Self-scanning photodiode array promises low-noise video scanning applications. A single chip has 48 elements on 0.005-in. centers and only 6 output leads. Future arrays are expected to contain 64 and 128 elements. Applications to include optical character recognition as well as facsimile equipment. See p.101.
What's new in HP Scopes? 18 GHz, dual-channel sampling! New, faster HP diodes now extend sampling capability through 18 GHz. For the first time, you can directly view and measure 18 GHz CW signals (or 20 psec risetime pulses).

But there are more new scope innovations from HP. There's the new, easy-to-use, 250 MHz real-time scope...and new, direct read-out TDR with 1/4" resolution...and new variable persistence and storage scopes for measurements up to 100 MHz...and a whole new series of low-cost 500 kHz scopes.

AND, there are more eye-popping scope ideas just around the corner!

Next time you see your HP field engineer, ask him what's new in scopes. You'll be surprised by all that's happening to give you better, more economical scope measurements. One thing, we bet you'll get a new (and better) answer, every time you ask!

Are you thinking about a new scope? Are you wondering whether you should continue down the same old road? Or is it time you took a look at another manufacturer? The HP road means going with the demonstrated leader — maker of performance champs.

Call your HP field engineer, right now, if 18 GHz sampling is your interest. Complete 18 GHz sampling system available with delayed sweep, or w/o delayed sweep. If you already have an HP 12.4 GHz sampling system, add the new 18 GHz HP 1430B remote sampler. Write Hewlett-Packard, Palo Alto, California 94304. Europe: 1217 Meyrin-Geneva, Switzerland.
GR's new 1656 Impedance Bridge rounds out the General Radio family of impedance bridges. Now there's a choice of three to suit your exact needs for accuracy and economy. All three measure broad ranges of C, L, R, G, D, and Q, while each has its own distinctions. The new portable 1656 offers 0.1% accuracy for only $700 (price in the U.S.), the 1650 features 1% accuracy in a portable package for $545, and the 1608 is a bench-type instrument with 0.05% accuracy for $1675. All three are self-contained 1-kHz instruments; external oscillators and detectors will extend their ac testing capability to a 20 Hz-to-20 kHz range.

The 1656, like the other two bridges, measures C up to 1100 µF, L up to 1100 H, and R to 1.1 MΩ. With the 1656, G can be measured up to 10 MΩ; D and Q cover over-all ranges of 0 to 50 and 0.02 to ∞, respectively. The 1656 resolves C down to 0.1 pF, L to 0.1 µH, R to 0.1 mΩ, and G to 0.1 nΩ. Your best bet, anywhere, for dc measurements is the 1656: consider the 10-µV/mm detector sensitivity and the wide resistance and conductance ranges.

Measurement of the new high-precision components demands an accurate bridge. With four-decade lever balancing, the 1656 achieves true 0.1% basic accuracy and a direct and easy readout of all four digits, without the need for interpolation or vernier interpretation. A rack version of the 1656 is available for $735; GR also makes an accessory $45 test jig for connecting axial-lead components.

Know all the members of our impedance-bridge family by name:

- 1656—0.1% accuracy, portable, $700.
- 1608—0.05% accuracy, bench, $1675.
- 1650—1% accuracy, portable, $545.

Whichever degree of measurement performance you require, you can get complete specifications from your nearest GR District Office or from 300 Baker Avenue, Concord, Massachusetts 01742. In Europe write to Postfach 124, CH 8034, Zurich, Switzerland.

General Radio

Electronic Design 22, October 25, 1970

INFORMATION RETRIEVAL NUMBER 2
HERE ARE TWO EASY WAYS TO SOLVE LIGHTED PUSH BUTTON SWITCH PROBLEMS. Economically. Reliably. Fast. The Molex 1175 snap mounts. Offers spade or wire terminals for fast, easy assembly. A choice of nine colors, 500 variations. And look at the Molex 1820. You can use one, or a gang of them, for an infinite variety of applications. Lighted push button can be wired to light independently of the switch. And it's available in colors galore. Best of all...both switches are priced considerably under one dollar in quantity. • These components are good examples of the Molex creative approach to design problems. And we have the ability to design reliability and ease of assembly into a product without letting costs run wild due to over-engineering. • If this makes sense, and you would like a free sample of either the 1175 or 1820 switch, write: Molex Incorporated, Downers Grove, Illinois 60515. Or phone (312) 969-4550.

...creating components that simplify circuitry
NEWS

29 News Scope
32 Cassette TV players face ‘war’ on five fronts. Lack of standardization seems destined to spur fierce competition for sale and buyer confusion
34 Diode laser array offers 30-to-40-W power. RCA infrared source, developed for military, has possibilities for police applications
36 Measuring motion with 0.0001-inch accuracy
38 Direct numerical control: The new assembly-line boss
41 Technology Abroad
43 Washington Report

TECHNOLOGY

57 Cut production costs with this technique for ordering and bunching capacitors. Faster assembly and lowered inventories provide savings.
66 Versatile table simplifies convolution. It allows you to look up this operation on two exponential functions as easily as a logarithm.
70 Reduce motor/tachometer coupling and improve servo-system performance. It’s essential to the design of stable, compact control systems.
76 Want a bandpass filter? You can build one by commutating simple low-pass filters, and easily vary bandwidth and resonant frequency.
80 Pasture or production? What’ll it be for the older engineer? This one parlayed ambition, ability and a few ideas into a paying business.
82 Ideas for Design
91 Product Source Directory: IC and Semiconductor Testers

PRODUCTS

101 Microwaves & Lasers: Photodiode-array chip has own scan generator.
106 ICs & Semiconductors: 300-ns, 2048-bit MOS ROM dissipates only 20 mW.
110 Components: Solid-state relays have $5.80 price tags.
104 Modules & Subassemblies
113 Instrumentation
115 Data Processing

Departments

55 Editorial: Whatever happened to our space program?
13 Designer's Calendar
46 Sidelights
121 Evaluation Samples
122 Design Aids

Information Retrieval Service Card inside back cover

Cover: Photodiode-array photo by Fairchild Microwave and Optoelectronics, Mountain View, Calif.
THE THINGS WE DO FOR OUR CUSTOMERS... START RIGHT UNDER OUR NAME.

Custom cans are put thru a proprietary burr removal and a polishing process, checked for size to assure proper fit, legibility and permanence of printing, and solderability before being placed in stock.

Core material is selected as optimum for the specified frequency range. Cores are checked for dimensions, physical imperfections, and electrical performance. Re-com processing then brings them to optimum shape and a permanent insulative coating is applied to identify type and process completion. After electrical test and a permanence of coating test, cores are ready for parts stock.

Specially made wire is inspected upon receipt for geometry, wire size, insulation type and thickness and bonding physical strength. Insulation is stripped and wires cleaned before soldering for reliability of solder joints. Wires are additionally bonded to prevent excessive splitting which would degrade performance.

This header has been designed with a can-mounting flange and nail-head pins for reliability of solder joints. Inspectors check glass-to-metal seals, plating, and dimensions.

A cushion provides added insurance against electrical shorts to the can and extra protection against damage in a severe shock environment. Protective spraying of circuitry provides additional protection against electrical shorts.

Diode type has been carefully selected and specified to provide high reliability and a broad frequency range with low noise figure. As with other parts, vendors have been carefully qualified. Incoming diodes are temperature cycled to assure stability, checked for physical and electrical characteristics, and precisely matched to provide excellent mixer isolation and IMD performance.

For an extra measure of reliability, two circuit boards are used to interconnect the diode ring. These plated-thru boards are designed and inspected to avoid possible electrical shorts.

Plastic supports provide winding insulation from the header, maximum support for the transformers, and a means of holding the windings in place under any shock or vibration condition.

Bonding materials and application methods have been selected to provide reliable attachment of components without suffering electrical degradation or component damage.
Now, here's how all this attention to detail can benefit you —

RELIABILITY: Relcom's mixers, transformers, reactive hybrids and switches are produced in accordance with MIL-I-45208A performance standards. They're GUARANTEED to meet our published specifications from $-54^\circ C$ to $+100^\circ C$, AFTER exposure to MIL-STD-202D environments. This is an unmatched reliability guarantee! And it's why you can use standard Relcom products, right off the shelf, in nearly any high-rel application.

CONFIDENCE: Relcom's products are 100% tested to electrical specifications (with guard-bands and recorded data). Units are serialized for performance and material traceability. Our one-year warranty experience shows less than 0.2% of units shipped need be replaced.

VALUE: Product losses, resulting from defective production parts, are unusually low. That's why our prices can match your in-house costs, and stay competitive with other outside sources.

DELIVERY: Our near absence of production problems means on-time delivery. During the past year, 95% of Relcom's shipments were made by the scheduled shipping date, and 97% were made within three days of that date.

Another big factor in Relcom quality is our people, with their training, experience and dedication. Relcom engineers, for example, do nothing else but design signal-processing components. Their combined experience totals more than 56 years. You benefit by coming to experts who've designed a wide variety of signal-processing devices for a broad series of applications.

Relcom's production staff is another big contributor to product quality and reliability. Again, experience is a good part of it. Our assemblers average more than two years with the company. New personnel are trained in-house by production managers who've worked in several facets of the business. Turnover is low. Craftsmanship continuity is maintained from product to product.

Relcom's Quality Assurance Department combines a 25-year electronics industry background with 11 years in quality control. Personnel update their skills in QA methodology with formal classwork. During product design, inspection procedures and production documentation are reviewed. From receiving and assembly inspection plans to final inspection audit, customers are assured of detail conformity on every aspect of the product they buy.

Put all the elements of our QA program together — our people, procedures, and procurement techniques — you'll find you buy much more than a product when you buy from Relcom. Ask any of our 400 customers; instrument manufacturers, receiver designers, large-scale military and commercial systems producers, and builders of satellite transponders.

After all, when you make signal-processing components with the care we do, and make them for the customers we have, you have to provide the best product available.

Relcom products cover a frequency range from DC to 2.5 GHz. You can find out more about Relcom reliable signal-processing components and their applications by circling our reader service number. We'll send you detailed short-form catalogs describing our complete line of mixers, transformers, reactive hybrids and RF switches in coaxial connector models, or P.C. packages. Or better still, call a Relcom sales engineer at our Mountain View office for your own evaluation unit. The call's on us.
Take your pick.
Sylvania gives you a choice of either gold-dot contacts or gold-plated bellows contacts in any of our new P-101 PC-card edge connectors.
Our gold dots are just as reliable as conventional bellows contacts, and they save you money because they use less gold.
There are other ways we save you money.
For instance, you don't have to pay tooling costs for any P-101 connector you buy from us. We're using new expandable molds, so there's no need to tool up for each connector.
The molds allow us to change over from one connector to another fast, so we can give you quick delivery.
And they let us make connectors with a small or large number of contacts. (Even the oddballs are now conventional.)
For connectors with .125" contact spacing, you can specify anything from 12 to 100 contacts.
For connectors with .100" contact spacing, you can get 36 to 100 contacts.
All these connectors are designed to meet Mil Spec C21097B—which requires 500 or more trouble-free insertions.

We hold the locus point on contact tails within .010" radius of true position, so that your programmed wiring machines can work without interruption.

But the main thing is, you can now get custom connectors "off the shelf" from us at reasonable cost.

Two complete lines of them.
And that's not just a line.
For details, write to: Sylvania Precision Materials, Parts Division, Warren, Pennsylvania 16365.

SYLVANIA
GENERAL TELEPHONE & ELECTRONICS

INFORMATION RETRIEVAL NUMBER 5
Enroll now in the Magnetics Technology Center
Magnetics introduces a post-grad center that keeps you up to date on the state of the art in magnetic materials. No campus; no fee; texts free. You learn on your own time.

We don't pretend to be scholars behind ivy-covered walls. We are a group of inquisitive specialists with interests in electronics, electrical engineering, physics, metallurgy and related fields. We work with low and high permeability magnetics, ferrites and photo-chemically machined metals. Some of us have spent over 20 years here at Magnetics developing theories and putting them to practical use.

Now we'd like to share with you what we've learned—through a curriculum that no undergraduate school to our knowledge now offers. (Sure, we have another purpose. We believe that as people learn what our products can do, the more these products will be used in future commercial applications. If today we give you the kind of information that will help you do a better job, it seems reasonable to assume you may give us an order someday.)

So we invite you to enroll now in our newly created Magnetics Technology Center. It exists as a repository of what is known about magnetic materials. It intends to spread this knowledge freely—and broadly. It seeks engineers interested in learning more about this field. It welcomes both recent graduates and those who have been in involved in design and application for some time. We intend to gear our programs to your needs.

As an enrollee in the Magnetics Technology Center you will receive without obligation a continuing flow of printed material. You may have received some of this in previous years, but the bulk will be new material developed especially for our Center. Among the items:

1) Magnetics Technology Center Study Courses on such subjects as:
 - Ferrites versus magnetic materials
 - Photo-chemically machined parts
 - Reducing magnetic circuit size and response time
 - Ferrites in transformer design
 - Proper selection of cores for saturating transformers

2) Magnetics Technology Center Data Bank Files for designers of chokes, coils, inductors, filters, magnetic amplifiers, converter-inverter transformers and electronic transformers

3) Magnetics Technology Center news, at regular intervals, on advances in magnetic materials, applications, etc.

4) Magnetics Technology Center Annual Bibliography of important papers and articles on magnetic science technology

Enroll now. No tuition. No tests.

To enroll, clip this and mail today.

MAGNETICS, Magnetics Technology Center, Dept. ED-106, Box 391, Butler, Pennsylvania 16001

Please enroll me in the Magnetics Technology Center and forward all curriculum materials, free of charge, to:

Name
Title or Function
Field of Interest and/or Product Now Working On
Specific Subjects You Would Like Us to Include in the Curriculum

Degree School Year
Firm Name
Address
City State Zip

Your associates may wish to enroll also. Have them furnish the above information on their company letterhead and send it to us. We need this data to assist us in selecting your curriculum.

How do we qualify to institute this Center?
- We developed the 550 Mu Flake Core, an industry first, that allows miniaturization without excessive circuit losses
- We tightened up industry inductance tolerances for powder cores. Twelve years ago the accepted tolerance was as high as ±22%. We went to ±8% and others followed
- We established ourselves as the only approved source of bobbin cores for the Apollo program
- We patented a one-piece powder core die to increase production and help make a more uniform product
- We developed linear inductance-temperature characteristics in powder cores
- We stabilized miniature cores for inductance changes with temperature
- We developed a guaranteed voltage breakdown finish for tape and bobbin cores, eliminating the need for taping
- We developed our own powder metallurgy techniques and producing facilities to gain stricter control of magnetic core properties
- We tightened limits or standards on tape wound cores and set limits on other cores where no industrial standards were in place

MAGNETICS, A DIVISION OF SPANG INDUSTRIES INC.
INFORMATION RETRIEVAL NUMBER 6
How do you improve the world's best spectrum analyzer?

Add counter accuracy and a tracking signal source.

Combine HP's new 8443A Tracking Generator/Counter with the HP 110 MHz Spectrum Analyzer and you can make the most precise, complete frequency-domain measurements ever. The 8443A produces a visible marker that you can place anywhere on the spectrum analyzer display and immediately get 10 Hz resolution digital measurement of that point. The 8443A is more, too: a precision signal source that will make swept measurements over a 120 dB range and still produce the marker to determine any specific frequency with counter accuracy.

The 8553B/8552B Analyzer itself covers 1 kHz to 110 MHz with scans as wide as 100 MHz and as narrow as 200 Hz. It provides absolute amplitude calibration, better than −130 dBm sensitivity, over 70 dB dynamic range, 10 Hz resolution, plus exceptional stability (<1 Hz FM) and flatness. The 8443A capitalizes on all the qualities of the analyzer to function both as an accurate frequency counter and as a precision source for complete swept frequency measurements.

With the system you can make much more precise design and production line measurements of filters, mixers, modulators, oscillators, amplifiers and RF systems. For example, you can now:

- measure to 10 Hz the frequency of nanovolt signals in the presence of much larger ones. Use the tunable marker to find the signal and measure its frequency on the 8443A counter readout. You can easily identify IM distortion products, hum sidebands, spurious signals, and the like, because the 8443A is a frequency-selective counter with the analyzer's incredible sensitivity.

- completely characterize devices such as narrowband, high Q devices with simple, quick measurements. Use the tracking generator to sweep the spectrum and measure the frequency of any point on the response curve to 10 Hz. You can precisely measure passband flatness and shape factor on filters as narrow as 20 Hz, and make swept-reflection or return loss measurements. In other words, the tracking generator combines with the analyzer to provide a complete swept test system.

- test and align RF communications systems with unprecedented ease, thoroughness and precision. The high resolution and stability of the analyzer lets you see each and every signal, and the 8443A measures their frequency to 10 Hz. The system is also a natural for surveillance applications since you can scan broad and narrow ranges, resolve all signals of interest and count their frequency.

Call us for a demonstration. The system is easy to set up and you'll find it simple to use as an oscilloscope. If you've already got an HP 110 MHz spectrum analyzer, you can add the tracking generator/counter for $3500. The high-resolution 8553B/8552B with variable persistence display costs $6750. Ask your HP field engineer for details. Or write Hewlett-Packard, Palo Alto, California 94304; Europe: 1217 Meyrin-Geneva, Switzerland.
Our new compact oiltight pushbuttons give you up to six functions in a 1\(\frac{1}{16}\)" square.

Size is the only thing that’s small about our new compact pushbuttons. They handle full-size jobs.

We’ve gone square to give them style, and full 600-volt quality and flexibility.

And we’ve gone small to give you six operating and indicating functions in a 1\(\frac{1}{16}\)" square.

You save space, and money.

You also get unlimited flexibility with stacking contact blocks.

And a choice of pushbuttons and indicating lights that doesn’t quit—with a virtually unlimited range of sizes, forms and colors of buttons and lenses.

With all you’re getting, you still get the same oiltight performance you’re used to with full-size Cutler-Hammer oiltight pushbuttons.

Ask your Cutler-Hammer Distributor or Sales Engineer to show you our six packs. Remember, the best things come in small packages.

Try our 6 pack.

See your Cutler-Hammer Distributor—
the man who has everything

CUTLER-HAMMER
POWER DISTRIBUTION & CONTROL DIVISION, Milwaukee, Wis. 53201
INFORMATION RETRIEVAL NUMBER 8
The principal problem with digital V-O-M's is that circuitry (rather than readability) limits their accuracy. Triplett has attacked that problem with characteristic thoroughness. The result... a totally new circuit (patent pending) in which there is virtually no internally-generated current from the V-O-M input circuit to affect measuring accuracy.

Triplett's Model 8000 digital V-O-M... the only V-O-M with this newly-developed circuit... offers a true DC accuracy of 0.1% of the reading ± 1 digit and an AC accuracy of 0.2% ± 1 digit. Triplett calls this "true accuracy" because it's the same accuracy you can achieve day-in and day-out, test-after-test, on any kind of circuit.

Quality-minded buyers will appreciate, too, the other job-matching features of Triplett's new digital V-O-M. Like... AC and DC voltage measurements from 1 mV to 1000 V in 5 ranges at 10 megohms input resistance; AC and DC currents from 0.1 µA to 1000 mA in 6 ranges; 0.1 ohm to 100 megohms in 6 ranges.

Sounds like it was worth waiting for, doesn't it? It's ready for immediate delivery from your Triplett distributor at $575 suggested USA user net. If you'd like the added convenience of an instant replay circuit that displays a previously-stored reading for on-demand comparison with an existing reading, ask for the Triplett Model 8000-A at $630 suggested USA user net. For more information, or for a free, no-obligation demonstration, call your local Triplett distributor or sales representative. Triplett Corporation, Bluffton, Ohio 45817.

1. True 0.1% DC accuracy. Virtually no kickback current*. Allows voltage measurements in high resistance circuits at stated accuracy.
2. High AC accuracy with nearly perfect AC linearity and 10 megohm input resistance.
3. Low profile design in shielded case with modular construction for ease in use and maintenance.

*There is virtually no internally generated current from the V-O-M input circuit to affect measuring accuracy. (Patent pending on this feature).
Designer's Calendar

DECEMBER 1970

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For further information on meetings, use Information Retrieval Card.

Dec. 2-3

Dec. 2-4

Dec. 2-4

Dec. 6-9

Dec. 14-16

NEW FROM POWER/MATE CORP.

THE mini/mate SERIES

FROM $15

A COMPLETE LINE OF LOW PRICED MINIATURE POWER SUPPLIES

119 MODELS
VOLTAGE OUTPUT TO 48 VDC
CURRENT OUTPUT TO 2 AMPS.

The Mini/Mate series provides a new level of performance, quality, and reliability, previously unattainable, plus they are a pin for pin replacement for other manufacturers supplies. The new series is particularly appropriate for use in modern designs which make use of linear and digital integrated circuits, operational amplifiers, decimal displays and other related semiconductor circuitry.

All Mini/Mates may be printed circuit board or chassis mounted. The output of all Mini/Mates may be trimmed to precisely adjust the DC voltage to your circuit needs.

THE MINI/MATE SERIES IS A CROWD PLEASER THAT GIVES YOU . . .

PERFORMANCE . SELECTION . PRICE . DELIVERY

119 MODELS WITH OUTPUT VOLTAGES FROM 3.6 TO 48 VDC & CURRENT TO 2 AMPS.

* * * FIVE YEAR WARRANTY * * *

CREATED BY POWER/MATE . . . the leader in DC Power Supplies. Big power, small power and in between . . . POWER/MATE CORP. is your "one-stop-source" for all power supply needs. After all, PMC offers you the widest choice of power supplies anywhere.

QUANTITY DISCOUNTS AVAILABLE . . . SEND FOR FREE FULL LINE CATALOG

GIVING . . . Specifications, Model Nos. and Prices.

POWER MATE GIVES YOU SAME DAY SHIPMENT

POWER/MATE CORP.

514 S. RIVER STREET, HACKENSACK, N. J. 07601
Phone (201) 343-6294 / TWX 710-990-5023

INFORMATION RETRIEVAL NUMBER 10
Great Milestones in Packaging

Long, long ago, in the early awakenings amongst the Isles, a happy accident happened.
A grape, then a series of grapes were squashed in such a peculiar way that, fermentation being what it is, someone sensed putting the results in a container would prove of high interest. Thus does history begin.

Bacchus, who established the first really popular excursion trips with his Dionysian Tours to Egypt, India, etc., forthwith then set another record as the world's original wine bottler.

His own person found this endlessly pleasurable and grew to accommodate more of the same. In fact, the Bacchus chassis soon became unstable, unable, even fixed. Or, if you like, utterly stoned, thus making necessary an evolutionary step in package movement so admirably exemplified today by products made for modern markets by the well known firm of Jonathan.

One of the results of Jonathan's great humanitarian interests is movement by the Jonathan Type 110 Ultra Thin Steel Series Precision Full Ball-bearing Slide. In fact, they decided that the bulky bulging that was Bacchus' bag is still a problem for electronic chassis slides. Modern packaging concepts demand high capacity, compact design and ruggedness. And solutions for quick disconnect and tilt problems still must be solved. The people at Jonathan have the perfect solution—the Type 110.

The Type 110 is a full ball-bearing steel slide with a heavy duty pivoting mechanism that will easily handle any rated load requirement. It is readily available and inexpensive. Jonathan's Type 110 is so improved that its smooth action would make the Saturnalia Santa smile with delight.

Others, too, such as Raytheon, who utilize this versatile slide in its 706 Computer, (see photo) an expandable, low-cost processor with large computer capability and compatibility. This newest addition to the Raytheon computer family uses a packaging concept designed for reliability and maintenance ease. Sm-o-o-o-th Jonathan Slides help make it possible. What's your requirement? Detail us your needs, today!
Next time you spec a solenoid, odds are 61,034 to 1 that Guardian can provide the one that will do the job. Because we've got that many standards...solenoids in every imaginable shape and size to meet virtually any electro-mechanical requirement. AC or DC. Hefty 50 pound pull or a fraction of an ounce. Intermittent or continuous duty. Pull or push. Laminated, C-frame, box-frame or tubular. In 25 basic designs and 61 thousand variations. Not enough? Then we'll custom engineer a solenoid to fit your specialized application. (And you didn't know there was a Guardian Angel watching over engineers!) NEW 44-PAGE GUARDIAN SOLENOID CATALOG is yours for the asking. Write for Bulletin G-3.

GUARDIAN® ELECTRIC MANUFACTURING COMPANY
1550 West Carroll Avenue, Chicago, Illinois 60607

Your Guardian Angel stacks the odds in your favor (61,034 to 1)
Better packaging; one more reason our distributors are faster on delivery.

Your business is too important for procurement delays. That's why we asked your local Allen-Bradley distributor what would help him serve you better. The result; better fixed resistor packaging. Color coded boxes to eliminate errors. Bold identification of all the vital statistics. New clarity that will help your receiving and stockroom people, too.

Inside the carton there are more improvements. Each strip of 25 or 50 resistors is sealed in plastic. Leads are protected, resistors can't fall out. Yet the perforated end zips in a hurry. And every plastic wrapper is clearly marked with wattage, resistance, tolerance, military and commercial part numbers.

Better packaging and IRIS (Instant Response Information System); key elements in our distributors' better service program. It's a whole new dimension in electronics distribution.
Let There Be Light

Optoelectronics — sparkling new star for the 70's at Motorola where 5 new red and IR light-emitting diodes, 13 new photodetectors and 2 new photodiode and transistor arrays have just debuted.

In new visible red LED's, price and brightness play equal roles. The MLED-50, cased in the economical, subminiature, plastic Micro-T package, features 750 fL-@-20 mA brightness and costs only $1.50, 100-up. For equally compact designs, the MLED610 in the hermetic "pill-package" offers reliability and 1100 fL brightness @ 50 mA for only $2.60. And for perfect spectral matching with silicon, Motorola infra-red emitters in plastic Mini-T, "pill" or TO-18 package combine versatility with power outputs from 150 µW to 650 µW and 100-up prices low as $1.50.

In detectors, a great performer is the MRD3050 series — fast, rugged TO-18 packaged devices with a wide range of sensitivities that offer ultra-economical, 100-up prices low as 80¢! In addition, 5 new Darlington amplifiers in Unibloc plastic packages furnish ultra-high $hFE of 5,000, sensitivity from 1 to 4 mA/ mW/cm² and 100-up costs down to 40¢. The new units bring Motorola's photo diode, photo transistor and PIN detector-

unit-total to 24.

Challenges in character recognition can now be met with the industry's first standard, 39-element, monolithic photo diode array in ceramic flat-pack and a super-sensitive, 5-mil-spaced, 39-element photo-transistor array. The MRD6039D and MRD6039T are ideal for OCR, star tracker and mark sensor applications or any design requiring high-resolution radiation sensitivity.

A special, basic design guide containing all opto device specifications, applications and characteristics is available now.

For details, circle 101
Beam lead TTL! Motorola, longtime supplier of proven high reliability Safe-guard beam lead devices, now offers seven MTLT series 5400 functions built with beam lead technology. The initial introductions provide a basic family of standard logic — and more devices will be announced shortly.

The TTL Beam Lead ICs provide the user with specifications similar to their 5400 series counterparts. They differ in that beam lead interconnect metal is gold rather than aluminum. And the aluminum bonding pads formerly required for flying wire leads are replaced with strips of gold 6 mils long, 3 mils wide and 0.5 mils thick that cantilever over the chip edge for connection purposes. Silicon nitride passivation renders the chip impervious to impurities and contaminating ions.

Use of beam lead devices eliminates both die and wire bonding. The result is simple, faster, and more reliable bonds. Beam lead ICs are especially well suited for use in hybrid systems because the higher bond reliability minimizes the replacement of costly hybrid circuits. In hybrid circuit use, the nitride passivation of the ICs eliminates the need for hermetic packaging and reduces costly yield loss. And beam lead chips make higher density hybrid techniques possible.

For details, circle 102

MC1595 Multiplier Level Shift Circuit

In your MC1595 four-quadrant multiplier applications where level shifting is required, a simple, new circuit can greatly reduce external components, increase accuracy, and simplify adjustment. The circuit takes advantage of the high common-mode range of the MC1741 (or MC1556) op amp. As shown, you save seven resistors and one capacitor over the multiplier data sheet version.

In this circuit, by operating the multiplier at 2 mA with 10k resistors, linearity is 0.5% (typ) for the X input and 1.0% (typ) for the Y input.

As illustrated, both inputs to the MC1741 op amp are at 11.5 V, one-half volt below the 12 V minimum and 1.5 V below the 13 V typical input common-mode range. The MC1741 acts as a differential current to single ended voltage converter with V_{OUT} referenced to ground. Note also that you can accommodate ±10 V inputs using conventional ±15 V symmetrical supplies.

For details, circle 103

Op Amp And Power Booster Circuits Joined In MCH2870 Hybrid Power Op Amp IC

The end is at hand for many of the problems and much of the cost in op amp circuits for driving low impedance loads. Motorola has combined the MC1741 op amp and MC1538 power booster circuits in one hybrid Power Op Amp, the MCH2870. And you get the function in the nine-pin case 614 formerly required for the power booster, alone.

Now the MCH2870 offers the merged benefits of the op amp and booster in both full and limited temperature range versions, with each priced below the equivalent in separate ICs. In 100-999 quantities, the MCH2870MR (−55 to +125°C) is $16.00; the MCH2870CR (0 to +75°C $8.50. Further savings are realized through reduced external interconnection and board space requirements, and through halved handling.

The output current of the MCH2870 can be limited to any value from 100 mA (typ) to a full 300 mA (typ) with the simple addition of two external resistors. Or, the MCH2870's internal limiting can be utilized to provide a typical 100 mA (pins 2 & 4 open) or 200 mA (pins 2 & 4 shorted). Open loop Z_{OUT} is a low 10 ohms (typ) and A_{VOL} is a high 200,000 (typ, MCH2870MR). The MCH2870 is internally compensated and offers offset voltage null.

The MCH2870 was designed for driving low impedance/high current loads and is ideal for line driver and servo-syncher amplifier applications. Nine representative applications are described on the data sheet including inverting ampli-
MECL III Devices Convert And Move Data—Faster

Would you believe an A/D conversion time of 3.5 ns and a line receiver with a typical delay of 1.0 ns? MECL III now offers two new devices, the MC1650 A/D comparator and the MC1692 quad line receiver—opening up new concepts of high-speed data handling.

When its control gate is in the logic "1" state, the MC1650 compares an analog signal to a reference voltage. If the analog level is greater than the reference, the output of the comparator is a logic "1." If the analog signal is less than the reference voltage, the comparator output voltage goes to a logic "0."

Operating at a typical delay of 3.5 ns, the MC1650 accepts analog signals with slew rates up to 340 v/µs. Used in an A/D converter, the MC1650 is capable of providing digital information at rates up to 200 megabits per second, at the least significant bit (LSB). And, for sample and hold applications, when the control gate is taken to a logic "0" level, all bits of digital information remain in their present state, regardless of a change at the analog input. For maximum design flexibility, the MC1650 incorporates two comparators in one package—both with complementary outputs.

The MC1692 Quad Line Receiver is used to terminate long lines over which high-speed information is transferred. Typical applications might be a cable between a computer installation's central processor and a peripheral device or between a measurement terminal and the control center of an instrumentation or navigation system. Comprised of four differential amplifiers with emitter follower output transistors, the MC1692 is especially well suited to accept complementary signals from twisted pair transmission lines and provide high external noise immunity.

Evaluation quantities of these devices are available now in your choice of the ceramic "stud" flat-pack (suffix S) or the 16-lead ceramic dual in-line package (L). 100-up prices are: MC1650L/$21.95; MC1650S/$27.20; MC1692L/$9.25; MC1692S/$11.00. Introduce your system to new high-speed dimensions in data handling.

More MC9300/8300 MSI Eases DTL/TTL Design—Reduces Can-Count

DTL/TTL designers! Five additional MC9300/8300 functions offer you an easier building block approach to design. Direct replacements (electrically and functionally) for older 9300/8300 types, the versatile DTL/TTL compatible functions will reduce can-count and board space in your system.

For instance, the MC8308 dual 4-bit latch can replace eight flip-flops or two 4-bit latches. Each half of the device contains four latches with common enable (E0 and E1) and common master reset (MR).

Then the MC9310/8310 presettable decade counter and the MC9316/8316 presettable 4-bit binary counter accomplish counting functions that would require four J K master-slave flip-flops plus additional gating. Both devices have parallel inputs for presetting data and parallel outputs for full counting flexibility.

These counters are typically used for multistage counting and high-speed programmable division.

The MC8311 one-of-sixteen decoder converts four BCD inputs to select 1-of-16 outputs. Two enable inputs provide increased logic capability. The MC8311 function plays an integral part in memory selection control, demultiplexing and data routing.

For an economical high-speed serial storage building block, there's the MC-9328/8328 dual 8-bit shift register with separate clocks and a common master reset. Each 8-bit register is provided with a 2-input multiplexer circuit and complementary serial outputs. If desired, the two registers can be clocked together with a common line.

Your Motorola distributor has these DTL/TTL "compatibles" waiting for your evaluation. Give your system the advantages of building block design.
New MMT Micropower Series Advances
High Frequency/Low Power State-Of-The-Art

Attention designers!! Have you been having nightmares because your miniature, high frequency amplifier design requires transistors capable of over 100 gain at microamperes collector current? Is your dream of a miniature counter for a portable instrument "impossible" for the price you want to pay!

Wake Up!! Need this Motorola rev-v-eil-e! Here are two complementary pairs of switching and amplifier transistors — the MMT806 Micropower series — that provide the previously unobtainable combination of low input/output capacitance and high-frequency operation at ultra low power levels that is ideal for portable communications gear, medical electronics and remote control monitoring systems. In their rugged, Micro-T plastic package, the MMT806 (NPN), MMT808 (PNP) switches and MMT807 (NPN), MMT809 (PNP) amplifiers make the miniaturization of your design a waking reality.

Check the Micropower spec highlights then take advantage of the low introductory 100-up prices of $13.00 for the MMT806/807 and $15.00 for the MMT808/809. There's plenty of warehouse stock to breadboard that dream design.

For details, circle 107

Twenty Versions of 2N3055 Fill 5-25 Amp Industrial Gap!

Next time you need the dependable "old standby," 2N3055 NPN power transistor in a new circuit design — but at a current rating different from the 3055's, 15 amps — don't panic!

BECAUSE... There are twenty, new, 2N3055-type devices that do just that — give 2N3055 performance at 5, 7, 10, 15 and 25 amperes of continuous current. And, they're complementary!

Offering you the exact current-gain you want, the new 2N5867-86 family handles for expensive 2N3055 "specials."

Offering you the exact current-gain you want, the new 2N5867-86 family handles for expensive 2N3055 "specials."

Their complementary symmetry means simplified, audio-servo amplifiers less output transformers and installation because it requires a transistor capable of over 1 GHz operation.

Wake Up!! Need this Motorola rev-v-eil-e! Here are two complementary pairs of switching and amplifier transistors — the MMT806 Micropower series — that provide the previously unobtainable combination of low input/output capacitance and high-frequency operation at ultra low power levels that is ideal for portable communications gear, medical electronics and remote control monitoring systems. In their rugged, Micro-T plastic package, the MMT806 (NPN), MMT808 (PNP) switches and MMT807 (NPN), MMT809 (PNP) amplifiers make the miniaturization of your design a waking reality.

Check the Micropower spec highlights then take advantage of the low introductory 100-up prices of $13.00 for the MMT806/807 and $15.00 for the MMT808/809. There's plenty of warehouse stock to breadboard that dream design.

For details, circle 107

Six-Amp Axial-Lead Silicon Rectifier Series Offers
"Twice The Amps Per Dollar"

If you're getting hot from looking for dollar rectifier savings and finding pennies... cool it! Let the industry's first 6-amp axial-lead rectifiers save real money in your design by providing both "twice the amps per dollar" and significant mounting and assembly savings.

Compared to stud rectifiers of similar current rating, the silicon MR751 series devices install quicker, easier and take less space. And, their new, button-shape, voidless plastic case provides insulation against accidental shorting or grounding.

But the big savings is in the initial cost... less than half that of the typical stud-packaged 6-amp counterpart.

The MR751 series rectifiers come in four working peak reverse voltage ratings up to 600 volts. Each features a 600-ampere inrush current surge capacity for increased capacitive-loaded design latitude.

And if you really want to cool it — with a proper heat sink and mounting —

The new 6 A MR751 series of silicon "button" rectifiers reduces heat-sink costs.

Use the bingo number and get a free 200V MR752 plus a data sheet.

For details, circle 108

For details, circle 109
Hot Carrier Rectifier Trio Halves Power Loss

With hot carrier diodes, the word is rectification efficiency. At Motorola, the story is three hot carrier rectifiers—MBD-5500A, the 50 amp, 20 volt industry first, and now the 5 amp, 20 volt MBD5300 and the 25 amp, 20 volt MBD5400.

Like the MBD5500A, the new rectifiers employ the Schottky barrier principle in a large area, metal-to-silicon power diode. The state-of-the-art geometries feature epitaxial construction, oxide passivation and metal overlay contacts. The result is a forward voltage drop less than half that of conventional silicon rectifiers, low stored charge from majority carrier operation, and high surge current capacity. These three features translate into major benefits:

- The extremely low V_F over the entire forward current range means 50% less power loss than conventional alloy or diffused devices, a real breakthrough for low voltage power supplies and other applications where power loss hurts.
- Majority carrier operation results in virtually no stored charge (even at very high frequencies) plus extremely fast forward and reverse recovery times. Rectification efficiency is flat to beyond 50 kHz and rectification continues into the megahertz range making the rectifiers ideal for high frequency use, where low stored charge is required or where reduced commutation transients are desired.
- High surge current capacity allows extra design latitude in capacitive loaded circuits as well as providing extra protection.

Even at 20 amperes the forward voltage of the MBD5400 is less than 0.4 V, a real benefit for low voltage power supplies.

The MBD5400 is encased in the standard DO-4 stud package, the MBD-5300 in an axial-lead hermetic metal Motorola 60 case. 100-up prices are MBD5400 — $6.00, MBD5300 — $3.60, the non parrel MBD5500A — $8.50. Production quantities of both devices are in the warehouse now, ready to rectify — efficiently.

For details, circle 110

Plastic Trigger/Triac Pairs Lower Control Cost

Now, a plastic thyristor/trigger power control pair that will match your design needs for cost and performance!

The new MAC10/11 Series Triacs

control full-wave power to 500 V and are the answer for 10 A current handling in light dimmers, motor controls, home appliances, anywhere a balance between price and performance is desired.

