A complete µC on a chip? It's getting closer, with most major functions now combined on a single die. Newer technologies are making the µP itself more powerful, providing higher speeds and larger instruction sets. Even UV PROMs can be put on the same chip. For the latest µP developments turn to page 26.
Sure, you've already made a smart decision, choosing networks over discrete resistors. After all, the cost per resistor in a network package can be 40% less; they require only 10-15% of the P.C. board space needed by discretes; and component count is reduced as much as 95% with resistor networks.

But, when choosing a network supplier, you should also consider these points:

1. Bourns has the broadest network product line in the industry — over 1000 part numbers in all. And our standard DIP circuits range from simple pull-up configurations to Thevinin-equivalent ECL terminators and memory interface circuits.

2. Bourns Krimp-Joint™ offers both a mechanical and electrical bond that lap or butt joint construction doesn't provide. The lead is crimped onto the network element and a high-temp, reflow-resistant solder is used to prevent failure during wave soldering and in circuit thermal cycling and vibration.

3. Bourns was the first manufacturer to offer a complete line of off-the-shelf, super low profile SIPs with demonstrated automatic insertion capability.

These are the facts. So, now you can be even more "discreet". We're sure you'll specify Bourns Resistor Networks — direct or through your local distributor.

Send today for our new 1977 Resistor Networks Catalog.

TRIMPOT PRODUCTS DIVISION, BOURNS, INC., 1200 Columbia Avenue, Riverside, CA 92507, Telephone 714 781-5415 — TWX 910 332-1252.
When we surveyed the pulse generator market, we discovered that what many of you wanted was unavailable: a Wavetek pulse generator.

Model 801 takes care of that. It's a 50 MHz pulse generator with independent width, rate, and delay controls. It's a versatile instrument, with double pulse capability, a pulse burst mode, and a pulse reconstruction feature. But above all, it's a Wavetek, as you can see, and as you can tell by the low price (just $995).

We could go on about the fixed ECL, TTL, and ECL outputs, and the variable outputs up to plus and minus 20 volts. Or the adjustable rise/fall from less than 5 nanoseconds. But this is an ad, not a data sheet. So why not circle our reader service number and get all the specs on Wavetek's first pulse generator: WAVETEK, 9045 Balboa Avenue, P.O. Box 651, San Diego, CA 92112. Telephone: (714) 279-2200, TWX 910-335-2007.

Nobody ever put one of these on a pulse generator before.
RF TRANSFORMERS

Have it your way!
36 models to choose from, 10KHz-800MHz

It costs less to buy Mini-Circuits wideband RF transformers. The T-series (plastic case) and TMO series (hermetically sealed metal case) RF transformers operate with impedance levels from 12.5 ohms to 800 ohms and have low insertion loss, 0.5 dB typ. High reliability is associated with every transformer. Every production run is 100% tested, and every unit must pass our rigid inspection and high quality standards. Of course, our one-year guarantee applies to these units.

<table>
<thead>
<tr>
<th>DC ISOLATED PRIMARY & SECONDARY</th>
<th>N x 50 Ω</th>
<th>N x 50 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>50 Ω</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Metal Case</td>
<td>TMO 1-1</td>
<td>TMO 1-1</td>
</tr>
<tr>
<td>Plastic Case</td>
<td>T 1-1</td>
<td>T 1-1</td>
</tr>
<tr>
<td>Freq Range, MHz</td>
<td>0.05-200</td>
<td>0.05-200</td>
</tr>
<tr>
<td>Impedance Ratio</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max. Insertion Loss, MHz</td>
<td>3 dB</td>
<td>3 dB</td>
</tr>
<tr>
<td>Price</td>
<td>$3.95</td>
<td>$3.95</td>
</tr>
<tr>
<td>Model T</td>
<td>$3.95</td>
<td>$3.95</td>
</tr>
<tr>
<td>Model T</td>
<td>$3.95</td>
<td>$3.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNBALANCED PRIMARY & SECONDARY</th>
<th>50 Ω</th>
<th>50 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>TMO 2-1</td>
<td>TMO 2-1</td>
</tr>
<tr>
<td>Freq Range, MHz</td>
<td>0.05-200</td>
<td>0.05-200</td>
</tr>
<tr>
<td>Impedance Ratio</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Max. Insertion Loss, MHz</td>
<td>3 dB</td>
<td>3 dB</td>
</tr>
<tr>
<td>Price</td>
<td>$5.45</td>
<td>$5.45</td>
</tr>
<tr>
<td>Model T</td>
<td>$5.45</td>
<td>$5.45</td>
</tr>
</tbody>
</table>

Designers Kit Available

- **(TK-1)** — 2 transformers of each type T1-1, T2-1, T4-1, T9-1, T16-1
- **(TMK-2)** — 2 transformers of each type TMO1-1, TMO2-1, TMO4-1

Customer acceptance of our products has been so overwhelming, we've been forced to move to larger facilities — THANKS.

International Representatives:
- **AUSTRALIA:** General Electronic Services, 99 Alexander Street, New South Wales, Australia 3065
- **ENGLAND:** Dale Electronics, Dale House, Wharf Road, Frinton Green, Camberley, Surrey GU15 3NS, U.K.
- **FRANCE:** E.C.E., 52 Rue George Sand, 92100 Palaiseau, France
- **GERMANY:** AUSTRIA, SWITZERLAND: Industrial Electronics GmbH, Klubestraße 14, 20245 Hamburg, Germany
- **BELGIUM:** Minicircuits Belgium, B.V., 5100 Kortrijk, Belgium
- **NETHERLANDS:** Minicircuits B.V., 2200 MA Hattem, The Netherlands
- **ENGLAND:** Date Electronics, Dale House Wharf Road, Frinton Green, Camberley, Surrey GU15 3NS, U.K.
- **FRANCE:** E.C.E., 52 Rue George Sand, 92100 Palaiseau, France
- **GREAT BRITAIN:** DATE ELECTRONICS LTD., Dale House Wharf Road, Frinton Green, Camberley, Surrey GU15 3NS, U.K.
- **ITALY:** DATE ELECTRONICS S.P.A., Via Palermo 3, 00148 Roma, Italy
- **SPAIN:** DATE ELECTRONICS, S.A., C/ Serdina 35, 08003 Barcelona, Spain
- **ITALY:** DATE ELECTRONICS, S.P.A., Via Palermo 3, 00148 Roma, Italy
- **SPAIN:** DATE ELECTRONICS, S.A., C/ Serdina 35, 08003 Barcelona, Spain
- **ISRAEL:** VEC TRONICS, LTD., 69 Gordon Street, Tel-Aviv, Israel

Domestic U.S. Distributors:
- **MINI-CIRCUITS LABORATORY INC.,** 2625 East 14th Street, Brooklyn, New York 11235
- **(212) 342-2500**
- **MINI-CIRCUITS CORPORATION LTD.,** 87-89 White Co., Foothill Office Center, 106 Fremont Avenue, Los Altos, CA 94022 (415) 948-6533
- **SOUTHERN CALIFORNIA, ARIZONA:** Crown Electronics, 11440 Collins Street, No. Hollywood, CA 91601 (213) 877-3550

CIRCLE NUMBER 3

<table>
<thead>
<tr>
<th>DC ISOLATED PRIMARY & SECONDARY CENTER-TAP SECONDARY</th>
<th>N x 50 Ω</th>
<th>N x 50 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>50 Ω</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Metal Case</td>
<td>TMO 1-1</td>
<td>TMO 1-1</td>
</tr>
<tr>
<td>Plastic Case</td>
<td>T 1-1</td>
<td>T 1-1</td>
</tr>
<tr>
<td>Freq Range, MHz</td>
<td>0.05-200</td>
<td>0.05-200</td>
</tr>
<tr>
<td>Impedance Ratio</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Max. Insertion Loss, MHz</td>
<td>3 dB</td>
<td>3 dB</td>
</tr>
<tr>
<td>Price</td>
<td>$5.95</td>
<td>$5.95</td>
</tr>
<tr>
<td>Model T</td>
<td>$5.95</td>
<td>$5.95</td>
</tr>
</tbody>
</table>

Minimum Amplitude Unbalance:

- **1 dB** — 1-50 ohms
- **2 dB** — 1-100 ohms
- **3 dB** — 1-200 ohms
- **5 dB** — 0.5-200 ohms
- **7 dB** — 0.5-600 ohms

Maximum Phase Imbalance Degree MHz:

- **1 dB** — 1-50 ohms
- **2 dB** — 1-100 ohms
- **5 dB** — 0.5-200 ohms
- **7 dB** — 0.5-600 ohms

Designers Kit Available

TK-1 — 2 transformers of each type T1-1, T2-1, T4-1, T9-1, T16-1
TMK-2 — 2 transformers of each type TMO1-1, TMO2-1, TMO4-1

$32.00
$49.50

WE'VE GROWN

World's largest manufacturer of Double-Balanced Mixers

Mini-Circuits

MINI-CIRCUITS LABORATORY INC. One World Trade Center, Brooklyn, NY 11235

MINI-CIRCUITS CORPORATION LTD. 87-89 White Co., Foothill Office Center, 106 Fremont Avenue, Los Altos, CA 94022 (415) 948-6533

SOUTHERN CALIFORNIA, ARIZONA: Crown Electronics, 11440 Collins Street, No. Hollywood, CA 91601 (213) 877-3550

OUR NEW ADDRESS IS:

2625 EAST 14TH STREET

BROOKLYN, NEW YORK 11235

(212) 342-2500

DOMINICAN TELEX 620156

ELECTRONIC DESIGN 14, July 5, 1977
An Electronic Design report—Selecting a microprocessor by its capabilities is becoming a family affair, particularly when there are more than 50 different processors to choose from.

Get powerful microprocessor performance by using the Z80. With 158 instructions it offers flexibility more than other µPs.

Dynamic memories offer advantages over static RAMs, especially if you need a lot of memory. You can save up to 90% of PC-board space, and money, too.

Use microprogram control on your analog tester and expand capabilities at the 'drop' of a PROM. The unit grades products, too.

Select a character/function decoder that optimizes cost, board space and wiring. Hardware or firmware? What's best?

Obtain a compressed counting range with a variable-modulus counter. 555-timer circuit generates ultra-low-frequency signals. Schottky diodes rectify efficiently in a bicycle-lighting system.

Metal-film, 2%, ¼-W-sized resistors cover 10 Ω to 22 MΩ and handle 350 V to ½ W.

Graphics terminal plots, stretches, zooms & pans.

ICs and Semiconductors

Data Processing

116 Design Aids

116 Vendors Report

117 New Literature

Cover: Photo by Rob Janoff, courtesy of Intel
Announcing the first all-digital CVSD.

The only Encoder/Decoder available in a single IC.

Just a few years ago you needed a whole board full of discrete components to design a voice privacy transmission system. Then along came a couple of 16-pin linear-IC Continuously Variable Slope Delta Modulators. But they also required a number of external components, a lot of power, and four IC’s...two at either end of the system. Today there’s the Harris HC-55516/55532. World’s first all-digital CVSD. The only encoder/decoder available in a single IC. Designed for high performance. For example, low power requirements (5mW) — 3 times less than alternate approaches — making them ideal for battery powered mobile operations. Long term drift is entirely eliminated. Board space is reduced by our 14-pin packages and there is no necessity for external components. And, built-in “quieting” feature knocks out noise completely. If you’re in the business of designing voice privacy communication systems for industry, the military, police, fire, ambulance; voice grade data analysis with computers, or what have you, it’ll pay you to look at the Harris HC-55516/55532. They’ll increase system performance. They’ll save money; cut overall system costs appreciably. They’ll provide you with a design flexibility you’ve never enjoyed before. They come in a variety of packages, models and temperature ranges: 14-pin DIP or flat pack, or chips. 16K for lower data bandwidth; 32K for improved fidelity. —40°C to +85°C and −55°C to +125°C. For complete information, call your nearby Harris sales location, or write Harris Semiconductor, P. O. Box 883, Melbourne, FL 32901.
Still chained to wire?

Break the wire habit with Repco's modular RF links and discover new design freedom.

Repco's modular RF links are used in hundreds of applications including remote and supervisory control, voice communications, alarm and reporting systems...all become more versatile and effective through the use of Repco's rugged, reliable RF transmitters and receivers.

Repco's RF links are packed with performance features: multiple transmission modes designed to carry tone, voice or low-speed digital data; a wide VHF/UHF frequency range; all units meet FCC and DOC requirements.

Best of all, Repco's RF links are economical. They beat hard wire system costs over the long haul, thus affording you maximum performance at minimum expense. Now is the time for you to link up...with Repco's versatile RF links! Write or call today for free specs brochure, application booklet and special evaluation offer.

Repto Inc.
A subsidiary of Scope, Inc.
1940 Lockwood Way
Orlando, FL 32804
(305) 843-6948

World's leading manufacturer of modular communication products.
The real difference is management

Ulrich Rohde's opinions on European and American engineers (ED No. 24, Nov. 22, 1976, p. 96) are not fair to the engineers in West Germany. Knowing from my own experience the American and German way to running companies in the electronics field, the blame lies with company management for long design times, cost overruns, lack of teamwork, lack of realism and so on. If German engineers are lined up according to the rules of American management, they will obtain the same results as Americans. It's as simple as that. The differences in their educational backgrounds are not nearly as great as Mr. Rohde implies; moreover, education is of questionable value in such a fast-moving area.

Some other erroneous remarks in Mr. Rohde's article ought to be commented upon. There is no such thing as an "engineers' union" in Germany, much less a strong one. Also, a simple letter is usually sufficient to fire an engineer; there are some restrictions as far as older people are concerned. And as far as "excellence" in electronics products is concerned, I find this excellence mostly—apart from some noteworthy exceptions—in U.S. products. The five-year old technological gap is liable to increase rather than shrink.

Far and away, the years I worked as a manager in an American electronics firm have been the best ones in my professional life and I am grateful that I was given the opportunity to experience the difference. It's like after eating the proverbial apple: You are never the same any more.

Artur Seibt
Engineer

Ulrich Rohde replies

I have to disagree with Mr. Seibt for the following reasons:

1. Working procedures in large companies are a joined agreement between union representatives and management. However, a system can never be better than the interest of the individuals.

2. Since the fast-moving areas are mainly a question of technology and computers, in-depth training is of utmost importance.

3. In certain states of Germany, union contracts cover jobs, including positions like lab leaders or project managers. Because of equal-opportunity employment regulations, the union can prevent both the hiring and firing of engineers, regardless of age.

4. In my opinion, the best combination would be a German research team, an American project-design team and an American manufacturing and marketing manager.

Misplaced Caption Dept.

Mother was right. You shouldn't date an engineer right after work.

Sorry. That's Edward Hopper's "Automat," which hangs in the Des Moines Art Center, IA.

Electronic Design welcomes the opinions of its readers on the issues raised in the magazine's editorial columns. Address letters to Managing Editor, Electronic Design, 50 Essex St., Rochelle Park, NJ 07662. Try to keep letters under 200 words. Letters must be signed. Names will be withheld upon request.
You've designed, debugged, and loaded your system software. Now you need several powerful capabilities to ensure trouble-free execution on the prototype: the ability to look at data in different ways . . . to compare known good data with new data quickly and easily . . . to analyze both system and peripheral-interface timing.

The TEKTRONIX 7D01F Logic Analyzer offers you all those capabilities in a single instrument.

Look at data in different ways.
The 7D01F lets you choose from five display modes: maps; state tables in hexadecimal, binary, or octal code; or timing diagrams. How often have you encountered a problem you knew you could spot just by scanning overall program flow? How often have you wished you could compare state tables in the hexadecimal code you work with as well as the binary code your microprocessor knows? How often have you wanted to switch from a state table display to its corresponding timing diagram? The 7D01F can help at each step of this troubleshooting procedure.

Troubleshooting a microprocessor-based system is easier...
Compare known good data with new data.
The 7D01F features two comparison modes which facilitate in-depth software/hardware debugging. The EXCLUSIVE-OR and RESET-IF modes speed up what would otherwise be a very tedious process: checking the program flow chart against what falls out when the program is run.

For an EXCLUSIVE-OR comparison, simply verify known good data, store it in reference memory; acquire new data, and select a table comparison mode. The reference table and the compared table (which may be in hex, octal, or binary) will be displayed side by side, and the differences between the two will be highlighted for ready identification.

Use RESET-IF to track down an intermittent fault. In this mode the 7D01F can automatically acquire and compare up to 4096 bits of new data to 4096 bits of reference data. Data is continually reacquired until a mismatch occurs. If there is a mismatch, the instrument holds the display, highlights the differences, and displays the number of resets that occurred. This frees the operator from continually monitoring for wandering programs, intermittent loops, or ragged-edge timing problems.

Analyze system and interface timing.
The 7D01F offers synchronous data acquisition at speeds up to 50 MHz. But it is sometimes necessary to view microprocessor operation with increased timing resolution, as well as to locate timing discrepancies in the system’s interface with the outside world. You may, for example, need to asynchronously examine data coming into the I/O port before you can determine whether incorrect information is coming from the I/O port itself or the hardware on the other side. The 7D01F offers asynchronous data acquisition at sample intervals of up to 100 MHz.

...with the Tektronix 7D01F Logic Analyzer.

All these unique features are available only in the TEKTRONIX Logic Analyzer. To find out more about how the 7D01F can simplify your work with microprocessor-based systems, just call your local Tektronix Field Engineer. He’ll demonstrate the 7D01F in your application, and acquaint you with its many other features, including 16-channel word recognition, 1MΩ/5 pf logic probes, 16-channel data acquisition, 4K formattable memory, and 7000-Series mainframe compatibility.

You should also send for our newest application note, describing in detail how a 7D01F can be used with microprocessor-based systems. Write Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97077. In Europe, write Tektronix Limited, P.O. Box 36, St. Peter Port, Guernsey, Channel Islands.
Now you can take advanced multi-channel recording technology out of the laboratory and into the field. EMI's proven SE7000 rivals the versatility, fidelity and performance of the most expensive lab recording systems. Yet it's rugged enough, compact enough to travel to the factory floor, the launch pad or any other operation site.

The SE7000 handles the full range of requirements from routine 14-track midband all the way to 42-track recording capability. It offers a choice of eight speeds between 15/16 and 120 ips providing 600 kHz DR or dc to 80 kHz FM at 120 ips. Equalizers and filters for all tape speeds are built in as standard. And it has a built-in calibration module, eliminating the need for time-consuming cross-patching.

All these features are packed into a transportable unit so rugged that the system is warranted unconditionally for a full year. Complete with its internal AC or DC power supply, the weight is less than 100 pounds.

The SE7000 has gone into the field in automotive, aerospace, petrochemical and transportation applications all over the world. Applications, like yours, that need laboratory precision but can't be brought to the lab.

EMI Technology Inc., Instrumentation Division, 55 Kenosia Avenue, Danbury, CT 06810 (203) 744-3500, TWX: 710-456-3068
PMI's
CMP-01/02 precision comparators:

Need a 100 nsec., low-cost precision comparator with instant DELIVERY? Our CMP-01 is it, in stock at all our distributors. Need even BETTER input performance than the CMP-01? Choose the CMP-02! That includes MIL-STD-883A CLASS B parts, too. On the shelf.

If you use LM111 or LM311-type comparators, you can usually use one of our CMP-01's as a pin-for-pin replacement. Of course, you will have to settle for improved performance, such as higher slew rate, faster settling time, higher open loop gain, higher CMMR, and lower offset voltage, offset current, bias current, and tempco's . . . AND A LOWER PRICE!

To get these high performance precision comparators all you have to do now is call in your order to your local PMI distributor. If you want a data sheet, circle the bingo number or give us a call.

in stock.

Precision Monolithics, Inc.
1500 Space Park Drive
Santa Clara, CA 95050
(408) 246-9222. TWX: 910-338-0528

CIRCLE NUMBER 14
THE WORLD'S FIRST 4K STATIC BIPOLAR RAM IS READY FOR ACTIVE DUTY.

You can stop gluing your 1K RAMs together. Fairchild proudly introduces the very first, fully static, 4K Bipolar TTL RAM. It also happens to be the fastest 4K RAM ever made. To make matters better, it's available today at good prices from your Fairchild distributor. What else would you expect from the world's largest supplier of Bipolar Memories?

FASTER THAN A ROLLING MOS.

If you think that MOS memories roll along at a pretty fast clip, wait till you see our new static Bipolar RAM perform. The new Fairchild 93471 has an incredible T_{AA} of 50ns max, and 25-30ns typical. On top of all that speed, you get Bipolar reliability backed by Fairchild's Walled Emitter Isoplanar™ process.

Also, because our new device is fully static, no special clocking or refresh circuits are required.

AN INDUSTRY STANDARD IS BORN.

The new 93471 is organized 4096 by one bit. It's a 3-state device in an 18-pin package. It offers full decoding on the chip, separate data input and data output lines, and active LOW chip select lines. The power supply is 5 volts with power dissipation 0.12 mW/bit typical. You also get operation over full military and commercial temperature ranges.

The 93471 also comes in a version with an open
collector. We call that one the 93470. All other specs are the same.

RAM OF MANY TALENTS.

The new Fairchild 4K RAM is ideal for mainframe memories, controllers, minicomputers, CRT terminals, peripherals, add-on memories and a great number of military applications. Circuitry uses include cache, buffer and scratch pad memories.

GET THEM WHILE THEY'RE HOT.

Your Fairchild distributor, sales office or representative can get you all the parts and specs you need to completely fall in love with our new 4K RAMs. For more immediate results, call the direct line at the bottom of this ad. Fairchild Camera and Instrument Corporation, 464 Ellis Street, Mountain View, California 94042. Telephone: (415) 962-3951. TWX: 910-373-1227.
New PRMA DIP REED RELAY from CLARE

Ideal for telecommunications, industrial controls, computer peripherals and DC to DC switching

The new dual-in-line package PRMA relay series fits a wide variety of applications. Its versatility begins with an option of five different contact forms available in nominal voltages of 5, 12 and 24 Vdc. Plus...the unique availability of an additional coil termination of pin 13 that provides even greater flexibility in PCB layouts. Additional options include diode and electrostatic shields.

TTL compatible

The 5V one Form A is compatible with standard TTL logic. And all contact forms of the PRMA series can be inserted into PCB with automatic insertion equipment.

Offers a variety of operating speeds in a safe, durable package

At nominal voltage, the PRMA series’ operating speeds range from 500 microseconds to 1.5 milliseconds. With all this, the versatility of this series is obvious. And each model comes totally encapsulated in a molded epoxy package that permits total immersion during PCB cleaning.

Available now!

The PRMA series is available for immediate delivery through Clare’s nationwide stocking distributor network. So contact your local Clare distributor or sales office. Or, inquire through C.P. Clare & Company, 3101 W. Pratt Avenue, Chicago, Illinois 60645. Phone: (312) 262-7700.
How to turn a computer into a disk jockey.

The µPD372 Floppy Disk Controller.

Now you can turn almost any micro or minicomputer into a genuine floppy disk jockey with the help of just one small chip.

Our µPD372 Floppy Disk Controller. Or if your computer prefers playing tapes, we also have the µPD371 Tape Cassette Controller.

Either one can take the place of from 50 to 60 TTL packages to save you space as well as money. The 372 is completely compatible with IBM, Miniloppy,’ and other formats and controls up to 4 floppy disk drives. The 371 controls up to 2 tape cassette drives. They come with complete documentation and—best of all—they’re available now.

The µPD372 and 371 are just part of our complete family of microprocessor products including 8080As, dynamic and static RAMs, ROMs, Electrically Erasable PROMs, and 8212, 8214, 8216, 8224, 8228/38, 8251, 8255 and other support chips. All backed by full documentation, applications support, and software.

The µPD372. The µPD371.

And the hits just keep on comin’.

NEC Microcomputers, Inc.
Five Militia Drive, Lexington, MA.
02173. 617-862-6410

* TM Shugart Associates
Intel's new single chip microcomputer, the 8748, makes it easier than ever to add intelligence to your products. And it enables you to do it at a lower cost than ever before. It's a complete system with powerful central processor, full I/O facilities and, for the first time, resident EPROM program memory. All on a single 40-pin DIP and operating from a single +5V power supply. And you can purchase the 8748 from Intel distributors today.

During product development, the UV-erasable EPROM enables you to load and run your application programs in minutes. The 8748 also speeds debugging. Program changes can be made by erasing the EPROM and reloading with your updated software. This gets your new product out of the lab and onto the market months ahead of the competition, and with reduced development costs.

When you're ready for production, just substitute the fully compatible 8048 microcomputer with your program in low cost, resident masked ROM. If market entry timing has top priority, you can even ship your first production units with the 8748 while you gear up for the switchover to 8048. And by using the 8748 you can respond to non-standard customer requirements without waiting for ROM turnaround.

Intel's advanced MOS/LSI process technology allows a single 8748 or 8048 chip to replace up to 100 or more conventional TTL devices. The 8748/8048 contains an 8-bit general purpose CPU, 1024 bytes of EPROM or ROM program memory, 64 bytes of read/write data memory,
single chip microcomputer
The 8748.

three programmable 8-bit I/O ports, 8 additional control/timing lines, programmable interval timer/event counter, priority interrupts, system clock generator and a full set of system controls. It’s a single chip solution to a wide variety of applications, yet it’s fully expandable by adding compatible MCS-80™/MCS-85™ I/O chips and Intel® standard memories.

There’s also a new 8035 microcomputer that is exactly like the 8748/8048 but without resident program memory. It enables you to precisely match system memory size to your needs, using external ROM orEPROM.

The 8748 is the best supported single chip microcomputer you can buy. To speed development there’s the Intellec™ Microcomputer Development System with assembly language programming, symbolic debugging, and full EPROM programming capability. The ICE-48™ In-Circuit Emulation module simplifies hardware/software integration and debugging. And the Intel Prompt-48™ Design Aid is a low cost, stand alone alternative for 8748 programming, simulation and debugging. Intel supports you from prototype to production with development software, documentation, training and application assistance.

The new 8748 will give manufacturers of instruments, terminals, communications equipment, controllers, electronic games, automotive products, home appliances and hundreds of other products the competitive edge. It will help you get better products to market ahead of the competition at lower cost.

The 8748, 8035 and all compatible components can be purchased now from franchised Intel distributors: Almac/Stroum, Components Specialties, Cramer, Elmar, Hamilton/Avnet, Harvey Electronics, Industrial Components, Liberty, Pioneer, Sheridan, L.A. Varah, or Zentronics.

Or, for a copy of our single-chip microcomputer brochure write: Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051. Telephone: (408) 246-7501.

intel® delivers.
Digital introduces DECstation. A big computer system that's small enough for anyone.

Digital put an amazing LSI version of the PDP-8 inside a DECscope, added some ingenious interconnecting devices and created something new. The DECstation. A complete computer system big enough to do all kinds of work and small, simple and inexpensive enough to do it for almost anyone.

DECstation. A complete computer system in disguise. It looks like a terminal, but look again. The DECstation has a powerful general purpose computer, a video terminal, a dual diskette drive, and its own special operating system. What's more, you can hook up two different printers and a second dual diskette drive. Then put the whole thing in a mini-desk, and when you're done you'll have the smallest big computer you've ever seen.

The Video Data Processor. It's the big reason the DECstation's so small. The VT78 Video Data Processor is a computer wrapped in a terminal. Inside the familiar DECscope you'll find an LSI version of the PDP-8 with 16K words (32K characters) of MOS memory and built-in interfaces. Two serial asynchronous ports feature speeds from 50 baud to 19.2 kilo-baud. A disk port interfaces with up to 4 diskette drives. A parallel I/O port for printers and custom interfacing provides data transfer rates up to 180 kilobits/sec. All standard.

You can go from carton to computer in less than an hour. If you can push a button, you can run a DECstation. Because one button is all it takes to start things up. The bootstrap and self-test routines are built in.

Put it together, plug it in, and immediately you can begin to run anything from the PDP-8 software library. Which means you start with one of the most comprehensive sets of software tools available in a small system. Including two proven operating systems: OS/78 for stand alone applications and RTS/8 for real-time. OS/78, an extension of OS/8, supports a number of languages, including FORTRAN IV and BASIC. So all you have to do is load the operating system and start programming your application.

Whatever that application, if you're looking for a sophisticated little system, at the right price, and a remarkable OEM tool, consider DECstation. $7995 each. $5436 OEM quantity 50.

PDP-8 Marketing Communications
Digital Equipment Corporation, Parker Street, PK3-1, M34 Maynard, MA 01754.
Send me the free DECstation brochure. (please print)

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone</th>
<th>OEM</th>
<th>End-user</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please send additional information about the PDP-8 family.
Here's how Data General's microNOVA system stacks up against the competition.

microNOVA Processor:
Fully packaged 9-slot microcomputer, 16K words MOS memory, 2.4-microsecond arithmetic operations, hardware stack facility, multiply/divide, DMA capability. Includes RTC, PF/AR and API. Supports up to 32K words RAM/PROM memory.

Dual-diskette subsystem:
Integral DMA controller, compact 630KB capacity.

Cabinet:
37 inches high, holds all rack mounted components.

DASHER
terminal printer:
30 cps, 132-columns, typewriter keyboard, upper/lower case.

Systems Software:

$10,970
List *

The facts speak for themselves. For $10,970, Data General's new microNOVA gives you more system, software availability and support than any other comparable computer. And we deliver in 60 days.

Any way you look at it, it all stacks up in your favor. For more information and our brochure, call our toll free number, 800-225-9497, or, fill out and return the coupon.

*Additional software fees apply to first system only. Quantity and OEM discounts available.
Calculators lose keys, batteries—and gain timer

Two sources of trouble in handheld calculators—batteries and keys—are eliminated in new liquid-crystal-display units unveiled at the recent Consumer Electronics Show. Other units, featured by at least four manufacturers in Chicago, combine a calculator and a calendar-watch and timer in the same LCD unit.

Neither batteries nor an on-off switch are needed by a solar-cell-powered calculator, the Photon, by Teal Industries, Carson, CA (see photo). The Photon should not be confused with battery-operated calculators having solar-cell battery chargers (see ED 5, Mar. 1, 1977, p. 26). Rather, it operates continuously in ambient light levels ranging from daylight to candlelight. The solar cells, produced by Solaronex, Rockville, MD, are designed for maximum efficiency at low-light levels.

Eleven calculator functions are provided, including full direct-access memory. The solar cell has a five-year warranty. List price is $99.95.

An eight-digit LCD calculator, called the Super Thin Man, also has no keys—or any other moving part. Instead of keys, the unit by Sharp Electronics, Paramus, NJ, has a flat, touch-sensitive electronic control panel.

The panel’s data-entry locations are solid and flush with the surface of the 3/16th-in.-thick unit, so they don’t provide the usual key-entry “feel.” Instead, audio input is verified by a beeper, which emits a pleasant chirp each time a key spot is touched. The beeper can also be turned off. In addition to standard math functions, square root, percent, and a four-key, independently addressable memory are provided by the Sharp unit. In the beeper mode, the calculator operates about 400 hours on two silver-oxide cells. In the silent mode, operation can be extended to 600 hours.

An automatic power-off feature shuts the unit down a few moments after calculators are completed. Suggested price is $34.95.

Meanwhile, a new trend has emerged—combining LCD calculators and clock-timers in small, hand-held units. For example, the TimeCalc by Royal Typewriter of Hartford, CT, is a wallet-type device with two independent LCD displays—an 8-digit for the calculator and a 4-digit hours-and-minutes display for the clock. The latter, which is on continuously, also has AM and PM indicators and a nighttime indicator. Two keys are used to set the clock.

The calculator is a standard four-function unit with square root, percentage and memory keys. When the memory is being used, an indicator appears in the calculator display. Suggested price is $59.95, and the unit is estimated to operate for one year on three silver-oxide cells.

A combination unit by Sharp—the CT500—has a single display either for eight digits for the standard calculator output or for six digits (hours, minutes and seconds) of the crystal-controlled clock. The clock has a beeper alarm as well as a calendar featuring the date, month, year and week. The time at key cities throughout the world can be displayed, on a 12 or 24-hour basis. Stopwatch circuits permit a count-up or count-down, which can be initiated by pressing certain keys. It sells for $79.95.

A crystal-controlled timepiece, stopwatch, timer and calculator are combined in Casio’s MQ-1 personal palm-sized unit. Its LCD display has six digits, but the internal computing capacity and time calculations are useful up to eight digits.

The calendar is programmed for days, months of all lengths, and leap years from 1901 to 2099. The stopwatch can cover 23 hours, 59 minutes and 59.5 seconds before reverting to zero. Price is $59.95.

Lowest-cost 16-bit mini leads computer-kit line

A 16-bit minicomputer that is half the price of current comparable 16-bit minis tops a line of computer kits from Heath Co., Benton Harbor, MI. An 8-bit mini, a video terminal, and a paper-tape reader/punch have also been introduced.

The 16-bit H11, $1295 in its basic form, incorporates an LSI-11 single-board computer from Digital Equipment Corp. of Maynard, MA. The board has been wired and tested.

Even with options such as additional memory and interface circuitry that make the H11 equivalent to a DEC PDP-11/03, the H11’s price—near $2500—is half that of the DEC machine. Among the optional boards available from Heath are the H11-1 4-k memory, $275, the H11-2 parallel interface, $95, and the H11-5 serial interface, $95.

DEC will provide service and some software support on the CPU board. Heath will provide service and support
for the rest of the H11 and for the other equipment in the line. Purchasers of the H11 will be eligible to join the Digital Equipment Computer Users Society and take advantage of the DECUS software library.

Included in the base price of the H11 kit is a software package that includes assembly and high-level languages such as Focal and Basic.

Basic-language software—as well as editor and assembler programs—is also included with the H8, an 8-bit mini based on an 8080-type microprocessor. The $375 H8’s front panel has a 9-digit octal display and keyboard for simple programming and for reading out register and memory contents while programs are running.

Unlike other low-cost computers aimed at the hobby and small-business markets, the H8 does not use the 100-pin standard bus developed by MITS Inc., Albuquerque, NM. The H8’s bus is built on a 10-slot motherboard containing 50-pin connectors. The MITS Altair S-100 bus is too expensive and has some technical problems such as overly critical timing, says Lou Frenzel, Heath’s director of educational and computer product development.

The video terminal kit in the Heath line, the H9 CRT terminal kit, $530, has a 67-key keyboard and displays upper-case characters in 12 lines of 80 characters on a 12-in screen. Cursor control, a batch-transmit mode, and limited plotting facilities are featured on the terminal.

For permanent program storage, the $350 H10 paper tape reader/punch uses standard 1-in. roll or fan-fold 8-level paper tape. The reader section operates at 50 characters/s, and the punch operates at 10 characters/s.

In addition to its own computers and peripherals, Heath is marketing a 30-cps teleprinter, the LA36 DEC writer II. While the price hasn’t been set, it will be close to the $1800 price charged by other DEC sales outlets.

TI’s new op amps use much less power

The latest operational amplifiers to combine bipolar and field-effect transistors consume an order of magnitude less power, or less than half the input noise, of their general-purpose predecessors.

Introduced this week by Texas Instruments Inc., Dallas, the new op amps complement the firm’s TL080 series of Bifet devices, and are divided into the low-power TL060 family and the low-noise TL070 family.

With no load and no signal, a TL060 device consumes about 0.1 mA of power-supply current, compared to 2.8 mA for a similar TL080 device. Equivalent input noise voltage of a TL070 op amp is only 20 nV/√Hz, less than half the 47 nV/√Hz for a comparable TL060 series circuit.

The low-power versions are aimed at multiple op amp applications such as active filter and modems. The low-noise devices are designed to be used in audio amplifiers.

A commercial op amp in an 8-pin plastic DIP is priced at about $50.

First development system for bit-slice µPs

The first development system for bit-slice microprocessors will be introduced this fall. A prototyping tool similar in concept to the available development systems for fixed-instruction-set MOS microprocessors, the System 29 from Advanced Micro Devices, Sunnyvale, CA, is a general-purpose design. It supports the prototyping, microcoding and programming of any microprogram system—regardless of its architecture—and works with any bit slices—the Intel 3000 and the National IMP as well as the AMD 2901 bipolar family.

Hardware debugging and microcode assembly/debugging are computer-assisted. The AMD 9080A microprocessor included in System 29 is supported by the AMDAS/29 disc-operating system and the AMDASM/29 microcode assembler, which reside on dual floppyds.

Composed of a “breadbox” logic card enclosure, a CRT/keyboard terminal, and a disc package, the bench-top system includes universal boards on which the prototype system may be assembled, the main control processor with 32 kbytes of memory, and a RAM microprogram memory of up to 4 k x 128 bits.

“Since each bit-slice design is different, costly prototyping and microcode-development tools have been built up each time, but little of the work expended on one design is transferable to the next,” says John Springer, AMD’s bipolar marketing manager. “The designer can avoid these high repeat costs with System 29, and he can build his prototypes either inside the System 29 breadbox on our universal card or externally by using available interfaces and cables that plug into PROM sockets on his own PC boards.”
A resistor for all reasons

Here's a way to cut the daylights out of your fixed resistor inventory. Standardize on our Type CC cermet. It's sized like a ¼-watt but you get performance that ranges from ¼-watt at 125°C to ½-watt at 70°C (250 volt max.) Tolerance is 1% over the complete resistance range of 10 ohms to 22.1 megs or 0.5% from 10 ohms to 499K. TCR is as low as ± 50 ppm/°C. The one resistor for all reasons: industrial, RN55C, RN55D and RLR07 needs to 1% and 2% tolerance. We have what you need; our distributors have it when your need is now. Ask for Publication EC33.

Quality in the best tradition.

ALLEN-BRADLEY
Milwaukee, Wisconsin 53204
Mostek takes you forward to a new era in low power systems.
Introducing the Edge-Activated Series.

Higher density, lower power and simplified system design. That’s the idea behind Mostek’s Edge-Activated Series. The series includes a complete family of high-density static RAMs and ROMs, with a wide selection of organizations. All devices are implemented with the same edge-activated circuit design concept which allows you to design a +5V only system without compromising speed or power. It’s the best of both worlds.

Proven design techniques for maximum performance.

Mostek’s approach integrates a static MOS storage cell with dynamic MOS periphery so that the full advantages of the technology can be realized. Now your applications can be implemented with a minimum number of devices. Also, edge-activated devices operate at faster speeds than traditional static circuits but with much lower power dissipation. Other system benefits include . . .

- totally static operation—no refresh required
- single +5V power supply—±10% tolerance
- on-chip address latches
- active and standby power—lowest in the industry
- reduced VCC for battery back-up applications
- direct TTL compatibility and common I/O operation

Let’s put a dollar value on lower power.

One common timing signal, provided in almost every memory application, activates the entire family of devices. However, if the clock signal must be provided externally, the system benefits of lower power far outweigh design complexity. An example is a 16K x 9-bit storage matrix. Designed with edge-activated MK 4104’s, this system would dissipate less than 1 watt in the memory array, while the same system with static-interface RAMs would dissipate approximately 18 watts. Since typical power sub-system designs cost from $1.00 to $1.50 per watt, both design and cooling costs are reduced significantly.

