pk-pk output. Operators can set and change parameters using soft keys and menus on a touch-screen CRT, or they can use a numeric keypad and rotary knob. Electronic Design, April 11, p. 151.

LECROY CORP., Signal Sources Div., 700 Chestnut Ridge Rd., Chestnut Ridge, NY 10977-6499; (914) 578-6020. Circle 872

EMBEDDED VXI CPU OFFERS RT DISTRIBUTED CONTROL
With the VXICPU-030 embedded controller, designers can develop distributed VXI systems with real-time control capability. They can also network VXI mainframes with standard worksta-

Good Sines & Bad Signs

Looking for a low-noise, fast-switching signal source?

Good Sines

Whether it’s automatic test equipment, satellite uplinks, EW communications or imaging systems, Programmed Test Sources has a frequency synthesizer to fit your needs. GE MRI units, Teradyne Testers, Varian Spectrometers . . . all use PTS synthesizers.

Bad Signs

And while other manufacturers have big dollar signs, PTS synthesizers start as low as $2,010.

PTS manufactures a complete line of precision synthesizers covering the 100 KHz to 1 GHz frequency range with switching times as fast as 1 µsecond for our direct digital models. And plenty of other options as well, like resolution down to 1 hertz (millihertz available as special order), GPIB and digital phase rotation.

Just as important, along with every PTS synthesizer comes our “absolutely everything covered” 2-year warranty. At the end of two years comes our flat $350” service charge for any repair up to the year 2001! PTS has a commitment to quality you won’t find anywhere else.

Find out how PTS synthesizers used around the world can help you with your applications. Call our sales engineer, or talk to an applications engineer.

* $500.00 for PTS1000.
Call (508) 486-3008 Fax (508) 486-4495

Programmed Test Sources, Inc.
9 Beaver Brook Road, P.O. Box 517, Littleton, MA 01460

CIRCLE 148 FOR U.S. RESPONSE
CIRCLE 149 FOR RESPONSE OUTSIDE THE U.S.

Electronics Design
December 19, 1991
Looks like you could use our new

Let's face it. When you pick a new microprocessor that takes performance to new heights, it's only natural to wonder what support you'll have.

Not to worry. Because Applied Microsystems has everything you need to develop your embedded system now. So you'll be up and running to meet tight schedules.

Intel supports us supporting you.

They asked us to back their robust i960™ CA microprocessor with a high
Advanced trace and event. And up to 4 MB of overlay memory, all at RISC speeds.
And all with fully integrated software backed by Intel®, including a highly-optimized compiler, assembler, disassembler and source-level debugger.
What's more, our system is completely networked for Sun® and PC setups. And has a windowed interface common to all our EL systems, making it much easier to learn and use.
This should have your design team flying.

Our roots are in embedded design.
As a matter of fact, supporting your development business is our only business.
Which means you get the most dedicated technical expertise in the business. Like timely phone support from our own application engineers. Complete installation and systems training. And free application articles.
It's exactly the kind of development support you'd expect from a company that's installed over 15,000 development systems worldwide for 16- and 32-bit designs.

Before your bought breaks, call us.
We'd like to send you more details about our i960 CA development support, plus a guide on sizing up a development systems company.
We can help.
No matter what your design team is up to.
TEST AND MEASUREMENT

TILLBY LOGIC ANALYZER

Bridge Point Pkwy., Austin, TX 78730-5039; (800) 950-14; (800) 538-9320. FAX: (512) 294-0100.

It boasts 115-RESOLUTION!

The 110-MHz 486-based Voyager platform runs both DOS and Unix, performing applications under either operating system concurrently, without sacrificing any speed or computing power. The pizza-box-shaped chassis features 8 Mbytes of RAM expandable to 64 Mbytes, 256 kbytes of second-level cache memory, a 64-bit data bus, integrated I/O ports, a built-in Ethernet interface, and an 8614/Apple-compatible graphics adapter. Internal 35-ns hard-disk capacities range from 210 to 500 Mbytes. Electronic Design, April 11, p. 158.

TYAN COMPUTER CORP., 612 N. Mary Ave., Sunnyvale, CA 94086; (408) 720-1200.

Circle 676

TIMING LOGIC ANALYZER BOASTS 1-NS RESOLUTION

Designed for hardware debugging, the K1000 portable timing logic analyzer features data capture rates to 1 GHz, which translates to 1-ns resolution on single-shot timing measurements. The 16-channel analyzer has a 2-ksample data capture memory and a channel-to-channel skew of less than 1 ns. Active probes with a 500-MHz bandwidth ensure that the unit can capture pulses as narrow as 1 ns. The probes' 1-MHz, 5-pF input impedance allows a 6-ft-long probe-to-instrument cable. With the K1000's two-level triggering, users can identify a sequence of patterns even if each pattern exists only for 1 ns. Pattern detection is performed by two independent 16-channel, 1-ns word recognizers. Electronic Design, July 25, p. 171.

BIOMATION CORP., 19050 Prun eridge Ave., Cupertino, CA 95014; (800) 538-9320.

Circle 674

FIVE PROCESSORS BOOST DMM'S PERFORMANCE

Microprocessors in test instruments are commonplace—many units have one, two, or three devices controlling operations. However, a new digital multimeter uses five processors to give it an excellent combination of resolution, accuracy, sensitivity, and speed. The Model 2001, housed in a half-rack-size package, performs many measurements other DMMs don't make or don't make directly, such as ac crest factor, peak spikes, and ac peak, average, and true-RMS values. The ac bandwidth is 2 MHz, while a separate frequency measurement capability works to 15 MHz. Users can select 4-1/2- to 7-1/2-digit resolution. Unlike some DMMs, which average multiple 6-1/2-digit readings to extend resolution to 7-1/2 digits, the Model 2001 has true 7-1/2-digit, 28-bit capability. Electronic Design, December 5, p. 133.

REITHELLEY INSTRUMENTS INC., 28775 Aurora Rd., Cleveland, OH 44139; (800) 552-1115 or (216) 248-0400.

Circle 675

COMPUTERS

RUN UNIX AND DOS ON SAME 486-BASED PLATFORM

The 33-MHz 486-based Voyager platform runs both DOS and Unix, performing applications under either operating system concurrently, without sacrificing any speed or computing power. The pizza-box-shaped chassis features 8 Mbytes of RAM expandable to 64 Mbytes, 256 kbytes of second-level cache memory, a 64-bit data bus, integrated I/O ports, a built-in Ethernet interface, and an 8614/Apple-compatible graphics adapter. Internal 35-ns hard-disk capacities range from 210 to 500 Mbytes. Electronic Design, April 11, p. 158.

TYAN COMPUTER CORP., 612 N. Mary Ave., Sunnyvale, CA 94086; (408) 720-1200.

Circle 676

68040 VME SBC BOLSTERS PERFORMANCE USING ASICs

The MVME167 VMEbus single-board computer (SBC) is based on Motorola's MC68040 CISC microprocessor. The board, which requires just one slot in a 6U form-factor enclosure, achieves 30 MIPS with its 25-MHz 689040 processor, based on H responsible 11 measurements. It also has an optimized VME D64-compatible interface that can transfer data at 40 Mbytes/s. It has from 4 to 32 Mbytes of four-way interleaved DRAM, 8 kbytes of nonvolatile RAM for a time-of-day clock with a battery, and 128 kbytes of static RAM. The board consumes 15 to 18 W under typical conditions.

MOTOROLA COMPUTER GROUP, 2900 South Diablo Way, Tempe, AZ 85282; (800) 624-8999, ext. 230.

Circle 677

SOLID-STATE "HARD DISK" AIMS AT SPARC SYSTEMS

The TurboSwap accelerated hard-disk card fills the gap between a Sparc-compatible system's main memory and hard disk. It operates nearly as fast as main memory (10-Mbyte/s transfer rate) and has a capacity near that of a typical hard-disk drive (40 or 80 Mbytes). The standard single-wide Sbus card has a maximum latency of less than 1 μs. The board couples application-specific DRAM with advanced data compression, error correction, and a custom software driver to offer data storage at 20% to 25% of the cost of main-memory expansion. The 40-Mbyte board consists of 36 DRAM chips and one 20,000-gate ASIC. Electronic Design, July 13, p. 39.

GERMAN INC., 2260 Executive Circle, Colorado Springs, CO 80906; (719) 540-8500.

Circle 678

486-BASED DESKTOP PC RUNS AT 50 MHZ

An Extended Industry Standard Architecture (EISA)-based desktop PC, the Compaq Deskpro 486/50L, uses the Intel 486 processor with an integrated 387-compatible numeric coprocessor running at a clock speed of 50 MHz. The processor has on-chip memory management and an integrated cache-memory controller with 8 kbytes of cache memory.

The cooling techniques enable the chip to run at 40 MHz and possibly higher speeds. The basic A 256-kbyte second-level cache based on "write-back" technology enables the computer to have a 99% cache hit rate. Three models are available: Model 120 with a 120-Mbyte hard-disk drive; Model 340 with a 340-Mbyte hard-disk drive; and Model 510 with a 510-Mbyte hard-disk drive. All three have 8 Mbytes of 64-bit enhanced-page internal memory (expandable to 104 Mbytes) and advanced VGA graphics for 256-color support.

COMPAQ COMPUTER CORP., 20555 State Hwy. 249, P.O. Box 692000, Houston, TX 77269; (713) 370-0670.

Circle 679

DATA-ACQUISITION BOARDS ELIMINATE ALIASING

A pair of PC/AT data-acquisition boards, the DT3831 and the DT3831-G, each with antialiasing features, offer throughputs of 50 and 250 kHz, respectively. The DT3831's total harmonic distortion is 82 dB and signal-to-noise ratio is 71 dB, both at 10 kHz. The DT3831-G's total harmonic distortion is 78 dB, and signal-to-noise ratio is 70 dB, both at 40 kHz. The boards contain real-time error-prevention circuits that add-on-the-fly calibration of all combinations of channel range and gains. As a result, rated accuracy is retained throughout the acquisition run to within ±0.5 LSB, even as gain setting changes.

Electrinc Design, July 25, p. 175.

DATA TRANSLATION INC., 100 Locke Dr., Marlboro, MA 01752; (508) 481-3700.

Circle 680

MINI 486-BASED PC RUNS AT 40 MHZ

Innovative cooling technology keeps the GT486/40 PC's CPU chip cool enough to pump up its rated speed from 33 to 40 MHz. The designers created air-flow paths that carry heat with two thermostatically controlled, variable-speed fans. The 486's published specifications say that it will run at 33 MHz up to 85°C. The cooling techniques enable the chip to run at 40 MHz and possibly higher speeds.

Electronic Design, December 19, 1991

Circle 681

ELECTRONIC DESIGN DECEMBER 19, 1991
In December, 1991, Actel Corporation shipped its millionth Field-Programmable Gate Array.

We couldn't have done it without the contributions of our employees, partners, suppliers, sales representatives, distributors, and most of all, our valued customers.

To those hundreds of people who've helped make Actel advanced FPGA technology the emerging industry standard in speed and capacity, one word.

Thanks.

For information on Actel's best-selling FPGA technology, call 800-228-3532.

Risk-Free Logic Integration
system includes 4 Mbytes of main memory (expandable up to 32 Mbytes), a 2.88-Mbyte floppy-disk drive, a 100-Mbyte hard disk drive (expandable to 200 or 420 Mbytes), and a color display. Electronic Design, July 25, p. 34.

FALCO DATA PRODUCTS INC. 440 Potrero Ave., Sunnyvale, CA 94086; (408) 745-7123. Circle 651

INK-JET PLOTTER SPEEDS THROUGH E-SIZE PLOTS

The DesignJet II is a large-format monochrome ink-jet plotter that can print out a 300-dot/in. (dpi), E-size plot in under 6 min, or a 300-dpi, D-size plot in less than 3 min. At the heart of the plotter is an Analog I/O embedded RISC processor. Suitable for small work groups that use CAD software on PCs or workstations, the DesignJet plotter can be used in a time-saving, draft-quality 300-by-150-dpi mode. Users can fine-tune line differentiating and shading by selecting line widths from 0.2 to 12 mm. Roll media that’s either 24 or 91 in can be accommodated. Electronic Design, November 7, p. 147.

HEWLETT-PACKARD CO. 19310 Pruneridge Ave., Cupertino, CA 95014; (800) 752-0900. Circle 664

INK-JET PLOTTER SPEEDS THROUGH E-SIZE PLOTS

The DesignJet II is a large-format monochrome ink-jet plotter that can print out a 300-dot/in. (dpi), E-size plot in under 6 min, or a 300-dpi, D-size plot in less than 3 min. At the heart of the plotter is an Analog I/O embedded RISC processor. Suitable for small work groups that use CAD software on PCs or workstations, the DesignJet plotter can be used in a time-saving, draft-quality 300-by-150-dpi mode. Users can fine-tune line differentiating and shading by selecting line widths from 0.2 to 12 mm. Roll media that’s either 24 or 91 in can be accommodated. Electronic Design, November 7, p. 147.

HEWLETT-PACKARD CO. 19310 Pruneridge Ave., Cupertino, CA 95014; (800) 752-0900. Circle 664

PEN-BASED PC STARTS NEW CLASS: PENTOPS

With an electronic stylus pen coupled to a "pentop" computer keyboard, users can write directly on the computer’s flat-panel display and still have the option of using the detachable keyboard to input data. The 5.9-lb. computer is built with custom ASICs to manage power- and I/O-control functions as well as video and memory control. One task of the system’s I/O processor is to take raw data, calculate the pen position, then pass that data to the 20-MHz 68366SX CPU. The penplotter system also has a send-and-receive fax-modem, 4 Mbytes of RAM (expandable to 8 Mbytes), and a 40-Mbyte hard-disk drive. Electronic Design, November 21, p. 175.

MOMENTA CORP. 295 North Bernardo Ave., Mountain View, CA 94043; (415) 969-9376. Circle 665

IBM, SONY AIM OPTICAL DISKS AT DESKTOP

Two 3.5-in. erasable optical disk drives from IBM Corp. and Sony Corp. are available in erasable magneto-optical form, but can also read 120 Mbytes from prerecorded optical-Rom (O-ROM) disks similar in format to CD-ROM disks. Each SCSI drive uses various integrated chips from Advanced Micro Devices (the Am95C69 optical-data disk controller and the Am95C94 advanced burst-error processor). IBM and Sony have developed a split optical-drive head that’s smaller and lighter than the heads used in 5.25-in. drives. The drive head detects the bit polarities of magneto-optical disks, as well as the pits used to record data for O-ROM disks. Sony’s data-transfer rate is 625 kbytes/s versus 384 kbytes/s for the IBM PS/2 drive. The SM0300 family from Sony has a 40-ms average seek time, compared with 66 ms for the IBM drive. Electronic Design, July 11, p. 36.

IBM CORP. Old Orchard Rd., Armonk, NY 10504. Circle 666

SONY CORP. OF AMERICA, 655 River Oaks Pkwy., San Jose, CA 95134; (408) 432-0190. Circle 667

X-WINDOW CONTROLLER HANDLES 2K BY 2K

Design for display subsystems with resolutions from 1280 by 1024 to 2048 by 2048 pixels, the Φ2700 X-Window-based controller fits in one VME slot. The board’s main component is the video frame buffer (VFB) that comes with both on- and off-screen memory connected through a 256-Mbyte block transfer (bitblt) ASIC. Double-buffered operation is inherent in the design. Either the entire screen or individual windows can be updated at high speeds through the bitblt ASIC without visible flickering. The Φ2700 consists of 36 U VME boards that can be assembled in different configurations to supply single- or multiple-display systems at different performance and cost levels. The other two boards are a video windowing controller (VWC), which adds one full-motion video window to the screen, and an 8-bit-based graphics accelerator (GX). Electronic Design, October 10, p. 135.