These Thermopad-packaged devices offer symmetrical gating and holding (1st and 3rd quadrants have the same limits), low "on" voltage and 50 mA gate trigger (quadrants I & III) and holding currents.

Their hand-in-glove partner in phase-control, the MBS4991-92 bilateral switch, provides 0.2% /°C temperature coefficient and uniform conduction characteristics in both directions.

Cost for the new "dynamic duo"? Just $1.15, 100-up!
And when half-wave SCR control is your need, reach for the MCR106/ MUS4987 SCR/Trigger combination that has an ultra-economical, 100-up price as low as 92¢!

MCR106's are Thermopad-cased, compatible with existing sockets, capable of 110°C junction temperature and available in quantity from stock. They're favored in consumer-industrial heat, light and motor control where cost is important.

Their confederate in control — the MUS4987 unilateral switch — offers uniform characteristics and an excellent, 0.02%/°C temperature coefficient for stable performance.

Motorola plastic Triacs and SCR's now provide hermetically-sealed junctions for uncontaminated, reliable operation. Pair up with them today!

<table>
<thead>
<tr>
<th>New Thyristor Series</th>
<th>If A</th>
<th>Blocking Voltage Range V</th>
<th>Thyristor/Trigger Pair Price (Lowest 100-up)</th>
<th>"On" Voltage V (max)</th>
<th>Typical Switch Voltage V</th>
<th>New Trigger Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCR106-1 thru -4 Plastic SCR's</td>
<td>4</td>
<td>30-200</td>
<td>$.92</td>
<td>1.5</td>
<td>8</td>
<td>MUS4987,88 Unilateral Switch</td>
</tr>
<tr>
<td>MAC10/11 Plastic Triacs</td>
<td>10</td>
<td>25-500</td>
<td>$1.15</td>
<td>1.7</td>
<td>8</td>
<td>MBS4991,92 Bilateral Switch</td>
</tr>
</tbody>
</table>

For details, circle 111
NEW PRODUCT BRIEFS

MODULATOR-DEMODULATOR GETS NEW PACKAGE
— And A Limited Temperature-Range Running Mate

Now you can get Motorola's versatile, low cost MC1596 monolithic balanced modulator-demodulator, and the new limited temperature range MC1496, in “easy insert” ceramic dual in-line “L” packages.

Balanced inputs and outputs, high common-mode rejection of 85 dB (typ), adjustable gain and signal handling, and carrier suppression of 65 dB (typ) @ 0.5 MHz are just a few of the factors which make the circuit popular.

Remember, these devices are used wherever the output voltage is a product of signal and carrier in communications applications such as suppressed carrier and amplitude modulation, synchronous AM-FM and phase or single sideband detection, and frequency doubling or mixing. They've also been found excellent as choppers, as comparators for phase locked loop receivers, and as components in phase correcting and phase encoding circuitry.

The MC1596L is a low $4.80 (100-up) and the MC1496L is only $2.25. Units are available from all Motorola distributors.

For details, circle 112

RADIATION-HARDENED AMPLIFIER/HIGH-SPEED SWITCH
— Provides Balanced Resistance To All Forms of Radiation

Semiconductor devices are generally the most radiation-vulnerable element of an electronic package. Recently, designers have been able to obtain special, radiation resistant devices for “hardening” systems that must operate in nuclear reactor or Van Allen Belt types of environments. Most of these, however, are resistant to only a part of the different kinds of damaging radiation.

Now, from Motorola, you can get two new, off-the-shelf, PNP silicon transistors that are specially designed to cope with the *entire spectrum* of harmful radiation, and, provide this performance:

- The 2N5763 general purpose amplifier features a dc current gain specified from 1.0 to 500 mA and high collector to emitter breakdown voltage of $B\text{V}_{\text{CEO}} = 60$ Vdc and $B\text{V}_{\text{CE}} = 65$ Vdc.
- The 2N5332 high-speed switch displays typical switching times of $t_{\text{on}} = 9$ ns and $t_{\text{off}} = 40$ ns.

500-up prices: In the TO-18 package, the 2N5763 is $10.80; in the TO-46 package, the 2N5332 is $8.45.

For details, circle 113

METAL PROGRAMMABLE UNIJUNCTION
— Puts Hermetic, High-Reliability Into Pulsing, Timing and Sensing

Now you can program specs of unijunction transistors that come in a rugged, reliable package. In their hermetic, metal TO-18’s, the MPU231-33 PUTs offer an operating temperature range of $-55°$ to $125°C$. . . ideal for demanding industrial and military pulse sensing, timing, thyristor-triggering and relaxation oscillator applications. “Big brother” to the lower-cost, plastic MPU131-33 PUTs, the hermetic series has identical specs including low, 1.5 V on-state voltage, 5 nA maximum leakage current, 16 V typical peak output voltage and, of course, the option of programming R_{an}, etc. I_1 and I_0 simply by varying the two external resistor values. The MPU233 is especially suited to long-interval timers with its 150 nA I_0. 100-up price range is $.90 to $1.85.

For details, circle 114

NEW TTL QUAD LATCHES
— Fill Need For Temporary Data Storage In High Speed Systems

Two new TTL latches have joined Motorola's growing latch line. The 4-bit devices — MC4035/4335 and MC4037/4337 — are ready to act as temporary stores in the transfer of binary information between processing units and input/output units in your high speed system.

The MC4035/4335 consists of four latch circuits with open collector outputs, a common strobe input, and an output enable. The open collector feature is useful for bussing or wire ORing outputs together and the output enable feature facilitates gating information out of the latches according to a predetermined timing scheme. The MC4037/4337 features an active pullup network for driving highly capacitive loads.

Both latchs are supplied in plastic and ceramic dual in-line, and ceramic flat packages. 100-up prices are — MC4035P or MC4037P: $3.50, MC4035L or MC4037L: $4.40, MC4035F or MC4037F: $4.40, MC4335L,F or MC4337L,F: $8.80.

For details, circle 115
Shift Register Applications Detailed In New TTL Systems Design Kit

Designers concerned with data transmission will find prime use for Motorola's new TTL Design Kit #2. The file provides typical shift register applications evolving around the MC5491A/7491A 8-bit shift register, with emphasis placed on the data transmission capabilities of the devices. Included in the kit are data sheets, an application note, and comprehensive listings of 54/74 circuits and complete functions. A "special offer" sheet enables designers to obtain additional data on MODEM ICs.

To obtain your copy, circle 116

Laser Beam Zener Chip Scribing Increases Yield, Reliability

Motorola's zener chips are the first in the industry to be scribed by the revolutionary, new laser beam method. Under development for 18 months, the state-of-the-art technique is producing cleaner, smoother, and straighter chip edges than can conventional means.

By removing the uneven stresses inflicted on a wafer by the former "scratch" method, cracks that can extend into the active junction area have been virtually eliminated, resulting in an improvement in long-term reliability.

The exclusive use of the laser scribing of zener chips at Motorola has increased yield in this operation to a startling 99% — and at a rate four times faster than with previous methods. The increased yields will result in quicker response to customer volume requirements.

In the laser-scribe process, the use of a very short laser pulse duration (500 ns) and the slow thermal conductance (time constants of μs are typical) in semiconductor materials confine the heat generated in the kerf (scribed area) to a region approximately 2 mils wide.

For details, circle 117
NEW LITERATURE BRIEFS

Master Guide / Price List Now Updated Quarterly

In 137 efficient pages, the latest revision of the Master Selection Guide And Price List brings together all the selector guides and price lists for every product line offered by Motorola. The Oct., Nov., and Dec. prices for more than 14,000 semiconductors are listed along with selector guides for 17 product families.

To make it easy for you to keep tabs, a quick reference section lists new additions and the devices affected by this guide. Pricing and ordering policies for all products are included.

For details, circle 118

Fifth “Industry Bible” Edition Published And Second IC Data Book Supplement Ready

No working library will be complete without Motorola’s just published, fifth edition of the Semiconductor Data Book. This version is the largest ever — 2560 pages — and provides three indexes for sure entry to the device you want.

The indexes also serve as a 208 page listing of the key parameters of all semiconductors registered by the EIA plus Motorola non-registered devices. The book proper includes 2150 pages of complete specifications for all IN, 2N, 3N and Motorola discrete semiconductors and features a new microcircuit components section.

Single copies of the book are $5.95 and an updating service is available for $2.00 entitling you to a minimum of two supplements.

The 336 page Supplement 2 to the Microelectronics Data Book provides complete specifications for 68 new devices. The app note abstract section now includes abstracts for all current Motorola application notes. Sections devoted to the new additions to each digital logic family also provide logic diagrams and truth tables for all functions in that family.

To order either the fifth edition or the supplement, use the handy coupon on the left.

NOTE: If Motorola’s Literature Request Coupon is missing, use magazine’s standard Reader Service Card.
New Kodagraph Super-K papers give you unusual dimensional stability.

Chances are you know how well Kodagraph Estar base films hold their size. Now Kodak introduces Super-K papers that give you better dimensional stability than conventional papers. And they lie flat and resist soiling, too.

Takes only two minutes to process them in the Kodak Supermatic processor, which also handles Estar base films. Or you can use conventional processing methods. You'll like the results either way.

For all the facts, contact your local Kodak Technical Sales Representative. Or write Eastman Kodak Company, Business Systems Markets Division, Dept. DP814, Rochester, N.Y. 14650.

DRAWING REPRODUCTION SYSTEMS BY KODAK
...like more capacitance in aluminum 'lytics?

Get SPRAGUE Type 36D POWERLYTIC® CAPACITORS

- Large cylindrical electrolytic capacitors for use in digital computer power supplies, industrial control equipment, energy storage applications, etc
- Low impedance construction
- Largest case (3" dia. x 8 7/8" high) provides 650,000 µF at 3 volts!
- Can be operated at +85°C
- Tapped No. 10-32 terminals simplify filter bank assembly
- Available with or without outer plastic insulating sleeves
- Request Engineering Bulletin 3431C

...need a reliable wirewound resistor?

Specify ACRASIL® PRECISION/POWER RESISTORS

- Excellent stability and reliability, even under extended load life, extremely high humidity, and other adverse operating conditions
- Expansion coefficient of silicone coating is closely matched to that of ceramic base to insure against damage to resistance winding
- Coating provides exceptional protection against moisture, shock, vibration, fungus
- Available with standard and non-inductive windings
- Resistance tolerances as close as ±0.05%
- Request Engineering Bulletins 7450A and 7450.1

For Engineering Bulletins as noted above, write to:
Suppose you require low-frequency, high-Q bandpass filters. If you use conventional filter synthesis you may get physically impractical designs. But there is an alternative—commutating filters.

Although it is an attractive alternative, it was not feasible for most applications before solid-state switching became available to replace mechanical commutators. Now you can make use of the many advantages of commutating filters, including:

- Wide frequency range.
- Good temperature stability.
- Small size and weight.

By integrating on the same silicon chip a linear 48-element photodiode array with 5-mil centers, a shift register and multiplex switches, the new FPA-600 monolithic photodiode array has made possible low-noise and high-resolution video in optical character recognition and facsimile scanning.

This single-chip construction technique has reduced the number of external leads, which are independent of the number of sensors, to only six.

The technique has eliminated the problem of capacitive imbalances between sensor arrays and generators due to large bundles of wire interconnecting them, which caused switching noise to appear in the output video information.

The next big consumer electronics product on the market—with sales of $1-billion projected by 1980—will be the home TV recording systems.

The pity is, according to Quantum Science Corp., a market and product planning concern with offices in New York City and Palo Alto, Calif., that a standardization battle is bound to ensue. Already six basic designs are emerging, it reports, with at least a dozen variations.
PANAPLEX™ NUMERIC DISPLAY
UNITIZED, 9 to 16 DIGIT NUMERIC PANEL DISPLAY
LOWEST COST-PER-DIGIT READOUT AVAILABLE

Burroughs' PANAPLEX panel display is a totally new, state-of-the-art advance in numeric readouts. It requires less than two connecting terminals per digit. One-piece, common-segment construction assures digit alignment — makes possible significantly improved resistance to shock and vibration. In-plane character display provides 150° viewing angle. Unitized packaging reduces display length by 25% with no reduction in digit size. Input power required is less than for any competitive readout panel and the display has superior brightness characteristics. What's more, reliability of PANAPLEX numeric panel display is comparable to that of Burroughs' NIXIE® tubes.

For additional information write: The Burroughs Corporation, Electronic Components Division, P.O. Box 1226, Plainfield, New Jersey 07061.

Only Burroughs manufactures NIXIE® tubes, SELF-SCAN™ panel displays and PANAPLEX™ numeric panel displays.

/Burroughs
U.S.—Soviet space docking? Communications needed

WASHINGTON, D. C.—What electronics would be needed to enable U. S. and Soviet spacecraft to rescue one another in space? Earlier this month the Russians agreed to discuss such cooperation in a committee of the International Academy of Astronauts. The discussion to be held in Moscow, October 26-27, will be aimed at allowing the spacecraft of the two nations to dock with one another.

Sam Fordyce, NASA's principal engineer for communications on the Space Station Task Force, outlined the communications problems this way in an interview with ELECTRONIC DESIGN:

"The only rigid requirement is voice communications. For spacecraft to-space, spacecraft-to-astronauts outside the craft, and from the lunar module to men on the moon, we use vhf transceivers [259.7 MHz and 296.8 MHz] with a simple AM modulation, operating with a 28-V power supply.

"The Soviets use a lower vhf frequency for space-to-space and probably different voltage. We might supply them with transceivers like ours. They'd have to put in their own antennas.

"Rendezvous could be achieved in two ways: by direction to both craft from NASA's 14 ground stations, telling them how to maneuver until they were close enough to detect each other with flashing lights, or they could guide themselves to rendezvous by radars on each spacecraft.

"The ground-based radars are powerful enough to skin-track—receive good echoes without the use of craft-borne transponders. But the ground stations would have to communicate with the Russian craft. We use S-band for ground-spacecraft communications and the Russians use high frequency [20 MHz]." Fordyce said.

"They chose high frequency because their flight altitudes have often been low, ruling out line-of-sight transmission. Hf signals get over the horizon by bouncing off the ionosphere.

"Now, we plan higher flights, above the ionosphere making hf impractical. The transmission would have to go through the ionosphere, losing power by attenuation, and bounce off the earth and back to the ionosphere.

"If the spacecraft want to rendezvous on their own, they could use their own radar, but we'd need compatible transponders. Skin-tracking without transponders requires too much power for spacecraft," said the NASA engineer.

Satellite arrays could supply billions of watts

A series of synchronous satellites, each with an array of solar cells five miles square, was proposed by Dr. Peter E. Glaser, at the fifth annual symposium for the International Microwave Power Institute, held this month in Scheveningen, the Netherlands. The system would collect energy from the sun and send it to earth via microwave beams carrying power on the order of 10" kW.

Then receiving arrays of similar size would rectify the power beams on the earth. Glaser, head of the engineering sciences section of Arthur D. Little, Inc., Cambridge, Mass., said it is probably essential that we build such a system within the next two or three decades. Otherwise, he said, we'll pollute ourselves out of existence in our effort to meet ever-increasing demands for power.

Glaser's views were backed by microwave power experts who presented papers at the symposium.

The satellite system is preferable to a system of terrestrial solar cell arrays, because the earth-bound system would be subject to a loss of input energy every night and during periods of heavy rain or cloud cover.

The only other approach mentioned by Glaser for supplying the world's power needs without excessive pollution is nuclear fusion. But he said that fusion is still a problem.

"I do not want to minimize the engineering problems involved in the satellite project," Glaser said in an interview with ELECTRONIC DESIGN, "but I believe that if our governments decided today to institute a crash program to construct such a system it could be built within 10 years."

Tariff Item 807 appears likely to remain intact

While the White House has taken no official action yet on the U. S. Tariff Commission report on Item 807, the odds are that it will be retained largely as is.

Item 807 is the Tariff Code provision that allows duty-free import of all components made in the U. S. and assembled into products abroad (see "Item 807: A Boon or Bust for Electronics?", ED 9, April 26, 1970, pp. 24-26). Organized labor opposes 807 as a threat to jobs in this country, but industry groups favor it, on the whole, as necessary to compete with foreign manufacturers. Last year President Nixon asked the Tariff Commission to investigate the merits of the arguments.

In its report to the President last month, the commission pointed out that while 121,000 workers were employed overseas in the assembly of U. S. goods, few of those jobs would be returned to the U. S. They would "likely be more than offset by the loss of workers now producing components for export and those who further process the imported products," the commission held.

The commission also refuted the idea that overseas assembly of products was hurting the U. S. balance of trade. In fact, it said, repeal of Item 807 would result in a deterioration of $150-million to
News Scope CONTINUED

$200-million in the U. S. foreign trade position.

White House action on the commission report is not deemed likely until after the Nov. 3 elections.

TV tube stops action and stores it in tube

A new type of silicon-vidicon television tube can capture and store a still picture from a moving scene and hold it as long as a month before playback. Or the tube can provide stop-action as fast as 200 frames a minute.

Developed by RCA, the picture is electronically stored within the tube itself, in contrast with other systems that use film or video tape.

Principal applications, according to Dr. William M. Webster, staff vice president, RCA Laboratories, Princeton, N. J., will be in closed-circuit TV for data processing, education, defense, aerospace and surveillance.

For surveillance, the tube can store a picture of an intruder for later identification. With conventional TV systems, the intruder often moves in and out of the camera field too quickly to be able to identify him or to take a good picture.

The key to the storage technique is a silicon dioxide insulating layer having 600,000 holes that coincide with a like number of photosensitive diodes on the vidicon target surface. This dioxide layer isolates the individual diodes, making it possible to build up and hold a charge on each diode.

Central processor made on single MOS chip

A general-purpose central processing unit on a single MOS chip is scheduled for delivery by Intel Corp., Mountain View, Calif. In January, 1971, to its first customer for the device—Computer Terminal Corp., San Antonio, Texas. The processor will be used for its Data Point 2200 “smart terminal”.

The chip can execute 30 different instructions, such as “add with carry,” “compare,” “execute if condition true,” and “jump to a new instruction if condition false”, with each operation taking 6 to 10 µs.

It contains eight 8-bit data registers and an 8-bit parallel binary arithmetic unit, as well as a 14-bit program counter and seven 14-bit words used to store program subroutine addresses.

Intel expects to stock distributors’ shelves with this chip during the first quarter of 1971.

‘Fastest minicomputer’ heads for market

Semiconductor random-access memories (RAMs) continue their push into the computer mainframe with the announcement by Data General Corp. of “the fastest minicomputer available.”

Called the Supernova SC, the 16-bit computer will have a cycle time of 300 ns and is aimed at applications requiring very high speeds. The 4096-word by 16-bit memory consists of sixty-four 1024-bit MOS memory chips manufactured by Intel Corp., Mountain View, Calif.

The Supernova SC is one of the new minicomputers announced by Data General for delivery next year. All three are compatible with one another as well as with the company’s other models, the Nova and Supernova.

Burroughs computer an ‘electronic grid’

The largest and most powerful member of Burrough’s new data-processor family, announced earlier this month, the B7700 series, incorporates a central-exchange type of architecture.

This “grid” arrangement is said to permit independent communication between up to eight memory subsystems and a combination of eight 16-MHz central processors or 32-channel, 8-million byte-per-second input output processors. Multiple read-write-compute operations occur simultaneously. The central processor speed, with IC memory, is 62.5 ns. The disk file memory system can store up to 112 billion bytes, according to Burroughs.

Deliveries of the B7700 are to begin in early 1972.

Intermediate-speed printer fills gap

A new line printer, designed to fill the current void between low-speed typewriters and expensive high-speed line printers, has been developed by Centronics Data Computer Corp., of Hudson, N. H.

The new unit prints at 165 characters per second, or 60 to 150 lines per minute on standard computer-output paper. The print head, a linear array of seven wires that impact five times per character, is hefty enough to make up to four carbon copies.

Low-cost landing system offered to small airports

The very-low cost, all weather, electronic aircraft landing aid called Vorloc II has been accepted by the Federal Aviation Administration for use at airports. Selling for $24,000, installed, the system puts instrument landings in a price range that small airports can afford.

Developed by Cubic Corp., San Diego, the system requires aircraft to have a localizer receiver and display—the same kind every plane capable of instrument landings has already. Anton B. Witzel, technical director of the project for Cubic, describes the operation this way:

“Vorloc II transmits on the ILS (instrument landing system) channels between 108 and 112 MHz. It uses phase comparison to generate 90-Hz and 150-Hz modulating tones. A combination of phase-modulated and amplitude-modulated carriers are transmitted from a two-element antenna 14 feet above the ground. The amplitude and phase-modulating components vary with the azimuth position of the receiving aircraft, to produce signals whose amplitude modulation components vary with azimuth.

The 90-Hz signal predominates when the aircraft is on the left of the proper course, and the 150-Hz signal predominates when the aircraft is on the right.”
Allen-Bradley cuts space requirements with new sealed type Z cermet trimmers

this latest addition to the Allen-Bradley line of cermet trimmers...the type Z...affords high performance in an especially compact package

The cermet material — an exclusive formulation developed by Allen-Bradley — provides superior load life, operating life, and electrical performance. For example, the full load operation (1/2 watt) for 1000 hours at 70°C produces less than 3% total resistance change. And the temperature coefficient is less than ±250 PPM/°C for all resistance values and throughout the complete temperature range (−55°C to +125°C).

The Type Z is ruggedly constructed to withstand shock and vibration. The unique rotor design ensures smooth adjustment and complete stability under severe environments. The leads are permanently anchored and bonded. The connection exceeds the lead strength — opens cannot occur. Leads are weldable.

SPECIFICATIONS SUMMARY

Adjustment: Horizontal or vertical.
Temperature Range: −55°C to +125°C.
Resistances: 50 ohms through 1 megohm.
Lower resistances available.
Tolerances: ±20% standard, ±10% available.
Resolution: Essentially infinite.
Rotational Life: Less than 2% total resistance change after 200 cycles.
Rotation: 300° single turn.
End Resistance: Less than 3 ohms.
Cassette TV players face ‘war’ on 5 fronts

Lack of standardization appears destined to spur fierce competition for sales and buyer confusion

John N. Kessler
News Editor

Remember these standardization battles: 33-rpm vs 45-rpm records . . . reel-to-reel vs cartridge audio tapes?

Will the cassette video player segment of the electronics industry, now emerging, be caught up in a similar struggle?

As matters stand now, it's almost inevitable that it will be, says Quantum Science Corp., a market and product planning concern with offices in New York City and Palo Alto, Calif. Five basic home video player designs are emerging, it reports, with at least a dozen variations of these five designs.

And the pity is, Quantum Science says, that TV players are destined to be the next big consumer electronics product on the market, with sales (both hardware and software) of $1-billion projected by 1980.

In the U. S. it looks like a dog-eat-dog situation with no standardization in sight. An EIA spokesman points out that video cassette players are just coming on the market, and “we have to see which product is viable—then the EIA will move in and set voluntary standards at the earliest possible point.”

Samuel W. Gelfman, vice president for programming and production at Avco Cartridge Television, Inc., New York City, typifies the marketing attitudes of manufacturers: “We think we’ve got the best system. Let the best man win.”

Already Motorola is producing the CBS-developed EVR system, but sales have been limited so far largely to educational and industrial users. Avco has announced that its Cartrivision cassette video tape system will go on sale to home consumers next April. Sony Corp. of America, New York City, will probably be out next, and its system will be compatible with helically scanned magnetic videotape recorders in Europe.

Last month Sony and Philips—along with other European and Japanese companies “agreed on the Philips helical-scan system as the basis for complete interchangeability of cassette videotape recorders in Europe,” according to a Philips spokesman.

Will the lack of standardization in the U. S. result in consumer resistance? Here’s how Richard C. Hilton, senior scientist at Quantum Science in Palo Alto, sees the American market after study of the field:

“The companies are overly optimistic in their grand and glorious predictions of the new market in the next year or two. But by the end of this decade, it will be a strong and significant market, in view of the equipment and the software that goes with it. There is such a profusion of different types of playback and recording equipment that the consumer is likely to be confused by the whole thing. And he may hold off buying until he is assured that the system he buys is one he can get software for. There are at least a dozen incompatible systems.”

The five basic contenders are:

- Helical magnetic tape. A system similar to voice tape recorders, it uses two or three rotating heads that move across the tape at an angle. (Avco, Ampex, others)
- EVR (electronic video recording. Essentially it's a movie film. It uses a fine-grained film in which the black-and-white images can be seen by close inspection; the color part is coded. (CBS-Motorola)
- SelectaVision. Also for playback only, it uses a laser beam to illuminate holographic images on Mylar tape. The information is embossed on the tape by thermo-mechanical means, in which a nickel master containing the holographic information is used to press out tapes the way records are made. (RCA)
- Super 8 movies. Adapted for viewing on home television sets via a videoplayer. (Kodak, others)
- Longitudinal magnetic tape. It uses a single fixed head. Since the tape speed must be 120 to 160 inches per second, this places stringent requirements on the tape transport mechanism and reels. (Arvin)

Home videotapes in color and with sound are offered by Avco’s Cartrivision system, due to reach market next year.
And clean up.
You do it with OPEN COLLECTOR MSI. Ours.
That cost you less than the plain-Jane jobs from the other guys.

We've got twelve of these bonus babies on the shelf.
Put 'em on the boards and cut your can-count. With elimination of gates, system speed jumps about 10ns—
power requirements drop significantly.

Obvious results: lower total system costs.
Write for our open collector MSI specs pack. Or call if you just can't wait. (408) 739-7700.

Signetics Corporation, 811 E. Arques Avenue, Sunnyvale, California 94086 / A subsidiary of Corning Glass Works.

8220 Content Addressable Memory
8222 Content Addressable Memory
8224 256-Bit Read Only Memory
8231 8-Input Digital Multiplexer
8234 4-Bit 2-Input Digital Multiplexer
8235 4-Bit 2-Input Digital Multiplexer
8242 Exclusive NOR
8243 Scaler
8264 4-Bit 3-Input Digital Multiplexer
8267 4-Bit 2-Input Digital Multiplexer
8T80 High Voltage Quad 2-Input NAND
8T90 High Voltage HEX Inverter
Diode laser array offers 30-to-40-W power

RCA infrared source, developed for military, has possibilities for police and firefighting applications

Jim McDermott
East Coast Editor

Sight through fog, smoke and camouflage, or beyond blinding lights, may be at hand for the police, firefighters and civilian intrusion-detection systems through adaptation of a military development unwrapped by RCA at the recent Electro-Optical Systems Design Conference in New York.

The development? A 3.5-inch, high-power, invisible laser source, comprised of about 1000 gallium-arsenide (GaAs) diode lasers. The source gives a cone of coherent infrared (IR) radiation, with an exceptionally high injection-laser output of 30 to 40 W average, or 1.5 to 2 kW peak at 2% duty cycle, with a 4 A input. The new device operates in the invisible IR region at 8850 Å and at a cryogenic temperature of 77° K. Reliability of better than 1000 hours has been demonstrated, RCA says.

The array was developed by the RCA Solid State Div., Somerville, N.J., for the Army Electronics Command in Philadelphia and the Army Night Vision Laboratories at Fort Belvoir, Va. The powerful IR source in military viewing systems uses pulsed-IR illumination in conjunction with synchronized image-intensifier viewers. These systems minimize back-scattering and other forms of optical interference by gating the image-intensifier tube ON for selected periods, during which the IR pulses, reflected from an obscure target, impinge on the image-intensifier input screen.

The RCA laser array, according to Richard Glicksman, manager of semiconductor optoelectronics products engineering, provides a smaller system with greater optical efficiency than the older Xenon flashlamp sources. The array has a relatively small, 140-V dc power supply gated with 2-μs pulses at 10 kHz. By contrast, the Xenon tube system requires a multi-kilovolt triggered power supply and is limited to a much lower pulse rate.

The high IR output of the new laser arrays is due, in part, to the high packing density of the diodes (see construction in photo). The radiation pattern is rectangular in form, with about a 2:1 ratio for the sides. Because of the discrete lobe of radiation from each subarray, an optical beam-smooth-
ing element plus a lens, is needed to obtain a uniform, projected beam. With an optical system providing a square 5° x 5° beam, the IR illumination at 1000 yards is about 50-feet square.

Laser peak efficiency of better than 20% is achieved because of two factors: use of a “close-confinement” junction formation process plus a reflective end-coating process—two significant developments, Glicksman reports.

The close-confinement process, introduced by both RCA and Bell Telephone Laboratories, produces an optical waveguide effect in the emitting layer of the GaAs diode that sharply reduces internal losses, by preventing radiation leakage into the highly absorbing region adjoining the lasing region. In addition electrons are confined only to that portion of the material where the IR is emitted, and consequently the optical gain for a given current density is increased.

The special reflective coating on the back end of the laser chip is an RCA development, Glicksman says. The coating reflects what would be wasted radiation out the back end of the laser diode; instead of exiting, the radiation rebounds and adds to the light emerging from the front end. At 77° K, the useful power output is doubled. At room temperature (300° K), the reflected power gain is about 40%.

GaAs laser diodes combined

The 30-W injection laser array that has been constructed (see photo) is comprised of 28 individual strips of laser diodes. Two strips are mounted end-to-end to make 14 single strings, or sub-arrays of about 75 diodes each—a total of approximately 1000 diodes.

Each individual strip is made from a single 3-mil-thick wafer that is cleaved into a long sliver some 12 mils wide. This sliver is bonded to a supporting surface and is then notched, to give about 75 identical laser emitters per strip.

The emitters are 6 mils across and are mounted along the strip on 10-mil centers. Although each string of lasers emits its own beam, the total effective emitting area is 2.7 cm². The combined beam has a fan-out of greater than 45°, but 90% of the power is radiated in a beam half-angle of 22°.

Advanced work is being done by RCA, Glicksman told ELECTRONIC DESIGN, on stacking two laser diodes one on the other, for each strip. The effect, Glicksman says, will be to double the light output. And the better packing factor will give the same brightness in about half the space, thus simplifying the optics. Glicksman predicts this new stacked array will be available in the next year.

The 30-W, IR laser array is designed to interface with a flat, 77° K surface. Invisible IR radiation, at 8850 Å, is emitted from each diode string along each step. Reliability of better than 1000 hours is reported by RCA.
Measuring motion with 0.0001-inch accuracy

With a low-cost laser and a new silicon photodetector, it's possible to measure the change in position of a moving object more than 100 yards away. The resolution is reported better than 0.0001 inch in an x-y plane.

The silicon photodetector, manufactured by United Detector Technology Corp. of Santa Monica, Calif., is mounted on the moving object. A low-cost laser, such as a HeNe in the visible red, is mounted in a fixed position and focused on the center of the photodetector. As the object moves, the position of the spot on the 0.75-by-0.75 inch active area of the photodetector moves. The position of the spot on the active cell is determined by a nulling bridge technique.

Phil Davis, vice president of United Detector Technology, described the single-axis operation of the cell to ELECTRONIC DESIGN as follows:

"If we consider the measurement of position in just the x-axis, we can use an equivalent circuit (see figure). Since the detector is really a two-axis device, the second axis is merely the same equivalent circuit in the orthogonal direction.

"The input light spot generates a constant current, \(I_s \). This current is generated at a particular point on the junction surface, which corresponds to a pickoff point on the internal resistance film, \(R_1 \), \(C_j \) is the junction capacitance. As the light spot moves around the surface, the pickoff point in the equivalent circuit moves across the resistive track. The current, \(I_s \), is split into two legs \(R_{L1} \) and \(R_{L2} \).

"The amount of current flowing in each leg depends on the resistance values \(R_{L1} + R_{L1} \) and \(R_{L2} + R_{L2} \). If \(R_{L1} > R_{L1} \) and \(R_{L2} > R_{L2} \), the current flowing in each leg depends entirely upon \(R_{L1} \) and \(R_{L2} \), and these resistance values are linearly proportional to the light-spot position. By observing the voltage difference across \(R_{L1} \) and \(R_{L2} \), the position of the light spot can be determined."

Signals from the position-sensing photodetector are then fed into a differential amplifier. The output is used to drive a nullmeter. The deflection of the nullmeter in the positive or negative direction corresponds to the deflection of the spot from the center of the detector. With an external nulling control, the nullmeter can be centered for a light spot that is anywhere on the active area of the cell, thus eliminating the need for exact alignment of the laser with the center of the cell.

Typical light impinging on the detector would be on the order of 1 mW. However, it is possible to handle larger amounts of power by adjusting the bias current.

Davis notes that the cell can be used for automatic positioning by merely taking the output of the differential amplifiers and using them to drive the light source to a desired position through a servo system.

Other applications that Davis cites include monitoring for machine-tool flatness, skew and levelness, measuring vibration amplitude and frequency in two simultaneous axes, and auto-collimating a laser. ■ ■

Laser heat offers a faster way to make photomasks

An experimental laser technique that harnesses the device's heat rather than its light permits the simultaneous production of positive and negative photomasks for integrated circuits—a process that ordinarily requires several image-reversing steps.

Described at the fall meeting of the Electrochemical Society by Dr. Wayne Moreau, an engineer at the IBM Components, Div., East Fishkill, N. Y., the method uses a power pulse of laser thermal energy, lasting a few billionths of a second, to evaporate a metal image from one glass surface and deposit it on another.

A glass plate, coated on one side with 1000 A of chromium, is sandwiched in a vacuum frame between a master mask and a clear glass plate, Dr. Moreau told the meeting in Atlantic City, N. J.

This sandwich is then aligned at right angles to the optical path of a ruby laser, which emits a 1-to-3-joule pulse lasting 15 ns. As the beam passes through the clear portions of the mask and strikes the chromium layer, it causes a portion of the metal to pass into the gaseous state. But the gas instantly condenses against the surface of the adjoining glass plate, thus depositing a thin, opaque metal film that has the form of an IC pattern.

The original metal-coated glass plate has now become a positive photomask, and the second glass plate is the negative photomask, each with the original pattern. ■ ■
A junctionless semiconductor device that performs complete circuit functions has been invented by Bell Labs scientists Willard Boyle and George Smith. It may replace complex integrated circuits for information storage and other processing.

The new device consists of a layer of semiconductor (silicon) covered by a layer of insulation (silicon dioxide), with a row of closely spaced metal plates on top of the insulation. It operates much like an array of capacitors passing a stored charge—representing a binary information bit—from one capacitor to the next.

If all plates are held at a small negative voltage, the charge (holes) will remain stationary... stored in so-called "potential wells" below the plates. If, now, a stronger negative pulse is applied to a plate adjacent to one under which charge is stored, the charge will "spill over" into the deeper potential well thus produced (figure). So, charges can be shifted, plate by plate, along the surface of the semiconductor.

One use is as a shift register. Holes may be created at one end, moved along the semiconductor surface, and detected (read out) at the other end. Charge can be detected through the capacitance change it causes when present under a plate. The basic shift register may be used as part of a recirculating memory or as a delay line.

The new device can also convert images to electrical signals. By projection through a narrow slit, one horizontal strip of the image is focused on the semiconductor. Beneath each plate, this produces charge proportional to brightness. The shifted-out charge stream is an analog of that strip. Successive strips compose a complete image.

The first device was made of silicon. But since junctions are not needed, devices can be made from many semiconductors.

The device is so new that we haven't explored all possible applications. But its simplicity promises high reliability. And the comparatively few steps required to make it keep costs low. We expect it to have considerable impact on telephony and on other high-volume information systems.

From the Research and Development Unit of the Bell System:
DNC: The new assembly-line boss

Direct numerical control, spotlighted at Chicago show, runs machines and collects production data

John F. Mason
News Editor

CHICAGO—Direct numerical control (DNC)—machines controlled by computers—was by far the biggest attraction at the Machine Tool Show here and its companion exhibition, the Production Engineering Show.

Unlike tape-operated numerical control (NC) machines, which broke down repeatedly during their show debut in 1960, the 70 or more DNC systems demonstrated here "worked like a charm," observed W. J. Frank, a systems planner at the General Electric Co.'s Manufacturing Automation Systems Operation in Charlottesville, Va. "I think everyone was surprised at how little down time there was with all the DNC systems on exhibit. And this is a rough environment. It's hot, dusty and, in spite of the size of these buildings, cramped for space."

The space consisted of approximately 18 acres. But the machines were big and there were a lot on display. The Machine Tool Show, which ended Oct. 2 in Chicago's International Amphitheater, exhibited 1000 machines built by 170 companies and valued at $40-million. The Production Engineering Show in the Navy Pier Building demonstrated 12,000 products manufactured by 372 companies and valued at $20-million. The shows were sponsored by the National Tool Builders Association of Washington, D. C.

Visiting the exhibits were an estimated 80,000 machine-tool users from all over the world.

The common denominator of all the direct numerical control systems on display was automation, with the computer portions ranging from a small minicomputer to a large general-purpose machine. What the systems automated, however, varied.

Besides operating machine tools directly from a computer core memory, the systems controlled the movement and storage of materials, supervised production and fed back management information to the computer.

"The big advance in the whole DNC concept," said E. J. Loeffler, technical director of the National Machine Tool Builders Association, "is that the computer is finally right down on the factory floor operating machine tools. It's built to live in a factory environment, not off in an air-conditioned room. Instead of tapes, it uses a core memory that can be easily reprogrammed. And it operates a number of machines at the same time, all doing different things, and capable of changing jobs at any time."

Cores and ICs spur advances

R. T. Blakely, GE's project manager in Charlottesville, noted: "One reason DNC is possible is because of advances in core memories. The manufacturing costs of core memories have been cut in half, making the minicomputer economical. They are three times faster than they were, thus enabling them to do more work. And the minicomputer's architecture has been changed."

"In the past," Blakely said, "to reach the memory, the instructions and the memory data had to go through the central processor. Now, with the memory bus, the memory is directly accessible by peripheral devices. The memory is shared by the input-output devices and the central processor."

Blakely also pointed out that the evolution from transistors to ICs and to LSIs had made a cheaper, more reliable product.

This increased computer capability, Loeffler added, has enabled the machine tool's controller to be a simpler, smaller machine. "The computer does arithmetic computations that used to be done in the machine controller, and it tells the controller what to do," he said. The controller is the last link before the machine itself.

"The larger memory also permits a machine-tool operator or foreman to talk back to the computer," Loeffler continued. "A qualified operator can modify a program, or he can ask the computer to solve a problem. For example, he may tell the computer..."
Maybe you can. But why bother? When we’ve taken on this tough job for you — and come up with a complete array of connector designs you’d be proud to call your own.

For example, check our new .050 series for 1/32 and 1/16 direct pc card entry. This line accommodates double sided cards with 20, 40, 60, or 80 terminals, in a high-density configuration. A molded insertion guide protects the contacts against excessive flexing and card mis-alignment.