Data Sheets, Application Notes, price and delivery are available from Mostek field sales representatives.

The Edge-Activated Series

<table>
<thead>
<tr>
<th>Access Time (max)</th>
<th>Active Power (max)</th>
<th>Standby Power</th>
<th>Industry Standard Pin Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK4104 (4K x 1 RAM)</td>
<td>200 ns</td>
<td>120 mW</td>
<td>30 mW</td>
</tr>
<tr>
<td>MK4114 (1K x 4 RAM)</td>
<td>200 ns</td>
<td>120 mW</td>
<td>30 mW</td>
</tr>
<tr>
<td>MK32000 (4K x 8 ROM)</td>
<td>300 ns</td>
<td>200 mW</td>
<td>25 mW</td>
</tr>
<tr>
<td>MK36000 (8K x 8 ROM)</td>
<td>300 ns</td>
<td>200 mW</td>
<td>25 mW</td>
</tr>
</tbody>
</table>

MOSTEK
1215 West Crosby Road • Carrollton, Texas 75006 • (214) 242-0444 • MOSTEK GmbH • West Germany • Telephone: (0711) 701096 • MOSTEK ASIA • Hong Kong • Telex: 85148MKAX

CIRCLE NUMBER 11
Choosing a µP by its capabilities is a growing ‘family affair’

Now that there are over 50 different processors to choose from, the designer often can find exactly what he needs in a standard product. Choosing begins with three basic processor families:

- The all-in-one, which has the RAM, ROM, clock and I/O on the chip.
- The general-purpose, which requires external ROM, RAM, clock and I/O circuits.
- The bit-slice, which is made from cascadable logic sections and also requires external RAM, ROM and I/O circuits.

Of course, there's much more to finding the best µP than picking a family. (For a summary of many of the various µP specifications, see Tables 1, 2 and 3). All-in-one processors, for example, offer low-cost solutions to many control applications. They aren't new—Rockwell and Texas Instruments have been selling 4-bit units for several years. What is new, though, is the advent of 8-bit all-in-one microcomputers on a chip.

One-chip computer fits the bill

Currently, only a few 8-bit one-chips are available—the PIC-1650 from General Instrument, the 8048/8748 from Intel and the 3870 from Mostek. But there will be nearly twice as many by the end of this year. A dedicated controller, the 6400, and a trimmed version of the 6800 processor, the 6801, will come from Motorola while Zilog will offer the Z8, an all-in-one version of the Z80. Many of the performance specs of the unavailable circuits are yet to be set, but the Z8 reportedly has a 96 × 8 RAM and a 2048 × 8 ROM. Its instructions will be a subset of the 8080 command set. Details of the Motorola chips are even skimpier, but the 6400 is said to have a 32 × 8 RAM and a 1024 × 8 ROM. Also coming is the Micromachine from Fairchild, a chip very similar to Mostek’s 3870. And Intel will soon announce a 2 k × 8 version of its 8048 all-in-one processor.

The four available 8-bit chips have ROM capacities ranging from 512 × 12 for the PIC-1650 to 2048 × 8 for the 3870. The PIC-1650 has a 32-byte RAM, but the other units have 64-byte RAMs. General Instrument, though, is planning some design tradeoffs on the 1650 processor—larger ROM versions and fewer I/O-line models. Also on the way is a version that has a real-time clock and a power-down capability that maintains the real-time clock. PL will probably be used for the power-down model since it can operate on a 1-V supply, according to Frank Jelenko, a GI product engineering manager.

The field of 4-bit all-in-one processors offers a choice of more than 20 models from about a half-dozen manufacturers. The latest company to join the fray, NEC Microcomputers, offers a PMOS-chip series—the µPD 545, 6, 7 and 8.

Most of the NEC chips are intended for specific applications. For instance, the µPD 548 is designed to handle keyboards. The 547 is similar, but has a smaller ROM and instruction set—the 546 is more of a controller since it has a 6-bit programmable timer. The 545 is designed for driving high-voltage displays, which are commonly used in electronic cash registers.

Other firms, similar products

Rockwell's line of one-chip microcomputers is also expanding from its MM76, 77 and 78 products, which include RAMs of 48, 96 and 128 × 4, respectively. On-board ROMs range from 640 × 8 to 2048 × 8. Newer chips in the series include the MM76/C, 76/D, 76/E and 76/L, as well as the MM75. The C version is similar to the MM76 except that a high-speed counter is fabricated on the chip, which comes in a 52-pin DIP instead of a 42-pin package. Unavailable until the end of the year, the D version will include an analog-to-digital converter on the processor chip and also come in a 52-pin package.

The E version is the MM76 with a larger memory capacity, while the L version operates at lower voltages and comes in a standard 40-pin DIP. The MM75, which offers only 22 I/O lines, can be used for smaller I/O applications. Moreover, it comes in an inexpensive 28-pin DIP.

Two major series of processors from
YOU CAN GET THESE MONOLYTHIC® CERAMIC CAPACITORS FROM SPRAGUE TODAY... AND IN VOLUME! WE HAVE BEEN MAKING 2-PIN DIP-STYLE* CAPACITORS FOR MORE THAN FIVE YEARS. WE HAVE THE PRODUCTION CAPABILITY AND THE PRODUCTION EXPERIENCE TO FURNISH YOU WITH THE CAPACITORS YOU NEED NOW... WHEN YOU WANT THEM!

Type 933C DIP Extended Range
Multi-layer construction. Moisture-proof molded case. Formulations available to meet temperature characteristics COG (NPO), X7R (semi-stable), and Z5U (general-purpose). Capacitance values to .1 µF at 100 V, to .22 µF at 50 V, to .47 µF at 25 V. Series 930C also includes 4, 8, 14, and 16 pin multiple-section dual in-line capacitors.

Type 943C DIP Low Profile
Identical in construction and electrical performance to Type 933C except for lower height, providing even greater compatibility with standard DIP integrated circuits. Capacitance range: 47 pF to .056 µF at 100 V, to .15 µF at 50 V, to .33 µF at 25 V. Series 940C also includes 4-terminal ultra-low-inductance capacitors as well as 4, 8, 14, and 16 pin multiple-section dual in-line capacitors.

Sprague puts more component families into dual in-line packages than any other manufacturer.

COMPATIBILITY

![Image of capacitors](image-url)
Texas Instruments are also undergoing some sprucing up. The TMS-1000 and TMS-1100 series of PMOS processors are now available in higher-speed NMOS versions as well as in high-voltage models to handle up to 35 V. Since both the TMS-1000 and 1100 series parts are pin-compatible, upgrades from the TMS-1000 are simple.

Only one other company offers a family of all-in-one processor chips—National Semiconductor. Its COPS (calculator-oriented processor-series) family consists of three general purpose one-chip processors—the MM57140, 57152 and 5799—and a two-purpose one-chip processor produced by Motorola on a chip, preprogrammed solutions are being offered for some control problems. For instance, the MM57109 (a specialized member of the COPS family) is a dedicated scientific-calculator circuit that can be added to a bus to take some of the burden off a main processor. Two other preprogrammed circuits—the TMS-1018 (a version of the TMS-1000) and the TMS-1117 (a version of the 1100)—are offered by Texas Instruments. The former is a dedicated number cruncher; the latter is a controller programmed to handle microwave-oven control inputs.

Multiple-chip sets also do the job

Some of the not-so-new all-in-one processors aren't single-chip but two or three-chip sets—such as the PPS-4, PPS-4/2, PPS-8 and PPS-8/2 from Rockwell. Although these circuits are selling well, many designers are looking to the newer one-chip processors for new designs.

In some applications, even a 4-bit processor may be overkill in terms of the processing power needed. To eliminate some of the cost and excess power, General Instrument has developed a Sequential Boolean Analyzer. This processor is a 1-bit system with a 128 x 1 internal RAM, a 1024 x 8 program ROM and 31 I/O lines—all in a 40-pin DIP. It has just eight basic instructions and can cycle through its entire program without interrupts. In production quantities, a simple controller like this is expected to cost about $1.

General-purpose processors haven't faded away. The smallest, but newest addition to the rolls is a 1-bit general-purpose processor produced by Motorola—the CMOS MC14500B. It requires an external program counter, external memory and I/O support circuits, but since it is CMOS, it can operate from a 3 to 18-V supply and requires only about 1 mA. (For more about the MC14500B see ED No. 10, May 10, 1977, p. 106.)

Older, general-purpose processors such as the 4-bit 4004 and 4040 have just about reached the end of their design-in-cycle—the all-in-one processors put all their processing power and more on a single chip. However, one general-purpose newcomer to the 4-bit market, NEC Microcomputers' μPD 541, has 69 basic instructions, a 4096-word addressing range and keyboard and display interfacing.

All other general-purpose microprocessors have 8-bit data word lengths or longer—from the old 8008 from Intel to the most exotic PL SSBP9900 16-bit processor from Texas Instruments. The newest processors in this grouping include the 8085 from Intel, the CDP1803 from RCA and the 8X300 from Signetics.

Expanding from within

Meanwhile, some of the general-purpose processor lines introduced a year or two ago are starting to expand. Two 8-bit devices, for example, are planned by Motorola for 1978.

One of them, tentatively dubbed the 6809, will have an enhanced 6800 instruction set and an on-chip clock. The

μPs: only part of the whole

Along with improvements in microprocessor chips has come a shift toward treating the devices as part of a system, rather than as isolated components. A great deal of processing power can be added—and much software and memory cost saved—by using the I/O controllers, direct-memory-access chips, high-speed arithmetic units and other "helpers" available in the form of peripheral chips (see ED 10, May 10, 1977, p. 32).

"Semiconductor manufacturers and users are realizing that the CPU is a small part of the cost," says Al Weissberger, senior staff engineer at Signetics Corp. in Sunnyvale, CA. "The more expensive part is the I/O circuitry."

As a result, today's alert designer is less likely to pick a CPU and go on from there, but more likely to compare several total systems solutions that include the μP, and the support devices, and the software.

He may even be able to take advantage of a mix of elements from different suppliers.

"There will be a lot of mixing of chips," says Ben Anexter, MOS marketing manager for Advanced Micro Devices of Sunnyvale. "One-stop shopping is on its way out. Instead, designers will choose the best individual parts from the product lines of different companies." Some firms, in fact, like Standard Microsystems Corp. of Hauppauge, NY, specialize in system support chips and don't make microprocessor CPUs at all.
Our CMOS RAM has a lot less going for it.

You can see that our 1K RAM costs less. What you can't see is that it uses less power, too.

Our S5101 takes only 10 milliamps of operating current to give you 650 nanosecond access time. The competition uses almost three times as much. Our standby power is just 10 microamps. And our L version retains data down to 2.0 volts.

With our part, you also have far less waiting around. Call up an AMI distributor right now, and he'll supply you right off the shelf.

But we can't promise you less of everything. For instance, we have more packages to choose from—plastic, ceramic and cerdip. We have more RAMs, too, with speeds ranging from 450 ns to 800 ns. They all have the L option in case power retention is critical to your product, and all of them operate over the full military temperature range.

Want to know more? Check with your nearest AMI distributor or sales office. Or contact us at AMI, 3800 Homestead Road, Santa Clara, California 95051. Phone (408) 246-0330. We'll prove that less is really more.

Prices effective 4/1/77
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Processor</th>
<th>Word size (data instruction)</th>
<th>Direct addressing range (words)</th>
<th>Number of basic instructions</th>
<th>Maximum clock frequency (MHz)</th>
<th>Number of arithmetic units (µS)</th>
<th>TTL compatible</th>
<th>BCD</th>
<th>On-chip arithmetic units</th>
<th>Number of internal general purpose registers</th>
<th>Number of chip registers</th>
<th>On-chip RAM</th>
<th>DMA capability</th>
<th>Prototyping system</th>
<th>Availability of Memory & I/O interface</th>
<th>Voltage range (V)</th>
<th>Assembly language development system</th>
<th>High-level language</th>
<th>Time-sharing/cost software</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorola</td>
<td>MC14500</td>
<td>CMOS</td>
<td>1/4</td>
<td>0</td>
<td>16</td>
<td>1/1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Needs external program counter</td>
<td>451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel</td>
<td>4004</td>
<td>PMOS</td>
<td>4/8</td>
<td>4k</td>
<td>46</td>
<td>0.74/2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Superseded by 4040</td>
<td>452</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel</td>
<td>4040</td>
<td>PMOS</td>
<td>4/8</td>
<td>8k</td>
<td>60</td>
<td>0.74/2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>General-purpose 4-bit µP</td>
<td>453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEC Microcomputers</td>
<td>µPD541</td>
<td>PMOS</td>
<td>4/8</td>
<td>4k</td>
<td>69</td>
<td>0.5/2</td>
<td>Yes</td>
<td>Yes/8</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Intended for electronic cash registers, etc.</td>
<td>454</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairchild</td>
<td>2 chip F8</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>2/1</td>
<td>2/13</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Usually used with program storage unit</td>
<td>455</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferranti F100L</td>
<td></td>
<td>456</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Instrument</td>
<td>8000</td>
<td>PMOS</td>
<td>8/8</td>
<td>1k</td>
<td>48</td>
<td>0.8/2</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Predecessor of F8</td>
<td>457</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel</td>
<td>8008</td>
<td>NMOS</td>
<td>8/8</td>
<td>16k</td>
<td>48</td>
<td>0.8/2</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>By and large, still the most popular</td>
<td>458</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOS Technology</td>
<td>MCS-650X</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>78</td>
<td>2.6/2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>8080 code compatible, has built-in clock</td>
<td>460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOS Technology</td>
<td>MCS-651X</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>80</td>
<td>3/1</td>
<td>Yes</td>
<td>Yes/4</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Provides 13 addressing modes</td>
<td>461</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorola</td>
<td>M6800</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>89</td>
<td>2/1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Similar to 650X but needs 2µs clock</td>
<td>462</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorola</td>
<td>M6809</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>100+</td>
<td>2/1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Available in new depletion-load version</td>
<td>463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorola</td>
<td>M6802</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>89</td>
<td>2/1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Enhanced 6800 command set</td>
<td>464</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>SC/MP</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>46</td>
<td>4/1</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Has 128 x 8 on-chip RAM</td>
<td>465</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEC Microcomputers</td>
<td>µPD8000A</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>78</td>
<td>2/2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Has handy daisheninb capability</td>
<td>466</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCA</td>
<td>1802</td>
<td>CMOS</td>
<td>8/8</td>
<td>64k</td>
<td>91</td>
<td>0.8/2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Pin compatible but does BCD subtraction</td>
<td>467</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCA</td>
<td>1803</td>
<td>CMOS</td>
<td>8/8</td>
<td>64k</td>
<td>91</td>
<td>0.8/2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Superseded two-chip version</td>
<td>468</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Microsystems</td>
<td>SMS-300</td>
<td>Bip</td>
<td>8/8</td>
<td>8k+</td>
<td>8</td>
<td>1/1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Trimmed down version of 1802</td>
<td>469</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signetics</td>
<td>2650</td>
<td>NMOS</td>
<td>8/8</td>
<td>32k</td>
<td>75</td>
<td>1.2/1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Very specialized instruction</td>
<td>470</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zilog</td>
<td>Z80</td>
<td>NMOS</td>
<td>8/8</td>
<td>64k</td>
<td>150+</td>
<td>4/1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Has two higher speed versions</td>
<td>471</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersil</td>
<td>6100</td>
<td>CMOS</td>
<td>12/12</td>
<td>4k</td>
<td>81</td>
<td>4/1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8080 instructions are a subset</td>
<td>472</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toshiba</td>
<td>T3190</td>
<td>PMOS</td>
<td>12/12</td>
<td>4k</td>
<td>108</td>
<td>2.5/1</td>
<td>No</td>
<td>Yes/8</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Has multiply and divide inst.</td>
<td>473</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data General</td>
<td>MN601</td>
<td>NMOS</td>
<td>16/16</td>
<td>32k</td>
<td>42</td>
<td>8.33/2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Emulates NOVA instruction set</td>
<td>474</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairchild</td>
<td>9440</td>
<td>F/L</td>
<td>16/16</td>
<td>64k</td>
<td>42</td>
<td>10/1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Emulates NOVA instruction set</td>
<td>475</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Instrument</td>
<td>CP1600</td>
<td>NMOS</td>
<td>16/16</td>
<td>64k</td>
<td>87</td>
<td>4/1</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>All internal registers can be accumulators</td>
<td>476</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>PACE</td>
<td>PMOS</td>
<td>16/16</td>
<td>64k</td>
<td>45</td>
<td>2/2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Architecture intended for data handling</td>
<td>477</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panafox</td>
<td>L16A</td>
<td>NMOS</td>
<td>16/16</td>
<td>64k</td>
<td>33</td>
<td>2/2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No internal registers can be accumulators</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>TMS9980</td>
<td>NMOS</td>
<td>16/16</td>
<td>15k</td>
<td>69</td>
<td>4/4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Small version of TMS 9900</td>
<td>479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>TMS9990</td>
<td>NMOS</td>
<td>16/16</td>
<td>64k</td>
<td>69</td>
<td>4/4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Emulates 990 mini instructions</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on page 32)
THE MOST SOPHISTICATED, COMPLICATED COMPONENT OF ANY DATA TERMINAL SYSTEM IS THE PERSON BEHIND THE CONSOLE.

When we designed the Teletype® model 40 product line, we paid as much attention to human engineering as we did to electronic engineering. Simply because we don't think one makes much sense without the other.

After all, throughput is as much a function of operator performance as it is of advanced CMOS technology.

That's why we positioned the tube so it's a comfortable 19" to 21" from the operator. The tube isn't in a fixed position, either, but tilts through 20° to adjust for lighting conditions and individual viewing preferences.

To eliminate eye strain, a specially darkened and etched glass is used on the screen to diffuse surface reflections and increase contrast by 100%. Even the large 7 x 9 display font is designed for legibility, with a flicker-free refresh rate of 60 times/second. Plus generous spacing between characters and lines increases readability even more.

Keyboard controls aren't just grouped by function so they look right, we made them "feel" right, too. Not only do they fit the fingers, they also duplicate the touch and feel of office typewriters.

As you can see, we think the best way to impress you with our model 40 product line is to make sure your operator is impressed. For more information, write: Teletype, 5555 Touhy Ave., Skokie, IL 60076. Or call: 312/982-2000.

Teletype is a trademark and service mark registered in the United States Patent and Trademark Office.
<table>
<thead>
<tr>
<th>Company</th>
<th>Device</th>
<th>Process technology</th>
<th>Word size in bits</th>
<th>On-chip RAM size (in KB)</th>
<th>On-chip ROM size (in KB)</th>
<th>On-chip operation</th>
<th>Minimum clock frequency (in MHz)</th>
<th>Pin count</th>
<th>I/O pins available</th>
<th>Pinout size (in KB)</th>
<th>Additional feature comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Instrument</td>
<td>SBA</td>
<td>NMOS</td>
<td>1/8</td>
<td>120 x 121</td>
<td>1024 x 8</td>
<td>No</td>
<td>8</td>
<td>800</td>
<td>Yes</td>
<td>No</td>
<td>16 RAM</td>
</tr>
<tr>
<td>Essex International</td>
<td>SX-200</td>
<td>PMOS</td>
<td>4/8</td>
<td>64 x 4</td>
<td>1024 x 8</td>
<td>Yes</td>
<td>41</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>16 RAM</td>
</tr>
<tr>
<td>ITT Semiconductor</td>
<td>7150</td>
<td>NMOS</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>25</td>
<td>Yes</td>
<td>Yes</td>
<td>12/16/1 S</td>
<td>Yes</td>
<td>14 RAM</td>
</tr>
<tr>
<td>National Semi</td>
<td>MM57109</td>
<td>PMOS</td>
<td>4/8</td>
<td>5 x 32</td>
<td>N.A.</td>
<td>Yes</td>
<td>70</td>
<td>400</td>
<td>No</td>
<td>Yes</td>
<td>16 RAM</td>
</tr>
<tr>
<td>MM57104/75152</td>
<td>MM57599</td>
<td>PMOS</td>
<td>4/8</td>
<td>96 x 4</td>
<td>630 x 8</td>
<td>No</td>
<td>35</td>
<td>280</td>
<td>Yes</td>
<td>Yes</td>
<td>16 RAM</td>
</tr>
<tr>
<td>MM57418/57112</td>
<td>MM57418</td>
<td>PMOS</td>
<td>4/8</td>
<td>1536 x 6</td>
<td>400</td>
<td>No</td>
<td>35</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>16 RAM</td>
</tr>
<tr>
<td>NEC Microcomputers</td>
<td>µPD548</td>
<td>PMOS</td>
<td>4/10</td>
<td>96 x 4</td>
<td>1920 x 10</td>
<td>Yes</td>
<td>72</td>
<td>200</td>
<td>No</td>
<td>Yes</td>
<td>2 RAM</td>
</tr>
<tr>
<td>µPD546</td>
<td>MM76</td>
<td>PMOS</td>
<td>4/8</td>
<td>96 x 4</td>
<td>2000 x 8</td>
<td>No</td>
<td>80</td>
<td>440</td>
<td>Yes</td>
<td>Yes</td>
<td>1 RAM</td>
</tr>
<tr>
<td>µPD547</td>
<td>MM76</td>
<td>PMOS</td>
<td>4/8</td>
<td>64 x 4</td>
<td>1000 x 8</td>
<td>No</td>
<td>58</td>
<td>440</td>
<td>Yes</td>
<td>Yes</td>
<td>1 RAM</td>
</tr>
<tr>
<td>µPD545</td>
<td>MM76</td>
<td>PMOS</td>
<td>4/8</td>
<td>32 x 4</td>
<td>640 x 8</td>
<td>No</td>
<td>58</td>
<td>440</td>
<td>Yes</td>
<td>Yes</td>
<td>1 RAM</td>
</tr>
<tr>
<td>Rockwell</td>
<td>PPS-4</td>
<td>PMOS</td>
<td>4/8</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>50</td>
<td>200</td>
<td>No</td>
<td>Yes</td>
<td>2 12 RAM</td>
</tr>
<tr>
<td>PPS-4/1 MM77</td>
<td>MM78</td>
<td>PMOS</td>
<td>4/8</td>
<td>96 x 4</td>
<td>1344 x 8</td>
<td>RAM only</td>
<td>50</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 RAM</td>
</tr>
<tr>
<td>MM76</td>
<td>MM76</td>
<td>PMOS</td>
<td>4/8</td>
<td>128 x 8</td>
<td>2048 x 8</td>
<td>RAM only</td>
<td>50</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 RAM</td>
</tr>
<tr>
<td>MM76/C</td>
<td>MM76</td>
<td>PMOS</td>
<td>4/8</td>
<td>48 x 4</td>
<td>640 x 8</td>
<td>RAM only</td>
<td>50</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 RAM</td>
</tr>
<tr>
<td>MM76/D</td>
<td>MM76</td>
<td>PMOS</td>
<td>4/8</td>
<td>48 x 4</td>
<td>640 x 8</td>
<td>RAM only</td>
<td>50</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 RAM</td>
</tr>
<tr>
<td>MM76/E</td>
<td>MM76</td>
<td>PMOS</td>
<td>4/8</td>
<td>48 x 4</td>
<td>1024 x 8</td>
<td>RAM only</td>
<td>50</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 RAM</td>
</tr>
<tr>
<td>MM76/L</td>
<td>MM76</td>
<td>PMOS</td>
<td>4/8</td>
<td>48 x 4</td>
<td>640 x 8</td>
<td>RAM only</td>
<td>50</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 RAM</td>
</tr>
<tr>
<td>MM75</td>
<td>MM75</td>
<td>PMOS</td>
<td>4/8</td>
<td>48 x 4</td>
<td>670 x 8</td>
<td>RAM only</td>
<td>50</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 RAM</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>TMS-1000</td>
<td>PMOS</td>
<td>4/8</td>
<td>64 x 4</td>
<td>1024 x 8</td>
<td>No</td>
<td>43</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 23 RAM</td>
</tr>
<tr>
<td>TMS-1100</td>
<td>TMS-1100</td>
<td>PMOS</td>
<td>4/8</td>
<td>128 x 8</td>
<td>2048 x 8</td>
<td>No</td>
<td>40</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 23 RAM</td>
</tr>
<tr>
<td>TMS-1018</td>
<td>TMS-1018</td>
<td>PMOS</td>
<td>4/8</td>
<td>64 x 4</td>
<td>1024 x 8</td>
<td>No</td>
<td>43</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 23 RAM</td>
</tr>
<tr>
<td>TMS-1117</td>
<td>TMS-1117</td>
<td>PMOS</td>
<td>4/8</td>
<td>128 x 8</td>
<td>N.A.</td>
<td>No</td>
<td>43</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>2 2 23 RAM</td>
</tr>
<tr>
<td>Western Digital</td>
<td>1872</td>
<td>PMOS</td>
<td>4/10</td>
<td>4 x 32</td>
<td>512 x 10</td>
<td>No</td>
<td>37</td>
<td>150</td>
<td>Yes</td>
<td>Yes</td>
<td>1 27 RAM</td>
</tr>
<tr>
<td>Fairchild chip</td>
<td>NMOS</td>
<td>NMOS</td>
<td>8/5</td>
<td>64 x 4</td>
<td>2048 x 8</td>
<td>Yes</td>
<td>70</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>1 4 RAM</td>
</tr>
<tr>
<td>Micromachine</td>
<td>NMOS</td>
<td>NMOS</td>
<td>8/5</td>
<td>64 x 4</td>
<td>2048 x 8</td>
<td>Yes</td>
<td>70</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>1 4 RAM</td>
</tr>
<tr>
<td>General Instrument</td>
<td>PIC-1650</td>
<td>NMOS</td>
<td>8/12</td>
<td>32 x 8</td>
<td>512 x 12</td>
<td>Yes</td>
<td>31</td>
<td>1000</td>
<td>Yes</td>
<td>Yes</td>
<td>8 2 RAM</td>
</tr>
<tr>
<td>Intel</td>
<td>8048/8748</td>
<td>NMOS</td>
<td>8/5</td>
<td>64 x 4</td>
<td>1024 x 8</td>
<td>Yes</td>
<td>96</td>
<td>6000</td>
<td>Yes</td>
<td>Yes</td>
<td>8 2 RAM</td>
</tr>
<tr>
<td>Mostek 1 chip F-8</td>
<td>3870</td>
<td>NMOS</td>
<td>8/5</td>
<td>64 x 4</td>
<td>2048 x 8</td>
<td>Yes</td>
<td>70</td>
<td>400</td>
<td>Yes</td>
<td>Yes</td>
<td>1 4 RAM</td>
</tr>
<tr>
<td>Motorola</td>
<td>6400</td>
<td>NMOS</td>
<td>8/5</td>
<td>32 x 8</td>
<td>1024 x 8</td>
<td>Yes</td>
<td>?</td>
<td>8000</td>
<td>Yes</td>
<td>Yes</td>
<td>? ? RAM</td>
</tr>
<tr>
<td>Rockwell</td>
<td>PPS-8</td>
<td>PMOS</td>
<td>8/3</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>100</td>
<td>256</td>
<td>No</td>
<td>Yes</td>
<td>3 16 2 0 RAM</td>
</tr>
<tr>
<td>PPS-8/2</td>
<td>PPS-8</td>
<td>PMOS</td>
<td>8/3</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>100</td>
<td>200</td>
<td>No</td>
<td>Yes</td>
<td>3 16 2 0 RAM</td>
</tr>
<tr>
<td>Zilog</td>
<td>28</td>
<td>NMOS</td>
<td>8/8</td>
<td>96 x 4</td>
<td>2048 x 8</td>
<td>Yes</td>
<td>?</td>
<td>4000</td>
<td>Yes</td>
<td>Yes</td>
<td>? RAM</td>
</tr>
</tbody>
</table>

(continued on page 34)
New from Centralab...

IMPS PUSHBUTTON SWITCHES

A new miniature modular building block system that offers microprocessor control designers more of what they need.

To meet the special digital and analog needs of today's µP-based controls, Centralab offers design engineers a whole new system of modular pushbutton switch building blocks. We call it IMPS — Integrated Modular Panel System. IMPS saves PC board and panel area and simplifies front panel design, cuts assembly costs, reduces back-panel space requirements, and meets the digital-analog needs of µP-based controls. Check these space saving, cost-cutting features.

Simplify front panel interface.
All IMPS switches regardless of function, are uniform in size, simplifying design and selection of front panel hardware. They have high volumetric efficiency, occupying .505" x .388" PC board area and require only .608" of space between PC board and front panel.

Cut assembly costs.
IMPS switches may be mounted on the front panel, and are designed for automatic wave soldering installation and PC board cleaning. Insert molded terminals prevent flux and solder wicking and contact contamination. Integral PC board stand-offs provide for efficient board cleaning.

Meet analog and digital needs.
IMPS switches are available with momentary, push-push and interlocking actions, with a long-life contact system that switches both digital and analog signals. To accommodate critical signal requirements, housings are high-insulation molded plastic with UL 94V-0 rating.

Available options.
Optional installations include ganged assemblies, front-panel mounting and wire-wrapping.

All IMPS pushbutton switches are built to Centralab's highest quality standards (see specifications at right). They're priced as low as 41 cents in 1,000 quantity. For full technical details, samples and quotation, call (515) 955-3770, or write to the address below.

Built To Centralab Quality Specs.
IMPS Pushbutton Switches combine compact size, low cost and highest quality throughout.
- Silver or gold inlay wiping contacts for long-life and low-contact resistance.
- Less than 2 milliseconds contact bounce.
- SPST, SPDT, DPST, and DPDT switch contacts.
- Printed circuit, DIL socket or wire-wrap terminations available.
- 2.5 to 3.5 oz. actuation force (momentary).
- Choice of button interface — square or blade shaft (shown) — permits use of a variety of Centralab and industry standard buttons and keycaps.
- 10, 15, 20 or 25mm center-to-center spacing.
<table>
<thead>
<tr>
<th>Company</th>
<th>2500</th>
<th>3250A</th>
<th>4040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Micro Devices</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Fairchild</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
<tr>
<td>Intel</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
<tr>
<td>Motorola</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
<tr>
<td>Sharp</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
<tr>
<td>Hitachi</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
<tr>
<td>Sony</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
<tr>
<td>Toshiba</td>
<td>3250A</td>
<td>4040</td>
<td>4040</td>
</tr>
</tbody>
</table>

(continued from page 32)

other processor, the 6802, will be a 6800 with an on-chip clock and 128 bytes of RAM. For easy use in power-down applications, 32 of the 128 bytes will be set aside for low-power operations.

Boosting operating speed is another ploy used by manufacturers to improve instruction execution time. Motorola has developed depletion-load versions of its 6800 to obtain 3 MHz clock rates and Signetics has done a redesign of its 2650 to obtain 2 and 2.5 MHz clock rates.

The 8X300 from Signetics is the only bipolar 8-bit microprocessor available aside from the SMS-300 from Scientific Microsystems. Both the 8X300 and SMS-300 use similar chips but the Signetics circuit has some slight differences in instruction operation and I/O capability.

The only 8-bit CMOS microprocessor, RCA’s CDP1802, will soon have a little brother—the 1803. Little brother will have all the processing power of the 1802, but the number of I/O lines and control signals will be cut to squeeze the chip into a 28-pin DIP.

A high-performance version of the 1802, coming soon, will be made from silicon-on-sapphire and will be able to operate at even lower power levels and with better noise immunity.

For those demanding more performance from the standard 8080A, Intel responded with its 8085. In addition to containing nearly all the peripheral support circuits needed to make the 8080A run, the 8085 adds two new instructions to simplify interrupt handling. Following the trend, the 8085 operates from a single 5-V supply and has the clock circuit built onto the chip.

To keep the package size at 40 pins, however, the bus has been restructured so that instead of a separate 16-line address and 8-line data bus, the 8085 has an 8-line address bus and a multiplexed 8-bit data/address bus. Because these buses are unusual, several special peripheral circuits developed for them have no equal on the market: the 8155, a 256 × 8 static RAM with 14-bit counter/timer and 22 programable I/O lines; and the 8355/8755, a 2048 × 8 ROM/UV EPROM with two parallel 8-bit ports.

The 8080A has also been “improved” by Advanced Micro Devices, NEC Microcomputers and even more so by Zilog. AMD offers a version, the 9080A, that has better bus driving capability while NEC’s µPD 8080A is pin-compatible, but with a BCD subtraction instruction in addition to the normal
OUR ZENERS HAVE BEEN PART OF EVERY MAJOR HI REL PROGRAM FOR 17 YEARS.

Our 400 mW zeners have been integral to Hi Rel programs ever since we started building them 17 years ago. You’ll find them on Hawk, Minuteman, Trident, F-14 to name just a few. But they make up only a small part of our total zener line. Others range from 250 mW to one watt, from 2.4 volts to 100 volts, include a wide range of T.C. types, and are competitively priced for commercial applications.

Our popular one-watt zener is shown here. It features the PowerStud DO-41 package design with extra large 55 mil studs for improved heat transfer from the die. The rugged, hermetically sealed glass body provides improved reliability over the full operating temperature range.

The following zener diodes are immediately available: 1N702 through 732, *1N746 through 759, 1N957 through 961, *1N962 through 984, 1N3506 through 3534, 1N4099 through 4123, *1N4370 through 4372, 1N4725 through 4764. All are contained in hermetically sealed glass packages. The entire line is also available in dice form.

* Military types also available.

TELEDYNE SEMICONDUCTOR

1300 Terra Bella Avenue, Mountain View, California 94043 Tel: (415) 968-9241 TWX: 910-378-6494 Telex: 34-8416

SALES OFFICES:
DOMESTIC: Salem, N.H. (603) 883-9551; Stony Brook, N.Y. (516) 751-5640; Des Plaines, IL (312) 299-6196; Los Angeles, CA (213) 826-6639; Mountain View, CA (415) 968-9241 • INTERNATIONAL: Middlesbrough, England (44) 01-897-2503; Tiengen, West Germany 7741-5066; Kowloon, Hong Kong 3-240122; Tokyo, Japan 03-405-5738.

ELECTRONIC DESIGN 14, July 5, 1977

CIRCLE NUMBER 24
TMS-9900 from Texas Instruments uses existing Nova software, while the processors are available from about as Nova processor from Data General child for copying the Nova software version. A 10-MHz FL processor will developed by Fairchild that can use the many companies. The Mn601 microprocessor with a word length less speed requirements than the NMOS conductor. Since it's built from PMOS, offers over 100 instructions built in, the T3190 provides a versatile instruction set and can save a tremendous amount of processing time where mathematical operations are required. Moreover, it is the only microprocessor with a word length less than 16 bits that offers hardware multiply and divide.

Only half a dozen 16-bit microprocessors are available from about as many companies. The Mn601 Micro-Nov a processor from Data General uses existing Nova software, while the TMS-9900 from Texas Instruments uses software from its Series 990 mini. While an I PL processor is being developed by Fairchild that can use the Nova instruction set, a legal battle is ensuing as Data General presses a patent infringement suit against Fairchild for copying the Nova software and architecture.

The TMS-9900 chip is also available in an I PL version that is intended for harsh environments and for higher speed requirements than the NMOS version. A 10-MHz I PL processor will be available by next year, TI officials predict. To allow for the control signals and the dual 16-line buses, the TMS-9900 was packaged in a 40-pin DIP. But when some customers balked, because of its incompatibility with insertion tools and the difficulty of obtaining sockets, Texas Instruments re-designed the TMS-9900 µP to fit in a 40-pin DIP—the TMS-9980. The data and address buses are multiplexed and the number of interrupt levels is down. Even so, the TMS-9980 is totally software-compatible with the TMS/SBP-9900 parts.

General Instrument also decided to multiplex its data and address buses to squeeze the chip into a 40-pin DIP. A recently introduced slower version of the CP1600, called the CP1610, is housed in a 40-pin plastic package and operates at 2 MHz.

One of the oldest 16-bit processors is the PACE developed by National Semiconductor. Since it's built from PMOS, it runs at 2 MHz, max. However, it is designed to handle BCD arithmetic, which simplifies man/machine interfaces. There aren't many newcomers to the 16-bit field. Motorola is supposedly readying a 16-bit µP to be introduced in late 1978 or early 1979. Panafacom, a Japanese combine, consisting of Fujitsu, Matsushita and Fuji Electric, developed a processor called the L-16A (Mn1610) over a year ago. But little is known about it outside Japan. A 16-bit that was being planned by MOS Technology earlier this year has been shelved.

Make your micro with slices

However, if going through the many manufacturers’ advertising and data sheets doesn't uncover the right processor, available standard logic or Schottky and ECL bipolar bit-slice circuits can be used to build one. Such circuits offer fast cycle times for most instructions and even though much more circuitry is required, they can be microprogrammed to perform any instruction. The earliest bit-slice processor, National Semiconductor's IMP-4, 8 and 16 series, is fabricated from PMOS.

The _de facto_ standard bipolar bit slice seems to be Advanced Micro Devices’ 2900 series. With over six alternate sources, it is the most widely imitated processor product available. (For more details about the 2900 family

Second source reference by processor type

<table>
<thead>
<tr>
<th>Type number</th>
<th>Original manufacturer</th>
<th>Second sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>2900 series</td>
<td>Advanced Micro Devices</td>
<td>Motorola, National Semiconductor, Raytheon, Sescosem, Signetics, Fairchild, Mostek, SGS-ATES</td>
</tr>
<tr>
<td>F-8 (2 chip)</td>
<td>Fairchild</td>
<td>Signetics</td>
</tr>
<tr>
<td>3859</td>
<td>Fairchild</td>
<td>EM&M Semi</td>
</tr>
<tr>
<td>Macrolitic</td>
<td>General Instrument</td>
<td>AEG and SGS/ATES</td>
</tr>
<tr>
<td>CP1600</td>
<td>General Instrument</td>
<td>Signetics</td>
</tr>
<tr>
<td>1650</td>
<td>General Instrument</td>
<td>National Semiconductor</td>
</tr>
<tr>
<td>8000</td>
<td>Intel</td>
<td>Advanced Micro Devices, NEC, National Semiconductor, Signetics, Texas Instruments</td>
</tr>
<tr>
<td>3000 series</td>
<td>Intel</td>
<td>Harris Semiconductor</td>
</tr>
<tr>
<td>4001 series</td>
<td>Intel</td>
<td>Motorola</td>
</tr>
<tr>
<td>8080A</td>
<td>Motorola</td>
<td>American Microsystems, Fairchild, Fujitsu, Hitachi, Sescosem/Thompson CF</td>
</tr>
<tr>
<td>6100</td>
<td>Intersil</td>
<td>Rockwell, Synertek</td>
</tr>
<tr>
<td>6700 series</td>
<td>Monolithic Memories</td>
<td>Motorola</td>
</tr>
<tr>
<td>65X</td>
<td>MOS Technology</td>
<td>American Microsystems, Fairchild, Fujitsu, Hitachi, Sescosem/Thompson CF</td>
</tr>
<tr>
<td>3870</td>
<td>Mostek</td>
<td>Signetics (8X300)</td>
</tr>
<tr>
<td>6800</td>
<td>Motorola</td>
<td>Advanced Memory Systems, National Semiconductor, Mostek, Sharp (Tokyo)</td>
</tr>
<tr>
<td>PACE</td>
<td>National Semiconductor</td>
<td>Rockwell</td>
</tr>
<tr>
<td>SC/MP II</td>
<td>National Semiconductor</td>
<td>Rockwell, Signetics, Western Digital</td>
</tr>
<tr>
<td>1802</td>
<td>RCA</td>
<td>Hughes, Solid State Scientific, National Semiconductor, Sharp (Tokyo)</td>
</tr>
<tr>
<td>PPS-4.8</td>
<td>Rockwell</td>
<td>Signetics</td>
</tr>
<tr>
<td>SMS-300</td>
<td>Scientific Microsystems</td>
<td>Signetics (8X300)</td>
</tr>
<tr>
<td>2650</td>
<td>Signetics</td>
<td>Advanced Memory Systems, National Semiconductor</td>
</tr>
<tr>
<td>Z80</td>
<td>Zilog</td>
<td>Mostek, Sharp (Tokyo)</td>
</tr>
</tbody>
</table>
Want 4\(^2\) week turnaround on 16K ROMs?