METHUES CORPS. OGC Science Park, 1600 NW Compton Dr., Beaverton, OR 97006; (503) 690-1550. Circle 668

GYRO POINTER CONTROLS 3D IMAGES IN FREE SPACE

With a revolutionary gyroscope design, a computer pointer operating in free space can manipulate 3D screen images. Unlike systems that calculate a pointer’s position within a confined free-space volume using triangulation techniques and ultrasonic or magnetic sensors, the GyroPoint operates in a space limited only by the length of the cable connecting it to the host computer. And where positioning error in other 3D pointers increases as the pointer approaches the limits of the defined free-space volume, the GyroPoint’s accuracy doesn’t vary with distance. The device can be used like a mouse on a desktop or be held in mid-air. Weighing just 5 oz, the GyroPoint comes in a plastic housing 3.55-in. long, 1.68-in. wide, and 2.30-in. high. Electronic Design, November 21, p. 160.

EYRATION INC. 12930 Saratoga Ave., Bldg. C, Saratoga, CA 95070; (408) 255-3016. Circle 669

3D MOUSE FLIES WITHOUT LEAVING THE PAD

The Ice-Cube looks like a typical mouse, yet operates with six degrees of freedom—X, Y, and Z, plus pitch, yaw, and roll. The input device uses the company’s patented optical technology to track the X, Y, and Z positions. The Z, pitch, and roll movements come from a roller built into the top of the device. Moving the roller in a conventional manner handles the Z movements, while a simple left (pitch) or right (roll) tilt tracks either of the final two directions. The Ice-Cube can also operate as a standard X-Y mouse, where it would have four unused directional movements. Those
movements can control other functions in such applications as paint programs or games. Electronic Design, Oct. 10, p. 34.

Siemens AG, Semiconductor Div., P.O. Box 801709, D-8000 Munich 83, Germany; (089) 414-3728, Circle 682

Siemens Components Inc., 2191 Laurelwood Rd., Santa Clara, CA 95054; (800) 456-9229, Circle 683

REPEATER INTERFACE IC TAKES ON ETHERNET MEDIA

A repeater interface controller (RIC) designed for multimedia Ethernet LANs—the DP3960—manages these types of LANs with diversified equipment and lengthy cable runs, and detects and corrects error transmissions. The RIC, a multiprotocol repeater, integrates 10Base-T transceivers, a transceiver interface, a Manchester encoder/decoder, a system interface, and digital logic on one mixed-signal chip. The device has 13 ports that connect to network segments. Functions replicated in all ports include a port-status register, port-partitioning logic, and a port-state machine. Electronic Design, March 14, p. 101.

National Semiconductor Corp., 2900 Semiconductor Dr., Santa Clara, CA 95052-8090; (408) 721-7020, Circle 687

BIGMOS ARRAY SPEEDS COMMUNICATIONS DESIGN

A bipolar-CMOS 50-MHz analog/digital array lets communications-system designers check out and optimize circuit functions before the chips are committed to production, or even in small production runs. The U351BM device has both an analog bipolar high-frequency (HF) array and the digital bipolar-CMOS sea-of-gates (SOG) array on the same chip. The HF array has 636 npp and 80 ppm transistors, as well as about 2000 passive components. The SOG array contains 126,375 MOS components and 3625 npn transistors. Electronic Design, August 8, p. 117.

Vitesse Semiconductor Corp., 741 Calle Plano, Camarillo, CA 93012; (805) 388-7582.

CHIP SET PUSHES FIBER LINKS TO 1.250 GBPS

Vitesse Semiconductor and AMD Inc. combined their talents to produce a chip set that implements the ANSI X3T9.5 Fiber Channel Standard for fiber-optic point-to-point communications. An upgraded version of AMD’s 175-MHz TACXI chip set—the 1.25-GHz G-TAXI chip set—supports the Fiber Distributed Data Interface (FDDI) and the high-performance parallel interface (HIPPI) standards. Implemented in Vitesse’s 0.8-μm gallium-arsenide technology, the G-TAXI chip set consists of the VSC7103 multiplexer and VSC7104 demultiplexer, both operating at up to 150 MHz; and the 1.25-GHz VSC7101 transmitter and VSC7102 receiver. AMD’s set, dubbed GAA3 TAXI, consists of the Am79G358 multiplexer, Am79G359 demultiplexer, Am79G368 transmitter, and Am79G369 receiver. Electronic Design, September 26, p.149.

Circle 700

ADVANCED MICRO DEVICES INC., P.O. Box 3453, Sunnyvale, CA 94088-3000; Chris Ciufo, (408) 724-4809. Circle 701
OPTOCOUPLER ZIPS ALONG AT 50-MCBAUD DATA RATE

The HCPL-7101 optocoupler switches signals at a maximum nonreturn-to-zero (NRZ) rate of 50 Mcbaud with a typical pulse-width distortion of less than 1 ns, versus 10 to 12 ns for conventional designs. It includes a CMOS driver chip, an AlGaAs LED, and a CMOS detector IC. A CMOS or TTL input signal controls the driver IC that supplies LED current. The detector chip includes a photodiode, a transimpedance amplifier, and a voltage comparator with hysteresis. The 3-state output is CMOS- and TTL-compatible, and is controlled by an output-enable pin. The only external devices required are two ceramic bypass capacitors (0.01 to 0.1 µF). Electronic Design, September 12, p. 169.

DATA/FAX/VOICE MODEM CHIP SET CUTS LOGIC

The two-chip CL-MD1424AT Communicator modem IC family was designed for multimode communications in laptop and notebook computers. The family provides data, facsimile, and voice-transmission capabilities without the need for an external microprocessor, universal asynchronous receiver/transmitter (UART), and other components. With the Communicator, a complete data/fax/voice modem can be created in an area smaller than a business card. The two-chip set offers full-duplex data communication at rates up to 2400 bits/s and facsimile transmission or reception at rates up to 14,000 bits/s. A voice mode allows a PC to emulate a telephone answering machine. A third chip, the CL-MD1424EC, can be added for error-correction and data-compression capabilities. Electronic Design, Nov. 21, p. 173.

SURFACE-MOUNTED LED LIGHTS UP PC BOARDS

A surface-mounted LED right-angle circuit-board indicator resolves the problems of getting light out of the package by incorporating an optically pure lens that serves as a light pipe. The lens is transfer-molded from a clear epoxy that's specially formulated to withstand the 260°C temperature of infrared soldering without deforming or discoloring. Initially, the device will be offered in AlGaAs red and high-efficiency yellow and green colors, and in 1-, 3-, and 5-mm sizes. The three sizes correspond to the T-3/4 (subminiature), T-1, and T-1-3/4 packages, respectively. Electronic Design, April 11, p. 137.

ECL CLOCK OSCILLATOR IS FIRST WITH ENABLE/DISABLE

The M1900 ECL crystal oscillator offers a tristate enable/disable function that lets the clock be shut off by logic control. The M1900 oscillator's enable/disable function is activated by logic levels on an input pin. An input logic “1” turns off the oscillator and causes the device's output pin to be ECL logic “0”. An external ECL signal may then be applied by a tester to the oscillator output node. Because of the wired-OR capability of ECL logic, this achieves the same effect as the HCMOS tristate. The oscillator, available in a four-pin, dual-in-line metal case, comes in frequencies from 10 MHz to 225 MHz. Electronic Design, May 9, p. 165.

SURFACE-MOUNT CIRCUIT PROTECTOR RESETS ITSELF

The remotely resettable, surface-mounted PolySwitch protects electronic systems from overcurrent or short-circuit conditions. It's a more rugged alternative to fuses and is compatible with automated production processes. Unlike fuses, the Polyswitch circuit protectors reset automatically once the fault current is removed. Made of solid-state conductive material, the devices have low series resistance. Five devices are available with current ratings from 0.3 to 1.5 A and voltage ratings from 30 to 60 V dc. All meet UL standards and are taped and need to EIA-481 requirements. Electronic Design, July 11, p. 159.

FIBER-OPTIC CONNECTOR CRIMPS ON CABLE

The LightCrimp connector simply crimps onto fiber-optic cable in less than two minutes, with no epoxy, oven, or UV curing. Consequently, extra equipment and overall messiness involved with epoxy-based connections is avoided, and time is saved. All that's required is a two-step crimp, a cleave, and a 30-second polish. The connector uses double-clamping: a front fiber clamp prevents pistoning (in-and-out movement of the fiber due to thermal cycling), and a rear buffer clamp, which increases the termination's tensile strength. Insertion loss is less than 1 dB, using 62.5-µm multimode cable. Durability is 500 cycles. Electronic Design, June 27, p. 151.
Memory devices are as varied as the applications they are designed for, but in this age of miniaturization and mobility they have one thing in common: power consumption must be rockbottom. Capacity, speed, price or package choice may be your highest priority, but you'll be glad to know that DRAM memories from NEC operate on an absolute minimum power supply. Based on a 0.7 µm, stacked capacitor process, NEC's low-power DRAMs with a 300 µA data retention current are ideal for laptops and other equipment frequently on the move. NEC's Silicon File, only needs a 30 µA refresh current, and is designed to do duty as a solid-state disk in mainframes, workstations and PCs. Data retention by way of a 3 V battery gives this memory static RAM quality. Another device with extremely low power consumption is the self-refresh DRAM with a byte and word structure and optional parity. Intended for new low-power designs, such as notebook and palm PCs, it requires a mere 100 µA standby current. Compatible as to function, speed and pin assignment, all these DRAMs can also be configured as SIMM modules or memory cards.
"Our DT2867 Integrated Image Processor combines real-time processing and precision image acquisition on a single PC/AT board."
—Fred Molinari, President

Real-Time Processing
- 75 MHz, 16-bit processor
- Simultaneous acquisition and processing

Precision Image Acquisition
- Programmable gain, offset, and reference
- Square pixels

Optional 32-Bit, 25 MFLOP DSP Board
- 10 MHz DT-Connect™ interface to DT2878 Advanced Processor

Extensive Development Software Included
- Subroutines callable from Microsoft C
- Device driver and utilities

Quantity pricing available

FAST 5 day delivery

Call for FREE Catalog
(508) 481-3700
In Canada, call (800) 268-0427

DT2867 Processing Times
Full 640 x 480 image
- True Frame Averaging (to 256 frames) real-time
- Histogram real-time
- Math and Logic real-time
- 3 x 3 Binary Morphology .043 sec
- 3 x 3 Convolution .043 sec
- 7 x 7 Convolution .30 sec

THE LEADER IN DATA ACQUISITION AND IMAGE PROCESSING

World Headquarters: Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752-1192 USA, (508) 481-3700, Fax (508) 481-8620, Tx 951646.

United Kingdom Headquarters: Data Translation Ltd., The Mulberry Business Park, Wokingham, Berks RG11 2QJ, U.K., (0118) 987-9890, Fax (0118) 736670, Tx 94011914

Germany Headquarters: Data Translation GmbH, Im Wetterlen 10, 7100 Bietigheim-Bissingen, Germany, (0114) 342625, Fax (0114) 64042.

International Sales Offices: Australia (2) 691-900; Austrian (2) 466-660; Belgium (2) 466-660; Brazil (2) 260-0265, Canada (1) 466-660; USA (2) 466-660; China (1) 513-7766 x 1222; Denmark (2) 224511; Finland (2) 351-1920; France (2) 69017500; Germany (1) 351-1900; Hong Kong (2) 449500; India (2) 231-0045; Israel (2) 2450; Italy (2) 331-1391; Japan (2) 2450; Korea (2) 718-9292; Malaysia 3246788; Netherlands (7) 399-6560; New Zealand (2) 415-8652; Norway (2) 331-2350; Poland (2) 2298070; Portugal (1) 7934034; Singapore 339-1390; South Africa (1) 803-84096; Spain (1) 655-4112; Sweden (1) 76; Switzerland (1) 381-6886; Taiwan (1) 6393838

DT-Connect is a trademark and Data Translation is a registered trademark of Data Translation, Inc. All other trademarks and registered trademarks are the property of their respective holders.

CIRCLE 104 FOR U.S. RESPONSE CIRCLE 105 FOR RESPONSE OUTSIDE THE U.S.
ENGINEERS CAN USE VHDL TO VERIFY BOTH THE SPECIFICATION AND IMPLEMENTATION OF A DESIGN.

CHECK YOUR DESIGNS WITH VHDL TEST BENCHES

Many reasons abound why the VHDL Hardware Description Language (VHDL) is considered such a powerful language. For instance, it can be used not only to describe a circuit—but to specify stimulus for it, and then to test that circuit's response.

This approach, commonly called a VHDL test bench, can automatically verify the correctness of a design. By combining the test bench with a top-down design methodology, designers can boost productivity and gain increased confidence in their circuits.

The simple example of an RS flip-flop, which is described throughout this article, illustrates how a VHDL test bench is written. Then the methodology used in the flip-flop example can easily be generalized for more complex problems. The RS flip-flop will be simulated both as a behavioral model (the specification) and as a structural model (the implementation). The following code shows the entity declaration for this circuit:

```vhdl
ARCHITECTURE behavioral OF rsff IS
BEGIN
PROCESS (r,s)
BEGIN
IF (r = '1') AND (s = '0') THEN
q <= '1' AFTER 7 ns;
ELSIF (r = '0') AND (s = '1') THEN
q <= '0' AFTER 5 ns;
END IF;
END PROCESS;
END behavioral;
```

In this model, we see that the device is sensitive to changes on either of the inputs, r or s. Because this device uses active-low logic, we'll set the output to 1 when the reset is inactive (high) and the set is active (low). When the reset is active (low) and the set is inactive (high), we'll clear the output, or set it to 0. In a more
realistic model, we would likely set the output to unknown if both the inputs were low. For both inputs high, the output is unchanged. Although timing is fixed in this model, a typical approach would be to use generic parameters to provide different timing to each instance of this device.

We must now create test data to ensure that this model operates correctly. The following summarizes the written specification for this device:

- The output is latched to high within 9 ns of a high-to-low transition on the s input.
- The output is latched to low within 9 ns of a high-to-low transition input on the r input.
- The output remains unchanged on low-to-high transitions.
- The output is undefined if both inputs transition from high-to-low within 2 ns.

In this specification, as is the case with typical databook descriptions, circuit operations occur with ranges of times, and device operation is often less than ideal (as in the case of the undefined output here).

To build a test bench laboratory within which to perform the tests must first be built. Here, we’ll create a high-level circuit with no inputs or outputs, as shown in this entity declaration:

```vhdl
ENTITY rsff_bench IS
END rsff_bench;
```

Next, we declare an architecture with signals that correspond to each of the inputs and outputs of the circuit under study, along with a single component declaration for the circuit itself:

```vhdl
ARCHITECTURE test OF rsff_bench IS
  -- circuit under study
  -- single instantiation
  COMPONENT rsff
END COMPONENT;
```

We then declare an internal signal strobe that will be used for synchronous application of stimulus and strobing of the output, and a constant clk_period that determines the clock period for applying stimulus to the device:

```vhdl
PORT (r,s: IN BIT; q: OUT BIT);
END COMPONENT;

-- one signal per input/output
SIGNAL r,s,q: BIT;
```

Now we’re ready to describe the architecture for our test bench. First, we need to create a single instantiation for the circuit under study and connect it to the internal signals r,s, and q:

```vhdl
-- master clock
SIGNAL strobe: BIT;

-- clock period
CONSTANT clk_period: time := 20 ns;
```

The process is sensitive to the strobe signal that toggles its value after a delay of clk_period. This process will be activated each half clock period as a result (two-phase clock), or in our example every 10 ns (20 ns/2). The first variable limits the execution of the stimulus portion of this process to occur once during the simulator’s startup phase. A fixed set of values are applied to the circuit:

```vhdl
check_output : PROCESS (strobe)
BEGIN
  IF first THEN
    first := false;
    r <= '1' AFTER (0*clk_period) + 1 ns,
      '1' AFTER (1*clk_period) + 1 ns,
      '0' AFTER (2*clk_period) + 1 ns,
      '1' AFTER (3*clk_period) + 1 ns;
  s <= '0' AFTER (0*clk_period) + 1 ns,
      '1' AFTER (1*clk_period) + 1 ns,
      '1' AFTER (2*clk_period) + 1 ns,
      '1' AFTER (3*clk_period) + 1 ns;
  END IF;
END PROCESS;

-- check the outputs
STROBE <= NOT strobe
AFTER clk_period / 2;
```

Both application of stimulus to the circuit and the method for testing circuit response must be described. In this flip-flop example, we create a single process check_output that performs both functions. First, let’s review the approach to apply stimulus to the circuit:

<table>
<thead>
<tr>
<th>time</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ns</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21 ns</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41 ns</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>61 ns</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The stimulus is applied 1 ns after the end of a given clock period so that the circuit’s output value can settle before applying a new set of inputs. Although the stimulus applied here is quite simple, this same strategy can be utilized for much more com-
The Taming of the Slew

...TachoMod Handles Your Fastest Loads

If you’re pushing the limits on system speed, you know that fast slewing loads can create frustrating power distribution problems. The result...you add more and more bypass capacitors, wasting valuable board space, reducing system reliability and compromising overall system performance.