Contacts are formed in a “bellows” design for maximum contact area and spring action. Termination? Take your pick of solder hooks or straight pins. Both types are staggered for maximum accessibility in a minimum of space.

Check with us next time you’re in the design stage. We have other examples that can help. Many thousands of them. One for every connector we have designed and built in the last ten years.

A new DESIGN GUIDE is yours for the asking. Write Fabri-Tek, National Connector Division, 9210 Science Center Drive, Minneapolis, Minn. 55428. Phone: (612) 533-5361, TWX: 910-576-2866.

FABRI-TEK INC.
NATIONAL CONNECTOR DIVISION
NEWS
(DNC, continued)

that a hole should be in a different place or that the size is wrong. The computer then takes over and changes its instructions to the controller."

The trend, Loeffler pointed out, is to give simpler information to a computer and let it do the calculations and the work. "In this way, less qualified people can work with the computer," he noted.

Manufacturers cautioned, however, that the software costs for such a brainy system might be higher than keeping a programmer on the payroll.

A big advantage of DNC, Loeffler said, is its feedback capability. "At the same time a computer is controlling 10 or 15 machines, it is collecting production data from these machines. Is the machine overloaded? Is the cutting edge getting dull? Should a part be replaced? How long is the production of each item taking? What is the inventory at this moment of finished products, of raw material?"

Variety of systems debut

Typical of the systems on exhibition was the new CommanDir. Run by a GE-PAC 30 processor and a GE-PAC 4020 data processor, it operated 10 machines. The system, which is capable of handling up to 30 machines, was built by GE's Manufacturing Automation Systems Operation in Charloottesville.

Another system, the Omnicontrol DNC, operated six machines at the show, though with a full hierarchy of equipment, it reportedly can handle 256. It was built by Strand Corp.'s Machine Tool Div. at Belvidere, Ill., and it uses an IBM 360-30 or Digital Equipment Corp. PDP-11.

Cincinnati Milacron's DNC, also shown, is built to operate with a variety of computers, "starting small and growing in logical, economical steps," according to a company spokesman. In one configuration, the system will control 64 machines or process stations.

Kearney & Trecker's System Gemini used a Hewlett-Packard 2114B minicomputer as a satellite to run up to eight machines. It can also operate several minicomputers via an IBM 1800.

Westinghouse Electric's new DNC system, unveiled at the show, was controlling a 3-axis Burgmaster drill via a Westinghouse P-2000 computer. In a plant the company is building, the DNC system will control up to 35 machines.

Westinghouse also showed a unit that operates a machine without a feedback capability. Others of this type were displayed by Bendix Corp., Ann Arbor, Mich.; Digital Equipment Corp., Maynard, Mass.; the Xenon Corp., Waltham, Mass., and Allen Bradley, Cleveland.

A production monitoring system that automatically sends performance data on 200 or more machines to a central memory and printout display was offered by A. B. Dick, Chicago.

A people-oriented production monitoring system that provides data on departments, personnel and factory positions, was shown by the Singer Friden Div., San Leandro, Calif. The factory system is similar to the company's point-of-sale system being built for retail stores (see "Magic Wand Terminal to Speed Store Sales, ED 21, Oct. 11, 1970, p. 46).

One of the most important efforts to improve DNC systems right now is adaptive control. Only 4 or 5% of the 70 DNC machines demonstrated at the show offered any adaptive control, and most of these were lathes.

"The computer is ideal for providing adaptive control," Loeffler said: "It can sense that a cutting tool is worn and is not cutting the designated amount. It can compute the error and move the cutting tool over accordingly."

The Dynapath System 4, built by Bendix Corp.'s Industrial Control Div. in Detroit, demonstrated its adaptive control capability with a Jones and Lamson Combi 312 lathe. Instead of programming feed rate, the maximum tool force was programmed and the lathe was equipped with a sensor. When the force sensor detected too much force, the computer adjusted the lathe.

When the part processor had difficulty in determining the desired feed rates because the workpiece was unpredictably hard or the tool was deeper than usual, the system would not allow the cutting to proceed fast enough to damage the cutting tool.

GE displayed an adaptive control device that sensed the power being used by the machine tool spindle and automatically adjusted the feed rate.

Cincinnati Milacron showed a unit that controlled feed rate as a function of tool deflection.

Software problems remain

When will automatic factories become commonplace in the U. S.? "We could have an automatic factory tomorrow if we wanted to pay the price," said GE's Frank.

"Technically there is no reason it can't be built. Economically, however, it is cheaper to leave people in certain places to perform decision-making functions than trying to build such a capability into the system. Software can be far more expensive than a technician."

But the exhibition was a big help in demonstrating the potential of direct numerical control.

"Conditions are right for DNC," said GE's Frank. "Money is scarce, overhead and taxes are high, and competition is keen. DNC answers these complaints by cutting personnel and speeding up production." He added: "This show has put DNC on its feet and running."
Technology Abroad

A simple method of recording holograms of objects subject to intentional or unintentional movement has been discovered at the Brown Boveri Research Center in Baden, Switzerland. When a small mirror that reflects the reference beam is attached to the object, the phase angle needed for production of a hologram remains constant, despite any motion. The new method overcomes a principal difficulty in recording holograms—namely, that the apparatus must remain stationary to within a fraction of the laser's wavelength during the exposure, which may last from seconds to minutes. Any movement of the object ordinarily changes the phase angle between the two beams and results in a photographic blur. In the Brown Boveri method, holography is possible without special antivibration tables for the optical setup. A practical application of the new method is the measurement of relative motion in mechanical systems.

A thermometer that determines the temperature of conducting bodies by measuring their electrical noise has been developed in the Soviet Union. The new instrument, designed by Leningrad engineers, uses a phenomenon predicted by Albert Einstein at the beginning of the century. He pointed out that it was possible to determine the temperature of a conductor by measuring the thermal electrical noise produced by movement of ions and electrons in the conductor. The Russian thermometer can measure electrical noise as low as one-billionth of a volt. The operating range is 1-100 K.

A third 97-foot-diameter antenna for the satellite earth station at Goonhilly Downs, Cornwall, England, is expected to be in service by 1972. The antenna, to be built by Marconi for the British Post Office, is designed to work with Intelsat IV satellites that are to have four times the capacity of the present Intelsat III system. The first Intelsat IV satellite, scheduled for launching into a synchronous orbit over the Atlantic next year, will be able to carry up to 5000 two-way telephone calls. Even without Intelsat IV, a third antenna would have been needed at Goonhilly to provide for current growth in traffic across the Atlantic. The demand for telephone, telegraph, computer data transmission and other facilities is expanding rapidly enough to exhaust the capacity of both Atlantic Intelsat III satellites by the time the new antenna is ready.

The best features of British and West German numerical machine-control computer programs have been assembled in one program by the British National Engineering Laboratory and German Tool Institute of the Technical University at Aachen. Known as 2c,L-EXAPT 1, the program can produce tapes for numerically controlled milling and drilling machines. Components that require both contour milling and hole-making operations can be machined with a single setup on a machining center.

Electronically controlled navigational buoys as possible replacements for lightships of the United Kingdom lighthouse authority are being investigated by the British government. The buoy prototype, manufactured by Hawker Siddeley Dynamics Ltd., weighs 84 tons, is 40 feet in diameter, and has lights and horns for warning. It will be moored off the channel coast later this year. On-board systems—powered by three 5-kW diesel generating sets—will be to be shore-monitored every half hour by a telemetering link.

The shore-based control station can perform 40 separate systems checking operations and regulate 22 different buoy operations. Data transmission from buoy to shore is handled by means of a uhf-frequency shift keying system and colinear antennas. On-shore receiver and transmitter antennas are each 12-element Yagis. Redundant systems are included throughout the buoy.
TRY TO MATCH THIS
for size and reliability

you can't!

For their size, Type BB resistors pack a tremendous power dissipating ability. Rated 1/8 watt at 70°C in a 0.0004375 cu. in. volume.

And miniaturization has not reduced reliability. Tests prove it. They satisfy the highest level—the S level—of the latest MIL-R-39008 Established Reliability Specifications in all resistance values.

© Allen-Bradley Company 1969
Election stymies controversial legislation

The specter of Election Day hangs heavy over Congress, and it appears almost certain that proposed funding for the supersonic transport and the committee action on the controversial foreign trade bill will not be considered until after Nov. 3.

The $294-million authorization for the SST has been stalled in the Senate for months, with neither side sure of enough votes to pass or defeat the measure. Senate sources say the plan of action for the SST is to put off the vote until after the election and then add “sweeteners” to draw liberal votes. The sweeteners are expected to come in the form of amendments that would prevent flights over populated areas and otherwise curb environmental pollution by the new aircraft.

Meanwhile the Senate Republican leader, Hugh Scott (R-Pa.), says he will support a measure to bring the foreign trade bill to the floor of the Senate as an amendment to some other measure, thus by-passing committee hearings. As it now stands, the bill limits imports of shoes and textiles but leaves the door open for limitation of imports in virtually any other industry.

Scott told the Senate recently: “I believe we ought to go further, to include other industries that have been hurt by imports . . . Why then should we exclude electronic products [from import taxes]?”

Bill would force defense plants to convert

Sen. George S. McGovern (D-S. Dak.), a leading Congressional dove, has introduced legislation to force defense and space contractors to plan post-war conversion to civilian production. McGovern’s bill would require 12.5% of a defense contractor’s profits from defense and space work to be set aside as a conversion reserve, held by a National Economic Conversion Commission. The funds would be used to finance contractor conversion plans and to pay benefits to employees who might face unemployment during the conversion period. Once switched over to civilian work, the contractor could petition for any funds of his remaining in trust, and they would be returned with interest, tax-free. Failure to convert could mean that all the contractor’s money would be used up in unemployment benefits.

Ex-Bell official wins rapid Senate approval

In what might have been record time the Senate rapidly approved George F. Mansur Jr., former Bell Laboratories official, as deputy director of the Office of Telecommunications Policy. Spectators were still filing into the Senate Commerce Communications Subcommittee hearing room when the session adjourned. Chairman John O. Pastore, (D-R. I.) and Sen. Howard H. Baker Jr. (R-Tenn.), the only two members present, had no questions for Mansur. The gavel rang down after the nominee put a page-and-a-half statement into the record. The full committee promptly
approved him, and two days later his nomination was approved by the full Senate.

Mansur is joining a federal office that Commerce Secretary Maurice Stans plans to reorganize. Under the new setup, the Office of Telecommunications will undertake technical and economic studies for the newly created, independent Office of Telecommunications Policy. The Institute of Telecommunications Sciences, formerly housed in the Weather Bureau, will move and be under the jurisdiction of the reorganized Commerce Dept. office.

FAA backs hybrid satellite system

The Federal Aviation Administration has altered its stand on the type of satellite communications system it favors for aeronautical use. Administrator John H. Shaffer now says the agency favors a hybrid system using both vhf and uhf for ocean communications. The FAA and NASA had previously been leaning toward uhf, which is favored by most European airlines but not the U.S. carriers. Taking note of the European position, Shaffer says his agency will temporarily abandon plans for a satellite over the North Atlantic and switch to the North Pacific, “where the FAA has the primary responsibility for air traffic control.” Shaffer says he believes a first-generation satellite, providing vhf for early operational use and uhf for experimentation, can be made available by 1973. Plans to use the satellite for surveillance, opposed by the airlines as too soon and too costly, are being soft-pedaled by FAA. The subject will be considered Jan. 11 to 22 in Montreal at an International Civil Aviation Organization air navigation subcommittee meeting.

Capital Capsules: NASA plans to switch to the metric system in reporting data in most of its technical publications and reports. The space agency has been cooperating since 1968 with a Commerce Dept. study on the advantages and impact of a switch to the metric system. The idea was first proposed to Congress in 1790 by Thomas Jefferson. . . . A 6.4-million request for data-processing equipment by the Defense Communications Agency has been killed by the House Appropriations Committee because of system design difficulties. The committee said it would await the results of a study now under way by the General Accounting Office on the agency’s proposed world military command and control system. The final costs could run as high as $1-billion. . . . The House has approved $3.1-billion over the next five years to help cities build and improve mass transit systems. Senate passage is expected. The bill allows for multi-year planning and funding, thus almost completely bypassing the uncertainty of Congressional appropriation procedures. . . . Hughes Aircraft has won a $82-million contract for the multimode radar for the McDonnell Douglas F-15 in competition against Westinghouse. The two companies will compete again for the radar contract for the Airborne Warning and Control System (Awacs).
The New Tektronix 1401/323 Spectrum Analyzer System is for people who like to travel light.

The 3⅓ x 8½ x 13-inch 1401 Spectrum Analyzer Module weighs only eight pounds including an internal rechargeable battery pack.

Add a 323 Sony/Tektronix Oscilloscope for a display indicator: Total weight of both? Less than fifteen pounds!

For fifteen pounds, here's some of what you have: A portable, 1-to-500 MHz analyzer with 60-dB dynamic range and up to 500-MHz frequency span—plus a complete DC-to-4 MHz, 10 mV/div, DC powered (AC, too) oscilloscope.

AND FOR PRESENT SCOPE OWNERS: The 1401 Spectrum Analyzer Module is compatible with any oscilloscope with full-screen deflection of 5-volts horizontal (adjustable ±10%) and 1.2-volts vertical.

When you make local service calls or field trips, climb towers, are in and out of airplanes and ships, and use spectrum analyzers and oscilloscopes, take along the New 1401 and the 323. With this pair of light-weight performers you'll travel easier and solve more field problems with much less effort.

For additional information contact your local Tektronix Field Engineer or see the 1970 Tektronix catalog supplement.

1401/323P7 Spectrum Analyzer System $2860
1401 Spectrum Analyzer Module $1900

Available in U.S. through the Tektronix lease plan
BULOVA Crystal Oscillators with high stability over extended temperature ranges

Now Bulova has available Temperature Compensated and High Stability Crystal Oscillators that are uniquely designed for increased performance capability.

TEMPERATURE COMPENSATED CRYSTAL OSCILLATOR

TCX0-30

Frequency Stability:

±5pp 10^9 over temperature range of -55°C to +85°C.

Employs a computer-selected and optimized compensation network designed to maintain frequency stability over wide temperature ranges without the need for an oven (+0.5PPM from -55°C to +85°C). Operating over a frequency range of 3MHz to 5MHz, it consumes only 50MW and is just four-cubic-inches.

Aging rate is 1.0pp 10^8 per week.

HIGH STABILITY CRYSTAL OSCILLATOR

PCX0-101

Frequency Stability:

±1.0PP 10^9 over temperature range of -55°C to +70°C

Within a plug-in package is a high precision crystal and an oscillator circuit with AGC to maintain low constant crystal drive in a stable DC proportional control oven. The result is a crystal oscillator of unusual high frequency stability (±1.0PP 10^9 from -55°C to +70°C), a short term stability of 1PP 10^9 per second, an aging rate of 1PP 10^9 per day and with a frequency output of 1.0 or 5.0 MHz.

If you have a crystal oscillator problem that needs solving, call (212) 335-6000, see EEM section 2300, or write —

SIDELIGHTS

Inside a giant industrial show

“Big, hot, noisy”—these are the words that News Editor John F. Mason used to describe the recent Machine Tool Show and its companion exhibition, the Production Engineering Show, both held in Chicago.

Imagine 18 acres of exhibition space crammed with working industrial machinery—some of it two stories high—and you will understand the “big.” As for the heat, the thermometer registered 92°. And as for “noisy,” Mason lost his voice trying to get the story that begins on p. 38.

The main attraction of the show was electronics—in particular direct numerical control (DNC)—computer-operated machines that drove lathes, cutting machines and other tools. But scene stealers were the industrial robots that worked day and night in a comically monotonous manner. Industrial robots make no attempt to look like men—they leave that to North American Rockwell’s veteran show stopper, a robot that for some 30 years has been a professional hand-shaker.

Industrial robots can learn to do a repetitive task like stacking parts. Many of them bustle about, transferring parts from one machine to another. They can also do tasks that human beings can’t do at all—like picking up pieces of hot steel from the furnaces and dumping them into water to cool off.

Automation was the theme of the show—and automation in many forms is what 80,000 viewers got. Mason stayed a week to get technical details on the exciting developments in industrial electronics.

News Editor John F. Mason stops at the Production Engineering Show in Chicago to visit with North American Rockwell’s robot.
Look at Acopian’s new mini-module dc power supplies

Look at Acopian’s new mini-module dc power supplies. Single output models (there are duals, too) are as small as 2.32” x 1.82” x 1.00”. And they can all be soldered directly into printed circuit boards.

Look at their performance. Load and line regulation is 0.02 to 0.1% depending on the model selected. Ripple is only 0.5 mv RMS. And Acopian’s long experience in power supply technology assures high reliability.

Look at the choice of outputs. There are 58 different single output modules ranging from 1 to 28 volts, 40 ma to 500 ma. Duals are available in 406 different combinations of voltages. And these are true dual power supplies, with like or different outputs in each section that are electrically independent of each other. Perfect for powering operational amplifiers. Or for unbalanced loads.

Look at their price. Single output models start at $39, duals at $58. For a look at all the facts, write or call Acopian Corp., Easton, Pa. 18042. And just like Acopian’s other 82,000 power supplies, every mini-module is shipped with a tag that looks like this ...
★ NOTICE ★

to all subscribers:

Your Free Subscription MUST BE RENEWED!

A special card and complete instructions for checkoff requalification will be in the NOVEMBER 8 issue of Electronic Design.

This is a one-time Renewal Opportunity.

To insure uninterrupted service, your subscription must be renewed using this special card. Please look for the November 8 issue and return the card promptly.
Who says you can’t afford them?

All solid tantalums are not created equal...

It’s true. There are critical circuits in life-saving medical devices and in outer space guidance systems that demand the kind of solid tantalum capacitors that are expensive.

However, maybe you work with circuits that do not require space system reliability, like those in entertainment systems, instruments, computers, avionics, and other industrial uses, and can’t afford capacitors that cost a lot of money.

But, you still need capacitors with muscle. You don’t want to give up everything for price. For instance, you want dependable shelf and operational life without rejects—without trouble—just good dependable capacitors at a low, low price . . . and with good delivery time. (For example, all CV ratings from stock or up to four (4) weeks maximum.)

KEMET® E Series Dipped Solid Tantalums are the answer. 4 Case Sizes—plug in radial leads on either .125” or .250” centers—0.1 to 330uf, up to 50 volts. -55°C—85°C temperature range. They offer the proven reliability of solid tantalums at the price of aluminum electrolytics, and even lower.

Expensive and reliable, or low cost and reliable. It’s your choice. Your local Union Carbide Sales Representative has more information and free samples, or write Union Carbide Corporation, Components Department, P.O. Box 5928, Greenville, S.C. 29606. Tel. (803) 963-7421.
Breakthrough in low frequency filtering!

![Graph showing insertion loss vs frequency for a ceramic bandpass filter.]

New Vernitron ceramic bandpass filter puts big performance into 1/4 oz.

Vernitron low frequency (LF) ceramic filters—from 9 to 50 kHz—are about one-tenth the size and weight of comparable conventional types—have narrower bandwidths, lower insertion loss and greater stability. This means you can pack more channels into a given portion of the spectrum with less sacrifice in volume and weight. They’re fixed tuned, so you have no installation adjustments, simpler assembly and inspections.

Typical characteristics: 1% min. 3 dB pass bandwidth, 20 dB/3 dB bandwidth ratio not exceeding 13, and passband insertion loss less than 5 dB. Stopband attenuation exceeds 30 dB from dc to above 100 kHz. For even better selectivity they can easily be cascaded without worrying about matching or big insertion losses.

All this performance comes in a miniature HC-6/U can that weights just 1/4 ounce (it’s shown here actual size). They’re hermetically sealed, immune to environments . . . there’s no need for magnetic shielding. And LF filters are independent of the power source, so there’s no current drain.

New Vernitron LF filters are ideal for low frequency communications receivers, control circuits, selective calling systems, underwater sound systems and military/navigation systems. Write today for full specs and technical data. Vernitron Piezoelectric Division, 232 Forbes Road, Bedford, Ohio 44146, U.S.A. Or: Vernitron Limited, Southampton, England.

Vernitron Piezoelectric Division

232 Forbes Road / Bedford, Ohio 44146 / (216) 232-8600

Mini | Bus by Rogers

For noise and cost reduction

A small, voltage-distributing busbar for PC card application, each Mini/Bus gives you built-in capacitance . . . noise-cutting capacitance that means more reliable, compact circuit packaging at a fraction of multilayer prices. Write for data.

Rogers Corporation / Rogers, Conn. 06263

Micro parts at Micro prices!

New, precision micro-parts, from stock or to your specifications. Provided at low cost with quick delivery due to our advanced machine tools and methods. Typical parts include: snap ring pins, shoulder rivets, shafts, rollers, etc. Machined from any material; diameters from .005" to .125" lengths to 1". Send drawings for quotations or write for free samples, prices and literature.

PRECISION METAL PRODUCTS CO.

41 ELM ST. STONEHAM, MASS. 02180

Telephone: (Area Code 617) 438 3650

INFORMATION RETRIEVAL NUMBER 26

INFORMATION RETRIEVAL NUMBER 27

INFORMATION RETRIEVAL NUMBER 28
Centralab Introduces

THE PACERS

the most stable temperature-compensated reference diodes offered-
voltage stability within 10 ppm/1000 hrs.

- In our new Pacers near-perfect combination of planar reverse biased chip and proprietary-process forward-biased chips assures time stability of reference voltage previously available only at extreme price premium.

- Average long-term stability of reference voltage: 10 parts per million per thousand hours. Customer tests demonstrate exceptional short-term stability, minimal "warm-up" time (see actual plot of these voltage/time tests shown below).

- Our Pacers exhibit lower noise than products previously available — both low frequency and broad band.

- And the Pacers exhibit significantly lower dynamic impedance.

![Graphs showing voltage stability comparison](image)

JAN devices available.
All JEDC numbers competitively priced and ready for delivery.

CHALLENGE US! PLEASE REQUEST COPIES OF OUR FACTORY TEST DATA AND SAMPLES TO EVALUATE FOR YOURSELF ON YOUR COMPANY'S LETTERHEAD.

NEXT MONTH: Hi-Rel Rectifiers
CIRCUIT-STIK EVALUATION KIT

CIRCUIT-STIK IS NOT AN EXPERIMENTER'S KIT! IT HAS UNLIMITED LARGE DIGITAL SYSTEMS CAPABILITIES.

INSTANT CIRCUIT-BOARD* KIT IS DESIGNED FOR SERIOUS EVALUATION OF THE CIRCUIT-STIK CONCEPT!

INCLUDES PRESSURE-SENSITIVE, PRE-DRILLED, PRE-PLATED, READILY SOLDERABLE CIRCUIT-STIK SUB-ELEMENTS FOR MOUNTING OVER 400 DISCRETE, I.C., TRANSISTOR & CONNECTOR COMPONENTS WITHOUT TERMINALS OR DRILLING. ENOUGH FOR SEVERAL PLUG-IN PROTO-TYPE CIRCUIT-BOARDS!

Send your check or purchase order for ITEM #8951-B, price $89.50 plus $1.00 for shipping.

Big savings/FREE catalog!

*PATENT PENDING

1518 W. 132nd ST., GARDENA, CALIFORNIA 90249

it takes guts to be a good connector

The kind that can hold without appreciable change in contact resistance through 50,000 cycles and more. And that's the kind of guts you get with CAMBION cage jacks. Permanently swaged inside a precisely machined brass body, these beryllium copper cages come in jacks ranging from .016"-.080" in a wide variety of shapes and types for mounting components, patching, plugging. Complete range of mating pins also available. Our latest catalog has a complete selection - it's free for the asking.

The next time a salesman tries to sell you a connector, ask to see the insides - it isn't caged, it's not a CAMBION.

Cambridge Thermionic Corporation, 445 Concord Ave., Cambridge, Mass. 02138. Phone: (617) 491-5400. In Los Angeles, 8703 La Tijera Blvd. 90045. Phone: (213) 776-0472.

Standardize on CAMBION
The Guaranteed Electronic Components

WE SPEAK YOUR LANGUAGE!

We speak English and Japanese, and we speak your language when it comes to cutting costs, maintaining quality. Economical, precision-made parts direct from a fast-growing manufacturer and exporter. Sub-assemblies, components, contract manufacturing—whatever your needs—we can meet your most exacting specifications. Which translates into big savings for you, because anything you can do we can do for less. And as well. Write today!

Managing Director
Orient Electronics, Ltd.
Yoyogi P.O. Box 38,
Tokyo 151, Japan

ORIENT ELECTRONICS, LTD.

INFORMATION RETRIEVAL NUMBER 71
The "foremost-in-film-capacitors" people
did it again...another first from Dearborn!

-65°C to +150°C
OPERATION
WITHOUT
VOLTAGE DERATING

NEW! DELTAFLM® 'LJ'
METALIZED POLYSULFONE
FILM CAPACITORS.
OUTSTANDING.

Extended operating temperature range lets you use
these new capacitors in applications where film
capacitors could not previously qualify. Capacitance/
voltage parameters equal to or better than those of
metalized polycarbonate capacitors. Extended life
expectancy. Improved electrical characteristics. Vol­
tage range from 60 to 200 VDC. Available in her­
metically-sealed metal cases as well as wrap-and-fill
epoxy end seal construction.

For complete technical information write to:
Dearborn Electronics, Inc.
Box 530, Orlando, Fla. 32802
Big or little, one channel or two, FM or AM, square, triangular, sine or swept, the new family of Datapulse function generators makes better waves. What's more, we've put a couple of new ideas to work in the design so that you get more \text{value} for your $$$. The little beauty on top, the Datapulse Model 401, sells for only $395 and gives you a dial accuracy of one percent (that's about twice as good as the competition). Frequency is 0.02 Hz to 2 MHz, and sine distortion is only 0.25 percent in the audio range. Square-wave rise time is a fast 40 nanoseconds. To handle low levels, we give you 80 db dynamic amplitude range.

You can field calibrate the 401 with a screwdriver, and we give you a calibrated 1V p-p square wave out for scope work. A switchable 40 db attenuator and your choice of 50 or 600 ohms output impedance further simplifies your life. You get 1000:1 voltage control, too.

The other unit, the one with all the buttons, bells and whistles, is the elegant and sophisticated Model 410. It takes up where the 401 leaves off. Frequency is 0.0002 Hz to 2 MHz. Dial accuracy is 1%. Uniquely among function generators, the 410 allows you to both AM and FM outputs for an extra dimension in wave generation. A built-in triggerable sweep generator gives complete flexibility using either or both of the independently controllable 40V p-p output channels to generate sine, square, triangle, sawtooth, and swept waves. Price is a modest $995.

To arrange a demonstration or obtain more data, contact your local S-D man. Or address Datapulse Division, Systron-Donner Corporation, 10150 W. Jefferson Blvd., Culver City, California 90230. Phone (213) 836-6100.
Whatever happened to our space program?

The U. S. space program appears to be falling victim to the federal emphasis on social needs—so rapidly, in fact, that Neil Armstrong’s and Buzz Aldrin’s historic landing on the moon seems like something from the distant past, instead of an event that took place just 15 months ago.

The decline in the space effort is apparent from some of the major statistics involved. For example, employment in the space industry has dropped by more than 75,000 over the past five years. In this same time, annual space outlays have dropped from a high of almost $6-billion to $3.3-billion, and further cuts are anticipated.

In the 15 months since Apollo 11 landed on the moon, employment at Cape Kennedy has fallen by 11,000. This is so sharp a cut that the region has been declared a depressed area by the U. S. Department of Commerce and therefore entitled to federal aid.

Statistics, however, tell only part of the story—the most obvious part. Less apparent is the effect the cuts will have on our future space capability. The largest and most sophisticated design team the world has ever known is being pared—and rightfully so—in line with our new national priorities. But with the American penchant for overreacting, will the paring be too severe? And will the effectiveness of those who remain in the program be diminished by low morale? In essence, will the space program be so emasculated that meaningful follow-on to the accomplishments of the 1960s is impossible?

We hope not, particularly in view of the many billions spent on it so far.

FRANK EGAN

Don’t miss the next issue

If you miss the Nov. 8 issue you may not receive another for a while. The reason—annual requalification. This year all ELECTRONIC DESIGN subscribers are being simultaneously asked to requalify for their free subscriptions.

Qualification cards and instructions will be contained in the next (Nov. 8) issue.
SWITCH 1 MHz ANALOG SIGNALS WITH JFETS

- $R_{on} < 15\Omega$ independent of signal frequency to 1 MHz.
- Operate from $\pm 15\,\text{V}$ power supplies.
- Settling time limited only by external circuitry.
- No bleed current from signal source.

These unique JFET driver-switches offer all of the listed advantages over other driver circuits and are ideal for any JFET switching application. A full range of configurations is available. SPST, DPST, SPDT and DPDT, in MIL or industrial ratings. Maximum R_{on} is from 15 to 100Ω.

For complete data on the DG 151 and 161 series, write or call any of these offices. *Prices from $5.25/channel 100 pc. quantities.
Cut production costs with this technique for ordering and bunching capacitors. Faster assembly and lowered inventories provide the savings.

In the large-scale production of such circuits as high-quality filters and oscillators, the need often arises for considerable numbers of capacitors of various values, adjusted to very close tolerances. For economy, the required values should be synthesized by bunching, in parallel, a number of cheap, wide-tolerance, standard-value capacitors.

Existing methods for bunching capacitors and stocking them suffer from one or both of two major drawbacks:

- They result in excessive inventories of dormant stock.
- They require an extensive number of cut-and-try measurements to achieve the desired result. The cut-and-try approach is not only time-consuming and expensive, it may also result in large bunches of capacitors, which can add physical packaging problems to the production engineer's woes.

Improved approach uses charts

The new method of ordering and bunching guarantees that each bunch will contain, at most, two capacitors and that only one measurement will have to be made in the assembly process. No measuring or sorting at all have to be done when a shipment of capacitors is received. The assembly is further simplified by the use of charts that eliminate tedious calculations.

To see how the method works, let's suppose that we need a capacitor of value C accurate to ±x%, and we want to make it out of cheaper capacitors of tolerance ±a% where a > x. Our capacitor bunch will have two capacitors—a main capacitor and a trimmer.

The first step is to select the main capacitor, whose value is C_M, out of our selection of standard values. C_M is chosen so that

$$C_M(1 + 0.01a) \leq C(1 + 0.01x). \quad (1)$$

The actual value of C_M will, of course, vary between $C_M(1 - 0.01a)$ and $C_M(1 + 0.01a)$.

Depending upon the actual value of the main capacitor, a suitable trimmer will have to be added to bring the total value within the desired range. To make sure that one of our trimmers will be sufficient to bring the main capacitor within the desired tolerance, we must have a number of standard trimmers, C_T, through C_{TN}, on hand. Their values are given by:

$$C_{T_i} \leq C[(1 + 0.01x)/(1 + 0.01a)] - C_M \quad (2a)$$

$$C_{T_2} \leq C_{T_1} [(1 - 0.01a)/(1 + 0.01a)] + [0.02Cx/(1 + 0.01a)], \quad (2b)$$

$$C_{T_3} \leq C_{T_2} [(1 - 0.01a)/(1 + 0.01a)] + [0.02Cx/(1 + 0.01a)], \quad (2c)$$

and so on. The trimmer of highest value is

$$C_{T_n} \geq C[(1 - 0.01x)/(1 - 0.01a)] - C_M. \quad (2d)$$

In each of the preceding cases, the actual value of the trimmer is the closest standard value that satisfies the inequality. In the design example that follows, a ±0.5% capacitance will be synthesized out of two ±2.5% capacitors.

The 2.5% figure is a good practical number because polystyrene capacitors with that tolerance can be easily mass-produced. The standard values are listed in the table. Note that only 238 different sizes are needed to cover the complete range from 2 pF to 0.1 μF.

How to use the charts

Two charts are included with this article; similar charts can be prepared for capacitors of any other tolerances. Chart No. 1 is used to

<table>
<thead>
<tr>
<th>Table. Standard 2.5% capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>All values are in picofarads.</td>
</tr>
<tr>
<td>2 to 39 in steps of 1</td>
</tr>
<tr>
<td>40 " 58 " 2</td>
</tr>
<tr>
<td>60 " 78 " 3</td>
</tr>
<tr>
<td>80 " 96 " 4</td>
</tr>
<tr>
<td>100n " 195n " 5n</td>
</tr>
<tr>
<td>200n " 290n " 10n</td>
</tr>
<tr>
<td>300n " 390n " 15n</td>
</tr>
<tr>
<td>400n " 580n " 20n</td>
</tr>
<tr>
<td>600n " 780n " 30n</td>
</tr>
<tr>
<td>800n " 960n " 40n</td>
</tr>
<tr>
<td>n = 1, 10, 100, 1000, etc.</td>
</tr>
</tbody>
</table>

Miss M. C. Ramamani, Research Department, Indian Telephone Industries Ltd., Dooravani Nagar, Bangalore-16, India.
CHART 1

A

<table>
<thead>
<tr>
<th>Values of Capacitor</th>
<th>100</th>
<th>105</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
<th>145</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values of Trimmers</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Values of Capacitor</th>
<th>150</th>
<th>155</th>
<th>160</th>
<th>165</th>
<th>170</th>
<th>175</th>
<th>180</th>
<th>185</th>
<th>190</th>
<th>195</th>
<th>200</th>
</tr>
</thead>
</table>
make 0.5% capacitors out of 2.5% units. Chart No. 2 is used to get 1.0% tolerances out of the same 2.5% capacitors.

Let's say we want to make a capacitor of value 68,600 pF ±0.5%. This means that the actual value must lie between 68,257 pF and 68,943 pF. We use chart No. 1 since it pertains to 0.5% tolerances, and we use Part C of the chart because it covers the 600 to 820-pF range of capacitance (and decimal multiples thereof).

On the chart we look for the segment of the x-axis in which the value $x = 686$ lines. The value of C_M for all values of x in this segment is given in the block above the x-axis. For $x = 686$, $C_M = 660$. Naturally, when decimal multiples are used, C_M should be multiplied by the same factor as C. Thus $C_M = 66,000$ pF.

The next step is to find the required set of trimmers. A vertical line drawn through the point $x = 686$ on the x-axis will intersect the set of parallel lines. The y-coordinates of the points of intersection are the values of the required
CHART 2

VALUES OF TRIMMERS

VALUE OF CAPACITOR

VALUES OF TRIMMERS

VALUE OF CAPACITOR

ELECTRONIC DESIGN 22, October 25, 1970
trimmers. These values will probably not be standard values; therefore, the nearest standard values should be chosen.

In the present example, the y-coordinates are: 12.7, 18.3, 23.9, 29.0, 34.3, 38.8 and 42.0. The nearest standard values, multiplied by the appropriate power of ten, are: 1250, 1850, 2400, 2900, 3450, 3900 and 4200 pF.

At this point, the sole measurement demanded by this fabrication procedure is made. This measurement is made on the main capacitor, and, based on it, the appropriate trimmer is chosen.

In the example, if the measured value of C_m turns out to be 64,450 pF, then the 4200-pF trimmer should be used. The final value of C will then be 68,650 pF. Since the trimmer has a tolerance of 2.5% (105 pF), the final value of C will actually lie between 68,545 and 68,755 pF—well within the desired range.

Note that a tremendous advantage of this system is that no money need be wasted purchasing odd-ball values of useless stock. Only one value
of a main capacitor and seven values of trimmers need be ordered to produce the desired capacitance. From Chart No. 2, for a 1% tolerance only three trimmers need be ordered.

Making charts for other tolerances

The method used to construct these graphs is best explained by considering a typical example. Suppose we want to make a chart that covers the range of 600 pF to 780 pF and that allows us to achieve 0.5% tolerances using 2.5% capacitors. If we rewrite Formula 1 as an equation, rather than as an inequality, we get

\[C = C_M \left(1 + 0.01a \right) \left(1 + 0.01x \right) \tag{3} \]

or \[C = C_M \left(1.025 \right) / \left(1.005 \right) \]. Substituting this last expression into Eqs. 2a, b, c and d, we get

\[C_{T_1} = 0 \]
\[C_{T_2} = 0.009C_M \]
\[C_{T_3} = 0.018C_M \]
\[C_{T_4} = 0.026C_M \]

To draw the graph, we mark the standard values of \(C_M \) along the x-axis from \(C_{M_1} = 600 \) pF to \(C_{M_7} = 780 \) pF. We also mark the points \(C_{M_1A} = 1.02C_{M_1} \) through \(C_{M_7A} = 1.02C_{M_7} \) on the same axis. These values are:

\[C_{M_{1A}} = 612.0 \text{ pF} \]
\[C_{M_{2A}} = 642.6 \text{ pF} \]
\[C_{M_{3A}} = 673.2 \text{ pF} \]
\[C_{M_{4A}} = 703.8 \text{ pF} \]

Through each of the points \(C_{M_{1A}} \) to \(C_{M_{7A}} \) we next draw a vertical line. On the line through \(C_{M_{1A}} \) the following points are plotted.

\[C_{T_1} = 0 \text{ pF} \]
\[C_{T_2} = 0.009C_{M_1} = 5.4 \]
\[C_{T_3} = 0.018C_{M_1} = 10.8 \]
\[C_{T_4} = 0.026C_{M_1} = 15.6 \]

Then, since \(C_{M_2} - C_{M_1} = 30 \text{ pF} \), we add 30 pF to each of the preceding values and mark them off on the vertical line drawn through \(C_{M_2A} \). Thus, \(C_{T_1'} = C_{T_1} + 30 = 30 \text{ pF} \), and so on.

Now, if we join points \(C_{T_1} \) and \(C_{T_1'} \), \(C_{T_2} \) and \(C_{T_2'} \), and so on to \(C_{T_7} \) and \(C_{T_7'} \), we obtain a set of parallel lines (Fig. 1).

Any value in the range of \(C_{M_{1A}} \) through \(C_{M_{7A}} \) can now be obtained by bunching main capacitor \(C_{M_1} \) with one of the seven trimmers given by the points of intersection of these lines and the ordinate drawn at the desired value.

The values of the trimmers thus obtained may be rounded off to the nearest standard values. This will result in negligible error, since the values of trimmers have been selected to be sufficiently close to each other.

Parallel lines can also be drawn between the ordinates at \(C_{M_{2A}} \) and \(C_{M_{3A}} \) by marking the following points on the vertical line drawn through point \(C_{M_{2A}} \):

\[C_{T_1} = 0.000 \]
\[C_{T_2} = 0.009C_{M_2} \]
\[C_{T_3} = 0.018C_{M_2} \]
\[C_{T_4} = 0.026C_{M_2} \]

and similar points on the line through \(C_{M_{3A}} \).