Send us your debugged EPROMs. We'll talk back to you in the same language. It's getting easier!

If your ROM codes—on cards or paper tape—are in one of the usual formats, we handle them the usual way. And quick. BUT GOOD NEWS! If your program is in 2708 EPROMs, we can speed things up and simplify your life. Send us your debugged 2708's; we'll read your EPROMs directly into our mask-generating computer, and then send you a couple of new EPROMs back, programmed with your code, for verification, to make sure nothing got lost in translation. Fast. Simple. And you don't have to proofread 16,384 1's and 0's. We think you'll drink to that!

2-week turnaround for prototype
The secret is metal-mask (last mask) programming! Other ROM suppliers use contact-mask or diffusion-mask techniques which means that a lot of wafer processing must be done after they receive your codes. All we have to do is strip metal from wafers that are already in inventory. This last step programs your ROM code and also selects pinouts—the SY2316B (Intel's 2316E), the SY2316A, or the SY4600. Metal-mask programming—a great approach if you're in a hurry for ROMs.

Give a call to your local Synertek rep or distributor. Or call Bob Cushman at the factory. (408) 984-8900. TWX 910-338-0135.

CIRCLE NUMBER 25

Giga-Trim® (gigahertz-trimmers) are tiny variable capacitors which provide a beautifully straight forward technique to fine tune RF hybrid circuits and MIC's into proper behavior. They replace time consuming cut-and-try adjustment techniques and trimming by interchange of fixed capacitors.

Applications include impedance matching of GHZ transistor circuits, series or shunt "gap-trimming" of microstrips, external tweaking of cavities, and fine tuning of crystal oscillators.

see Microprocessor Basics: Part 14, ED No. 10, May 10, 1977 p. 62.)

Predating the 2900, though, is the 2-bit slice developed by Intel—the Series 3000. Although not as popular as the 2900, the Series 3000 slices permit very flexible processor design—an any word size from 2 to n x 2 bits can be made.

The 10800 family made by Motorola offers the fastest cycle times of any available bit slice—with maximum clock rates of 15 MHZ, the cycle time reaches a swift 70 ns. The ALU section can handle BCD calculations as well as normal binary manipulations—a feature no other bit-slice currently has. However, Advanced Micro Devices is working on an improved version of the 2901A that includes multiplication and division instructions as well as the capability to handle floating-point arithmetic routines. This enhanced chip, dubbed the 2903, is expected to be available later this year.

Just two other bit slice series are available—and they're both from Texas Instruments. The older chip is the SBP-0400 or 0401A 4-bit slice. Both versions are fabricated with PL. The only difference between the two is that the 0400A includes an extra register that permits pipeline operation to speed up instruction execution.

Recently introduced by TI, however, is a family of Schottky-TTL slices called the 74S381 series. The ALU offers almost 25,000 possible instructions (some of the commands are redundant) and comes in a 48-pin package. The processors will probably fill the same applications as the Macrologic series of Schottky-TTL parts recently introduced by Fairchild. Although not offering as many instructions as the 74S381, Fairchild's 9405 ALU comes in a package half the size—24-pin.

To help keep power dissipation low in applications that don't call for top speed, Fairchild offers CMOS equivalents to some of its Macrologic parts to help keep power dissipation low. The CMOS ALU operates at a maximum clock or 2 MHz. But for the top speed, Fairchild may have the solution next year—an ECL bit slice with an 8-bit data word. No part number has yet been assigned, but the ALU chip has been given the temporary name of Arithmetic Data Input Unit (ADIU).

The ADIU is expected to handle instructions in a 50-ns cycle and do error-correction code operations and parity checking when the chips are set up for a 32-bit word size. Because of the large word size of each ADIU section, a 64-contact leadless ceramic package has been designed to handle the circuit and its heat dissipation requirements.

Need more information?

Listed below are the original-source microprocessor manufacturers and most of the alternate source vendors. For additional companies consult ELECTRONIC DESIGNS Gold Book under IC, Central Processing Unit and Computers, Digital, Micro.

Advanced Memory Systems, 1215 Hammerwood Rd., Sunnyvale, CA 94086. (408) 734-4330.

Advanced Micro Devices, 901 Thompson Pl., Sunnyvale, CA 94086. (408) 732-2400.

American Microsystems, 3800 Homestead Rd., Santa Clara, CA 95051. (408) 246-6330.

Data General, Route 9, Southboro, MA 01772. (617) 485-9100.

Essex International, 564 Alpha Dr., Pittsburgh, PA 15238. (412) 782-0000.

Fairchild, 1725 Technology Dr., San Jose, CA 95110. (408) 998-0123. (MOS)

Fairchild Semiconductor, 464 Ellis St., Mountain View, CA 94042. (415) 962-3816. (Bipolar)

Ferranti Ltd., Western Rd, Bracknell, Berkshire RG12 1RA, England

General Instrument, 600 W. John St., Hicksville, NY 11802. (516) 733-3130.

Harris Semiconductor, P.O. Box 883, Melbourne, FL 32901. (305) 727-5400.

Hughes Microelectronics, 100 Superior Ave., Newport Beach, CA 92662. (714) 546-0671.

ITT Semiconductor, 74 Commerce Way, Woburn, MA 01801. (617) 935-7910.

Inte1, 3065 Bowers Ave., Santa Clara, CA 95051. (408) 246-7567.

Intersil, 10900 N. Tantau Ave., Cupertino, CA 95014. (408) 996-5000.

Motorola, Santa Clara, CA 95050. (408) 737-5000.

National Semiconductor, 2900 Semiconductor Dr., Santa Clara, CA 95050. (408) 737-5000.

Panafacom Ltd., 2-10-16 Jiyuzaoka, Mezuro-ku Tokyo, Japan 152.

Rockwell International, P.O. Box 3669, RCOI - Dept. 40, Sunnyvale, CA 94086. (408) 734-4350.

Scientific Microsystems, 520 Clyde St., Mountain View, CA 94043. (415) 964-5700.

Signetics, 811 E. Arques Ave., Sunnyvale, CA 94086. (408) 739-7000.

Texas Instruments, 3301 E. Central Expressway, Dallas, TX 75222. (214) 238-2481.

Toshiba Transistor Works, 1 Komukai Toshiba-cho, Kawasaki-shi Kanagana-ken, Japan.

Western Digital, 3128 Red Hill Ave., Newport Beach, CA 92663. (714) 577-3550.

Zilog Microcomputers, 10460 Bubb Rd., Cupertino, CA 95014. (408) 446-4666.

Electronic Design, July 5, 1977
When you're putting bucks into p.c. backpanels, get the single-source advantage of Advanced Circuitry.

Plenty of companies will take your orders for printed circuit backpanels. And that's just what they do . . . take your orders. Then they subcontract one of the most critical parts of your design — the printed circuit board. You see, their backpanel expertise is limited to mechanical assembly of components — boards, pins, and hardware. If you have a problem with your finished backpanels, you may have a real problem in getting someone to take responsibility in a hurry.

Advanced Circuitry takes that responsibility because we are a single-source supplier of printed circuit backpanels. Our State of the Art production methods for single-sided, double-sided, and multilayer boards are second to none. Since much of the interconnect capability is printed, reliability is increased while wire wrap is minimized. Higher levels of circuit density and signal speed become possible with multilayered interconnections. You can design in all these features plus future versatility at a lower total package cost. Let us show you how.

Our engineers will assist you in optimizing your layout. Then, we will manufacture the entire backpanel right on the premises. With repairable press-fit connectors installed to your specifications, total electrical testing insures you a trouble-free backpanel. Even our shipping containers are specially designed to protect the backpanels until they reach you.

When you're putting bucks into p.c. backpanels, you need the assurance of single-source responsibility. AT ADVANCED CIRCUITRY, THE BUCK STOPS HERE!

Contact Sue Carroll in Sales & Marketing, for your free copy of our "State of the Art" brochure.

ADVANCED CIRCUITRY
4811 West Kearney
Springfield, Missouri 65803
Telephone 417-862-0751
TWX 910-775-4705

CIRCLE NUMBER 27
More weapons for the Battle of the 80's

Now a multiple attack against outmoded, large and bulky microcomputers.

This multiple attack features a stand alone Microcomputer Board, Zilog's mighty MCB, that has the capability to communicate with both serial and parallel I/O devices, has its own RAM and ROM capability and is backed up by a second board containing a disk controller and additional memory allowing the use of Zilog's complete disk operating system and applications' software.
Announcing the Z80-MCB.

An assault against big board computers.

A single 5-volt power supply does it. And it's small—only 7.7 x 7.5 inches with a standard 122 pin edge connector with 100 mil spacing that is designed for ease of use.

A second board gives you the advantage.

A second board gives you a 8-drive floppy disk controller and additional RAM backed up by a full disk operating system. Plus, you get the applications software you need: file, edit, assemble, debug, and high level languages such as BASIC, and more will be announced soon. This second board contains 12K of dynamic memory and additional 8 bit programmable parallel I/O ports.

A squad of fighters against obsolete hardware.

Here's what Zilog's new weapon gives you:

- Z80-CPU single-chip n-channel processor with 158 instructions.
- 19.6608MHz crystal oscillator divided to 2.457MHz for Z80-CPU operation and dividable by ZBO-CTC to provide any other desired system frequencies.
- 4K bytes dynamic RAM.
- Capacity for 4K bytes on non-volatile memory.
- Programmable serial I/O port with RS-232 or current loop interface.
- Universal parallel I/O with two independent 8 bit ports.
- Z80-CTC for programmable baud rate generation or other user functions such as real time clock.
- Bus drivers are provided for memory and I/O expansion to other boards.
- One-half K-byte monitor software has terminal handler, load and punch routines as well as set and display memory commands. A GoTo command begins execution of user programs. The 1K-byte version adds more debug aids such as set and display registers and breakpoints. The 2K and 4K-byte versions include a floppy disk controller and even more debug capability.

Versatility of attack: you can buy only as much as you need.

We provide a modular approach to complete computing and processing systems. Zilog products are available as a basic CPU card, a card set or a complete self-contained computer with floppy disks.

Behind all this is Zilog's pledge to stay a generation ahead. We're the specialists who are responsible for the development of the most successful first and second generation microprocessors.
Now there's an all-purpose encapsulant that gives you silicone performance at the price of organics. Dow Corning Sylgard® 170 A&B silicone elastomer. A two-part liquid encapsulant that cures at room temperature or can be heat accelerated to increase production rates.

Sylgard 170 carries the UL 94VO rating, the very highest rating for flame retardancy for this type of product.

Sylgard 170 offers excellent temperature stability. It is reversion resistant at high temperatures. And that means greater reliability and longer product life under the most severe environmental conditions.

Sylgard 170 has great dielectric properties, too. So it's perfect for general potting and encapsulating jobs like modules, relays, power supplies, amplifiers, ferrite cores and connectors. At a price that'll let you keep a margin of profit in your product as you build in an extra margin of safety.

So add it up. Safety and reliability throughout the temperature range. Longer product life. Reasonable price. Sylgard 170 silicone elastomer. Pour it on.

Call your Dow Corning representative or write Dow Corning Corporation, Department A7-511, Midland, Michigan 48640.

DOW CORNING
EVERYTHING YOU NEED TO KNOW ABOUT BUYING A PROM PROGRAMMER IN SIX EASY LESSONS.

Select a programmer that's universal—as opposed to one that's dedicated. Choose a programmer that can program all 200 plus PROMs currently available on the market. This eliminates the need to buy additional programmers to accommodate different PROMs and gives you maximum flexibility—unrestricted by PROM type or manufacturer.

A universal programmer does away with unnecessary investments in costly capital equipment.

Select a programmer that can program generic PROM families with a single personality card set. Many programmers require multiple card sets to program PROMs with identical family characteristics. These extra card sets can cost as much as $400.00 each. A programmer that uses generic personality card sets will eliminate this requirement and save you time and money.

Select a programmer system that's approved by PROM manufacturers. Make sure the programmer manufacturer can supply you with approved programming specifications. Otherwise you run the risk of wasting PROMs and time. Approved specifications reduce your programming costs and help you reach 100% yields.

Select a programmer that you can calibrate. This will eliminate the need to return the programmer to the manufacturer for costly calibration. Programmers you can calibrate will continually perform to PROM manufacturers' specifications. This saves time, saves money, increases yields and assures you of uninterrupted production.

Select a programmer manufacturer that will help you reach 100% yields. A good manufacturer will keep you updated on new PROMs and programming specification changes based on the latest input from PROM manufacturers. A good programmer will also be supported by a direct factory sales and service organization staffed by knowledgeable people who know the products and can answer any of your questions.

Select a programmer capable of ROM emulation. ROM emulation saves time and money during software development and insures that the first PROM you program works.

ONLY DATA I/O AND DATA I/O PROGRAMMERS PROVIDE ALL OF THESE BENEFITS.
Programmers from $1095.00

Let us send you our fact-filled tabloid HOW TO SELECT THE RIGHT PROM PROGRAMMER FOR YOUR NEEDS. For your free copy, simply circle reader card or contact Data I/O Corporation, P.O. Box 309, Issaquah, WA 98027. 206/455-3990.

DATA I/O
THE PROM PROGRAMMER PEOPLE.

For more information. Circle No. 151.
Doubled data storage capacity. Doubled access speed. Doubled floppy media selection. Get it all with the new Shugart double-sided single/double density floppy disk drive. All this for only 25% more than a single-sided floppy.

Data. Data. The new SA850 double-sided floppy packs twice as much data as a standard unit—up to 1600 Kbytes (unformatted). Yet the SA850 is identical in physical interface, mechanical outline and package size to the industry-standard—our SA800/801. It's plug-compatible, cabinet-compatible.

Faster. Faster. Access time is more than twice as fast. The SA850 moves from track-to-track in 3 milliseconds, with an average access time of less than 100 milliseconds. The secret is a proprietary Fasflex™ actuator that delivers positive, low-friction head movement.

Media. Media. One drive reads and writes them all. Single or double density. Single or double-sided disks. Industry standard diskettes and IBM Diskette 2, too.

Features. Features. The head carriage assembly allows loading of the two read/write heads simultaneously on both sides of the disk. (No more head load pads!) Plus this head can be replaced without an alignment disk, scope, or special tool—and it's totally self-aligning.

Lower heat dissipation and better PCB packaging promise even better reliability. A new I/O controlled programmable door lock strengthens data security.

And there's more, more. So before you look at another floppy, see the SA850 twice. See it in our brochure. Then watch it perform in a demonstration with your own system.

The SA850. The doubled floppy from number 1.

Number 1 in low cost disk storage.

Number 1 in low cost disk storage.

CIRCLE NUMBER 31
Washington report

B-1 heads list of key defense budget issues

The B-1 bomber heads the list of 32 key defense issues slated for review by the Office of Management and Budget (OMB) during the current preparation of the Pentagon's fiscal 1979 budget. The budget will be submitted next January for the fiscal year beginning Oct. 1, 1978, but the major programs are being shaped now in talks involving President Carter, Defense Secretary Harold Brown and OMB Director Bert Lance.

The B-1, which is now projected to cost $100-million each in production, is being considered for a stretch-out or outright cancellation. The Air Force had requested 244 of the bombers, but the final number may drop to 155, if President Carter agrees to production, according to Congressional supporters of the program.

Other issues concerning industry include possible slow-down or cancellation of the MX missile and Trident submarine/missile programs and the future of cruise missiles. In addition, all military command, control and telecommunications programs, along with defense research activities and the practice of contracting out support services will be examined.

Proposal requests due for new Navy RPV

Finally, after a year's delay, the Navy expects to seek proposals from industry this summer for a new remotely piloted vehicle (RPV) that can be launched from small destroyers to spot targets for the Harpoon anti-ship missile, then recovered. Known as the over-the-horizon (OTH) RPV, the program has been stalled by funding problems and the Navy's inability to establish priorities in the area of unmanned drone aircraft. But now, after a series of studies, the top priority is OTH targeting, followed by tactical reconnaissance.

At least four companies—Boeing, Lockheed Missiles & Space Co., Northrop Ventura (CA) Div. and Rockwell International Columbus (OH) Div.—are preparing bids for the OTH competition. While their approaches vary, all four will have a range of about 100 miles, operate at subsonic speed, and probably carry infrared sensors for all-weather, day and night operation. The major technical problem is how to recover the RPVs safely.

Expandable RPVs would probably cost too much, according to the Navy. The airframe and engine are expected to cost $25,000, which, could probably be cut in half if the RPVs didn't have to be recovered. But the basic $100,000 avionics cost per vehicle would remain the same.

Navy to continue Transit navsat series

A series of five improved Transit navigation satellites is planned by the Navy to be a guidance aid to its submarine-launched ballistic missiles. The first one is expected to be launched in the fall of 1979.

The 367-lb spacecraft will be launched on a four-stage Scout vehicle into an initial polar orbit of 194 × 397 nautical miles and then circularized at 600 nautical miles. The transmitting system consists of dual 5-MHz oscillators, phase modulators, transmitters operating at 400 MHz and 150 MHz, dual incremental phase shifters for controlling oscillator offset, and dual pseudorandom noise generators for superimposing data on the signals.

The onboard computer will be programmable from the ground and have enough memory for storing five days' worth of navigation messages. The combined capacity of the dual memory (262,144 bits in each) may be used to store a 10-day message. Normal readout rate is 50 bits/s, and the high-speed dump rate 1300 bps.
The command system consists of redundant receivers operating at 10 bps and 100 bps, command logic, power switching, low-voltage sensing switches and antennas. The telemetry system is digital and has a capacity for 172 channels of 8-bit words that can be read out directly at 325 bps or stored in memory. A back-up analog readout can be obtained on command via a voltage-controlled oscillator.

Four solar panels covered with solar cells and one 12 ampere-hour battery consisting of 12 NiCd cells comprise the power system. Nominal voltage is 16 V and power is 80 to 105 W.

RCA Astro-Electronics Div., which worked with the Applied Physics Laboratory of Johns Hopkins University on the original Transit series, is under contract for initial designs of the new version. The Navy plans to award a production contract to RCA for the first three this summer and another contract for two more in fiscal year 1980. The satellites are expected to operate until 1990.

The Air Force is having cost-overrun problems with its Navstar global positioning satellites, which are supposed to replace the current Transit Satellites. The Navy has been a participant in that program, but has been reluctant to accept Navstar until it is fully operational and has demonstrated that it is as reliable as Transit.

FAA uses radar-checkout program to find lost aircraft

A computer program originally developed to check out the Federal Aviation Administration's air-traffic control systems has helped locate 31 aircraft downed in remote areas over the past two years—and in the first four months of this year alone.

The program was initially intended to check out the en-route radar systems that provide flight controllers with aircraft identity and altitude. But two years ago controllers at the FAA's Denver Air Route Traffic Control Center suggested that it could also help locate downed aircraft. They worked out the procedures in cooperation with the Air Force Rescue Coordination Center, Scott Air Force Base, IL.

Radar data on aircraft targets are recorded on tape and retrieved for analysis in the form of a computer printout, which provides position data on all aircraft appearing on the radar screen at any given period. The current program is usable at 15 of the 20 control centers, but the FAA is rewriting the program to make it simpler. It is expected to be operating at all 20 centers in two years.

Capital Capsules: The Navy is planning to upgrade the Phoenix long-range air-to-air missile and purchase 465 of the improved versions by 1982, according to closed-door testimony recently released by the Senate Armed Services Committee. The Hughes-built missile is used on the F-14 fighter and is believed to be the only effective weapon against the high-flying, supersonic MIG-25 Foxbat. It also is being considered to counter the Soviet Backfire bomber. . . .The future of the Compass Cope high-altitude reconnaissance drone hinges on joint U.S.-West German development of a new side-looking airborne radar, designated the UPD-X, the Air Force told the same committee. The Air Force, which plans to spend $187-million to develop the huge drone, estimates that 40 of them would cost $408-million to produce. . . .High-energy laser weapons will be tested by all three military services at White Sands Missile Range, New Mexico, a site selected by the Defense Dept. The Navy had originally held out for its own site at San Juan Capistrano, CA. . . .The Air Force plans to launch studies in September of the RF-X advanced, all-weather tactical reconnaissance aircraft, which is reportedly another version of the F-15 fighter. Production will not be decided on until mid-1983.
The one and only...

Three Series of Amphenol connectors are now qualified to MIL-C-26482, MIL-C-38999 and MIL-C-83723.

One company offers connectors qualified to all three specs — Amphenol North America Division, Bunker Ramo Corporation.

These three connector series are preferred under military standard MIL-STD-1333A. They're designed for general-purpose and high-density applications in ground-support and airborne equipment.

Polymer retention is a big plus. Each of these Amphenol connectors uses a one-piece, molded polymer retention disc. (It's an advanced design we pioneered. For a closer look at how it works, see the cross-sectional view at lower left.) Polymer retention eliminates as many as 128 troublesome metal clips. And you know the fewer parts there are, the less can go wrong.

To learn more, call or write. Ask about the wide range of shell sizes, insert arrangements and termination tooling available for the Amphenol Connector 118, 418 and 518 Series. And ask for a free catalog, too. Call Vince Pusateri, (312) 986-3761. Or write: Amphenol North America Division, Bunker Ramo Corporation, Dept. C77A, 900 Commerce Drive, Oak Brook, Illinois 60521.
Designers say we have the lead in edge connector design.
And the performance to keep it.
The reason why is clear. The contacts for AMP wrap-type edge connectors have unique strength and stress relaxation characteristics that assure long-term top performance. And they come in either leaf spring or cantilever types. Each incorporates full bifurcated design to achieve effective contact redundancy. A choice of contact alloys and selective gold platings is available too. The result is premium reliability and performance at a cost as low as 2 cents a line in quantity.

There's another reason you're ahead with AMP edge connectors, or any other AMP product for that matter. It's called technical support. It means you can call on us for assistance in research, product design, and production. We feel the professional engineer is entitled to it. After all, when he puts his confidence in us, we can do no less than back him fully.

There are other advantages, too, with these AMP edge connectors. You can select from types for either rack or solder-to-board mounting. And if you're a panel maker, we've got ECONOMATE I connectors with outstanding insertion speeds and space savings.

For more information on these wrap-type printed circuit edge connectors, just call AMP Customer Service at (717) 564-0100. Or write AMP Incorporated, Harrisburg, PA 17105.

AMP has a better way.

CIRCLE NUMBER 34
At Last, the FET-input op amps everybody’s been waiting for:

<table>
<thead>
<tr>
<th></th>
<th>3527AM</th>
<th>3527BM</th>
<th>3527CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_B (pA), max.</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>$\Delta\text{EOS}/\Delta T$ (μV/°C), max.</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>EOS @25°C (mV), max.</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Price (100's)</td>
<td>$7.95</td>
<td>$10.35</td>
<td>$19.40</td>
</tr>
</tbody>
</table>

Much lower price and significantly better performance than the AD506 and LH0052... much better performance with a slightly higher price than the LF355 and RCA3140.

Compare these specs with those of any FET-input op amp you’re now using or are about to specify. Then compare prices. We think you’ll find Burr-Brown’s new 3527 to be the best FET-input op amp buy around—whether you’re looking for high performance or low cost or both.

In addition to the specs shown, these 741-compatible op amps have a wide specification range of −25 to +85°C, they have low input noise, freedom from latch-up, short circuit protection and internal compensation for unity-gain stability.

If you use FET-input op amps, be sure you get all the details on this new price/performance leader. Contact Burr-Brown, International Airport Industrial Park, Tucson, Arizona 85734. Phone (602) 294-1431.

Still at the top except in price

CIRCLE NUMBER 35
Trimming the fat

Charlie had read many management books and attended many management seminars. And he had learned a basic lesson. He learned that reducing cost has far more effect on bottom-line net profit than increasing sales.

So Charlie started to search for cost centers, and he found them. He found, for example, that one secretary served every four engineers. Realizing that engineers don’t have to write \textit{that} many letters he cut the number of secretaries. And his profit margins grew. He found, too, that one technician served every three engineers. Since his engineers were getting too haughty anyway, Charlie felt it would bring them down a peg or two if they did their own breadboarding, wiring and testing. So he let go some of the technicians. And his profit margins grew. Then he realized that purchasing people were basically servants to the engineers, who made the real purchasing decisions while the purchasing people merely took care of the paperwork. Heck, he decided, let the engineers take care of their own paperwork. So he discharged some of the purchasing agents. And his profit margins grew.

Understandably, Charlie was delighted. He was just beginning to trim the fat in his organization. Just think of the profits that could develop when he started \textit{really} looking for cost centers.

Charlie was like the man who had dropped 4500 feet from a plane flying at 5000. So far, everything was okay. But then there were some events that had not been predicted in the management texts because they were too obvious. Many things happened very slowly or not at all. The engineers couldn’t spend much time designing newer products because they were too busy wiring and testing older designs. And they didn’t always take advantage of the newest components because they didn’t have time to organize vendor visits. They were also busy filing things and digging things out of their files and, on occasion, trying to type letters and reports.

So customers started to become unhappy and sales declined. Thanks to Charlie’s cost-cutting measure, profit margins were up. But profits were down. This was disappointing and, unfortunately, it hadn’t been stressed in management books because it was obvious. We all know that 6\% is better than 5\%. But 6\% of $20 million isn’t as nice as 5\% of $25 million.

Charlie was ready for that. “We’ll just cut some more cost,” he said, “maybe, even, use cheaper components.”

\textbf{GEORGE ROSTKY}
Editor-in-Chief
Rockwell one-chip computers give you the right fit at the right price.

Right now.
If you're designing a system or subsystem requiring as few as 10 TTL circuits, cost alone is reason enough to consider a Rockwell one-chip computer.

A wide choice of Rockwell one-chip computers is available right now. And the line-up of compatible one-chips is growing fast.

From Rockwell's PPS-4/1 family, you select the most cost-effective computer for your application.

More on-chip I/O eliminates extra interface devices.

All of Rockwell's one-chip computers offer powerful, user-oriented I/O ports that eliminate costly interface circuitry in overall systems. I/O features, including bidirectional ports, flexibly designed drivers and receivers, and serial input/output ports, provide you with powerful system options.

Many types of displays can be driven directly. Analog-digital conversion is easy. And serial I/O ports offer a new dimension of capability by giving you simple, “no-cost” interfacing for multi-computer systems.

Rockwell flexibility assures cost-effective design.

Rockwell's one-chip computers give you design options you couldn't afford with other logic approaches.

During the design stage you can add or reduce functions, allocate I/O differently and make dozens of other changes by simple reprogramming or by moving to another software-compatible chip within the family.

Powerful instruction sets increase efficiency.

Rockwell's instruction sets provide ROM efficiencies of typically 2 to 1 over other microcomputers. For example, some one-byte multi-function Rockwell instructions perform operations requiring five instructions in other systems.

More than 80% of Rockwell's instruction types can be executed in one byte and in a single cycle. Special ROM instructions allow many subroutine calls to be handled in one byte. Table look-up instructions for MM77 and MM78 chips provide easy look up of stored data and easy keyboard decoding with minimal programming.

The PPS 4/1 family of one-chip computers.

<table>
<thead>
<tr>
<th>Model</th>
<th>MM76</th>
<th>MM77</th>
<th>MM78</th>
<th>MM75</th>
<th>MM76C</th>
<th>MM76D</th>
<th>MM76E</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM (x8)</td>
<td>640</td>
<td>1344</td>
<td>2048</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>1024</td>
</tr>
<tr>
<td>RAM (x4)</td>
<td>48</td>
<td>96</td>
<td>128</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Total I/O lines</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Cond. Interrupt</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Parallel Input</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Bidirectional Parallel</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Discrete</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Serial</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>In-line package</td>
<td>42 pin quad</td>
<td>42 pin quad</td>
<td>42 pin quad</td>
<td>28 pin dual</td>
<td>52 pin quad</td>
<td>52 pin quad</td>
<td>42 pin quad</td>
</tr>
<tr>
<td>Availability</td>
<td>Now</td>
<td>Now</td>
<td>Now</td>
<td>2Q77</td>
<td>2Q/77</td>
<td>3Q77</td>
<td>16 wk ARO</td>
</tr>
</tbody>
</table>

Power supply is 15v except low voltage version of Basic 76 available 3Q77. Typical power dissipation is 70mw.

*Two 8-bit or one 16-bit presetable up/down counter with 8 control lines.

Rockwell design aids also help lower your system cost.

To help control development costs, Rockwell makes available a universal Assembler that lets you assemble, edit, develop and debug programs, as well as load PROMs. Special development circuits enable prototyping.

Your Assembler can also handle incoming inspection and factory testing. And the same Assembler can be used to develop systems based on all Rockwell one-chip and multi-chip microprocessors.

For the full story on Rockwell one-chip computers, and how quickly they can be a part of your new product, write on your company letterhead to: Marketing Services, D/727-B, Microelectronic Device Division, Rockwell International, P.O. Box 3669, Anaheim, CA 92803, U.S.A. or phone (714) 632-3729.
Get powerful microprocessor performance by using the Z80. With 158 instructions it offers more flexibility than other µPs, plus 8080 code compatibility.

The Z80 8-bit microprocessor combines all the processing power of the 8080 with 80 additional instructions. And to keep chip count to a minimum, many of the peripheral circuits necessary for 8080 systems have been built into the Z80. All members of the Z80 family are built with n-channel, silicon-gate, depletion-load technology; function at single-phase clock rates of 4 MHz; require just a 5-V supply; and have TTL-compatible inputs and outputs.

The circuit family consists of the Z80-CPU and the following peripherals: a counter-timer circuit (CTC), a parallel input/output circuit (PIO), a direct-memory-access controller (DMA), and a serial input/output circuit (SIO), as well as a group of support boards (Table 1). All the circuits are available in 2.5 or 4-MHz versions, ceramic packages, and extended temperature ranges. All are housed in 40-pin DIPs, except the CTC, which comes in a 28-pin DIP.

All peripheral circuits can be daisy-chained for priority interrupt control. Since most peripheral circuits necessary for system operation are built into the Z80, a minimum system consists of the Z80, a system clock, a power-on reset circuit and any memory and peripheral circuits desired (Fig. 1). At the system level, the µP supports vectored priority-interrupt structures without any extra hardware.

Interfaces to the Z80 are simple

Although the Z80 maintains timing and control-signal compatibility with the 8080, it is not pin-compatible. All output lines can sink 1.8 mA at 0.4 V—the equivalent of one standard TTL load.

Three major buses from the chip—the 16-bit address bus, the 8-bit bidirectional data bus and a 13-line control bus—account for 37 of the Z80's 40 pins (Fig. 2). The other three pins are for power, ground and the single-phase clock. Unlike the 8080, the Z80 needs no status latch or clock, and interrupt vectoring and dynamic-memory refresh are completely supported within the µP itself.

The 13 control lines are actually subdivided into three control buses: system control (six lines), µP

<table>
<thead>
<tr>
<th>Table 1. Z80 system components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part #</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Z80-CPU 8-bit CPU, 2.5 MHz *</td>
</tr>
<tr>
<td>Z80-CTC Counter/timer, 2.5 MHz *</td>
</tr>
<tr>
<td>Z80-PIO Parallel I/O, 2.5 MHz *</td>
</tr>
<tr>
<td>Z80-DMAX Direct mem. access, 2.5 MHz *</td>
</tr>
<tr>
<td>Z80-SIO Serial I/O, 2.5 MHz *</td>
</tr>
<tr>
<td>Support boards unit qty</td>
</tr>
<tr>
<td>MCB Microcomputer board—kit</td>
</tr>
<tr>
<td>MDC Memory/floppy-disc controller</td>
</tr>
<tr>
<td>RMB RAM memory board</td>
</tr>
<tr>
<td>IOB Input/output board</td>
</tr>
<tr>
<td>PMB PROM/ROM memory board</td>
</tr>
<tr>
<td>EPROM EPROM programmer (for 2708)</td>
</tr>
<tr>
<td>EPROM EPROM programmer (for 7620, 7640)</td>
</tr>
<tr>
<td>EPROM EPROM programmer</td>
</tr>
<tr>
<td>CPB/ROM Combination programmer</td>
</tr>
<tr>
<td>VDB Video-display board</td>
</tr>
</tbody>
</table>

* 4-MHz versions of these parts are available.
** 0 to 70-C ratings in plastic packages.

1. A minimal Z80 system can be built with the µP, an oscillator, some memory and an I/O port such as the PIO. Just a power supply and reset circuit must be added.

Ralph Ungermann, Vice President, and Bernard Peuto, Manager, Computer Architecture, Zilog, 10460 Bubb Road, Cupertino, CA 95014.
2. The three major buses on the Z80 are an address bus, a data bus and a control bus. The control bus can be split into three smaller buses—one for system control, one for processor control and one for bus control.

control (five lines), and µP-bus control (two lines). One bus-control line functions as a bus-request line (BUSRQ), which is an input that requests not only the µP's address and data buses, but also the memory-request, I/O-request, read-data and write-data lines of the system-control bus to go to a high-impedance state so that other devices can use the bus. The other bus-control line, an output signal called bus-acknowledge (BUSAK), goes high to indicate when the lines go into a high-impedance third state.

All six system-control signals are outputs from the µP. An M1 line (machine cycle 1) goes Low to indicate when the µP is in the op-code-fetch part of an instruction. The memory-request line (MREQ) goes Low when the address bus holds a valid address for a memory-read or write operation. An I/O-request line (IORQ) goes Low to indicate that the lower byte of the address bus holds a valid I/O-port address for an I/O-read or write operation.

Memory-read and memory-write lines (RD and WR) are also active when Low. RD indicates that the µP wants to read data from a memory or I/O device, while WR indicates that the data bus holds data to be stored in the addressed location. When the sixth system-control line, a refresh signal (RFSH), goes Low, it indicates that the lower seven bits of the address bus contain a refresh address for dynamic memories, so the current MREQ signal should be used to do a refresh read to all dynamic memory.

The five µP-control lines consist of one output signal and four input lines. All lines are active when Low. The only output is the halt line, which indicates when the µP has executed a software HALT instruction and is waiting for either a nonmaskable or maskable interrupt. While halted, the µP automatically executes NOP instructions to maintain the memory refresh. The wait input (WAIT) indicates to the µP that the addressed memory or I/O device isn't ready for a data transfer (the µP will enter wait states for as long as this line is Low). This line allows memory or peripheral of any speed to be synchronized with the Z80.

To reset the µP or initialize it once it is on, the RESET line can be pulled Low. When pulled Low, it forces the Z80's program counter to 0016, disables the interrupt-enable flip-flop, sets register I to 0016, sets register R to 0016, and sets the interrupt node to 0.

The last two lines are the interrupt-request (INT) and nonmaskable-interrupt (NMI) inputs. When pulled Low, the INT line interrupts the processor at the end of the current instruction if the software-controlled interrupt-enable flip-flop (IFF) is enabled, and if the BUSRQ line is High. Each time the µP accepts an interrupt, an acknowledge signal (IORQ during an M1 time) is sent out at the beginning of the next instruction cycle.

The NMI line is a negative-edge triggered input, has a higher priority than the INT line, and is recognized at the end of the current instruction regardless of the IFF state. When triggered, it forces the Z80 to begin execution at location 006616 after saving the current contents of the program counter in an external stack.

Interrupts and flags add flexibility

Three interrupt modes are available to the programmer. Mode 0 permits the interrupting device to insert any instruction on the data bus and have the µP execute it. Mode 1 has the µP automatically execute a restart to location 003816—no external hardware is required (the contents of the program counter are pushed onto the internal stack).

Mode 2, the most powerful, permits an indirect call
By daisy-chaining the peripheral support circuits, any number of peripheral chips can be added to this Z80-based process-control system. The device closest to the µP has the highest priority interrupt. Just 16 IC packages are needed to build this data-acquisition subsystem; and of the 16, nine are memories.

to any memory location. In this mode, the µP forms the indirect address from the upper byte of the I register and eight bits that are supplied by the interrupting device.

Two identical 8-bit flag registers (F and F') are part of the Z80. Six of the bits in each register can be used as conditions for jump, call or return instructions; they are set or reset by various µP operations. Both the F and F' registers have four testable flag bits and two nontestable bits. The four testable bits are the Carry flag, Zero flag, Negative-sign flag and Parity/overflow flag.

The Carry flag contains carry from the highest-order accumulator bit—add, subtract, shift and rotate instructions can alter its state. If an operation loads a zero into the accumulator, the Zero flag gets set. Otherwise, it is reset. Used with signed numbers, the Negative-sign flag gets set if the result of an operation is negative (bit 7 of the accumulator is the sign bit). The dual-purpose Parity/overflow bit gets set when the parity of the result in the accumulator for a logic operation is even, or is used to indicate overflow when signed 2's complement arithmetic is performed.

The two nontestable bits are Half-carry and Subtract flags. The Half-carry flag is a BCD-carry or borrow result from the least-significant four bits of the operation. (When a DAA instruction is used, this flag corrects the result of a previously packed decimal-add or subtract operation.) The Subtract flag corrects BCD operations by helping identify the previous instruction; The correction differs for addition and subtraction.

Shifting operations can be performed on any register or memory location rather than just on the accumulator. What's more, I/O operations can also be done with any register, rather than just the accumulator. Sixteen-bit direct loads and stores can be sent to the BC-register pair, the DE pair or the IX or IY registers—instead of just the HL as in the 8080. Consequently, the number of exchange and register-move operations is reduced considerably. Also, 16-bit arithmetic operations using the HL pair...
Z80 microprocessor architecture

Built into the Z80 microprocessor are all bus-control, memory-control, and timing signals in addition to eight general-purpose 16-bit registers and an arithmetic-and-logic unit (ALU). The Z80 is upward-compatible with the Intel 8080A1 and 8085 µPs.

All the 8080 registers are duplicated within the Z80 and, in addition to the eight 8-bit registers (A, F, B, C, D, E, H and L) of the 8080, there is an alternate set (A', F', B', C', D', E', H' and L') and several other special-purpose registers. The additional registers include two 16-bit index registers (IX and IY), an 8-bit interrupt-vector register (I) and an 8-bit memory-refresh register (R). Also carried forward from the 8080 register set are the 16-bit stack pointer and the 16-bit program counter (PC).