Now there’s a better solution. Vicor’s TachoMod can handle your fastest distributed loads...10% to 90% load changes, at hundreds of Amps-per-microsecond...with a minimum of on-board bypass capacitance. And you get all of the benefits of Vicor’s state-of-the-art VI-200 conversion technology...low profile standard packaging, small footprint, high efficiency, instant power expandability and low-noise PM control. And, we can supply TachoMods with input voltages ranging from 10 to 400 Volts, with outputs from 2 to 48 Volts, at power levels up to 200 Watts.

If you’ve been unsettled by the transient response of your power system, give us a call. We’ll help you tame your slew...quickly and efficiently.

VICOR CORPORATION
23 Frontage Road, Andover, MA 01810
TEL: 1-800-735-6200 • FAX: 508-475-6715
plex circuits as well. The following changes can be considered in more complex situations:

• Read the stimulus values from a data file at simulator run time rather than hardcoding the values as shown above. This data-file approach is superior because the VHDL test bench will be considerably smaller, reducing compile time and simulator memory requirements. More importantly, the stimulus can be changed without forcing a recompilation of the VHDL test bench.

• Place the stimulus code in a separate process because it can increase the readability of the test bench in certain situations. A problem can occur, however, if more than one process accesses a given port. In this case, creating a separate process in VHDL to apply stimulus to the same signal that the response process will later read forces the modeler to create a bus-resolution function. This is because VHDL creates a separate signal driver for every process that accesses an output or input signal. Thus, when more than one process creates drivers to a signal, a bus-resolution function must be applied. Bus-resolution functions are difficult to write and should generally be avoided if possible, especially when writing test benches.

• Apply stimulus that tests bad and good inputs. Test the circuit to make sure that it handles improper inputs in a predictable fashion. In our example, a low input on both the r and s ports might be applied to test the circuit's behavior in the undefined mode.

• Circuit timing is just as important as function. Therefore, tests checking that the circuit operates within the timing constraints required should be created.

• In many cases, an algorithmic approach to generating test data can be used. This approach will be more efficient, and creating large test sets will likely take less effort. A good example of when an algorithmic approach should be used is when generating a thorough set of test vectors for an ALU unit. Here, all possible input values are fed to the ALU for each possible ALU instruction and each output is tested. Because VHDL has arithmetic features built into it, the test bench could "calculate" the expected arithmetic answer to ensure that the ALU worked properly for each test. This type of test bench can generate a large number of test cases (sometimes with 100% coverage of all possible inputs) with a relatively small amount of code.

Now that the stimulus has been described for the circuit, we're ready to test the response of the circuit. The following is the remainder of the check_output process:

```vhdl
-- check the outputs
check_output : PROCESS (strobe)
VARIABLE first : boolean := true;
BEGIN
. .
IF strobe = '1' THEN
  ASSERT (NOW /= 0 ns)
  REPORT "RSFF Functional Test" SEVERITY note;
  ASSERT (NOW /= (0 • clk_period) + (clk_period / 2)) OR (q = '1')
  REPORT "q /= 1" SEVERITY error;
  ASSERT (NOW /= (1 • clk_period) + (clk_period / 2)) OR (q = '1')
  REPORT "q /= 1" SEVERITY error;
  ASSERT (NOW /= (2 • clk_period) + (clk_period / 2)) OR (q = '0')
  REPORT "q /= 0" SEVERITY error;
  ASSERT (NOW /= (3 • clk_period) + (clk_period / 2)) OR (q = '0')
  REPORT "q /= 0" SEVERITY error;
END IF;
END PROCESS;
```

Once again, we see that the check process is sensitive to the strobe signal, and will check the outputs at each clock period. This scheme is termed a synchronous test bench, because it tests the output of the circuit only at preselected time points.

An alternative approach is to make this process sensitive to the circuit's output (in this case the q signal), and then check the outputs as they're generated. This second approach is more complicated in that many circuits will require a settling time before they produce the final correct outputs.

In our example, the rising edge of the strobe signal is tested. By reviewing the stimulus, we see that the stimulus is applied during the first phase of the clock, and the output is tested during the second phase of the clock.

An assertion is used to print the message "RSFF Functional Test" at the start of the simulation. We then test the output after each input test case is applied. The expected results are:
In all the world, there's only one place to get RS232 & RS422 line drivers & receivers on ONE chip.

A single multi-channel driver/receiver IC that provides software-selectable RS232 and RS422 interfacing. Both operating modes are fully EIA standards-compatible. A built-in software-controlled loopback test function allows for system testing with no additional parts.

The Sipex SP301 and SP302 RS232/422 Line Driver/Receiver products do all this and more.

- Software-selectable RS232 AND RS422
- Built-in loopback test function
- Significant pc real estate reduction
- 28-pin, surface mount packaging
- Advanced low power, BiCMOS construction
- Available from stock

Call. What in the world are you waiting for?

Sipex Corporation
SIGNAL PROCESSING EXCELLENCE

22 Linnell Circle • Billerica, MA 01821 • (508) 667-8700 • FAX: (508) 670-9001

CIRCLE 156 FOR U.S. RESPONSE CIRCLE 157 FOR RESPONSE OUTSIDE THE U.S.
CHECKING CIRCUITS WITH VHDL TEST BENCHES

We selected the test times to occur exactly 9 ns after the application of the stimulus to the circuit. In this way, we perform a check that corresponds to the written specification for the circuit. If any of these tests fail, then an assertion error is generated to report a message like “q/= 0”. In most implementations, the simulator would also include additional information, such as the simulation time when the error occurred and in which component or at which line number in the source code, making it easy to diagnose the problem and the test case that failed.

This test bench, much like the stimulus section, hardcodes the actual tests. A better approach would be to read the expected results from a data file.

As mentioned in an earlier discussion on applying stimulus, it's possible to use algorithmic test-generation techniques not only to generate stimulus, but also to generate expected results. This approach can be very powerful and can result in very readable test benches that perform thorough (if not comprehensive) tests of the circuit.

In advanced circuits, the expected results will often be a function of the state of the device. This is particularly true of microprocessor class devices. In these cases, a test bench might be written more easily with a feedback loop that uses the circuit's current outputs to calculate additional tests to apply and to calculate the expected results. For example, an identical set of register values might be fed to a memory-addressing chip with differing addressing modes. Although the same data is fed to the circuit, the outputs will be different because the addressing mode is altered. The results that check code in the test bench could use the addressing mode that was used in the calculations to test the expected results. This type of test bench is typically much more effective because the amount of raw test data required is reduced.

In VHDL, we must also specify which version of a circuit should be used. In addition, we must declare a configuration for the simulation in VHDL terms. In order to test the high-level specification, we created this configuration:

<table>
<thead>
<tr>
<th>time</th>
<th>expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ns</td>
<td>1</td>
</tr>
<tr>
<td>30 ns</td>
<td>1</td>
</tr>
<tr>
<td>50 ns</td>
<td>0</td>
</tr>
<tr>
<td>70 ns</td>
<td>0</td>
</tr>
</tbody>
</table>

| CONFIGURATION highlevel OF rsff_bench IS |
| FOR test |
| FOR circuit:rsff |
| USE ENTITY work.rsff(behavioral); |
| END FOR; |
| END highlevel; |

This configuration was labeled highlevel and linked to the rsff_bench entity. The outermost FOR statement chooses the test architecture. In our case, we have only one architecture defined for the rsff_bench entity. Generally, though, we could have several versions of our test bench so VHDL allows us to choose one. Next we select which version of our circuit under study to use. In this case, behavioral version of the rsff entity is chosen for the component circuit.

In some implementations, this configuration information can be created automatically. But as we'll see later, the ability to control which architecture to use for a given entity is a very powerful feature when using test benches.

With this configuration specified, we're ready to feed all of this input to our VHDL simulator. The result from simulating this circuit with the Vantage VHDL simulator is:

If there had been any errors, we would have seen error-severity assertions displayed. When that happens with this implementation, the user can choose whether the simulator should halt execution or continue.

From this output we can quickly determine whether the circuit is operating correctly without manually reviewing the waveform display or a tabular dump of the signal values. The test bench gives us a correct or not-correct check of the circuit operation. In fact, the test bench can be viewed much like a regression test for a hardware system. If the test cases are thorough enough, then we can have confidence that the high-level specification correctly models the circuit according to our written specification.

Now that we have a working specification for our circuit, we need to move on to our implementation. We'll construct this circuit from two primitive devices—a NAND gate and a buffer. The VHDL entity declaration and architecture for the NAND gate is:

| ENTITY nand_gate IS |
| PORT (a,b: IN BIT; y: OUT BIT); |
| END nand_gate; |
| ARCHITECTURE behavioral OF nand_gate IS |

Vantage Analysis Systems, Inc.

Initialization of Simulation_Control...
Preparing rsff_bench for simulation...

**Assertion Note: RSFF Functional Test (scn/sim)
**Occurred in instance 'rsff_bench' at time 0 ns after 0 delta timepoints had been simulated.

The maximum simulation time specified has been reached. (simcon/SIM/2)

Halting at time 200 ns, after 26 delta timepoints have been simulated. (simcon/SIM/19)
Once again, we’re using very simple assumptions in this example. A more realistic model would reflect actual timing rather than unit delay, and would model at a minimum propagation of unknown values. In this case, the NAND gate has two inputs, a and b, and one output, y. The model watches for any changes in either input, and assigns the value “a NAND b” to the output with a delay of 1 ns when either input changes value.

The model for the buffer is similar:

```
ENTITY buf_gate IS
  PORT (a: IN BIT; y : OUT BIT);
END buf_gate;
ARCHITECTURE behavioral OF buf_gate IS
BEGIN
  y <= a AFTER 1 ns;
END behavioral;
```

Here we have one input, a, and one output, y. The input is echoed to the output with a delay of 1 ns whenever the input changes value.

Our next task is to describe an implementation of the RS flip-flop. In this case, we will specify an alternate architecture for the rsff entity using structural VHDL.

As stated earlier, the entity declaration for the rsff circuit has two inputs, r and s, and an output, q. Shown here is the structural architecture for this circuit:

```
ARCHITECTURE structural OF rsff IS
  COMPONENT nand_gate
    PORT (a,b:IN BIT; y : OUT BIT);
  END COMPONENT;

  COMPONENT buf_gate
    PORT (a:IN BIT; y : OUT BIT);
  END COMPONENT;

  SIGNAL qn,qb: BIT;
  BEGIN
    b1:buf_gate PORT MAP(qb,q);
    g1:nand_gate PORT MAP(s,qn,qb);
    g2:nand_gate PORT MAP(qb,r,qn);
  END structural;
```

We first declare the two components that we will be using, nand_gate and buf_gate. We also declare the interconnecting signals, qn and qb. Finally, we instantiate one buffer, b1 (with an entity type of buf_gate), and two gates, g1 and g2 (with an entity type of nand_gate). They’re connected as follows:

- Buffer b1 port a to signal qb, port y to signal q
- Gate g1 port a to signal s, port b to signal qn, and port y to signal qb
- Gate g2 port a to signal qb, port b to signal r, and port y to signal qn

It’s clear that this represents a typical RS-latch function.

We must specify which version of a circuit will be used, much like we did for the high-level testing. The configuration for testing our structural version of the RS flip-flop is:

```
CONFIGURATION gates OF rsff_bench IS
  FOR test
    FOR circuit:rsff
      USE ENTITY work.rsff(structural);
    END FOR;
    FOR g1,g2:nand_gate
      USE ENTITY work.nand_gate(behavioral);
    END FOR;
    FOR b1:buf_gate
      USE ENTITY work.buf_gate(behavioral);
    END FOR;
  END FOR;
END gates;
```

This configuration was labeled gates and linked to the rsff_bench entity. The outermost FOR statement chooses the test architecture of the test bench. The next FOR statement chooses the structural version of the rsff entity that’s named circuit in our test bench.

More work is required for the structural configuration because we must choose which version of each component to use. For gates g1 and g2, we choose the behavioral version of the nand_gate entity. For the b1 component, we select the behavioral version of the buf_gate entity.

Now, we’re ready to simulate the structural version of our circuit. No changes were made to the test bench itself. All we did was tell the simulator to use the structural implementation. We could easily use the same test bench to test many versions of our circuit, all without changing or recompiling the test bench. This feature saves us substantial compiler time.

That’s because configurations tend to be relatively short and the test bench itself tends to be rather complicated.

We’re now ready to review the simulation results from this test run:

Once again, any errors would have been flagged with assertion messages.

The output is almost identical to the high-level simulation except for two additional delta time points, which result from the finer grain of detail in the structural simulation.

David Coelho, a founder, chairman, and executive vice president for Vantage Analysis Systems, holds a BSEE from Stanford University, Calif.

How Valuable? Circle

- Highly 530
- Moderately 531
- Slightly 532
Introducing the industry's first software-programmable 10-bit ADC.

Simply put, our latest ADCreation — the ADC10158 — is open to suggestions.

Now you can change your conversion speed, reconfigure your mux, or adjust your output data format. All with just a few easy keystrokes. However and whenever you’d like.

Which means you get “on-the-fly” optimized system performance, while consuming just 33mW of power.

It also means that — now — you can put design flexibility at your fingertips.

Our lines are open.

For free samples and datasheets, call: 1-800-NAT-SEMI, Ext 145.
Or, fax: 1-800-888-5113.

NORTH AMERICA: P.O. Box 7643, Mt. Prospect, IL 60056-7643 (Tel: 1 800 628 7364, ext. 145; Fax: 1 800 888 5113); EUROPE: Industriestraße 10, D-8080 Fürstenfeldbruck, Germany (Tel: 49 81 41 103 0; Fax: 49 81 41 103 515); HONG KONG: 15th Floor, Straight Block, Ocean Center, 5 Canton Rd., Tsimshatsui, Hong Kong (Tel: 852 737 1600; Fax: 852 736 9921); JAPAN: 4-15 Nishi-shinjuku, Shinjuku-ku, Tokyo, Japan 160 (Tel: 81 3 3299 7050; Fax: 81 3 3374 4303).
12-BIT DATA ACQUISITION SYSTEM

Now you can have easy access to the analog world.

Unsurpassed integration makes analog design easy.

When crossing the border from analog to digital the last thing you want is excess baggage.

That's why we designed the industry's first +5V 12-bit plus sign Data Acquisition System, the LM12458. A one-chip solution that not only shrinks board space but also reduces design and debug time.

Versatility through software programmability.

Easily configured via software, the LM12458 lets you switch the mux from differential to single-ended mode “on the fly.”

System-level integration on a single chip.

What's more, with conversion times of 8.8µs (12-bit plus sign), 4.2µs (8-bit plus sign), and 2.2µs (“watchdog” comparison mode) you get optimized system performance at a throughput rate of 87kS/s min.

Single +5V Operation.

With single +5V operation, you get all this performance while consuming just 30mW max (50µW in standby mode).

Plus, its self-calibrating architecture ensures high accuracy over time and temperature.

So hurry up and get on board. And gain duty-free passage to the analog world.

Access us with one easy call.

For a free software design kit, call: 1-800-NAT-SEMI, Ext. 143.

Or, fax: 1-800-888-5113
Over 50 off-the-shelf models...

3KHz-800MHz from $325

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specific frequency range? ... Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000M ohms insulation resistance and up to 1000V dielectric voltage. For wide dynamic range applications involving up to 100 mA DC primary current, use the T-H series.

Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard; request other types.

Available for immediate delivery with one-year guarantee.

*CIRCLE 132 FOR U.S. RESPONSE

CIRCLE 133 FOR RESPONSE OUTSIDE THE U.S.

A Division of Scientific Components Corporation
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500
Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

NSN GUIDE
MCL NO. NSN
FTB1-1-75 5960-01-132-0034
FTB1-6 5960-01-225-8773
T1-1 5960-01-129-3745
T1-1T 5960-01-153-0668
T2-1 5960-01-106-1218
T3-1T 5960-01-153-0298
T4-1 5960-01-024-7626
T9-1 5960-01-055-8153
T16-1 5960-01-094-7439
TMO1-1 5960-01-175-2612

MCL NO. NSN
TMO2-1 5960-01-183-6414
TMO2.5-6 5960-01-215-4038
TMO2.5-6T 5960-01-215-8697
TMO3-1T 5960-01-168-7512
TMO4-1 5960-01-067-1012
TMO4-2 5960-01-091-3553
TMO4-6 5960-01-132-8102
TMO5-1T 5960-01-183-0779
TMO9-1 5960-01-141-0174
TMO16-1 5960-01-138-4593
Stepper motors of the permanent magnet type consist of two parts: an assembly of permanent magnets distributed around the circumference of a rotor shaft, and a surrounding ring of electromagnets attached to the stationary housing of the motor. Energizing the electromagnets with the proper polarities, in the proper sequence, generates a rotating magnetic field pattern. The permanent magnets try to align themselves with the rotating field pattern, producing torque.

A great many different circuits have been developed for energizing electromagnets (ELECTRONIC DESIGN, May 10, 1990, p. 103., and May 23, 1991, p. 120). The main advantage of this circuit is its extreme simplicity. It consists of just two flip-flops, two gates, four Darlington, five resistors, and a capacitor.

Different magnetic polarity sequences are needed to drive the stepper motor in the forward and reverse directions (Fig. 1). As shown, each driving phase has a 50% duty cycle. For forward motion, phase A leads phase B by 90°; whereas the opposite is true for reverse motion. Note that phase C is always simply the complement of phase A, and D is the complement of B.

The equations for forward motion, which give the next set of phases in terms of the current ones, can be written from inspection of the truth tables of Figure 1 as:

Phase A (t+1) = Phase B and
Phase B (t+1) = Phase A.

Similarly, the equations for reverse motion are:
Phase A (t+1) = Phase B and
Phase B (t+1) = Phase A.

By adding a direction variable, DIR, general equations valid for both directions of motion can be written as follows:
Phase A (t+1) = Phase D(t) + DIR and
Phase B(t+1) = Phase A(t):+ DIR, where :+: denotes the exclusive-OR (XOR) operation; Phase D, we recall, is the complement of Phase B; and the variable DIR is a logic ZERO for the forward direction and a ONE for reverse.

By setting up the drive equations in this way, they can be readily implemented by a D-type flip-flop, which is described by the equation:

\[Q(t+1) = D \] (Fig. 2).

Each output of the type 7474 flip-flops in that diagram can sink up to 16 milliamperes—more than enough current to drive a pnp Darlington power transistor, such as the 2N6052 type used in the present implementation.

VOTE!

Read the Ideas for Design in this issue, select your favorite, and circle the appropriate number on the Reader Service Card. The winner receives a $150 Best-of-Issue award and becomes eligible for a $1,500 Idea-of-the-Year award.
popular as it is, the gated rectangular-wave oscillator based on a single NAND gate does have a couple of weaknesses (Fig. 1). The most important is that the first pulse it puts out after being enabled tends to be longer than the ones that follow (Fig. 2). The second is that it sometimes gets triggered by short stray pulses at its enable input.

Adding a single diode to the circuit (dashed connections, Fig. 1) can eliminate both problems. What the diode does very simply is to prevent the accumulation of charge on the capacitor while the oscillator is waiting to be triggered. That charge is responsible for the extra width of the first pulse.

The diode also prevents the oscillator from being activated by very short enable pulses. On the downside, although it stabilizes the oscillator frequency, it also introduces a short delay between the arrival of an enable pulse and the beginning of oscillation. A 1N914B diode was chosen for this application because of its low leakage characteristics.

1. THE FIRST pulse from this gated oscillator removes any accumulated charge from the capacitor. Thus, it tends to be longer than the others. Adding a low-leakage diode (dashed connections) to the circuit prevents charge from accumulating and hence stabilizes the pulse width.

2. THE elongated pulse, which typically occurs without the diode (middle trace), is corrected when the diode is added (bottom trace). Note that the diode also adds a slight delay to the start of oscillation.

IFD WINNER
IFD Winner for July 11, 1991
Don Schendel, Motorola Inc., 6220 Roosevelt, P.O. Box 9040, Scottsdale, AZ 85252; (602) 441-6752. His idea: "Build a Single Amp Component."

IfD Winner for July 25, 1991
M.J. Salvati, Flushing Communications, 150-46 35th Ave., Flushing, NY 11354; (718) 358-0932. His idea: "Probe Drives Low-Impedance Inputs."

Entering real-world signals into Spice programs can be a nightmare. Spice has no facilities for accepting external stimulus waveforms and only limited ability to generate them internally. Nevertheless, it's possible to capture waveforms in the laboratory with a data-acquisition card and input them into Spice using an extension of the method described in a previous Idea For Design by Donald B. Herbert ("Create Spice Noise Sources," ELECTRONIC DESIGN, Aug. 8, p. 99).

The Basic program presented here (see program listing) features a data-capture routine followed by a
Precision components for signal filtering, network interface and EMI reduction

LAN Transformers
We can provide everything from complete sets of 10BaseT interface magnetics to individual isolation transformers for Token Ring, StarLAN, Arcnet, Ethernet or compatibles. All have fast rise times, excellent common mode rejection and meet international safety requirements.
Call for free evaluation samples.

LC Filter Networks
Choose from low, high, and bandpass filters in a variety of alignments. We offer 3, 5, or 7 pole filters in SIP, DIP, or surface mount configurations. Plus our tight-tolerance chip inductors permit easy customization of cutoff frequency, rolloff, insertion loss, passband impedance, and delay.
Designer's Kit D102 contains 4 each of our 3, 5 and 7 pole low pass filters (18 MHz cutoff). $50.

Telecom Magnetics
Our family of telecommunications products includes transformers for T1, T3/DS-3, ISDN S and U Interface and impedance matching. They're compatible with most chip sets or we can customize to meet your specifications. We also offer common mode filters for "tip and ring" circuits.
Call for free evaluation samples.

EMI Filters
These board-mount filters virtually eliminate the problem of conducted EMI in data lines. They provide both differential and common mode noise attenuation from 1 MHz to over 500 MHz in a compact, easy to install package. Choose from 2, 3, 4 or 8-line versions, or we'll custom design parts to meet your specific EMC requirements.
Designer's Kit D101 contains 4 samples each of 2, 3, 4 and 8-line filters. $65.
Spice PWL (piece-wise linear) file creation routine. The data-capture routine is based upon the PC-compatible PCL-711 PC-Multilab card from B&^ Microsystems, Sunnyvale, Calif. Note that the number of samples is limited to 3995—the maximum number of PWL data points allowed by PSpice from MicroSim Corp. To determine the effective sampling rate of the system, simply read the PC’s clock time before and after data collection, subtract the former from the latter, and divide the difference into the number of data samples.

The Basic program opens a file and creates a Spice-compatible .SUBCKT with a single PWL voltage source and a shunt resistor as its only circuit elements. Spice-compatible PWL voltage and time points are created by incrementing through the captured DTA% data array, converting the 12-bit data into equivalent voltages and computing the data sample time. A .MOD extension is appended to the file name to signify that it’s a model file.

To use the newly captured data, a Spice net list should be created using the PWL subcircuit, and +node-node INPUT. In that definition, INPUT is the default name of the PWL subcircuit, and +node-node are the connections for the PWL voltage source. This program uses the PCL-711 PC-Multilab Card from B&^ Microsystems 355 W. Olive Ave. Sunnyvale, CA. 408-730-5511. Note that the number of samples is limited to 3995—the maximum number of PWL data points allowed by PSpice from MicroSim Corp. To determine the effective sampling rate of the system, simply read the PC’s clock time before and after data collection, subtract the former from the latter, and divide the difference into the number of data samples. The Basic program opens a file and creates a Spice-compatible .SUBCKT with a single PWL voltage source and a shunt resistor as its only circuit elements. Spice-compatible PWL voltage and time points are created by incrementing through the captured DTA% data array, converting the 12-bit data into equivalent voltages and computing the data sample time. A .MOD extension is appended to the file name to signify that it’s a model file.

To use the newly captured data, a Spice net list should be created using the PWL subcircuit +node-node INPUT. In that definition, INPUT is the default name of the PWL subcircuit, and +node-node are the connections for the PWL voltage source. This program uses the PCL-711 PC-Multilab Card from B&^ Microsystems 355 W. Olive Ave. Sunnyvale, CA. 408-730-5511. Note that the number of samples is limited to 3995—the maximum number of PWL data points allowed by PSpice from MicroSim Corp. To determine the effective sampling rate of the system, simply read the PC’s clock time before and after data collection, subtract the former from the latter, and divide the difference into the number of data samples. The Basic program opens a file and creates a Spice-compatible .SUBCKT with a single PWL voltage source and a shunt resistor as its only circuit elements. Spice-compatible PWL voltage and time points are created by incrementing through the captured DTA% data array, converting the 12-bit data into equivalent voltages and computing the data sample time. A .MOD extension is appended to the file name to signify that it’s a model file.

To use the newly captured data, a Spice net list should be created using the PWL subcircuit +node-node INPUT. In that definition, INPUT is the default name of the PWL subcircuit, and +node-node are the connections for the PWL voltage source. This program uses the PCL-711 PC-Multilab Card from B&^ Microsystems 355 W. Olive Ave. Sunnyvale, CA. 408-730-5511. Note that the number of samples is limited to 3995—the maximum number of PWL data points allowed by PSpice from MicroSim Corp. To determine the effective sampling rate of the system, simply read the PC’s clock time before and after data collection, subtract the former from the latter, and divide the difference into the number of data samples. The Basic program opens a file and creates a Spice-compatible .SUBCKT with a single PWL voltage source and a shunt resistor as its only circuit elements. Spice-compatible PWL voltage and time points are created by incrementing through the captured DTA% data array, converting the 12-bit data into equivalent voltages and computing the data sample time. A .MOD extension is appended to the file name to signify that it’s a model file.

To use the newly captured data, a Spice net list should be created using the PWL subcircuit +node-node INPUT. In that definition, INPUT is the default name of the PWL subcircuit, and +node-node are the connections for the PWL voltage source. This program uses the PCL-711 PC-Multilab Card from B&^ Microsystems 355 W. Olive Ave. Sunnyvale, CA. 408-730-5511. Note that the number of samples is limited to 3995—the maximum number of PWL data points allowed by PSpice from MicroSim Corp. To determine the effective sampling rate of the system, simply read the PC’s clock time before and after data collection, subtract the former from the latter, and divide the difference into the number of data samples. The Basic program opens a file and creates a Spice-compatible .SUBCKT with a single PWL voltage source and a shunt resistor as its only circuit elements. Spice-compatible PWL voltage and time points are created by incrementing through the captured DTA% data array, converting the 12-bit data into equivalent voltages and computing the data sample time. A .MOD extension is appended to the file name to signify that it’s a model file.

To use the newly captured data, a Spice net list should be created using the PWL subcircuit +node-node INPUT. In that definition, INPUT is the default name of the PWL subcircuit, and +node-node are the connections for the PWL voltage source. This program uses the PCL-711 PC-Multilab Card from B&^ Microsystems 355 W. Olive Ave. Sunnyvale, CA. 408-730-5511. Note that the number of samples is limited to 3995—the maximum number of PWL data points allowed by PSpice from MicroSim Corp. To determine the effective sampling rate of the system, simply read the PC’s clock time before and after data collection, subtract the former from the latter, and divide the difference into the number of data samples. The Basic program opens a file and creates a Spice-compatible .SUBCKT with a single PWL voltage source and a shunt resistor as its only circuit elements. Spice-compatible PWL voltage and time points are created by incrementing through the captured DTA% data array, converting the 12-bit data into equivalent voltages and computing the data sample time. A .MOD extension is appended to the file name to signify that it’s a model file.

To use the newly captured data, a Spice net list should be created using the PWL subcircuit +node-node INPUT. In that definition, INPUT is the default name of the PWL subcircuit, and +node-node are the connections for the PWL voltage source. This program uses the PCL-711 PC-Multilab Card from B&^ Microsystems 355 W. Olive Ave. Sunnyvale, CA. 408-730-5511. Note that the number of samples is limited to 3995—the maximum number of PWL data points allowed by PSpice from MicroSim Corp. To determine the effective sampling rate of the system, simply read the PC’s clock time before and after data collection, subtract the former from the latter, and divide the difference into the number of data samples. The Basic program opens a file and creates a Spice-compatible .SUBCKT with a single PWL voltage source and a shunt resistor as its only circuit elements. Spice-compatible PWL voltage and time points are created by incrementing through the captured DTA% data array, converting the 12-bit data into equivalent voltages and computing the data sample time. A .MOD extension is appended to the file name to signify that it’s a model file.
CONDITIONED

"FRONT END" POWER

RUGGED AC-DC OFF LINE SOURCES

- True N+1 current sharing for loads to kilowatts.
- .99 power factor correction—provides 25% more usable power with low harmonic distortion.
- Line isolation/EMI suppression to D0160B and Mil-Std-461 (including CE01, CE03, RE02).
- Surge/spike protection per Mil-Std-704D and Mil-Std-1399.

AC INPUTS
1φ and 3φ available

DC OUTPUTS
24 to 300V available (including 28V, 48V, 155V, 270V)

PB Series
IDEAL FOR USE WITH DISTRIBUTED POWER
DC-DC CONVERTERS AND SYSTEMS

Features include 600 watt low profile 2" high package; lightweight, unpotted designs; environmental performance to Mil-Std-810D; -55°C to +85°C operation without derating; extended MTBF greater than 350,000 hours...

Call toll free for additional technical information and application assistance 1-800-421-8181 (in California 805/484-4221)

ARNOLD MAGNETICS CORPORATION
4000 Via Pescador, Camarillo, California 93012 • Phone: (805) 484-4221 • Fax: (805) 484-4113
AN APPLICATIONS EXAMPLE.
While the following example is for aircraft, it could apply to any air, land, sea or space system.

SEQUENCE ONE: The four-pushbutton display reads "ENGINE START," "BATTERY OK," "FUEL OK," "OXYGEN OK." The operator selects "ENGINE START."

SEQUENCE TWO: The four-pushbutton display now changes to read "ENGINE OK," "HYDRAULIC OK," "POWER OK," "CHECKLIST." The operator selects "CHECKLIST."

SEQUENCE THREE: The four-pushbutton display now reads "CHECK ICE," "CHECK FLAPS," "CHECK BRAKE," "SYSTEM OK." In this manner, the designer can program in as many sequences as required.

Design flexibility:
The programmable display system.

Vivisun Series 2000, now the leading programmable display pushbutton system, interfaces the operator with the host computer. The user-friendly LED dot-matrix displays can display any graphics or alpha-numerics and are available in green, red or amber. They can efficiently guide the operator through any complex sequence with no errors and no wasted time.

They also simplify operator training as well as control panel design. One Vivisun Series 2000 programmable display system can do the work of 50 or more dedicated switches. In short, Vivisun Series 2000 gives the design engineer more control over the design.

Contact us today.
MARKET FACTS

Set by mergers and acquisitions, the switch industry is eking out profits from narrow margins. "Everybody has the same switches," says Murray Klapfish, vice president at Venture Development Corp., a market research company in Natick, Mass. As a result, vendors are trying to capitalize on every competitive advantage, putting terminals in customer sites for placing and tracking orders. Increasing use of just-in-time manufacturing will continue to benefit switch users, Klapfish points out.