Then, any capacitor in the range of \(C_{M_{2A}} \) through \(C_{M_{3A}} \) can be obtained with main capacitor \(C_{M_2} \) and one of the seven trimmers whose values are obtained as explained above. ■ ■
“If you’re calling Radiation and Harris answers…

Don’t hang up!”

RADIATION MICROELECTRONICS HAS CHANGED ITS NAME TO HARRIS SEMICONDUCTOR
NEW PLANT:

HARRIS SEMICONDUCTOR... a new name and a new IC manufacturing facility with approximately 113,000 sq. ft. of the latest innovations in wafer manufacturing and development. (Located in Melbourne, Fla.)

HARRIS SEMICONDUCTOR, the new name for Radiation Microelectronics, is just in time for the opening of one of the most up-to-date IC manufacturing facilities in the country. Smooth production flow and exacting quality control have been the keynote of its design. To assure environmental integrity there are four completely isolated modules right in the heart of the building: two for wafer manufacturing and inspection...one for engineering development and assembly...and the fourth for photomasking and process development. Each has its own vertical laminar-flow ventilation system which blankets the entire module with super-clean air kept at 72° ± 1°F and 45% ± 1% relative humidity. And as added environmental protection, the air is filtered again by the laminar-flow hoods at each individual production station. That assures us of maximum yield for our high-quality chips. And it assures Harris Semiconductor customers that they'll get IC's with the best price/Performance ratio on the market.

SUPER-CLEAN AIR...In vertical laminar-flow hoods designed to provide additional air filtering, wafer photo resist is exposed to ultraviolet light after precise mask alignment.

THE LATEST DIFFUSION EQUIPMENT
Six furnace chambers on each of these Brute diffusion systems are regulated within 0.25°C for precise uniformity of wafer diffusion rates.

All material moving through the manufacturing process is continually monitored to assure conformance to the rigid standards of high quality Harris Semiconductor has been noted for.
NEW PRODUCTS

64-BIT BIPOLAR RAM WITH 35ns ACCESS
Using Schottky clamped transistors the Harris RAM-0064 is the first bipolar read/write memory capable of 35ns access times. As a high-speed scratch-pad memory, it provides:

- DTL/TTL compatibility
- Full decoding to 16 words by 4 bits per word
- Uses single 5 volt power supply
- Open collector output for "Wired-Or" expansion
- 16 pin dual in-line package
- 0° to +75°C, $25.60*
- -55° to +125°C, $32.00*

*100 to 999 unit price

NEW WIDE-BAND, HIGH-IMPEDANCE OP AMP
Harris' new HA-2620 and HA-2625 Wide Band Op Amps have gain bandwidths which are an order of magnitude better than standard opamps on the market today. In addition, they provide:

- Input impedance of 500 Megohms
- Slew rate of 35 V/µs
- Typical bias and offset currents of 2nA
- Ideal for high-input impedance comparators
- HA-2620 . . . −55° to +125°C, $17.85*
- HA-2625 . . . 0° to +75°C, $10.70*

*100 to 999 unit price

And in addition to our recently introduced PROM and 8-bit D/A Converter, watch for these new products soon to be announced:

MEMORIES
256 x 1 PROM
1024 BIPOLAR ROM
16 BIT BIPOLAR RAM
2560 MOS ROM

DIGITAL
9300 STORAGE REGISTER
9301 1/10 DECODER
9304 DUAL ADDER
9309 DUAL 4 INPUT MPX
9312 SINGLE 8 INPUT MPX
9316 HEX COUNTER

LINEAR
6-BIT CURRENT SOURCE
MONOLITHIC LADDER NETWORKS

HARRIS SEMICONDUCTOR
A DIVISION OF HARRIS-INTERTYPE CORPORATION
P. O. Box 883, Melbourne, Florida 32901 (305) 727-5430 /
Winston, Massachusetts (617) 862-1055 / Frederick, Maryland (301) 862-5400 / Oaklawn, Illinois (312) 423-0810 / Albuquerque, New Mexico (505) 288-3549 / Palo Alto, California (415) 321-2280 /
Dallas, Texas (214) 231-9031 / Long Beach, California (213) 426-7887 / Norwalk, Connecticut (203) 853-3646 / EXPORT SALES, DAGE CORPORATION, STAMFORD, CONNECTICUT

RADIATION MICROELECTRONICS HAS CHANGED ITS NAME TO HARRIS SEMICONDUCTOR

INFORMATION RETRIEVAL NUMBER 33
Versatile table simplifies convolution. It allows you to look up this operation on two exponential functions as easily as a logarithm.

Convolution is one of the most powerful mathematical operations in linear circuit analysis. It can be derived from the super position integral that relates total system output to superposed outputs resulting from infinitesimal inputs. It is also related to correlation functions.

However, the application of convolution is sometimes made difficult by its mathematical complexities. The table shown here eliminates these difficulties by giving the results of the convolution of several pairs of exponential functions.

The following examples demonstrate the use of the table.

1. Given:
 \[u(t) = \text{unit step input function} \]
 \[h(t) = e^{-at}u(t) \]
 Find:
 \[y(t) = \text{step response filter} \]

<table>
<thead>
<tr>
<th>NO.</th>
<th>(f_1(t))</th>
<th>(f_2(t))</th>
<th>(f_3(t) = f_1(t) \star f_2(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(e^{-at}u(t))</td>
<td>(e^{-bt}u(t))</td>
<td>(te^{-at}u(t))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{1}{b-a} \left[e^{-at} - e^{-bt} \right] u(t))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a = b)</td>
</tr>
<tr>
<td>2</td>
<td>(e^{at}u(-t))</td>
<td>(e^{bt}u(-t))</td>
<td>((-t)e^{at}u(-t))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{1}{b-a} \left[e^{at} - e^{bt} \right] u(-t))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a \neq b)</td>
</tr>
<tr>
<td>3</td>
<td>(e^{-at}u(t))</td>
<td>(e^{bt}u(-t))</td>
<td>(\frac{1}{2a} e^{-a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{1}{a+b} \left[e^{-at}u(t) + e^{bt}u(-t) \right])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a \neq b)</td>
</tr>
<tr>
<td>4</td>
<td>(e^{-at}u(t))</td>
<td>(-e^{b</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{1}{a+b} \left[e^{-bt} - \frac{2b}{a+b} e^{-at} \right] u(t) + \frac{1}{a+b} e^{bt}u(-t))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a \neq b)</td>
</tr>
<tr>
<td>5</td>
<td>(e^{at}u(-t))</td>
<td>(-e^{b</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{1}{a+b} e^{-bt}u(t) + \frac{1}{a+b} \left[e^{bt} - \frac{2b}{a+b} e^{at} \right] u(-t))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a \neq b)</td>
</tr>
<tr>
<td>6</td>
<td>(e^{-a</td>
<td>t</td>
<td>})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{2}{b^2 - a^2} \left[b e^{-a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a \neq b)</td>
</tr>
</tbody>
</table>
Solution:

\[y(t) = h(t) \ast u(t) \]

From line No. 1 in the table, let \(a = 0, b = k \), to obtain:

\[y(t) = \frac{1}{k} (1 - e^{kt}) u(t) \]

2. Given:

\[R_{xx}(\tau) = \text{input covariance function of } x(t) \]
\[= A e^{k|\tau|} \]
\[h(t) = \text{filter impulse response function} \]
\[= e^{h't} u(t) \]

Find:

\[R_{yy}(\tau) = \text{output covariance function} \]

Solution:

\[R_{yy}(\tau) = h(\tau) \ast h(-\tau) \ast R_{xx}(\tau) \]

From line No. 3 in the table, let \(a = b = k_2 \) to obtain

\[h(\tau) \ast h(-\tau) = \frac{1}{2k_2} e^{k_2|\tau|} \]

Thus,

\[R_{yy}(\tau) = \frac{A}{2k_2} e^{h_2|\tau|} \ast e^{-k_2|\tau|}. \]

From line No. 6 in the table, let \(a = k_1, b = k_3 \) to obtain

\[R_{yy}(\tau) = \frac{A}{2k_2} \left[\frac{2}{k_3 - k_1^2} \right] [k_2 e^{h_1|\tau|} - k_1 e^{h_1|\tau|}] \]

for \(k_1 \neq k_3 \), \(\square \).

Test your retention

Here are questions based on the main points of this article. Their purpose is to help you make sure you have not overlooked any important ideas. You'll find the answers in the article.

1. To what other basic mathematical concepts is convolution related?

2. What are the difficulties in using convolution?

3. How does the table make convolution more useful?
If you make a product no matter what, we can

From space capsules to computers to consumer appliances... Dow Corning silicone materials add a critical measure of reliability to designs. They improve the performance and service life so vital to your product's function, be it aerospace, industrial or entertainment.

Dow Corning silicone rubber RTV adhesive/sealants bond, seal and insulate. Cured materials give excellent resistance to breakdown by harsh environments. An adhesive/sealant is shown here sealing feed-through wires where they enter a high-vacuum test chamber. Units remain leak free under severe vacuum, wide temperature changes and wire flexing. Choose from several adhesive/sealants... some offer choice of color; some are non-corrosive to copper.

Dow Corning protective coatings cure at room temperature to form tough, noncorrosive coatings on components, subassemblies and circuit boards. Coatings have excellent resistance to moisture, dust, dirt, abrasive materials, ozone, radiation and many solvents and industrial chemicals. There are several to choose from... some are transparent, others opaque.
that's got to perform, protect it.

Effective heat transfer and protection from corrosion are properties of Dow Corning heat sink compound. Diodes, transistors and rectifiers last longer and are more stable in operation when nondrying silicone paste provides full contact with heat sink for optimum thermal conductivity. Other compounds prevent corrosion of connectors, lamp bases... lubricate gaskets.

Outstanding environmental protection for electronic components and assemblies—that's what Dow Corning RTV encapsulants provide. These materials cure to tough, yet flexible, silicone rubber that protects components from moisture, dirt, corona, weathering and corrosive atmospheres. Applications are almost endless, ranging from encapsulating printed circuit boards to encapsulating the glass-enclosed image-intensifier tubes of U.S. Army helicopters' night vision units. There's a variety to choose from... Some are transparent for easy visual inspection; others can be color coded... and they're adaptable to a wide variety of processing requirements.

When total reliability is essential in electronic parts and finished products, count on high-performance silicones from Dow Corning. Write for information, Dept. B-0321 Dow Corning Corporation, Midland, Michigan 48640.

Electrical/ electronic materials from Dow Corning

INFORMATION RETRIEVAL NUMBER 35
Reduce motor/tachometer coupling and improve servo-system performance. It’s essential to the design of stable, compact control systems.

Servo motors and tachometers when combined in a single package must use available space efficiently while satisfying rigorous dynamic response and stability requirements. Such compact motor/tachometer assemblies have found applications in data-communications systems, film transports, motion simulators (rate tables) and antenna drives.

While small physical size brings about some desirable features, such as greater servo bandwidth due to improved mechanical resonance in torsion, close motor/tachometer proximity accentuates unwanted electromagnetic coupling. Without proper design, this coupling can override any mechanical advantages and the compact servo package will prove inferior to control systems with a separate motor and tachometer.

Although many shielding schemes are available to reduce mutual inductance, sound engineering design requires optimum motor/tachometer magnetic-circuit construction. Derivation of the motor/tachometer transfer function provides the necessary insight and background.

Black box serves as circuit model

Electromagnetic coupling is caused by a stray magnetic flux linkage, \(\Phi_s \), between the motor and tachometer armatures (Fig. 1). The cross-magnetizing field generated by the motor and tachometer armature currents should ideally be confined to the individual units. When motor and tachometer are mounted close together, some small portion of this flux becomes common to both armatures. The resulting electromagnetic coupling can be described by a mutual inductance, \(M \), and the motor/tachometer combination can be represented by the four-terminal network of Fig. 2.

In practical applications the servo is operated by applying the tachometer signal through a four-terminal network into the summing junction of an amplifier. For the purposes of this analysis, it is assumed that the four-terminal network is reduced to the single resistor \(R_t \) (Fig. 3).

Stanley Ronchinsky, Vice President Engineering, Torque Systems, Inc., Waltham, Mass.
Motor voltage e_M and tachometer voltage e_T are related to motor current i_M and tachometer current i_T by a transformation matrix so that

$$
\begin{bmatrix}
e_M \\
e_T
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
i_M \\
i_T
\end{bmatrix}
$$

where

$$
A = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}.
$$

Since the summing junction of the amplifier (Fig. 3) acts as a current sink, the tachometer current and voltage are related by

$$
e_T = -(R_f) i_T.
$$

Equation 1 then becomes

$$
\begin{bmatrix}
e_M \\
0
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} + R_f
\end{bmatrix}
\begin{bmatrix}
i_M \\
i_T
\end{bmatrix},
$$

which yields the tachometer current

$$
i_T = e_M \left[\frac{a_{21}}{a_{11}(R_f + a_{22})} \right] \left[1 - \frac{a_{21}}{a_{11}(R_f + a_{22})} (-a_{12}) \right].
$$

This equation is represented as a block diagram in Fig. 4.

The coefficients of matrix $[A]$ are now determined from basic electrical equations and the equation of motion. It is assumed that friction is negligible compared to the total inertia J (includes motor, tachometer and load inertia) expressed in foot-pound-seconds². Then

$$
e_M - K_s \frac{d\theta}{dt} = R_s i_M + L_M \frac{di_M}{dt} + M \frac{di_T}{dt},
$$

$$
e_T - K_r \frac{d\theta}{dt} = R_v i_T + L_T \frac{di_T}{dt} + M \frac{di_M}{dt},
$$

$$
J \frac{d^2\theta}{dt^2} = K_T i_M.
$$

Taking the Laplace transformation of Equations 5, 6, and 7 and rearranging the terms gives

$$
e_M = \left(\frac{K_s K_T}{sJ} + R_s + sL_M \right) i_M + Ms i_T
$$

and

$$
e_T = \left(\frac{K_s K_T}{sJ} + Ms \right) i_M + (R_T + sL_T) i_T.
$$

Comparison with Eq. 1 yields the coefficients of matrix $[A]$:

$$a_{11} = \frac{K_s K_T}{sJ} + R_s + sL_M;$$

$$a_{12} = Ms;$$

and

$$a_{21} = \frac{K_s K_T}{sJ} + Ms.
$$

For convenience the coefficient a_{21} can be rewritten as

$$a_{21} = a_{210} \left(1 + \frac{MJ}{K_s K_T s^2} \right),
$$

4. The tachometer current formula derived in Eq. 4 is illustrated as a block diagram. Coefficient $-a_{12}$ represents coupling feedback while a_{12} accounts for coupling phase shift.

5. Matrix $[A]$ coefficients derived from electrical and mechanical equations are substituted into Eq. 4. $-Ms$ is the coupling feedback, $\Psi(s)$ is the coupling phase shift and $\Psi(s)$ is the transfer function with zero coupling.

6. The motor/tachometer is stable when the choice of feedback resistor makes $-Ms$ negligible. Phase shift due to the mutual coupling can now be examined.
where by definition \(a_{210} = K_R K_T/sJ \) is the coefficient \(a_{21} \) at zero coupling (\(M = 0 \)).

The transfer function of a motor/tachometer with mutual coupling is represented by Fig. 5. At zero coupling the transfer function reduces to

\[
Y(s) = \frac{1}{e_M} = \frac{a_{210}}{a_{11} (R_T + a_2)}
\]

and after substitution from Equations 8, 9, 11, and 12

\[
Y(s) = \left[\frac{K_s s}{R_T + R_T + sL_T} \right] \left[\frac{1}{sK_B \left(1 + \frac{R_{M1} s}{K_B K_T} + \frac{L_{M1} s}{K_B K_T} s^2 \right)} \right], \quad (13)
\]

which is the standard tachometer/motor transfer function.

What is the effect of coupling?

Mutual inductance \(M \) can have a positive or negative sign, depending on the physical construction of the motor/tachometer package. With \(M \) positive, the quadratic term in the transfer function denotes minimum phase. When \(M \) is negative, the quadratic term becomes a nonminimum phase function.

The effect of the mutual coupling on the motor/tachometer transfer function is twofold:

- It introduces a feedback element, \(-M_s \), into the transfer function, thus creating the potential for instability.
- It introduces a quadratic term \(\Psi(s) \) (either minimum or nonminimum phase) into the forward loop.

Negative real roots assure stability

The effect of feedback element \(-M_s \) can be made negligible by appropriate selection of feedback resistor \(R_s \). To assure stability, the roots of the characteristic function of the matrix in Eq. 3 must have negative real parts. This means that \(f(s) = [a_{11} (a_{22} + R_s) - a_{12} a_{21}] \) is a Hurwitz' polynomial.

After substitution,

\[
f(s) = s^3 b_3 + s^2 b_2 + s b_1 + b_0 \quad (14)
\]

where

\[
\begin{align*}
 b_3 &= J \left(L_{M1} L_T - M^2 \right), \\
 b_2 &= J \left[L_{M1} (R_T + R_T) + L_T R_M \right], \\
 b_1 &= K_B K_T L_T + K_M^2 (R_T + R_T) - K_T K_R M \\
 b_0 &= K_B K_T (R_T + R_T).
\end{align*}
\]

According to mutual coupling theory,

\[
M^2 < L_{M1} L_T,
\]

and therefore \(b_1 \) is always greater than zero.

Since the coefficient \(b_1 \) is always greater than zero, the condition sufficient and necessary for the polynomial, \(f(s) \), to have roots with negative real parts is that

\[
\begin{vmatrix}
 b_2 & b_0 \\
 b_3 & b_1
\end{vmatrix} > 0
\]

must be positive. This procedure leads to a definition of motor/tachometer stability:

Under the condition of mutual coupling the motor/tachometer will be inherently stable if the mutual inductance \(M \) satisfies the inequality

\[
M^2 K_B K_T (R_T + R_T) - M K_B K_T [L_{M1} (R_T + R_T) + R_M L_T] + R_M L_T K_B K_T + 2 R_M J (R_T + R_T) [L_{M1} (R_T + R_T) + R_M L_T] > 0. \quad (15)
\]

This complex criterion can be reduced by neglecting the term containing \(M^2 \). A simplified expression for stability is therefore obtained:

\[
M < \frac{R_M J}{K_B K_T} (R_T + R_T) + \frac{K_B R_M L_T^2}{K_T [L_{M1} (R_T + R_T) + R_M L_T]} \quad (16)
\]

The stability can always be assured by making the feedback resistor, \(R_s \), large enough so that Eq. 15 or 16 is satisfied.

Note that motor/tachometer instability can exist only with minimum-phase coupling. For nonminimum-phase coupling, the mutual induc-

Here's a summary of the important parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_M)</td>
<td>Motor Voltage</td>
<td>volts</td>
</tr>
<tr>
<td>(i_M)</td>
<td>Motor Current</td>
<td>amperes</td>
</tr>
<tr>
<td>(K_v)</td>
<td>Motor Torque Constant</td>
<td>foot pounds/ampere</td>
</tr>
<tr>
<td>(K_s)</td>
<td>Motor Velocity Constant</td>
<td>volts/radians/second</td>
</tr>
<tr>
<td>(R_M)</td>
<td>Motor Resistance</td>
<td>ohms</td>
</tr>
<tr>
<td>(L_M)</td>
<td>Motor Inductance</td>
<td>henrys</td>
</tr>
<tr>
<td>(e_r)</td>
<td>Tachometer Voltage</td>
<td>volts</td>
</tr>
<tr>
<td>(i_r)</td>
<td>Tachometer Current</td>
<td>amperes</td>
</tr>
<tr>
<td>(K_v)</td>
<td>Tachometer Velocity Constant</td>
<td>volts/radians/second</td>
</tr>
<tr>
<td>(R_T)</td>
<td>Tachometer Resistance</td>
<td>ohms</td>
</tr>
<tr>
<td>(L_T)</td>
<td>Tachometer Inductance</td>
<td>henrys</td>
</tr>
<tr>
<td>(M)</td>
<td>Mutual Inductance</td>
<td>henrys</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Displacement Angle</td>
<td>radians</td>
</tr>
<tr>
<td>(t)</td>
<td>Time</td>
<td>seconds</td>
</tr>
<tr>
<td>(s)</td>
<td>Laplace operator</td>
<td>radians/second</td>
</tr>
</tbody>
</table>
ance M is negative and the function $f(s)$ is always a Hurwitz polynomial.

Don't neglect phase effects

Assuming that the motor/tachometer package is inherently stable and that the feedback element, $-M_s$, can be neglected, the transfer function is reduced to the block diagram of Fig. 6. The mutual coupling, M, affects the transfer function by introducing quadratic term $\Psi(s)$ into the servo loop. Again, this mutual coupling may be positive or negative.

When M is positive, the polynomial $\Psi(s)$ is a minimum phase function with zeros on the s-plane's imaginary axis. The zeros occur at a frequency

$$\omega_z = \pm \sqrt{\frac{(KKT)/(MJ)}{2}}.$$

At ω_z, servo gain is reduced to zero, and phase is shifted to lead by 180° (Fig. 7).

The quadratic function $\Psi(s)$ has a zero damping coefficient as a result of the assumption that disregards friction torques. When friction exists in the system the function $\Psi(s)$ will have a finite damping factor, and the phase will change gradually.

The effect of $\Psi(s)$ on servo performance depends mostly on the location of the zeros with respect to the servo cross-frequency. If the zero location is at or near crossover, the effect is bandwidth reduction and increased servo damping. This case is exemplified on a frequency response plot (Fig. 7).

Zero location below the servo crossover is highly undesirable because servo gain reduction around ω_z severely limits the system dynamic response (particularly with regard to torque-disturbance rejection). Secondly, the 40-dB-per-decade servo gain rise above ω_c complicates the problems associated with the servo rolloff characteristics.

When zero is located above the crossover, the mutual coupling does not create any serious problems in the servo design. The 40-dB-per-decade servo gain rise must be taken care of by a suitable rolloff, but this task is not difficult.

When M is negative, the polynomial $\Psi(s)$ becomes a nonminimum phase function. The zeros are located on the s-plane's real axis at

$$\sigma = \pm \sqrt{\frac{(KKT)/(MJ)}{2}}.$$

The function of $\Psi(s)$ now exhibits zero phase shift everywhere, and its frequency response is such that 0-dB gain is followed by a 40-dB-per-decade rise (Fig. 8) at corner frequency ω_c.

$$\omega_c = \sqrt{\frac{(KKT)/(MJ)}}{2}.$$

This function has serious impact on servo design. If ω_c falls anywhere near the crossover, servo stabilization by ordinary means (such as minimum-phase active or passive networks) is impossible. From a practical standpoint, ω_c should be at least 10 times the desired servo bandwidth.

A quick check on coupling

A useful formula for specifying the maximum mutual inductance follows directly from the previous analysis. To avoid difficulty in applying the motor/tachometer package to servo design, the mutual inductance, M, should satisfy the relationship.

$$M < \frac{(KKT)/(\xi B)^2}{J},$$

where

- $B = \text{Desired System Bandwidth (radians)}$
- $\xi = (10 \text{ nonminimum phase coupling})$
- $\xi = 2 \text{ (minimum phase coupling)}$

Reference

High energy silicon for the 70's

The new tough breed from the Kokomoans

<table>
<thead>
<tr>
<th>CIRCLE NO.</th>
<th>Transistor</th>
<th>Vce (V)</th>
<th>Continuous Ic (A)</th>
<th>Vceo (sus) (V)</th>
<th>Maximum Power Dissipation (W)</th>
<th>Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>DTS 103</td>
<td>80</td>
<td>15</td>
<td>60</td>
<td>125</td>
<td>Voltage regulators, power amplifiers, high efficiency switching circuits.</td>
</tr>
<tr>
<td>202</td>
<td>DTS 104</td>
<td>80</td>
<td>15</td>
<td>60</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>DTS 105</td>
<td>100</td>
<td>15</td>
<td>75</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>DTS 106</td>
<td>110</td>
<td>15</td>
<td>80</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>DTS 107</td>
<td>120</td>
<td>15</td>
<td>85</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>DTS 401</td>
<td>400</td>
<td>2</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>DTS 402</td>
<td>700</td>
<td>3.5</td>
<td>325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>DTS 410</td>
<td>200</td>
<td>3.5</td>
<td>200</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>DTS 411</td>
<td>300</td>
<td>3.5</td>
<td>300</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>DTS 413</td>
<td>400</td>
<td>2</td>
<td>325</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>DTS 423</td>
<td>400</td>
<td>3.5</td>
<td>325</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>DTS 424</td>
<td>700</td>
<td>3.5</td>
<td>350</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>DTS 425</td>
<td>700</td>
<td>3.5</td>
<td>400</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>DTS 430</td>
<td>400</td>
<td>5</td>
<td>300</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>DTS 431</td>
<td>400</td>
<td>5</td>
<td>325</td>
<td>125</td>
<td>Vertical magnetic CRT deflection circuits.</td>
</tr>
<tr>
<td>216</td>
<td>DTS 701</td>
<td>800</td>
<td>1</td>
<td>600</td>
<td>50</td>
<td>High voltage DC regulators.</td>
</tr>
<tr>
<td>217</td>
<td>DTS 702</td>
<td>1200</td>
<td>3</td>
<td>750</td>
<td>50</td>
<td>Very high voltage industrial and commercial switching.</td>
</tr>
<tr>
<td>218</td>
<td>DTS 704</td>
<td>1400</td>
<td>3</td>
<td>800</td>
<td>50</td>
<td>Color vertical magnetic CRT deflection circuits.</td>
</tr>
<tr>
<td>219</td>
<td>DTS 721</td>
<td>1000</td>
<td>3</td>
<td>800</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>DTS 723</td>
<td>1200</td>
<td>3</td>
<td>750</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>DTS 801</td>
<td>1000</td>
<td>2</td>
<td>700</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>DTS 802</td>
<td>1200</td>
<td>5</td>
<td>750</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>DTS 804</td>
<td>1400</td>
<td>5</td>
<td>800</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>2N3902†</td>
<td>700</td>
<td>3.5</td>
<td>325</td>
<td>100</td>
<td>Ideal for switching applications. Can be operated from rectified 117 or 220 volt AC line.</td>
</tr>
<tr>
<td>225</td>
<td>2N5157</td>
<td>700</td>
<td>3.5</td>
<td>400</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>2N5221</td>
<td>400</td>
<td>5</td>
<td>325</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>2N2580</td>
<td>400</td>
<td>10</td>
<td>325</td>
<td>150</td>
<td>For general use in electrical and electronic circuits such as converters, inverters, regulators, etc.</td>
</tr>
<tr>
<td>228</td>
<td>2N2581</td>
<td>400</td>
<td>10</td>
<td>325</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>2N2582</td>
<td>500</td>
<td>10</td>
<td>325</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>2N2583</td>
<td>500</td>
<td>10</td>
<td>325</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>2N3079</td>
<td>200</td>
<td>10</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>2N3080</td>
<td>300</td>
<td>10</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* †Mil. qualified units available.
* Use reader service card for further information.

Transistors are NPN triple diffused.
Now available from these distributors in production quantities.

ALARA, BIRMINGHAM • Forbes Distributing Co., Inc. (205)-251-4104
ARIZ., PHOENIX • Cramer/Arizona (602)-263-1112 • Sterling Electronics (602)-258-4531
CAL., LOS ANGELES • Kierulf Electronics, Inc. (213)-685-5511 • Radio Products Sales, Inc. (213)-748-1271
CAL., PALO ALTO • Kierulf Electronics, Inc. (415)-968-6292
CAL., SAN DIEGO • Milo of California, Inc. (714)-232-8951
COLO., COLORADO SPRINGS • Walker Electronics (303)-636-1661
COLO., DENVER • Cramer/Denver (303)-758-2100 • Denver Walker Electronics (303)-935-2406
FLA., MIAMI • Mountain Electronics, Subsidiary of Avnet, Inc., (305)-634-4556
FLA., WEST PALM BEACH • Mountain Electronics, Subsidiary of Avnet, Inc., (305)-833-5701
ILL., ROSEMONT (Chicago) • F-J-R/Kierulf (312)-678-8560
ILL., SOKOIE (Chicago) • Merquip Electronics (312)-282-5400
IND., INDIANAPOLIS • Graham Electronics Supply, Inc. (317)-634-8486
MD., BALTIMORE • Radio Electric Service Co. (301)-823-0070
MASS., NEWTON • The Greene-Shaw Co., Inc. (617)-969-8900
MICH., RUMULUS • Harvey/Detroit (313)-729-5500
MINN., MINNEAPOLIS • Stark Electronics Supply Co. (612)-332-1325
MO., KANSAS CITY • Walters Radio Supply, Inc. (816)-331-7015
MO., NO. KANSAS CITY • ECI Semiconductors, Inc. (816)-321-2400
MO., ST. LOUIS • Electronic Components for Industry Co. (314)-647-5505
N.J., CLIFTON • Eastern Radio Corporation (201)-471-6000
N.M., ALBUQUERQUE • Cramer/New Mexico (505)-265-5767 • Sterling Electronics (505)-247-2486
N.Y., BINGHAMTON • Harvey/Federal (607)-748-8211
N.Y., NEW YORK • Harvey/New York (212)-582-2590
N.Y., WOODBURY • Harvey/New York (516)-921-8700
OHIO, CLEVELAND • Pattison Supply (216)-441-3000
OHIO, DAYTON • F-J-R/Kierulf (513)-278-9411
OK., OKLAHOMA CITY • Radio, Inc. (405)-235-1551
OKLA., TULSA • Radio, Inc. (918)-587-9123
PENN., PHILADELPHIA • Almo Electronics (215)-676-6000
PENN., PITTSBURGH • RPC Electronics (412)-782-3770
S.C., COLUMBIA • Dixie Radio Supply Co., Inc. (803)-253-5333
TEXAS, DALLAS • Adleta Electronics Company (214)-742-8257
TEXAS, FORT WORTH • Adleta Electronics Co. (817)-336-7446
TEXAS, HOUSTON • Harrison Equipment Co., Inc. (713)-224-9131
UTAH, SALT LAKE CITY • Cramer/Utah (801)-487-3681
VA., RICHMOND • Meridan Electronics, Inc., a Sterling Electronics Company (703)-353-6648
WASH., SEATTLE • Kierulf Electronics, Inc. (206)-763-1550
WASH., TACOMA • C & G Electronics Co. (206)-272-3181
All Overseas Inquiries: General Motors Overseas Operations Power and Industrial Products Dept. 767 Fifth Avenue, New York, N. Y. 10022. Phone: (212)-486-3723.

Best for Your Systems of the 70's. Here's Why: Delco silicon power transistors have earned a reputation for survival in the most rugged applications. Their proved performance in solid state deflection circuits for the new large screen color TV sets is but one example. This new breed of silicon power is built to handle the high energy found in inductive switching or in circuits normally subject to fault conditions or transients.

Their high voltage capability permits the design of simpler circuits, eliminating the extra weight, bulk, and complexity associated with low voltage, higher current systems. Their energy capability is backed by the surest rating in the business—Peak Energy Testing. Solid copper TO-3 and TO-36 packages assure maximum thermal conductivity. All in all this is the silicon power for the equipment of the 70's.

When you specify Delco you can count on consistent quality and on-time delivery, too. These are assured because our semiconductor production and quality controls are geared to our own high volume output of automobile radios and electronic systems.

Call the Kokomoans or your Delco distributor for more information on the New Tough Breed.
Want a bandpass filter?
You can build one by commutating simple low-pass filters, and easily vary bandwidth and resonant frequency.

Suppose you require low-frequency, high-Q bandpass filters. If you use conventional filter synthesis you may get physically impractical designs. But there is an alternative—commutating filters.

Although it is an attractive alternative, it was not feasible for most applications before solid-state switching became available to replace mechanical commutators. Now you can make use of the many advantages of commutating filters:
- They can be made to operate over a wide frequency range.
- They have excellent temperature stability.
- They are small in size and weight.
- By changing the clock frequency, the resonant frequency can be varied from a few hertz to several megahertz (Fig. 1).
- Bandwidth is easily adjusted by changing the number of sections commutated, since band-

width is inversely proportional to the number of sections being switched.

How commutating filters work

The operation of commutating filters is based on switching between N identical low-pass filter sections at a clock rate N times the desired center frequency. This switching has the effect of reflecting the low-pass response about the commutating frequency, thereby generating a bandpass response. The bandwidth is 2/N times the bandwidth of the original low-pass sections, which is equivalent to reflecting a low-pass section with 1/N times the original bandwidth. The commutating filter also has passbands centered at 0 Hz and at harmonics of the commutating frequency, but these responses are generally of minor interest for most applications.

The operation is most easily understood by considering a simple low-pass filter section as an integrator with time constant $\tau = RC$. If we cascade N of these sections with a commutating switch, we have a commutating filter (Fig. 2).

5. This eight-section commutating filter will accept up to 5V pk-pk input signals. The external clock drives the counter at eight times the resonant frequency. The MC7403 gates act as the switches. The 2N3906 transistors allow large values of input voltage and also improve the filter response.
The commutating switch rotates at \(f_c \) rotations per second. Since each capacitor is connected to the input only \(1/N \)th of the time, its time constant is increased by \(N \) to \(\tau' = NRC \). The time constant of the cascaded group is also \(\tau' = NRC \), yielding a 3-dB low-pass response of \(f_{ip} = \frac{1}{2\pi NRC} \).

The output of this commutated low-pass filter is in step format where each capacitor charges toward the average voltage applied during the \(1/N \)th segment of time that the input signal is applied.

If a signal at the commutating frequency, \(f_c \), is applied to the filter, the same average voltage appears across an individual capacitor each time it is switched into the circuit. The capacitors thus "see" a stationary signal and quickly charge to the average value. As the individual capacitor segments are sequenced by the commutator, a step format reproduction of the original signal is derived (Fig. 3).

A signal separated from the resonant frequency by some value, such as \(f_c \pm f_s \), appears the same as \(f_c \) to the low-pass sections, thereby generating a bandpass response.

Responses are also generated, by the same mechanism, at harmonics of \(f_c \), producing the comb-filter response shown in Fig. 4. This response is not desired for most applications, and so a filter designed with more conventional techniques is generally used after the commutating filter to eliminate the unwanted "teeth" in the comb. This same bandpass filter or low-pass filter elminates the step waveform of the commutating filter output. A low-Q bandpass filter is sufficient for these purposes and is easily and economically constructed, even at low frequencies.

Build an eight-section filter

An eight-section commutating filter that operates with up to 5-V peak-to-peak input signals is shown in Fig. 5. The counter, operating at a clock frequency of \(8f_c \), drives the switches. The MC7403 open-collector gates decode the counter output and also could provide the switches.

The 2N3906 transistors serve the dual purpose of allowing large values of input voltage and improving filter response. This is seen by comparing the filter response. Curves shown in Fig. 6, using a capacitor of 0.1 \(\mu \)F and a resistor of 1 k\(\Omega \). The bandwidth is the same in both cases, but the out-of-band rejection is greatly reduced in the 2N3906 transistors are not used.

With the transistors removed, a portion of the signal current is shunted through the transistor switches (MC7403). This current varies the saturation voltage of the switches and is thereby transmitted through the filter. The effect of the current is reduced by biasing through the switch with a dc bias that is larger than the signal current.

Vary the bandwidth

Bandwidth, which is proportional to \(1/NRC \), is easily varied by changing any one of the three parameters. Increasing \(N \) (using more sections) produces a smoother output waveform but requires more components. A wide choice of resistance and capacitance values is normally available.

Figure 7 shows the response of a similar filter for several bandwidth options. The narrower bandwidth option has a higher input resistance that decreases the magnitude of signal current. The difference in stop-band rejection shows clearly the advantage of reducing signal current as much as possible. A practical limit on input impedance is defined by the type of wave filter that loads the commutating filter.

The high switching speeds of TTL and ECL are required when operating at the higher frequency limits of commutating filters.
Consider the GaAsLITE opto isolator.

Couple a GaAsLITE to a silicon detector, and you get almost perfect isolation between input and output; 100,000,000,000 ohms. Our opto isolators listed here do just that, and more. They give high performance at great speeds for very low cost. Scan the details. Each is packaged for mass production handling, and each is priced to suit quantity applications.

MCT 2:
a GaAsLITE / phototransistor opto isolator compatible with semiconductors in digital or linear circuits.

High current transfer ratio (35%) and isolation characteristics make the MCT 2 an ideal isolation transformer, pulse transformer, or relay. It can transmit a complex signal between subsystems without noise feedback.

The MCT 2 is a planar GaAs diode optically coupled to an NPN silicon planar phototransistor. It delivers hundred-billion-ohm isolation resistance and voltage isolation in excess of 1500 V, with coupling capacitance of 1.3 pf. New ISO-DIP six-lead plastic dual-in-line package makes it easy to work with and gives maximum economy.

Characteristics:
- Max. emitter forward voltage: 1.5 V @ IF = 100 mA
- Detector H FE typ.: 150 @ V ce = 5 V, I e = 100 µA
- Bandwidth: 300 kHz @ I e = 2 mA
- Price: 1,000 quantities, $3.55. (All prices quoted are suggested resale price.)

MCD 2:
if you need a really fast GaAsLITE opto isolator, this is it.

In the MCD series, we’ve coupled a GaAsLITE to a diffused planar Si PIN photodiode. The new MCD 2 gives you a turn-on time of 5 nanoseconds, yet offers the high voltage (1500 V) and resistance (10^11 ohms) isolation you need for amplifiers, isolation transformers, pulse transformers, relays, feedback circuits or logic switches. Its coupling capacitance is very low, too; 1.3 pf. It will perform beautifully in linear or digital circuits. And the ISO-DIP packaging makes pc board stuffing a snap.

Characteristics:
- V xe ≤ 200 @ R ok = 27 K
- V aK = 0.9 V (typ.) @ I a = 200 mA
- I f = 4 mA
- I H = 1 mA @ V ce = 50 V, R ok = 27 K
- Price: $11 ea., 1,000’s.

Coupled pairs are in stock world wide

You know that all of our products are available in the U.S. through Schweber (516) 334-7474; Semiconductor Specialists (312) 279-1000; K-Tronics (213) 685-5888; or Kierullf. You can get them overseas as easily:

- United Kingdom: SEMICONDUCTOR SPECIALISTS, West Drayton 6415
- France: YOUNG ELECTRONIC, 604-10-50
- West Germany: Alfred Neye, ENATECHNIK, (04106) 4022
- Denmark: SCANSUPPLY, AEGIR 5090
- Belgium: TECHMATION, 384078
- Netherlands: TECHMATION, 020-173727
- Norway: ARTHUR F. ULRICHSEN A/S, 21 6510
- Switzerland: OMNI RAY A.G., 051-478200
- Italy: SILVERSTAR LTD., 46.96.551
- Sweden: GP-INGENJOERSFLIRMAN, 08/930280
- Japan: NEW METALS AND CHEMICALS LTD. CORP., (201) 6585-7
- Australia: HAWKER DE HAVILLAND AUSTRALIA PTY., LTD., 93-0221
- Israel: MONSEL

For additional technical information write Monsanto Electronic Special Products, 10131 Bubb Road, Cupertino, California 95014. (408) 257-2140.