Normally, all instructions reference the main register set, and alternate registers are accessed via two exchange commands that swap register contents in the banks. One command, exchanges the accumulator and register flags, while another instruction, exchanges the other six general-purpose registers. Since both instructions are single-byte, minimum-execution-time instructions, a complete swap can be done in four clock cycles (1 µs for a 4-MHz clock). These commands and registers are very handy for rapid single-level interrupt handling.

The Z80’s two index registers have no direct corollary in the 8080 architecture, but in operation they resemble the single index register in the 6800 µP. Instructions using this mode such as the accumulator-load command [LD A, (IX + 7)] contain a single-byte offset field (+7, in this case). The effective address of the operand is the sum of the offset and the IX-register contents. This addressing mode is particularly convenient for table references, multibyte entries or for passing a pointer to a group of subroutine parameters. The offset byte is interpreted by the Z80 as a 2’s complement number, so both positive and negative indexing is possible.

A special feature of the Z80 is its ability to refresh dynamic memory automatically. Its memory-refresh register acts as a 7-bit counter that is incremented after every op-code fetch. After the fetch, the R-register contents are loaded onto the low-order seven bits of the address bus, and a status line on the processor goes low to indicate the presence of a valid refresh count. Because this entire process takes place while the op code is decoded internally, it never interferes with any other µP activity on the bus.

The I register forms the high-order eight bits of an address. When an interrupt occurs and the Z80 is in the vectored mode, the lower order eight bits are supplied by an interrupting peripheral. In response to the interrupt, the µP does an Indirect Call instruction with the composite address. All the support chips have corresponding registers that store the low-order eight bits and supply them to the Z80 when the interrupt is acknowledged.

Able to perform 12 basic operations—add, subtract, AND, OR, Ex-OR, compare, test-bit, reset-bit, set-bit, increment, decrement, and left or right-shift and rotate (arithmetic or logic)—the ALU communicates with the registers and external-data bus by means of a buffered internal bus. As each instruction is fetched from memory, it is loaded into the instruction register and decoded by the control section, which supplies all the control signals for the Z80’s subsystems.

Software gives the Z80 horsepower

Many of the instructions available only in the Z80 support the manipulation of multibyte blocks of data—a great plus in data communications and text manipulation. For instance, a block-move instruction takes data from the memory location specified by the HL-register pair, deposits them in the location specified by the DE pair, increments the HL and DE registers and then decrements the BC pair, which is assumed to hold a byte counter for the operation. This instruction can be executed in a single cycle or repeat sequence. Decrementing the HL and DE addresses is also possible.

By using the block move command, the µP can transfer bytes of data at 5.25 µs/byte (for a 4-MHz clock). Block operations are also available for memory searches and I/O operations. And shift and rotate operations have been enhanced. For decimal arithmetic, 4-bit shifts through the accumulator can greatly speed up BCD multiplication and division, and bit-manipulation instructions permit fast access to any bit in either the external memory or an internal register.

Other enhancements of the instruction set include...
Software capabilities of the Z80

Able to execute over 150 different instructions, including all 78 of the 8080A command set, the Z80 features seven basic families of instructions: load-and-exchange, block-transfer-and-search, arithmetic and logic, bit-manipulation (set, reset and test), jump, call-and-return, input/output, and basic µP-control commands. In all, the Z80 can recognize 696 op codes—244 are the codes of the 8080A.

Load instructions move data internally between µP registers or between the registers and external memory. All these instructions must specify a source location, from which data are to be moved, and a destination location. Block-transfer instructions permit any block of memory to be moved to any other location. Search commands let any block of external memory be examined for any 8-bit character. Once the character is found, the instruction is terminated.

The ALU instructions operate on data held in the accumulator and other general-purpose registers or external memory. Results are held in the accumulator, and appropriate flags are set. Bit-manipulation commands allow any bit in the accumulator, any general-purpose register or any external memory location to be set, reset or tested with a single instruction. Jump, Call and Return instructions are used to transfer between various locations in the program.

1/0 instructions permit a wide range of transfers between external memory locations or general-purpose Z80 registers and external I/O devices. In either case, the port number is provided on the lower eight bits of the address bus during any I/O operation. Also, the basic µP-control commands include such instructions as setting or resetting the interrupt-enable flip-flop or setting the mode of interrupt response.

In addition to the seven addressing modes of the 8080—direct, register, register indirect, modified page 0, extended, implied and immediate—the Z80 has three more addressing modes: relative, indexed and bit addressing—that can be used.

A special byte-call instruction lets the Z80 program proceed to any of eight locations in page 0 of the memory. This modified page 0 addressing allows a single byte to specify a complete 16-bit address, which saves memory space.

Relative addressing lets the Z80 use the byte following the op code to specify a displacement from the current program-counter value. The displacement value is in 2's-complement form, which permits up to a +127 or −128 byte displacement. Extended addressing includes two bytes of address in the instruction.

Index registers can also be used as part of the address. In the indexed addressing mode, a byte of data following the op code is a displacement value that must be added to the specified index register (the op code indicates which register) to form a memory pointer. Also available is an implied addressing mode in which the op code uses the contents of one Z80 register or more as the operands. The last addressing mode lets the Z80 access any memory location or µP register and permits any bit to be set, reset or tested.

Mnemonic

8-bit load instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD r, r'</td>
<td>Load register r with r'</td>
</tr>
<tr>
<td>LD r, n</td>
<td>Load register r with n</td>
</tr>
<tr>
<td>LD r, (HL)</td>
<td>Load r with location (HL)</td>
</tr>
<tr>
<td>LD r, (IX)</td>
<td>Load r with location (IX)</td>
</tr>
<tr>
<td>LD r, (Y)</td>
<td>Load r with location (Y)</td>
</tr>
<tr>
<td>LD (HL), r</td>
<td>Load location HL with r</td>
</tr>
<tr>
<td>LD (IX), r</td>
<td>Load location IX with r</td>
</tr>
<tr>
<td>LD (Y), r</td>
<td>Load location Y with r</td>
</tr>
<tr>
<td>LD (IX), n</td>
<td>Load location IX with n</td>
</tr>
<tr>
<td>LD (Y), n</td>
<td>Load location Y with n</td>
</tr>
<tr>
<td>LD A, (BC)</td>
<td>Load AC with location BC</td>
</tr>
<tr>
<td>LD A, (DE)</td>
<td>Load AC with location DE</td>
</tr>
<tr>
<td>LD A, (mn)</td>
<td>Load AC with location mn</td>
</tr>
<tr>
<td>LD (BC), A</td>
<td>Load location BC with AC</td>
</tr>
<tr>
<td>LD (DE), A</td>
<td>Load location DE with AC</td>
</tr>
<tr>
<td>LD (nn), A</td>
<td>Load location nn with AC</td>
</tr>
<tr>
<td>LD A, I</td>
<td>Load register A from I</td>
</tr>
<tr>
<td>LD A, R</td>
<td>Load AC with register R</td>
</tr>
<tr>
<td>LD I, A</td>
<td>Load register I with AC</td>
</tr>
<tr>
<td>LD R, A</td>
<td>Load register R with AC</td>
</tr>
</tbody>
</table>

16-bit load instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD dd, nn</td>
<td>Load registers dd with nn</td>
</tr>
<tr>
<td>LD IX, nn</td>
<td>Load register IX with nn</td>
</tr>
<tr>
<td>LD IY, nn</td>
<td>Load register IY with nn</td>
</tr>
<tr>
<td>LD HL, (nn)</td>
<td>Load L with contents of location nn and H with (nn+1)</td>
</tr>
<tr>
<td>LD dd, (nn)</td>
<td>Load registers dd with location nn</td>
</tr>
<tr>
<td>LD IX, (nn)</td>
<td>Load IX with location nn</td>
</tr>
<tr>
<td>LD IY, (nn)</td>
<td>Same but for IY</td>
</tr>
<tr>
<td>LD (nn), HL</td>
<td>Load location nn with HL</td>
</tr>
<tr>
<td>LD (nn), dd</td>
<td>Load location (nn) with register pair dd</td>
</tr>
<tr>
<td>LD (nn), IY</td>
<td>Same but for IX</td>
</tr>
<tr>
<td>LD (nn), IY</td>
<td>Same but for IY</td>
</tr>
<tr>
<td>LD SP, HL</td>
<td>Load stack pointer from HL</td>
</tr>
<tr>
<td>LD SP, IX</td>
<td>Load stack pointer from IX</td>
</tr>
<tr>
<td>LD SP, IY</td>
<td>Load stack pointer from IY</td>
</tr>
<tr>
<td>PUSH qq</td>
<td>Load register pair qq onto stack</td>
</tr>
<tr>
<td>PUSH IX</td>
<td>Load IX onto stack</td>
</tr>
<tr>
<td>PUSH IY</td>
<td>Load IY onto stack</td>
</tr>
<tr>
<td>POP qq</td>
<td>Load register pair qq with top of stack</td>
</tr>
<tr>
<td>POP IX</td>
<td>Load IX with top of stack</td>
</tr>
<tr>
<td>POP IY</td>
<td>Load IY with top of stack</td>
</tr>
</tbody>
</table>

Exchange, transfer and search instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX DE, HL</td>
<td>Exchange contents of DE & HL</td>
</tr>
<tr>
<td>EX AF, A' F'</td>
<td>Exchange contents of AF & A' F'</td>
</tr>
<tr>
<td>EXX</td>
<td>Exchange all six general purpose registers with alternates</td>
</tr>
<tr>
<td>EX (SP), HL</td>
<td>Exchange stack pointer contents with HL contents</td>
</tr>
<tr>
<td>EX (SP), IX</td>
<td>Same but use IX register</td>
</tr>
<tr>
<td>EX (SP), IY</td>
<td>Same but use IY register</td>
</tr>
<tr>
<td>LDI</td>
<td>Load (HL) into DE, increment DE and HL, decrement BC</td>
</tr>
<tr>
<td>LDIR</td>
<td>Same but loop until (BC) = 0</td>
</tr>
<tr>
<td>LDD</td>
<td>Load location (PE) with location (HL) and decrement DE, HL and BC</td>
</tr>
<tr>
<td>LDDR</td>
<td>Same but loop until (BC) = 0</td>
</tr>
<tr>
<td>CPI</td>
<td>Compare contents of AC with (HL), set Z flat if =, increment HL and decrement BC</td>
</tr>
<tr>
<td>CPIR</td>
<td>Same but repeat until BC = 0</td>
</tr>
<tr>
<td>CP s</td>
<td>Compare operand s with AC</td>
</tr>
<tr>
<td>CPD</td>
<td>Same as CPI but decrement HL</td>
</tr>
<tr>
<td>CPDR</td>
<td>Same as CPIR but decrement HL</td>
</tr>
</tbody>
</table>

8-bit arithmetic and logic instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD A, r</td>
<td>Add contents of r to AC</td>
</tr>
<tr>
<td>ADD A, n</td>
<td>Add byte n to AC</td>
</tr>
<tr>
<td>ADD A, (HL)</td>
<td>Add contents of HL to AC</td>
</tr>
</tbody>
</table>
16-bit Arithmetic instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD HL, ss</td>
<td>Add register pair ss to HL</td>
</tr>
<tr>
<td>ADC HL, ss</td>
<td>Add with carry operand s to HL</td>
</tr>
<tr>
<td>SBC HL, ss</td>
<td>Subtract contents of ss from HL and flag</td>
</tr>
<tr>
<td>ADD IX, pp</td>
<td>Add register pair pp to IX</td>
</tr>
<tr>
<td>ADD IY, rr</td>
<td>Add register pair rr to IY</td>
</tr>
<tr>
<td>INC ss</td>
<td>Increment register pair ss</td>
</tr>
<tr>
<td>INC IX</td>
<td>Increment IX register</td>
</tr>
<tr>
<td>INC IY</td>
<td>Increment IY register</td>
</tr>
<tr>
<td>DEC ss</td>
<td>Decrement register pair ss</td>
</tr>
<tr>
<td>DEC IX</td>
<td>Decrement IX register</td>
</tr>
<tr>
<td>DEC IY</td>
<td>Decrement IY register</td>
</tr>
</tbody>
</table>

General purpose arithmetic & control instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAA</td>
<td>Decimal adjust accumulator</td>
</tr>
<tr>
<td>CPL</td>
<td>Complement (AC)</td>
</tr>
<tr>
<td>NEG</td>
<td>Complement (AC) and add 1</td>
</tr>
<tr>
<td>CCF</td>
<td>Complement carry flag</td>
</tr>
<tr>
<td>SCF</td>
<td>Set carry flag = 1</td>
</tr>
<tr>
<td>NOP</td>
<td>No operation</td>
</tr>
<tr>
<td>HALT</td>
<td>Halt, wait for interrupt or reset</td>
</tr>
<tr>
<td>DI</td>
<td>Disable interrupts</td>
</tr>
<tr>
<td>EI</td>
<td>Enable interrupts</td>
</tr>
<tr>
<td>IM0</td>
<td>Set µP to interrupt mode 0</td>
</tr>
<tr>
<td>IM1</td>
<td>Set µP to interrupt mode 1</td>
</tr>
<tr>
<td>IM2</td>
<td>Set µP to interrupt mode 2</td>
</tr>
</tbody>
</table>

Rotate and shift instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLCA</td>
<td>Rotate AC left</td>
</tr>
<tr>
<td>RLA</td>
<td>Same but include carry flag</td>
</tr>
<tr>
<td>RRCA</td>
<td>Rotate AC right</td>
</tr>
<tr>
<td>RRA</td>
<td>Same but include carry flag</td>
</tr>
<tr>
<td>RLC r</td>
<td>Rotate register r left</td>
</tr>
<tr>
<td>RLC (HL)</td>
<td>Rotate location (HL) left</td>
</tr>
<tr>
<td>RLC (IX+d)</td>
<td>Same but location (IX+d)</td>
</tr>
<tr>
<td>RLC (IY+d)</td>
<td>Same but location (IY+d)</td>
</tr>
<tr>
<td>RL m</td>
<td>Same as any RLC but include carry flag</td>
</tr>
<tr>
<td>RRC m</td>
<td>Same as RLC but shift right</td>
</tr>
<tr>
<td>RR m</td>
<td>Same as RL m but shift right</td>
</tr>
<tr>
<td>SLA s</td>
<td>Shift left (any RLC register)</td>
</tr>
<tr>
<td>SRA s</td>
<td>Same but shift right and keep MSB</td>
</tr>
<tr>
<td>SRL s</td>
<td>Same as SLA but shift right</td>
</tr>
<tr>
<td>RLD</td>
<td>Simultaneous 4-bit rotate from AC_L to L, L to H and H to AC_L</td>
</tr>
<tr>
<td>RRD</td>
<td>Simultaneous 4-bit rotate from AC_L to H, H to L and L to AC_L</td>
</tr>
</tbody>
</table>

Bit set, reset and test instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT b, r</td>
<td>Test bit b of register r</td>
</tr>
<tr>
<td>BIT b, (HL)</td>
<td>Test bit b of location (HL)</td>
</tr>
<tr>
<td>BIT b, (IX+d)</td>
<td>Test bit b of location (IX+d)</td>
</tr>
<tr>
<td>BIT b, (IY+d)</td>
<td>Test bit b of location (IY+d)</td>
</tr>
<tr>
<td>SET b, r</td>
<td>Set bit b in register r to 1</td>
</tr>
<tr>
<td>SET b, (HL)</td>
<td>Same but use contents of location HL</td>
</tr>
<tr>
<td>SET b, (IX+d)</td>
<td>Same but use contents of location IX+d</td>
</tr>
<tr>
<td>SET b, (IY+d)</td>
<td>Same but use contents of location IY+d</td>
</tr>
<tr>
<td>RES b, s</td>
<td>Reset bit b of operand m</td>
</tr>
</tbody>
</table>

Jump, call and return instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP nn</td>
<td>Unconditional jump to location nn</td>
</tr>
<tr>
<td>JP cc, nn</td>
<td>If condition cc True, do JP nn otherwise continue</td>
</tr>
<tr>
<td>JR e</td>
<td>Unconditional jump to PC+e</td>
</tr>
<tr>
<td>JR C, e</td>
<td>If C = 0 continue. If C = 1 do JR e</td>
</tr>
<tr>
<td>JR NC, e</td>
<td>Reverse of JR C, e</td>
</tr>
<tr>
<td>JR Z, e</td>
<td>If Z = 0 continue. If Z = 1 do JR e</td>
</tr>
<tr>
<td>JR NZ, e</td>
<td>Reverse of JR Z, e</td>
</tr>
<tr>
<td>JP (HL)</td>
<td>Load PC from (HL)</td>
</tr>
<tr>
<td>JP (IX)</td>
<td>Load PC from (IX)</td>
</tr>
<tr>
<td>JP (IY)</td>
<td>Load PC from (IY)</td>
</tr>
<tr>
<td>DJNZ, e</td>
<td>Decrement register B and jump relative if B = 0</td>
</tr>
<tr>
<td>CALL nn</td>
<td>Unconditional call subroutine at location nn</td>
</tr>
<tr>
<td>CALL cc, nn</td>
<td>Call subroutine at location nn if condition cc is True</td>
</tr>
<tr>
<td>RET</td>
<td>Return from subroutine</td>
</tr>
<tr>
<td>RET cc</td>
<td>If cc false continue, otherwise do RET</td>
</tr>
<tr>
<td>RETI</td>
<td>Return from interrupt</td>
</tr>
<tr>
<td>RETN</td>
<td>Return from nonmaskable interrupt</td>
</tr>
<tr>
<td>RST p</td>
<td>Store PC in stack, load 0 in PC_H and restart vector in PC_L</td>
</tr>
</tbody>
</table>

Input/output instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN A, n</td>
<td>Load AC with input from device n</td>
</tr>
<tr>
<td>IN r, (C)</td>
<td>Load r with input from device C</td>
</tr>
<tr>
<td>INI</td>
<td>Store contents of location specified by C in address specified by HL, decrement B and increment HL</td>
</tr>
<tr>
<td>INIR</td>
<td>Same but repeat until B = 0</td>
</tr>
<tr>
<td>IND</td>
<td>Same as INI but decrement HL too</td>
</tr>
<tr>
<td>INDR</td>
<td>Same as INIR but decrement HL too</td>
</tr>
<tr>
<td>OUT n, A</td>
<td>Load output port (n) with AC</td>
</tr>
<tr>
<td>OUT (C), r</td>
<td>Load output port (C) with register r</td>
</tr>
<tr>
<td>OUTI</td>
<td>Load output port (C) with location (HL) and increment HL and decrement B</td>
</tr>
<tr>
<td>OTIR</td>
<td>Same but repeat until B = 0</td>
</tr>
<tr>
<td>OTUD</td>
<td>Same as OUTI but decrement HL</td>
</tr>
<tr>
<td>OTDR</td>
<td>Same as OTIR but decrement HL</td>
</tr>
</tbody>
</table>

Notes

- **b** represents a 3-bit code that indicates position of the bit to be modified
- **cc** represents a 3-bit code that indicates which of eight condition codes are to be used
- **d** is an 8-bit offset value
- **dd** refers to register pairs BC, DC, HL or the stack pointer
- **e** represents a signed two's complement number between -126 and +129
- **m** is an 8-bit number
- **n** is an 8-bit number
- **nn** refers to two 8-bit bytes
- **p** represents one of eight restart vector locations on page 0
- **pp** refers to register pairs BC, DE, the IX register or the stack pointer
- **q** refers to register pairs AF, BC, DE or HL
- **r** or **r'** refers to registers A, B, C, D, E, H or L or their alternates
- **rr** refers to register pairs BC, DE, the IY register or the stack pointer
- **s** refers to either the r registers, the n data word or the contents of locations specified by the contents of the HL, IX+d or IY+d registers
- **ss** refers to register pairs BC, DE, HL or the stack pointer
The looping instruction decrements the B register and takes a relative branch if that register has not reached zero. Other operations are shown in the box on Z80 software (see page 58).

Put the Z80 to work

With the four basic Z80 peripheral circuits described virtually any high-performance microcomputer can be constructed. For example, a process-control system can be built around the Z80, as shown in Fig. 3. The peripherals handled by the Z80 controller include three parallel input/output circuits and one counter/timer. The PIOs handle a 16-key keyboard, a printer, a multichannel a/d converter and 16 control lines. Because the peripheral chips can be daisy-chained, a priority interrupt structure can be formed. The CPU INTERFACE

<table>
<thead>
<tr>
<th>CPU INTERFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIO CONTROL</td>
</tr>
<tr>
<td>DATA BUS</td>
</tr>
<tr>
<td>I/O</td>
</tr>
<tr>
<td>CPU BUS</td>
</tr>
<tr>
<td>TIMEOUT</td>
</tr>
<tr>
<td>I/O</td>
</tr>
<tr>
<td>INTERNAL</td>
</tr>
<tr>
<td>CONTROL</td>
</tr>
<tr>
<td>LOGIC</td>
</tr>
<tr>
<td>PORT</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>I/O</td>
</tr>
<tr>
<td>INTERNAL</td>
</tr>
<tr>
<td>CONTROL</td>
</tr>
<tr>
<td>LOGIC</td>
</tr>
<tr>
<td>PORT</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>I/O</td>
</tr>
<tr>
<td>INTERNAL</td>
</tr>
<tr>
<td>CONTROL</td>
</tr>
<tr>
<td>LOGIC</td>
</tr>
<tr>
<td>NOT USED IN BIT MODE</td>
</tr>
</tbody>
</table>

4. With two parallel, 8-bit I/O ports, the PIO circuit (a) can use either of the ports in a parallel system or on a line-by-line basis for 16 separate I/O lines. Inside each port, five control registers are loaded by the Z80 before operation to initialize the port (b).

With the four basic Z80 peripheral circuits described virtually any high-performance microcomputer can be constructed. For example, a process-control system can be built around the Z80, as shown in Fig. 3. The peripherals handled by the Z80 controller include three parallel input/output circuits and one counter/timer. The PIOs handle a 16-key keyboard, a printer, a multichannel a/d converter and 16 control lines. Because the peripheral chips can be daisy-chained, a priority interrupt structure can be formed with little or no software or hardware overhead. Using the interrupt mode, the requesting PIO causes the µP to go to a service routine, and, after the routine, a special instruction—return-from-interrupt—goes back to the PIO and allows the µP to service lower-priority interrupts.

All support chips have two lines for daisy-chaining—the Interrupt-enable-in (IEI) and Interrupt-enable-out (IEO). Since a CTC is used in the controller to relieve the Z80 from doing timing loops, software overhead is minimized. For the controller of Fig. 3, 14 ICs are needed—and nine of them are memories (2048 bytes of ROM and 4096 bytes of RAM).

The Z80-PIO, a parallel-interface controller, has two 8-bit ports and provides TTL-compatible interfaces (Fig. 4a). Port A has four possible modes of operation: byte output, byte input, byte bidirectional bus and bit. Port B has all the modes except byte bidirectional. The port I/O logic consists of handshake control and six registers (Fig. 4b): an 8-bit input register, an 8-bit output register, a 2-bit mode-control register, an 8-bit mask register, an 8-bit I/O-select register and a 2-bit mask-control register. The last three are used only when the port is programmed to operate in the bit mode. Of the 40 pins on the PIO, 24 are required by the port and CPU buses, six more for µP interfacing, three for interrupt control, four for handshaking the I/O ports and three for power, ground and the single-phase clock.

Four of the six internal registers are loaded by the Z80 for characteristic programming. The contents of the 2-bit mode-control register determine which of the four PIO operating modes is to be used. Similarly, the 2-bit mask-control register specifies the active state (High or Low) of any peripheral-interface lines which are to be monitored. It also permits an interrupt to be generated when all unmasked pins are active (AND condition) or when any unmasked pin is active (OR condition). The code loaded into the mask register determines which peripheral-device interface pins are to be monitored for the specified status condition. And the code held in the I/O-select register determines which pins are inputs or outputs during bit-mode operation. The other two registers hold incoming or outgoing data.

To relieve some software overhead in timing situations, the CTC provides four channels of programmable timing and counting functions that can be set with software (Fig. 5). Each channel operates in either a timer or counter mode, and programmable interrupts can occur on counter or timer states. Other features include a readable down counter, a selecta ble 16 or 256 clock prescaler for each timer, a selectable positive or negative trigger for timer initiation and automatic reload of counter or timer constants. In addition three channels have zero count/timeout outputs capable of driving Darlington transistors.

Each channel has two registers, both eight bits long and loaded by the µP. One register, the time-constant register, loads the preset value into the down counter. The other, called a channel-control register, contains the mode and condition information for channel operation. Also included in each channel are an 8-bit down counter and an 8-bit prescaler. The counter is decremented by the prescaler in the timer mode and by the clock-trigger input in the counter mode.

Of the 28 pins on the CTC, eight connect to the data bus, seven to the control lines, three handle interrupt control and three are required for power, ground and...
the single-phase clock. Three of the four input channels have one input and one output line and the fourth channel has only an input line.

Speed up data transfer with DMA

One of the interface circuits, a direct-memory-access controller, is designed to effect the high-speed transfer of a block of data between any two ports in a Z80 system and can also be used with other µPs. The circuit is a programmable, single-channel device that provides all address, timing and control signals for the data transfer (Fig. 6). Also, the DMA circuit can search a block of data for a particular, bit-maskable byte, with or without transferring the data. Capable of transfer-only, search-only or search-and-transfer operations at up to 1.2 Mbyte/s, the circuit can automatically increment or decrement the port address from a programmed starting address.

Four communications modes are available on the chip—a byte-at-a-time mode that transfers one byte per request, a burst mode that lets the transfer continue as long as ports are ready, a continuous mode that locks out the µP until the operation is completed, and a transparent mode that steals refresh cycles. When the circuit finds a match or finishes a transfer, it can be programmed to generate an interrupt. Or a complete repeat cycle can be programmed for automatic repeat or repeat on command. A built-in block counter can generate a signal when a certain number of bytes has been transferred—without halting the transfer.

Inside the DMA controller are bus-interface circuits for both the data and address buses, logic and registers to control parameters of the circuit, and address and byte-count circuitry to generate port addresses. There are also provisions for incrementing or decrementing the address, timing circuitry for adjusting the read/write timing of both ports being addressed, and compare logic that permits a byte-matching operation (if a match is encountered, a flag is set in the DMA's status register). Also built-in is the interrupt and BUSRQ logic, which includes a control register that specifies conditions for the chip to generate an interrupt, all the priority-encoding logic to select between generation of an INT or BUSRQ output, and an interrupt-vector register for automatic vectoring to an interrupt-service routine.

Of the 40 pins on the DMA controller, 24 are needed for the address and data bus, and five are needed for the µP control bus. Eight more handle the interrupt control and timing, and three more are necessary for power, ground and clock inputs.

For serial communications, the serial-input/output circuit (SIO) provides two full duplex programmable channels capable of handling asynchronous, synchronous, and synchronous-bit protocols (IBM Bisync, HDLC and SDLC). It can also generate cyclic-redundancy check codes in any synchronous mode. The SIO has four independent serial ports—two for transmitting and two for receiving (Fig. 7). Asynchronous data with 5, 6, 7 or 8 bits and 1, 1-½ or 2-stop bits as well as even, odd or no-parity generation or checking can be handled.

The circuit has × 1, 16, 32 and 64 clock modes and data rates from 0 to 600 kHz. The transmitter sections have eight modem-control lines, quadruple buffers on receiver data and error registers, and double buffers on the transmitter sections. The bus-I/O control block includes the logic for selecting channels and registers, read/write control, and control of special timing for interrupt-acknowledge cycles. Interrupt logic includes the daisy-chain provision as well as two special 8-bit control registers to handle the various interrupt options, as well as an 8-bit vector register for interrupt response.

Three receive buffers allow enough time for interrupt servicing of fast data rates. The receiver-shift register is controlled by the receive-control logic, which includes two 8-bit registers for receive-mode selection and options. There are two more 8-bit registers for programmable-sync characters. The external-status register is an 8-bit, read-only register that indicates the state of the modem-control pins as well as several internal-status conditions. An internal-status register also indicates the state of the SIO. Each channel has its own receive, transmit and status-register banks.

Now that you are familiar with all the basic system-building blocks, you can mold them with software into...
a working system. Because of the Z80's rich instruction set, assembling software programs by hand can be too complicated for most applications; you should use either a dedicated development system or time-sharing service.

Development systems speed software

The Z80 development systems and the software available from Zilog include several large dedicated units that permit hardware or software development, or both (Table 2). Also available are assemblers, compilers and time-sharing services as well as Basic and PLZ. (Cobol and Fortran will be available soon.)

All program statements in the development systems are handled by a text editor and stored in a dual floppy-disc file management system. Once filed, the program is ready for testing and can be translated by an assembler or compiler into code for the Z80. The code can be tested by a hardware/software debug package that provides interrogation, control and tracing capabilities.

In the monitor mode the system has four operating environments: file, edit, debug and assemble. The file capabilities are pretty standard types of features—storing records on disc, pulling records from disc, changing records and saving the new results. The debug and assembler features of the development system offer some pretty powerful capabilities. With the debug commands, you can set up breakpoints, compare blocks of memory and trace an operation.

In the debug mode, for instance, system transactions can be loaded into a special memory as the program executes in real time. And, once any user-defined condition has occurred (such as the setting of bit 6 of port 8B16 or reading from address 21C816), the program execution can be suspended and the system can re-enter the monitor mode. A complete record of the last 256 transactions just prior to program termination is in the system memory and available to the user.

The main assembler in the development system supports the following features: macros, conditional assembly, the ability to assemble a large file and a sorted-symbol table with cross reference. All these options as well as the printing and listing options are available by setting parameters at the time of assembly. A relocatable assembler with I/O management provides relocatable code and has a linking loader. These permit you also to specify other files that should be included within the current file being

6. The direct-memory-access controller has three classes of operation: transfer-only, search-only or search-and-transfer. Any device on the system bus can be controlled by the DMA; internal counters keep track of source and destination addresses.

7. Two independent full-duplex serial I/O channels are built into the SIO. Either channel can be programmed to operate in asynchronous or synchronous modes, including BiSync and HDLC/SDLC.
Table 2. Hardware and software support

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems</td>
<td>$8990</td>
<td>Z80-hardware & software</td>
<td>3 kbytes ROM, 1 kbyte RAM for system monitor; 16 kbyte RAM; real-time debug module; dual floppy discs; in-circuit emulator; RS-232 or current loop interface; software and user's manuals; extra card slots; 2 chassis system. Universal interface to printers, PROM programmers, etc.</td>
</tr>
<tr>
<td></td>
<td>$6990</td>
<td>Z80-software development</td>
<td>Same as above, except no in-circuit emulation capability.</td>
</tr>
<tr>
<td></td>
<td>$6990</td>
<td>Z80-hardware development</td>
<td>Same as first system, except no universal interface.</td>
</tr>
<tr>
<td></td>
<td>$5990</td>
<td>Z80-microcomputer system</td>
<td>Dual floppy disc system in single chassis containing any combination of Z80 board products (MCB, MDC, etc.).</td>
</tr>
<tr>
<td>Resident software</td>
<td>N.A.</td>
<td>OSZ80-operating system for Z80 development systems and MCB family</td>
<td>Assembler: translates assembly language mnemonics into machine language. Includes macro's, conditional assembly, the ability to assemble programs of virtually any length and sorted symbol tables with complete cross-reference listings. Relocating assembler and linking loader: Facility for linking programs which have been assembled independently and executing Editor environment: allows the user to input and modify texts, such as, assembly language source programs. File environment: controls and manipulates disc files that the user creates while writing, debugging and executing programs. Debug environment: allows the user to load, test and save programs using an assortment of debugging aids.</td>
</tr>
<tr>
<td>N.A.</td>
<td>BASIC interpreter</td>
<td></td>
<td>This program supports an interpretive language that allows translation into machine code at execution time on a statement-by-statement basis.</td>
</tr>
<tr>
<td>N.A.</td>
<td>PLZ-Zilog resident programming language</td>
<td></td>
<td>From relocatable assembly to high-level system programming: • allows access to architecture of Z80 • compiles efficient code • easy to translate to machine language Two levels of the language allow tailoring to programming task needs.</td>
</tr>
<tr>
<td>Cross software</td>
<td>N.A.</td>
<td>Z80 cross assembler Z80-PLM language compiler</td>
<td>ANSI 16-Bit Fortran and PLI version available. Full PLM language compiler produces Z80 code.</td>
</tr>
</tbody>
</table>

assembled so you can combine programs.

The text editor in the system includes many commands (for more than many full minicomputer editors) to help you manipulate the source files. Although it is a line editor (the pointer always indicates the beginning of a line), some string-oriented commands are available. Automatic paging permits you to edit files that are larger than available memory work space. Put and Get commands help you copy sections from one disc file to another or insert them into a program. Over 20 commands in the editor permit text repeats, alterations, storage, line-number printing and macro capabilities.

To develop higher-level language programs, you can use a Basic interpreter. This permits programs to be written and debugged interactively. Also made for resident use is PLZ, a procedure-oriented language with a syntactic and semantic style that blends Algol, PL/I and Pascal. It permits access to the Z80 architecture, can compile efficient code and is easy to translate into machine code. Two levels are available: PLZ Level I combines assembly language with statements necessary to create relocatable program modules; Level II is similar to a high-level systems language in which single statements can substitute for sequences of assembly-language statements.

Acknowledgement

The circuit designers for the Z80 family were Masatoshi Shima (Z80-CPU), Doug Bourn (Z80-PIO), Chuck Glenn (Z80-CTC), Marc Reinig (Z80-DMA) and Ross Freeman (Z80-SIO).

References
COMPARE THE TOP-RATED 4½-DIGIT DMMs.

Put these three 4½-digit multimeters side-by-side and you'll want the Keithley 172.

The 172 gives you superior accuracy, resolution and convenience with no compromise—at a competitive price.

If you want more evidence, send for our detailed "Comparative Guide to 4½-digit DMMs."

The Keithley 172 rates best—not on every factor, but on most.

If you want hands-on proof, put our 172 side-by-side with the Fluke 8600A, HP 3465A, or any other 4½-digit DMM. The Keithley will stand alone.

Check the chart below or make your own comparison, you'll pick the Keithley 172.

<table>
<thead>
<tr>
<th>Fluke 8600A</th>
<th>HP 3465A</th>
<th>Keithley 172</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions & Ranging:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(dc volts @ 25°C ambient)</td>
<td>±0.02% reading +1 digit</td>
<td>±0.02% reading +1 digit</td>
</tr>
<tr>
<td>Full Range Display (Counts)</td>
<td>19999</td>
<td>19999</td>
</tr>
<tr>
<td>HI/LO Ohms</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ohms Configuration</td>
<td>2 terminals</td>
<td>2 terminals</td>
</tr>
<tr>
<td>Lighted Function Indicator</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Price</td>
<td>$549</td>
<td>$510</td>
</tr>
</tbody>
</table>

Comparison based on manufacturers’ published specifications. Prices are domestic U.S. for ac line-operated instruments.

It's easy to make your own comparison. Use coupon. Or call (216) 248-0400.

KEITHLEY INSTRUMENTS, 28775 Aurora Road, Cleveland, Ohio 44139.
In Europe: D-8000 München 70, Heiglhostrasse 5, West Germany, (089) 7144065.

☐ Send specs on the Keithley 172. I'll make my own comparison.
☐ Send "Comparative Guide to 4½-digit DMMs." I need more proof.
☐ Bring in a Keithley 172 so I can make a side-by-side comparison.

Name__________________________Title__________________________
Company _________________________
Address _________________________
City __________________ State __________ Zip __________
Phone __________________________

KEITHLEY
The measurement engineers.

CIRCLE NUMBER 37

ELECTRONIC DESIGN 14, July 5, 1977
Processor Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Model 6/16</th>
<th>Nova 3/4</th>
<th>PDP-11/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type Lengths (bits)</td>
<td>4, 8, 16</td>
<td>16</td>
<td>1, 8, 16</td>
</tr>
<tr>
<td>Instruction Word Length (bits)</td>
<td>16, 32</td>
<td>16</td>
<td>16, 32, 48</td>
</tr>
<tr>
<td>General-Purpose Registers</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Hardware Index Registers</td>
<td>15</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Maximum Memory Available (KB)</td>
<td>64</td>
<td>64</td>
<td>56</td>
</tr>
<tr>
<td>Directly Addressable Memory (KB)</td>
<td>64</td>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>Automatic Interrupt Vectoring</td>
<td>Standard</td>
<td>N/A</td>
<td>Standard</td>
</tr>
<tr>
<td>Parity</td>
<td>Optional</td>
<td>Optional</td>
<td>N/A</td>
</tr>
<tr>
<td>Cycle Time (nanoseconds)</td>
<td>600</td>
<td>800</td>
<td>725</td>
</tr>
</tbody>
</table>

Pricing

<table>
<thead>
<tr>
<th>Feature</th>
<th>Model 6/16</th>
<th>Nova 3/4</th>
<th>PDP-11/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>8KB Processor</td>
<td>$2200</td>
<td>$2600</td>
<td>N/A</td>
</tr>
<tr>
<td>16KB Processor</td>
<td>$2800</td>
<td>$3200</td>
<td>$3795</td>
</tr>
<tr>
<td>32KB Processor</td>
<td>$4000</td>
<td>$4400</td>
<td>$4995</td>
</tr>
<tr>
<td>Multiply/Divide Hardware</td>
<td>$950</td>
<td>$1400</td>
<td>$1820</td>
</tr>
</tbody>
</table>

Interdata's 6/16 wins the battle of the specs.

Not only do we cost less than the Nova 3/4 and the PDP-11/04, we have more features. Just compare: 16 general purpose registers on the 6/16 to simplify programming and reduce fetches... only 4 in the Nova and 8 in the 11/04; 15 hardware index registers on the 6/16 against 2 for the Nova and 8 for the 11/04; 64 KB of directly addressable memory instead of just 2 KB for the Nova 3/4 and 56 KB for the PDP11/04.

What's more: all these hardware features enhance the nimble 6/16's performance. Its cycle time is only 600 nanoseconds, compared to 800 for the Nova and 725 for the 11/04.

Interdata's comprehensive software drives this powerful hardware full out. You get the field-proven OS/16 MT2, a real-time, multi-tasking operating system providing instantaneous response to events, while allowing the user to minimize memory by storing non-critical functions on disks. And the 6/16 can be programmed in your choice of FORTRAN, BASIC or MACRO CAL.

All this and save money too, as much as one-third less than a PDP-11/04 and substantially less on a Nova 3/4... with OEM discounts saving even more.

Get the whole story. Just fill in the coupon or call (201) 229-4040.

Send me 1977 specs on your Model 6/16

NAME ________________________________ TITLE ________________

COMPANY ______________________________

ADDRESS ________________________________

CITY __________ STATE __ ZIP ___________

PHONE ________________________________

A UNIT OF
PERKIN-ELMER DATA SYSTEMS

Oceanport, New Jersey 07757, U.S.A.

CIRCLE NUMBER 120
Want a different view with the touch of a button?

HP's the Answer.