In terms of volume, the switch market shows good growth—the number of switches sold more than doubled between 1985 and 1990, from 801.5 million switches six years ago to 1.906 billion last year. But an aggressive price war has wilted profits, with total dollar value increasing just 1.8% to $1.24 billion in 1990. U.S. vendors have lost revenues because of low-cost switches made offshore, according to Venture Development's report, The Market for Switches in the Electronics Industry, second edition.

Outside of cutthroat pricing among vendors supplying in volume, the switch picture has some bright spots. For example, vendors are becoming involved in customers' design processes, supplying subassemblies and system integration. Vendors also have an edge if they support electronic data interchange with just-in-time manufacturing. Demand is strong for switches in medical gear; as the U.S. population ages, that demand should stay strong.

TALES FROM THE SKUNK WORKS

Past columns have discussed the composition of a skunk works and the attributes of the people who can make one work. These are the fundamentals, fuzzy as they may seem. A skunk works does not lend itself to formalism, procedure, and rules; it is subtle and dependent on people. The unorthodoxy of a skunk works makes some people uncomfortable.

We fear that trusting individuals in important matters leads to irresponsibility, discrimination, or worse. What of Vietnam, the Contra affair, banking debacles, and decades of expensive technology playpens and marketing mistakes? What of career risk and accountability to the stockholders? Traditional managers resist assigning their people to a skunk works and losing control.

Large organizations and the government—with inspiring exceptions like H. Ross Perot and Norman Schwarzkopf—often try to avoid trusting people. Conversely and despite recent problems, the Japanese generally trust personal relationships and work in teams. Here we correct breach of law; there they punish violation of trust. Independent of talent and character, we presume that technique, process, and procedure can make us competitive.

A skunk works requires that we distinguish a diversity of people by ability and integrity. It is a serious business endeavor, not a technology sandbox. The skunk works exists only to provide a business advantage for the corporation and extraordinary value for customers. The burden of freedom is responsibility and the skunk works is accountable in all dimensions.

Members of a skunk works team are responsible to each other, to their leader, and to the company for delivering as promised by their plan. When the budget is depleted, there is no more. If a milestone is missed, the program is jeopardized. One person's failure may cause the team to fail. In return for accepting grave responsibility, the skunk works is allowed to work unmolested. The alternative to dramatically increasing our creativity is unpleasant, I think. We are, despite excellent technology and a few notable exceptions, losing our leadership in high tech. Companies are going out of business even in growth markets. With boring consistency we are driven from the lucrative markets that we created. Now experts advise exiting the manufacture of computers. Our choice is radical change or continued decline.

John D. Trudel, the Trudel Group, 52001 Columbia River Hwy., Scappoose, OR 97056; (503) 690-3300.
revise the catalog covers the Fair-Rite product line of soft ferrite materials, components, and accessories for application in EMI suppression, high-frequency power magnetics, transducers, chokes, and broadband transformers. To help design engineers, the catalog has several tutorial articles, magnetic design formulas, and other soft ferrite references. For a copy of the 11th edition Soft Ferrite Catalog, contact Fair-Rite Products Corp, Wallkill, NY 12589; (914) 343-3639 or (206) 882-2000. CIRCLE 451

A free demo disk is available for a schematic entry program for circuit diagrams. SuperCAD includes a large library, netlist, and dot matrix printer output. Contact Mental Automation, 5415 136th Place SE, Bellevue, WA 98006; (206) 641-2141. CIRCLE 454

Forth Professional, PC users can switch between up to 20 programs at once. As a result, a user can press a key or click a mouse to shift between a word processor, spreadsheet, database, graphics program, and terminate-and-stay resident (TSR) utilities. The program includes calculators that use no additional memory. The program takes up only 23 to 33k of memory, 1k if loaded into high memory. Back & Fort works with CGA, EGA, Hercules, VGA, Super VGA, and 1024-by-768 video modes. The software runs on IBM PCs, XT's, AT's, and PS/2, and a network version is available. Back and Fort has a list price of $69.95. Contact Progressive Solutions, 177 East 79th St, New York, NY 10021; (212) 794-9041. CIRCLE 457

...Perspectives on Time-to-Market

BY RON KMETOVICZ
President, Time to Market Associates Inc.
Cupertino, Calif.; (408) 446-4458; fax (408) 253-6065

he previous column defined the point where measurement of time to market begins. Now let's consider the implications of starting the measurement ahead of concept promotion. Successfully promoting an idea within an organization scales in proportion to how familiar decision makers are with the concept—that is, familiar items are easier to promote than less familiar ones. Along the same lines, advancing familiar ideas, supported by development and market data, is generally easier than pushing something new. Using previously introduced concepts behind me-too-with-a-twist, next-generation, derivative, and first-of-a-kind product development classifications helps foster an understanding of potential complications within this phase.

Measuring how long it takes for ideas to transit the promotion phase within the organization becomes extremely important. Many new product development organizations suffer significant degradation in time-to-market performance and don't even know it! A second benefit of making the measurement—removing the idea analysis log jam—results as well. This happens because measurement surfaces the quantity of ideas present in just about every product development environment. Once quantity becomes known, it is necessary for those doing the evaluation of ideas to create effective filters to improve selection of concepts with high quality while reducing the total number of those in process.

The fact remains that the time to transit the concept promotion phase within most any organization is measured not in days or months, but in years. As such and in proportion to other phases that lead to the revenue phase, it consumes precious time. Including this time interval in time-to-market measurement will likely alter organizational behavior. It can lead to reducing overall the time to market of products selected for development.
Oki MCUs—
For Total Toolset Support.

Is incomplete support preventing your MCU design from moving forward? Join the nX crew at Oki, where our nX MCUs provide the performance upgrades and toolset support needed to propel your design swiftly to the finish line.

Choose from a range of nX-generation 8-bit or 16-bit MCUs, including OTPs, and a variety of on-chip features: A/Ds, I/Os, PWMs, and more.

Our in-circuit emulator and evaluation modules expedite programming and emulation. And with nX, you receive complete software support—including assemblers, debuggers, converters, and translators.

Starting a new design? Want to convert your resident 80C51 codes? Look to the team that won’t leave your design dead in the water. With nX and Oki’s total tool support, your design glides smoothly and quickly from concept to code.

Call 1-800-OKI-6388 for our nX Brochure (ask for Package 052).

Oki Toolset Support for nX

<table>
<thead>
<tr>
<th>Description</th>
<th>65K</th>
<th>66K</th>
<th>67K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relocatable Assembler</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linker</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Librarian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Symbolic Debugger</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Object Converter</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Object Analyzer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>80C51 Translator</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>C-Compiler</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C-Debugger</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OMFICE + EVM65524</td>
<td>✓</td>
</tr>
<tr>
<td>OMFICE + EVM66201</td>
<td></td>
</tr>
<tr>
<td>OMFICE + EVM67620</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Under development
Engineering managers and designers in the U.S. are facing the challenge of innovating in the marketplace. To do that, people have to be in charge. That’s the assertion of William B. Rouse, author of Design for Success: A Human-Centered Approach to Designing Successful Products and Systems. The book outlines design philosophies and methods for developing complex systems with a primary goal of supporting people. In Rouse’s view, the purpose of design is not to mobilize technology to achieve operational objectives. Rather, design should be oriented toward integrating technology and other resources to support people in ways that help them do their jobs.

As Rouse explains, the first goal in human-centered design is that it should enhance human abilities, taking advantage, for example, of people’s excellent pattern-recognition abilities. Not surprisingly, the second goal is that it should help overcome human liabilities—the human tendency to make errors, for instance. Third, such design should foster user acceptance. Design must directly address users’ preferences and concerns.

Within Rouse’s framework are four design issues: formulating the right problem, designing an appropriate solution, developing it to perform well, and assuring user satisfaction. User-centered design and user-friendly systems aren’t new ideas, of course. But few people know how to put these concepts to work. Rouse presents a framework of design procedures that address design issues step by step. Still, Rouse’s framework is intended to support and enhance engineering judgment, not replace it. The book’s case studies make concrete the rather abstract ideas in human-centered design. In one case study, the problem was information overload experienced by aircraft pilots. The design of an intelligent cockpit involved interviewing 10 fighter pilots about having advanced technology in the cockpit and incorporating these results in later design phases.

William B. Rouse is chairman and chief scientist of Search Technology. Rouse is adjunct professor of industrial and systems engineering at the Georgia Institute of Technology. He received his doctorate in systems engineering from the Massachusetts Institute of Technology.

QUICK LOOK

DEMAND FLOWS STEADILY IN U.S. FOR ADHESIVES, COATINGS, AND SEALANTS

QUICK REVIEWS

Engineering managers and designers in the U.S. are facing the challenge of innovating in the marketplace. To do that, people have to be in charge. That’s the assertion of William B. Rouse, author of Design for Success: A Human-Centered Approach to Designing Successful Products and Systems. The book outlines design philosophies and methods for developing complex systems with a primary goal of supporting people. In Rouse’s view, the purpose of design is not to mobilize technology to achieve operational objectives. Rather, design should be oriented toward integrating technology and other resources to support people in ways that help them do their jobs.

As Rouse explains, the first goal in human-centered design is that it should enhance human abilities, taking advantage, for example, of people’s excellent pattern-recognition abilities. Not surprisingly, the second goal is that it should help overcome human liabilities—the human tendency to make errors, for instance. Third, such design should foster user acceptance. Design must directly address users’ preferences and concerns.

Within Rouse’s framework are four design issues: formulating the right problem, designing an appropriate solution, developing it to perform well, and assuring user satisfaction. User-centered design and user-friendly systems aren’t new ideas, of course. But few people know how to put these concepts to work. Rouse presents a framework of design procedures that address design issues step by step. Still, Rouse’s framework is intended to support and enhance engineering judgment, not replace it. The book’s case studies make concrete the rather abstract ideas in human-centered design. In one case study, the problem was information overload experienced by aircraft pilots. The design of an intelligent cockpit involved interviewing 10 fighter pilots about having advanced technology in the cockpit and incorporating these results in later design phases.

William B. Rouse is chairman and chief scientist of Search Technology. Rouse is adjunct professor of industrial and systems engineering at the Georgia Institute of Technology. He received his doctorate in systems engineering from the Massachusetts Institute of Technology.

QUICK NEWS

 Fascination with how things work and a resulting interest in math and science may lead to an engineering career. Thinking along these lines, some 20,000 engineers will visit classrooms across the U.S. from February 16 to 22 to encourage students to take the math and science courses they need to prepare for engineering careers. Thirteen engineering societies sponsor the National Engineers Week for 1992, along with funding from 10 corporations. The event’s honorary chairman is Jack D. Kuehler, president of IBM Corp. Engineers who wish to participate can request a Discover E kit from National Engineering Week, P.O. Box 1270, Evans City, PA 16033; (412) 772-0950.

CAD/CAE SURVEY

WHICH CAD/CAE SOFTWARE WOULD YOU CONSIDER FOR FUTURE PURCHASE?

Source: a survey of Electronic Design readers by the Adams Co., Palo Alto, Calif.; (415) 325-9622
NKK backs you with over 1,001,250 different toggle, rocker, pushbutton, slide, lighted, keypad, keylock, rotary and DIP rotary switches — including the best new ideas of the '90s. See them all in the pages of our new 456-page switch catalog. For your free copy, call (602) 991-0942 or FAX (602) 998-1435.

NKK Switches
7850 E. Gelding Dr.
Scottsdale, AZ 85260

WORLD'S SMALLEST
NKK introduces the surface mount G3T with patented STC contacts, gull-wing terminals. VPS or infrared reflow solderable.

EASY DOES IT

ULTRA-MINI
New ND switch is half the size of ordinary binary coded DIP rotaries. Washable and universal footprint pattern.

TV STAR

WORTH A MILLION
Million operations from unique LED illuminated JB keypad switch. Red, green or yellow LED options.

DOUBLE DUTY
Logic-level for PCB or power rating for snap-in panel mounting, from very low-profile UB pushbuttons with full-face LED illumination.

TURNING POINT
Washable Binary Coded DIP rotary DR-A switch can be PC or panel mounted. Crisp operation. Right angle or straight terminals.

100,000 CHOICES
YB pushbutton yields literally 100,000 + part numbers with variations in mounting, illumination, circuitry and color.
POWER-ONE Offers 2 Million Voltage/Current Combinations Within 2 Weeks.

Modular High Power
Up To 2000 Watts

You're in the initial stages of design. You need a prototype and you're facing a deadline. You also need a power supply with specific voltage/current outputs. And you need it fast!

That's where POWER-ONE's fully modular SPM High Power Series comes in. Single, dual, or triple output modules enable you to specify up to 15 DC outputs...from stock. With delivery time as little as two weeks.

And there's more. The incredibly versatile SPM represents the industry's highest power density—up to 2000 watts of multiple output power in the most compact package available today. There's even an optional on-board UPS capability. And no matter what configuration you require, be assured this internationally recognized power supply will meet the toughest safety regulations, worldwide.

So remember...whatever your requirements, we're keeping our shelves stocked for those urgent, limited-quantity deliveries. You'll get the exact voltage/current combination you need, on time. Every time.
Recently a reader asked me about the shape of the curve of an op amp's PSRR (power-supply rejection ratio) versus frequency. He observed that any curve of CMRR (common-mode rejection ratio) versus frequency which is the same as the gain versus frequency curve is probably an error or a foolish piece of bad data taking.

How about PSRR curves? Is a PSRR versus frequency curve in error if it's the same curve as the gain curve? In general, the answer is no. If the curves appear the same, they probably really are the same. Here's why: Every op amp has one (or more) capacitors that roll off the amplifier's gain versus frequency. At one end, the main "Miller" capacitor's voltage moves as far as the output voltage. At the other end, the capacitor is referenced to one of the power supplies - sometimes the minus supply, sometimes the plus supply. In the old days of vacuum-tube amplifiers, the main roll-off capacitor was sometimes actually referred to ground (refer to the old Philbrick K2-W, etc.). So if there was some motion on the minus or plus 300-V supply, the output had no direct path to cause it to move.

But in the solid-state era, very few op amps are referenced to ground - the minus or the plus supply is the place where the compensation capacitor is referred to.

Please look into the 1976 article by James Solomon in the IEEE Journal of Solid-State Physics, VOL SC-9, No. 6 (also reprinted as Appendix 1 in the NSC Linear Applications Data Book, 1986-1990). Mr. Solomon confirms that most op amps will indeed have a PSRR that's similar to the A_v versus frequency, at least for one of the supplies.

Are there any exceptions, any amplifiers for which the PSRR is better than the gain? If you take an LM301A and connect it with 30 pF from pin 1 to pin 8, and then add 30 pF from pin 5 to ground, that can help cancel out or neutralize the ac PSRR.

If you take an LM308, you might damp it with 30 pF from pin 1 to pin 8. OR, you might connect a 100-pf capacitor from pin 8 to ground. That would yield a much better PSRR versus frequency curve than the normal Miller-integrator scheme with capacitance from pin 8 to pin 1.

There are also some other amplifiers where the PSRR can be made very large at high frequencies. Noise gain damping can often be advantageous. So, in a case where you have problems, thinking is the order of the day, followed by measuring.

All for now. Comments invited!

RAP / Robert A. Pease / Engineer

Address:
Mail Stop C2500A
National Semiconductor
P.O. Box 58090
Santa Clara, CA 95052-8090
A REVOLUTIONARY ADVANCE IN SPARC MULTIPROCESSING.

The industry's first integrated SPARC® multiprocessing solution — the CY7C605 Multiprocessing Cache Controller/MMU.

High-performance systems designers have migrated to RISC in a race for performance. Just as rapidly, there is a movement to multiprocessing, which represents the most cost-effective way to load more power into a single system.

Multiprocessing RISC design is not simple. There are substantial technological challenges, particularly in the area of multi-level memory systems.

Now we offer a breakthrough to help you implement multiprocessing systems rapidly.

Cache coherency without stealing processor cycles — a leap in performance.

Maintaining cache coherency is one of the biggest problems to solve in shared memory multiprocessing systems.

This approach solves it.

It is the only VLSI solution that performs concurrent bus snooping and processor execution.