INFORMATION RETRIEVAL NUMBER 36
Pasture or production? What’ll it be for you after 60, 50, or even 40 years of age? This engineer parlayed ambition, ability and a few ideas into a paying business.

By Richard L. Turmail, Management Editor

If it can happen to them, it can happen to you. And, if you're an engineer who doesn't want to be put out to pasture, why not prepare now for your future?

Take the example of Californian H. B. McLaughlin, an older engineer, who had been on someone else's payroll for 35 years. In 1964, the company merged, and he was laid off. When no one would hire him, he decided to go into business for himself.

Today, McLaughlin is president of LASTEC (Laser Technology, Inc.), North Hollywood, Calif. His company, a producer of standard and custom-designed laboratory and production equipment, did $140,000 in sales last year. Quite an accomplishment for an engineer who is 69 years old.

Personal promotion campaign is launched

According to McLaughlin, many engineers approaching the age of 45 or 50 find it increasingly difficult to keep their jobs, and even more difficult to replace those jobs if they're laid off. He adds, "In California, Thomas Alva Edison couldn't get a job today if he applied at the age of 50 or older."

While the severance of older engineers is accelerated by company mergers, company policy plays a leading role in keeping them unemployed. Many companies, for example, have no intention of hiring older engineers. They'd rather invest in a recent college graduate who has bone up on the latest technology, and who can be hired at a lower salary than his older counterpart.

"If your health is good, and you're ambitious," McLaughlin says, "being laid off is a terrible blow to your sense of usefulness."

To keep from getting stale, McLaughlin made plans to start a company. The first step of the plan was to get on someone's payroll, so he would have personal operating expenses to work on the second step of his plan—starting a company. With the help of his wife, he launched a personal promotional campaign to find a job. And he added a twist to the usual job-hunting method that may be helpful to engineers who are looking for work.

Although he followed the usual method of answering the ads that covered his experience, he found a way to simplify the procedure. He made up 75 standard paragraphs: some were openers, some were for the main body of his reply, and some were closers. When he answered an ad that required the experience he'd had as a production manager, for example, he'd send paragraphs 2, 7, 9, 17, 41, and 72. When the paragraphs were in sequence, they made a logical letter that applied to the ad he was answering.

"Because of my varied experience," McLaughlin says, "I answered every ad from president to technician. During the eight months I was out of work, I was offered 14 jobs. But as soon as the prospective employers found out how old I was—I had carefully left my age out of my replies—they wouldn't hire me."

Finally, McLaughlin accepted a job as technician in the solid-state laboratory of a university. Step one in McLaughlin's plan to start a company was phased out. The bigger challenge was still ahead.

Something on which to build a business

Starting one's own business is not a sinecure for the unemployed engineer. He must have an idea or a product—something that will induce people to invest. The "something" that McLaughlin had was a line of equipment he had been developing off and on since 1948. In that year a new gemstone made of titanium dioxide, which had a refractive index exceeding that of a diamond, came on the market.

"I enrolled at the time in a course on gem cutting," McLaughlin said, "because I was then marketing gems as jewelry. The process was interesting but too slow, so I automated the faceting and crowned the gemstone with sapphire to improve its resistance to scratching."

One piece of equipment led to another. The crown required a joint between the two surfaces which were optically flat in order to prevent the formation of light interference fringes, so Mc-
Laughlin developed a machine with diamond wheels that could lap and polish materials to the proper flatness. He also built a Verneuil furnace that could produce gemstones and oxides. And he developed a double-disk diamond wheel grinder to grind both sides of the sapphire crowns, simultaneously.

McLaughlin now had a double-disk diamond wheel grinder, a six-wheel polishing machine, a Verneuil furnace to make the gemstones and an automatic faceting machine.

"All of this took a total of 26,000 hours to develop," McLaughlin says, "but it gave me the basis for a business."

During the 14 years it had taken McLaughlin to develop his equipment, he had talked with many of his friends about organizing a manufacturing company. Now he set a date for a backer's meeting at which he would present his case for starting a company. As the date of the meeting neared, McLaughlin tried out his pitch on fellow members of the Toastmasters Club, an international organization designed to help its members improve on their public presentations.

"I took notes while they took my speech apart," he says. "After four trials, they okayed it."

"If you want to sell an idea," McLaughlin says, "never discuss what you're going to do—discuss what you've done, and the audience will project the facts into what can be done."

He told his audience that the laser industry is predicted to grow at a rate greater than the semiconductor industry, that he had a furnace that has grown, among other gemstones, rubies that are used in solid state lasers, and another machine that polishes the ends of the rubies, doubling their value. He also told them he would put these machines into the company for stock.

McLaughlin raised $20,200 at the meeting—cash so meager that his friends said he couldn't last six months. But he had decided to start the company on whatever he could raise. The company was incorporated, officers were elected, 2500 feet of space was leased, and a milling machine was purchased. Anyone with talent, regardless of age, was offered an opportunity to work and acquire equity in the company. Most of the employees' wages were allowed to accumulate, and permission was granted by the California Securities Commission to pay them in stock at year's end.

"We had to retain enough money to pay them in cash," McLaughlin says, "in the event that state permission was denied."

A few of the employees, who wanted out at the end of the first year, were paid in cash. But the majority of the original investors, mostly engineers and scientists, who were voted a pay rate of $2 per hour, continued to work at the company part-time. According to McLaughlin, some of them were making top salaries at regular jobs.

"And that was a good thing," McLaughlin says, "because our first year's sales amounted to a little over $3,000." Since then, company sales have, reportedly, doubled each year.

Company product used on 'moon rocks'

Before LASTEC reached an annual sales figure of $140,000, it had traveled through rough financial waters. On two occasions the company's capital had fallen below $1500.

"But we never allowed the company to go into debt," McLaughlin says. "We have a hard, fast rule: Don't buy unless you can pay. That policy has carried up through some trying times."

The company's success has been particularly pleasing to McLaughlin because he says that the skeptics told him he couldn't sell a thousand-dollar product by direct mail.

"My wife," he says, "sold $100,000 worth of equipment last year through national advertising and direct mail solicitation."

The prime reason for the company's sales success has probably been its capability. One of the firm's products was selected by Industrial Research as one of the 100 most significant new technical products developed during 1967.

"The award was given," McLaughlin says, "for the development of our diamond-impregnated wire, which is used to slice crystals and semiconductor material. In fact, NASA found our wire the only thing they could use satisfactorily on the 'moon rocks.'"

McLaughlin says that if you're an engineer and don't want to be put to pasture before you're ready, now is the time to start developing your abilities and ideas for your future. • •
Telemeter sensor outputs with simple FM transmitter

Unijunction transistors are good for temperature-stable pulse sources and tunnel diodes for simple vhf oscillators. Combined, they can be used to construct a low-cost, low-drain telemetry transmitter for slowly varying signals.

Thermistor R_t (see diagram), which in our application is loosely implanted in a patient's ear to measure body temperature, and capacitor C_1 determine the frequency of the UJT oscillator. Each pulse discharged through the UJT base activates the tunnel-diode oscillator and generates a burst of rf that can be detected more than 100 feet away by a standard FM receiver. There is just enough FM in the signal to make tuning non-critical.

Temperature can be gauged, after calibration, by counting pulses with a stop watch or timer.

John D. Griffith, M.D., Dept. of Psychiatry, School of Medicine, Vanderbilt University, Nashville, Tenn. 37203.

A standard FM receiver can detect signals generated over 100 feet away by the tunnel-diode oscillator. The time constant for the UJT is determined by the thermistor, R_t, and capacitor C_1.

Convert sine to square waves with no external dc source

A sine-wave generator, a half-wave rectifier circuit, and a transistor amplifier combine to yield symmetrical square waves. The circuit requires no external dc source, dissipates power only when the input is present and has symmetrical output regardless of the amplitude of the input voltage. It has wide bandwidth (Hz to MHz), requires few parts and is inexpensive and simple to design.

When the input voltage swings positive, Q_i (see drawing) is driven off while D_i is driven on, and C_i charges through R_i, C_2 and D_i. When the input voltage swings negative, D_i is driven off while Q_i is driven on. After several cycles, C_i charges to an average dc voltage, which is determined by R_i, R_e and R_L.

Thus, D_i and C_i function as a half-wave dc power source; R_e prevents the overloading of the generator; and C_i is used to ac-couple the input voltage to the circuit.
The new Helipot Series 89 industrial cermet trimmers feature:

Low Cost:
$1.35 each in 1-9 quantities;
less than $1.00
in quantities over 1,000.

Low Profile:
Maximum height of .250 inches
allows for closer p-c board stacking.

Series 89 trimmers with two different pin spacings
are available “off-the-shelf”
from 17 locations across the country.
When the input voltage swings negative (\(-E_{\text{in}}\)), the emitter follows the base, which goes below the zero voltage level; \(Q_i\) saturates and the emitter and the output voltage are clamped near ground (0.2 V). While \(Q_i\) is in saturation, part of the energy stored in \(C_1\) is discharged through two parallel series resistance paths: \(R_2 + R_a\) and \(R_E + R_{\text{sat}}\) of \(Q_i\). Since \(R_2 + R_a \gg R_E\) and \(R_E \gg R_{\text{sat}}\), the discharge path is mainly through \(R_E\) and \(Q_i\). Therefore, to ensure that \(Q_i\) remains saturated during the time \(E_{\text{in}}\) is negative, the discharge time constant \(R_EC_1\) must be greater than \(T/2\).

Connected across \(C_1\) is a voltage divider network consisting of two equal resistors, \(R_2\) and \(R_a\), the junction of which is connected to the base of \(Q_i\). Since \(R_2 = R_a\), the voltage at the junction of \(R_2\) and \(R_a\) will automatically adjust itself to equal one-half of the dc voltage across the capacitor, regardless of the amplitude of the input voltage. This voltage establishes an operating point for \(Q_i\) at the center of the load line. The input sine wave and the output square wave must now swing above and below this dc bias voltage. Therefore, the input and output waveforms are symmetrical and in phase: when the input voltage swings positive, the output voltage is equal to the dc voltage across \(C_1\); and when the input voltage swings negative, the output voltage is clamped at ground. Thus, the circuit converts sine waves to square waves.

VOTE FOR 327

Voltage follower has separate limiting for each polarity

A high-speed voltage follower with a zero offset input-output voltage can be constructed by using the naturally balanced properties of a monolithic transistor differential pair. By adding current-biased elements in a closed-loop follower configuration, the output voltage swing becomes bidirectional with a predetermined current limit in both directions of signal swing (current sourcing and current sinking).

Referring to the voltage follower circuit in the diagram, \(Q_1\) and \(Q_2\) are the matched differential pair with current-source biasing provided by \(Q_4\). To visualize circuit operation, assume an input dc referenced to ground at the base of \(Q_1\). \(Q_1\) operates as a common-collector amplifier, driving \(Q_2\) common base. \(Q_1\) and \(Q_2\) form a folded cascode...
TRW has now extended its solid state power amplifier capability to 2500 watts. Already in wide use at the 50 and 400 watt levels, this family of four hybrid amplifiers offers up to 90% efficiency, and size/weight reductions on the order of 10:1 over discrete components.

Intended primarily for motor drive and associated applications, the higher power levels utilize high speed switching techniques to implement the pulse width modulation operation. They provide the electromechanical designer with functional building blocks for system design, and offer significant cost improvements. All four units are available off-the-shelf.

For further information and applications assistance, contact TRW Semiconductor Division, 14520 Aviation Blvd., Lawndale, Calif. 90260. Phone (213) 679-4560. TWX 910-325-6206.
amplifier with all of Q₁'s dynamic collector current being transferred to Q₂'s collector circuit by way of the latter's common-base connection. The collector load for Q₅ is another source, Q₅.

The high incremental impedance afforded by Qa's low collector conductance allows a high open loop voltage gain to be realized by the composite amplifier. And since the loop is closed by the 100% voltage feedback to Q₅'s base, this results in tight closed-loop control as the output is being directly compared to the input by the Q₁-Q₂ combination.

The circuit features wide bandwidth because of the common-collector-collector/base drive of the Q₁-Q₂ combination and the absence of Miller effect. Other desirable characteristics include high common-mode range and current-limited output caused by Q₅ and Q₆ current source biasing. Rise and fall times are on the order of 40 ns and the output voltage swing can be clipped at any desired level.

By introducing biased diodes D₁ and D₂, which will absorb the output current above or below a preset voltage level, the circuit develops high output impedance while depleting Q₂'s or Q₅'s current output. Thus, E_out becomes peak-limited. Because of the bidirectional nature of the circuit, the clipping is easily applied to both negative and positive peaks. The clipping potentials can be made variable, and a complete video limiting system is obtained with independent adjustment of positive and negative clipping levels.

Reference

Walter G. Jung, Senior Engineer, Control Concepts Corporation, Rockville, Md.

Check crystals easily with this GO/NO GO tester

Go/No Go testing of crystals can be easily accomplished by means of the simple unit shown. This tester has been used with crystals ranging from 3.5 MHz to 90 MHz.

The crystal to be tested is inserted into a test socket, and S₁ is closed. If the crystal is good the pilot light will glow. If the crystal is bad the pilot light will remain off. What could be simpler? The unit can be battery-operated and can be constructed in a package that measures 2 by 4 by 1-1/2 inches.

Transistor Q₁ forms an untuned Colpitts oscillator with the crystal under test. A crystal that doesn't oscillate will not provide forward bias to Q₂ and the pilot light will remain off.

Mik e Kaufman, Member of Technical Staff, Hughes Aircraft Co., 3733 Meadville Dr., Sherman Oaks, Calif. 91403.

SCR and programmable UJT make adjustable timer

This versatile timing device has continuously adjustable turn-on delay that is developed from the R₁, C₁ time constant and is controlled by R₂, which sets the threshold level of Q₁. If the +24-V supply voltage is applied (see figure), the voltage across C₁ increases. When the threshold level is reached, Q₁ fires, triggering Q₂. Thus the supply voltage is applied to the load. With Q₂ on, the timing circuit is deactivated until the supply voltage is removed.
Our $1\frac{1}{4}$ oz. alarm will blast you with 80db of the most irritating noise in the world.

Nothing can drown out or cover up the persuasively piercing sound of the Mallory Sonalert® electronic audible signal. It’s made to be heard. The light, compact Sonalert is of solid state design for maximum efficiency and reliability and requires as little as 3 milliamps current. No arcing. No mechanical wear.

You can use Sonalert in hundreds of places—autos, trucks, boats, planes, laboratory, home and industry—anywhere a warning signal is required. Its penetrating audible signal scares burglars, warns of dangerous conditions and is an adjunct to many types of visual signals. It produces no RF noise, making it ideal for low-voltage circuits in computers, medical electronics, instrumentation and communications equipment.

Sound intensity range is 68db @ 6VDC to 80db @ 28VDC. Sound frequency levels are 2900 ± 500 Hz and 4500 ± 500 Hz, depending on model. Warbling, pulsing and AC models also are available. You can get Sonalert from your local Mallory distributor.

D1 provides temperature compensation for Q1 (see D13T1 application note). D2 is optional and protects the circuit against reverse supply voltages.

Time delays between one second and 30 seconds are obtained depending on the setting of R1. Longer delay (up to one hour) may be obtained by using a low-leakage D13T2 UJT for Q1, and larger values for R1 and C1.

In a typical design with 1/4-W resistors, a tantalum capacitor and miniature trimpot, the complete device measures only half a cubic inch.

Robert L. Billon, Consultant Engineer, 20 Ave. de Plaine Fleurie 38, Meylan, France.

Op-amp follower has wide adjustable offset voltage

An adjustable offset voltage with a unity-gain op-amp follower is usually difficult to obtain because many circuits require a battery in the feedback loop. However, it can easily be obtained with two zener diodes, an N-channel and P-channel JFET as constant current sources, and a pot.

The op amp drives the junction of the zener diodes, and the wiper arm of the 25-kΩ adjustment potentiometer selects the offset voltage to be fed into the inverting terminal of the op amp. The op-amp output is the negative of the voltage at the wiper arm.

Gain error is less than 0.2% at 1 kHz. The output is adjustable to match the zener voltages. The FETs must have sufficient IDS to bias the zener diodes into conduction. The op amp used must have the differential and common-mode input voltage ratings in excess of the input and output offset signal.

Burton J. Schultz, Electrical Engineer in Bioengineering, University of Missouri, Missouri Regional Medical Program, 406 Turner, Columbia, Mo. 65201.

Zener diodes and JFETs make it easy to obtain a wide range of offset voltages with this unity-gain operational amplifier follower. Batteries in the feedback loop are not required.
New Potter and Brumfield magnetic latching/solid state IMPULSE RELAY has permanent memory

This hybrid impulse relay is unique. Its basic structure is our KUL, a single coil latching relay employing a shunting-type magnetic circuit. To that we have added a solid state flip-flop circuit to obtain a truly modern, alternate-action, impulse relay.

Consider the many features of this extraordinary device:

- A pulse width of 25 milliseconds (min.) effects transfer of the DPDT contacts to switch 5 or 10 ampere loads.
- Contacts will hold in their last position without power. This memory is obtained through the magnetic latching ability of the relay.
- There are no mechanical linkages as found in ordinary impulse relays, to wear out or malfunction.
- The assembly is neatly packaged in a popular-size case which provides a wide choice of mountings, terminations and readily available sockets. Mounted height is only 2.126".
- An ordinary SPST switch will operate the KUR impulse relay. As coils are rated for continuous duty, there is no limit (except minimum) to the pulse length.

The price? A modest $15.00 in single lots. Quantity discounts apply. Today, call your local P&B sales representative for complete information.

When is True RMS Really True RMS?

TRUE RMS

\[
\text{TRUE RMS} = \sqrt{(dc)^2 + (ac_{rms})^2}
\]

and HP's new 3480 DVM is the only four-digit multi-function meter that can give you this true RMS value—ac, dc, or **ac plus dc**. And, the 3480 eliminates the errors caused by odd harmonic distortion added by average responding converters. With the 3480 you get measurements within 0.1%, not just to within 1%! (A 1% third harmonic distortion = ±0.33% error or ±33 counts of error in a four-digit average responding DVM.)

Whatever type of signal you're measuring — from the purest sine wave to the most irregular pulse train — the HP 3480 DVM gives you the results you need in one second. And, when you're working with an ac-plus-dc signal, you don't have to make two separate readings and then calculate the combined RMS value. It's all there, in one set of figures.

THE SECRET: A PAIR OF MATCHED THERMOPILES. At the heart of the 3480, there is a tiny chip, less than 1/8" square, which contains matched sets of thermopiles. One measures the heat produced by the signal you're testing; the other does the same for a reference voltage.

The full scale ranges of the HP 3480 DVM are from 100 mV to 1000 Vac and the frequency range is from 1 Hz to 1 MHz. And with the correct plug-in, the 3480 can give you up to 1,000 **straight-dc** or ohms readings per second — with 5 dc ranges and 6 ohms ranges.

Prices range from $1150 for one range of dc to $3375 for multi-function ac, dc and ohms capabilities with isolated BCD and isolated remote control.

Find out how the HP 3480 DVM can help solve your measurement problems. Contact your local HP field engineer, or write to Hewlett-Packard, Palo Alto, California 94304. In Europe: 1217 Meyrin-Geneva, Switzerland.

INFORMATION RETRIEVAL NUMBER 41
The data included in this Product Source Directory is divided into two sections—on discrete component and integrated circuit testers—and then arranged in order of ascending basic price. Listed are testers of electrical parameters only. Handling and environmental test equipment is not included.

Note that some testers can be used to test both ICs and discretes; these are included in the IC tester section. Note also that many of the more expensive IC testers and test systems can be used to check memory modules, digital logic boards or systems and discrete devices when they are equipped with handling and other options. Please check with the manufacturers.

Tester manufacturers are identified by the abbreviations shown in the Master Cross Index. The following abbreviations are used in the tables:

- ina—information not available
- n/a—not applicable

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Discrete</th>
<th>Integrated</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td>AAI Corp.</td>
<td>P.O. Box 6767</td>
<td>Baltimore, Md. 21204 (301) 666-1400</td>
</tr>
<tr>
<td>ADAR</td>
<td>ADAR Associates, Inc.</td>
<td>73 Union Sq.</td>
<td>Somerville, Mass. 02143 (617) 623-3131</td>
</tr>
<tr>
<td>AEL</td>
<td>AEL Inc.</td>
<td>P.O. Box 552</td>
<td>Lansdale, Pa. 19446 (215) 622-2929</td>
</tr>
<tr>
<td>Affl Manuf</td>
<td>Affiliated Manufacturers Inc.</td>
<td>P.O. Box 248</td>
<td>Whitehouse, N.J. 08888 (201) 538-8500</td>
</tr>
<tr>
<td>Aritech</td>
<td>Aritech Corp.</td>
<td>130 Lincoln St.</td>
<td>Brighton, Mass. 02135 (617) 264-2990</td>
</tr>
<tr>
<td>Auto Meas</td>
<td>Automated Measurements Corp.</td>
<td>Div. of E-H Research Labs, Inc.</td>
<td>P.O. Box 1289</td>
</tr>
<tr>
<td>B&K</td>
<td>B&K Div.</td>
<td>Dynascan Corp.</td>
<td>1801 W. Belle Plaine Ave.</td>
</tr>
<tr>
<td>Baird</td>
<td>Baird-Atomic, Inc.</td>
<td>125 Middlesex Turnpike</td>
<td>Bedford, Mass. 01730 (617) 276-8016</td>
</tr>
<tr>
<td>Beckman</td>
<td>Beckman Instrs., Inc.</td>
<td>Electronic Instruments Div.</td>
<td>2200 Wright Ave.</td>
</tr>
<tr>
<td>CGS Units</td>
<td>CGS Units, Inc.</td>
<td>73 Saginaw Dr.</td>
<td>Rochester, N.Y. 14623 (716) 244-2080</td>
</tr>
<tr>
<td>Caltron</td>
<td>Caltron Industries</td>
<td>2015 2nd St.</td>
<td>Berkeley, Calif. 94710 (415) 548-1966</td>
</tr>
<tr>
<td>Dantronics</td>
<td>Dantronics Inc.</td>
<td>3175 Hafer Ct.</td>
<td>Saint Paul, Minn. 55112 (612) 484-2108</td>
</tr>
<tr>
<td>Datatron</td>
<td>Datatron Inc.</td>
<td>1562 Reynolds St.</td>
<td>Santa Ana, Calif. 92705 (714) 540-9330</td>
</tr>
<tr>
<td>E-H</td>
<td>E-H Research Labs, Inc.</td>
<td>P.O. Box 1289</td>
<td>Oakland, Calif. 94604 (415) 834-3030</td>
</tr>
<tr>
<td>EICO</td>
<td>EICO Electronic Instr. Co., Inc.</td>
<td>263 Malta St.</td>
<td>Brooklyn, N.Y. 11207 (212) 949-1100</td>
</tr>
<tr>
<td>Fairchild Inst</td>
<td>Fairchild Instrumentation</td>
<td>974 E. Arques Ave.</td>
<td>Sunnyvale, Calif. 94086 (408) 735-5011</td>
</tr>
<tr>
<td>Heath</td>
<td>Heath Co.</td>
<td>Dept. 180</td>
<td>Benton Harbor, Mich. 49022 (616) 983-3961</td>
</tr>
</tbody>
</table>

Index continued on page 94
Learn to evaluate IC tester performance

Besides looking at price tags, shopping for an IC tester involves knowing the sort of checks you want to run, where your tester will be used and what trade-offs you can make on specifications.

A digital integrated circuit can be checked for logical operation or function, which is described by its truth table. Testing is accomplished by applying various combinations of Ones and Zeros to the inputs of the IC while checking that the output is in the proper state. The input pattern is generally changed at 50 to 100 kHz, a low rate in comparison to the device’s maximum operating frequency.

The test pattern can also be varied at a rate fast enough to provide an operational check of the high-frequency performance of the device. This clock-rate testing or high-frequency functional testing is becoming popular for MOS ICs since they are often operated near their maximum usable frequencies (generally a few megahertz).

De parameters, such as output voltage, input leakage and fan-out, are tested by forcing a specified current and measuring a voltage, or vice versa, while applying the given V_cc and other conditions. Ac (dynamic) parameters, like propagation delay and rise time, can also be checked, but only at much greater expense. Because of this, users rarely test ac parameters 100% unless the parameters are critical. It is usually better to depend on sample testing and assume that manufacturers rate their circuits conservatively.

In practice, no single type of test—functional, dc parametric or ac parametric—is usually adequate. If only the dc parameters are tested, an incorrect or missing internal connection may not be caught. If only logic tests are performed, insufficient fan-in or fan-out may not be detected. Consequently, different types of tests are generally performed on the same device; they may even be run simultaneously. The combination of parametric and functional tests is called analog/alogical (analog/logic) testing. In this type of testing, precisely programmed input drive conditions and output detectors are used instead of simple ZERO and ONE drivers and sensors. Analogical testing is frequently used in automatic inspection instruments and provides an excellent screen that will catch most device faults.

Linear tests, which are performed only on linear integrated circuits, include dc and ac parametric tests. But these are quite different from digital tests and cannot generally be performed with the same instruments.

Match the tester to your need

Most digital IC test equipment falls into three general classes: manually programmed testers, automatic test instruments, and computer-operated test systems.

Manually programmed testers are the least expensive IC test instruments, most of them being priced from $500 to $2500. They perform dc parametric tests, which are usually set up individually with various panel controls. This permits great versatility.

Data for programming must usually be obtained from IC data sheets and is a job for a relatively skilled technician. The programming process can be very tedious and slow, since as many as 20 separate tests are required for a simple IC. Errors are also likely to occur because manual programming requires meticulous care.

Test results are usually displayed on an analog or digital meter. The digital display is easier to read but is more expensive. Frequently it is not really necessary since high accuracy and resolution are not generally required in semiconductor testing.

These simple manually programmed testers are useful in evaluating sample ICs and in analyzing IC failures. They are also excellent for training technical personnel. However, they are not practical for the high-volume testing encountered in incoming inspections.

Automatic test instruments are usually of interest to most users. They are intended for incoming inspection but can also be used for evaluating ICs. They cost from $2500 to $12,000.

With this type of equipment, the IC is simply inserted in the test socket and the instrument
automatically performs a rapid series of analogical tests that determine whether the IC is good or bad. Automatic testers can check devices from simple gates to complex MSI arrays such as memories.

For incoming-inspection tests, GO/NO-GO results are needed. Sometimes it is also useful to know the nature of the failure. In both cases, these results are most conveniently and simply indicated by lamps. Meters and digital readouts frequently lead to misinterpretation and confusion.

Because automatic test instruments are used in incoming inspection by unskilled personnel, simple operation is vital. The most critical setup function is programming. Hard-wired plug-in programming is ideal since it eliminates the possibility of incorrect switch and dial settings. Program cards can either be prepared by the user or bought preprogrammed from the instrument manufacturer.

When ICs are evaluated with an automatic instrument, actual device parameters must often be measured. A digital readout is most convenient, and this can be provided by either an internal or external digital voltmeter. Analog meters, which are less expensive, can also be used, as well as the nulling method of adjusting switches or potentiometers to control biases or measurement references while watching the failure lamp.

Some instruments use a combination of program-card and switch-or-knob programming. This type of equipment is a little more convenient for evaluation than a manually programmed instrument or one programmed only by program cards. The combination instrument is, however, less satisfactory for incoming inspection.

Computer-operated test systems offer the ultimate in test versatility and power. These systems not only make GO/NO-GO decisions, but they also classify ICs into categories and provide distribution analyses and summaries for production control. They check dc parameters, logic operation, and in some cases, ac parameters.

Capability, however, is related to cost. An exceptionally versatile system that can perform all these tests may cost several hundred thousand dollars. Therefore, few IC users have computer-operated systems unless they handle very large volumes of devices or have special requirements for quality control, extensive life, and environmental or burn-in testing.

Compare equipment capability and cost

The first questions that usually occur to the prospective buyer of an IC test instrument concern its specifications. What voltages and currents will it supply? How accurate is it? How many device pins will it accept? But these tradi- tionally vital items may be less important in many applications than cost and throughput rate.

Integral voltage and current sources, for example, should be adequate to handle most of the devices to be tested. External supplies, however, often provide a better solution to the special requirements of particular circuits like display-tube drivers and emitter-coupled-logic ICs.

Accuracy is not the overriding consideration normally required for laboratory instruments. Semiconductor manufacturers try to set generous—or realistic—specifications. Therefore, devices are usually not marginal; they are good or bad. Since many semiconductor parameters are very dependent on temperature, a large number of high-precision measurements are pointless.

Although the number of device pins an IC test instrument will accept seems fixed, clever programming and simple adapters can increase this capability. For example, Teradyne's model J133C appears to be limited to 16-pin devices, but it can test many 24 and 32-pin ICs.

In many applications, test instruments are chosen to meet technical requirements without much regard for the cost of using the equipment after purchase. But this attitude is not possible in volume-production and incoming-inspection applications where testing costs are critical.

Throughput considerations, for example, immediately eliminate any slow instrument such as a manual tester. Even for a fast automatic instrument, a maximum practical test rate is about 600 devices per hour if the ICs are being inserted manually into a single socket. With an automatic handler, rates of 7000 per hour are possible.

Programming costs are often hard to determine. The simplest testers require considerable skilled time, which can be very expensive. Computer-operated systems can be inexpensive and fast to program since, after the initial preparation of a test program, a relatively unskilled operator can load the equipment and be ready to test in seconds. For minimum programming time and low costs, the card-programmed automatic tester is attractive.

Another factor to be considered is obsolescence. If an instrument has a very short life—either because it wears out or is not usable with new devices—the cost per test rises greatly. Rental of instruments may reduce this drawback at slightly higher expense.

Most of the general considerations mentioned apply to test equipment for linear integrated circuits. Relatively few instruments are available for linear ICs, and these generally require more extensive programming. A special feature of computer-operated linear test systems is their ability to test these ICs, a must for certain stereo and chroma demodulators, multiplexers and FM detectors. ■
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hickok</td>
<td>•</td>
<td></td>
<td>Hickok Electrical Instr. Co. 10614 DuPont Ave. Cleveland, Ohio 44108 (216) 541-8060</td>
<td>467</td>
</tr>
<tr>
<td>Hy-Cal</td>
<td>•</td>
<td></td>
<td>Hy-Cal Engineering 12105 Los Natos Rd. Santa Fe Springs, Calif. 90670 (213) 898-7785</td>
<td>468</td>
</tr>
<tr>
<td>IPT</td>
<td>•</td>
<td></td>
<td>IPT Corp. 185 Evelyn Ave. Mt. View, Calif. 90404 (415) 951-9221</td>
<td>469</td>
</tr>
<tr>
<td>Julie</td>
<td></td>
<td></td>
<td>Julie Research Labs, Inc. 211 W. 81st St. New York, N.Y. 10023 (212) 245-2727</td>
<td>470</td>
</tr>
<tr>
<td>Leader Inst</td>
<td>•</td>
<td></td>
<td>Leader Instrument Corp. 37-27 27th St. Long Island City, N.Y. 11101 (212) 729-7410</td>
<td>471</td>
</tr>
<tr>
<td>Lear</td>
<td></td>
<td></td>
<td>Lear Siegel, Inc. 3171 S. Bundy Dr. Santa Monica, Calif. 90406 (213) 391-7211</td>
<td>472</td>
</tr>
<tr>
<td>Lorlin</td>
<td>•</td>
<td></td>
<td>Lorlin Industries Inc. Precision Rd. Danbury, Conn. 06810 (203) 744-0096</td>
<td>473</td>
</tr>
<tr>
<td>Macrodata</td>
<td>•</td>
<td></td>
<td>Macrodata Test Systems Div. 20440 Corisco St. Chatsworth, Calif. 91311 (213) 852-8680</td>
<td>474</td>
</tr>
<tr>
<td>Mastech</td>
<td>•</td>
<td></td>
<td>Mastech Inc. Box 178 E. Molloy Rd. Syracuse, N.Y. 13211 (315) 455-6662</td>
<td>475</td>
</tr>
<tr>
<td>Microdyne</td>
<td>•</td>
<td></td>
<td>Microdyne Instruments, Inc. 203 Middlesex Turnpike Burlington, Mass. 01803 (617) 272-5691</td>
<td>477</td>
</tr>
<tr>
<td>Optimized</td>
<td>•</td>
<td></td>
<td>Optimized Devices, Inc. 220 Mariboe Ave. Pleasantville, N.Y. 10570 (914) 769-6100</td>
<td>478</td>
</tr>
<tr>
<td>Philbrick</td>
<td>•</td>
<td></td>
<td>Philbrick/Nexus Research A Teledyne Co. 70 Allied Dr. Dedham, Mass. 02021 (617) 329-1600</td>
<td>479</td>
</tr>
<tr>
<td>Pulse</td>
<td>•</td>
<td></td>
<td>Pulse Monitors Inc. 351 New Albany Rd. Moorabtown, N.J. 08057 (609) 234-0556</td>
<td>480</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quan-Tech</td>
<td>•</td>
<td></td>
<td>Quan-Tech Labs, Inc. 43 S. Jefferson Rd. Whippany, N.J. 07981 (201) 887-5508</td>
<td>431</td>
</tr>
<tr>
<td>RCA</td>
<td>•</td>
<td></td>
<td>RCA Electronic Components 415 S. 5th St. Harrison, N.J. 07029 (201) 485-5908</td>
<td>432</td>
</tr>
<tr>
<td>Redcor</td>
<td>•</td>
<td></td>
<td>Redcor Corp. 7800 Deering Ave. Canoga Park, Calif. 91304 (213) 349-5982</td>
<td>433</td>
</tr>
<tr>
<td>Rohde</td>
<td></td>
<td></td>
<td>Rohde & Schwarz Sales Co. (U.S.A. Inc.) 111 Lexington Ave. Passaic, N.J. 07055 (201) 773-8010</td>
<td>434</td>
</tr>
<tr>
<td>Spec Dynamics</td>
<td>•</td>
<td></td>
<td>Spectrum Dynamics P.O. Box 23699 Fort Lauderdale, Fla. 33307 (305) 566-4467</td>
<td>435</td>
</tr>
<tr>
<td>Tektronix</td>
<td>•</td>
<td></td>
<td>Tektronix Inc. Oregon Corp. Box 500 Beaverton, Ore. 97005 (503) 644-0161</td>
<td>436</td>
</tr>
<tr>
<td>Teledyne Semi</td>
<td>•</td>
<td></td>
<td>Teledyne Semiconductor Continental Devices Div. 7215 Chadron Ave. Hawthorne, Calif. 90250 (213) 772-4551</td>
<td>437</td>
</tr>
<tr>
<td>Teradyne</td>
<td></td>
<td></td>
<td>Teradyne, Inc. 130 Essex St. Boston, Mass. 02111 (617) 426-6560</td>
<td>438</td>
</tr>
<tr>
<td>Test Equip</td>
<td>•</td>
<td></td>
<td>Test Equipment Corp. Box 20215 Dallas, Texas 75220 (214) 357-6271</td>
<td>439</td>
</tr>
<tr>
<td>TI</td>
<td></td>
<td></td>
<td>Texas Instruments Inc. Industrial Products Div. Box 66027 Houston, Texas 77006 (713) 526-1411</td>
<td>440</td>
</tr>
<tr>
<td>U-Tech</td>
<td></td>
<td></td>
<td>U-Tech Div. Industrial Physics & Electronics 4100 S. State St. Salt Lake City, Utah 84107 (801) 262-2683</td>
<td>441</td>
</tr>
<tr>
<td>Varadyne</td>
<td>•</td>
<td></td>
<td>Varadyne Instrumentation Inc. Div. of Varadyne, Inc. 10060 Bubb Rd. Cupertino, Calif. 95014 (408) 255-3440</td>
<td>442</td>
</tr>
<tr>
<td>Wiltron</td>
<td></td>
<td></td>
<td>Wiltron Co. 930 E. Meadow Dr. Palo Alto, Calif. 94303 (415) 321-7428</td>
<td>444</td>
</tr>
</tbody>
</table>
Integrated Circuit Testers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Types of Logic Tested</th>
<th>Types of Digital Logic Tested</th>
<th>Maximum Number of Device Leads</th>
<th>Type of Readout</th>
<th>Type of Programming</th>
<th>Basic Price</th>
<th>Parameters Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse</td>
<td>1200C</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>n/a</td>
<td>visual</td>
<td>manual</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>2200</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>n/a</td>
<td>visual</td>
<td>manual</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Caltron</td>
<td>3101</td>
<td>digital</td>
<td>TTL, DTL, RTL, TTL</td>
<td>16 n/a</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5700</td>
<td></td>
</tr>
<tr>
<td>Varadyne</td>
<td>999</td>
<td>digital</td>
<td>TTL, DTL, RTL, TTL</td>
<td>16 n/a</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>295 dc</td>
<td></td>
</tr>
<tr>
<td>Beckman</td>
<td>1600</td>
<td>digital</td>
<td>TTL, DTL, RTL, RTL, ECL, HN</td>
<td>manual</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>2450</td>
<td></td>
</tr>
<tr>
<td>U-Tech</td>
<td>782</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, TTL, DTL</td>
<td>manual</td>
<td>GO/NO-GO</td>
<td>switch matrix</td>
<td>750 dc</td>
<td></td>
</tr>
<tr>
<td>Varadyne</td>
<td>1600</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, TTL, DTL</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>1650 dc</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>511</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>1200</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Flexbrick</td>
<td>1200D</td>
<td>digital</td>
<td>TTL, DTL, RTL, RTL, ECL, TTL</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>CSG Units</td>
<td>250</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Optimize</td>
<td>OPT-101A</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Vanadyne</td>
<td>2000</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>716A</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>1600</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Varadyne</td>
<td>2000</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>716</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Beckman</td>
<td>997</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, MECL</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Vanadyne</td>
<td>1740C</td>
<td>digital</td>
<td>TTL, HN, TTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>721A</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>130C</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Meas/Data</td>
<td>1110</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>2090</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Philbrick</td>
<td>5104</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>IPT</td>
<td>101</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Redcor</td>
<td>990</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Meas/Data</td>
<td>2405C</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Meas/Data</td>
<td>1410</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>1210</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Caltron</td>
<td>3101</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Varadyne</td>
<td>999</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Beckman</td>
<td>1600</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>U-Tech</td>
<td>782</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Varadyne</td>
<td>1600</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>511</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>1200</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Flexbrick</td>
<td>1200D</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>CSG Units</td>
<td>250</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Optimize</td>
<td>OPT-101A</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Vanadyne</td>
<td>2000</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>716</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Beckman</td>
<td>997</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Vanadyne</td>
<td>1740C</td>
<td>digital</td>
<td>TTL, HN, TTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Microdyne</td>
<td>721A</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>130C</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Meas/Data</td>
<td>1110</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>2090</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Philbrick</td>
<td>5104</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>IPT</td>
<td>101</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, HN</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Redcor</td>
<td>990</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Meas/Data</td>
<td>2405C</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
<tr>
<td>Meas/Data</td>
<td>1410</td>
<td>digital</td>
<td>TTL, DTL, RTL, other</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>manual</td>
<td>5950</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- functional only
- plug-in for Tektronix 530, 540, 550 and 580 series
- up to 4096 tests
- separate input and output metering circuits for simultaneous "quick look" analysis. Source and sink currents to 100 MA.
Integrated Circuit Testers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Types of Devices Tested</th>
<th>Types of Logic Tested</th>
<th>Type of Programming</th>
<th>Maximum Number of Device Leads</th>
<th>Type of Readout</th>
<th>Type of Device</th>
<th>Basic Price</th>
<th>Parameters Tested</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philbrick</td>
<td>5107</td>
<td>digital, (op amps)</td>
<td>n/a</td>
<td>manual</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>digital</td>
<td>6000</td>
<td>dynamic</td>
<td>tests slew rate, automatic.</td>
</tr>
<tr>
<td>Microdyne</td>
<td>735</td>
<td>linear</td>
<td>n/a</td>
<td>pc card, computer</td>
<td>16</td>
<td>GO/NO-GO</td>
<td>digital</td>
<td>7850</td>
<td>dynamic</td>
<td>full computer data-logging & classification available.</td>
</tr>
<tr>
<td>Test Equip</td>
<td>69</td>
<td>digital, (shift registers)</td>
<td>digital</td>
<td>special program board</td>
<td>16</td>
<td>DVM,</td>
<td>digital</td>
<td>9750</td>
<td>dynamic</td>
<td>available with BCD output. Total test time 2 seconds.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>5257</td>
<td>n/a</td>
<td>n/a</td>
<td>computer</td>
<td>12</td>
<td>GO/NO-GO</td>
<td>digital</td>
<td>10,000</td>
<td>dynamic</td>
<td>auto or manual test sequencing.</td>
</tr>
<tr>
<td>Tektronix</td>
<td>S3110</td>
<td>digital, linear</td>
<td>RTL, DTL, ECL, MOS</td>
<td>15 diode cards</td>
<td>16</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>13,150</td>
<td>dc, functional</td>
<td>accessory for J259, J283 digital IC test systems.</td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>S3111</td>
<td>digital, linear</td>
<td>RTL, DTL, ECL, MOS</td>
<td>15 diode cards</td>
<td>16</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>15,150</td>
<td>dc, functional</td>
<td>this is a control and logging interface. Serial ASCII I/O on user's side, 10-wire BCD on equipment side.</td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>S3121</td>
<td>digital, linear</td>
<td>RTL, DTL, ECL, MOS</td>
<td>random access disc, paper tape, optional disc, functional, computer</td>
<td>15</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>25,100</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Mecra-data</td>
<td>MO-APT</td>
<td>digital</td>
<td>digital</td>
<td>magnetic disk</td>
<td>16</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>29,800</td>
<td>dc</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Optimized</td>
<td>S002E</td>
<td>digital</td>
<td>DTL, TLL, RTL, ECL, CSL</td>
<td>magnetic disk</td>
<td>48</td>
<td>digital, data logging, GO/NO-GO, printer, magnetic tape, computer option, teletype</td>
<td>30,000</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>S3122</td>
<td>digital, linear</td>
<td>RTL, DTL, ECL, MOS</td>
<td>random access disc, paper tape, optional disc, functional, computer</td>
<td>16</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>30,900</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>S3120</td>
<td>digital, linear</td>
<td>RTL, DTL, ECL, MOS</td>
<td>magnetic disk</td>
<td>20</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>32,350</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Optimized</td>
<td>S200</td>
<td>linear</td>
<td>n/a</td>
<td>magnetic disk</td>
<td>20</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>34,000</td>
<td>dc, dynamic</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>S3131</td>
<td>digital, linear</td>
<td>TTL, DTL, ECL</td>
<td>perforated paper tape, digi-switch computer</td>
<td>64</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>39,400</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Auto/Meas</td>
<td>9001</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, CSL</td>
<td>punched paper tape</td>
<td>16</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>40,000</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>E-H</td>
<td>4003</td>
<td>digital</td>
<td>RTL, DTL, TLL, ECL, CSL</td>
<td>punched card, random access disc, optional paper tape</td>
<td>64</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>40,000</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>S3132</td>
<td>digital, linear</td>
<td>RTL, DTL, ECL, TTL</td>
<td>perforated paper tape, digi-switch computer</td>
<td>16</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>45,300</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Teledyne</td>
<td>FAT-28</td>
<td>digital</td>
<td>DTL, TLL, RTL, ECL</td>
<td>RAM disk, paper tape, computer</td>
<td>64</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>46,000</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>J261</td>
<td>linear</td>
<td>n/a</td>
<td>computer</td>
<td>64</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>46,200</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>J261</td>
<td>linear</td>
<td>n/a</td>
<td>computer</td>
<td>64</td>
<td>digital, GO/NO-GO, printer or parallel ASCII source</td>
<td>49,000</td>
<td>dc, functional</td>
<td>dynamic.</td>
<td></td>
</tr>
</tbody>
</table>