And the 100 MHz 1740A is your scope. With HP's push-button **third-channel trigger view**, you can see your trigger signal along with channel A and B—three traces in all—so you can make timing measurements between all three simultaneously. In most applications, that means three-channel capability for the cost of a two-channel scope.

Here are two more timesaving features you can get at the touch of a button. For data-domain applications, you can combine the 1740A with HP's 1607A Logic State Analyzer and trigger the scope with the analyzer's pattern-trigger or delayed-trigger output. Add the "**Gold Button**" (an optional logic-state push button in lieu of A versus B) for just $105* and (with the 1607A) you have push-button selection of either logic-flow or real-time display. That means you can view the logic states of operational circuitry for pinpointing a problem. Then push the "Gold Button" and see the waveforms you've selected at that specific point in time. Or, add the **TV sync** (optional for just $180*) and tailor the 1740A for TV broadcast and TV R&D applications simply by pulling a knob.

The 1740A also has an **X5 vertical magnifier** with the touch of a button for 1 mV/div sensitivity on both channels to 40 MHz without cascading. Again, measurements are simplified because you can directly monitor low-level signals such as outputs of read/write heads of disc or mag units, power-supply ripple, or medical sensor outputs. You also get selectable input impedance (1 megohm or 50 ohms) plus the time-tested 8 x 10 cm CRT used in the 180 System lab scopes.

At just $2095*, HP's 1740A, with it's three-trace capability, is an exceptional scope value. Call your local HP field engineer today for all the details.

And here's something NEW for scopes. HP’s **Easy-IC Probes**. A new idea for probing high-density IC circuits that eliminates shorting hazards, simplifies probe connection to DIPs and generally speeds IC troubleshooting. Ask your HP field engineer about them.

*Domestic U.S.A. price only.
ANOTHER UNIQUE PRODUCT
DESIGNED, MANUFACTURED
AND MARKETED WORLDWIDE
BY
OK MACHINE & TOOL CORPORATION

BATTERY WIRE-WRAPPING TOOL MODEL BW-630

$34.95*

ANOTHER UNIQUE PRODUCT
DESIGNED, MANUFACTURED
AND MARKETED WORLDWIDE
BY
OK MACHINE & TOOL CORPORATION

STRIP/WRAP/UNWRAP TOOL MODEL WSU-30

$5.95*

WIRE DISPENSER MODEL
WD-30-B

THE DISPENSER WHICH
CUTS AND STRIPS
THE WIRE

$3.45*

DIP IC INSERTION TOOL WITH PIN STRAIGHTENER
MODEL INS-1416

$3.49*

ANOTHER UNIQUE PRODUCT
DESIGNED, MANUFACTURED
AND MARKETED WORLDWIDE
BY
OK MACHINE & TOOL CORPORATION

WHAT'S NEXT

* MINIMUM ORDER $25.00, SHIPPING CHARGE $1.00, N.Y. CITY AND STATE RESIDENTS ADD TAX

OK MACHINE & TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 ■(212) 994-6600 ■ Telex 125091

CIRCLE NUMBER 122

64D

ELECTRONIC DESIGN 14, July 5, 1977
PLANAR INTERCONNECTS

WANT SOME REALLY USEFUL AND UNIQUE INFORMATION?

Send for Spectra-Strip's NEW DESIGN GUIDE and CATALOG.

86 pages of useful technical and ordering material on Twist'N'Flat, 802 Series Connectors, Flexible Etched Circuits, and the widest range of planar interconnect systems and products available today.

- Universal Planar Cable / Connector Mating Chart
- Crosstalk Data and Comparison Charts
- Flexible Etched Circuit Design Information
- Ordering Charts for Standard Products
- Connector Assembly Step-By-Step Picture Guide
- Planar Interconnect Glossary
- Laminate Materials Selection Data and Guides
- Electrical Parameter Graphs and Charts
- New Connector Products and Features
- Assembly Design Information
- Insulation Materials Characteristics
- Transmission Cable & Connector Systems
- Ultra-Flexible and High Temperature Cables
- Twisted Pair Cable Constructions
- Flat & Round Conductor Planar Designs
- Mass Termination Connector Characteristics
- Prototype Design Data for Flex Circuits

DESIRED INFORMATION:

Attn: Marketing Services
Spectra-Strip
P.O. Box 415
Garden Grove, CA 92642

Gentlemen:
Send me your free 86 page Planar Interconnect Systems Catalog and Design Guide

Do you want a Spectra-Strip representative to call? □ Yes □ No

Do you specify or buy planar cable or connector products? □ Yes □ No

Types __________________________

Name __________________________

Title __________________________ Phone No. __________________________

Company __________________________

Address __________________________

City __________________________ State __________________________ Zip __________________________

15-55-30141
Dynamic memories offer advantages
over static RAMs, especially if you need a lot of memory. You can save up to 90% of PC-board space, and money to boot.

Faced with a need to expand memory, you can choose from two basic types: static and dynamic RAM. Because most microprocessors, like the 8080 or 6800, do not provide any control signals or operating modes that would simplify the interface of dynamic RAM to a microprocessor, designers usually prefer static RAM because it’s “easier to interface.” But before you follow suit, see what dynamic memory has to offer.

Tables 1 and 2 compare the requirements of the two RAM types when used with a Z80 µP. For a 4-k X 8 RAM, there is little difference in power consumption and cost, but the static approach needs 39 chips, while the dynamic alternative requires only 15. The ratio 15/39 = 0.38 is indicated in the “relative size” column.

For the larger memories of Table 2, differences are more pronounced: compared with a 16-k X 8 static RAM, equivalent dynamic memories are vastly superior in power consumption (40% and 21% of static RAM) and size (31% and 10% of static RAM). Even the cost can be much lower (70% with 4-k chips).

Dynamic RAM does have disadvantages—above all the need for a refresh cycle. But if you use a suitable µP, the problems are minor.

The Z80, for instance, is designed to ease interfacing to dynamic RAMs by providing four memory control signals, and a refresh time slot. The signals are memory request, read, write, and refresh. During the op code fetch cycle, the Z80 also provides a time slot that allows the memory to be refreshed without sacrificing system speed. The refresh cycle is executed during the last two T states of the op code fetch cycle, while the CPU is decoding the op code. During this time period the memory is idle, so that the refresh cycle is “transparent” to the operation of the CPU.

Furthermore, the Z80 provides the refresh row address on address lines A0 to A6 during the refresh cycle. The refresh address is automatically incremented each time a refresh cycle is executed.

Timing is the key

Of the Z80’s three memory cycles (Fig. 1), the most critical for access time is the op code fetch cycle.

Excluding TTL delays, the worst-case access time for the op code fetch is 450 ns (Fig. 1a), while the worst-case access time for the memory-read cycle is 640 ns (Fig. 1b). These access times assume a clock frequency of 2.5 MHz, and are referenced to memory request (MREQ).

The Z80 microcomputer system puts the extra T-state to good use by placing the refresh cycle in that time slot. No “wait states” or clock “stretching” are required.

To keep track of the row in the memory matrix that is to be refreshed, the Z80 has a dedicated register, R. For the refresh cycle, the Z80 puts the contents of the R register on address lines A0 to A6 and

Jerry Winfield, Applications Engineer, Mostek, 1215 W. Crosby Rd., Carrollton, TX 75006

1. The instruction fetch cycle of the Z80 (a) is longer than the memory read or write cycle (b). The extra time is used to refresh dynamic memories.
automatically increments the R register when an op
code fetch is executed. The Z80 memory control signals
perform the following functions:
- Memory request (MREQ) indicates that the
 address bus holds a valid memory address for a
 memory-read, or memory-write.
- Read (RD) indicates that the CPU wants to read
data from memory or an I/O device. The addressed
I/O device or memory uses this signal to gate data
onto the CPU data bus.
- Write (WR) indicates that the CPU data bus
holds valid data to be stored in the addressed memory
or I/O device.
- Refresh (RFSH) indicates that the lower seven
 bits of the address bus contain a refresh address for
dynamic memories. The current MREQ signal is used
to refresh all dynamic RAMs in the system.

Mostek's MK4027 (4 k × 1) and MK4116 (16 k × 1)
16-pin dynamic memories use a special address
multiplexing technique that loads the address bits into
memory and allows each memory to be packaged in
a 16-pin DIP. The MK4027 needs 12 address bits to
select one out of 4096 locations, and the MK4116
requires 14 bits to select one out of 16,384.

Refresh your 16-pin RAM

The internal memory can be thought of as a matrix:
The MK4027 matrix is 64 × 64, while the MK4116
matrix is 128 × 128. To select a particular location,
a row and column address is supplied to the memory.
For the MK4027, address bits A0 to A11 form the row
address and bits A6 to A11 the column address. For
the MK4116, address bits A0 to A6 form the row
address.

Table 1. Comparison of 4-k × 8 static and dynamic RAMs

<table>
<thead>
<tr>
<th>Device used</th>
<th>Number of RAMs</th>
<th>Support ICs</th>
<th>Voltages, currents</th>
<th>Over-all power</th>
<th>Relative power</th>
<th>Relative cost</th>
<th>Relative size</th>
</tr>
</thead>
<tbody>
<tr>
<td>21L02 1 k × 1 static</td>
<td>32</td>
<td>7</td>
<td>+5 V @ 1.26 A</td>
<td>6.3 W</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MK4027-4 4 k × 1 dynamic</td>
<td>8</td>
<td>7</td>
<td>+5 V @ 0.42 A +12 V @ 0.25 A −5 @ 0.03 A</td>
<td>5.25 W</td>
<td>0.83</td>
<td>0.90</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Table 2. Comparison of 16-k × 8 static and dynamic RAMs

<table>
<thead>
<tr>
<th>Device used</th>
<th>Number of RAMs</th>
<th>Support ICs</th>
<th>Voltages, currents</th>
<th>Over-all power</th>
<th>Relative power</th>
<th>Relative cost</th>
<th>Relative size</th>
</tr>
</thead>
<tbody>
<tr>
<td>21L02 1 k × 1 static</td>
<td>128</td>
<td>28</td>
<td>+5 V @ 5.04 A</td>
<td>25.2 W</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MK4027-4 4 k × 1 dynamic</td>
<td>32</td>
<td>16</td>
<td>+5 V @ 0.55 A +12 V @ 0.60 A −5 V @ 0.03 A</td>
<td>10.1 W</td>
<td>0.40</td>
<td>0.7</td>
<td>0.31</td>
</tr>
<tr>
<td>MK4116-4 16 k × 1 dynamic</td>
<td>8</td>
<td>8</td>
<td>+5 V @ 0.42 A +12 V @ 0.25 A −5 V @ 0.03 A</td>
<td>5.25 W</td>
<td>0.21</td>
<td>1.08</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Notes
(1) Power requirement of dynamic RAMs is based on Z80 operating at 2.5-MHz clock frequency.
(2) Relative cost includes RAMs, support ICs, power supply, and PC board.
address and bits A_7 to A_13 the column address.

Both the row and column addresses are strobed into
the memory by negative-going signals, one called row-
address strobe (RAS), the other a column-address
strobe (CAS). They latch the address bits into the
memory for access to the desired memory location.

To retain valid data, the MK4027 needs 64 refresh
cycles every 2 ms, while the MK4116 needs 128 refresh
cycles every 2 ms, due to its larger memory matrix.

In other words, an MK4027 has to be refreshed every
32 µs, while the MK4116 needs refreshing every 16
µs. The memory is refreshed each time a read or write
cycle is performed, or by a RAS-only refresh cycle.

(For detailed information on the MK4027 and the
MK4116, write for the manufacturer's literature.)

The Z80 needs some help

When interfacing a Z80 to a 16-pin dynamic RAM,
two timing signals not generated by the Z80 are
necessary: the switch multiplexer (MUX) and the
column address strobe (CAS). You can provide them
in several ways: Fig. 2a shows a circuit that’s best
suited for a small on-board memory, while Fig. 2b
shows one that suits a separate memory board.

The complete schematic for a small “on-board”
memory (Fig. 3) can accommodate either the
MK4027-4 or the MK4116-4. Control signal MREQ is
gated with AD (address decode) or RFSH to generate
RAS, while MREQ and φ generate MUX. The column
address strobe CAS is then generated by an output
of one of the 74S157 multiplexers.

This design can easily be expanded from a 4-k X
8 memory to a 16-k X 8, by changing two jumpers

3. The schematic for a 4-k X 8 memory makes provisions for expansion to 16-k X 8 bits.
4. A large dynamic RAM-board can also be expanded with a special jumper-DIP (white).

ELECTRONIC DESIGN 14, July 5, 1977
To suppress a glitch that could destroy rows of data, use this simple quad latch.

and installing eight MK4116s. You can wire these jumpers directly into the board, or route them to a DIP socket, into which you insert a DIP header that’s appropriately wired for the desired memory.

A circuit for large memory boards (Fig. 4) provides a memory capacity of 16 k x 8 or 64 k x 8, depending on which memory chip you use. Again, you can easily upgrade a 4-k x 1 memory using MK4027 by substituting MK4116s and changing a DIP header that has pre-wired jumpers.

This circuit generates the switch multiplexer (MUX) and column-address strobe (CAS) differently from the circuit in Fig. 3. A two-tap TTL-compatible delay line controls the timing for MUX and CAS and is controlled, in turn, by MREQ. This timing method references all memory timing from MREQ—which simplifies the timing for a DMA system—where the circuit of Fig. 3 requires both MREQ and the clock.

The control, address, and data lines for the circuit in Fig. 4 are buffered with Schmitt-trigger devices to provide high immunity to possible noise on the backplane.

You should terminate memory lines that have a heavy capacitive load (A0 to A5, CS, CAS, and WRITE) with series resistors which help suppress undershoot. Neither the MK4027 nor the MK4116 can tolerate voltages more negative than −1 V.

When you use the MK4027, the two 74LS138 3-to-8 decoders together permit address decoding to start on any 4-k boundary. With the MK4116, only one decoder is necessary to give 16-k-boundary addressing. If you use two DIP sockets as shown in Fig. 4a, you will find it easy to select the starting address for either chip.

Don't jeopardize your memories

To support the memory circuits shown in Figs. 3 and 4, you need a 7475 quad latch (Fig. 5), because the Z80 cannot guarantee that the address bus will be valid at the end of an op code fetch cycle. This quirk doesn’t affect the dynamic memory directly because the address is latched internally.

However, the RAS decoding circuit will be affected by a change on the address bus, which may cause a “glitch” on the RAS line that can destroy one row of data (64 or 128 locations) in the dynamic memory.

The following conditions may destroy dynamic memory content if they persist for more than 1 ms: manual reset, wait-state operations, and bus acknowledge. So you use a circuit that generates a short reset pulse, three clock cycles long (Fig. 5), to prevent the accidental destruction of memory content.

Remember, to refresh dynamic RAM properly, the Z80 must be able to execute op codes. A halt instruction meets this requirement, because it continually executes an op code fetch. (Incidentally, the execution of the halt cycle is the worst-case condition for the Z80 in terms of power dissipation.)

When you design a dynamic memory, proper power distribution and PC-board layout are very important. Power-supply voltage VDD and ground should be laid out in a grid to help minimize the power-distribution impedance, while VBB and VCC needn't be gridded since they have lower supply currents. To help reduce system noise, a 0.1 µF, high-quality ceramic capacitor is recommended on both VCC and VBB for each device, and one 0.1 µF on VCC for each row of eight RAMs.

Lines such as A0 to A5, CS, CAS, and WRITE are best bused together as rows. Then all the rows can be bused together at one end of the array. Avoid interconnecting these rows. Lines carrying RAS are bused together as a row and then connected to the appropriate RAS driver. The layout for a 32-device array can be put in a 5 x 5 in. space on a two-sided PC board.

References
<table>
<thead>
<tr>
<th>BREAKTHROUGH QUESTIONS</th>
<th>muPro-80E</th>
<th>INTEL® MDS + ICE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low cost In-Circuit Emulator?</td>
<td>YES, (no terminal req'd) $3,250.</td>
<td>NO, $5,400. plus terminal cost</td>
</tr>
<tr>
<td>Real time execution from emulator or users system memory?</td>
<td>YES, phase locked to user clock; rate up to 2.86 mHz</td>
<td>NO, emulator resident programs execute slower than real time</td>
</tr>
<tr>
<td>Memory available to user in 16K emulator system?</td>
<td>ALL 16K</td>
<td>LESS THAN 4K (12K+ used by ICE-80 driver)</td>
</tr>
<tr>
<td>Totally transparent control/display functions?</td>
<td>YES</td>
<td>NO, imposes memory, I/O and interrupt restrictions</td>
</tr>
<tr>
<td>High-level relocatable language supported by 16K paper tape or 32K disk system?</td>
<td>YES, BSAL-80</td>
<td>NO, PL/M® requires 64K disk system</td>
</tr>
<tr>
<td>Assembly language efficiency with high level language?</td>
<td>YES, BSAL-80</td>
<td>NO, PL/M® burdened with typical compiler inefficiencies</td>
</tr>
<tr>
<td>Multi-user/Multi-task disk operating system?</td>
<td>YES, plus concurrent batch capability</td>
<td>NO, single user/single task</td>
</tr>
<tr>
<td>Portable for development, test, and field service?</td>
<td>YES, 4.6” x 6.6” x 15” 18 lbs.</td>
<td>NO, 8.5” x 19” x 17” 65 lbs. Plus terminal</td>
</tr>
</tbody>
</table>

INTEL® and PL/M® are registered trademarks of INTEL CORP. BSAL-80 published specifications.

Consider Your Field Service and Production Requirements.

Manufacturers of Innovative OEM and End User Microcomputer Systems
muPro Inc. • 424 Oakmead Pkwy • Sunnyvale, CA 94086 • (408) 737-0500

Circle 39 for Demonstration Circle 40 for Literature
time domain.
data domain.
Biomation's new logic analyzers give you both.

When your job is to interface, integrate and program a complex new digital logic system, you want as much information as you can get.

That's why we're providing a new set of tools which let you display timing information as well as logic word content—in the language of your choice.

Our new 1650-D logic analyzer gives you 16 channels at 50MHz. Our 851-D gives you 8 channels at the same speed. Accessories can now give you a logic state (1's and 0's) display of any 16 stored words; hex or octal translation; and a vector map of memory contents. The 8 and 16-channel logic analyzers feature:

- Pretrigger and delayed trigger recording
- Trigger point can be easily identified
- Latch record mode for fast pulse capture
- Combinational triggering (true or false)
- Movable display cursor that stays with the data when you switch display modes
- Display expansion, mixed or full, X5, X10 or X20

These are complex instruments and we can't give you all significant details here. But please write, call, or use the reader service card. We want to get this useful information into your hands. Biomation, 10411 Bubb Road, Cupertino, CA 95014, (408) 255-9500. TWX: 910-338-0226.

Map—each word in memory is transformed via two DAC's to form a unique dot which characterizes that word. All 512 words of the 1650's memory can be accessed for mapping. The cursor word is circled in the map as well as displayed at the top of the screen in alphanumeric form. The cursor may be moved to any of the points in the map for positive identification of that word. In addition, a map of only 16 words may be selected.

Logic state—provides memory address location, binary output of the 16 channels, and selectable octal or hexadecimal translation. 16 words are displayed at one time with the cursor address location at the top of the screen. Movement of the cursor control allows accessing any 16 words of the entire 512 words stored in the 1650-D. The display control memory can store 16 words while a different set of 16 is selected from the 1650's main memory (or a new recording is made). These two sets of 16 words can then be overlayed on the CRT. Any differences will blink and be easily identified.

Biomation's new 1650-D produces a repetitive display output reconstructing precisely 500 bits per line for a 16-line timing diagram on a conventional oscilloscope or CRT display. Separate selection of individual channel outputs allows viewing of 1, 2...16 channels at one time with automatic vertical expansion.

Creating tools for technology
Use microprogram control on your analog tester and expand capabilities at the 'drop' of a PROM. The unit grades products, too.

You can design a microprogrammable analog tester that pinpoints device failures by varying the device's threshold voltage. The tester can handle many devices or measure several parameters on any one device. And it can grade product quality.

Measurements include temperature, pressure, vibration or surface flatness (as measured by differential transducers); or, the tester can check out a magnetic memory. The firmware program is expand-

Table 1. Microcoding format for 3001 control unit

<table>
<thead>
<tr>
<th>AC₀</th>
<th>AC₁</th>
<th>AC₂</th>
<th>AC₃</th>
<th>AC₄</th>
<th>AG₀</th>
<th>MA₀</th>
<th>MA₁</th>
<th>MA₂</th>
<th>MA₃</th>
<th>MA₄</th>
<th>MA₅</th>
<th>MA₆</th>
<th>MA₇</th>
<th>MA₈</th>
<th>Memory address in hex</th>
<th>Micromemory output in hex</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET</td>
<td>0</td>
<td>000 F2 00</td>
<td>Ready to test CH 0</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>001 F4 00</td>
<td>"HIGH" detected</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>002 F6 00</td>
<td>"HIGH" detected</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>003 F8 00</td>
<td>"LOW" detected</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>004 F4 00</td>
<td>"LOW" detected</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>005 F2 00</td>
<td>Reject CH 0 because of HIGH</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>006 F2 00</td>
<td>Reject CH 1 because of LOW</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>007 F2 00</td>
<td>CH 0 Grade A</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>008 F2 00</td>
<td>CH 0 Grade B</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>009 F2 00</td>
<td>CH 0 Grade C</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>000 F2 01</td>
<td>Start CH 1</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>010 F2 07</td>
<td>Start CH 7</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>011 F4 07</td>
<td>"HIGH" detected</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>012 F6 07</td>
<td>"HIGH" detected</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>013 F6 07</td>
<td>"LOW" detected</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>014 F6 07</td>
<td>"LOW" detected</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>015 F6 07</td>
<td>Reject CH 7 because of HIGH</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>016 F6 07</td>
<td>Reject CH 7 because of LOW</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>017 F6 07</td>
<td>CH 7 Grade A</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>018 F6 07</td>
<td>CH 7 Grade B</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>019 F6 07</td>
<td>CH 7 Grade C</td>
<td></td>
</tr>
</tbody>
</table>

N.N. Patel, Senior Electronic Design Engineer, Control Data Corp., 11615 "I" St., Omaha, NE 68137.
1. This microprogrammable analog-signal tester holds test sequences in PROM (8704) and is controlled by a microprogram control unit (3001). The DAC76 d/a converters produce bipolar reference voltages for comparison with the input signals. Outputs include a Reject and a Grading signal.
Table 2. Formation of grading and reject signals

<table>
<thead>
<tr>
<th>High detected</th>
<th>Low detected</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>- - - - -</td>
<td>Once</td>
<td>C</td>
</tr>
<tr>
<td>Twice</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>- - - - -</td>
<td>Three times</td>
<td>Reject</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>A</td>
</tr>
</tbody>
</table>

A special d/a converter (PMI DAC 76) in the tester provides both negative and positive threshold voltages. An Intel microprogram control unit (3001 MCU) plus four 8704 PROMs generate both test sequences and 8-bit data for the converter (Fig. 1). And word length can be increased as necessary by adding microprogrammed memories.

The design is self-contained, or you can interface it to a microprocessor. The tester operates as follows:

Press the start switch (SW2) to set the RS flip-flop, consisting of I2 and I3, and cause the output of I2 to go high. This enables both the analog switch, SW1, and the index pulse through L1/LO, and delivers a clock pulse to the 3001. An external signal can also start things going. Start the 3001 and the RS flip-flop by pressing SW1, or again, with an external signal.

At the end of the first index, flip-flop K2 is set, which enables the index pulse through L1/I0 and thus provides a clock pulse to the MCU.

When the MCU gets the index pulse, the detecting circuit has one sequence period to generate a HIGH or LOW.

The 3001 MCU starts from state 000H. Outputs MA0 through MA8 are micromemory address bits for PROMs M0 to M8. PROM M0 outputs, except O1, provide next states A0 through A8 to the MCU. Output O1 acts as a print command. The lower and upper four bits of PROM M1 generate BCD outputs SEL0 to SEL3, Grade A to Grade C and Reject. The BCD words then drive a printer (HP 5055A).

Just two instructions needed

In addition, signals SEL0 to SEL2 feed analog multiplexer switch SW1. PROMs M2 and M8 also provide binary data to converters DAC0 and DAC1, respectively. Coding for PROMs M2 and M8 is arbitrary and, therefore, not shown in the table. The only necessary instructions are JPX and JPC (see Table 1). Next-address inputs AC4 through AC2 control the channel number, and AC1 through AC0 control the product grade.

Text sequences for channels 1 through 8 start when the index pulses are received. Converter DAC0 provides the threshold voltage during each test sequence, processed input signals and provide the HIGH or LOW to increase or decrease the threshold level.

2. Up to 32 differential-input signals can be multiplexed in the tester. The LM311s compare the reference and
and DAC1 controls the gain of the AD531 amplifier. The variable gain is programmed by M3 so that instrumentation amplifier Z4 provides 5 V pk-pk for a differential sinusoidal signal or 5 V dc for a differential dc voltage during any test sequence (Fig. 2).

The analog-multiplexer switch SW0 handles the input differential voltages on channels 0 to 7. The outputs of SW0 connect to instrumentation amplifier Z5, while op amp Z1 acts as a buffer. At the end of testing on channel 7, gate I7 goes high, since M9(01) is high, and EOT clears the RS flip-flop comprised of I2 and I3. A new test sequence is started by pressing PRG RS (SW), then START (SW). Switch SW3 inhibits the EOT signal, and the program continues from channel 0 through 7, and back.

During the test sequence, if the parameter voltage increases or decreases with respect to the threshold voltage, one of two comparators, COM0 or COM1, fires. The one that fires sets either flip-flop K0 or K1. This setting generates a HIGH or LOW signal that directs the MCU 3001 to continue the test sequence on the same channel and to decrease or increase the threshold voltage.

PROM M2 generates the Product Grade (A to C) and Reject signals (Table 2). Note that flip-flops K0 and K1 are cleared at the start of a test sequence. If no error is detected (neither a HIGH nor LOW), the PRINT COMD comes on and triggers the single shot, Y1. The HP 5055 then prints the channel number and grade in hex code.
BENDIX
BRISTLE
BRUSH
BUNCH.

Opens new horizons for PCB design.
Free and easy are now the bywords for board and board support design with the 70% to 90% reduction in mating and unmating forces offered by the new Bristle Brush Bunch connector series from Bendix.

The need for costly board support systems is minimized.
You get extended interconnection contact counts and versatility—up to 400 contacts per connector.
You can choose from a broad product line:

- 2-, 3- and 4-row Mother Board, Daughter Board, PC receptacle and Input/Output body styles.
- Removable crimp, solderless wrap, straight or 90-degree PC stud and willowy tail termination.

For complete information, contact The Bendix Corporation, Electrical Components Division, Sidney, New York 13838.
Select a character/function decoder that optimizes cost, board space and wiring. Hardware or firmware? The number of codes determines the best method.

It's easy to say, "Save time, board space and money by selecting the proper function-and-character decoder for your logic system." But the many available decoding methods—with their frequently overlapping advantages and disadvantages—make selection frustrating. Not only must you consider the usual hardwired methods, but you must also include firmware decoders that can be modified by program changes.

Nevertheless, studying the decoder methods to be described will give you a firm basis for making rational, clearcut choices.

Which decoder is best?

For recognizing up to three characters, single-character decoders are your best choice (Fig. 1). Not only are the components economical—$2.40 for three characters (Table 1)—they are also reliable.

The configuration in Fig. 1 is an example of a single-

Robert J. Stetson, Engineer, Storage Technology Corp., 9 Hampton Rd., Aurora, IL 60538.

1. An eight-input NAND gate can detect specific ASCII 8-bit codes. The NAND's output goes LOW only when the particular character or function code that the NAND is wired to recognize appears on the inputs.

2. To detect up to eight specific codes, you can use two 7442 BCD-to-decimal converters (a). The detector operates on a modified ASCII 6-bit code, and provides a decode/reset function. But the circuit can recognize characters only from the number and function character sets. However, by foregoing the decode/reset function and using the seventh bit as part of the input code (b), the circuit can select from all four ASCII character sets.

ELECTRONIC DESIGN 14, July 5, 1977
Table 1. Cost comparison of decoding circuits

<table>
<thead>
<tr>
<th>Decoding circuit</th>
<th>Recommended number of characters</th>
<th>Cost of circuit</th>
<th>Cost per character at max use</th>
<th>Special features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>1 to 3</td>
<td>$2.40</td>
<td>$0.80</td>
<td>Simplicity hardwired</td>
</tr>
<tr>
<td>Fig. 2a</td>
<td>4 to 8</td>
<td>3.04</td>
<td>0.38</td>
<td>Small/low-cost hardwired</td>
</tr>
<tr>
<td>Fig. 2b</td>
<td>16</td>
<td>5.76</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Fig. 3</td>
<td>8</td>
<td>11.04</td>
<td>1.38</td>
<td>Economy, high-speed programmable</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>9 to 20</td>
<td>13.00</td>
<td>0.65</td>
<td>Economy, high-speed programmable</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>21 to 30</td>
<td>15.90</td>
<td>0.53</td>
<td>Economy, high-speed programmable</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>128</td>
<td>74.28</td>
<td>0.58</td>
<td>Economy, high-speed programmable</td>
</tr>
</tbody>
</table>

Note: Price for 7400, 7402, 7404, 7408 and 7430 is taken as $0.36 each, and the 7442 at $1. EPROM 3702T prices used are $11, $15 and $19 each, respectively, for the economy, medium and high-speed versions.

Table 2. The ASCII 8-bit code

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Bit 3</th>
<th>Bit 4</th>
<th>Bit 5</th>
<th>Bit 6</th>
<th>Bit 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>0011</td>
<td>0011</td>
<td>0011</td>
<td>0011</td>
<td>0011</td>
<td>0011</td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
</tr>
<tr>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
</tr>
<tr>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
</tr>
<tr>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
</tr>
<tr>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>

Character decoder. It detects an even-parity ASCII Space code (Table 2). When bits 1, 2, 3, 4, 5, and 7 are LOW and bits 6 and 8 are HIGH, the output of the 7430 NAND gate goes LOW.

Above three characters, however, the number of chips, the PC-board area and interconnection effort needed for single-character decoders all become much too large. So, for decoding from four to eight characters, use a multicharacter decoder.

The simplest works with a 6-bit ASCII code (Fig. 2a). Input bits 1, 2 and 3 go to one 7442 BCD-to-decimal converter, and bits 4, 5 and 6 to another. The converter outputs represent two-digit octal numbers—00 to 77. When combined by a separate two-input 7402 AND gate for each character, these octal outputs provide HIGH outputs for selected 6-bit ASCII codes.

In 6-bit ASCII, since bits 7 and 8 of the standard 8-bit ASCII are left out, there is no parity feature (bit 8). Also, selections from only two of the four available function/character sets—for example, numbers and nontyping functions—can be identified (Table 2).

The Decode input to the control latch of Fig. 2a must...
4. The decoding capability of an EPROM can be expanded with two BCD-to-decimal converters. Up to 20 codes can be detected by separating the eight bits of an EPROM's output into two 4-bit hexadecimal numbers.

5. An 8-bit-output EPROM can detect up to 30 ASCII codes, when combined with four BCD-to-decimal converters and two inverters. Two extra outputs can be used as flags.

6. All 128 ASCII codes can be recognized with a configuration of four EPROM circuits, each arranged as in Fig. 5, and one EPROM circuit, as in Fig. 3.

be pulsed LOW to enable the decoder. With a circuit such as a universal asynchronous receiver transmitter, the latch is needed because the last character received must remain on the output of the UART and be decoded until the UART is reset. Where the duration of the output signal is not a factor, the latch may be eliminated and the 7442's D input grounded.

Or, as in Fig. 2b, the D input can receive bit 7, and operate with a 7-bit ASCII code. In this way, selections from all the ASCII characters or functions can be detected. However, bit 8, the parity bit, is still ignored.

Firmware flexibility a bargain?

To accept a full ASCII 8-bit input, use a firmware decoder. An eight-character firmware decoder (Fig. 3) consists of an electrically programmable read-only memory (EPROM) that can accept eight input bits and provide a HIGH output for a desired code.
With the EPROM shown, you can program just eight decoded outputs. When programmed to detect a Null code—all input bits are LOW—only output D0 goes HIGH; outputs D0 through D0s remain LOW. Similarly, outputs that detect the other illustrated ASCII functions—EOT through DEL—go HIGH as their respective codes are applied to the EPROM's input, and the other outputs remain LOW.

Though the firmware circuit is more expensive than the circuits of Fig. 2, the flexibility of this decode arrangement can make it a better bargain. You can easily plug-in differently programmed chips and detect different codes, as well as program the DO output to detect parity errors. Of course, with parity detection you sacrifice one of the eight EPROM outputs. As a result, the other functions may now have odd (or even) parity, and the parity-defective codes may be programmed to appear at, say, output DO.

The Intel 1702A and similar EPROMs can be erased by exposing them to 2523-A ultraviolet light, and then electrically reprogrammed. A quartz lid on such units permits exposure to the ultraviolet.

The hardware of Fig. 2 can be used to expand the firmware of Fig. 3 to detect 20 codes (Fig. 4). If all 7442 inputs are HIGH, the 7442s don't activate any of their outputs. Consequently, you should program the EPROM so that all unused input codes produce a 11111111 output.

For 21 to 30 characters, however, you need two additional 7442s with an inverted bit to their D lines (Fig. 5). The EPROM's 8-bit output will then be able to represent two 4-bit hexadecimal numbers and recognize 30 characters with two codes reserved as "flags."

The flag signals can serve, for example, to disable character outputs to a printer, when nonprinting control functions are detected. Or they can limit output duration from a decoder by resetting a UART's output (as in Fig. 2). Note the 7408 gates that serve as EPROM-output drivers: The 1702A EPROM can drive only a single TTL load.

To go all the way and decode all 128 ASCII-8 codes, use the method in Fig. 6. Except for their programming, the EPROM circuits are identical to those in Figs. 3 and 5.

Don't exceed your needs

EPROM prices vary, and it pays to shop around—Mostek, for example, has a direct replacement for the Intel 1702A units illustrated. EPROM access time is a major selection consideration and affects cost substantially. Don't buy more than you need. Note the effects of using economy, medium and high-speed versions within the same type number (Table 1).

Still, you may elect to use the decoders in Fig. 2 for more than eight characters. Or, you may decide to use Fig. 1, repetitiously, beyond three characters. Bear in mind that special requirements may override all the factors considered here and dictate the circuit you use.
The GOLD BOOK

THE MOST COMPREHENSIVE, MOST COMPLETE ELECT

7,648 MANUFACTURERS ARE LISTED

Want to know more about a company? The GOLD BOOK lists almost twice as many as EEM.

U.S. DISTRIBUTORS

Local distributors are listed by geographical area under each manufacturer — turn to the separate Directories of Distributors if you need more data.

DATASCAN ELEC PRODS

DATASCAN ELECTRO PRODS PROD. 355G Middlesex Ave. 3

Woburn MA 01888. Tel (978)478-2800. Q

 Huebner Mfg. Co. Inc. 630. 650. 700. 750.

MANUFACTURERS DIRECTORY

U.S. DISTRIBUTORS

Local distributors are listed by geographical area under each manufacturer — turn to the separate Directories of Distributors if you need more data.

DATASCAN ELEC PRODS

DATASCAN ELECTRO PRODS PROD. 355G Middlesex Ave. 3

Woburn MA 01888. Tel (978)478-2800. Q

Huebner Mfg. Co. Inc. 630. 650. 700. 750.
makes your life easier

RONICS MANUFACTURERS DIRECTORY IN THE WORLD!

CATALOG PAGES AVAILABLE IN SECTION 2

Boldface type and page reference numbers steer you toward the company's catalog pages in Section 2.

KEY PERSONNEL FINANCIAL DATA

Many companies have included financial data. You can tell the size of the company from dollar volume, number of employees and number of engineers.

SALES OFFICES & REPS — USA AND FOREIGN

A total of 83,930 sales outlets are listed under manufacturers. Both U.S. and foreign sales offices and reps are included.

COMPLETE

Company name, street address, city, state, zip and phone. If provided by the company, you'll also find TWX, TELEX, cable address, toll-free numbers, facsimile equip.

LOOKING FOR ELECTRONICS MANUFACTURERS?

LOOK FIRST in Electronic Design's GOLD BOOK
Stop
Look
Listen
Measure

.4 TO 1000 MHz SPECTRUM ANALYZER

Texscan's new Model AL-51 combines the operating convenience of small battery-operated portable instruments with the high performance features usually available only in higher priced laboratory instruments. The AL-51 will display 60 db amplitude variations in signal level. Frequency dispersion is continuously variable, 2 kHz/div. to 100 MHz/div. In order to achieve the highly stable 500 Hz narrow band measurement capability, a phase lock mode of operation is included. Crystal controlled frequency identification markers at 1, 10 and 50 MHz are included. Housed in a rugged carrying case, the instrument is completely portable, weighing only 27 lbs. including battery. The AL-51 will operate continuously for 3 hours on internal battery. Provision for external 12V DC and 115/60 Hz or 230/50 Hz is included.

write for our catalog
At last...a Logic State Analyzer that practically asks you what to analyze and how to display.

A few simple pushbuttons, an interactive display, sophisticated microprocessor-based intelligence...now they're all combined in HP's powerful new 1610A Logic State Analyzer. The result is a simplified "menu" approach to instrument setup, ability to choose highly complex trace specifications with a few simple keyboard entries, program-flow displays that are easier than ever to interpret, and an instrument that virtually self tests.

In addition, now you can trace complex branches and nested loops; count the number of states or the time interval between two words to debug or optimize programming; and drive HP Model 9866A or 9866B printers for hard-copy output of test results and set-up specifications.

The new 1610A, priced at $9500*, provides fast setup and easy trouble-shooting in nearly any logic system having data rates to 10 MHz. Your local HP field engineer has the complete story. Give him a call today.

* Domestic U.S.A. price only.

Complex measurement capability. Fields and moveable cursor in Trace Specification mode simplify selection of trigger conditions and trace qualifiers. The ability to define up to seven sequential 32-bit words makes it possible to trace a specific path in complex branched programs. For further conditioning you can define the number of times each sequential state is to occur to allow the analyzing of looped or nested loop programs. And you can define up to seven states or groups of states for selective trace, simplifying data analysis and reducing the need for deep memory.

Setup ease. Inverse-video fields and moveable cursor in Format Specification mode direct you in defining clock slope, positive or negative logic and display formats (Hex, Binary, Octal or Decimal). You can also assign alphabetic labels to groups of data bits acting as a unit, greatly simplifying setups and display formatting. In addition, the display verifies probe-lead continuity and signals node activity.

Simplified interpretation. List Display shows you trigger words plus the program flow you specified in the set-up specifications. Now you can easily compare operating software to original source listings or, in the trace-compare mode, to program flow stored in the 1610A memory.

System overview. Graph Display, showing data magnitude (y axis) vs. time for all 64 words in memory, gives you a system overview. Keyboard entries establish upper and lower y-axis scale values, and moveable intensified dots let you select specific areas for list display.