Our unique dual cache tag directories provide for simultaneous bus snooping and processor access to cache. No other cache management unit provides dual tags on-chip.

As a result, your system maintains cache coherency without stealing execution cycles from the microprocessor.

You get multiprocessing with the most efficient cache coherency protocol available, allowing data to pass from CPU to CPU in a single clock cycle. That translates directly to higher performance systems.

MBus compliant.

MBus compliance means you have a SPARC-standard, plug-and-play route to even more powerful, higher reving systems.

An integrated part of the industry's highest performance SPARC chipset.

Our chipset approach simplifies the complexities of multiple CPUs working together in a shared memory system.

This VLSI solution means you don't have to design and pay for boards full of logic to accomplish fast multiprocessing.

It is all available now.

For more information on the industry's most complete multiprocessing solution, please call for our literature package today.

Multiprocessing Information Hotline: 1-800-952-6300.

Ask for Dept. C3V.
PRODUCT INNOVATION

ADDING LIGHT SENSORS TO MIXED-SIGNAL CELL LIBRARY CREATES SENSOR CHIP WITH INTEGRATED SUPPORT CIRCUITRY.

INTELLIGENT OPTOELECTRONIC SENSOR CUTS DESIGN COSTS

A

lthough using discrete devices and multichip modules is traditionally the best way to combine light-sensing capability with digital-logic and analog signal-processing functions, this approach results in the need for costly custom packages. Now, with a family of intelligent optoelectronic sensors from Texas Instruments, designers can overcome these disadvantages.

Texas Instruments' integrated devices combine light-sensing cells with cells for op amps, comparators, data converters, transmission gates, and timing and control logic, on the same piece of silicon. Compared to the multichip module approach, the company's intelligent sensors require less design effort and use less circuit-board space in terms of both footprint area and circuit traces.

The first sensor spawned by the Texas Instruments's LinBiCMOS design methodology is the TSL214, a 64-by-1-element imager (Fig. 1). The sensor portion of the device consists of 64 charge-mode pixels arranged in a 64-by-1 linear array. The device is sensitive to light wavelengths ranging from 350 nm to 1200 nm. Each of its pixels measures 120 µm by 70 µm, and is situated on 125-µm centers.

The device's integrated support circuitry, formed by 2500 equivalent gates, includes a 64-bit static shift register, and an analog buffer with sample-and-hold capability for the analog output over a full clock period. Each sensor cell is capable of 4-bit resolution. The TSL214 sensor has extendible data I/O for expanding the number of sensors as required.

Aside from connections to a 5-V power source and ground, the TSL214 only requires a 500-kHz shift-clock signal and a start-integration-pulse signal to operate (Fig. 2). The clock signal controls charge-transfer, pixel-output, and internal reset operations.

The sensor's serial input is a user-supplied pulse that defines the end of the

1. A LINEAR ARRAY of 64 light-sensing cells on the TSL214 sensor is located along the bottom edge of a 0.320-by-0.036-in. chip. The eight multiplexers for sequencing the pixels are located just above the pixel array. Across the top of the bar are a trimming network for setting the amplifier gain, clock-generator circuits, bond pads, and the dark-reference pixel. The bar is packaged in a 14-pin DIP, though seven pins have no internal connection to the chip.

MILT LEONARD

E L E C T R O N I C D E S I G N
DECEMBER 19, 1991
Spectrol Electronics makes your job easier by offering a versatile line of potentiometers and dials which can be combined to fit almost any application. Make a perfect match with one of the industry’s most popular turns-counting dials: either Spectrol’s Model 15 digital or Model 16 concentric, and Spectrol’s Model 534 or 536, 10-turn, 7/8” wirewound potentiometers. It’s a winning combination worth looking into—an easy reading dial that looks good on everybody’s panel, plus a versatile, 10-turn, wirewound potentiometer available in scores of standard and special variations. Contact your nearest Spectrol Electronics Distributor today and order your winning combination!

Spectrol

Spectrol Electronics Corporation
4051 Greystone Drive, Ontario, CA 91761
Phone: (714) 923-3313 Fax: (714) 923-6765

CIRCLE 158 FOR U.S. RESPONSE
CIRCLE 160 FOR RESPONSE OUTSIDE THE U.S.

Low-Cost Multi-Turn Precision Pots From Spectrol

Spectrol’s low noise, 7/8” diameter wirewound pots are well suited for industrial panel controls or position sensing applications. The three-turn model 533, five-turn model 535 and ten-turn model 534 are available with a choice of English or metric shaft/bushing sizes and a hybrid resistor element. The model 536 is a lower cost ten-turn version offering a choice of plastic or metal shaft. Other specifications include a 50Ω to 100KΩ resistance range, 0.25% linearity and -55°C to +125°C operating temperature range. Custom modifications are welcome when the quantity warrants.

INTELLIGENT PHOTOSensor

2. TI’S MIXED-SIGNAL TECHNOLOGY allows the digital shift register and clock circuits to share the same chip with the analog buffer and amplifier functions. The only user-supplied inputs required are the clock source and the serial input pulse, which initiates the pixel output sequence. The serial output pin supplies a carry pulse to another cascaded TSL214.

integration period and starts the pixel output sequence. This signal, which appears at the analog output pin, is a series of 2-V pulses from illuminated pixels.

The serial output pin provides a carry pulse to the serial input of another TSL214 sensor, allowing a cascading arrangement. A non-overlapping clock generator prevents cross-talk between sensor cells by ensuring that one cell is turned off before an adjacent cell in turned on.

The sensor is available in a clear plastic 14-pin DIP for use with lenses and light sources supplied by the user. The TSL214 can also be supplied as a complete reader assembly comprising the sensor, lens assembly, and source LEDs mounted in a plastic carrier. The plastic assembly assures correct physical alignment between the sensor, lens, and the object to be read. Texas Instruments also offers an evaluation package that includes the TSL214, clock generator, the serial-input pulse source, and lens assembly.

Target applications for the new optoelectronic sensor include linear encoding, bar-code readers, edge detection for applications involving paper handling, and level sensing, and low-resolution contact imaging. Additional standard products being developed include a quadrant sensor and a light-to-voltage converter.

Texas Instruments says that its LinBiCMOS technology allows for many combinations of imager cell topology, cell size, and peak-wavelength response. A number of clear-epoxy package options for custom applications are also available, including multichip approaches. These multichip approaches are still needed in some applications for their advantages in optical isolation.

PRICE AND AVAILABILITY

The TSL214 optoelectronic sensor is available four to six weeks after receipt of order for $6.50 each in quantities of 1000.

Texas Instruments, Inc., 3360 LBJ Freeway, Center 2, Dallas, Texas 75243; Nelda Burns, (214) 897-3772. CIRCLE 516

HOW VALUABLE? CIRCLE

HIGHLY 544
MODERATELY 545
SLIGHTLY 546

Spectrol Electronics Corporation
4051 Greystone Drive, Ontario, CA 91761
Phone: (714) 923-3313 Fax: (714) 923-6765

CIRCLE 159 FOR U.S. RESPONSE
CIRCLE 160 FOR RESPONSE OUTSIDE THE U.S.
The squeeze is on

Slimming is an obsession in the electronics industry as engineers face the task of making thinner cards to fit even more functions into standard racks. Once again Ericsson can help.

The new PKE is a 25-30 W DC/DC converter squeezed into a slim package little more than half the height of its predecessor, the internationally acclaimed PKA converter. The PKE is only 10.7 mm (0.42") high and has the same 3"x3" industry-standard footprint and pin out.

Having set the standard for DC/DC converters in 1983, Ericsson's new series represents a remarkable leap forward in power supply technology. The PKE needs no power derating over its entire ambient temperature range of -45 to +85 °C. Quite simply, no one else achieves this in so little space. And you can choose from versions with one, two or three regulated outputs.

Perhaps most surprisingly, performance is in no way compromised by the size reduction. In fact, the PKE is even better than the PKA. A wide input voltage of 38 to 72 VDC is complemented by 1500 VDC isolation, 80-85% typical efficiency and two million hours MTBF at +45 °C ambient.

The PKE converter from Ericsson - slim, compact and beautifully formed. Squeeze in the time to call us for more information.
If you're considering powering your MMIC-based system with conventional MESFETs, STOP! TRW can drastically increase the performance — and mileage — of your MMIC investment.

In our MMIC foundry, we're producing premium GaAs HEMT and HBT MMICs for prices comparable to what you're now paying for MESFETs. Which means you could be using high performance, low noise HEMTs or high efficiency HBTs — without paying more at the pump.

What's more, TRW GaAs MMICs include performance-enhancing backside vias and air bridges — at no extra charge.

Our GaAs prices are level because our fabrication efficiency is high. We've achieved nearly 85% process commonality among our HEMT, HBT, and MESFET technologies. So we can use one flexible fabrication line to pump out all three types of MMICs.

We also keep costs down with computer-aided manufacturing, statistical process control, and the MMIC industry's most highly automated on-wafer dc and RF probe testing techniques.

For more information on our affordable, high octane MMICs, please call: 1-800-GETMMIC.

MMIC Foundry Services Manager
TRW Electronics & Technology Division
One Space Park
Redondo Beach, CA 90278
FAX: 310.812.7011

A sample of our current GaAs prices:

<table>
<thead>
<tr>
<th>Technology</th>
<th>Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 µm HEMT</td>
<td>$29 K</td>
</tr>
<tr>
<td>2.0 µm Emitter HBT</td>
<td>$29 K</td>
</tr>
<tr>
<td>0.5 µm MESFET</td>
<td>$29 K</td>
</tr>
</tbody>
</table>

*Prices are for processing six 3-inch wafers per our established PCM yield specifications. Masks, rule checks, design rules, die testing and special requirements will be quoted on request. All prices are subject to change without notice.
CONFIGURABLE RISC Processors Solve Embedded Needs

An enhanced set of features over the earlier ARM2 processor and the smallest commercially available 32-bit RISC CPU core make the ARM60 and ARM600 processors very attractive for embedded control and computing applications. The enhanced CPUs from VLSI Technology are also implemented in low-power static CMOS logic rather than dynamic CMOS logic. As a result, their power drain is considerably reduced compared with that of the ARM2. Also available as part of a standard-cell library are the CPU cores of the ARM60 and 600. With those cores, system designers can create their own optimized processor.

The ARM60 processor is a direct upgrade of the ARM2, providing 32-bit rather than 26-bit addressing, and four extra internal registers. The static CMOS implementation lowers both operating and static quiescent currents to just 1.5 mA/MHz and 10 µA, respectively. When running at 20 MHz, the chip delivers a throughput of about 11 MIPS. A 100-lead package houses the ARM60. For applications that require a pin-compatible upgrade of the ARM2, the company offers the ARM61, an 84-lead version of the ARM60.

For higher performance needs, the ARM600 combines the CPU core with 4 kbytes of cache, an 8-word-deep write buffer with dual address tags, an on-chip memory-management unit (MMU), and a coprocessor interface. The on-chip MMU has been optimized for use with object-oriented programming (OOP) and has resources such as concurrent garbage collections, persistent-object store clients, and virtual-memory clients. With these features OOP software runs more efficiently since the MMU can more easily manipulate the address and permission mapping, and more easily move objects in and out of memory.

When running at 25 MHz, the ARM600 (VY86C00) has a throughput of more than 15 MIPS while dissipating less than 500 mW. The 370-by-330 mil CPU is much smaller than most other full-featured RISC processors, and, as a result, it can take on cost-sensitive applications. The chip is housed in a 160-lead plastic quad-sided flat package or a 144-lead plastic pin-grid array.

Besides the CPUs, VLSI Technology has a trio of support chips available that were used with the previous ARM2 and AMR3 processors. The VY86C110 memory controller features ROM access, DRAM refresh, and address translation. Providing both stereo and either color or monochrome video outputs, the VY86C310 includes triple 4-bit digital-to-analog converters, and delivers pixel data at up to 24 MHz.

To ease testing of either CPU, the AMR60 and 600 include IEEE 1149-compatible (JTAG) boundary-scan test ports. Thus, larger systems that incorporate the ARM processors can easily be tested.

In lots of 10,000, the VY86C060 and 061 processors sell for $26.75 and $23.40 apiece, respectively, and are sampling. The more complex VY86C600 processor sells for $65.25 apiece, also in lots of 10,000. It’s also available in sample quantities. Production for both CPUs starts in the first quarter.

VLSI Technology Inc., 1109 McKay Dr., M/S 22, San Jose, CA 95131; John Haller, (408) 434-7877.

CIRCLE 461
NEW PRODUCTS

INSTRUMENTS

IEEE-488

Control any IEEE-488 (HP-IB, GP-IB) device with our cards, cables, and software for the PC/AT/386, EISA, MicroChannel, and NuBus.

DEBUGGING TOOL WORKS WITH C186/C188 DEVICES

A series of low-cost, source-level, run-time debugging tools are the first products in a total development solution for embedded systems using the Intel 80C186/C188EA, XL, EB, and EC microprocessors. CodeTAP C186 consists of a target access probe, an RS-232 communications adapter, the Validate/Soft-Scope III windowed source- and assembly-level debugger, and customer support. The CodeTAP technology complements full-featured emulators. It offers designers a fully transparent window into the internal functioning of the processor for run-time code debugging in the target environment. The system offers eight hardware and unlimited software breakpoints. Users can single-step or run at full clock speed up to 20 MHz with no wait states. The system, which runs on PC hosts, supports Intel, Microsoft, and Microtec Research C compilers and provides users easy access to high-level data structures, arrays, and dynamic variables. Other products being developed include a high-performance emulator and software for solving real-time and system-integration problems. CodeTAP C186 costs $5995.

Megatest Corp., 1321 Ridder Park Dr., San Jose, CA 95131; (408) 437-9700.

You get fast hardware and software support for all the popular languages. A software library and time saving utilities are included that make instrument control easier than ever before. Ask about our no risk guarantee.

12-MHz VXI GENERATOR FEATURES FLEXIBILITY

A broad feature set adds flexibility to a 12-MHz VXI-based function/pulse generator. The Model 1378 combines a high-precision source of sine, triangle, square, and pulse functions synthesized from the VXI Clik10 reference or an external signal with an open-loop analog function generator. Other waveforms available are square complement, dc, pulse complement, and external width. Modes include continuous, triggered, gated, and burst. A variety of trigger sources can be accessed through an external BNC connector, all VXI TTLTRG lines, or by software command. Output is 10 V pk-pk into 50 Ω or 20 V pk-pk into greater than 50 kΩ. The unit can supply or sink up to 100 mA. The 2-slot, C-size, message-based module is compatible with the Standard Commands for Programmable Instruments remote programming format. The Model 1378 costs $3295 and is available 4 to 6 weeks after ordering.

Wavelet San Diego Inc., 9045 Balboa Ave., San Diego, CA 92123; (800) 874-4835.

DISASSEMBLER ANALYZES BOUNDARY-SCAN DATA

Designers incorporating boundary-scan test paths on their digital boards can use the PF 8683/36 disassembler to simplify and speed up verification and debugging of the boundary-scan test vectors. The package, which includes a hardware adapter and software that runs on the PM 3590 logic analyzer family, conforms to the IEEE-1149.1 boundary-scan standard. The package stores up to 32 kbits of scan data. The disassembler compresses time-stamped data into 16-bit blocks from either the Test Data In or Test Data Out ports, as required. The data is disassembled into the familiar IEEE-1149.1 instructions. The hardware adapter lets users filter out and count repetitive states, which might otherwise fill the memory. The counter value is then displayed in the state data. Data on non-boundary-scan parts is captured synchronously with the data from the boundary-scan devices. The PF 8683/36 disassembler costs $2950.

John Fluke Manufacturing Co., P. O. Box 9090, Everett, WA 98206-9090; (206) 347-6100.

DUAL HEADS BOOST TESTER THROUGHPUT

Two improvements to the Polaris test system—dual test-head and parallel test capability—significantly increase system throughput. The second test head, which can be added to existing systems, ensures that there is always a device under test, without having to wait for a device handler to reload the single test head. The Polaris timing refresh mechanism maximizes this benefit by reloading all timing information into all pins simultaneously in less than 1 ms. Meanwhile, the parallel test capability uses the system's tester-per-pin architecture and software flexibility to test up to eight devices in parallel on one test head, or 16 devices on two heads. Running as an application on the host Sparcstation, the parallel test program reduces test costs by 60% to 80%. Prices for the second test head start at $455,000.