Linear adapter for J259 digital test system.
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Types of Devices Tested</th>
<th>Types of Logic Tested</th>
<th>Type of Programming</th>
<th>Maximum Number of Device Leads</th>
<th>Type of Readout</th>
<th>Basic Price</th>
<th>Parameters Tested</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatron</td>
<td>4400</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, MOS</td>
<td>computer</td>
<td>256</td>
<td>GO/NO-GO, computer</td>
<td>52,000</td>
<td>dc, functional</td>
<td>multiplex up to seven test stations.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>J259</td>
<td>digital</td>
<td>all</td>
<td>computer</td>
<td>48</td>
<td>GO/NO-GO, printer</td>
<td>52,000</td>
<td>dc, functional</td>
<td></td>
</tr>
<tr>
<td>AAI</td>
<td>Series 1000</td>
<td>digital, linear</td>
<td>TTL, DTL, RTL, ECL</td>
<td>paper tape input,</td>
<td>90</td>
<td>GO/NO-GO, printer</td>
<td>67,000</td>
<td>dc, functional, dynamic</td>
<td>abbreviated English programming language, dual-limit digital comparisons, hi-speed A/D converter, single-socket dc & dynamic testing.</td>
</tr>
<tr>
<td>AAI</td>
<td>1000</td>
<td>digital, linear</td>
<td>TTL, DTL, RTL, ECL, CSL</td>
<td>computer</td>
<td>99</td>
<td>digital, GO/NO-GO</td>
<td>67,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adar</td>
<td>Doctor 32</td>
<td>digital (memories)</td>
<td>all</td>
<td>computer</td>
<td>32</td>
<td>GO/NO-GO, printer</td>
<td>67,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairchild Inst</td>
<td>500-C</td>
<td>linear, digital</td>
<td>all</td>
<td>manual, magnetic</td>
<td>72</td>
<td>GO/NO-GO, printer</td>
<td>67,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TI</td>
<td>580</td>
<td>digital</td>
<td>TTL, DTL, CTL, ECL</td>
<td>computer</td>
<td>224</td>
<td>GO/NO-GO, printer</td>
<td>67,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-H</td>
<td>4004</td>
<td>digital</td>
<td>RTL, DTL, TTL, ECL</td>
<td>punched card</td>
<td>14</td>
<td>GO/NO-GO, printer</td>
<td>70,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TI</td>
<td>553</td>
<td>digital, linear</td>
<td>TTL, DTL, CTL, ECL</td>
<td>tape, computer</td>
<td>128</td>
<td>GO/NO-GO, printer</td>
<td>75,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>J263</td>
<td>linear</td>
<td>n/a</td>
<td>computer</td>
<td>64</td>
<td>GO/NO-GO, printer</td>
<td>86,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrodata</td>
<td>MD-210</td>
<td>digital</td>
<td>ROM, RAM, shift registers, random logic</td>
<td>computer</td>
<td>64</td>
<td>GO/NO-GO, printer</td>
<td>89,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>J283</td>
<td>digital</td>
<td>all</td>
<td>computer</td>
<td>60</td>
<td>GO/NO-GO, printer</td>
<td>94,800</td>
<td></td>
<td>up to 8 multiplex test stations, dynamic test capability available, computer control option.</td>
</tr>
<tr>
<td>E-H</td>
<td>4305</td>
<td>digital</td>
<td>all</td>
<td>paper tape</td>
<td>80</td>
<td>GO/NO-GO, printer</td>
<td>99,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrodata</td>
<td>MD-220</td>
<td>digital</td>
<td>ROM, RAM, shift registers, random logic</td>
<td>computer</td>
<td>64</td>
<td>GO/NO-GO, printer</td>
<td>99,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrodata</td>
<td>MD-230</td>
<td>digital</td>
<td>ROM, RAM, shift registers, random logic</td>
<td>computer</td>
<td>64</td>
<td>GO/NO-GO, printer</td>
<td>109,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adar</td>
<td>Doctor 64</td>
<td>digital, linear</td>
<td>all</td>
<td>computer</td>
<td>64</td>
<td>GO/NO-GO, printer</td>
<td>120,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto/Mess</td>
<td>9003</td>
<td>digital, linear</td>
<td>TTL, DTL, RTL, ECL, CSL</td>
<td>computer</td>
<td>40</td>
<td>GO/NO-GO, printer</td>
<td>120,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-H</td>
<td>4500</td>
<td>digital</td>
<td>TTL, DTL, RTL, ECL, CSL</td>
<td>computer</td>
<td>40</td>
<td>GO/NO-GO, printer</td>
<td>120,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>53150</td>
<td>digital, linear</td>
<td>MOS, TTL, RTL, DTL, PCLII, CSL</td>
<td>computer, random access disc</td>
<td>48</td>
<td>GO/NO-GO, printer</td>
<td>120,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrodata</td>
<td>MD-240</td>
<td>digital</td>
<td>ROM, RAM, shift registers, random logic</td>
<td>computer</td>
<td>64</td>
<td>GO/NO-GO, printer</td>
<td>133,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrodata</td>
<td>MD-260</td>
<td>digital</td>
<td>ROM, RAM, shift registers, random logic</td>
<td>computer</td>
<td>64</td>
<td>GO/NO-GO, printer</td>
<td>158,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairchild Inst</td>
<td>Sentry-400</td>
<td>digital</td>
<td>all</td>
<td>magnetic tape, paper tape</td>
<td>240</td>
<td>GO/NO-GO, printer</td>
<td>160,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redcor</td>
<td>PAFT-11</td>
<td>digital</td>
<td>MOS</td>
<td>computer stored</td>
<td>64</td>
<td>GO/NO-GO, printer</td>
<td>160,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discrete Component Testers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Types of Devices Tested</th>
<th>Type of Programming</th>
<th>Maximum Number of Device Leads</th>
<th>Type of Readout</th>
<th>Basic Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heath</td>
<td>IT-27</td>
<td>transistors</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>6.95</td>
<td>out-of-circuit testing</td>
</tr>
<tr>
<td>RCA</td>
<td>WC-506A</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>18</td>
<td>battery operated, in-circuit or out-of-circuit testing</td>
</tr>
<tr>
<td>Heath</td>
<td>IT-18</td>
<td>transistors</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>24.95</td>
<td>transistor and circuit tester, battery operated.</td>
</tr>
<tr>
<td>EICO</td>
<td>680</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>34.95</td>
<td>kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49.95</td>
<td>wired</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61.95</td>
<td>kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.50</td>
<td>wired</td>
</tr>
<tr>
<td>Heath</td>
<td>IM-36</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>6.95</td>
<td>in-circuit or out-of-circuit testing</td>
</tr>
<tr>
<td>RCA</td>
<td>WT-501A</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>6.95</td>
<td>signal injector, signal tracer .</td>
</tr>
<tr>
<td>Leader Inst</td>
<td>LTC-901</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>8</td>
<td>meter</td>
<td>69</td>
<td>checks static functions .</td>
</tr>
<tr>
<td>Rohde</td>
<td>TSP</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>4</td>
<td>meter</td>
<td>70</td>
<td>in-circuit and out-of-circuit testing .</td>
</tr>
<tr>
<td>EICO</td>
<td>685</td>
<td>transistors, FETs, diodes, SCR, triacs</td>
<td>manual</td>
<td>4</td>
<td>meter</td>
<td>89.95</td>
<td>checks static and dynamic functions .</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>139.95</td>
<td>kit</td>
</tr>
<tr>
<td>Baird</td>
<td>KT-1</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>4</td>
<td>meter</td>
<td>95</td>
<td>signal injector, signal tracer .</td>
</tr>
<tr>
<td>Leader Inst</td>
<td>LTC-902</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>8</td>
<td>meter</td>
<td>99.50</td>
<td>in-circuit and out-of-circuit testing .</td>
</tr>
<tr>
<td>B & K</td>
<td>162</td>
<td>transistors, FETs, diodes, SCR, triacs, unijunctions</td>
<td>manual</td>
<td>4</td>
<td>meter</td>
<td>99.95</td>
<td>in-circuit and out-of-circuit testing .</td>
</tr>
<tr>
<td>Hickok</td>
<td>TDP</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>4</td>
<td>meter</td>
<td>120</td>
<td>checks static and dynamic functions .</td>
</tr>
<tr>
<td>Rohde</td>
<td>890A</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>235</td>
<td>in-circuit and out-of-circuit testing .</td>
</tr>
<tr>
<td>AEL</td>
<td>245M</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>4</td>
<td>meter</td>
<td>250</td>
<td>in-circuit and out-of-circuit testing .</td>
</tr>
<tr>
<td></td>
<td>259C</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>360</td>
<td>in-circuit and out-of-circuit testing .</td>
</tr>
<tr>
<td>Hickok</td>
<td>970</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>425</td>
<td>will check transistors rated up to 5 A .</td>
</tr>
<tr>
<td>AEL</td>
<td>245MA</td>
<td>transistors, diodes, rectifiers, transistors, diodes, ICs</td>
<td>manual</td>
<td>3</td>
<td>analog meter</td>
<td>440</td>
<td>in-circuit and out-of-circuit testing .</td>
</tr>
<tr>
<td>Hy-Cal</td>
<td>5A104-5CCH-50</td>
<td>transistors, diodes, ICs</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>445</td>
<td>single input system .</td>
</tr>
<tr>
<td>AEL</td>
<td>240A</td>
<td>transistors, diodes, rectifiers, transistors, diodes, ICs</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>450</td>
<td>dual input system .</td>
</tr>
<tr>
<td>Hy-Cal</td>
<td>5AX104-5CCH-52</td>
<td>transistors, diodes, ICs</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>495</td>
<td>automatic ranging .</td>
</tr>
<tr>
<td>Varodyne</td>
<td>800</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>U-Tech</td>
<td>683</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>user-furnished scope</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td>Dantronics</td>
<td>Dantec 100</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>user-furnished scope</td>
<td>695</td>
<td>to be used with TEC model 1 .</td>
</tr>
<tr>
<td>Test Equip</td>
<td>1-01R</td>
<td>zeros, diodes medium and high power transistors</td>
<td>manual</td>
<td>4</td>
<td>meter</td>
<td>970</td>
<td></td>
</tr>
<tr>
<td>Baird</td>
<td>NC-1</td>
<td>front panel controls</td>
<td>manual</td>
<td>2</td>
<td>meter</td>
<td>985</td>
<td></td>
</tr>
<tr>
<td>Test Equip</td>
<td>1</td>
<td>transistors, diodes</td>
<td>front panel controls</td>
<td>3</td>
<td>meter or optional GO/NO-GO</td>
<td>1000</td>
<td>dynamic test; noise figure bandwidth 10 Hz-10kHz .</td>
</tr>
<tr>
<td>Tektronix</td>
<td>575</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>CRT</td>
<td>1300</td>
<td>dynamic test; noise figure bandwidth 10 Hz-10kHz .</td>
</tr>
<tr>
<td>Quan-Tech</td>
<td>512</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>1375</td>
<td>dynamic test; noise figure bandwidth 10 Hz-10kHz .</td>
</tr>
<tr>
<td>IPT</td>
<td>204</td>
<td>matched pair FETs</td>
<td>manual</td>
<td>4</td>
<td>digital or analog</td>
<td>1540</td>
<td>40-position power aging system .</td>
</tr>
<tr>
<td>Wakefield</td>
<td>LV101</td>
<td>power semis.</td>
<td>manual</td>
<td>4</td>
<td>none</td>
<td>1735</td>
<td></td>
</tr>
<tr>
<td>IPT</td>
<td>2018</td>
<td>FETs, bipolar, MOSFETs, JFETs, dual-FETs</td>
<td>manual</td>
<td>4</td>
<td>digital or analog</td>
<td>1770</td>
<td>dynamic test; rf noise figure 1MHz to 60 MHz .</td>
</tr>
<tr>
<td>IPT</td>
<td>202</td>
<td>FETs, bipolar, MOSFETs, JFETs, dual-FETs</td>
<td>manual</td>
<td>4</td>
<td>digital or analog</td>
<td>1795</td>
<td>dynamic test; spot noise 100Hz, 1kHz, 10kHz .</td>
</tr>
<tr>
<td>IPT</td>
<td>203</td>
<td>FETs, bipolar, MOSFETs, JFETs, dual-FETs</td>
<td>manual</td>
<td>4</td>
<td>digital or analog</td>
<td>1950</td>
<td>dynamic test; spot noise 100Hz, 1kHz, 10kHz.</td>
</tr>
<tr>
<td>Baird</td>
<td>PB-1</td>
<td>transistors, diodes, SCR, FETs</td>
<td>manual</td>
<td>4</td>
<td>GO/NO-GO</td>
<td>1985</td>
<td>rf measurement of dynamic parameters.</td>
</tr>
<tr>
<td>Tektronix</td>
<td>576</td>
<td>transistors, diodes, FETs</td>
<td>manual</td>
<td>6</td>
<td>analog</td>
<td>2250</td>
<td></td>
</tr>
<tr>
<td>Quan-Tech</td>
<td>340-1340</td>
<td>transistors</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>2500</td>
<td>dynamic test; rf noise figure 1MHz to 60 MHz .</td>
</tr>
<tr>
<td>Quan-Tech</td>
<td>310</td>
<td>transistors</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>2725</td>
<td>dynamic test; spot noise 100Hz, 1kHz, 10kHz .</td>
</tr>
<tr>
<td>Quan-Tech</td>
<td>311</td>
<td>transistors</td>
<td>manual</td>
<td>3</td>
<td>meter</td>
<td>2725</td>
<td>dynamic test; spot noise 100Hz, 1kHz, 10kHz .</td>
</tr>
<tr>
<td>Rohde</td>
<td>TYM</td>
<td>transistors, diodes, FETs</td>
<td>manual</td>
<td>4</td>
<td>meter</td>
<td>2770</td>
<td>rf measurement of dynamic parameters.</td>
</tr>
</tbody>
</table>
Discrete Component Testers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Types of Devices Tested</th>
<th>Type of Programming</th>
<th>Maximum Number of Device Leads</th>
<th>Type of Readout</th>
<th>Basic Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teradyne</td>
<td>D157</td>
<td>diodes, zener diodes</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>2950</td>
<td>automatic; dc parameters, dynamic test; spot noise 10Hz, 1kHz. 100 A pulsed tester.</td>
</tr>
<tr>
<td>Quan-Tech</td>
<td>327</td>
<td>transistors, diodes, SCR</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>3250</td>
<td>dynamic test; spot noise 10Hz to 10kHz. automatic; dc parameters; voltage and impedance; static parameters of power devices.</td>
</tr>
<tr>
<td>Test Equip</td>
<td>1-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4300</td>
<td></td>
</tr>
<tr>
<td>Quan-Tech</td>
<td>2173C/2181</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>4</td>
<td>GO/NO-GO</td>
<td>4995</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>D158</td>
<td>diodes, zener diodes</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>5180</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>2180</td>
<td>transistors, diodes, zener diodes, rectifiers, thyristors</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>5400</td>
<td></td>
</tr>
<tr>
<td>Rohde</td>
<td>TLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5695</td>
<td></td>
</tr>
<tr>
<td>Affil Manuf</td>
<td>DH-F-VIL</td>
<td>diodes, unlayered capacitors</td>
<td>manual</td>
<td>4</td>
<td>Smith chart and polar oscilloscope; digital GO/NO-GO, teletypewriter, and nixie display.</td>
<td>5750</td>
<td>automatic probing and sorting system for interfacing with test set, network analyzer; tests 5-parameters; automatic; dc parameters.</td>
</tr>
<tr>
<td>Wiltron</td>
<td>310/311</td>
<td>high frequency transistors</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>6445</td>
<td></td>
</tr>
<tr>
<td>Teradyne Semi</td>
<td>SCAT-32</td>
<td>diodes, transistors</td>
<td>manual</td>
<td>6</td>
<td>GO/NO-GO</td>
<td>6480</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>D210</td>
<td>diodes</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>Test Equip</td>
<td>33</td>
<td>power transistors</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>7800</td>
<td></td>
</tr>
<tr>
<td>Quan-Tech</td>
<td>2200/2310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>Lorlin</td>
<td>DA</td>
<td>diodes, rectifiers</td>
<td>digit switch</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>8600</td>
<td>4 to 24 tests; 10 A, 2000 V automatic probing and sorting system for interfacing with test set; automatic, dc parameters, ac gain. 300 V, 10 A operating range.</td>
</tr>
<tr>
<td>Affil Manuf</td>
<td>T7</td>
<td>8 pack transistors</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>8750</td>
<td>4 to 24 tests; 1 A, 200 V; 300 V, 10 A operating range. 4 to 24 tests; 25 A, 2000 V. life test system; modified to custom needs.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>T135</td>
<td>transistors, diodes</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>8800</td>
<td></td>
</tr>
<tr>
<td>Lorlin</td>
<td>TA</td>
<td>transistors</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>9000</td>
<td></td>
</tr>
<tr>
<td>Mastech</td>
<td>2711</td>
<td>diodes, rectifiers, zener diodes</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>9000</td>
<td></td>
</tr>
<tr>
<td>Lorlin</td>
<td>D8</td>
<td>transistors, rectifiers</td>
<td>digit switch</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Wakefield</td>
<td>F1014</td>
<td>rectifiers, zener diodes</td>
<td>digit switch</td>
<td>500</td>
<td>GO/NO-GO</td>
<td>9950</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>T159</td>
<td>diodes</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>10,000</td>
<td>automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>D223</td>
<td>diodes</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>10,900</td>
<td>dc parameters; automatic, dc parameters, ac gain. 300 V, 600 V, 1 A or 1000 V at 10 A models available; data logging option.</td>
</tr>
<tr>
<td>Mastech</td>
<td>2610</td>
<td>transistors, diodes</td>
<td>digit switch, card reader, core memory</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>11,500</td>
<td>4 to 24 tests; 10 A, 600 V. dc parameters.</td>
</tr>
<tr>
<td>Lorlin</td>
<td>T8</td>
<td>rectifiers, diodes</td>
<td>digit switch</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>13,500</td>
<td>automatic; automatic; dc parameters.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>D189</td>
<td>zener diodes</td>
<td>digit switch</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>13,500</td>
<td>automatic; automatic; dc parameters.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>Z137</td>
<td>transistors</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>15,500</td>
<td>automatic; automatic; dc parameters.</td>
</tr>
<tr>
<td>IFT</td>
<td>Monitor II</td>
<td>FETS</td>
<td>manual</td>
<td>4 plus duals</td>
<td>GO/NO-GO</td>
<td>14,000</td>
<td>4 to 24 tests; 100 A, 500 V. dc parameters. 1000 V, 10 A operating range. automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Lorlin</td>
<td>DC</td>
<td>diodes, rectifiers</td>
<td>digit switch</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>14,400</td>
<td>4 to 24 tests; 100 A, 500 V automatic probing and sorting system for interfacing with test set; automatic, dc parameters, ac gain. 300 V, 10 A operating range.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>D233</td>
<td>diodes</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>14,500</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Mastech</td>
<td>203</td>
<td>SCR, transistors</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>15,000</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>T217</td>
<td>transistors, zener diodes, diodes</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>16,500</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>Z218</td>
<td>zener diodes</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>16,800</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>Z128</td>
<td>transistors</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO</td>
<td>16,800</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Fairchild Inst</td>
<td>Z126</td>
<td>transistors, FETS</td>
<td>manual</td>
<td>2</td>
<td>GO/NO-GO with classification</td>
<td>19,988</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>IFT</td>
<td>ZIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19,988</td>
<td></td>
</tr>
<tr>
<td>Lorlin</td>
<td>TC</td>
<td>transistors, FETS</td>
<td>digit switch</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>22,900</td>
<td>4 to 24 tests; 100 A, 600 V automatic. automatic; dc parameters, transconductance; 24 tests. dc pulse and small-signal parameters. automatic; dc parameters, ac gain. automatic.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>T311</td>
<td>varactor diodes, SCR, transistors, diodes, SCR</td>
<td>digit switch</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>23,500</td>
<td>automatic; dc parameters, ac gain. automatic.</td>
</tr>
<tr>
<td>Lorlin</td>
<td>VVC-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,000</td>
<td></td>
</tr>
<tr>
<td>Optimized</td>
<td>3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,000</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>T243</td>
<td>transistors, diodes</td>
<td>digital meter</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>24,000</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>D251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,000</td>
<td></td>
</tr>
<tr>
<td>Fairchild Inst</td>
<td>600-C</td>
<td>discrete devices</td>
<td>manual and cassette</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>39,000</td>
<td></td>
</tr>
<tr>
<td>IFT</td>
<td>Z128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42,100</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>T241</td>
<td>discrete devices</td>
<td>computer</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>43,000</td>
<td>4 to 24 tests; 100 A, 600 V automatic. automatic; dc parameters, transconductance; 24 tests. dc pulse and small-signal parameters. automatic; dc parameters, ac gain. automatic.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>700-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46,000</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>T331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49,900</td>
<td></td>
</tr>
<tr>
<td>Teradyne</td>
<td>Z220</td>
<td>zener diodes, diodes</td>
<td>manual</td>
<td>3</td>
<td>GO/NO-GO</td>
<td>56,100</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Fairchild Inst</td>
<td>600-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56,300</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>T241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,600</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>700-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,600</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>T331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,600</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
<tr>
<td>Teradyne</td>
<td>Z220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,600</td>
<td>automatic; automatic; dc parameters, ac gain.</td>
</tr>
</tbody>
</table>
AN INTEGRATED TEST SYSTEM!

Perhaps you suspected the new TEKTRONIX 7000 SERIES was intended to be more than just another oscilloscope . . . you were right! Here’s why:

- **17 plug-ins** are currently available, including the NEW 7D13 DIGITAL MULTIMETER and the NEW 7D14 DIGITAL COUNTER and there’s more to come!
- **Auto scale-factor readout** labels the CRT with time and frequency; volts, ohms, amps, and temperature (C).
- **4-plug-in mainframes** permit simultaneous use of plug-ins having widely different performance features.

Your nearby Tektronix Field Engineer has many interesting facts about this new series, call him or write: Tektronix, Inc., P. O. Box 500, Beaverton, Oregon 97005.

Prices of instruments shown: 7704 150-MHz Oscilloscope $2500, 7A16 Amplifier $600, 7D13 Digital Multimeter $560, 7D14 Digital Counter $1400, 7B70 Time Base $600.

Available in U.S. through the Tektronix lease plan.
New Products

Photodiode array of 48 sensors includes scan generator on chip

By integrating on the same silicon chip a linear 48-element photodiode array with 5-mil centers, a shift register and multiplex switches, the new FPA-600 monolithic photodiode array has made possible low-noise high-resolution video in optical character recognition and facsimile scanning applications.

This single-chip construction technique has reduced the number of external leads, which are independent of the number of sensors, to only six.

The technique has eliminated the problem of capacitive imbalances between sensor arrays and generators due to large bundles of wire interconnecting them, which caused switching noise to appear in the output video information.

Interfacing a suitable scanning generator to the photodiode array is no longer a problem either, since the FPA600 contains both the array and the scan generator on the same chip.

The new array, which is packaged in a 0.202 by 0.212 by 0.46-in. case, is made by using the silicon-gate process. Its six external leads are: two for clock drives, one for a start pulse, one for an end-of-scan output, a video output lead and a common lead.

Scanning is initiated by applying a start pulse to the shift register's first stage. The pulse is then clocked through the shift register to sequentially interrogate each photodiode in the array. The output then appears as a video string on a video terminal.

A variety of clock waveforms will operate the scanning generator. Complementary sine-wave signals and complementary square-wave clocks can be used. In addition rectangular non-overlapping pulses can also be used. Scanning can be done at a frequency range well below 10 kHz to above 10 MHz. (Some units have operated as low as 20 Hz and as high as 5 MHz with some image lagging).

Typical specifications of the FPA600 array include a photosensitive area for each diode of 22 mil², a 1:1 aspect ratio, power dissipation of less than 200 mW and a photodiode sensitivity of 900 pA/foot-candle.

Other specifications include a photo-sensitivity uniformity of less than ±10%, typical photodiode dark leakage current of 0.1 pA and output capacitance at the video terminal of only 13 pF.

The output impedance of the last or 48th stage of the scanning generator ranges from 30 to 50 kΩ. Each photodiode has a capacitance of 1.6 pF and requires a bias voltage of -8 to -15 V.

Arrays with 64 elements on 5-mil centers and 128 elements on 2.5-mil centers have been produced and will be available by January, 1971. These should provide optimum resolution for video-scanning applications in optical character recognition and facsimile fields. In addition, other possible fields of application in imaging are CCTV, process control and inspection.

Presently, Fairchild is in the process of constructing a TV camera using self-scanning photodiode arrays to demonstrate photodiode-array feasibility in CCTV applications.

CIRCLE NO. 250

Monolithic 48-element photodiode array (left) with a scan generator on the same chip, was used in scanning a negative photograph which was wrapped around a rotating drum. Serial video was applied to the input of an oscilloscope. The resulting photograph (right) was taken by a Polaroid camera off the oscilloscope's screen.
Infra-red detector operates at 293° K

Mullard, Inc., 1100 Finn Court, Farmingdale, N. Y. Phone: (516) 694-8989.
A new cadmium-mercury-telluride flatpack IR detector with a spectral response range of 4 to 6 microns operates at room temperature (293°K). It features a time constant of 1.5 µs, detectivity of 1.5 x 10^8 and responsivity of 40 V/W. Sensitive area is 230 square microns and noise equivalent resistance is 1 kΩ.

CIRCLE NO. 251

Solid-state displays come in DIPs and TO-5s

Two new solid-state numeric displays are the TIXL302 in a 14-pin DIP and the TIXL301 in a TO-5 case. These planar GaAsP types emit visible red light and use 7 segments. Both are partially alphabetical producing the letters A, C, E, F, H, J, L, P and U, as well as digits from 0 to 9.

CIRCLE NO. 253

Fast phototransistor has 1.5 µs rise time

A new oxide-passivated silicon phototransistor features fast switching times with a 1.5-µs rise time and a 5-µs fall time. Called the STPT40, the new phototransistor responds to modulation well above the audio spectrum and has low-leakage characteristics. Collector-emitter breakdown voltage is 50 V minimum. Packaging is in a glass hermetically sealed case which has a dome-shaped lens on it.

CIRCLE NO. 255

Light-activated switch varies switching levels

The IPL15 is a light-activated switch providing controllable and variable switching for a 5000:1 range of illumination. When normally incident light brighter than a predetermined threshold level falls on the device, an internal trigger causes a transition from logic states 0 to 1. The opposite transition occurs when light intensity falls below the threshold level.

CIRCLE NO. 256

Microwave oscillators power C and X bands

RCA Electronic Components, 415 S. 5th St., Harrison, N. J. Phone: (201) 486-3900. Price: $75 to $350.
A new line of microwave solid-state power sources known as transferred-electron oscillators (TEOs) consists of four microwave-device families covering C-band (4 to 8 GHz) and X-band (8 to 12 GHz) in cw and pulsed modes. These oscillators are fixed-frequency devices. Equivalent mechanically tunable models are also available. Cw units span the output-power range of 10 to 120 mW. Pulsed versions are available with outputs of 1, 5 and 10 W.

CIRCLE NO. 257
These are reference standards.

This is the new Fluke working standard.

The new Fluke 730A DC Transfer Standard, a rugged 20 pound, battery powered instrument, takes the fuss out of calibration.

Of course you'll continue to use your standard cell bank as a basic reference. But you'll be time and money ahead if you use the Fluke 730A as your "working standard" and avoid standard cell problems such as temperature sensitivity, length of settling time, and overload. The truly portable Fluke 730A features low temperature coefficient, full accuracy in minutes, overload protection, and quick and easy calibration to your reference standard.

The Fluke 730A consists of four identical independent reference supplies. Output terminals provide individual outputs, the mean output of up to four references and the series output of up to four references. Specific reference voltage outputs available are 1.000, \((1.018 + \Delta V)\), \((1.019 + \Delta V)\), 10.000 and \(\Delta V\) Volts. The Model 730A may be used as a 1 volt or 10 volt standard, or as an "electronic standard cell."

Transfer accuracy is 2 ppm. Stability is 10 ppm/month for individual references. Only 3½" high, the 730A can be used on the bench or in a rack. Guarded outputs give you freedom from noise in high accuracy floating measurements.

Price is $1995.
For the full story, see your Fluke sales engineer or contact us directly.

Fluke, Box 7428, Seattle, Washington 98123. Phone: (206) 774-2211. TWX: 910-449-2850/
In Europe, address Fluke Nederland (N.V.), P. O. Box 5053, Tilburg, Holland.
Phone: (04250) 70130. Telex: 884-50237/In the U.K., address Fluke International Corp.,
Thick-film amplifier delivers 15-W output

A new thick-film hybrid Class-B audio amplifier, the EAA-015, operates continuously at output powers up to 15 W into a conventional speaker load with a 350-mV input signal. Its maximum total harmonic distortion is under 0.5% at 1-kHz full power. Frequency response (measured at −5-dB points) and full power is greater than 20 kHz.

CIRCLE NO. 258

Four-bit logic readout is a plug-in DIP

Unique Devices Co., P.O. Box 786, Reseda, Calif. Phone: (213) 881-6634. Price: $9.

The LL-4 Logic Lite is a new plug-in readout module with buffered inputs that provides four bits of logic status in a dual in-line package. The LL-4 Logic Lite's inputs are TTL/DTL compatible and represent only one unit load. The new readout module requires only 5 V dc for operation. Various markings are available.

CIRCLE NO. 259

Op amp with 5 pA bias costs only $25

Featuring only 5 pA of bias current, the C-128 low-cost hybrid operational amplifier retails at only $25. It is supplied in a hermetically sealed TO-8 package having a diameter of 0.065 in. and a thickness of 0.14 in. The low bias current makes it ideal for sample-and-hold and integrator applications.

CIRCLE NO. 260

Oscillators to 15 MHz plug in to DIP sockets

MF Electronics Corp., 118 E. 25 St., New York, N. Y. Phone: (212) 674-5360. P&A: $16, $19; 2 to 3 wks.

Two new crystal oscillators feature dual-in-line packaging over the frequency range of 80 kHz to 15 MHz. The 5404 ranges over 5 to 15 MHz at ±0.005% over the temperature range of 0 to 60°C. It takes up socket space of one DIP. The 5405 ranges over 80 kHz to 4.9 MHz at ±0.02% accuracy. It occupies the space of two DIPs and fits on sockets spaced 0.5-in. apart.

CIRCLE NO. 261

Thick-film amplifier gains up to 90 dB

Hallicrafters Co., 600 Hicks Rd., Rolling Meadows, Ill. Phone: (312) 259-9600.

Operating at 4.5 MHz a new thick-film hybrid i-f agc amplifier has a gain of 90 dB. Model 58-592 has stable gain from −55 to +100°C, is voltage-controlled over several decades of signal level and can be gated OFF with an external voltage. It has two isolated video outputs of 5 V peak each and includes an agc circuit to control a dynamic signal range of 65 dB.

CIRCLE NO. 262

Thin decoder/drivers have 5/8-in. clearance

Luminescent Corp., P.O. Box 1943, Pompano Beach, Fla. Phone: (305) 933-4551.

A new family of thinline decoder/driver modules in combination with their thinline series 20 DigiCator readouts requires behind-the-panel clearance of only 5/8-in. when used on 1/8-in. panels. Three assemblies are offered. Model 5920-1 is a BCD-to-7-segment device, the model 5925-1 adds on a quad-latch memory and the model 5950 adds on a decade counter.

CIRCLE NO. 263
Power amplifier module dissipates up to 100 W

Inland Controls, Inc., 250 Alpha Dr., Pittsburgh, Pa. Phone: (412) 782-3516. P&A: $180; 2 wks.

The IC-100 modular linear power amplifier features low output impedance of 0.01 Ω and can dissipate up to 100 W of power (at a case temperature of 90°C). It exhibits a high voltage gain of 100,000 V/V minimum and has a frequency response that is flat beyond 20 kHz at a gain factor of 100. Output is single-ended and operating voltage requirements range over ±15 to ±30 V.

CIRCLE NO. 264

Numeric panel displays cost only $1.56/digit

PANAPLEX is a new numeric 8 to 16-digit unitized panel display available for as low as $1.56 per digit for 16 digit readouts (quantities of 1000). Using a nine-segment character format, and common-cathode construction, PANAPLEX panel displays provide a centered 1, in-plane readout and consistent digit alignment.

CIRCLE NO. 265

Expand your knowledge of rubber technology

The new 18-page Stalwart Rubber Selector is an industry-wide guide available to assist engineering and purchasing personnel in evaluating and specifying rubber elastomers. It indicates what elastomer to use, and where to use it. Cost comparisons of 14 different types are contained in the guide. A comprehensive chart rates the elastomers in terms of physical properties and performance. Now, you can determine which rubber elastomers are best suited to your exact requirements. Write today for your personal copy of the new "Stalwart Rubber Selector".
300-ns-access memory dissipates only 20 mW

Cartesian, Inc., 10432 N. Tantau, Cupertino, Calif. Phone: (408) 257-0481. P&A: $24; 5 to 6 wks.