HEWLETT-Packard

1507 Page Mill Road, Palo Alto, California 94304

For assistance call: Washington (301) 948-6970, Chicago (312) 255-9800, Atlanta (404) 955-1500, Los Angeles (213) 877-1282

CIRCLE NUMBER 47
Obtain a compressed counting range with a variable-modulus counter

Quite frequently pulse-train inputs to programmable devices such as microprocessors exhibit wide dynamic ranges. Since, in most cases, resolution requirements at higher frequencies are not as stringent as at lower rates, a nonlinear frequency transfer function can relieve the burden on the system intelligence. A variable-modulus counter to compress the counting range can perform such a task (Fig. 1).

The circuit consists of two presettable up/down counters. Counter 1 counts in the down mode, while Counter 2 counts up. When the output of the latter presets the former, a varying-modulo counter is achieved: The modulus of the down counter becomes equal to the number previously loaded into it from the up counter.

The range can be expanded either by cascading the circuit or by increasing the lengths of the counters. And various complex transfer functions can be achieved by inserting appropriate logic or a PROM between the outputs of Counter 2 and the inputs of Counter 1.

Charles B. Mitchell, Senior Engineer, National Semiconductor Corp., 2900 Semiconductor Dr., Santa Clara, CA 95051.

1. Nonlinear counting is achieved when the up counter loads the down counter and thereby determines the down-counter's modulus.

2. A compressed output of the number of input clock pulses is obtained at the down counter's carry output, C01. This output is the sum, N, of the arithmetic progression of the input clock pulses, n.
Gates introduces the future in energy cells.

There's now a new energy source that's a superb alternative: Rechargeable, sealed lead-acid batteries from Gates.

We call these batteries the future in energy cells. And for good reason.

They have all the product advantages you need plus economic advantages that may well give a new dimension to your product pricing.

Advantages: Gates Energy Cells are as compact as nickel cadmium or gelled type cells. And they are completely sealed, so that no acid vapor can leak out (they also include a self-sealing vent for extra safety). Gates Energy Cells provide low internal impedance for high discharge rates (more than 100 amps from the D cell and 200 amps from our X cell for short periods of time). And can be operated or stored in any position.

Gates Energy Cells offer great packaging flexibility. In fact, our individual cell availability allows you to choose your own specific voltage (in 2-volt increments) and current, as well as configuration.

Just as important as what Gates Energy Cells have to offer is what they don't have to offer. Like outgassing problems. Or cell reversal. Or "memory" problems.

Because Gates Energy Cells are made from low-cost materials that are readily available, they're very high in watt-hr. per dollar value. Which means that if you specify them, you'll probably save your company more than a few dollars. And make yourself into something of a hero in the bargain.

To find out more about the future in energy cells, circle our reader service number or write us. We'll send you free literature containing features, application information, ratings and specifications. George Sahl, Gates Energy Products, Inc., 1050 S. Broadway, Denver, CO 80217. ED-7
Ideas for design

555-timer circuit generates ultra-low-frequency signals

Using only small capacitors, the three 555 timers in the circuit of Fig. 1 can generate ultra-low frequencies—as low as 10^{-3} Hz.

Timers T_1 and T_2 operate in monostable modes, and T_3 operates in a free-running astable mode. During the interval when T_1's pin-3 output is LOW, transistor Q_1 conducts and capacitor C_1 charges through R_3 (Fig. 2). When the T_1 output goes HIGH, Q_1 cuts off and C_1 maintains the previously accumulated charge. This process repeats as T_1 oscillates until C_1 charges to $(\frac{2}{a})V_{cc}$, which forces T_1's pin-3 output LOW and triggers T_1's pin 3 HIGH via C_2.

Now, the roles of T_1 and T_2 are interchanged and the process is repeated, with C_4 charging through Q_2 and R_4.

The time required for C_3 and C_4 to charge to $(\frac{2}{a})V_{cc}$ is determined by the following equations:

$$T_1 = 1.1R_3C_3 \left[2+(R_s/R_6)\right]$$

and

$$T_2 = 1.1R_4C_4 \left[2+(R_s/R_6)\right].$$

Therefore, the frequency is

$$F = \frac{1}{T_1 + T_2 - 1}.$$

And when $R_3C_3 = R_4C_4$, then

$$f = \frac{1}{2.2R_3C_3 \left[2+(R_s/R_6)\right]}.$$

The over-all frequency is adjusted by R_5, and the “half” periods by R_3 and R_4. With $R_3 = R_4 = 500 \, k\Omega$, $C_3 = C_4 = 2 \, \mu F$

and

$$R_5/R_6 = 48,$$

then

$$F = 9 \times 10^{-4} \, Hz.$$

Cedomir Milosavljevic, Elektronika Industrija, Research & Development Institute, 18000 NLS, Yugoslavia.

CIRCLE NO. 312

1. Ultra-low frequencies can be generated with this circuit, and only small capacitors are needed.

2. Timer T_3 runs freely and builds voltage across C_3 in steps until $(\frac{2}{a})V_{cc}$ is reached. Then T_1 turns on and C_4 is charged in steps. The cycle continuously repeats between T_1 and T_2.
Same great name. Same great color.
And now a neat new way to definitive display performance.

DOT MATRIX

Consider the new Noritake-Ise dot-matrix line-up—
9, 10, 16, 20 and 40-character line displays.
Variety aimed at giving you more design potential.
Or consider our unique 400-dot graphics display
with 17m/m depth and low 35V drive rating.
It's aimed at helping you think low voltage,
portability and economy all at the same time.

In short, consider Noritake-Ise period
for dot matrix (or segmental) displays.
Itrons always help you design more competitively.

DC209A2
Dimension: 41(H) x 208(W) x 10.5(D)mm
Character Size: 9.0(H) x 6.3(W)mm

DC95A2
Dimension: 24(H) x 75(W) x 7.2(D)mm
Character Size: 5.05(H) x 3.55(W)mm

FG6486
Dimension: 29.5(H) x 56.5(W) x 7(D)mm
Character Size: 8.0(H) x 4.2(W)mm

DM400A1
Dimension: 114(H) x 130(W) x 17(D)mm

FG12051
Dimension: 39(H) x 138(W) x 12.5(D)mm

FG209M2
Dimension: 41(H) x 208(W) x 10.5(D)mm
Character Size: 9.0(H) x 5.4(W)mm

NORITAKE CO., LTD.
Electronics Division
1-1, Noritake-Shimachi, Nakagakuen
Nagoya-shi, Japan
Phone: NAGOYA (052) 561-7111
Telex: J59738 NORITAKE

Electronics Office (U.S.A.)
22410 Hawthorne Blvd.
Torrance California 90605, U.S.A.
Phone: (213) 373-6704
Telex: 230674HORI

F.R. Germany
NELMULLER GmbH & Co. München Z.
Karlstrasse 55, F.R. Germany
Phone: 0921-421
Telex: 522106

U.K.
ITC Component Service
Refuge House, Riverfront
Enfield, Middlesex, England
Phone: 01-363-7459
Telex: 21637

Hong Kong
Room 5015, Wing Loon Bldg.
24-26 Stanley St., Hong Kong
Phone: 5-232400 Telex: HKB2136
Telex: 521-0239

Itron®

Manufacturers:
ISE ELECTRONICS CORP.
P.O. Box 40, Ise-shi
Nagoya City, Japan
Phone: (052) 564-1345
Telex: 496652

Electronic Design 14, July 5, 1977

CIRCLE NUMBER 50
Ideas for design

Schottky diodes rectify efficiently in a bicycle-lighting system

For bicycle-lighting systems, four half-C-sized nickel-cadmium cells can fit neatly in the space designed for two ordinary C-sized carbon-zinc batteries and provide a 5-V, 0.75-Ah source. Change the No. 14 lamp normally used with the two C-cells to a No. 27 (4.9 V at 0.3 A) or No. 425 (5 V at 0.5 A) lamp and you can convert a candle glow to a blazing torch that permits the bicycle night-rider to travel with greatly increased safety.

Charging the nickel-cadmium cells with a 6-V-dc power supply is straightforward. However, make sure to limit the charging current to less than 70 mA with a suitable series resistor. Though this arrangement is satisfactory, charging the cells automatically while riding is far more convenient.

For an automatic lighting system that produces little drag, the Sturmey-Archer Dynohub generator is recommended over friction driven types. But for either type the circuit in the figure can be used to rectify and regulate the battery-charging current. Friction-driven generators, although they can deliver more power and are cheaper, cause substantial drag and produce wear on the tires.

Conversion efficiency of the circuit is high because Schottky diodes (VSK-140) reduce the bridge-rectifier voltage drops from about 1.2 V developed across ordinary silicon diodes to less than 0.6 V. Charging current with the light switched off is limited to 60 mA by the transistor. A VSK-140 diode bypasses the current-limiting transistor when the bicycle generator can’t provide full lamp current. The action of this diode allows the circuit to switch smoothly from battery power to generator power, and vice versa.

The only critical component value is R_1. It is chosen to limit charging current with the lamp switched off to less than 70 mA, when the bicycle is moving at top speed. Although R_1's initial value can be determined by merely spinning the generator’s drive wheel, road testing should be used to verify proper operation.

Chesley H. Looney Jr., Equipment Management Officer, NASA, Goddard Space Flight Center, Greenbelt, MD 20771.

CIRCLE NO. 313

SEND US YOUR IDEAS FOR DESIGN. You may win a grand total of $1050 (cash)! Here’s how. Submit your IFD by circling the number for your selection on the Reader Service Card at the back of this issue.

IFD Winner of March 1, 1977
Harry L. Latterman, Digital Design Engineer, Courier Terminal Systems, 2202 E. University Dr., Phoenix, AZ 85008. His idea “TTL Oscillator Interfaces Data for Display by a Television Set” has been voted the Most Valuable of Issue Award.

Vote for the Best Idea in this issue by circling the number for your selection on the Reader Service Card at the back of this issue.

ELECTRONIC DESIGN cannot assume responsibility for circuits shown nor represent freedom from patent infringement.
We're offering you a chance to evaluate Gould switching power supplies without obligation for two good reasons: (1) you know good design, and (2) only you know what your system needs. You'll find that our switchers achieve maximum efficiency in the least space at a minimum cost. As a result, our line offers you a lot of benefits for your system:

- off-the-shelf delivery
- 36,000 hours MTBF
- switching at 33 kHz
- 5 year warranty
- 28 m/sec hold-up time
- 0.1% line/load regulation
- full output at 50°C ambient
- remote sensing and voltage programming
- less than 50 mV peak to peak ripple

But the truth is, you really have to test one of our switching power supplies yourself to appreciate how well our switcher works with your design.

So tell us what you need to fully evaluate our capabilities. Our salesman will deliver the appropriate unit from stock without any obligation to buy.

For information contact Gould Inc., Power Supply Dept., 3631 Perkins Ave., Cleveland, Ohio 44114.

For brochure call toll free at (800) 325-6400 Extension 77
In Missouri: (800) 342-6600

GOULD

CIRCLE NUMBER 46
5,280 PRODUCT HEADINGS & CROSS REFERENCES
Almost 2,000 more than EEM to speed your first-step search for products and their suppliers.

CATALOG INFORMATION AVAILABLE IN SECTION 2
Boldface type and page references steer you immediately to catalog data the manufacturer has supplied for you in Section 2 of the GOLD BOOK.
makes your life easier

ECTRONICS PRODUCT DIRECTORY IN THE WORLD!

IS THE COMPANY A SERIOUS MANUFACTURER?
This symbol, "•", separates the serious from the would-be manufacturer. It means the company has submitted literature to us describing the product.

COMPLETE
Company Name, Street Address, City, State, Zip and Phone.
No need to flip pages or look in another directory to contact each supplier.

SPEED YOUR SEARCH FOR SUPPLIERS
Here's what engineers say about the GOLD BOOK: "GOLD BOOK is my Bible." "The best compilation of electronics information I've seen." "Very good, useful in my work and a time saver." "Easy to use." "Very good to locate manufacturers; I use it several times each day." "Used constantly to identify local reps and distributors." "It's the first place I turn to for suppliers." "The best! My first reference." "My most-used directory."

WANT TO FIND OUT WHO MAKES WHAT?
LOOK FIRST
in Electronic Design's
GOLD BOOK
Our ultra-precision MAR resistors match the performance of precision wirewound, plus they give the inherent advantages of TRW metal film.

Like smaller size, better frequency response, higher resistance values and lower cost.

And MAR's are not "selected" from a lower grade process. The entire facility was designed to yield only high accuracy devices.

And it DOES:

MAR axial lead family
Tolerances to ±0.01%. TC's ±5 to 25 ppm/°C. Where speed and precision count, the MAR does it all. In a dimensionally clean, axial lead molded package.

With the non-measurable noise, low voltage coefficient, load stability, resistance/size ratio and reliability of our metal film process.

Plus MAR matched sets and packaged networks have tolerance and TC matching to ±0.005% and 1 ppm/°C.

Specifications

<table>
<thead>
<tr>
<th>IRC Type</th>
<th>Resistance Range (Ohms)</th>
<th>Temperature Coefficients -20°C to +85°C</th>
<th>Tolerances (±%)</th>
<th>Power Rating** @ 85°C (Watts)</th>
<th>Voltage Ratings (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR3</td>
<td>20 – 100K</td>
<td>T10 = 15</td>
<td>1.00, 0.50, 0.25, 0.01</td>
<td>1/8 1000</td>
<td>200</td>
</tr>
<tr>
<td>MAR5</td>
<td>20 – 250K</td>
<td>T13 = 10</td>
<td>0.10, 0.05, 0.02, 0.01</td>
<td>1/8 250</td>
<td>300</td>
</tr>
<tr>
<td>MAR6</td>
<td>20 – 500K</td>
<td>T16 = 5</td>
<td>0.01</td>
<td>4 500</td>
<td></td>
</tr>
<tr>
<td>MAR7</td>
<td>20 – 1 Meg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Wider ranges available, contact factory.

**Higher power ratings available. Contact factory.

AR40 radial lead devices
This plug in configuration offers absolute accuracy and documented reliability. TC's to ±2ppm/°C, tolerances to ±0.01% are standard.

Plus, AR40 uses only .03 in.² PCB area including lead attachment, and has the same mechanically rugged terminations used on all MAR resistors.

Specifications

<table>
<thead>
<tr>
<th>IRC Type</th>
<th>Resistance Range (Ohms)</th>
<th>Temperature Coefficients -20°C to +85°C</th>
<th>Tolerances</th>
<th>Power Rating</th>
<th>Voltage Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR90</td>
<td>1M – 10M</td>
<td>T10 = 5</td>
<td>1.0, 0.5, 0.25, 0.1, 0.05</td>
<td>.5W</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T13 = 10</td>
<td>0.1, 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T16 = 15</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Wider ranges available. Contact factory.

Need prototypes fast?
TRW has on stream another big plus—a short order production line (in addition to our regular facility) designed to give you quick delivery on bread board quantities. Delivery to satisfy your needs, typically 2-3 weeks.

For more information on ultra-precision resistors, contact TRW/IRC Burlington. TRW/IRC Resitors, an Electronic Components Division of TRW, Inc., 2850 Mt. Pleasant St., Burlington, Iowa 52601. (319) 754-8491.
Power supplies.

The HE200 Series Power Supplies offer the design engineer a low-cost, highly efficient alternative to the size, weight and heat generation problems normally associated with series-pass regulated supplies. Using state-of-the-art switching techniques and CMOS logic, the HE200 Series Supplies achieve 75% efficiency at full load.

All models in the HE200 Series have the "footprint" and mounting dimensions of the Lambda package size “B” supplies—a feature that allows the engineer to experiment with high-efficiency techniques in existing designs. In new designs, the engineer can take advantage of the small size (1.2 watts per cubic inch) and light weight (½ ounce per watt) of the HE200 Series Supplies.

The highly reliable HE200 Series Supplies are all short-circuit proof, over-voltage protected, available in 115 and 230 VAC input models, and backed by a full two-year warranty.

Finally, the HE200 Series offers the design engineer considerable savings: 5 volts, 10 amps for $195; 5 volts, 20 amps for $295; and ±15 volts, 1.5 amps for $195 in single quantities.
Four very small ways to improve on your PC design.

With four types of switches—rockers, pushbuttons, toggles and DIPs—Cutler-Hammer offers one of the industry’s broadest and most unique selections of PC subminiatures.

Each of the hundreds of available styles provides the reliability you’ve come to expect from Cutler-Hammer. With ratings to 6 amps, each conforms to standard circuit board mounting requirements.

PC switches, along with accessories and decorative hardware, are distributor stocked for local availability. And since most are manufactured in the United States, we offer fast reaction time on solder lug and wire wrap terminal variations, as well.

To improve your next design in any number of small ways, contact your Cutler-Hammer Sales Office or Switch Distributor.
New products

Metal-film 2% 1/4-W-sized resistors cover 10 Ω to 22 MΩ and handle 350 V to 1/2 W

MEPCO's GPR 5000X general-purpose resistors are the only metal-film units with a 350-V maximum working voltage and 2% tolerance that cover the total 10 Ω to 22.1-MΩ range in one 1/4-W body size.

Allen-Bradley's cermet Type CC, 2% resistors are almost identically rated —same size and resistance range—and they have a lower TC (±100 ppm/°C vs ±200 ppm/°C for the GPR 5000X). But the working voltage is a lower 250 V. A spokesman for Allen-Bradley admitted that the company prefers to concentrate on its 1%, ±50 to ±100 ppm/°C units, although the 2% units are readily available on order. He wouldn't give a price, but said that it is "competitive."

Other resistor manufacturers, such as Corning, TRW/IRC and Dale, offer competitive metal-film resistors, but they don't cover the total resistance range, and they come in larger body sizes for the higher ranges.

Although the MEPCO resistors' body size, 0.3 (L) × 0.098 (D) in., max corresponds approximately to the MIL-R-22684, RL07 1/4-W-sized resistors, the 5000X resistors can handle 1/2 W at 70 °C and 1/4 W at 125 °C. Therefore in some applications, this one size can cover both the RL07 and RL20 (1/2 W) sizes.

To give the user an idea of the performance he can expect of the resistors, MEPCO has supplied a comparison with MIL-R-22684 requirements (see table). But careful: the term "typical" in the table isn't defined.

In addition to these apparently excellent stability properties, metal-film resistors generally provide better overall operating specs than the closest performance rival—carbon-film resistors: low noise, about 0.5 µV/V vs 10 µV/V at 1 MΩ; low voltage coefficient, 0.05 ppm/V vs roughly 5 ppm/V; and tighter TCs, ±50 to ±200 ppm/°C max vs ±200 to ±500 ppm/°C.

Available from stock, in million quantities the GPR 5000X resistors cost $27 vs approximately $32 per thousand for equivalent 2% resistors—over narrower resistance ranges—from Corning, TRW or Dale, according to MEPCO. Carbon-film resistors, to about 1 MΩ with a ±500 ppm/°C TC, are priced at about $20 per thousand.

MEPCO also offers 1% versions of the metal-film units (SPR 5000X), which are somewhat lower in cost than Allen-Bradley's 1% Type CCs. MEPCO's resistors sell for about $36 per thousand; Allen-Bradley's go for about $42 per thousand.

MEPCO Corning Dale

Johanson/Monolithic Dielectrics Div., Box 6456, Burbank, CA 91505. (213) 848-4465. $0.40 to $3.85 (1000 qty.); stock to 6 wks.

High-voltage ceramic chip capacitors operate to 4000 WVDC. Available in NPO/C0G or BX/X7R dielectrics, the units come in five sizes from 0.15 × 0.15 × 0.12 in. to 0.54 × 0.40 × 0.12 in. with capacitance values up to 0.82 µF. Standard models are rated 1000, 2000, 3000 and 4000 WVDC.

Electronic Design 14, July 5, 1977
If you have the ENI Model 440LA ultra-wideband solid state power amplifier, all you need is a laboratory signal generator and you've got the ultimate in linear power for such applications as RFI/EMI testing, NMR/ENDOR, RF transmission, ultrasonics and more.

Capable of supplying more than 40 watts of RF power into any load impedance, the 440LA covers the frequency range of 150 kHz to 300 MHz.

We could mention unconditional stability, instantaneous failsafe provisions and absolute protection from overloads and transients, but that's what you expect from any ENI power amplifier, and the 440LA is no exception!

Our catalog contains complete specifications on the 440LA as well as the entire line of ENI amplifiers, and is available without obligation, of course.

For further information or a demonstration, contact ENI, 3000 Winton Road South, Rochester, New York 14623. Call 716-473-6900, or Telex 97-8283 ENI ROC.

COMPONENTS

Precision potentiometers linear to 1%

Bourns, Inc., 1200 Columbia Ave., Riverside, CA 92507. (714) 781-5122. About $6 (OEM qty); stock.

A pair of 1%-linearity potentiometers, single-turn Model 6537 servomount and Model 6637 bushing-mount, are built with few parts and simple construction. Other features include a one-piece precious-metal wiper, instead of a less-reliable two-piece type; silver deposited between the molded-in terminals and element to protect against shock; and low-temperature fired and thermally swaged connections in place of solder, conductive epoxy or silver cement.

CIRCLE NO. 308

Tiny relay handles surge currents to 100 A

Grayhill, 561 Hillgrove Ave., La Grange, IL 60525. Ed Langille (312) 554-1040. $12.60 (100 qty); stock.

Taking up less than 0.6 in. x the Micro Cube solid-state relay offers a switching capability of 2.5 A at 25 C and withstands a 100-A surge for one cycle. A height of only 0.475 in. allows the relay to be mounted on racked PC boards. The optically isolated unit can take 400-V transient pulses and has a 3000 V/µs dV/dt rating. The unit is designed to work with inductive loads. The logic-compatible input circuit operates on 3 to 5 V dc with a 14-to-30-V-dc range available as an option. Termination is on 100-mil centers.

CIRCLE NO. 309

Miniature pots have rotary switches

Centralab, P.O. Box 855, Highway 20 West, Fort Dodge, IA 50501. (515) 955-8334. $0.75 (1000 qty); stock.

The Series-900 miniature potentiometers now come with rotary switches. Designed for snap-in installation, the units are rated for 6.5 A at 1.5 V dc and 0.2 A at 45 V dc. The snap-action switches are spot normally open or normally closed at the cw or ccw end. Over-all mounted dimensions are 7/8 in. dia x 1/2 in. Hot stamped numbers on the colored thumbwheel edge are available as an option.

CIRCLE NO. 310

At 20 kHz, transformer shrinks size and weight

Stevens-Arnold, 7 Elkins St., South Boston, MA 02127. (617) 268-1170. From $12.75 (100 qty); 4 wks.

IT-3573 20-kHz converter transformers are only 1/20th the size and 1/40th the weight of equivalent 200-W, 60-Hz transformers. They measure 1.81 X 1.56 X 1.375-in. seated height and weigh 4 oz. Two columns of PC header pins, spaced 0.9-in. apart, provide the connections. An efficiency of 98% permits up to 200 W of output power with a single secondary and 150 W with multiple secondaries. The transformer operates from a nominal 100 V (200 V max) at a 20-kHz square-wave input. Optional shielding is available.

CIRCLE NO. 320

Mercury-film relay contacts don’t bounce

InResCo, 503 Adamston Rd., Brick Town, NJ 08723. (201) 477-5544. $3.25 (1000 qty); 4 to 6 wks.

The HGM bounce-free, mercury-film relay is SPTD and handles rated loads of 2 A at 5 V dc, 1 A at 24 V dc or 0.1 A at 200 V dc. Maximum contact breakdown is 600 V dc; maximum switch cycle rate is 100 cycles; and the dc contact resistance is 0.15 Ω with a resistance stability of 0.02 Ω. The relay is shock resistant to 50 g's and vibration resistant to 20 g's (10 to 2000 cycles). Designed for PC-board mounting, the relay measures 3/4 X 5/8 X 3/4 in.

CIRCLE NO. 321
Three ways to make your systems more cost-effective:

We make three different disc storage drives for OEM use. Each has been designed to make it the most cost-effective drive you can use. To help you build computer systems that perform better for your customers; return more profit to your company.

Our 550 Flexible Disc Drive is better in a lot of little ways; adding up to a lot of big advantages for you. Double density is standard. Its rugged, molded FRP chassis combines high stability with low weight and small size. Special power saver circuitry. And a failsafe door latch that assures easier, damage-free handling of flexible discs. It all adds up to a big improvement in cost/performance and reliability.

Our 601 Disc Storage Drive is built to buy, install and forget. Utilizing Winchester technology, the sealed environment for the rotary actuator, heads and media provides protection from contamination. Capacity is easily expandable from 25 to 75 megabytes. A fast, 32 msec average access time. And no scheduled maintenance. Just perfect for the imperfect world in which your system will have to perform.

Our 677 Disc Storage Drive is the most widely used 100/200 MB disc drive made. What's made it so is performance based on over 200 million operating hours and our seven years experience as the largest independent manufacturer of drives, advanced heads and computer media. The 677 has better circuit designs. Easily-serviced components. Improved power and air circulation systems. And a faster access time. When performance and reliability count, the 677 proves it's experience that really counts.

Memorex 550, 601, 677 drives. The most cost-effective disc storage available for OEM use. Just use the handy coupon and we'll prove it to you.
INSTRUMENTATION

Graphics terminal plots, stretches, zooms & pans

P&A: See text.

The first graphics terminal from HP, the 2648A, weighs in with a number of features usually associated with more expensive, dedicated machines:
- Raster scanning for a bright, selectively erasable display.
- Independent memories for alphanumerics and graphics, which permit a lot of leeway in picture and dialogue manipulation.
- Automatic plotting of tabular data, which avoids extensive and costly software.
- Picture zooming to as much as 16-times magnification and panning of any picture portion not displayed.
- "Rubber-band" capability for drawing and stretching lines to any length in any direction.

All those features will set you back just $5500, yet the μP-controlled (8080) 2648A offers even more—like a data-communications interface (RS 232), user-defined keys and off-line editing, among other features.

The unit's 5 x 10-in. display presents data in a 24-line x 80-column format, with alphanumerics made up of 9 x 15-dot cells. Sixteen 16-k RAMs provide a graphics resolution of 360 x 720 dots. For still more graphics power, you can spend another $1600 and get two built-in tape drives with 220 kbytes of storage.

Four-in-one analyzer offers 27 test modes

Series III $8900. 45-60 days.

Model FFT 512/S-Series III spectrum analyzer combines four capabilities in a single instrument: a real-time narrowband spectrum analysis covering the 0- to-100-kHz range; 1/3-octave and full-octave analysis, both implemented by banks of precise digital filters; and tunable rms voltage/power measurements displayable as V rms, (V rms)², and dB V (relative to 1 V or to a selected reference). The four capabilities provide some 27 modes of operation.

Unit interfaces scope to plotter or recorder

An automatic hard-copy output unit, the 4002, used with the company's 0S4000 digital storage scope, acts as an interface between the scope and an output plotter. The 4002 is activated every time the scope stores a trace. It selects the printout condition and gives a single output trace at a speed pre-selected to suit the characteristics of the plotter. After completing a print-out, the scope automatically resets to the "armed" condition and awaits a further input.

Call your nearest ISC sales representative.

ALABAMA: Huntsville
W. A. Brown Inst. Inc. 205/539-4411

ARIZONA: Phoenix
Thorson Co. 602/956-5300

CALIFORNIA: Goleta
Thorson Co. 805/964-8751

CALIFORNIA: Los Angeles
Thorson Co. 213/476-1241

CALIFORNIA: Mountain View
Thorson Co. 408/964-9300

CALIFORNIA: San Diego
Thorson Co. 714/298-8385

CALIFORNIA: Tustin
Thorson Co. 714/544-5121

COLORADO: Denver
Thorson Co. 303/759-0809

FLORIDA: Ft. Lauderdale
W. A. Brown Inst. Inc. 305/723-0766

FLORIDA: Orlando
W. A. Brown Inst. Inc. 305/425-5505

FLORIDA: Valparaiso
W. A. Brown Inst. Inc. 904/678-7932

GEORGIA: Atlanta
W. A. Brown Inst. Inc. 404/939-1674

ILLINOIS: Arlington Hts.
Future Systems 312/640-6091

LOUISIANA: Gretna
W. A. Brown Inst. Inc. 504/366-5766

MARYLAND: Bethesda
Bartlett Assoc. 301/656-3061

MASSACHUSETTS: Framingham
Bartlett Assoc. 617/879-7530

MICHIGAN: Madison Hts.
WKM Associates 313/476-1241

NEW MEXICO: Albuquerque
Thorson Co. 505/265-5555

NEW YORK: White Plains
Bartlett Assoc. 914/949-6476

NORTH CAROLINA: Durham
W. A. Brown Inst. Inc. 919/682-2383

OHIO: Cleveland
WKM Associates 216/267-0445

OKLAHOMA: Norman
Data Marketing Assoc. 405/364-8320

 PENNSYLVANIA: Pittsburgh
WKM Associates 412/892-2953

 PENNSYLVANIA: Wayne
Bartlett Assoc. 215/698-7325

 SOUTH CAROLINA: Columbia
W. A. Brown Inst. Inc. 803/798-3297

 TENNESSEE: Knoxville
McCcn Elec. Equip. 615/584-8411

 TEXAS: Austin
Data Marketing Assoc. 512/451-5174

 TEXAS: Dallas
Data Marketing Assoc. 214/661-0300

 TEXAS: Houston
Data Marketing Assoc. 713/780-2511

 TEXAS: San Antonio
Data Marketing Assoc. 512/828-0937

 WASHINGTON: Bellevue
Thorson Co. 206/455-9180

 AUSTRALIA: Mt. Waverly, Victoria
Anderson Digital Elec. 03-540-2077

 CANADA: Montreal
Cantec Rep. 514/620-3121

 CANADA: Ottawa
Cantec Rep. 613/225-0363

 CANADA: Toronto
Cantec Rep. 416/624-9696

 EUROPE: England
Techex, Ltd. 0202-293-115

 EUROPE: France
Peritec 749-483-7

 EUROPE: Switzerland
Intertest, AG 031-224481

 JAPAN: Tokyo
Munzing International 586-2701

Intelligent Systems Corp. Corp.
The Intecolor 8001 CRT.
Buy One or Buy One Hundred.
Just $1495.*

That's the price tag we'll put on the Intecolor 8001 if you place your order right now for 100 or more units. $1495. That's also the price we'll give you on a one-shot cash basis on an Intecolor 8001 CRT evaluation unit. Now, we'll never get rich with a price structure like that, but we look at it this way. That price is an investment in your future. We know that once you get your hands on the Intecolor 8001, once you see what it can do, you'll be back for more.

And it's because you'll be getting an Intelligent, 8-Color CRT that'll outperform any CRT on the market on a dollar for dollar and character for character basis. And it's complete. You won't have to lay out more cash for a keyboard, or 8080 CPU, or any of the standard features you'd expect to find on a good color CRT. It'll be ready to go. You can put it to work as a stand-alone CRT, incorporate it into your present system, or use it to upgrade the CRT's in the systems you're currently marketing. Whatever your application, it'll work for you.

But if your needs call for a more sophisticated CRT, a CRT that'll give you higher-level functions – no problem. We'll be glad to work with you to help you come up with an options package to fit your requirements. Like additional RAM to 32K, Roll, Background Color, Light pens, Graphics, 48 Line X 80 Characters/Line and up to 64 Special Graphics Characters. You define your needs, and we'll give you the capabilities to get the job done. It's that simple.

But if you'd like to see for yourself, look over our rep list on the adjacent page and ask the rep in your area for a demonstration. Whatever your application, he can show you the right Intecolor 8001 CRT at just the right price.

Intelligent Systems Corp.
5965 Peachtree Corners East
Norcross, Georgia 30071
(404) 449-5961

*Quantity 100 price — $1495 each, net 20 Days
Evaluation unit price — $1495, Limit one to a customer, cash with order
Domestic U.S.A. prices
the better idea in current sensing... from F.W. Bell

a complete line of non-contacting sensors for AC & DC

Hevlett-Packard, 1501 Page Mill Rd., Palo Alto, CA 94304. (415) 493-1501. $29,900; 120 days.

Model 5420A “smart” digital signal analyzer operates over a 25-kHz bw, with a dynamic range of 75 dB. Resolution to at least 0.004 Hz can be achieved anywhere in the range. Significant features include absolute internal calibration in the user’s choice of engineering units, digital band selectable or “zoom” analysis, fully annotated dual-trace CRT display with X and Y-axis cursors, digital storage of both data and measurement setups on a tape cartridge, and a random noise source to provide test stimulus.

MODEL NO. 324

DMM operates 50 h on four ‘C’ cells

Alpha III DMM has a full 1999 scale length. The 3½-digit display uses LEDs. Alpha III operates for more than 50 h from one set of four replaceable SP12 “C” cells. There are 25 ranges of ac and dc V, ac and dc current, and resistance. All resistive ranges are protected to 250 V rms. Typical accuracy is 1%.

MODEL NO. 325

Tester checks out analog meters

Jewell Electrical Instruments, Grenier Field, Manchester, NH 03108. (603) 669-8400. $700; 2-3 wks.

Model 651A tests all important analog meter functions, including accuracy, tracking, linearity, sticks in travel, hysteresis and resistance. Standard features include automatic sweep for all meter ranges, four programmable test points, adjustable response time selector, and multiple test points for tracking and linearity. Full-scale accuracy is ±0.1%.

MODEL NO. 326

Function generator works at 30 MHz

Krohn-Hite, Avon Industrial Park, Bodwell St., Avon, MA 02322. (617) 580-1660. $895; 8 wks.

Model 2000 30-MHz function generator provides sine, square, triangle, positive and negative pulses, positive and negative ramp waveforms, plus 100:1 symmetry control for pulse and sawtooth waveforms. Features include calibrated, pushbutton attenuator; 30-V pk-pk open-circuit output; 1000:1 external frequency control.

MODEL NO. 327

Waveform recorder samples at 2 ns

Biomation, 10411 Bubb Rd., Cupertino, CA 95014. (408) 255-9500. $12,500; 60 days.

Model 6500 waveform recorder resolves input signal levels to 1 part in 64 (6-bit resolution) and stores signal samples at sample rates from dc to 500 MHz. The samples are digitized by an a/d converter and stored in a 1024-word, solid-state digital memory. Input amplifier bandwidth is dc to 100 MHz and input-voltage ranges are ±250 mV to ±5 V. Sampling rates run from 2 ns to 1 s per sample or an external time base can be used.

MODEL NO. 328

INSTRUMENTATION

Smart analyzer computes power, gain, S/N

Hewlett-Packard, 1501 Page Mill Rd., Palo Alto, CA 94304. (415) 493-1501. $29,900; 120 days.

Model 5420A “smart” digital signal analyzer operates over a 25-kHz bw, with a dynamic range of 75 dB. Resolution to at least 0.004 Hz can be achieved anywhere in the range. Significant features include absolute internal calibration in the user’s choice of engineering units, digital band selectable or “zoom” analysis, fully annotated dual-trace CRT display with X and Y-axis cursors, digital storage of both data and measurement setups on a tape cartridge, and a random noise source to provide test stimulus.

CIRCLE NO. 324

DMM operates 50 h on four 'C' cells

Alpha III DMM has a full 1999 scale length. The 3½-digit display uses LEDs. Alpha III operates for more than 50 h from one set of four replaceable SP12 “C” cells. There are 25 ranges of ac and dc V, ac and dc current, and resistance. All resistive ranges are protected to 250 V rms. Typical accuracy is 1%.

CIRCLE NO. 325

Tester checks out analog meters

Jewell Electrical Instruments, Grenier Field, Manchester, NH 03108. (603) 669-8400. $700; 2-3 wks.

Model 651A tests all important analog meter functions, including accuracy, tracking, linearity, sticks in travel, hysteresis and resistance. Standard features include automatic sweep for all meter ranges, four programmable test points, adjustable response time selector, and multiple test points for tracking and linearity. Full-scale accuracy is ±0.1%.

CIRCLE NO. 326

Function generator works at 30 MHz

Krohn-Hite, Avon Industrial Park, Bodwell St., Avon, MA 02322. (617) 580-1660. $895; 8 wks.

Model 2000 30-MHz function generator provides sine, square, triangle, positive and negative pulses, positive and negative ramp waveforms, plus 100:1 symmetry control for pulse and sawtooth waveforms. Features include calibrated, pushbutton attenuator; 30-V pk-pk open-circuit output; 1000:1 external frequency control.

CIRCLE NO. 327

Waveform recorder samples at 2 ns

Biomation, 10411 Bubb Rd., Cupertino, CA 95014. (408) 255-9500. $12,500; 60 days.

Model 6500 waveform recorder resolves input signal levels to 1 part in 64 (6-bit resolution) and stores signal samples at sample rates from dc to 500 MHz. The samples are digitized by an a/d converter and stored in a 1024-word, solid-state digital memory. Input amplifier bandwidth is dc to 100 MHz and input-voltage ranges are ±250 mV to ±5 V. Sampling rates run from 2 ns to 1 s per sample or an external time base can be used.

CIRCLE NO. 328
Need more counts?
Try a 4-digit DPM

Fairchild Camera, 1725 Technology Dr., San Jose, CA 95110. (408) 998-0123. $121; stock.

Model 40, 10,000-count, 4-digit panel meter is designed for applications where resolution requirements are greater than those provided by a 2000-count, 3-1/2-digit DPM. The unit comes with either a 15-pin, dual-row connector or 8-pin terminal block. Features such as bit-serial, decimal-point selection and external hold are available from terminals provided at the connector.

Word generator lets you pick your length

Tau-Tron, 11 Esquire Rd., North Billerica, MA 01862. (617) 667-3874. $5500; 6-8 wks.

Model MG-302 uhf serial data generator operates from 1 to 325 MHz and provides an RZ or NRZ serial data pattern in word lengths of 16, 32, 64, 128 or 256 bits. The unit features 600-ps rise/fall times, RZ/NRZ data selection, and baseline offset of 0.5 to -2 V. Programming is by front-panel data selection switches and address selectors.

Frequency counter sells for $150

Simpson Electric, 853 Dundee Ave., Elgin, IL 60120. (312) 697-2260. $150; stock.

Model 710 frequency counter covers 10 Hz to 60 MHz with 1-Hz resolution. Sampling is 5 times/s on the MHz range and 0.5 times/s on Hz. The display is a 6-digit, 0.35-in. LED readout with overrange indicator. Accuracy is ±1 count (±time base accuracy), with a 10-ppm time base. A switchable low-pass filter eliminates input noise. Size in only 2 × 5.6 × 4.6 in.

Interface makes DMM IEEE-bus compatible

Keithley, 28775 Aurora Rd., Cleveland, OH 44139. (216) 248-0400. $795.

When combined with the company's Model 172 digital multimeter, the 1723 microprocessor-based interface provides a five-function, 30,000-count, 0.01% basic dc accuracy, IEEE Standard 488-1975 bus-compatible DMM. The 1723 provides the logic and control functions necessary to interface the Model 172 or 173 DMM. The unit provides 10Ω and 100-pF isolation from analog low to digital low.