Megatest Corp., 1321 Ridder Park Dr., San Jose, CA 95131; (408) 437-9700.

12-MHz VXI GENERATOR FEATURES FLEXIBILITY

A broad feature set adds flexibility to a 12-MHz VXI-based function/pulse generator. The Model 1378 combines a high-precision source of sine, triangle, square, and pulse functions synthesized from the VXI Clik10 reference or an external signal with an open-loop analog function generator. Other waveforms available are square complement, dc, pulse complement, and external width. Modes include continuous, triggered, gated, and burst. A variety of trigger sources can be accessed through an external BNC connector, all VXI TTLTRG lines, or by software command. Output is 10 V pk-pk into 50 Ω or 20 V pk-pk into greater than 50 kΩ. The unit can supply or sink up to 100 mA. The 2-slot, C-size, message-based module is compatible with the Standard Commands for Programmable Instruments remote programming format. The Model 1378 costs $3295 and is available 4 to 6 weeks after ordering. You get fast hardware and software support for all the popular languages. A software library and time saving utilities are included that make instrument control easier than ever before. Ask about our no risk guarantee.

DISASSEMBLER ANALYZES BOUNDARY-SCAN DATA

Designers incorporating boundary-scan test paths on their digital boards can use the PF 8683/36 disassembler to simplify and speed up verification and debugging of the boundary-scan test vectors. The package, which includes a hardware adapter and software that runs on the PM 3590 logic analyzer family, conforms to the IEEE-1149.1 boundary-scan standard. The package stores up to 32 kbits of scan data. The disassembler compresses time-stamped data into 16-bit blocks from either the Test Data In or Test Data Out ports, as required. The data is disassembled into the familiar IEEE-1149.1 instructions. The hardware adapter lets users filter out and count repetitive states, which might otherwise fill the memory. The counter value is then displayed in the state data. Data on non-boundary-scan parts is captured synchronously with the data from the boundary-scan devices. The PF 8683/36 disassembler costs $2950.

John Fluke Manufacturing Co., P. O. Box 9090, Everett, WA 98206-9090; (206) 347-6100.

DUAL HEADS BOOST TESTER THROUGHPUT

Two improvements to the Polaris test system—dual test-head and parallel test capability—significantly increase system throughput. The second test head, which can be added to existing systems, ensures that there is always a device under test, without having to wait for a device handler to reload the single test head. The Polaris timing refresh mechanism maximizes this benefit by reloading all timing information into all pins simultaneously in less than 1 ms. Meanwhile, the parallel test capability uses the system's tester-per-pin architecture and software flexibility to test up to eight devices in parallel on one test head, or 16 devices on two heads. Running as an application on the host Sparcstation, the parallel test program reduces test costs by 60% to 80%. Prices for the second test head start at $455,000.

Megatest Corp., 1321 Ridder Park Dr., San Jose, CA 95131; (408) 437-9700.

12-MHz VXI GENERATOR FEATURES FLEXIBILITY

A broad feature set adds flexibility to a 12-MHz VXI-based function/pulse generator. The Model 1378 combines a high-precision source of sine, triangle, square, and pulse functions synthesized from the VXI Clik10 reference or an external signal with an open-loop analog function generator. Other waveforms available are square complement, dc, pulse complement, and external width. Modes include continuous, triggered, gated, and burst. A variety of trigger sources can be accessed through an external BNC connector, all VXI TTLTRG lines, or by software command. Output is 10 V pk-pk into 50 Ω or 20 V pk-pk into greater than 50 kΩ. The unit can supply or sink up to 100 mA. The 2-slot, C-size, message-based module is compatible with the Standard Commands for Programmable Instruments remote programming format. The Model 1378 costs $3295 and is available 4 to 6 weeks after ordering.
SOFTWARE CONTROLS DSOs THROUGH A MACINTOSH

The SuperScope/488 data-acquisition-and-analysis software package offers a transparent interface between Macintosh computers and digital storage oscilloscopes (DSOs). No programming is required; intuitive dialog boxes allow users to create an oscilloscope-like front panel and configure the DSO to transfer data and measurements to the computer for display, calculation, or disk storage.

The software acts like a virtual instrument, complete with display, vertical scaling, and timebase controls that control the scope. Also, SuperScope/488 is an integrated analysis and presentation package with a built-in text editor. A library of analysis features augment those found in DSOs. Included are trigonometric and logarithmic operations and statistics, and digital-signal processing functions, such as FFTs, infinite-impulse-response filtering, and histograms. The software's initial release supports a number of popular DSOs and digitizers from Hewlett-Packard, IOtech, LeCroy, Nicolet, and Tektronix.

SuperScope/488 is available immediately at a price of $1280, which includes the SuperScope application software and the SuperScope 488 instrumentation library for DSOs.

GW Instruments Inc., 35 Medford St., Somerville, MA 02143-9938; (617) 625-1322. JOHN NOVELLINO

BENCHTOP TESTER OFFERS PIN PROGRAMMABILITY

A benchtop ASIC tester performs verification and characterization on ECL and CMOS devices. The ETS870 Engineering Test Station has a 25-MHz bidirectional data rate and 50-MHz clock rate. The tester can be configured with up to 512 pins in 16-pin increments. It features programmable timing generators, with 500-ps resolution and per-pin programmability of stimulus, tri-state, real-time compare, dynamic mask, and data acquisition. The ETS870 is user-interface and device-under-test board compatible with other members of the ETS family and the high-end Topaz V 110-MHz, 544-pin tester. A 256-pin system with 16 globally assignable timing generators costs less than $85,000. Included are a 33-MHz, 80486-based PC, system software, a high-speed interface, a dc parametric measurement unit, and a programmable power source.

HiLevel Technology Inc., 31 Technology Dr., Irvine, CA 92718; (714) 727-2106. CIRCLE 487

SOFTWARE AUTOMATES BOARD FIXTURE DESIGN

Running under a Windows environment, the Pronto Fixture software package uses CAD/CAM and Gerber data to automate the design, documentation, and fabrication of bed-of-nails test fixtures. A specialized graphical editing system allows users to accurately position test probes, even on densely loaded boards. Additional graphics help users debug the test fixture and program. The software generates files to perform automatic drilling, wiring, and receptacle installation. It also identifies surface-mount devices and other conditions that do not allow probing, and automatically corrects probe nail placement. The package minimizes expensive close-centered and top-access probe nails. The package is user-programmable and can read virtually any CAD/CAM, Gerber, or tester-generated fixtures. Pronto Fixture with one CAD link costs $4500. A universal version costs $6000.

UniSoft Corp., 94 High St., Milford, CT 06460; (203) 876-1077. CIRCLE 488

Are You Still Using An Old Fashioned Mouse?

Don't get left behind in the Dark Ages. Upgrade to Mouse-trak™. Because Mouse-trak™ gives you unique features ideal for CAD:

- Instant cursor speed control
- User-definable keys
- Click and drag mode

Mouse-trak™ helps you get more done, too. According to independent studies, Mouse-trak™ is 27% faster and more accurate than the leading mouse. It's also more comfortable and takes up less work space.

And since Mouse-trak™ offers a 30-day money back guarantee, you can't lose. Call today.

mousetrak

"The Professional's Trackball"
1-800-533-4822

Compatible with IBM, Sun, DEC and other systems
ITAC Systems, Inc. • 3121 Benton Street • Garland, Texas 75042
U.S.A. • tel (214) 494-3073 • fax (214) 494-4159

CIRCLE 124 FOR U.S. RESPONSE
CIRCLE 125 FOR RESPONSE OUTSIDE THE U.S.
The TeamNet 3.0 software also has version of conflicting file changes via the face, which is based on X-Windows, improves process control and conflict-resolution mechanisms for concurrent development. Interactive file-merge capabilities allow for a visual side-by-side comparison of conflicting file changes via the new X-Windows graphical interface. The TeamNet 3.0 software also has virtual-copy abilities that perform such functions as creation of work areas and check-in of changes 2 to 10 times faster than the previous version of TeamNet software. In addition, license-management headaches are cured with a floating-license system designed for heterogeneous environments. Organizations can license the exact amount of TeamNet software that the group needs and have it available instantly to any user on the network.

TeamNet 3.0 is shipping now. Licenses cost $3000, and support an average of two concurrent users each.

TeamOne Systems Inc., 710 Lakeview Dr., Sunnyvale, CA 94086; (408) 730-3500. CIRCLE 469

Lisa Maliniak

Graphical Interface Improves Concurrent-Engineering Software

A graphical user interface (GUI) enhances the newest release of TeamOne's TeamNet concurrent-engineering environment for distributed configuration and data management. The TeamNet software provides version control by transparently tracking product development done with any tool running on computer with Sun's Network File System (NFS). TeamNet 3.0's graphical interface, which is based on X-Windows, improves process control and conflict-resolution mechanisms for concurrent development.

Interactive file-merge capabilities allow for a visual side-by-side comparison of conflicting file changes via the new X-Windows graphical interface. The TeamNet 3.0 software also has virtual-copy abilities that perform such functions as creation of work areas and check-in of changes 2 to 10 times faster than the previous version of TeamNet software. In addition, license-management headaches are cured with a floating-license system designed for heterogeneous environments. Organizations can license the exact amount of TeamNet software that the group needs and have it available instantly to any user on the network.

TeamNet 3.0 is shipping now. Licenses cost $3000, and support an average of two concurrent users each.

TeamOne Systems Inc., 710 Lakeview Dr., Sunnyvale, CA 94086; (408) 730-3500. CIRCLE 469

Lisa Maliniak

Software Eases IC and System Modeling

Creating models for ICs and systems is made easier with the Mobic 6.0 logic-modeling tool from Aldec. The Mobic compiler, an expert system, accepts Boolean logic equations and produces optimized assembly-language code for execution in Aldec's Susie simulator. The code is compact, executing ten times faster than IC models written in high-level modeling languages like VHDL. The Susie-Mobic combination is aimed mainly at system-level designers. For example, engineers can create a block diagram of a system, describe each block with Boolean equations, and verify the functional behavioral interactively. The compiler comes with hard-copy examples of various IC models. Mobic 6.0 is available now for $995. Also available now, Susie 6.0 costs $1995. Both products run on PCs.

Aldec, 3525 Old Conejo Rd., Suite 111, Newbury Park, CA 91320; (805) 499-6867. CIRCLE 471

ToolKit Helps Users Build VHDL Models

VHDL model developers can make their jobs easier with the Std_DevelopersKit software tool from the VHDL Consulting Group. The software is a collection of five VHDL-subroutine packages, each designed to provide a foundation for building simulator-independent, interoperable models. For instance, one package contains a methodology for building timing into VHDL models from the macrocell through the systems level, while another package has more than 300 routines for modeling digital architectures. In addition, the kit comes with a VHDL model-development guidebook with information accumulated from years of working to establish methods for model validation. The Std_DevelopersKit will run on any VHDL-1076-compliant simulator. Source-code licenses are available immediately, starting at $35,900.

VHDL Consulting Group, 974 Marcon Blvd., Suite 260, Allentown, PA 18103; (215) 266-9791. CIRCLE 472
PCB PLACEMENT TOOL ENSURES ROUTABILITY

Engineers can use the Allegro Placement Evaluator to optimize their PCB boards, hybrids, or multichip modules (MCMs) for routing and manufacturing. Placement Evaluator analyzes designs with up to 48 signal layers. A placement is tested for routability as soon as components are placed on the design. Using display grid cells, it identifies congested areas and highlights potential trouble spots where nets are likely to contribute to congestion. The software uses router parameters, feature sizes, actual spacing, and electrical constraints to display a density report as a color map that’s overlaid on the routing channels. Each color on the map represents a density range. Engineers can find problem areas early in the design cycle, which speeds routing time and decreases via counts. Placement Evaluator is shipping today with the Allegro 5.0 PCB design system, which includes an enhanced version of the Insight router. Allegro 5.0 runs on DEC, IBM, and Sun workstations, and cost between $12,500 and $50,000, depending on configuration.

Valid Logic Systems Inc., 2820 Orchard Parkway, San Jose, CA 95134; (408) 432-9400.

UPGRADED PLD TOOLS SUPPORT MACH DEVICES

Programmable Logic Design Tools/386, an upgraded version of OrCAD’s Release IV PLD tools, uses the native address mode of the 80386 and 80486 microprocessor to increase speed and memory capacity. Designing with many of the advanced PLD technologies, such as AMD’s MACH product family, requires this increased performance. PLD Tools/386 supports certified models of the MACH110 and 210 devices as part of the more than 2400 total devices it supports. In addition, the tools have increased flexibility for use with the company’s schematic-design software. For instance, the software lets users create their own variations of symbols or create completely new symbols. PLD Tools/386 is shipping now for $695. It runs on 80386- and 80486-based PCs. The price includes one year of free technical support, access to OrCAD’s bulletin-board service, and a one-year subscription to the company’s newsletter.

OrCAD, 3175 N.W. Aloclek Dr., Hillsboro, OR 97124-7135; (503) 690-9881.

PENTON CONTINUES COMMITMENT TO RECYCLING

Penton Publishing’s Camera Department started recycling chemicals from film wastewater 25 years ago...long before the ecologically-smart idea was widely recognized.

For almost as many years, the Penton Press Division has been recycling scrap paper, obsolete inventory, and printing press waste materials. In 1991, Penton Press will recycle some 5500 tons of paper, 9 tons of aluminum plates, and 3 tons of scrap film negatives. Furthermore, the Press Division has invested $500,000 in air pollution control equipment.

Company-wide, the recycling spirit has spread from Cleveland headquarters to offices throughout the country. Penton employees are enthusiastic participants in expanding programs to re-use paper, aluminum cans, and other waste materials.

Penton Publishing believes these practices make a significant quality-of-life difference for people today... and will help create a safer, healthier environment for generations to come.

Penton Publishing
3.5-IN. HARD-DISK DRIVE HOLDS 1 GBYTE

By using eight platters, Toshiba has boosted the unformatted capacity of its 3.5-in. hard-disk drive up to 1 Gbyte (867 Mbytes formatted). The MK-438FB disk drive is suited for workstations, multiuser systems, file servers, along with disk-array subsystems.

To reduce design-in time and ensure compatibility, the drive features a SCSI-II interface with Virtual SCSI, a concept developed by Toshiba. Virtual SCSI is a SCSI interface that can be downloaded from a host and that supports custom implementations.

For maximum performance and throughput, the disk drive features up to 512 kbytes of cache memory. The unit boasts 12.5-ms average seek time, a disk transfer rate of up to 25 Mb/s, average latency of 8.33 ms, and a SCSI-bus transfer rate of 10 Mb/s. The drive’s mean-time-between-failure (MTBF) rating is 200,000 power-on hours. The MK-438FB is available now for $2295.

Toshiba America Information Systems Inc., Disk Products Div., 9740 Irvine Blvd., Irvine, CA 92718; (714) 583-3000.

VECTOR CARD WORKS WITH DECstation-5000

Designed for use with DECstation-5000 workstations, the SuperCard-5000 consists of a system unit, interface cable, and single-slot TurboChannel interface card. The vector-processing subsystem is built with either one or two 40-MHz i860 processors, up to 16 Mbytes of on-board memory, and daughterboard options for direct I/O functions. Data is transferred to the subsystem across the TurboChannel or through I/O ports. The system comes with an software-specific-language (SSL) vector processing library that offers more than 225 signal-processing functions in an industry-standard format. Compilers for C and Fortran generate i860 code so that applications can be downloaded directly. The unit sits right on top of the DECstation. Priced around $20,000, depending on the configuration, the SuperCard-5000 will ship in January.

CSP Inc., 40 Linnell Circle, Billerica, MA 01821; (617) 272-6020.
Wise In Years. Young At Heart. Great American Investor.

If you stop for gas at Wally Bonfield's service station, be prepared to fill up on a few good stories. One of his favorites is American Investment. "Bonds have always been there for me," he says proudly.