Containing a basic configuration of 1024 words by 2 bits/word, the V003 high-speed MOS static read-only memory features a fast access time of less than 300 ns and dissipates a mere 20 mW of power.

This low-voltage enhancement-mode p-channel device utilizes a unique dc address decoder and a memory matrix that includes a push-pull transistor arrangement.

Since it is a dc device, no clock signals of any kind are needed. The outputs change when the input address changes, and remain stable indefinitely.

Multiple use of the V003 memory in a wire-OR'd configuration is possible with the use of an output enable control. The outputs are buffered through low-impedance drivers that are TTL/DTL compatible without using external passive components. The input is also TTL/DTL compatible.

Programming the V003 is also possible. This involves the alteration on the gate mask pattern at a nominal tooling charge.

The use of a low-threshold process yields voltages of 1.6 to 2.2 V which allows for direct on-chip decoding and yields a high gain constant.

Decoding circuitry consists of row-select and column-select gates. Row-select gates include push and pull sets. This push-pull decoding arrangement means that the decoding network does not dissipate any dc power.

Output resistance at logic state ZERO is 200 Ω. At logic state ONE it is 400 Ω. Address and enable input capacitances are 3 pF.

CIRCLE NO. 266

200-V transistors handle 90 amperes

PowerTech, Inc., 9 Baker Court, Clifton, N. J. Phone: (201) 478-6205. P&A: $66 to $84; stock.

PT-7509 through PT-7511 silicon power transistors feature collector breakdown voltages (open base) of 200 V and dc common-emitter forward current gain specified at 90 A. Collector-emitter saturation voltages are less than 0.6 V at 50 A. Power dissipation is 200 W at 100°C. All of the new power transistors are packaged in TO-63 cases.

CIRCLE NO. 267

Read/write IC memory has 50-ns access time

Sylvania Electric Products, Inc., 730 Third Ave., New York, N. Y. Phone: (212) 551-1000.

A new monolithic 64-bit read/write memory array features access time of 50 ns. The SMX283 is a non-destructive-readout memory consisting of 64-flip-flop storage elements arranged in a 16-word by four-bit matrix. It includes on-chip address decoding and operates over the temperature range of 0 to +75°C. Write and sense-recovery time is 35 ns. Power dissipation is 36 mW.

CIRCLE NO. 269

C-MOS 16-bit PROM dissipates but 50 nW

A new 16-bit C-MOS programmable read-only memory features 400-ns cycle time and static power dissipation of only 50 nW at 10 V. The SCL5510 is organized as 16-words-by-1-bit employing an X-Y select addressing method. It can be made to interface to TTL and DTL and current or voltage-sensing is optionally available. Current-sensing schemes yield cycle times under 100 ns.

CIRCLE NO. 268

MECL converter operates to 70 MHz

Data Technology Corp., 1050 E. Meadow Circle, Palo Alto, Calif. Phone: (415) 321-0551. P&A: 899; 4 to 6 wks.

Containing eight 2-input-level conversion circuits and compatible with emitter-coupled logic levels at the input and DTL/TTL-compatible at the output, the model 650 MECL-to-DTL/TTL converter operates up to 70 MHz. Typical rise and fall times are 8 and 19 ns, respectively. The model 650 is contained on a single 3.16 by 4.5-in. PC card.

CIRCLE NO. 270

Come to where the action is... when you've got a capacitor requirement. We've got five manufacturing facilities with over one million square feet of manufacturing capability, almost 30,000 square feet of "clean room" facilities, and over two thousand employees who take particular pride in turning out the finest capacitors you can buy... anywhere. From design to production, we're geared to turning out new ideas, better products and making significant contributions to the state-of-the-capacitor art.

Whatever your requirements... from run-of-the-mill capacitors for routine commercial applications to HI-REL units for your most critical computer or military program, we can not only solve your problems but translate those answers into production and deliveries. So, if you're looking for action on your capacitor requirements come to Aerovox... that's where the action is!
TO-66 transistors price down to 58¢

Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif. Phone: (415) 962-5011. P&A: 78¢ to $1.40; stock.

A new family of low-cost plastic TO-66 power transistors spanning a collector-to-emitter voltage range of 30 to 80 V features unit prices from 58¢ (100 to 999 quantities).

They utilize the Bimesar technology which uses two epitaxial layers to form the active collector and base regions of the transistor. A mesa etch defines the collector-base and a planar emitter-base junction.

The new family of power transistors includes complementary (npn and pnp) chips designated as types 0345 and 0045, respectively, measuring 70 by 90 mils.

Characteristics of the new transistors include excellent linear forward current gain, with less than 50% falloff over the current range of 200 mA to 2 A. Other characteristics include typical low saturation voltage of less than 0.7 V at a collector current of 2 A and a forward current gain of 10. Typical gain-bandwidth product is 2 MHz.

Power rating is 36 W at a temperature of 25°C. The use of high-temperature silicone plastic encapsulants provides an operating temperature range of -65 to +150°C.

Models 2N5293 through 2N5298 (npn) and 2N6021 through 2N6026 (pnp) are non-lead formed versions (ending in an even number) and lead formed versions (ending in an odd number).

Models SD1345 through SDP345 (npn) and SD1445 through SDP445 (pnp) are all non-lead formed devices.

Darlington transistor dissipates 5 watts

Type 1162 monolithic Darlington power transistor is a device which will dissipate 5 W of power. Its peak collector current is 10 A and continuous collector current is 7 A. Minimum gain is 2500 and collector-to-base (V_{CEO}) and collector-to-emitter (V_{CEO}) voltages are 12 and 60 V, respectively.

TTL IC NOR gates have strobe inputs

Texas Instruments Inc., 13500 N. Central Expressway, Dallas, Tex. Phone: (214) 238-2011. P&A: $1.06 to $3.60; stock.

Two new TTL ICs, the SN54/7423 and the SN54/7425, are dual 4-input positive NOR gates with separate strobe inputs. The SN54/7423 has the capability of being easily expanded by either paralleling the expander inputs and outputs or by using an expander gate. Each NOR gate can replace four AND gates and one NOR gate while the strobe inputs inhibit the NOR function.

Second-source MSIs come in 24-pin DIPs

Two new second-source MSI 24-pin DIPs are the 9308 dual four-bit latch and the 9311 demultiplexer and 1-of-16 decoder. The 9308 provides active pull-up outputs on each latch for operating speeds to 25 ns. It includes clamping diodes on each input to limit the effect of transient signals. The 9311 can be easily cascaded for multilevel decoding.

Monolithic ICs reject noise

The new FZ100 series of monolithic DIP ICs for suppression of high noise have a static margin of 5 and 8 V, depending on the logic state, and a supply voltage of 15 V. Their output resistances are low in both logic states causing noise coupled into the connecting leads to fade away rapidly. Delay, rise and fall times are long enough for a high dynamic noise margin.

MOS shift register has dual-32 bits

The V001 is a new low-voltage dual 32-bit MOS p-channel static shift register. It requires only a single-phase TTL-compatible clock and features operation over the frequency range of 0 to 2 MHz. Its operating temperature range is -55 to +125°C. The inputs, clock and power are TTL-compatible without external bias resistors. The outputs can drive two TTL loads directly.
Thin-film thermistors respond in 20 ms

A new line of low-cost sealed thin-film thermistors with negative temperature-coefficients of 3.29/°C feature fast response times that range from 20 to 50 ms. The new devices measure only 0.1 by 0.07 in. and have a high surface-area-to-volume ratio. They can be supplied as free-standing units (without substrates) or with substrates of beryllium or alumina.

CIRCLE NO. 277

Cermet PC trimmer costs just 50¢

Model 3359 3/8-in.-dia low-cost single-turn cermet potentiometer sells for 50¢ each in 1000-piece quantities. It has a temperature coefficient ranging from 0 to +300 ppm/°C for resistance values to 1 kΩ. Temperature coefficient ranges from 0 to +200 ppm/°C for units with 1 kΩ to 2 MΩ values. Operating temperature range is over −65 to +125°C. Power rating at 70°C is 1/2 W.

CIRCLE NO. 278

Buy only what you need for your signal scanning requirements.

You can now select the exact scanning equipment you need—no more, no less. The new Cunningham 2000 Series includes two addressable scanning switch modules—crossbar and reed. Also a universal control module which can be mated with either for a complete scanner (which can also be controlled remotely).

Buy these units complete, or their switch and control modules separately Model 2400 Crossbar Scanner. Includes: 1. Crossbar Module (Model 2100) with capacity from 100 six-wire to 600 single-wire channels. Scans up to 60 channels/sec.

2. Control Module (Model 2300) can control more than one Crossbar Module.

Model 2500 Guarded Reed Scanner. Includes: 1. Reed Switch Module (Model 2200) with 10 to 100 three-wire channels. Scans up to 250 channels/sec.

2. Control Module (Model 2300) can control up to 10 Reed Switch Modules (1000 channels).

Both scanners and their switches are especially ideal for low-level and low thermal switching, accept BCD address (other optional), and are modular, expandable and 19" rack-mountable. Read the details on Model 2400 (Bulletin 324) and Model 2500 (Bulletin 325). Write Cunningham Corporation, 10 Carriage Street, Honeoye Falls, New York 14472.
Solid-state relays cost a mere $5.80

Teledyne Relays, 3155 W. El Segundo Blvd., Hawthorne, Calif. Phone: (213) 679-2205. P&A: $12 to $13; 2 to 4 wks.

Combining complete four-terminal isolation, the new series 601 solid state relays range in prices from $12 to $13 in small quantities, and as low as $5.80 for production quantities. The series includes 70 types with voltages from 3 to 75 Vdc and 9 to 140 V ac. Currents range from 1 to 10 A. No external heat sink is needed on 1-to-7-A units.

CIRCLE NO. 279

Ladybug capacitors mount two ways

A line of voltage-variable capacitors in ladybug packages features the choice of conventional mountings or mounting with conductive epoxy pastes. Available types include 1N5139 through 1N5148A for low-leakage and high-Q voltage characteristics. Type 1N4805A through 1N4815A offer high-voltage and low-Q features. Types 1011 through 1019 have high tuning ratios.

CIRCLE NO. 280

T-1 lamp drawing 23 mA has 0.19 candlepower

Precision Lamp Engineers, Inc., 114 Hamilton Dr., Navato, Calif. Phone: (415) 883-5916.

When operated at a rated voltage of 28 V, a new T-1 1/8-in.-dia incandescent lamp draws only 23 mA of current and produces a brightness level of 0.19 mean-spherical candlepower. This low-current and high-brightness feature is made possible by a new production process which drives down the water content of the lamp's glass envelope to an absolute minimum due to a high vacuum.

CIRCLE NO. 281

Direct-view storage tube shows 700 foot-lamberts

A new 4-by-5-in. rectangular direct-view storage tube features an equilibrium brightness of 700 foot-lamberts and uniform display with resolution of 75 lines/in. Type F-3046's storage time reaches up to 5 minutes and can be extended to 30 minutes. Optional features include a 1-ns erase characteristic, 1 million in./s writing speed, black face, precollimation and a choice of phosphors.

CIRCLE NO. 282

Tiny timing modules span 5 to 10^5 seconds

Gould Ionics, Inc., P.O. Box 1377, Canoga Park, Calif. Phone: (213) 341-1040.

Featuring high capacitance density, a new series of solid-state timing modules covers the time range from 5 to 100,000 seconds. ESD Modules provide up to 100,000-second one-shot timing in less than 2.3 in.3 of volume. Removing an external link provides symmetric repeat cycling up to 50,000 seconds/cycle. Adding external resistors provides a 100:1 range of output cycle time adjustment.

CIRCLE NO. 283

Double-throw switch has up to 500 poles

Daven Div. of Thomas A. Edison Industries, Grenier Field, Manchester, N. H. Phone: (603) 669-0940. Availability: 8 to 10 wks.

The new Centipole transfer switch is available in double-throw versions with up to 500 poles. The basic switch module contains 100 poles with double-throw action, five of which can be ganged together to achieve the 500-pole version. Single modules are also available with 50 poles.

CIRCLE NO. 284
LSI circuits
now a commercial reality!

bipolar 1536 bit ROM
64 words
24 bits per word

at last, production quantities of the industry’s largest bipolar and MOS LSI circuits...

Bipolar 16 segment alpha-numeric decoder/driver
Bipolar and MOS — RAMs and ROMs
A bipolar 16 bit logic family

HOW DO WE DO IT?
We achieve high yield by precise workmanship, rigid control of handling, materials purity, designed-in testing, and seven years of solid LSI circuitry experience. LSI monolithic subsystems, by our team, are now in military and deep space environments. Our team will produce the optimum LSI for your product.

APPLY THE BENEFITS of LSI circuit technology: lower overall cost, simpler design, labor savings, and reduced "real estate".

Call Griffith Jones (617) 868-5100

KENICS ELECTRONICS CORPORATION
Eastern Region Sales Office: 125 Harvard Street, Cambridge, Massachusetts 02139
COMPONENTS

Film resistors use epoxy cases

Caddock Electronics, 3127 Chicago Ave., Riverside, Calif. Phone: (714) 683-5361.

Model MK132 precision film resistors are encased in rectangular epoxy cases measuring 0.29-in. square by 0.095-in. thick and are supplied with radial leads. They are non-inductive and are rated at 1/2 W at 105°C. Resistances range from 100 Ω to 5 MΩ, and operating temperature range is -55 to +150°C. Temperature coefficient is 50 ppm/°C.

CIRCLE NO. 285

High-voltage elements stabilize 30,000 V

Matsushita Electric Corp. of America, 200 Park Ave., New York, N. Y. Phone: (212) 973-5700. Availability: stock.

Hi-ZNR resistors are high-voltage-stabilizing elements that work in the 300 to 30,000-V range. Their voltage-stabilization characteristics are 10 times better than that of silicon-carbide varistors and they absorb 100 times as much surge voltage as zener diodes do. Dissipation power is 0.6 W/cm and temperature coefficient ranges from -0.005%/°C to -0.010%/°C.

CIRCLE NO. 286

50-to-400-Hz motor-fan is barely audible

Globe Div. of TRW Inc., 2275 Stanley Ave., Dayton, Ohio. Phone: (513) 228-3171.

A new miniature industrial ac motor-fan operates on multiple frequencies ranging from 50 to 400 Hz, with minimum speed changes and with a minimum of noise. This ultra-quiet motor-fan holds its speed within a range of 3000 to 4000 rpm. Operating voltage is 115 V ac. The motor's diameter measures only 1.2 in. and it dissipates only 13 W of power.

CIRCLE NO. 287

Proximity reed switches cost from $1.68

New proximity-operated reed switches now cost as low as $1.68 in large quantities. Models 26-5-4A and 26-5-6A are actuated by any ferrous material and their calibration distance can be specified from 0.075 to 0.15 in. They are stocked in 0.025-in. steps. Normally-closed contacts are rated for 100 V dc at 0.4 A.

CIRCLE NO. 288

Wide-range heat sensor resolves ±0.1°F

Thermal Systems, Inc., 13920 S. Broadway, Los Angeles, Calif. Phone: (213) 321-4350.

A new accurate strap-on heat sensor is capable of resistive changes proportional to temperature with a resolution of ±0.1°F over temperatures from cryogenics to 1200°F. It is adaptable to surfaces 1 to 12 in. in dia. It is also available with a signal conditioner which supplies a linearized 0-to-5-V signal proportional to the temperature range of its platinum transducer.

CIRCLE NO. 289

Short TV camera tube has a 1-in. diameter

Type 7262A TV camera tube is a 1-in.-dia vidicon for compact monochrome or color CCTV systems. It is of integral-mesh construction and uses magnetic focus and deflection. With high voltages, center limiting resolution of 850 TV lines can be obtained. Even when operated at low voltages, center resolutions exceed 700 TV lines. Faceplate illumination is 1 foot-candle for average-sensitivity operation.

CIRCLE NO. 290

112 ELECTRONIC DESIGN 22, October 25, 1970
INSTRUMENTATION

Pressure recorder expands chart span

Arga Controls, 35 E. Glenarm, Pasadena, Calif. Phone: (213) 682-3314. Price: $250 to $500.

A new pressure recorder can add to its scale marking of 100 lb/in.² any value between 0 to 3000 lb/in.² by means of a single control knob. This makes the model 10-015-1 pressure recorder's 4-in. chart equivalent to a chart 10 feet wide. A separate switch changes the chart's span width by a factor of 10. Accuracy of the new recorder is ±2% of the recording span.

CIRCLE NO. 291

Handy FM generator simplifies alignment

Sound Technology, 10601 S. Saratoga-Sunnyvale Rd., Cupertino, Calif. Phone: (408) 257-9171. P&A: $1250; stock to 60 days.

Containing less than 0.1% of total modulation harmonic distortion at 100% modulation, a new FM generator allows the alignment and measurement of FM receiver distortion directly on an oscilloscope without the use of meters. The model 1000A has adjustable linear sweep width up to 600 kHz and low residual FM of -70 dB when in cw modes.

CIRCLE NO. 292
SCHAUER

1% tolerance
1 WATT ZENERS ARE A REAL BUY!

IMMEDIATE SHIPMENT
ANY voltage from 2.0 to 16.0 at the industry's LOWEST PRICES!

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price each</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-99</td>
<td>$1.07</td>
</tr>
<tr>
<td>100-499</td>
<td>.97</td>
</tr>
<tr>
<td>500-999</td>
<td>.91</td>
</tr>
<tr>
<td>1000-4999</td>
<td>.86</td>
</tr>
<tr>
<td>5000 up</td>
<td>.82</td>
</tr>
</tbody>
</table>

THE HI-RELIABLE!

No fragile nail heads.
Silicon junction aligned between two, parallel, offset tantalum heat sinks...great lead tension strength.
All welded and brazed assembly.
High pressure molded package.
Gold plated nickel-clad copper leads.
Write or phone for Form 68-4 for complete rating data and other tolerance prices.

Semiconductor Division

SCHAUER MANUFACTURING CORP.
4511 Alpine Avenue
Cincinnati, O. 45242
Ph. (513) 791-3030

INSTRUMENTATION

X-Y recorder shows 6 signals

Texas Instruments Inc., Digital Systems Div., Box 66021, Houston, Tex. Phone: (713) 526-1411. P&A: $2250; 45 days.

As many as six different signals (five X and one Y) may be recorded at the same time on a new X-Y recorder. Housed in a metal case and designed for bench, rack or panel mounting, the Countour/Riter II recorder is available with one, two, three or four overlapping pens, or with dual charts with up to five pens.

Test probe for ICs delivers 1-µs pulses

Concept Electronics, Corp., 8402 Osage Ave., Los Angeles, Calif. Phone: (213) 670-0524. P&A: $19.50; 1 wk.

Handy Pulse BG-1 is a single-pulse generator capable of delivering a negative-going pulse of a 1-µs duration. It requires no external or internal power source. A unique design allows it to be used with a wide range of digital families without fear of damage from accidental probing. It is enclosed in an all-metal case and is suitable for field equipment testing.

IC tester with cables facilitates checks

A new self-powered IC tester features a clip probe and a flexible cable for in-system testing of both 14 and 16-pin dual-in-line TTL or DTL circuits. Standard cable length is 24 inches. The new tester displays the logic states of all pins simultaneously. The tester's lamps light up for logic states that turn off for low ones.

100-A dc supplies are 60% efficient

Due to unique filtering and regulation techniques, the RM series of rack-mount power supplies achieves 60% efficiencies with dc outputs of 5 V at 100 A. They require no fans while delivering full loads at a temperature of +55°C. Line and load regulation are ±0.1% and ripple is 3 mV pk-pk. Output voltages range from 5 to 28 V dc.
Tiny 40-oz calculator is truly portable

Dictaphone Corp., 120 Old Post Rd., Rye, N. Y. Phone: (914) 967-6211. P&A: $495; 90 days.

A new portable $495 calculator with 16-digit capability and an 8-digit readout weighs but 40 oz and measures only 8-1/2 by 5 by 1-3/4 in. It features decimal selection and a constant for successive division and multiplication and can add, subtract, divide and multiply in only milliseconds. It contains a ten-button keyboard and function keys.

CIRCLE NO. 297

Low-speed data modems transmit at 300 baud

The new Series 300 data modems designed for low-speed communications can transmit data with speeds as low as 300 baud. Transmission from these new data sets is possible over either dial-up or over private telephone lines. They feature compatibility with most Western Electric data sets which are leased by the Bell System.

CIRCLE NO. 298

Data logging device handles many sources

The Data Logger model 3000 is designed to handle multiple sources of data and is capable of changing codes, editing information and merging data sources. An optional keyboard allows the operator to input letters and numbers directly. It is essentially a means of gathering data from sources, controlling the sources, and sending the data to other sources in an edited form.

CIRCLE NO. 300

Data/telegraph source supplies many patterns

Digitcch Data Industries Inc., 22 Grove St., Ridgefield, Conn. Phone: (203) 438-3731.

The model 2102 is a data/telegraph signal simulator designed for test and alignment of data communications modems, terminal, printers, telegraph equipment, and video displays. It features test messages in various data and telegraph languages such as ASCII, BAUDOT, IBM 1050, plus 8 selectable characters operating in both free run and stepped modes at 16 speeds to 600 baud.

CIRCLE NO. 301

Calibrate or Measure with the RFL Model 829G

RFL's famous 829, for 15 years the industry calibration standard, now gives way to the new 829G — still the industry calibration standard, but now it's twice as useful. The 829G provides a precision source of AC and DC volts, amps and ohms — plus precision measurements of these parameters from external sources. It offers four-terminal sensing in both source and measurement modes, and high accuracy, resolution and regulation, with 5-digit readout. 5 ranges of AC or DC, 0.1 to 1000V. 6 ranges of current, 100 uA to 10A. 50, 60, 400, 1000 Hz AC plus EXT. And many other features — all for just $3,350. Write for complete data today.

TCXO

Operates From
+5 Volts

New Series 5400 oscillators are made in flatpack and compact versions and provide choice of stability of 1 to 10 ppm from 0 to 65°C. They deliver TTL outputs at 1 KHz to 10 MHz. Typical specs are:

- Input Voltage: 5V ±0.5%
- Frequency: As specified from 1 KHz to 10 MHz
- Screwdriver Adjust: ±3 ppm
- Temperature Stability: ±1 ppm from 0 to 65°C
- Output: 0 to 4 V, drives 10 TTL loads

Write or phone for complete catalog
M F ELECTRONICS CORP.
118 East 25th St., New York, N. Y. 10010
Tel.: 212 674-5360

INFORMATION RETRIEVAL NUMBER 52

DATA PROCESSING

Phase-jitter unit spans 0 to 45 degrees

The model FA1564 phase-jitterer adds adjustable phase jitter from 0 to 45 degrees to a data signal in the telephone voice frequency band from 20 to 360 Hz. Accessory features include adjustable fixed phase shift, phase hits, adjustable harmonic distortion and broadband and impulse noise. Other features include fixed or variable attenuation and delay distortion.

CIRCLE NO. 302

Fast memory system handles 32k-by-36 bits

Information Control Corp., 9610 Bellanca Ave., Los Angeles, Calif. Phone: (213) 641-8250. P&A: less than 4¢/bit; 30 days.

Full cycle time of 900 ns, 350-ns access time and field expandability from 8k-by-36 bits to 32k-by-36 bits are only a few features of the model 1010 random-access core-memory system. The system uses 3D selection and 22-mil cores for high speed and density. All of the system's modules, including the stacks, measure 7 by 9-1/4 in.

CIRCLE NO. 303

Data systems test set locates malfunctions

The model DTS 1010 test set is designed to test interface leads between data terminals and data sets as well as test the interface between data sets and transmission links to isolate and identify system malfunction sources. It is fully interactive and provides bridging, and source and load simulation.

CIRCLE NO. 304

Low-cost calculator retails at $349

The model 121-A low-cost electronic desktop calculator with a capacity of 12 digits retails at only $349. It can perform the four basic mathematical functions of addition, subtraction, multiplication and division. In addition, it can also perform multiplication with a constant and can also forward a grand total. The calculator has a compact design and a wood-grained top panel.

CIRCLE NO. 305
Tiny 6300°F torch welds many metals

Tescon Corp., Instrument Div., 2633 E. 4th St., Minneapolis, Minn. Phone: (612) 331-1311.

A miniature 1.5-oz torch called the Little Torch can weld metals from 0.002-in. wire up to 16-gauge steel with temperatures up to 6300°F. It uses oxygen and a fuel gas (acetylene, hydrogen, LP or natural gas) to operate at pressures of 1 to 6 psi. Five different tip sizes are available. Each tip swivels 360 degrees to give complete handling ease.

CIRCLE NO. 306

Bench wire stripper handles many sizes

Thomas & Betts Co., 36 Butler St., Elizabeth, N.J. Phone: (201) 354-4321. Availability: stock.

The ABMK-300 is a new self-adjusting tool that will cleanly strip insulation from single or multiple wires of #22 to #10 AWG aluminum or copper without nicking the conductor. Multiple cutting blades mounted in a wide jaw eliminate critical wire positioning and permit stripping up to six #16 wires at the same time. It is pneumatically operated and is actuated by a foot control.

CIRCLE NO. 307

Micro-miniature tools interchange easily

Circon Corp., Santa Barbara Airport, Goleta, Calif. Phone: (805) 967-0404. Availability: stock.

An extensive line of new interchangeable micro-miniature tools designed for use in producing and repairing the smallest electronic and mechanical instruments is now available. Termed MicroTools, the new line consists of 60 screw-based tips which can be used interchangeably on either of two delicately balanced handles. Features include miniature tip sizes, a wide range of tip designs and interchangeable handles. Each tip is mounted on a 0.03-in.-dia corrosion-resistant stainless-steel shaft.

CIRCLE NO. 308

Dual caliper measures two ways

Indicating Caliper Co., Box 51, Oak Park, Ill. P&A: $22.50; stock.

A new direct-reading dual-indicating caliper can be used for taking measurements on the outside and inside of surfaces. It is available with metric and English scales to measure up to fifteen cm or six inches. The new caliper can be locked in place at any reading and thereby serve as a fixed gauge. Its construction is of heavy-gauge steel stampings and it is chromium-plated for longer life.

CIRCLE NO. 309

Shielded Boxes

Take your pick.

The newly expanded line of Pomona Shielded "Black Boxes" now comes in six different sizes; in cast or extruded aluminum; some slotted to accept circuit boards; in a broad choice of connector combinations or no connectors. There's bound to be one to meet your requirement. Write for complete information in our General Catalog.

CIRCLE NO. 309
What can you expect from a $165 pulse generator?

- Accurate integrated circuits?
- Crystal controlled clock?
- Pulse widths from 1 microsecond to 200 milliseconds?
- Pulse rates from 1 to 500,000 per second?
- Rise and fall times less than 100 nanoseconds?

The answer is "YES" to all questions ... if the pulse generator is a Model 3200 from Houston Magnetics. In stock at just $165.

In stock at just $165.

Write for more information.

TOYOCOM
TOYO COMMUNICATION EQUIPMENT CO. LTD.

1MHz HIGH
PRECISION PACKAGED
CRYSTAL OSCILLATOR

- LOW COST
- READY SUPPLY

TYPE:
TCO-8D
TCO-9E

This oscillator features a 4MHz, 3rd overtone cold weld vacuum sealed high stability crystal element having a Q of greater than 1,500,000, 4.3 frequency division by means of IC, continuous control constant temperature oven, new mechanism, and high reliability components. Extremely fine frequency adjustment on the order of 10^{-8} to 10^{-9} is possible with a single trimmer.

CIRCLE NO. 310

A new tool kit contains nineteen tools, each selected particularly for its applicability in servicing transistorized and integrated circuits. Included in the kit are ten screwdrivers, tweezers, nippers, scissors, pliers, a magnifying mirror, a 35-W miniature soldering iron, and a 1 to 80 power microscope. A zippered case is included.

CIRCLE NO. 311

The X-34 soldering kit contains all the necessary elements for a modern soldering station. Included is a fast-warmup soldering iron, a desoldering tool, a resoldering tip for use on the iron, 4 oz of flux with a flux dip pot and a burnishing tool. The soldering iron features 60-second warmup and the desoldering tool is self-contained and spring-loaded.

CIRCLE NO. 312

A new line of cutting pliers combines tool-steel heads with lightweight stainless-steel handles to reduce assembly time in the computer and hybrid circuits industries. There are six pliers, which will cut up to 0.025-in. round nickel wire, and two bending pliers in the line. They weigh only 1/2 oz., and can be used over long periods without fatigue.

CIRCLE NO. 313
Latex covering repels solder

Easily applied with a dispenser, brush or syringe, a new latex-based protective covering keeps holes and areas free of solder during reflow and repair operations. Soder Mask is a specially formulated elastomer that comes as a solvent or water-soluble formulation. It may be removed by peeling or rubbing, and leaves no residue. It can withstand 300°F.

CIRCLE NO. 314

Molded terminations protect cables fully

Times Wire and Cable Co., div. of Insteel Corp., 358 Hall Ave. Wallingford, Conn. Phone: (203) 269-3381.

Plastic terminations for cable assemblies, which are said to assure trouble-free protection against stress and environment, are now available. Called Impervemold, these injection-molded terminations completely encapsulate the cable-connector face with a hard strong thermoplastic material. This protects the connectors from even excessive bending and twisting.

CIRCLE NO. 316

14-pin DIP socket fits 0.1-in. centers

The type 561 socket is designed to fit 14-pin dual-in-line ICs on 0.1-in. centers for adjacent terminals. Consistently reliable mating of the IC package is assured by a tapered pin design. Solder tail centers of the socket permit the use of standard board layouts as desired. Contact platings are available as cadmium, silver, gold over silver, or gold over nickel.

CIRCLE NO. 315

Two-component epoxy bonds hybrid substrates

Epoxy Technology, Inc., 65 Grove St., Watertown, Mass. Phone: (617) 926-0136. Price: $15/sample kit.

Epo-Tek H74 is a thermally-conductive two-component epoxy for bonding substrates in hybrid IC packages. Its thermal conductivity measures 7.6 Btu-in/ft²-h-°F and lap shear strength is 3500 psi. This epoxy can be used in the 300-to-400°C range for short periods and has a continuous operating temperature of 250°C maximum. Volume resistivity is 2.5 x 10¹⁰ ohm-cm. Dielectric constant is 5.5 at 1 MHz and dielectric strength is 470 V/mil.

CIRCLE NO. 317

Discreet Device Test Set with Direct Digital Readout

assures accurate testing at moderate cost.

The Mastech Model 2610 DCP test set has an operating range of 1000 volts and 10 amperes. This transistor/diode test set features direct readout of any test parameter, data logging outputs and type selection classifier for sorting up to 20 categories.

The set is designed for both user and manufacturer and can be interfaced with mechanical equipment for completely automated systems. The equipment is fully warranted for trouble free operation.

Model 2610 DCP is one of several transistor/diode test sets. Other Mastech models offer 300 volt-1 ampere, or 600 volt-10 ampere operating range with 6, 12, 18 or 24 test positions.

Further versatility is provided with slave and master multiplex stations, card reader or core memory programmers and full line of test fixtures. Consult Mastech for your discreet device test equipment requirement.

MASTECH INC.
P.O. Box 178 - Syracuse, N.Y. 13211
Telephone (315) 455-6662

INFORMATION RETRIEVAL NUMBER 56
Ballpoint marker makes rugged labels

Tri-Chem, Inc., 345 Cortlandt St.,
Belleville, N. J. Phone: (201) 759-4900.

A new multi-colored all-purpose ballpoint marker not only adheres to nearly all materials but also resists alkalis, dyes, most acids, and extended exposure to hostile environments. Tri-Mark is a fast-drying product that marks glass, metal, plastic, porous and non-porous surfaces. The inert formula can be used to cover small breaks in electrical insulation.

CIRCLE NO. 318

Lossy flexible tubing suppresses rfi/emi

Lundy Electronics & Systems, Inc.,
Glen Head, N. Y. Phone: (516) OR6-1440.

A new flexible lossy tubing provides rfi/emi suppression at microwave frequencies and shielding from low-frequency electric and magnetic fields. It slips easily over any wire and filters unwanted signals by the absorptive-dissipative method. At 1 GHz, conducted attenuation is 20 dB/in. and radiated attenuation is 100 dB/in. At 10 GHz, attenuation exceeds 100 dB/in. Attenuation rises with frequency in a smooth continuous manner without dips or nulls, and is directly proportional to the tubing length.

CIRCLE NO. 319

TO ceramic sockets work up to +300°C

Barnes Corp., 24 N. Lansdowne,
Lansdowne, Pa. Phone: (215) 622-1525. P&A: 75¢ to $4; 4 to 6 wks.

A new series of alumina ceramic burn-in and test sockets for TO devices accept temperatures from -65 to +300°C. They may be subjected to 300°C for continuous operation in excess of 10,000 hours. Electrical contacts are beryllium nickel and can be used in a variety of pin configurations.

CIRCLE NO. 320

New insulated leg

An exclusive design improvement for insulated feed-thru terminal blocks. Available in a variety of terminal pin and hardware configurations.

This is one of the many new products Kulka has for engineers who innovate. Kulka keeps up to date with new terminal block concepts, new designs, and new materials to meet every requirement. Send for the latest Kulka catalog. Kulka Electric Corp., 520 So. Fulton Ave., Mount Vernon, N.Y. 10551 or call (914) 664-4024.

A North American Philips Company

"IT'S GOOD BUSINESS TO HIRE THE HANDICAPPED."

ISN'T THAT A GREAT IDEA, SNOOPY?

THE PRESIDENT'S COMMITTEE ON EMPLOYMENT OF THE HANDICAPPED, WASHINGTON, D. C.
Evaluation Samples

PC 12-pin connector

Free samples of a new printed-circuit 12-pin straight-on connector are available. Like other connectors in its EdgeCon series, this new connector has reliable crimp-type terminals supplied in chain-link form. The terminals snap-lock into nylon housings and can easily be removed with a simple tool. They can also be easily handled with automatic crimping machines. Molex, Inc.

CIRCLE NO. 340

Patch cords

A new piggy-back series of plug and jack patch-cord combinations feature pin diameters of 0.08 in. Type 445-3391 patch cords allow the convenient patching of circuits and multiple electrical contacts at any point in a circuit. They are available in lengths of 4, 6, 8 and 12 in. and in three colors of black, blue and red. Samples are available. Cambridge Thermionic Corp.

CIRCLE NO. 341

Ferrite beads

Samples of new low-cost beads designed to solve noise and filtering problems are available. The new beads are easily installed in systems by simply sliding one or more of them over conductor leads. They provide effective rf decoupling, shielding and parasitic suppression without sacrificing low-frequency power or signal level. They can be used either grounded or ungrounded. National Moldite Co., Inc.

CIRCLE NO. 342

Everything's clearer with the flat one!

Letters! Digits! Symbols! Equations! All varieties of data are displayed as undistorted images on Zenith Flat-Face Metal CRTs. Ideal for light pen operations, alphanumerics and analog presentations — they're even available with a rear port for optical chart projection. When you need CRTs, face up to the flat one. Write for details.

Zenith Radio Corporation
The Rauland Division
5616 W. Jarvis Ave., Chicago, Ill. 60648 • 312-647-8000

Information Retrieval Number 59

Squint-Proof

Here's a high-quality 13/8" turns-counting dial with the readability of 13/16" dial in a third less space.

White set points pop right out at you. No misreading. Ten turns, setable to one part in a thousand. Tough die-cast housing. Only 4 moving parts, including brake and counter assemblies. Zero backlash. ONLY $3.99 IN 1,000 LOTS.

Available through your Bourns distributor.

Call or write your nearest Bourns sales office or representative for more data on the H-510 potentiometer turns-counting dial.

Bourns, Inc., Trimpot Products Division • 1200 Columbia Ave., Riverside, Calif. 92507

Information Retrieval Number 60
Design Aids

Hexadecimal calculator

Containing 50% more indelible marks than an earlier version, this new hexadecimal-decimal slide-rule calculator allows its user to easily perform all routine arithmetic and algebraic calculations in a hexadecimal base. Equivalent operations can be performed in a conventional decimal base with provided scales. Calculation accuracies are said to range from 2 to 3 significant figures and conversion accuracies are to 2 significant figures. The price is $14.95. Spectrum Sciences, Inc.

Get four FREE transistors from your authorized GE semiconductor distributor

Present or mail this coupon to your authorized GE semiconductor distributor for up to four free transistors. Just enter the quantities opposite the type numbers below (maximum of four).

Order expires November 31, 1970

<table>
<thead>
<tr>
<th>Type No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N6000</td>
<td>2N6002</td>
<td>2N6003</td>
<td>2N6004</td>
<td>2N6006</td>
<td>2N6008</td>
<td>2N6010</td>
<td>2N6012</td>
</tr>
<tr>
<td>2N6014</td>
<td>2N6016</td>
<td>2N6018</td>
<td>2N6020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2N6019</td>
<td>2N6022</td>
<td>2N6024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name
Position
Street
City
State
Zip
Distributor's Name
OFFER EXPIRES NOVEMBER 31, 1970

GENERAL ELECTRIC

221-31

FREE EPOXY TO-18 TRANSISTORS

Find your nearest GE Distributor at:

CIRCLE NO. 321

CIRCLE NO. 322

PS assembly template

A new drafting template for printed-circuit assemblies cuts drafting time for drawings and layouts. Assembly drawings are completed with little effort since most commonly used electronic components are represented on the new template. Lead spacings and components are accurately outlined to prevent them overlapping. Scales of 1:1, 2:1 and 4:1 are available. The 1:1 and 2:1 scales are priced at $3.50. Scales of 4:1 cost $7.00. Tangent Template Co.
General Electric's new epoxy TO-18 transistors run hot and cold

We've got 16 new JEDEC types and many new GET replacement devices that will substitute for common 2N types with no redesign at all. We're adding more new types every month. They're available in NPN's, PNP's, matched pairs and Darlington amps with breakdown ratings up to 60V and dissipation as high as 500 mw.

We've tested these transistors in every way possible. See the results for yourself in our new reliability brochure (Pub. #95.28). We'll send the brochure along with four free samples for testing in your circuits. Prove to yourself that GE's new epoxy TO-18 transistors meet all your transistor requirements.

To get your four free samples, specification sheets and reliability brochure, fill out the coupon on the opposite page and mail it to your authorized GE Semiconductor distributor shown on the list. We think you'll find that GE's new epoxy TO-18 transistors meet your reliance standards with ease.
Tempilaq® signals rated temperature... in milliseconds!