Connectors with character

- LOW MATING FORCES
- LOW RESISTANCE
- HIGH DURABILITY
- HIGH INTEGRITY
- RUGGED

Managers' representatives inquiries invited

Smiths Industries Inc.
CONNECTOR DIVISION
P.O. Box 5389, Clearwater, Florida 33756 Tel: (813) 531-7781, Telex 52602
Seven dot print head does 110 characters/s

Victor Comptometer, 3900 N. Rockwell St., Chicago, IL 60618. Nils Pederson (312) 539-8200. $59.50 (1000 qty.).

Capable of printing at 110 characters per second, the 129-112 print-head mechanism uses a seven-dot format. Weighing only 9 oz, the print head is claimed to provide a 20% improvement in duty cycle over the company's standard model. The seven-dot print head produces any character and can even do graphics.

CIRCLE NO. 333

Data recorder interface mates unit with 8080

Tandberg Data, 4060 Morena Blvd., San Diego, CA 92117. Peter Gilbody (714) 270-3990. $800; stock.

Although developed to interface an 8080 microprocessor to the company's TDC 3000 digital cartridge recorder, a special interface board is general enough to be compatible with other microprocessors. The recorder is bus structured and the interface can handle up to four drives in a daisy-chain. Contained in the 8080 interface are all the normal formatting functions plus the interface logic to the processor bus, eliminating the need for a separate formatter. Data transfer takes place with direct memory access. The controller/interface provides all necessary functions for address decoding, tape motion control, generation of proper block gaps, writing and reading of data, automatic generation of tape marks, high-speed search, etc. Communication with the external microprocessor is over an 8-bit bidirectional data bus, a 16-bit bidirectional address bus, and nine lines.

CIRCLE NO. 334

Video RAM board mates digital bus to monitor

Matrox Electronic Systems, P.O. Box 56, Ahuntsic Stn., Montreal, Quebec H3L 3N5. (514) 481-6838. $295; 2 to 4 wks.

Compatible with Altair, Imsai and other similar bus organized microcomputers, the ALT-2480 interfaces the bus to a video monitor. On the input side the ALT-2480 looks like a 4 k X 8 static RAM with a 500-ns access time. The output is a video signal that provides 24 lines by 80 characters of upper and lower-case symbols. A jumper option permits operation at 40 characters per line and two pages. Any character may be displayed as normal, reverse video or blinking. Boards for 50 or 60-Hz systems are available.

CIRCLE NO. 335

VECTOR-PAK ENCLOSURES

COLORFUL BEAUTY OUTSIDE – VERSATILE & ACCESSIBLE INSIDE

Beautiful and affordable cases, unmarred by screws or fasteners. Instantly accessible interiors with slip out covers. Optional ventilation, handles, stands, slides and mounting holes. Recessed front and rear panels. Styling, finish and details can be modified to make the case uniquely yours. Low in cost.

● 15 STANDARD SIZES, ● 11 COLORS IN TEXTURED VINYL OR ANODIZE
● 11 STANDARD INTERIOR MOUNTING SYSTEMS, ● ONE WEEK DELIVERY IN STANDARD CASES

VECTOR ELECTRONIC COMPANY, INC., 12460 Gladstone Avenue, Sylmar, CA 91342, phone (213) 365-9661, twx 910-496-1439

CIRCLE NUMBER 60

CIRCLE NUMBER 333

CIRCLE NUMBER 334

CIRCLE NUMBER 335

CIRCLE NUMBER 60
Video display controller mates with PDP-8 or 11

Computer Technology, 6048 Lantoni Ave., Oakland, CA 94618. Eric Wagsberg (415) 451-7145. From $765 (10 to 24 qty); 3 weeks.

Slipping into a PDP-8 or PDP-11 minicomputer card frame the Viu­ram-8 or L11 CRT interface shares memory with the mini. The interface boards provide a 12-line x 80-character display of the full upper and lower-case display. Five display modes are available—reverse video, half brightness, cursor, blink and blank. Refresh is done at 60 Hz and operation is either in the noninterlaced or interlaced modes. The monitor interface is an EIA RS170 composite-video signal for a 75-Ω line. Power requirements are 5 V at 2.2 A, 15 V at 20 mA and -15 V at 70 mA.

Development system handles three µP families

Development system handles three µP families

Intel, 3065 Bowers Ave., Santa Clara, CA 95051. Rob Walker (408) 246-7501. $18,390 (basic system), $300 (optional MCS-48 macro- assembler), $3350 (add on diskette drive); stock.

The Intellec 888 System, an enhanced version of the Intellec MDS 800 System, has two to four times the on-line storage capacity of previous systems. It supports fully modular programming in both assembly language and PL/M, and covers the software development requirements of all three Intel-originated microcomputer families—the 8080, 8085 and 8048. The basic Intellec 888 package includes a million-byte diskette system expandable to 2 Mbytes; a complete Intellec MDS 800 system with full 64-k RAM; an interactive CRT display console; a resident PL/M compiler for the MCS-80 and MCS-85, and a diskette operating system that includes a macro-assembler and all other software development packages. Optionally available is a macro-assembler for the MCS-48 family.

Count on Pomona Electronics to keep pace with the industry's trend toward higher density Dual In-Line packaging. We introduced the first Model 3916 in 1972. Now there are six improved models, including three designed for ultra dense packaging.

DIP CLIPS are designed for hands-free testing of integrated circuit packages. Lower contacts are .050 wide for improved surface contact with I.C. packages. Test contacts are .025 square, and are serrated for improved connection of test clips. Molded barrier between contacts minimizes accidental shorting. Can also be used as insertion and removal tool for DIPs.

Available Through Your Favorite Electronic Parts Distributor
Beyond the ordinary!

DigiTec printers are precision crafted instruments, offering reliability, workmanship and features that distinguish them from the ordinary. Ideal for laboratory, systems or OEM applications. Their sought-after features include: floating decimal, selective data blanking, systems interface, red and black print, data grouping and front panel paper loading and ribbon changing without exposure of electronic components.

Selected models include a crystal clock, an events counter, and 10 to 21 column recording capability.

DigiTec: precision measurements to count on.

These instruments available under GSA contract GS-00S-27741.

Buzzzzz.
(Write for new catalog.)

Solid state electronic MICRO-BUZZER from CITIZEN: High reliability, competitively priced with immediate delivery.

A complete range:
- SMB 1, 6, 12, 24, VDC
- RMB 3, 6, 12, 24, VDC
- IMB (Intermittent) 6, 12, VDC

50 Million operations

With TTL loads, our new reed relay offers maximum contact resistance of 0.12 ohms, after more than 50 million operations. And a contact resistance delta of 0.01 ohms, maximum. Sticking and missed operations are essentially eliminated.

Call or write for information on the RX-1.

CIRCLE NUMBER 63
Electronic Design 14, July 5, 1977
Speech processor does voice comparisons

Heuristics, Inc., 900 N. San Antonio Rd., Los Altos, CA 94022. (415) 948-2542. $249 (kit); stock.

Compatible with all S-100 bus computers, the SpeechLab processor board digitizes and extracts data from a speech waveform. It also applies pattern matching techniques to recognize the vocal input. In addition to bus compatibility with microcomputers such as Sol, Altair, and Imsai, SpeechLab can be used with any computer with the aid of a separate power supply and connector. The board comes with a 275-page laboratory manual, a 95-page hardware manual, a high-fidelity microphone, and three programs on paper tape.

CIRCLE NO. 338

Complete programming system costs under $1000

PROM Programmers, 601 Nandell Lane, Los Altos, CA 94022. Jerry Rampelberg (415) 948-0450. See text.

Available for just $980, a complete PROM programming system for 2704/2708 UV EPROMs includes programmer, erase lamp and carrying case. A PROM can either be copied or data can be manually entered via several control switches and bit switches. Included in the programmer is a 1-k x 8 RAM that can simulate the PROM in the system and write directly to the microprocessor bus. Options include a hex keypad and display, RS-232 and TTY interfaces and a prober/handler interface for PROM manufacturers. The programmer measures 6 x 8 x 2.5 in. and weighs 5 lb. Programmers are also available for 1702A, 5203 and 5204 PROMs.

CIRCLE NO. 339

Bar code reader mates with RS-232 equipment

Interface Mechanisms, 5503 232 St. S.W., Mountlake Terrace, WA 98043. Alison Grey (206) 774-3511. $1074; 30 to 60 days.

Designed to scan universal product code symbols, the Model 9211 bar code reader handles UPC version A and E and EAN 13/EAN 8 symbols. All source printed colors that meet UPC symbol specifications can be read. The UPC reader includes the 1230R Ruby Wand, a visible (red) light pen for hand scanning. For remote applications, the Model 9211 is plug compatible with most CRTs and asynchronous communications terminals. The unit has dual connectors to allow tandem operation with any on-line RS-232C equipped terminal. External switches select baud rate, parity and half or full-duplex operation. The reader offers bit serial rates from 110 through 9600 baud.

CIRCLE NO. 340

12 and 15-in. monitors handle 20-MHz inputs

Ball Brothers Research, Electronic Display Div., P.O. Box 3376, St. Paul, MN 55165. George Wagner (612) 786-8900. From $150 to $250; stock.

Available in 12 and 15-in. diagonal versions, the TTL-120 and 150 video monitors are designed for 7 x 9-dot matrix displays. The monitors have 20-MHz bandwidths and electronic horizontal video centering within the raster. Also included is an electronic vertical linearity control. Simple sub-assembly interconnects are designed so that an optional modular sync stripper board for EIA composite inputs can be added. Other options include high line rates, dynamic focusing and skip-scan capability.

CIRCLE NO. 341

109
Electronic Design WANTS YOU

If you have solved a tricky or unusual design problem ... if you have experience in a special area that will aid the design process ... if you have simplified a circuit or developed a practical design aid why not share it with your fellow engineers-readers of Electronic Design?

Each man has his own motivation for writing an article. Here are just a few:

• To help other engineers do their jobs better.
• To help build your company's image.
• To encourage authors to submit material to us, and to make it easier, we've prepared a special AUTHOR'S GUIDE that's yours for the asking. Contents include:
 • Why write?
 • Why write for Electronic Design?
 • Which articles will Electronic Design accept?
 • How long should it be?
 • What form should it take?
 • Tips on structure.

Why not get started today? Payment can range as high as $200 for an article contributed in a single issue.

FOR FREE
Electronic Design
AUTHOR'S GUIDE
CIRCLE NUMBER 300

CIRCLE NUMBER 65

ICs & SEMICONDUCTORS

V/f converter guarantees 12-bit linearity

Burr-Brown, P.O. Box 11400, Tucson, AZ 85734, Joe Santen (602) 294-1431.
See text.

The VFC32 voltage-to-frequency converter guarantees ±0.01% (12-bit) linearity at 10 kHz and operation up to 0.5 MHz. The unit has a six decade range (0.5 Hz to 0.5 MHz) offering a top frequency linearity of ±0.2% (8-bit) and a 100-kHz linearity of ±0.05% (10 bits). An external RC network determines the full-scale frequency and an additional pull-up resistor and one-shot capacitor are also required for operation. An open-collector output makes this device DTL, TTL, and CMOS compatible. The unit is available in three models and two package configurations. Model VFC32KP is a 14-pin epoxy DIP specified from 0 to +70°C. The VFC32BM and VFC32SM versions come in a TO-100 package and are specified over the range of −25 to +85°C and −55 to +125°C, respectively. Prices (100 qty) are as follows: VFC32KP, $6.10; VFC32BM, $8.00; VFC32SM, $11.70.

CIRCLE NO. 343

High speed transistors switch 1 A in 200 ns

Kertron, 7516 Central Industrial Blvd., Riviera Beach, FL 33404. George Reiland (305) 848-9606. 100 qty. prices: $3.50 (6038); $3.10 (6039); stock.

When used as a fast switch, the KS6038 and 6039 are capable of switching a collector current of 1 A on and off in a total switching time of 200 ns. To meet these conditions, the on time is 50 ns, storage time is 125 ns, and the fall time is less than 25 ns. When used as an amplifier the devices will have an fT of 300 or 200 MHz, when biased at a collector current of 500 mA and a collector voltage of 5 V, for the 6038 or 6039, respectively. Both transistors are housed in TO-6 isolated packages.

CIRCLE NO. 344
Error-free Counting
with automatic signal attenuation to eliminate counts due to noise and interference.

Variable input attenuation reduces the signal to a value just above the trigger window, thereby eliminating false counts.

Accuracy is achieved by a unique PIN-DIODE attenuator circuit with 2dB dynamic range and optimum triggering to 12 Vrms. High sensitivity and continuous attenuation allows error-free counting of AM and mixed signals. The Philips PM6610 series counter/timers, in rugged metal cases, include high stability timebases, internal battery, analog output, and many other options. Starting at $750.00 for the 80 MHz model, the PM6610 series counters include 260, 520 and 1000 MHz units.

Want more information or a demonstration? Call our toll-free Hotline number: 800 631-7172 (New Jersey residents call collect 201 529-3800) or contact:

Philips Test & Measuring Instruments, Inc.
A NORTH AMERICAN PHILIPS COMPANY

In the United States:
61 McKean Drive
Mahwah, New Jersey 07430
201 529-3800

In Canada:
6 Lowrey Road
Toronto, Ontario Canada M6A 1K2
416 766-1188

PHILIPS

CIRCLE NUMBER 66

NEW MULTI PUSH-BUTTON SWITCH LINE FROM SMK

The JP-7000 Series Multi Push-Button Switches include interlocking, self-locking, momentary or reset type switches that are available with either 15 or 20MM spacing in DPDT, 4PDT, 6PDT, and 8PDT configurations. The switches are rated at 300mA @ 30V DC and operate from -10°C to +70°C with a mechanical life expectancy of 30,000 cycles. Up to a maximum of 6 switch stations can be interlocked if desired, and up to 12 switches can be mounted on the same frame. Representatives throughout the U.S. Call, write or wire:

SMK Electronics Corporation of America
116 East Savorona Way Caron, California 90746
Tel: (213) 770-8915

CIRCLE NUMBER 67

Design it for safety!

4000 Series MICROTEMP® thermal cutoff in electric fryer

Guard your products and profits with MICROTEMP® thermal cutoffs

Our 4000 Series MICROTEMP® thermal cutoff protects this fryer, those using it, and those who make and sell it. If the fryer overheats, for any reason, the alert MICROTEMP® opens the circuit to cut off power.

After cutoff, the fault must be corrected and the MICROTEMP® cutoff replaced before the fryer can be used again.

Quick-connect terminals make it easy to replace the cutoff in the field without soldering.

Millions of MICROTEMP® thermal cutoffs are now being used on hundreds of OEM electrical applications. We can provide the right thermal cutoff — temperature ratings from 136 to 468°F, assorted terminations, mounting packages and insulation — to meet your design and production needs precisely and economically. Write or call us for specific data and test samples.

MICRO DEVICES
DIVISION OF EMERSON ELECTRIC CO.
1881 SOUTHOWN BLVD.
DAYTON OH 45439 513-294-0581

CIRCLE NUMBER 68
ICs & SEMICONDUCTORS

Power Darlington
switch in 400 ns

The SVT6000 series of monolithic Darlington transistors can switch up to 500 V in 400 ns. They are npn devices, have a collector-emitter voltage range of 400 to 500 V and can withstand a continuous collector current of 15 A (peak currents of 20 A). Power dissipation for the devices is 96 W while the junction temperature range is –50 to +150 C. Sustaining voltage ratings for the SVT 6000, 6001 and 6002 are 300, 350 and 400 V, respectively. With a collector current of 15 A, the VCe(sat) for the three units is 2 V. Included in each device is a diode and resistor network to help speed the turn off. All units come in TO-3 cases.

CIRCLE NO. 345

Video game circuits form programmable games

A programmable video game chip set, called a video entertainment synthesizer (VES), can handle an unlimited variety of games. The basic game is designed for two players but expanded versions will allow up to four players to play against each other or in competition with the VES “brain.” In addition to an 8080 µP, two custom LSI circuits complete the system except for the program cartridges. All of the important variables of the VES output are under the control of the plug-in program. Seven color choices for the field, background and moving elements in the display as well as the audio output are all programmable. Both analog and digital inputs are accepted by the VES. Two, four-axis joy sticks provide the main analog inputs, and with the addition of another LSI circuit and controls, the number of primary inputs and players can be expanded to four. A light-pen input, usable with events occurring on the screen, can also be added. Three digital inputs, codable with eight discrete switches, permit program selection, handcrafting, keyboards and other inputs.

CIRCLE NO. 346

High current SCRs also operate at high temps

Westinghouse Electric, Semiconductor Div., Youngwood, PA 15697. Woody Savage (412) 925-7272. $95.50 (10 to 99 qty); 6 to 8 wks.

Able to operate at a 150-C junction temperature, the T625 series of high-temperature SCRs is designed to meet proposed NEMA motor overload standards. They have blocking voltage capability up to 1200 V and average current ratings of 250, 300 or 400 A.

CIRCLE NO. 347

Two-chip set forms 4-1/2 digit a/d converter

Siliconix, 2201 Laurelwood Rd., Santa Clara, CA 95054. Jim Graham (408) 246-8006. See text.

Analog-to-digital conversion is stretched to 4-1/2 digits with the LD120 and LD121 IC chip set. The set offers high-impedance (>10¹⁰ Ω) differential inputs and an accuracy specified to ±1/2 count of linearity. With the addition of a voltage reference, a one-transistor oscillator, some passive components and a display, the chip set makes a typical DPM system. Output levels are MOS and TTL compatible. The system employs quantized feedback. This produces a ratiometric response with respect to the reference voltage. The LD120 analog chip, a monolithic combination of PMOS and bipolar circuitry, comes in a 12-pin plastic DIP. The LD121 standard PMOS digital chip comes in an 8-pin plastic DIP. Prices (100 qty) are as follows: LD120, $6.43; LD121, $8.38; LD120/LD121 set, $14.81. Delivery is from stock.

CIRCLE NO. 348

Switch 15 A at 400 V with these transistors

RCA, Route 202, Somerville, NJ 08876. (201) 685-0243. From $3.96 (100 qty.); stock.

The 9113 series of power transistors is designed for use in off-line power supplies. Included in the high-voltage, high-current series are the 9113, 9113A and 9113B. Top of the series is the 9113B, with a VCE(sat) of 400 V, a collector current of up to 15 A, and a fast switching speed (tᵡ = 1 µs and tᵣ = 0.75 µs). Saturation voltages range from 1 V for the 9113 to 1.5 V for the 9113B. All three models come in TO-3 cases.

CIRCLE NO. 349
Synthesizer provides 90 frequencies

Hughes, 500 Superior Ave., Newport Beach, CA 92663. (714) 548-0671. $5.00 (1000 qty); stock.

The HCTR0347 is a large-scale integrated CMOS digital frequency synthesizer aimed at CB applications. The unit provides receive and transmit frequencies for 45 channels using only one crystal for a reference frequency. Included are a programmable logic array that accepts binary, BCD, or 7-segment coded inputs, a programmable frequency divider, and a phase/frequency detector. The package is a 16-pin plastic DIP.

CIRCLE NO. 356

'Semicustom' circuits outpace other CMOS chips

Master Logic Corp., 1823 Finch Way, Sunnyvale, CA 94087. Dr. Charlie Allen (408) 732-7777. See text.

The Master Logic 200 family of logic arrays can be tailored by the manufacturer to custom configurations, though the basic chip is standardized. These "semicustom" CMOS chips offer twice the operating speed of competing CMOS circuits. Each chip has a maximum capacity of 200 gates of random logic or approximately 50 counter stages. Prototype development from customer logic drawings to working circuits takes 8 wks and costs $6600. Production prices range from $7 to $17, depending on quantity and package requirements.

CIRCLE NO. 357

Monolithic d/a converter covers MIL temp range

Precision Monolithics, 1500 Space Park Dr., Santa Clara, CA 95050. Donn Soderquist (408) 215-9222. See text.

The DAC-06 is a monolithic, two's-complement 10-bit d/a converter. It includes a precision voltage reference, R-2R resistor network, bipolar offset circuit, and a high speed (1.5-µs settling time) output op amp. Prices range from $15 for Model DAC-06GX (with a monotonicity and temperature range of 8 bits and 0 to 70 C, respectively) to $120 for the DAC06-883-AX (10 bits and -55 to +125 C). The latter version conforms to the MIL-STD-883A Class-B processing standard. The package is an 18-pin hermetic DIP. Delivery is from stock.

CIRCLE NO. 358
When you can’t afford a failure here—

Ledex Tubular Solenoids

If reliability is an important characteristic of your product, you can’t afford failure of a tubular solenoid.

Make the performance decision first. The benefits of lower maintenance and better reputation for your product are tremendous. We’ll custom design, build prototypes, and manufacture to your exact requirements.

Or—21 standard models in stock for prototype work, ship in 48 hours. 4 oz. to 20 lb. force, push or pull. Stroke: .005" to 1.250" 1/2" x 1/2" to 1 1/2" x 2 1/2" d. 28VDC or 125VAC rectified. Send your requirements for a standard prototype unit.

Ledex Inc., 123 Webster Street, Dayton, Ohio 45401.
Phone: 513-224-9530.

CIRCLE NUMBER 72

DATA PROCESSING

µP-based system cues, synchs 3 tapes at once

The µP-based series MQS-100 synchronizing system can cue and synchronize any three mag-tape transports (including video, audio and mag film) simultaneously. Tapes with drop-frame and nondrop-frame formats can be intermixed. Time-code readings for all tapes can be “captured on the fly,” individually or simultaneously. The MQS fits standard 19-in. wide RETMA mountings with a height of 7 in.

CIRCLE NO. 359

Computer accommodates 15 smart lab devices

Digital Equipment, 146 Main St., Maynard, MA 01754. David Simler (617) 481-9511. From $14,000; August, 1977.

A low-cost computer system, the DEC1ab-11/03 IB, supports up to 15 laboratory devices that use the IEEE Standard 488-1975. Fortran-4 programming is supplemented with a scientific subroutine package. Two versions are available, one employing an LA36 teleprinter as the terminal, the other using a VT55 video graphics terminal ($1000 extra). Both have floppy-disc storage, and a PDP-11/03 mounted in a small cabinet. Optional interfaces are available.

CIRCLE NO. 360

Plug-compatible line printers save money

Business Systems Technology, 3015 Daimler St., Irvine, CA 92714. Bill Wells (714) 549-9961. $15,000; 4 wks.

Through a new controller, the entire family of BST chaintrain printers can interface directly to the Hewlett-Packard 3000 minicomputer, at speeds of 300, 425, 600 and 1000 lines/min. The 64-character set is standard, but sets of 96 characters are available. When purchased, the 600 line/min printer is said to save $2425. Or, the BST/600 can be leased for one year at $850 per month. The unit measures 42 x 36 x 26 in.

CIRCLE NO. 361

Teleprinter uses µP for speed, versatility

Tally Corp., 8301 S. 180th St., Kent, WA 98031. Horst Mader (206) 251-5552. From $3490; 16-20 wks.

The Model T-1612, a low-cost 132-column teleprinter, is available in send/receive and receive-only versions. The bi-directional T-1612 uses an internal µP to print 160 char/s. Standard features include 300 to 9600 baud operation, parity checking, half or full duplex operation, data buffer (1-k character), three serial interface configurations, bi-directional printing, 7 x 7 half-space matrix font, 96 printing characters (normal or double width), local or remote self-test, backspace, five-copy capacity and a slew rate of 8-1/2 in/s.

CIRCLE NO. 362

Add-on memory includes protection and standby

The 370/158 and 168 add-on memory systems include two unusual features, Standby Memory and deferred maintenance. Standby Memory includes 64 kbytes (in four 16-kbyte segments) of semiconductor memory and main storage protection when double-bit errors occur. Deferred maintenance capability enables the operator to either automatically replace or reconstruct any failed segment of memory by using a single switch located on the front panel.

CIRCLE NO. 363
PACKAGING & MATERIALS

Stock cases come in over 600 sizes

W. A. Miller Co., Mingo Loop, Oquossoc, ME 04964. R. F. Hunger (207) 864-3344. $35 to $80 (unit qty); stock.

Stock cases and enclosures, available off-the-shelf in a choice of over 600 sizes, range from 4 x 4 to 13 x 13 in. with depth variations up to 12 in. in increments of 1/8 in. Several styles of hardware are offered. Ruggedized construction features laminated wood with high-pressure decorative plastic laminate on exposed surfaces. All corners are internally reinforced with aluminum angle and bonded with epoxy adhesive.

CIRCLE NO. 364

Opaque epoxy protects light-sensitive parts

Epoxy Technology, Inc., 65 Grove St., Watertown, MA 02172. $15: 3-oz trial kit; stock.

An opaque epoxy for coating light-sensitive components, Epo-Tek H62, is a thermally conductive, electrically insulating epoxy. A one-component system, the epoxy adheres well to ferrous, glass, ceramic and semiconductor materials. It comes as a thixotropic paste, easy to handle. A mechanical dispenser or simple syringe can dispense the material. The formulation requires no refrigeration in shipping or storage. Shelf life at room temperatures is up to six months and it cures rapidly at relatively low temperatures—30 min at 150 C, 60 min at 120 C. Volume resistivity is 1 x 10^14 Q-cm; lap shear strength is 1000 psi; operating temperature range is −67 to 300 F.

CIRCLE NO. 365

Spray produces no-metal conductive coating

Merix Chemical, 223 E. 75th St., Chicago, IL 60619. (312) 221-8242. $21.60 gal. (60-gal qty).

Semiconductors requiring conductivity and ICs in need of zero-voltage readings can now have these characteristics with a conductive coating, antistatic No. 79. Free of metals, No. 79 achieves its conductivity chemically after it is diluted with de-ionized water 1:1. Wiped on, drying is instant, each gallon destaticizing and giving conductivity to an average 8000 to 10,000 ft^2.

CIRCLE NO. 366

New CTS subminiature hybrid VCXO fits almost anywhere.

CTS Knights' new hybrid JKT0-100 VCXO can be tucked away on just 0.71 square inches of board space. It measures only 0.860" x 0.830" x 0.350" maximum height. Designed for frequency synthesizers and other phase lock loop applications, the JKT0-100 weighs in at only .247 ounces, but it's a real heavyweight in performance:

- Frequencies available: 10-25 MHz.
- Center frequency accuracy: ±50 ppm from 0° to 60° C.
- Cold-weld crystal assures excellent long-term stability.
- Pullability: ±200 ppm minimum with modulation input of ±5 V peak, DC to 10 KHz.
- Oscillator input: +12 VDC, 10 MA and +5 VDC, 25 MA.
- Output: TTL, 5 gate fanout.

A hermetically sealed case and 100-piece price of $95 make the JKT0-100 an ideal choice for volume applications where high reliability must be maintained. The JKT0-100 Voltage Controlled Crystal Oscillator. Another "small" first from the Frequency Specialists. For your special VCXO, TCXO and ovenized oscillator needs, write CTS Knights, Inc., 407 Reimann Ave., Sandwich, IL 60548; phone: (815) 786-8411.

CTS Knights. The frequency specialists.

CTS CORPORATION

CIRCLE NUMBER 73
new performance standards...
1,500,000 cycles
with less than
10 milliseconds bounce

□ Self-generated logic...7 wire coding capability
□ Can be stacked in any array
□ Telephone array will provide standard frequency selection

This “second generation” of low-profile Grayhill pc mountable push-button switch modules passes exacting test for life and for bounce. Choose 6-, 3-, 2- and 1-button horizontal or vertical modules, to array in any format, including telephone key set, while maintaining constant center-to-center spacing! Circuitry available as SPST through 4 PST, normally open, or the poles can be internally shorted so several terminals connect when button is actuated. Choice of colors, with hot stamped or molded-in legends. For more information on these Series 82 modules, consult EEM or ask Grayhill for engineering data.

Analog data modules
mate with Exorciser

Motorola Microsystems, P.O. Box 20394, Phoenix, AZ 85086. (602) 244-6815. $725/module; stock.

Three Micromodule units give you Exorciser-bus-compatible a/d and d/a conversion. The MM5A and B are eight differential and 16 single-ended-input channel a/d converters, respectively. The MM5C is a 4-output-channel d/a. Input range of both the MM5A&B is ±10 mV to ±10 V and the amplifier gain range is resistor programmable from 1 to 1000. Both a/d’s contain: an input multiplexer; a high-gain instrumentation amplifier; a sample/hold circuit; a 12-bit a/d converter; timing, control and address decode logic; and a +5 to ±15-V dc-dc converter. Throughput accuracy is ±0.025% of full-scale and conversion time is 33 µs. Analog output range of the MM5C is strap selectable. The d/a features output settling time of less than 10 µs and throughput accuracy of ±0.0125% of full scale.

14-bit a/d offers speed at low cost

Analog Devices, P.O. Box 280, Route 1 Industrial Park, Norwood, MA 02062. W. Davis (617) 329-4700. See text; stock.

Complete 14-bit a/d conversions are performed in 12 µs max by the ADC1131 (from $375, 1-9 qty) and in 25 µs max by the ADC1130 (from $275, 1-9 qty). Both successive-approximation devices convert analog input voltages into natural-binary, offset-binary, and two’s-complement-coded outputs. Data outputs are provided in both parallel and nonreturn-to-zero serial formats. Although the 2 × 4 × 0.4-in. modules are available in versions with accuracies of ±1 LSB and ±½ LSB, max gain tempio is 10 ppm/°C on all modules. Operating from 0 to 70 C, the units miss no codes. Four input ranges can be programmed. The converters can be short cycled to perform conversions of less than 14 bits, with increased speed.

400-Hz Scott-T offers low profile

Magnetico, 182 Morris Ave., Haltsville, NY 11742. H. Eicher (516) 654-1166. $22 (500 qty); stock to 8 wks.

Line-to-line synchro voltages of 11.8 V rms, 400 Hz are converted to 2-V rms sine and cosine resolver voltages in the Model 13051, a Scott-T transformer. The printed-circuit-board mountable unit features a height of 0.25 in. Its other dimensions are 1.12 × 2 in. Conversion accuracy is 3 arc minutes.
Regulated switchers deliver high current

Power/Mate, 514 S. River St., Hackensack, NJ 07601. J. Gerino (201) 343-6294. From $265; stock.

The SW-G series of switchers offers six models with outputs from 2 to 28 V dc with ratings up to 40 A. Operating at efficiencies up to 84%, these 5-lb, 4.8 x 7.7 x 5.3-in. units deliver up to 200 W. The supplies operate from 85 to 132-V-ac and 170 to 264-V-ac inputs at 47 to 63 Hz, selectable from the front panel. Output regulation is maintained for 30 ms after loss of input power. All units are fully rated up to 50°C and regulation for both line and load is 0.1% with 25-mV pk-pk ripple.

CIRCLE NO. 372

Tiny dc/dc converters hold tight regulation

Integrated Circuits Inc., 16256 Northrup Way, Bellevue, WA 98005. (206) 747-8556. $61.50 (100-249 qty); stock to 4 wks.

The series DCR-500 and DCR-1200 provide fully isolated (100-MΩ) ±12 or ±15-V-dc outputs from a 5 or 12-V input. The devices feature: load and line regulation of 0.03% and 0.05%, respectively; input-line ripple current of 4 mA rms; output noise of 2 mV rms; and output-voltage tempco of 0.01%/°C. Operating range is –20 to +71°C for the 0.75-oz units, which occupy 0.6 in³.

CIRCLE NO. 373

Memory Power

Eternacell® 10 year lithium primary battery for semiconductor memories

Don't risk memory failure. Eternacell® high reliability, lithium primary batteries are the ideal standby power source for all types of volatile memory applications. The reasons:
- Steady voltage (2.9 volts per cell) at low continuous current
- Shelf life of up to 10 years
- Highest energy per unit weight and volume
- No recharging
- Hermetically sealed
- Designed for pc board mounting

For complete information and pricing, write:
Power Conversion, Inc., 70 MacQuesten Parkway South, Mt. Vernon, N.Y. 10550.
Or call (914) 699-7333

PHONE 800-843-6842 • TWX: 910-668-3603

M-tron INDUSTRIES, INC., Box 630, Yankton, S.D. 57078
A Div. of Lynch Corp.

CIRCLE NUMBER 75

CIRCLE NUMBER 76
VITEK's Filter Cable* can solve your VHF & UHF filtering & interconnecting problems INEXPENSIVELY!

- Looks like coaxial cable —
- Pliable like coaxial cable —
- Has the longevity of coaxial cable —
- Can be fitted with connectors or solder-joined like coaxial cable —

But there's one major difference — IT'S A FIRST-RATE FILTER!

For any filtering and interconnecting problem up to 1 GHz, neither price nor the physical viability of the filter has to be a determining factor in the solution. Vitek's innovative filter cable is priced way below any comparable filter on the market.

So the other thing our cable looks like is SAVINGS...with a Capital S.

For further information regarding our filter cable or for assistance with your filtering and interconnecting problems, call or write to:

VITEK ELECTRONICS, INC.,
200 Wood Avenue,
Middlesex, N.J. 08846,
Tel: (201) 469-9400

Design aids

Programmable memories

“Programming Handbook and Comparison Chart of Programmable Memory,” a 32-pager, is a concise guide to all types of programmable memory. Data I/O.

TV camera tubes

Television camera tube sensitivities are compared graphically on a chart. Cohu, Electronics Div. CIRCLE NO. 375

Linear circuits guide

TI's direct-replacement ICs for linear circuits produced by five other manufacturers are shown on a cross-reference chart. Texas Instruments. CIRCLE NO. 376

Epoxy compounds

To find the epoxy compound with the properties you need, check a 16 X 10-in. selector guide. The guide lists electrical and physical properties at 25 C as well as handling and thermal properties for 22 epoxy compounds. Hardman. CIRCLE NO. 377

Automatic screwdrivers

An automatic screwdriver reference chart offers a quick choice of screwdriving machines that automatically feed and drive any type standard screw. Weber Automatic Screwdriver. CIRCLE NO. 378

Soldering materials

A short-form quick-reference selector guide describes solders, fluxes and chemicals. Multicore Solders. CIRCLE NO. 379

Hexadecimal calculator

A hexadecimal calculator computes the offset for relative addressing as used by the 6800, Z80, 6502, SC/MP and F8 µPs; adds and subtracts hexadecimal numbers; calculates 2's complements; and converts decimal to hexadecimal numbers and back. It is available for $3.95 (ppd) from E. & L. Pfeiffer, Computer Products, Box 2624, Sepulveda, CA 91343. INQUIRE DIRECT

Vendors report

Annual and interim reports can provide much more than financial position information. They often include the first public disclosure of new products, new techniques and new directions of our vendors and customers. Further, they often contain superb analyses of segments of industry that a company serves.

Selected companies with recent reports are listed here with their main electronic products or services. For a copy, circle the indicated number.

Sanders Associates. Computer display terminal systems and related peripheral equipment; electronic and electromechanical products. CIRCLE NO. 380

Beckman. Analytical instruments, consumable chemical products and supplies and precision electronic components. CIRCLE NO. 381

Amdahl. Large-scale computers. CIRCLE NO. 382

National Semiconductor. Memory components and systems; µPs; MOS/LSI circuits; modules; linear and digital ICs; interface products, hybrids; optoelectronic products; discrete semiconductors; transducers, consumer products and point-of-sale systems. CIRCLE NO. 383

Electronic Arrays. Memory products, µPs and MOS/LSI circuitry. CIRCLE NO. 384

Microdata. Minicomputer products and systems. CIRCLE NO. 385

Tektronix. Information display products; oscilloscopes; modular instruments; spectrum analyzers; cable testers; medical electronics; TV products and logic analyzers. CIRCLE NO. 386

Methode Electronics. Electronic and automotive interconnection products. CIRCLE NO. 387

ELECTRONIC DESIGN 14, July 5, 1977
New literature

Microprocessors

A 40-page product guide covers ICs, support systems, and accessories that make up the CDP1800 COSMAC microprocessor family. RCA/Solid State Div., Somerville, NJ

Motors and fans

DC and AC miniature motors, fans, and blowers are featured in a 20-page catalog. TRW Globe Motors, Dayton, OH

Data-conversion systems

A 180-page handbook, "The Analogic Data Conversion Systems Digest," Edition 1, is a no-nonsense collection of tutorial and reference material. Topics covered include parameter definitions and design considerations, effects of noise on A/D conversion, and reliability and testing of converters. The book costs $10.50. For further information, circle the reader service number. Analogic, Wakefield, MA

Breadboarding, test equipment

Breadboarding and test equipment is highlighted in a 16-page catalog. Continental Specialties, New Haven, CT

LSI

All product and applications literature on LSI and micropower linear lines are contained in a catalog. Siliconix, Santa Clara, CA

Send for complete new catalog and price list

E-Z-HOOK®
A DIVISION OF TEKTEST, INC.
114 EAST SAINT JOSEPH STREET
ARCADIA, CALIFORNIA 91006
(213) 446-6775 / TWX 910 562 1614

PATCH CORDS ■ COAXIAL JUMPERS ■ E-Z-PROBES 52 AND 54-1
CIRCLE NUMBER 78
KEEP THE HORSE BEFORE THE CART!

You've probably known design engineers who are half-way through a project before they realize the power supply that could have come from a standard line must all of a sudden be a customized design. And you also know what that means in the way of extra costs. It's the old cart before the horse theory.

Call us when you are in the embryonic stages of your design and we'll work with you in your primary important stages. And not only will you like the fact that our standard lines will both fit your supply and keep you in budget... you'll like the idea of our already field-tested dependability.

Our power supplies are available for OEM computer, point of sale, EDP, bank telling and telecommunications use:

• Switching regulator and linear designs • 11 models — single/multi-output • Voltage ranges, from 2 to 30V • 50 current levels from .01 to 225 amps • Overcurrent/overvoltage protection • Filtering to meet world-wide EMI requirements • Designed and built to UL, CSA and European safety requirements.

Dependability. That's a word we define as quality and reliability. It's also what design engineers define as our reputation!