Call us to find out more.

U.S. SAVINGS BONDS
1-800-US-BONDS
RELIALIBILITY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?

The RelCalc 2 Software Package predicts the reliability of your system using the part stress procedure of MIL-HDBK-217E, and runs on the IBM PC and full compatibles. Say goodbye to tedious, time consuming, and error prone manual methods! RelCalc: 2 is very easy to use, and features menu windows, library functions, global editing for what-if trials, and clear report formats. Try our Demo Package for $25.

T-CUBED SYSTEMS, 31220 La Baya Drive #110, Westlake Village, CA 91362. (818) 991-0055 • FAX: (818) 991-1281

T-CUBED SYSTEMS CIRCLE 404
High Performance
DAC-Per-Pin™
Device Programmers

Programs virtually every device available today with a certified programmer from the leading U.S. supplier of hardware/software device tools. The Allpro starts at $1285 and is fully upgradeable to 88 pins. We have the Best Products On The Market. For more information, call: 1-800-331-7766 or (305) 974-0967.

LOGICAL DEVICES CIRCLE 407

IEEE 488.2
Hardware for IBM PC/AT, Micro Channel, Sun, Macintosh, DEC, and NeXT.

Software for DOS, UNIX, WYS, menu-driven and icon-driven environments.

IEEE 488 extenders, analyzers, converters, analog I/O, and digital I/O.

Call for your free IEEE catalog

IOTech
Iotech, Inc. • 25971 Cannon Road
Cleveland, Ohio 44146 • (216) 439-4091
IOTECH CIRCLE 410

SIMPLIFY BOARD LAYOUT
MICRO/Q 1000 ceramic decoupling capacitors share board mounting holes with IC pins to simplify board design. Now add more active devices with increased density in the same space, or design the same package on a smaller board.

Send for your free information.
ROGERS CORPORATION
2400 S. Roosevelt St.
Tempe, AZ 85282.
Phone: (602) 967-0624
ROGERS CORP. CIRCLE 408

Low Cost Interface Cards for PC/XAT
RS-485/422 Card [PC485A] $95/125°
Cables programs virtually every device available today with a certified programmer from the leading U.S. supplier of hardware/software device tools. The Allpro starts at $1285 and is fully upgradeable to 88 pins.

We have the Best Products On The Market. For more information, call: 1-800-331-7766 or (305) 974-0967.

LOGICAL DEVICES CIRCLE 407

Includes DOS Device Driver and sample Communication programs in BASIC. Additional sample programs in C, Pascal & Assembler - $90

Stepper Motor Card [PCL838] $395°

JDR-PR1 16-Bit Card w/ decode...
JDR-PR18 16-Bit Card w/o decode...
JDR-PR2 16-Bit Card...
EXT-16 16-Bit for Microchannel ...
EXT-8088 8-Bit for 8088...
JDR-PR10 16-Bit Card w/o decode...

Probes silk-screened on both sides for easy wiring; all holes plated through.

JDR-PR2 8-Bit Card $29.95
JDR-PR1 8-Bit Card w/o decode $27.95
JDR-PR10 16-Bit Card w/o decode $34.95

Part kits available

Extemder Cards
EXT-8088 8-Bit for 8088 $28.95
EXT-8028 16-Bit for 8028 $39.95
EXT-16 16-Bit for Microchannel $69.95

Call for a free 84-pg catalog
800-538-5000

JDR MICRODEVICES® CIRCLE 415

Placing circuitry supported. Prototype Cards

CUPL
PLD/FPGA Design Software

Get the popular CUPL development software with the newest and latest features for PLD/FPGA logic design and shorten your time to market. CUPL's powerful "C-Like" syntax allows you to develop custom logic design quickly. CUPL starts at $95.

Call your order in TODAY - Start customizing Tomorrow!
1-800-331-7766 or (305) 974-0967.

LOGICAL DEVICES CIRCLE 413

Analog Circuit Simulation
SPICE for the PC

- Schematic Entry - SPICE Simulation
- Model Libraries - Waveform Graphics
Intusoft has it all at an Affordable Price!

INTEGRATED, EASY TO USE SIMULATION ENVIRONMENT, FEATURING: A powerful SPICE (bisSPICE) simulator performing AC, DC, Transient, Noise, Fourier, Distortion, Sensitivity, Monte Carlo, and Temperature analyses, Extensive model libraries, Schematic entry, Waveform processing. Starting at $95 for bisSPICE, complete systems are available for $195.

Call Or Write For Your Free Demo and Information Kit
P.O. Box 710 San Pedro, CA 90731-0710
Tel. 213-633-0710 Fax 213-633-9659
INTUSOFT CIRCLE 412

COAX/TWINAX/TRIAX INTERCONNECT COMPONENTS AND ACCESSORIES
31186 La Daysa Drive, Westlake Village, CA 91362-4047
Phone (818) 707-2020 Fax (818) 706-1040
TROMPETER CIRCLE 414

Free Catalog
The World's Largest Collection of Adapters & Accessories for VLSI/Surface Mount Devices

- Emulator Pods & Adapters
- Debug Tools
- Programming Adapters
- Socket Converters
- Debugging Accessories
- Prototyping Adapters
- Custom Engineering

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0664
EMULATION TECHNOLOGY CIRCLE 411

JDR-PR10 16-Bit Card w/ decode...
JDR-PR18 16-Bit Card w/o decode...
JDR-PR2 16-Bit Card...
EXT-16 16-Bit for Microchannel...

Prototype Cards
Decode and buffering circuitry supported. Bus pins silk-screened on both sides for easy wiring; all holes plated through.

JDR-PR2 8-Bit Card $29.95
JDR-PR1 8-Bit Card w/o decode $27.95
JDR-PR10 16-Bit Card w/o decode $34.95

Extemder Cards
EXT-8088 8-Bit for 8088 $28.95
EXT-8028 16-Bit for 8028 $39.95
EXT-16 16-Bit for Microchannel $69.95

Call for a free 84-pg catalog
800-538-5000

JDR MICRODEVICES® CIRCLE 415
Now you can work on the BAT. It employs technology so advanced it's called brilliant. This self-guided submunition can find, attack and destroy moving tanks and other armored vehicles deep inside enemy territory.

The BAT is the first airborne weapon to employ a whole new dimension of advanced technology. And it's a project that can do brilliant things for your future at Northrop's Electronics Systems Division in Hawthorne.

MECHANICAL DESIGN ENGINEER
- Perform mechanical and detail design, development and documentation of precision mechanisms, components and subsystems including electro-optical and opto-mechanical devices.
- Will interface with related engineering organizations to transition from preliminary design to full scale development of a high rate of production device.
- 8-10 years of Mechanical CAD/engineering experience and low-weight precision mechanisms and high volume production.
- A thorough understanding of the military documentation requirements such as DOD Std. 100 and ANSI Y14.5 and familiarity with finite element modeling preferred.
- BSME preferred.

STRUCTURAL ANALYSIS ENGINEER
- Responsible for structural evaluation of systems and subsystems and performing classical hand analysis and computer finite element modeling (NASTRAN and PATRAN) of systems. Will define and tailor environmental requirements, define methods of test and incorporate in specifications.
- 7+ years experience in Structural Analysis and a BSME or equivalent preferred.

ELECTRICAL DESIGN ENGINEER
- Perform requirements definition, concept design, preliminary design and detailed design for embedded Digital Signal Processing and control systems, as well as system test, integration and sell-off of the resultant hardware.
- ATE Electrical Design experience, 8+ years experience in Digital System/Circuit design and BSEE or equivalent preferred.
- Additional experience in the utilization of computer aided design tools (preferably VALID Logic Systems) for the design, simulation and analysis of the electrical system design desired.
- Experience in the design of Application Specific Integrated Circuits (ASICs) extremely desirable.

For immediate consideration, please send your resume to: Leilani Johnson, NORTHROP ELECTRONICS SYSTEMS DIVISION, Dept. ED1545, P.O. Box 16, Hawthorne, CA 90251-0016. EOE M/F/H/V. U.S. Citizenship Required.

People Making Advanced Technology Work
NORTHROP
Electronics Systems Division
Hawthorne Site
<table>
<thead>
<tr>
<th>ADVERTISER</th>
<th>READER SERVICE</th>
<th>PAGE NUMBER</th>
<th>ADVERTISER</th>
<th>READER SERVICE</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCEL Technologies</td>
<td>401</td>
<td>108</td>
<td>National Instruments</td>
<td>128, 129</td>
<td>20-21</td>
</tr>
<tr>
<td>Actel</td>
<td>80, 81</td>
<td>50-51</td>
<td>Actel</td>
<td>132, 133</td>
<td>82</td>
</tr>
<tr>
<td>Advanced Micro Devices</td>
<td>172, 173</td>
<td>67</td>
<td>National Semiconductor</td>
<td>134, 135</td>
<td>82</td>
</tr>
<tr>
<td>Aerospace Optics</td>
<td>84, 85</td>
<td>2-3</td>
<td>NCR Microelectronics</td>
<td>80-81</td>
<td>17</td>
</tr>
<tr>
<td>AMP</td>
<td>82, 83</td>
<td>88</td>
<td>NEC</td>
<td>6-7</td>
<td>80-81</td>
</tr>
<tr>
<td>Analog Devices</td>
<td>88, 89</td>
<td>10-11</td>
<td>OKI Semiconductor</td>
<td>71</td>
<td>1</td>
</tr>
<tr>
<td>Applied Microsystems</td>
<td>186, 187</td>
<td>61</td>
<td>OrCAD</td>
<td>91*</td>
<td>91*</td>
</tr>
<tr>
<td>Arnold Magnetics</td>
<td>94, 95</td>
<td>64-65</td>
<td>Philips Discrete Products</td>
<td>91*</td>
<td>91*</td>
</tr>
<tr>
<td>Avantek</td>
<td>92, 93</td>
<td>87</td>
<td>Philips Test & Measurement</td>
<td>94**</td>
<td>94**</td>
</tr>
<tr>
<td>B&C Microsystems</td>
<td>409</td>
<td>109</td>
<td>Pico Electronics, Inc.</td>
<td>45, 107</td>
<td>45, 107</td>
</tr>
<tr>
<td>Burr-Brown</td>
<td>182, 183</td>
<td>1</td>
<td>Power-One</td>
<td>94*</td>
<td>94*</td>
</tr>
<tr>
<td>Capital Equipment Corp.</td>
<td>96, 97</td>
<td>102</td>
<td>Programmed Test Sources</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Cascade Microtech</td>
<td>174-175, 176-177</td>
<td>31**</td>
<td>Rogers Corp.</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Chronology Corp.</td>
<td>406</td>
<td>108</td>
<td>Siemens Components</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Cirrus Logic</td>
<td>96</td>
<td>9</td>
<td>Sipex</td>
<td>77*</td>
<td>77*</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>98, 99</td>
<td>85</td>
<td>Spectrol</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Cybernetic Micro Systems</td>
<td>100, 101</td>
<td>14</td>
<td>T-Cubed Systems</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
<td>96</td>
<td>96</td>
<td>Tektronix</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Data Delay Devices</td>
<td>102, 103</td>
<td>8</td>
<td>Texas Instruments</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Data Translation</td>
<td>104, 105</td>
<td>72</td>
<td>Toshiba America</td>
<td>12-13*</td>
<td>12-13*</td>
</tr>
<tr>
<td>EG&G Vactec</td>
<td>106, 107</td>
<td>106</td>
<td>Trompeter Electronics</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>Emulation Technology</td>
<td>411</td>
<td>109</td>
<td>TRW</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Ericsson Components</td>
<td>108, 109</td>
<td>99</td>
<td>TRW Electronics</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Fortron/Source</td>
<td>110, 111</td>
<td>95</td>
<td>TRW & Technology</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Gould Test & Measurement</td>
<td>112, 113</td>
<td>38-39*</td>
<td>Texas Instruments</td>
<td>16-17</td>
<td>16-17</td>
</tr>
<tr>
<td>Headland Technology</td>
<td>114, 115</td>
<td>41*</td>
<td>Toshiba America</td>
<td>12-13*</td>
<td>12-13*</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
<td>116, 117</td>
<td>46</td>
<td>Trompeter Electronics</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>Illinois Capacitor</td>
<td>118-119</td>
<td>29*</td>
<td>TRW</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>International Rectifier</td>
<td>120, 121</td>
<td>18</td>
<td>TRW & Technology</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Intusoft</td>
<td>122, 123</td>
<td>22</td>
<td>Texas Instruments</td>
<td>16-17</td>
<td>16-17</td>
</tr>
<tr>
<td>IOtech</td>
<td>412</td>
<td>109</td>
<td>Toshiba America</td>
<td>12-13*</td>
<td>12-13*</td>
</tr>
<tr>
<td>ITAC Systems</td>
<td>124, 125</td>
<td>103</td>
<td>Trompeter Electronics</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>JDR Microdevices</td>
<td>415</td>
<td>109</td>
<td>Visor</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Lambda Electronics</td>
<td>126, 127</td>
<td>48A-48D*</td>
<td>Yokogawa</td>
<td>105**</td>
<td>105**</td>
</tr>
<tr>
<td>Linear Technology</td>
<td>180, 181</td>
<td>Cover IV</td>
<td>Z-World Engineering</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Logical Devices</td>
<td>407</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini-Circuits Laboratory</td>
<td>130, 131</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Domestic Advertiser Only
** International Advertiser Only

The advertisers index is prepared as an extra service. Electronic Design does not assume any liability for omissions or errors.
If you stop for gas at Wally Bonfield's service station, be prepared to fill up on a few good stories, as well. Wally's seen a lot of things change since he opened Bonfield's back in 1927. Thankfully, there's always been one thing he could count on—U.S. Savings Bonds, the Great American Investment. "Like it or not, I might have to retire one day," he says. "I'm just glad I found a way to do it comfortably." Bonds pay competitive rates, and they're one of the safest investments around. Which leaves a lot of folks thinking that Wally is wise beyond his years. Call for information, or write U.S. Savings Bonds, Dept. 893-M, Washington, D.C. 20026.
Truly incredible... superfast 3nssec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $19.95. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits’ latest innovative integrated components?

Check the outstanding performance of these units... high isolation, excellent return loss (even in the “off” state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55° to +100°C span. Plug-in models are housed in a tiny plastic case and are available in tape- and reel format (1500 units max, 24mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS (typ)

<table>
<thead>
<tr>
<th></th>
<th>Absorptive SPDT</th>
<th>Reflective SPDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dc- 500- 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 2000 5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation (dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 1.4 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1dB Comp. (dBm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42 31 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Input (max dBm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 20 22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSWR “on”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25 1.35 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Bkthr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 30 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mV/p/p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sw. Spd. (nsec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price, $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSWA-2-50DR (pin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-9 qty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZYSWA-2-50DR (SMA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSWA-2-50DR (pin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSWA-2-50DR (SMA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mini-Circuits
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6852844 or 620156

CIRCLE 134 FOR U.S. RESPONSE CIRCLE 135 FOR RESPONSE OUTSIDE THE U.S.
Compact. Simple. Low Power.

Surface Mount SCSI Terminator.

Now you can achieve high efficiency SCSI termination in a surface mount IC. The LT1117-2.85 is a 2.85V device trimmed ±1% to provide a high performance solution for active SCSI termination. And with active termination you'll get higher noise margins and improved cable impedance matching. Even at higher speeds you'll have fewer data errors.

The LT1117-2.85 consumes only 50mW—that's 16 times less than the 800mW drain of passive terminators. The tiny SOT-223 surface mount package eliminates size, space and mounting headaches, too—it's small enough to mount inside the connector! The LT1117-2.85 doesn't consume excessive power or produce unacceptable outputs as TERMPWR conditions change. Regulation of the 2.85V active termination is guaranteed down to a 3.95V TERMPWR input at 500mA of load current. In addition, the output is fully protected with short circuit current and thermal limiting.

If you're fed up with termination schemes that degrade your SCSI performance, solve those problems today. Save space and power with the LT1117-2.85. It's priced at $1.95 in 100 up quantities and available now! For more information contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Or call 800-637-5545.