Now you can simply and reliably monitor temperatures on smooth surfaces such as polished metal, glass or plastics, and in hard-to-reach areas—at the cost of a cent or less per application. More than 100 certified ratings to choose from. Applied by brush or aerosol spray.

Tempilaq® dries almost immediately to a dull-opaque coating, which liquefies sharply as soon as its stated rating is reached. On cooling, the melted Tempilaq® does not revert to its original appearance, but remains glossy transparent—which fulfills the design of dual-gate MOS field-effect transistors that use a built-in signal-limiting diode structure for an effective short-circuit to static discharge across the gate insulation. Breakdown mechanisms, gate-protection methods, electrical requirements, monolithic MOS devices, current-handling capability, input capacitances and resistances and power gain and noise factor are all illustrated and discussed thoroughly. RCA Solid State Div.

AVAILABLE IN THE FOLLOWING DEGREES (°F)

<table>
<thead>
<tr>
<th>Temp (°F)</th>
<th>Tempilaq®</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>169</td>
</tr>
<tr>
<td>103</td>
<td>175</td>
</tr>
<tr>
<td>106</td>
<td>182</td>
</tr>
<tr>
<td>109</td>
<td>188</td>
</tr>
<tr>
<td>113</td>
<td>194</td>
</tr>
<tr>
<td>119</td>
<td>200</td>
</tr>
<tr>
<td>125</td>
<td>206</td>
</tr>
<tr>
<td>131</td>
<td>213</td>
</tr>
<tr>
<td>138</td>
<td>219</td>
</tr>
<tr>
<td>144</td>
<td>225</td>
</tr>
<tr>
<td>150</td>
<td>231</td>
</tr>
<tr>
<td>156</td>
<td>238</td>
</tr>
<tr>
<td>163</td>
<td>244</td>
</tr>
</tbody>
</table>

Power-supply handbook

Presenting a most thorough treatment of dc power supplies, this new 138-page handbook is a goldmine of information for power-supply users. It is written in a clear and concise language and is broken up into six main sections: Definitions, Principles of operations, Ac and load connections, Remote programming, Output voltage and current ratings and Performance measurements.

Intended for the user of power supplies rather than the theorist, it discusses both traditional and unusual problems and applications of regulated power supplies.

Examples of questions answered include: “What is meant by auto-tracking?”, How can ground loops in multiple loads be avoided?” and “What is the difference between a constant-voltage/constant-current power supply and a constant-voltage/constant-current limit supply?” Hewlett-Packard

CIRCLE NO. 335

MOSFET design

A new application note discusses the design of dual-gate MOS field-effect transistors that use a built-in signal-limiting diode structure for an effective short-circuit to static discharge across the gate insulation. Breakdown mechanisms, gate-protection methods, electrical requirements, monolithic MOS devices, current-handling capability, input capacitances and resistances and power gain and noise factor are all illustrated and discussed thoroughly. RCA Solid State Div.

CIRCLE NO. 336

Silicone resins

New developments in silicone resins as molding compounds for semiconductors are discussed in a new technical report entitled “Environmental Protection of Semiconductor Devices.” The report is based on a paper presented at the 9th Electrical Insulation Conference by a member of the General Electric Company’s Silicone Products Dept. Discussed in the report are the new silicones available and laboratory evaluations of these materials for semiconductor packaging. Suggested methods of encapsulation are also outlined. General Electric Co., Silicone Products Dept.

CIRCLE NO. 338

Microwave measurements

Various techniques for measuring microwave power, diode detectors, thermistors, and thermoelectric devices are discussed and compared in terms of accuracy, dynamic range and stability in a new 12-page application note on microwave measurements. A separate section contains a catalog of microwave instruments such as power meters and monitors, calorimeters and customized power monitoring systems. PRD Electronics, Inc.

CIRCLE NO. 337

VSWR measurements

The simplicity of making broadband VSWR measurement at high accuracies is discussed and illustrated in the first issue of the quarterly “Wiltron Technical Review.” It details the use of a resistive bridge that operates from 10 MHz to 4 GHz with the equivalent of less than a 1.02 residual VSWR. Wiltron Co.

CIRCLE NO. 339

ELECTRONIC DESIGN 22, October 25, 1970
A significant advance in silicon rectifier power handling capacity

3 new series of silicon rectifiers from Tung-Sol permit designers to meet extremely high power requirements.

- **Reverse voltage ratings to 5000 Volts**
- **Average forward current to 500 Amperes**
- **Surge overload ratings up to 8500 Amperes**

Controlled avalanche characteristics provide transient handling capability that results in increased reliability.

All units feature ceramic-to-metal seals, mount in any position and are supplied in either polarity.

1511 SERIES
- Max. av. forward current at 120° C—420 Amperes
- Surge overload rating, 1 cycle—6000 Amperes
- Controlled Avalanche Voltage—1250-3500 Volts

1621 SERIES
- Max. av. forward current at 135° C—500 Amperes
- Surge overload rating, 1 cycle—8500 Amperes
- Controlled Avalanche Voltage—1100-2300 Volts

1611 SERIES
- Max. av. forward current at 135° C—470 Amperes
- Surge overload rating, 1 cycle—5200 Amperes
- Controlled Avalanche Voltage—2600-5000 Volts

Write for technical data bulletins—
Tung-Sol Division, Wagner Electric Corporation
630 West Mt. Pleasant Ave., Livingston, N.J. 07039
Tlx: 710-994-4965 • Phone: (201) 992-1100; (212) 732-5426

TUNG-SOL
High Power Silicon Rectifiers
Trademark TUNG-SOL Reg. U. S. Pat. Off. and Marcas Registradas

ELECTRONIC DESIGN 22, October 25, 1970

INFORMATION RETRIEVAL NUMBER 63
Displays and lamps
Three catalogs describe lines of neon indicators, incandescent read-out modules and indicating lamps and assemblies. Alco Electronic Products, Inc.

Photo-electric devices
A range of photo-electric controls, counting equipment, projectors, receivers and relays are described in a 54-page booklet. Applications are also given. Hird-Brown, Ltd.

Film capacitors
Twenty-eight pages of a new catalog illustrate and describe 23 types of precision film capacitors, which include polystyrene and hermetically sealed mylar and mica types. Arco Electronics.

Magnetic components
Pulse transformers, delay lines, SCR-trigger transformers and inverter transformers are included in this catalog. Pulse Engineering, Inc.

Hewlett-Packard Journal

Fans and blowers
A complete line of stock fans and blowers is described in a new 18-page catalog. Dimensions, drawings and performance charts are also included. Howard Industries, Div. of MSL Industries, Inc.

Ferrite materials
A comprehensive 170-page catalog, divided into eight easily accessible sections, lists toroidal and pot cores for linear and saturating magnetic devices, special-purpose machined ferrites, H cores, ferrite shielding beads and chokes, and E, U and I cores for linear and saturating devices. Ferroxcube Corp.

Acoustic coupler
A new 4th-generation acoustic coupler is described in a literature package. The coupler is compatible with conversational terminals operating in excess of 450 baud. Omnitec Corp.

Components
A new general component catalog contains listings of connectors, metal film resistors, terminals, filters, relays, trimmers and lamps. Powell Electronics, Inc.

MOSFETs and static
A technical article dealing with the phenomenon of static electricity and its role in damaging sensitive electronic devices such as MOSFETs is available. A method of offsetting static electricity so that problems to sensitive electronic devices are eliminated and is outlined in detail in the article. Custom Materials, Inc.

Fans and blowers
A quick-reference catalog contains a selection of fans and blowers. Included are propeller, squirrel-cage, axial, high-pressure/vacuum and spiral types. Rotron, Inc.

Delay lines
Custom-built, standard fixed and variable and laboratory-type delay lines are covered in a 12-page catalog. Also included are custom-built LC filters, Allen Avionics, Inc.

Rectangular connectors
A line of miniature rectangular and hexagonal plug and socket connectors is in a new catalog. Included are contact sizes ranging from 4 to 40. Continental Connectors Corp.

Components
A fully indexed 110-page components catalog contains listings of connectors, metal film resistors, terminals, filters, relays, trimmers and lamps. Powell Electronics, Inc.

Photomultiplier tubes
A new series of photomultiplier tubes and their accessories are detailed in a catalog. Gencom Div. of Varian/EMI.

Ceramic chip capacitors
A bulletin contains complete specifications of type NPO and K 1200 monolithic ceramic chip and feed-through capacitors, and capacitor kits. Monolithic Dielectrics, Inc.
Bulletin board
of product news
and developments

Hitachi, Ltd. has improved its previously announced process monitoring system, which displayed computer-controlled process data on a color-TV screen in numerals and letters, to now include a trend-graph display. Process information is transformed into a visibly progressive movement on the TV screen giving a trend-graph presentation in several colors.

CIRCLE NO. 359

A 1024-bit MOS read-write random-access memory costing 1¢ per bit (quantities of 15,000 or more) and having full on-chip decoding is now being stocked on distributor shelves according to Intel Corp., Mountain View, Calif. Its speeds are a 300-ns access time and a 600-ns cycle time.

CIRCLE NO. 360

Type IN4004 silicon rectifier is now available for only 5¢, when purchased in quantities of 25,000 each or more, according to General Instrument Corp.

CIRCLE NO. 361

Price reductions of up to 54% have been announced by Fairchild Semiconductor on its line of uA700 linear ICs.

CIRCLE NO. 362

In January, 1970, Intersil Memory Corp., Cupertino, Calif., expects to announce a 1024-bit n-channel silicon-gate random-access read/write memory with full on-chip decoding at 1¢/bit in volume quantities. Speeds are 100-ns access time and 200-ns full cycle time.

CIRCLE NO. 363

General Electric Ceramic Tubes...
the Universal Choice for New Broadbanded Micro-TACAN/DME Systems

High ratio of power, efficiency, reliability, and gain-bandwidth to product size and weight makes General Electric triodes the logical choice of all 8 manufacturers now making (or planning to make) new broadbanded micro-TACAN/DME systems.

And, as far as we know, General Electric gridded planar tubes are being used in favor of alternate devices in all stages of all eight manufacturers' designs for broadbanded RF power amplifiers.

And General Electric can help you, too, if you are working on, or are considering: micro-TACAN/DME systems... broadbanded TACAN/DME ground and/or airborne responders... phased array radar and ECM power amplifier chains...or many other broadbanded RF applications.

To get full information use the readers' service card or contact:

Tube Department
General Electric Co.
316 E. 9th Street
Owensboro, Kentucky 42301

INFORMATION RETRIEVAL NUMBER 64
Design Data from Manufacturers
Advertisements of booklets, brochures, catalogs and data sheets. To order use Reader-Service Card.

Terminal Block Selector
A new 24-page, completely illustrated catalog contains photos, descriptions, ratings, engineering drawings, and prices of the complete line of Curtis terminal blocks. Included are printed circuit, insulated feed-thru, quick disconnect, track type, and high current terminal blocks. Handy selection chart quickly locates the perfect block for your particular requirements. Send today for your free copy. CIRCLE NO. 171

Curtis Development & Mfg. Co.
3236 North 33rd Street
Milwaukee, Wisconsin 53216

Quality Fasteners For All Designs
This 8-page catalog provides design data on the complete group of DZUS 1/4-turn self-locking fasteners for standard, high speed and panel applications, as well as universal high strength multiple thread fasteners for high tensile and shear stresses. Dzus stud assemblies, wire forms and receptacles offer an exceptional, wide variety of combinations from stock to fit specific fastening requirements. Diagrams and tables give full details for rapid, unlimited design selection. Condensed or complete Catalog available on request. CIRCLE NO. 172

Dzus Fastener Co., Inc.
425 Union Boulevard
West Islip, L.I., N.Y. 11795

RFI FILTERS
RFI filters and capabilities for design and manufacture of filters to customer requirements, are outlined in this new four-page brochure from Electro Cube, Inc. The brochure presents electrical rating information, and examples of mechanical package configurations for single and multi-circuit filters, high voltage and screen room filters. Electro Cube, Inc., manufacture capacitors, RFI filters, RC networks and other current control components. CIRCLE NO. 173

Electro Cube, Inc.
1710 South Del Mar Avenue
San Gabriel, California 91776

Electronic Design's function is:
• To aid progress in the electronics manufacturing industry by promoting good design.
• To give the electronic design engineer concepts and ideas that make his job easier and more productive.
• To provide a central source of timely electronics information.
• To promote two-way communication between manufacturer and engineer.

Want a subscription? ELECTRONIC DESIGN is sent free to qualified engineers and engineering managers doing design work, supervising design or setting standards in the United States and Western Europe. For a free subscription, use the postfree application form inside the back cover. If none is included, write to us direct for an application form.
If you do not qualify, you may take out a paid subscription for $25 a year in the U.S.A., $35 a year elsewhere. Single copies are $1.50 each.

If you change your address, send us an old mailing label and your new address; there is generally a prepaid postcard for this inside the back cover. You will have to requalify to continue receiving ELECTRONIC DESIGN free.

The accuracy policy of ELECTRONIC DESIGN is:
• To make reasonable efforts to ensure the accuracy of editorial matter.
• To publish prompt corrections whenever inaccuracies are brought to our attention. Corrections appear at the end of the Letters column.
• To refuse any advertisement deemed to be misleading or fraudulent.

Microfilm copies are available of complete volumes of ELECTRONIC DESIGN at $19.00 per volume, beginning with Volume 9, 1961. Work is now in process to complete the microfilm edition of Volumes 1-8. Reprints of individual articles may be obtained for $2.00 each, prepaid ($0.50 for each additional copy of the same article) no matter how long the article. For further details and to place orders, contact the Customer Services Department, University Microfilms, 300 North Zeek Road, Ann Arbor, Michigan 48106; telephone (313) 761-4700.

Want to contact us? If you have any comments or wish to submit a manuscript or article outline, address your correspondence to:

Editor
ELECTRONIC DESIGN,
850 Third Avenue,
New York, N.Y. 10022.

Electronic Design 22, October 25, 1970
PRICE BREAKTHROUGH!

BOURNS®
CERMET
POTENTIOMETERS

for as low as...

Now you can buy Bourns quality at the lowest prices ever offered on cermet potentiometers.

SPECIFICATIONS

MODEL 3359
- 3/8" dia. x .228" high
- 1/2W at 70°C
- 100Ω to 1 meg.
- ±20% Std.; 10% avail.
- ±150 ppm/°C
- no
- $35

MODEL 3389
- .395" x .360" x .240" high
- 1/4W at 70°C
- 50Ω to 1 meg.
- ±20% Std.; 10% avail.
- ±150 ppm/°C
- yes
- $50

Send for catalog sheets on these two new single-turn adjustment potentiometers. Or call your nearest Bourns sales office for details.

BOURNS INC TRIMPOT PRODUCTS DIVISION• 1200 COLUMBIA AVE. RIVERSIDE, CALIF. 92507

NEW

RF SERIES
FRONT MOUNTING SWITCH

Flush Panel Mount - Installed from Front of Panel.

Button Centers are 1 1/32" if mounted in Ganged Panel Cut-out

Mechanical Actions:

- Model RNF - Momentary Action - Approx. Depth 2 5/16"
- Model RLF - Alternate Action - Approx. Depth 2 5/16"
- Model RIF - Pilot Lite Indicator - Approx. Depth 1 13/16"

On each Series, combination of Indicators and Switches can be Gang-Mounted together.

These series offer independent lamp terminals for Indicators and Switches. RR and RF Switches can have up to 4 Form C. Contacts rated at 2 Amp, 115V AC non-inductive. Contacts are WE #1 Gold Alloy. Buttons are 27/32" square. Colors are available. Pilot Lite Indicators accommodate two T1 3/4 lamps. Split screen Buttons are also offered for pilot light indicators only.

Write for full details.
STABILITY & QUALITY

High quality capacitors unrivalled in the precision, dependability and compactness. Quality is recognized by ever wider use in measurement equipment, computers, and automatic controllers. "LEAF" the matter of capacitors to MATSUO ELECTRIC CO.

Advertisers' Index

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMF Incorporated, Potter & Brumfield Division</td>
<td>89</td>
</tr>
<tr>
<td>Aerovox Corporation</td>
<td>107</td>
</tr>
<tr>
<td>Allen-Bradley Co.</td>
<td>16, 31, 42</td>
</tr>
<tr>
<td>Analogic Co.</td>
<td>132</td>
</tr>
<tr>
<td>Astro Communication Laboratory, Inc.</td>
<td>113</td>
</tr>
<tr>
<td>Beckman Instruments, Inc., Helipot Division</td>
<td>83</td>
</tr>
<tr>
<td>Bourns, Inc.</td>
<td>121, 129</td>
</tr>
<tr>
<td>Bulova Frequency Control Products</td>
<td>46</td>
</tr>
<tr>
<td>Burroughs Corporation</td>
<td>28</td>
</tr>
<tr>
<td>Cambridge Thermionic Corporation</td>
<td>52</td>
</tr>
<tr>
<td>Capitol Machine & Switch Co., The</td>
<td>129</td>
</tr>
<tr>
<td>CEMCO (Constantine Engineering Laboratories Co.)</td>
<td>67</td>
</tr>
<tr>
<td>Centralab-Semiconductor Division, Glo-Brite, Inc.</td>
<td>51</td>
</tr>
<tr>
<td>Circuit Stk., Inc.</td>
<td>52</td>
</tr>
<tr>
<td>Concord Electronics Corporation</td>
<td>116</td>
</tr>
<tr>
<td>Constantine Engineering Labs. Co. (CELCO)</td>
<td>67</td>
</tr>
<tr>
<td>Cunningham Corporation, subsidiary of Gleason Works</td>
<td>109</td>
</tr>
<tr>
<td>Curtis Development & Mfg. Co.</td>
<td>128</td>
</tr>
<tr>
<td>Cutler-Hammer</td>
<td>11</td>
</tr>
<tr>
<td>Dale Electronics, Inc.</td>
<td>Cover III</td>
</tr>
<tr>
<td>Dearborn Electronics, Inc.</td>
<td>53</td>
</tr>
<tr>
<td>Delco Radio, Division of General Motors</td>
<td>74, 75</td>
</tr>
<tr>
<td>Dow Corning Corporation</td>
<td>68, 69</td>
</tr>
<tr>
<td>Durex Fastener Co., Inc.</td>
<td>128</td>
</tr>
<tr>
<td>Eastman Kodak Company</td>
<td>25</td>
</tr>
<tr>
<td>Electro Cube, Inc.</td>
<td>128</td>
</tr>
<tr>
<td>Electronic Design</td>
<td>48</td>
</tr>
<tr>
<td>English Electric Valve Co., Ltd.</td>
<td>120A</td>
</tr>
<tr>
<td>Fabri-Tek, Inc., National Connector Division</td>
<td>39</td>
</tr>
<tr>
<td>Fairchild Semiconductor, A Division Fairchild Camera and Instrument Corporation</td>
<td>40 A-P</td>
</tr>
<tr>
<td>Fluke Mfg. Co., Inc., John</td>
<td>103</td>
</tr>
<tr>
<td>General Electric Company, Semiconductor Products Department 122, 123</td>
<td></td>
</tr>
<tr>
<td>General Electric Company, Tube Dept.</td>
<td>127</td>
</tr>
<tr>
<td>General Radio Company</td>
<td>1</td>
</tr>
<tr>
<td>Guardian Electric Manufacturing Company</td>
<td>15</td>
</tr>
<tr>
<td>Hayden Book Company, Inc.</td>
<td>120B</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>Cover II, 10, 90</td>
</tr>
<tr>
<td>Hoosier Magnetics, A Division of CRC-Croteau International, Inc.</td>
<td>118</td>
</tr>
<tr>
<td>ISE Electronics Corporation</td>
<td>131</td>
</tr>
<tr>
<td>Johanson Manufacturing Corp.</td>
<td>41</td>
</tr>
<tr>
<td>Jonathan Manufacturing Company</td>
<td>14</td>
</tr>
<tr>
<td>Kenics Electronics Corporation</td>
<td>111</td>
</tr>
<tr>
<td>Kokka Electric Corp.</td>
<td>120</td>
</tr>
<tr>
<td>M F Electronics, Inc.</td>
<td>116</td>
</tr>
<tr>
<td>Magnetics, A Division of Spang Industries, Inc.</td>
<td>8, 9</td>
</tr>
<tr>
<td>Mallory & Co., Inc., P. R.</td>
<td>87</td>
</tr>
<tr>
<td>Mastech, Inc.</td>
<td>119</td>
</tr>
<tr>
<td>Matsuo Electric Co., Ltd.</td>
<td>130</td>
</tr>
<tr>
<td>Molex, Incorporated</td>
<td>2</td>
</tr>
<tr>
<td>Monsanto Company</td>
<td>79</td>
</tr>
<tr>
<td>Motorola Semiconductor Products, Inc.</td>
<td>17 thru 24</td>
</tr>
<tr>
<td>Orient Electronics, Ltd.</td>
<td>52</td>
</tr>
<tr>
<td>Pomona Electronics Co., Inc.</td>
<td>117</td>
</tr>
<tr>
<td>Potter & Brumfield Division of AMF, Incorporated</td>
<td>89</td>
</tr>
<tr>
<td>Power/Mate Corp.</td>
<td>13</td>
</tr>
<tr>
<td>Precision Metal Products Co.</td>
<td>50</td>
</tr>
<tr>
<td>RCA Electronic Components and Devices</td>
<td>Cover IV</td>
</tr>
<tr>
<td>RFL Industries Inc.</td>
<td>115</td>
</tr>
<tr>
<td>Radiation, Incorporated</td>
<td>64, 65, 66</td>
</tr>
<tr>
<td>Relcom</td>
<td>4, 5</td>
</tr>
<tr>
<td>Rogers Company</td>
<td>50</td>
</tr>
<tr>
<td>Schauer Manufacturing Corp.</td>
<td>114</td>
</tr>
<tr>
<td>Signetics Corporation</td>
<td>33</td>
</tr>
<tr>
<td>Siliconix Incorporated</td>
<td>56</td>
</tr>
<tr>
<td>Sprague Electric Company</td>
<td>26</td>
</tr>
<tr>
<td>Stalwart Rubber Company</td>
<td>105</td>
</tr>
<tr>
<td>Sylvania Electric Products, Inc.</td>
<td>6, 7</td>
</tr>
<tr>
<td>Systron-Donner Corporation</td>
<td>54</td>
</tr>
<tr>
<td>TRW Semiconductor Division of TRW, Inc.</td>
<td>85</td>
</tr>
<tr>
<td>Tektronix, Inc.</td>
<td>45, 100</td>
</tr>
<tr>
<td>Tempil Division of Big Three Industrial Gas and Equipment Co.</td>
<td>124</td>
</tr>
<tr>
<td>Toyo Communication Equipment Co., Ltd.</td>
<td>118</td>
</tr>
<tr>
<td>Triplett Corporation</td>
<td>12</td>
</tr>
<tr>
<td>Tung Sol Division, Wagner Electric Corporation</td>
<td>125</td>
</tr>
<tr>
<td>Union Carbide Corporation, Components Dept.</td>
<td>49</td>
</tr>
<tr>
<td>VERNITRON Piezoelectric Division</td>
<td>50</td>
</tr>
<tr>
<td>Zenith Radio Corporation</td>
<td>121</td>
</tr>
</tbody>
</table>

For further information, Please write to Manufacturers and Exporters

MATSUO ELECTRIC CO., LTD.
Head Office: 3-5, 3-chome, Sennari-cho, Toyonaka-shi, Osaka, Japan
Cable: "NCCMATSUO" OSAKA Telex: 523-4164 OSA
Tokyo Office: 7-1, 3-chome, Nichi-Gotanda, Shinagawa-ku, Tokyo

INFORMATION RETRIEVAL NUMBER 67

MATSUO'S other capacitors include:

Solid Tantalum Capacitors: MICRO-CAP for hybrid ICs, Type TAX hermetically sealed in metallic case, Type TSX encased in metallic case and sealed with epoxy resin. Type TSL encased in metallic case and sealed with epoxy resin.

Polyester Film Capacitors: Type MFL epoxy dipped, Type MFK epoxy dipped, non inductive, Type MXT encased in plastic tube, non inductive.
When multi-faceted display problems dictate 9 to 9 work days, it's high time you saw things in a new light, on a single plane with no "dancing" digits and with no eye strain.

Legi DG 12C numerical indicator tube segments are an eye-easy phosphor green for a readout as bright and clear as day, legible at distances over 35 feet. These tubes offer low-voltage, low current drain, and high stability advantages so definitive and pack a performance punch so large, you can't afford not to afford to examine full particulars. They fit to the "T" perfectly portable and circuit-board mounting applications and are available at mass production prices. Look at these important particulars, then write for comprehensive data that show display tube performance in an entirely new light:

LEGI DG 12C

- Filament voltage at 95 mA: 0.85 volts ± 10%
- Phosphor segments & control grid: 20 Vdc
- Brightness: 80 foot-lamberts
- Operating temperature: −10° to +70°C
- Dynamic life expectancy: 200,000 hrs.

U.S. PATENT 3508101

Manufacturer:

Ise Electronics Corporation
P.O. Box 46, Ise City Mie Pref., Japan Phone: Mie (059627)-26
ONLONE COMPANY BUILDS A TRUE 0.01% A/D CONVERTER FOR $249.

ANALOGIC

When we say 0.01%, we mean 0.01%. With absolute accuracy, including the effects of non-linearity and resolution, better than 0.01% of reading ±1 LSB unavoidable quantizing error. 0.01% accuracy essentially from turn-on. Zero stability better than 0.0005% to +unavoidable quantizing error. 0.01% x 4”% plug-in card. It requires only power and an output register to digitize up to 14 binary bits or 4 BCD digits (plus sign). It also will make true ratiometric measurements.

Analogic's AN2317* is the moderate speed voltage measurement and digitizing device utilized in precision instruments manufactured by many companies known for the quality and accuracy of their products. It's also the converter used in applications ranging from military airborne data reduction to oceanographic research.

It's used as a straight A/D converter, or with the Analogic AN516 panel display to provide 4 digit 0.01% digital read-out for analog instrumentation.

Perhaps you should consider it. Let us send you more data.

ANALOGIC®
Analog Corporation, Audubon Road
Wakefield, Mass. 01880, Tel: (617) 246-0300

*Substantial OEM discounts available.

INFORMATION RETRIEVAL NUMBER 69

Product Index

Information Retrieval Service. New Products, Evaluation Samples (ES), Design Aids (DA), Application Notes (AN), and New Literature (NL) in this issue are listed here with page and Information Retrieval numbers. Reader requests will be promptly processed by computer and mailed to the manufacturer within three days.

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
<th>IRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>capacitors, variable</td>
<td>110</td>
<td>280</td>
</tr>
<tr>
<td>fan, motor</td>
<td>112</td>
<td>287</td>
</tr>
<tr>
<td>lamp, T-1</td>
<td>110</td>
<td>281</td>
</tr>
<tr>
<td>modules, timing</td>
<td>110</td>
<td>283</td>
</tr>
<tr>
<td>relays, solid-state</td>
<td>110</td>
<td>279</td>
</tr>
<tr>
<td>resistors, high-voltage</td>
<td>112</td>
<td>286</td>
</tr>
<tr>
<td>resistors, thin-film</td>
<td>112</td>
<td>285</td>
</tr>
<tr>
<td>sensor, heat</td>
<td>112</td>
<td>289</td>
</tr>
<tr>
<td>switch, transfer</td>
<td>110</td>
<td>284</td>
</tr>
<tr>
<td>switches, proximity</td>
<td>112</td>
<td>288</td>
</tr>
<tr>
<td>thermistors, thin-film</td>
<td>109</td>
<td>277</td>
</tr>
<tr>
<td>trimmer, cermet</td>
<td>109</td>
<td>278</td>
</tr>
<tr>
<td>tube, CCTV</td>
<td>112</td>
<td>290</td>
</tr>
<tr>
<td>tube, storage</td>
<td>110</td>
<td>282</td>
</tr>
<tr>
<td>Data Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>calculator, 12-digit</td>
<td>116</td>
<td>305</td>
</tr>
<tr>
<td>calculator, 16-digit</td>
<td>115</td>
<td>297</td>
</tr>
<tr>
<td>data logger</td>
<td>115</td>
<td>300</td>
</tr>
<tr>
<td>generator, pattern</td>
<td>115</td>
<td>301</td>
</tr>
<tr>
<td>memory system, core</td>
<td>116</td>
<td>303</td>
</tr>
<tr>
<td>modems, low-speed data</td>
<td>115</td>
<td>286</td>
</tr>
<tr>
<td>phase jitterer</td>
<td>116</td>
<td>302</td>
</tr>
<tr>
<td>test set, data</td>
<td>116</td>
<td>304</td>
</tr>
<tr>
<td>ICs and Semiconductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>converter, MECL</td>
<td>106</td>
<td>270</td>
</tr>
<tr>
<td>gates, TTL NOR</td>
<td>108</td>
<td>273</td>
</tr>
<tr>
<td>ICs, monolithic</td>
<td>108</td>
<td>275</td>
</tr>
<tr>
<td>memory, programmable</td>
<td>106</td>
<td>268</td>
</tr>
<tr>
<td>memory, read-only</td>
<td>106</td>
<td>266</td>
</tr>
<tr>
<td>memory, read/write</td>
<td>106</td>
<td>269</td>
</tr>
<tr>
<td>MSIs, dual-in-line</td>
<td>108</td>
<td>274</td>
</tr>
<tr>
<td>shift register, MOS</td>
<td>108</td>
<td>276</td>
</tr>
<tr>
<td>transistor, power</td>
<td>114</td>
<td>272</td>
</tr>
<tr>
<td>transistors, power</td>
<td>106</td>
<td>267</td>
</tr>
<tr>
<td>transistors, power</td>
<td>106</td>
<td>271</td>
</tr>
<tr>
<td>Instrumentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>generator, fm</td>
<td>112</td>
<td>292</td>
</tr>
<tr>
<td>generator, single-pulse</td>
<td>114</td>
<td>294</td>
</tr>
<tr>
<td>power supplies, 100-A</td>
<td>114</td>
<td>296</td>
</tr>
<tr>
<td>recorder, pressure</td>
<td>112</td>
<td>291</td>
</tr>
<tr>
<td>recorder, X-Y</td>
<td>114</td>
<td>293</td>
</tr>
<tr>
<td>tester, IC</td>
<td>114</td>
<td>295</td>
</tr>
<tr>
<td>Microwaves & Lasers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>array, photodiode</td>
<td>101</td>
<td>250</td>
</tr>
<tr>
<td>attenuators, step</td>
<td>102</td>
<td>252</td>
</tr>
<tr>
<td>detector, IR</td>
<td>102</td>
<td>251</td>
</tr>
<tr>
<td>displays, solid-state</td>
<td>102</td>
<td>253</td>
</tr>
<tr>
<td>oscillators, microwave</td>
<td>102</td>
<td>257</td>
</tr>
<tr>
<td>phototransistor</td>
<td>102</td>
<td>255</td>
</tr>
<tr>
<td>preamplifiers, thin-film</td>
<td>102</td>
<td>254</td>
</tr>
<tr>
<td>switch, light-activated</td>
<td>102</td>
<td>256</td>
</tr>
<tr>
<td>Modules & Subassemblies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>amplifier, power</td>
<td>105</td>
<td>264</td>
</tr>
<tr>
<td>amplifier, thick-film</td>
<td>104</td>
<td>258</td>
</tr>
<tr>
<td>decoder/drivers</td>
<td>104</td>
<td>262</td>
</tr>
<tr>
<td>displays, numeric</td>
<td>105</td>
<td>265</td>
</tr>
<tr>
<td>op amp, hybrid</td>
<td>104</td>
<td>260</td>
</tr>
<tr>
<td>oscillators, crystal</td>
<td>104</td>
<td>261</td>
</tr>
<tr>
<td>readout, plug-in</td>
<td>104</td>
<td>259</td>
</tr>
</tbody>
</table>

Category | Page | IRN |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging & Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epoxy, two-component</td>
<td>119</td>
<td>317</td>
</tr>
<tr>
<td>marker</td>
<td>120</td>
<td>318</td>
</tr>
<tr>
<td>masking, solder</td>
<td>119</td>
<td>314</td>
</tr>
<tr>
<td>socket, 14-pin DIP</td>
<td>119</td>
<td>315</td>
</tr>
<tr>
<td>sockets, test</td>
<td>120</td>
<td>320</td>
</tr>
<tr>
<td>terminations, cable</td>
<td>119</td>
<td>316</td>
</tr>
<tr>
<td>tubing, rfi/emi</td>
<td>120</td>
<td>319</td>
</tr>
<tr>
<td>Tools & Engineering Aids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>caliper, dual</td>
<td>117</td>
<td>309</td>
</tr>
<tr>
<td>gauge, wire</td>
<td>118</td>
<td>310</td>
</tr>
<tr>
<td>kit, soldering</td>
<td>118</td>
<td>312</td>
</tr>
<tr>
<td>pliers, cutting</td>
<td>118</td>
<td>313</td>
</tr>
<tr>
<td>stripper, wire</td>
<td>117</td>
<td>307</td>
</tr>
<tr>
<td>tool kit</td>
<td>118</td>
<td>311</td>
</tr>
<tr>
<td>tools, miniature</td>
<td>117</td>
<td>308</td>
</tr>
<tr>
<td>torch, tiny</td>
<td>117</td>
<td>306</td>
</tr>
<tr>
<td>New Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>capacitors, chip</td>
<td>126</td>
<td>358</td>
</tr>
<tr>
<td>capacitors, film</td>
<td>126</td>
<td>345</td>
</tr>
<tr>
<td>components</td>
<td>126</td>
<td>351</td>
</tr>
<tr>
<td>components</td>
<td>126</td>
<td>356</td>
</tr>
<tr>
<td>connectors, magnetic</td>
<td>126</td>
<td>346</td>
</tr>
<tr>
<td>coupler, acoustic</td>
<td>126</td>
<td>350</td>
</tr>
<tr>
<td>delay lines</td>
<td>126</td>
<td>354</td>
</tr>
<tr>
<td>displays and lamps</td>
<td>126</td>
<td>343</td>
</tr>
<tr>
<td>fans and blowers</td>
<td>126</td>
<td>348</td>
</tr>
<tr>
<td>fans and blowers</td>
<td>126</td>
<td>353</td>
</tr>
<tr>
<td>ferrites</td>
<td>126</td>
<td>349</td>
</tr>
<tr>
<td>photo-electric devices</td>
<td>126</td>
<td>344</td>
</tr>
<tr>
<td>photomultipliers</td>
<td>126</td>
<td>357</td>
</tr>
<tr>
<td>Application Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>handbook, power-supply</td>
<td>124</td>
<td>335</td>
</tr>
<tr>
<td>microwave measurements</td>
<td>124</td>
<td>337</td>
</tr>
<tr>
<td>MOSFET design</td>
<td>124</td>
<td>336</td>
</tr>
<tr>
<td>resins, silicone</td>
<td>124</td>
<td>338</td>
</tr>
<tr>
<td>VSWR measurements</td>
<td>124</td>
<td>339</td>
</tr>
<tr>
<td>Design Aids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>calculator, decimal</td>
<td>122</td>
<td>321</td>
</tr>
<tr>
<td>templates, drafting</td>
<td>122</td>
<td>322</td>
</tr>
<tr>
<td>Evaluation Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beads, ferrite</td>
<td>121</td>
<td>342</td>
</tr>
<tr>
<td>connector, 12-pin</td>
<td>121</td>
<td>340</td>
</tr>
<tr>
<td>cords, patch</td>
<td>121</td>
<td>341</td>
</tr>
</tbody>
</table>

INFORMATION RETRIEVAL NUMBER IRN
Take control with DALE®

Ready to ship now...

Improved low cost STEPPING RELAYS

Under $6.00 in quantities of 2,000. Unidirectional/bidirectional plate and wafer types. Improved design with field replaceable components and auxiliary switching. Meet wide range of communication, surveillance, testing, and coin-operated machine applications. Double pole models to 6 steps. Single pole models to 13 steps. Exclusive selectable stop allows users of plate model to adjust steps as needed. For 6, 12, 24, 117 volts AC/DC.

Reversible AC Hysteresis Synchronous Motors

Gearhead Motors

...available with magnetic clutch

Motorized Potentiometer Kits for operating 1, 3, 10-turn pots, rotary switches, variable capacitors, cams, timers, tuners.

Write for new catalog or phone 605-665-9301

DALE ELECTRONICS, INC.
Box 180
Yankton, So. Dak. 57078

In Canada: Dale Electronics Canada, Ltd.
A subsidiary of The Lionel Corporation

INFORMATION RETRIEVAL NUMBER 243
RCA Linear IC Arrays: performance, dependability, and versatility in application.

Here are ten important answers to some of your most pressing circuit design problems. These monolithic, active-device arrays combine the attributes of integrated circuits with the design flexibility and accessibility of discrete devices.

In this series of transistor and diode arrays, you get the economy and availability of mature devices. But you are in no way locked into a circuit configuration which may not meet the requirements of your application.

RCA IC Arrays offer four, five or six transistors in three package styles; six diodes in bridge configuration or as an array of independent diodes.

For new design freedom, for excellent device matching and temperature tracking, for significant savings—look into these RCA IC Arrays.

For further information, see your local RCA Representative or your RCA Distributor. For a copy of RCA's Integrated Circuit Product Guide (or a specific technical bulletin by File No.) write RCA, Commercial Engineering, Section 57J-25/CA37, Harrison, New Jersey 07029. International: RCA, 2-4 rue du Lièvre, 1227 Geneva, Switzerland, or P.O. Box 112, Hong Kong.

Device Type	**Package**	**Description**	**Technical Bulletin**	**Price (1000-unit level)**
CA3018 | 12-lead TO-5 | Two isolated transistors and Darlington-connected transistor pair | 338 | 5.98
CA3018A | 12-lead TO-5 | Premium version of CA3018 | 338 | 1.35
CA3019 | 10-lead TO-5 | One diode-quad, two isolated diodes | 236 | .98
CA3026 | 12-lead TO-5 | Dual differential amplifier | 388 | 1.25
CA3036 | 10-lead TO-5 | Dual Darlington array | 275 | .89
CA3039 | 12-lead TO-5 | Six matched diodes | 345 | .98
CA3045 | 14-lead DIL ceramic | Differential amplifier and three isolated transistors | 341 | .59
CA3046 | 14-lead DIL plastic | Differential amplifier and three isolated transistors | 341 | .98
CA3049 | 12-lead TO-5 | Dual independent differential RF/IF amplifiers | 378 | 1.95
CA3054 | 14-lead DIL plastic | Dual independent differential amplifiers | 388 | 1.25