NCR
NCR POWER SYSTEMS DIVISION
formerly Scott Electronics
584 S. Lake Emma Road, P.O. Box 898
Lake Mary, Florida 32745
Telephone (305) 323-9250
CIRCLE NUMBER 79

NEW LITERATURE

Sockets
High-reliability IC sockets, socket-board systems and IC-interconnect accessories are covered in a 72-page catalog. Robinson-Nugent, New Albany, IN

CIRCLE NO. 393

A/d converters
A "minibrochure" describes the 6100 series of µP-compatible, multislope, integrating a/d converters. Specifications, prices, outline dimensions and pin connections are included. SGR Corp. Canton, MA

CIRCLE NO. 394

PROMs
"PROM User's Guide," a 46-page book, covers tips on using bipolar, MOS, and TTL bipolar PROMs, with detailed programming articles on the 1702A and 2708 MOS PROMs. Pro-Log, Monterey, CA

CIRCLE NO. 395

Desktop computer
The Hewlett-Packard 9825 desktop computer, designed for stand-alone computing or industrial and scientific system control applications, is featured in a 12-page data sheet. Hewlett-Packard, Palo Alto, CA

CIRCLE NO. 396

Data-processing equipment
A 70-page catalog is divided into several sections which describe the functions, specifications, and appearances of dispersed-data-processing and business computing hardware. A companion software catalog is also available. Datapoint Corp., San Antonio, TX

CIRCLE NO. 397

Minicomputer accessories
A 40-page catalog describes disc cartridges, magnetic tape, floppy discs, carrying cases, binders, connectors, cables, racks, and cabinets for all makes of minicomputers; plus unique and hard-to-find items for end users as well as OEMs. Minicomputer Accessories, Palo Alto, CA

CIRCLE NO. 398

Fluorocarbon products
Illustrations, specifications, technical-property charts, and prices of plastics and fluorocarbon products are given in a 40-page catalog. Saunders Corp., Los Angeles, CA

CIRCLE NO. 399

Electrolytic capacitors
Industrial-quality, miniature, aluminum electrolytic capacitors are described in an 8-page catalog. Murata, Marietta, GA

CIRCLE NO. 403

Telecomm test equipment
The rental and lease of telecommunications and general-purpose test equipment is covered in an eight-page catalog. Leasametric, Metric Resources Corp., Burlingame, CA

CIRCLE NO. 404

Data-comm products
Interfaces, cables, couplers and peripheral data-communication support products are shown in an 18-page catalog. Expandor, Monroeville, PA

CIRCLE NO. 405

Electronic surplus
The "Clean-Sweep-Sale" catalog lists a vast assortment of electronics, optics and miscellaneous accessories. B&F Enterprises, Peabody, MA

CIRCLE NO. 406

Microprocessors, ICs
Descriptions, application notes and diagrams of 12 microprocessors and ICs designed for telecommunication applications are given in a 12-page booklet. National Semiconductor, Santa Clara, CA

CIRCLE NO. 407

Electronic Design 14, July 5, 1977
Electronic Design

Electronic Design's function is:
- To aid progress in the electronics manufacturing industry by promoting good design.
- To give the electronic design engineer concepts and ideas that make his job easier and more productive.
- To provide a central source of timely electronics information.
- To promote communication among members of the electronics engineering community.

Want a subscription? Electronic Design is sent free to qualified engineers and engineering managers doing design work, supervising design or setting standards in the United States and Western Europe. For a free subscription, use the application form bound in the magazine. If none is included, write to us direct for an application form.

If you do not qualify, paid subscription rates are as follows: $30.00 per year (26 issues) U.S./Canada/Mexico, $40.00 per year (26 issues) all other countries. Single copies are $2.50 U.S. and all other countries. The Gold Book (27th issue) may be purchased for $30.00 U.S./Canada/Mexico, and $40.00 all other countries.

If you change your address, send us an old mailing label and your new address; there is generally a postcard for this in the magazine. You will have to requalify to continue receiving Electronic Design free.

The accuracy policy of Electronic Design is:
- To make diligent efforts to ensure the accuracy of editorial matter.
- To publish prompt corrections whenever inaccuracies are brought to our attention. Corrections appear in "Across the Desk."
- To encourage our readers as responsible members of our business community to report to us misleading or fraudulent advertising.
- To refuse any advertisement deemed to be misleading or fraudulent.

Individual article reprints and microfilm copies of complete annual volumes are available. Reprints cost $6.00 each, prepaid ($5.00 for each additional copy of the same article), no matter how long the article. Microfilmed volumes cost $23 for 1976 (Vol. 24); $30 for 1973-75 (Vols. 21-23), varied prices for 1952-72 (Vols. 1-20). Prices may change. For further details and to place orders, contact Customer Services Dept. University Microfilms, 300 N. Zeeb Rd., Ann Arbor, MI 48106. (313) 761-4700.

Want to contact us? If you have any comments or wish to submit a manuscript or article outline, address your correspondence to:
Editor
Electronic Design
50 Essex St.
Rochelle Park, NJ 07662

Electronic Design 14, July 5, 1977

CAMAC Microcomputer

The Model 3880 is a CAMAC* module that complies with IEEE Std. 583. This 8080A-based microcomputer features 4K words of RAM, up to 4K words of PROM, 16 levels of interrupt, real-time clock, a serial I/O port, and two 8-bit parallel I/O ports.

The Model 3880 includes two programs in PROM: a Monitor program which provides commands for program development, debugging, and data manipulation, and a Test CAMAC program which provides all necessary commands to communicate with CAMAC modules mounted in the crate.

A stand-alone CAMAC system is formed when a Model 3880 is used with a Model 3908 Crate Controller and a CAMAC crate. Remote intelligence can be added to an existing CAMAC system when a Model 3880 is used with a Model 3909 Auxiliary Crate Controller. Up to seven Model 3908's and/or 3909's may be connected to one Model 3880.

*Computer Automated Measurement and Control.

We supply a complete line of microcomputer modules, related CAMAC products and software.

Kinetic Systems Corporation
11 Maryknoll Dr., Lockport, Ill. 60441 Phone (815) 838 0005 TWX 910 638 2831

CIRCLE NUMBER 80

Data Display: Your Way

Ann Arbor makes over 1000 standard RO and KSR display terminal models. Alphanumericics, Graphics. Or both.

We also thrive on tough CRT display applications. Unique character sets. Unusual graphics. Difficult interfacing. Custom keyboards. Special packaging. You name it.

Standard or custom, every terminal produced is based on a field-proven Ann Arbor engineering concept. DESIGN III desktop terminals to complement any office decor. Compact, rugged Series 200 modular terminals that defy industrial environments. Or barebones board sets for OEMs who prefer to roll their own.

Many companies sell CRT terminals. But Ann Arbor sells creative solutions to CRT display problems, as well.

Probably at lower cost than anyone else in the business.

Contact us at 6107 Jackson Road, Ann Arbor, MI 48103. Tel: 313-769-0926 or TWX: 810-223-6033. Or see our catalog in EEM, Volume One.

ANN ARBOR TERMINALS, INC.
...creating new ways to communicate

CIRCLE NUMBER 81
CERAMIC CHIP CAPACITORS. SPLIT-CHIP, is a new concept in ceramic chip capacitor technology. These new units have two broad electrodes on one face and eliminate conventional wrap-around end terminations. This new concept provides lower cost and easier assembly. SPLIT-CHIPS are available in five standard sizes from .040" x .030" to .130" x .090" and .015" thick and in all popular dielectrics and capacitance ranges. JOHANSON DIELECTRICS, INC., Box 6456, Burbank, Ca. 91510 213-848-4465

LEMO CONNECTORS are perfect for front panel applications. Superb design and craftsmanship complement any front panel design. The Quick Lock mechanism allows easy connection & disconnection. Panel space is saved because finger clearance is required on only two sides. The all metal shell is rugged and an effective strain relief grips the cable securely. Coax & multipin types from 2-18 pins are available from stock. Lemo U.S.A. Inc., 2015 2nd St., Berkeley, Ca 94710. Tel: 415/548-1966, Tx 335-393.

LOW COST QUARTZ CRYSTALS Use Statek 10 to 300 kHz quartz crystals in TO-5s ... they eliminate count down for oscillators, filters, tone generators, timers ... They're rugged, accurate & resistant to high vibration and shock. Prices low as $1.70 ea. in 1000 qty. Send your written application & we'll send you a sample. Call or write for literature. Details in Gold Book and EEM + STATEK CORP + 512 N. Main, Orange, Ca. 92668 * (714) 639-7810 * Telex 67-8394

CERAMIC CHIP CAPACITORS 181
LEMO CONNECTORS 184
LOW COST QUARTZ CRYSTALS 187

UNIVERSAL JUNCTION UNIT ... for three devices, RS232C or current loop. ... Six switches provide all 63 interconnects that are possible between three I-O devices. LED's indicate data flow. ... Designed to provide circuit compatibility and easy data routing between different manufacturer's devices.

.. $350 (1-4) from DIGITAL LABORATORIES, 600 Pleasant St., Watertown, MA 02172 (617) 924-1680

3 PORT RS232 & 20 MA LOOP 182

INTEGRITY AND RECOVERY IN COMPUTER SYSTEMS, by T. K. Gibbons. Here is a step-by-step guidebook that places at your fingertips all the techniques and strategies you need for locating and correcting errors and failures and for re-establishing complete system integrity and reliability as quickly as possible. #5454-8, 144 pp., $9.95. Circle the Info Retrieval Number to order your 15-day exam copy. When billed, remit or return book with no obligation. Hayden Book Co., 50 Essex St., Rochelle Park, N.J. 07662.

INTEGRITY & RECOVERY 185

MULTI-TURN ABSOLUTE ENCODER ±1 part in 100,000 system accuracy—Electro-Magnetic Transducer +5 digit LED Display + BCD, Binary, and DC output — 10, 64 or 100 turns — adjustable scale factor (0 to 999,999) — Hi noise immunity — zero offset — unambiguous cross-overs. Units less than $995.00/axis. Send for Free Catalog & Application Notes. Computer Conversions Corporation, East Northport, N.Y. 11731 — (516) 261-3300

MULTI-TURN ABSOLUTE ENCODERS 183

NEW "PLATFORM CONNECTOR" MOUNTS ANYWHERE ON PRINTED CIRCUIT BOARD & CARD EDGE LOCATION ISN'T NEEDED. For fast assembly production usage in consumer electronic, communications and industrial control products. Contacts on .156" centers. Minimum withdrawal force 2.5 ozs. Twin terminations design for wave soldering to circuit board provides approximately 50% more current capacity. METHODE ELECTRONICS, INC., 1700 Hicks Road, Dept. PR, Rolling Meadows, IL 60008. (312) 392-3500

PLATFORM CONNECTORS 186

SEIKO MECHANICAL FILTERS AND OSCILLATORS. Incorporating the precision machining technology of SEIKO timepieces are available from miniature filter to high performance filters from 280Hz to 100kHz. Main applications include pocket pagers, automatic telephone equipment, cordless telephone, omega receiver, Loran C receiver, navigation and telecommunication systems. SEIKO INSTRUMENTS, INC., 2990 West Lomita Blvd., Torrance, Ca. 90505 (213) 530-3400 Telex: 25-910-347-7307.

FILTERS & OSCILLATORS 189
Free New '77 catalog contains over 34,500 quality power supplies from the world's largest manufacturer, Power/Mate Corp. Power Supplies for every application including submodulars, open frame, varia-
rated, encapsulated, laboratory & system. All units UL approved and meet most
military and commercial specs for in-
dustrial and computer uses. Power/Mate
Corp., 514 S. River St., Hackensack, NJ
07601 (201) 343-6294

FIGARO GAS SENSOR TGS is a gas sen-
sitive semiconductor. When combustible
gas is absorbed on the sensor surface,
a marked decrease of electrical resistance
occurs. Major features of the sensor in-
clude high sensitivity, long term reliability
and low cost. The applications are: GAS-
LEAK ALARM, AUTOMATIC FAN CON-
TROL, FIRE ALARM, ALCOHOL DETEC-
TOR, etc. Figaro Engineering Inc., North
America Office-330 Harbor Boulevard,
Suite D-8, Costa Mesa, Calif. 92626 Tel:
(714) 751-4103 Telex: 678396

400 IDEAS FOR DESIGN, Volume 3, ed. by
Morris Grossman. Brainstorm with the ex-
erts! Volume 3 of 400 IDEAS FOR DE-
SIGN contains the best selections from
Electronic Design that were published be-
ettween 1971 and 1974. You'll find a wide
range of ideas from very complicated to
simple, but unique, approaches. #5111-5,
348 pp., $13.95. Circle the Info Retrieval
Number to order your 15-day exam copy.
When billed, remit or return book with no
obligation. Hayden Book Co., 50 Essex
St., Rochelle Park, N.J. 07662.

3S-WICK De-solder Braid. Spirig produces
the vacuumized (pat. pend.) solder re-
moval wick in unequalled technology to
meet any standards worldwide. 3S-Wicks
unique three dimension combination
solves all electronics desoldering prob-
lems. 3S-Wick is covered by its own pat.
and does not violate any patents. Spirig also produces pencil soldering irons.
USA: Spirig-Signalarm, PO Box 3128,
Springfield, Mass. 01101, (413) 788-
0224 lnternat: Spirig , PO Box 160 , CH-
8640 Rapperswil, Switzerland TX 75400
3S-WICK DE-SOLDER BRAID 194

NO ETCH BREADBOARDS . . . WIRE-
WRAP BREADBOARDS with isolated pad
drill-mill construction. Quickly duplicate
any etched board; build circuits from full-
size artwork. Add components to and/or
change circuitry of previously etched
boards. Complete freedom in wire-wrap
design/layout. Ideal for high frequency
ground plane construction. A kit of three
IP6003C with #60 carbide drills, $27.50.
A.F.Stahler Company, P.O. 354, Cuper-
tino, CA 95014 (408) 252-4219.

3S-WICK DE-SOLDER BRAID 194

Overcurrent Protector, manual reset elimi-
nates fuse replacement. Convenient panel
mounting. 19 fractional ratings from 0.1
to 5 amp. Other models up to 400 amp.
Trip-free and fool-proof, UL and CSA ap-
pved. High quality, low cost $1.39 ea.
in 1000 lots. E-T-A Products Co. of Amer-
ica, 7400 N. Croname Rd., Chicago, Ill.
60645. Tel: (312) 647-8303. Telex:
253780.

NO ETCH BREADBOARDS 192

CIRCUIT BREAKER 195

Electronic Design

Advertising Sales Staff
Tom W. Carr, Sales Director
Robert M. Lepore,
Sales Coordinator

Rochelle Park, NJ 07662
Robert W. Gascoigne
Thomas P. Barth
Stan Tessler
50 Essex St.
(201) 843-0550
TWX: 710-990-5071
(HAYDENPUB ROPK)

Philadelphia
Thomas P. Barth
(201) 843-0550

Boston 02178
Gene Pritchard
P.O. Box 379
Belmont, MA 02178
(617) 489-2340

Chicago 60611
Thomas P. Kavooras
Berry Conner, Jr.
200 East Ontario
(312) 337-0588

Cleveland
Thomas P. Kavooras
(312) 337-0588

Los Angeles 90045
Stanley I. Ehrenclou
Burt Underwood
8939 Sepulveda Blvd.
(213) 641-6544

Texas
Burt Underwood
(213) 641-6544

San Francisco
Robert A. Lukas
3579 Cambridge Lane
Mountain View, CA 94040
(415) 965-2636

England
Constance McKinley
50 Essex St.
Rochelle Park, N.J. 07662
Phone: (201) 843-0550

Europe
Sanders, W. J. M.
Raalhusstraat 24
Graft-De Ryp, Holland
Phone: 02997-1303
Telegrams: Euradteam-Amster-
dam
Telex: 13039-SIPAS

Germany
Dieter Wollenberg
Erikastrasse 8
D-8011 Baldham/Muenchen
Germany
Telephone: 0 8106/4541

Tokyo
Haruki Hirayama
EMS, Inc.
5th Floor, Lila Bldg.,
4-9-1 Raongi
Minato-ku, Tokyo, Japan
Phone: 402-4556
Cable: EMSINCPERIOD, Tokyo
Advertiser's Index

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP, Incorporated</td>
<td>48, 49</td>
</tr>
<tr>
<td>Advanced Circuitry Division of Litton</td>
<td>39</td>
</tr>
<tr>
<td>Allen Bradley Co.</td>
<td>23</td>
</tr>
<tr>
<td>American Microsystems, Inc.</td>
<td>29</td>
</tr>
<tr>
<td>Amphenol North America division.</td>
<td></td>
</tr>
<tr>
<td>Bunker Ramo Corporation</td>
<td>47</td>
</tr>
<tr>
<td>Ann Arbor Terminals, Inc.</td>
<td>121</td>
</tr>
<tr>
<td>Applied Dynamics International</td>
<td>113</td>
</tr>
<tr>
<td>Belden Corporation</td>
<td>Cover III</td>
</tr>
<tr>
<td>Bell, Inc., F. W.</td>
<td>104</td>
</tr>
<tr>
<td>Bendix Corporation, The,</td>
<td>78, 79</td>
</tr>
<tr>
<td>Electrical Components Division.</td>
<td>72, 73</td>
</tr>
<tr>
<td>Bourns, Inc., Trimpot Products</td>
<td></td>
</tr>
<tr>
<td>Biomation</td>
<td></td>
</tr>
<tr>
<td>Amphenol International Power Supply Dept.</td>
<td>64A-C, 87</td>
</tr>
<tr>
<td>Berciial, The Electronics Division of</td>
<td></td>
</tr>
<tr>
<td>Globe-Union, Inc.</td>
<td></td>
</tr>
<tr>
<td>Datum, Inc.</td>
<td>7</td>
</tr>
<tr>
<td>Dow Corning Corporation</td>
<td>18, 19</td>
</tr>
<tr>
<td>Digital Equipment Corporation</td>
<td>122</td>
</tr>
<tr>
<td>Digital Laboratories</td>
<td>42</td>
</tr>
<tr>
<td>Digital Products Co. of America</td>
<td>123</td>
</tr>
<tr>
<td>E-M Technology</td>
<td>10</td>
</tr>
<tr>
<td>E-Z Hook, A Division of Tektest, Inc.</td>
<td>119</td>
</tr>
<tr>
<td>Electronic Applications Co.</td>
<td>108</td>
</tr>
<tr>
<td>Electronic Design</td>
<td>10</td>
</tr>
<tr>
<td>Electronic Navigation Industries</td>
<td>100</td>
</tr>
<tr>
<td>Fairchild Semiconductor, A Division of</td>
<td></td>
</tr>
<tr>
<td>Fairchild Camera and Instrument Corporation</td>
<td></td>
</tr>
<tr>
<td>Figaro Engineering, Inc.</td>
<td>12, 13</td>
</tr>
<tr>
<td>Gates Energy Products, Inc.</td>
<td>123</td>
</tr>
<tr>
<td>Gold Book, The</td>
<td></td>
</tr>
<tr>
<td>Gold Book, Inc. Power Supply Dept.</td>
<td>93</td>
</tr>
<tr>
<td>Gould, Inc.</td>
<td></td>
</tr>
<tr>
<td>Grayhill, Inc.</td>
<td>116</td>
</tr>
<tr>
<td>Greenray Industries, Inc.</td>
<td>126</td>
</tr>
<tr>
<td>Harris Semiconductor, A Division of</td>
<td></td>
</tr>
<tr>
<td>Harris Corporation</td>
<td>4, 5</td>
</tr>
<tr>
<td>Hayden Book Company, Inc.</td>
<td></td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td></td>
</tr>
<tr>
<td>Hoffman Engineering Company</td>
<td>83</td>
</tr>
<tr>
<td>ITT Pomona Electronics</td>
<td>107</td>
</tr>
<tr>
<td>Intel Corporation</td>
<td>16, 17</td>
</tr>
<tr>
<td>Intelligent Systems, Inc.</td>
<td>102, 103</td>
</tr>
<tr>
<td>Juchimer Corporation</td>
<td></td>
</tr>
<tr>
<td>Keil Instruments, Inc.</td>
<td></td>
</tr>
<tr>
<td>Kelco, Inc.</td>
<td></td>
</tr>
<tr>
<td>Keithley Instruments, Inc.</td>
<td>64</td>
</tr>
<tr>
<td>Kinetic Systems Corporation</td>
<td>121</td>
</tr>
<tr>
<td>Lexed, Inc.</td>
<td>114</td>
</tr>
<tr>
<td>Lemu USA, Inc.</td>
<td>122</td>
</tr>
<tr>
<td>*M-O Valve Co., Ltd.</td>
<td>20</td>
</tr>
<tr>
<td>*M-Tron Industries, Inc.</td>
<td>117</td>
</tr>
<tr>
<td>Magnetics, Inc.</td>
<td></td>
</tr>
<tr>
<td>Matsuo Electric Co. Ltd.</td>
<td>14</td>
</tr>
<tr>
<td>Mensi & Small Systems Division.</td>
<td>101</td>
</tr>
<tr>
<td>Methode Electronics, Inc.</td>
<td>122</td>
</tr>
<tr>
<td>Micro Devices Corp.</td>
<td>111</td>
</tr>
<tr>
<td>Mini-Circuits Laboratory, A Division of</td>
<td></td>
</tr>
<tr>
<td>Scientific Components Corp.</td>
<td>2</td>
</tr>
<tr>
<td>Mostek Corporation</td>
<td>24, 25</td>
</tr>
<tr>
<td>MuPro Associates</td>
<td>71</td>
</tr>
<tr>
<td>NEC Microcomputers, Inc.</td>
<td>15</td>
</tr>
<tr>
<td>New Power Systems Division</td>
<td>120</td>
</tr>
<tr>
<td>Noritake Co., Ltd.</td>
<td>91</td>
</tr>
<tr>
<td>North American Philips Controls Corp.</td>
<td>127</td>
</tr>
<tr>
<td>O.K. Machine & Tool Corporation</td>
<td>64D</td>
</tr>
<tr>
<td>Optotech, Inc.</td>
<td>127</td>
</tr>
<tr>
<td>Ovinaire Division of Walker Kidde & Company, Inc.</td>
<td>126</td>
</tr>
<tr>
<td>*Philips Electronics, Electronic Components and Materials Division</td>
<td>23</td>
</tr>
<tr>
<td>Philips Test & Measuring Instruments, Inc.</td>
<td>111</td>
</tr>
<tr>
<td>Precision Monolithics, Incorporated</td>
<td>11</td>
</tr>
<tr>
<td>RCA Solid State</td>
<td>Cover IV</td>
</tr>
<tr>
<td>RCI/Data Division of RE-EL Circuits, Inc.</td>
<td>127</td>
</tr>
<tr>
<td>Reader Service Card</td>
<td>128A-B</td>
</tr>
<tr>
<td>Repco, Incorporated</td>
<td>6</td>
</tr>
<tr>
<td>Rockwell International</td>
<td>52, 53</td>
</tr>
<tr>
<td>SMK Electronics Corporation of America</td>
<td>111</td>
</tr>
<tr>
<td>Senko Instruments, Inc.</td>
<td>122</td>
</tr>
<tr>
<td>Semiconductor Circuits, Inc.</td>
<td>112</td>
</tr>
<tr>
<td>Sentry Manufacturing</td>
<td>109</td>
</tr>
<tr>
<td>Shugart Associates</td>
<td>44</td>
</tr>
<tr>
<td>Smiths Industries, Inc.</td>
<td></td>
</tr>
<tr>
<td>Connector Division</td>
<td>105</td>
</tr>
<tr>
<td>Spectra-Strip</td>
<td>65</td>
</tr>
<tr>
<td>Sprig-Salamon</td>
<td>123</td>
</tr>
<tr>
<td>Sprague Electric Company</td>
<td>27</td>
</tr>
<tr>
<td>Stahler Company, A.F.</td>
<td>123</td>
</tr>
<tr>
<td>Statek Corp.</td>
<td>122</td>
</tr>
<tr>
<td>Syntax Technologies</td>
<td>37</td>
</tr>
<tr>
<td>TRW/IRC Resistors, an Electronic</td>
<td></td>
</tr>
<tr>
<td>Components Division of TRW, Inc.</td>
<td>96</td>
</tr>
<tr>
<td>Tektronix, Inc.</td>
<td>8, 9</td>
</tr>
<tr>
<td>Teledyne Semiconductor</td>
<td>35</td>
</tr>
<tr>
<td>Teletype Corporation</td>
<td>118</td>
</tr>
<tr>
<td>Texcan Corporation</td>
<td>86</td>
</tr>
<tr>
<td>*U.S. Department of Commerce</td>
<td>15</td>
</tr>
<tr>
<td>United Systems Corporation</td>
<td>108</td>
</tr>
<tr>
<td>VIZ Manufacturing Company</td>
<td>127</td>
</tr>
<tr>
<td>Vector Electronic Co., Inc.</td>
<td>106</td>
</tr>
<tr>
<td>Vetek Electronics, Inc.</td>
<td>118</td>
</tr>
<tr>
<td>Wavetek San Diego, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Zilog, Inc.</td>
<td>40, 41</td>
</tr>
</tbody>
</table>

*Advertisers in non-U.S. edition

Classified Ad

HARDWARE DESIGN

Los Alamos Scientific Laboratory, a multi-faceted national R & D laboratory, is seeking an electrical engineer to work for a limited term of 1 to 1½ years in its laser systems group. The position involves hardware design and development of working prototypes of analog, digital, interface high-voltage pulser, control, and related instrumentation.

The successful candidate must have a bachelor's, master's or doctoral degree with 5 years' experience in hardware design, including sensitive instrumentation design for use in destructive transient and high-noise ground environments, such as high energy CO2 lasers or accelerators. Minicomputer software experience, such as writing cross-assemblers, is desirable.

The Laboratory offers excellent working conditions and benefits, including 24 days' annual vacation; a healthy environment with abundant recreational opportunities; and a beautiful mountain location close to historic Santa Fe.

Send detailed resume, in confidence, to:

Patricia Beck, Recruiting Representative

Los Alamos Scientific Laboratory

P. O. Box 1663
Los Alamos, New Mexico 87545

lostoalamos.com

An Affirmative Action/Equal Opportunity Employer - Minorities, Women, Veterans, Handicapped, Women of Childbearing Age Capable of Reproductive Activity - U.S. Citizenship Required
Electronic Design’s GOLD BOOK IS BEING USED AT LITTON

“I KNOW OF NO OTHER PUBLICATION WHICH HAS THE AMOUNT OF NECESSARY INFORMATION SO CLOSE AT HAND.”

M.A. Richards is Component Engineer at Litton G/CS, Woodland Hills, California, a leading producer of inertial navigation systems. Richards is responsible for hybrid microcircuit activity including evaluation, selection of and vendor liaison. His directory? Electronic Design’s GOLD BOOK.

Richards estimates that he and his associates have purchased equipment and components worth $500,000 through use of the GOLD BOOK.

“The most useful feature is the directory of companies and their local representatives. I know of no other publication which has the amount of necessary information so close at hand. I find the rating of companies and the number of employees, dollar volume and list of key officials very useful. The GOLD BOOK is superior. I use it several times a day.”

The GOLD BOOK is working for advertisers because it’s working for 90,000 engineers, engineering managers and specifiers — like Mr. Richards — throughout the U.S. and overseas.

IF IT’S ELECTRONIC... IT’S IN THE GOLD BOOK
Crystal Controlled DIP Oscillators designed especially for digital clock applications

Temperature Range: O°C to +70°C

Input Power: Voltage +5 V ±5%, Current 30 to 120mA

Oscillators

- Crystal and Component Ovens
- Thick Film Hybrid

Size (WLH): Approx. 0.50"X0.80"X0.37"

Overall Stability: ±0.010% - Model DT1-121

Frequency Range: 20 KHz to 25 MHz

Ovenaire Office:

- **Division of Walter Kidd & Company, Inc.**
- **706 Forest St. - P.O. Box 1528, Charlottesville, Virginia 22902 - 804-977-8050 - TWX 510-587-5461**

CIRCLE NUMBER 84

12 to 600 MHz CRYSTAL OSCILLATOR

P_0: 0 to +13 dBm

Temperature range:
- -40°C to +70°C

CALL OR WRITE

- **Greenray Industries, Inc.**
- **840 West Church Rd. Mechanicsburg, PA 17055**
- **Phone 717-766-0223**

CIRCLE NUMBER 85

Product index

Information Retrieval Service. New Products, Evaluation Samples (ES), Design Aids (DA), Application Notes (AN), and New Literature (NL) in this issue are listed here with page and Reader Service numbers. Reader requests will be promptly processed by computer and mailed to the manufacturer within three days.

Category	**Page**	**RSN**
Components Buzzers | 106 | 62
Capacitors | 38 | 26
Capacitors, ceramic | 27 | 20
Crysalis | 109 | 64
Crystals, quartz | 117 | 75
Displays | 93 | 50
Keyboard | 121 | 81
Relay, mercury-film | 100 | 321
Relay, reed | 108 | 63
Resistor networks | 11 | 130
Resistors | 99 | 302
Resistors | 18 | 13
Resistors | 24 | 18
Sensors, noncontacting | 104 | 58
Solenoids, tubular | 114 | 72
Switches | 98 | 54
Switches, PB | 33 | 23
Switches, pushbutton | 111 | 67
Switches, pushbutton | 116 | 67
Thermal cutoffs | 111 | 68
Transformers, converter | 100 | 320
Data Processing CRT | 103 | 57
Computer peripherals | 7 | 5
Data terminal | 31 | 22
Disc-storage: drives | 101 | 56
Memory, add-on | 114 | 363
Printers | 108 | 101
Rf links | 6 | 4
Synchronizer | 114 | 359
Teletypewriter | 114 | 362
Terminals, display | 113 | 71
ICs & Semiconductors BIMOS | IV | 243
 Comparators | 21 | 14
 Encoder/Decoder | 85 | 45
 Frequency Synthesizer | 113 | 356
 RAM, 1-K | 29 | 21
SCRS, high-current | 112 | 347
Transistors, Fast | 112 | 345
Transistors, Fast | 112 | 344
Transistors, Power | 112 | 349
Zeners | 35 | 24
Instrumentation Counter/timer | 111 | 66
DMMs, 4-1/2 digit | 64 | 37
IEEE interface | 105 | 332
Logic analyzers | 73 | 41
Meter tester | 104 | 326
Pulse generator | 2 | 1
Recorder, waveform | 104 | 328
Spectrum analysis | 102 | 322
VOMS | 127 | 89
Word generator | 105 | 330
Micro/Mini Computing Computer card, OEM | 127 | 87
Microcomputer | 11 | 9
Microcomputer board processor, speech | 109 | 338

Category	**Page**	**RSN**
Programmers, PROM | 109 | 339
Reader, bar-code | 109 | 341
System, development | 107 | 337
Modulars & Subassemblies Amplifier | 77 | 42
DPM | 116 | 367
Op amps | 25 | 19
Oscillator, VC | 115 | 73
Power amplifiers | 100 | 35
Transformer, Scott-T | 116 | 371
Packaging & Materials Backpanels | 39 | 27
cable, filter | 118 | 77
drops, DIP | 107 | 61
Connectors | 105 | 59
Connectors | 27 | 28
Connectors, edge | 49 | 34
Enclosures | 33 | 34
Enclosures | 106 | 30
Epoxy, opaque | 115 | 365
Hooks | 119 | 78
Metal-mass programming | 37 | 25
Wire, cable, and cord | 11 | 400
Power Sources Batteries | 89 | 48
Batteries | 117 | 76
Converter, dc/dc | 117 | 373
Power supplies | 97 | 53
Power supplies | 86 | 46
Power supplies | 120 | 79
Power supply, dc | 117 | 372
Design aids Automatic screwdrivers | 118 | 378
Epoxy compounds | 118 | 377
Linear-circuits guide | 118 | 376
Memories | 118 | 374
Soldering materials | 118 | 379
tubes, TV-camera | 118 | 375
New literature Capacitors | 120 | 403
Computer, desktop | 120 | 396
Converters, a/d | 120 | 405
data comm products | 119 | 390
data conversion | 93 | 390
data processing | 120 | 397
electronic surplus | 120 | 406
Fluorocarbon products | 120 | 399
LSI | 119 | 392
Microprocessors | 119 | 398
Microprocessors, ICs | 120 | 407
Minicomputer accessories | 120 | 398
Motors and fans | 119 | 398
PROMs | 120 | 395
Sockets | 120 | 393
test equipment | 119 | 391
test equipment | 120 | 404

EL ECT RONI C D ESI GN 14 , July 5, 1977

Page RSN

126
Solve your switching problems with this superior quality solid state timing device. Signals are generated through the interruption of infrared light by the selective setting of a patented unique shutter system.

DOLLARS SAVED • RELIABILITY • LESS DOWN TIME
- Construction NEMA 12
- Speeds to 1000 RPM on standard models
- Voltage 12/20 VDC or 20/28 VDC
- Accuracy 2 degrees ±100% repeatable

When necessary to use this device in conjunction with AC or DC pilot devices, Opto-Mech can supply the necessary power supply and solid state relays, packaged in modular form.

OPTO-MECH INC. 1320 WESTHER-LONG BEACH, CA 90813 (213) 435-1006
CIRCLE NUMBER 86

A quality stepper motor and IC driver that cuts design costs, simplifies circuitry, minimizes space

We’ve just put the cost of an incremental drive stepping system within reach! And we’ve simplified your job in doing so. The $12.60 includes our K82701-P2 12V dc stepper motor and our SAA1027 IC driver in 100 piece quantities, basically all you need for a complete system, if you supply dc voltage and stepping pulse. The motor has a 7½° step angle, 200 steps/sec pull-in rate and 6.0 oz-in working torque. If these specs don’t suit your proposed application, we have 7 other motors to choose from with pull-in rates and working torque values to satisfy most drive applications. 15° step angles are also available, as are 5V dc models. Any one of the 7 can be driven by the IC driver without the need for discrete power stages. Use of the driver, in fact, cuts the cost and complexity of your circuitry to the bone. It’s small in size, low in cost and assures maximum stepping accuracy in conjunction with our stepper motors. Find out more about NAPCC stepper systems.

Write for information today!
NORTH AMERICAN PHILIPS CONTROLS CORP.
Cheshire, Conn. 06410 (203) 272-0301
CIRCLE NUMBER 88

OEM COMPUTER CARD

THE MOST POWERFUL 6800 BASED OEM COMPUTER CARD

- 1MHz CRYSTAL CLOCK
- 1K BYTES STATIC RAM
- SOCKETS FOR 4,2708/2716
- 32 PARALLEL I/O PORTS
- 8 LEVEL INTERRUPT CONTROLLER
- DMA CYCLE STEAL LOGIC
- SERIAL EIA OR LOOP INTERFACE
- FULLY BUFFERED PROCESSOR BUS

$555
(SINGLE UNIT)

CHESIRE, CT 06410

CMC-68/15

FIRST IN A FAMILY OF COMPLETE MICROCOMPUTER BOARDS AND SUPPORT PRODUCTS, including

* RRB-8K: 8K RAM and 0 or 16 K EPROM
* WW8-68: WIRE WRAP BOARD
* TAB-68: BACK PLANE/CARD CAGE

RCI/DATA
520 Victor St. Saddle Brook, N.J. (201) 843-3768 07662
CIRCLE NUMBER 87

ELECTRONIC DESIGN 14, July 5, 1977

You can pay more. You can pay less. But you can't buy a better FET VOM.

The ultimate VoltOhmyst®
- Measures AC or DC volts. 0.05V to 1500V.
- Current from 0.15mA to 1.5A
- Hi- or Lo-power ohms (R X 1 to R X 1 Meg), with pushbutton polarity reversal.
- Autopolarity, lautband mirror-scale meter with 3 color-coded scales, separate polarity-indicating meter
- AC or battery operation.

WV-534A
$150.00

See it at your VIZ distributor
VIZ Test Instruments Group of VIZ Mfg. Co.
335 E. Price St.
Philadelphia, PA 19144

CIRCLE NUMBER 89

127
Yes, we gotcha DECwriter and we did it with such standard features as: matrix impact printing, 132 column print width, microprocessor electronics, portability (SuperTerm weighs less than 50 lbs.), high speed (10, 15, 30, 45 and 60 characters per second are standard with 120 and 200 CPS being optional), an IBM Selectric configured keyboard, a "gear shifted" alphanumeric key pad, a quick loading cartridge ribbon system, horizontal tabs (variable and fixed), vertical tabs, programmable keyboard lockout, text-optimized printing and forms control—all standard.

In addition, SuperTerm's unique "ballistic" printhead design is warranted for an entire year. This means that during the warranty period, should you ever encounter defects in printhead workmanship, Intertec will replace or repair the defective component free!

It's really just that simple and that super—a printhead warranty 4 times longer than DEC's.

End users will be pleased to learn that the Intertec SuperTerm provides all of this capability and more at a price of only $1995—quantity one.

Low cost options available on every SuperTerm include: 200 CPS printing, super and subscripting, variable vertical pitch, pagination (automatic top of form), direct X/Y addressing, adjustable left and right margins, automatic reverse printing, double-width characters automatic CR on end of line, a font programmable character set, and a 1200 baud communications package consisting of 120 CPS printing, dynamic buffer control, 202C interface compatibility (w/reverse channel) and automatic reverse printing.

If your application calls for APL/ASCII, Super Term has that too. In fact, Super Term has got just about everything—except competition.

Want more? You've got it! A built-in micro-cassette (Supercette™) is available for only $900 in single quantities with OEM discounts available.

In addition to unparalleled price and performance, every SuperTerm is backed by Intertec's nationwide factory trained service network with over 160 service centers strategically located coast to coast.

For more information on the total performance and unparalleled low price that make the Intertec SuperTerm the very best buy for your terminal dollar, just call Intertec Data Systems, the only company with international sales, service and the revolutionary SuperTerm.
Coming through...
with a vital part in product design

It's what's up front that counts. That's why it pays off to involve Belden in the early stages of a project.
We know the codes, specs and electrical/environmental parameters your faced with. We've come through with answers to some extraordinary new applications.
As much as any component, wire, cable and cord, can make a critical difference in your product's performance. And your costs. By drawing on thousands of high-quality standards—and a wealth of custom engineering knowhow—we can tailor an answer to fit your needs. Exactly.
We can even help you cope with the economics of wire processing, assembly and installation. Our problem solving experience ranges from innovative packaging to total manufacturing analysis.
Whether you need cord sets, special harnesses, shielded cable construction, flat cable—or help putting it all together, involve a Belden Wire Specialist. He'll come through with everything we've got. For answers right now, phone:
317-966-6661 Electronic Division or mark 400 on reader service card.
312-986-1600 Electrical Division or mark 401 on reader service card.
312-887-1800 Transportation Division or mark 402 on reader service card.
Or write Belden Corporation, 2000 S. Batavia Ave., Geneva, IL 60134

BELDEN

Coming through...
with new ideas for moving electrical energy

H-2-6 ©1977 Belden Corporation
New compensated op amp...

BiMOS scores again.
Low V_{io}, low drift, at a low price.

The RCA CA3160: latest proof that BiMOS is today's op amp technology. It has the lowest drift ever available in a low price general purpose op amp: 6 μV/$^\circ$C. Low enough for 95% of all op amp applications. It has V_{io} of only 2 mV typical (CA3160A). Ultra-low input current: 2 pA typical. And on-chip compensation.

All this is on top of the other features that have made BiMOS op amps so universally applicable.

Features like very high input impedance: 1.5 T\Omega. Rail-to-rail voltage swing. High common-mode capability: the CA3160 can differentially follow input signals ranging from 3.0 V below the positive supply voltage down to 0.5 V below the negative supply rail. Which can eliminate the need for a dual \pm supply.

Yet the remarkable CA3160 costs a lot less than performance-competitive op amps. Thanks to RCA experience. And the inherently simple manufacturability of BiMOS.

Get the op amp with premium characteristics without paying a premium price. Contact your RCA Solid State distributor.

Or RCA.
Write: RCA Solid State. Box 3200 Somerville, NJ 08876; Sunbury-on-Thames, Middlesex TW16 7HW, England; Ste.-Anne-de-Bellevue, Quebec, Canada; Fuji Bldg., Tokyo, Japan.

RCA Linear IC experience is working for you