The ADC12062 ~ Fast sampling rate of 1MHz ~ Ultra low power dissipation of 75mW max. @ +5V ~ For demanding instrumentation and communications applications ~ EEPROM trimming architecture guarantees excellent DC and AC performance (Gain error = ±1LSB; Offset error = ±1.25LSB; DNL = ±0.95LSB; INL = ±1.0LSB; SNR = 69.5dB; THD = 70dB) ~ 2-channel MUX, on-board sample/hold and high-speed parallel interface. For a free product sample kit and ordering information, call 1-800-NAT-SEMI, Ext. 271.
NOT THE SAME OLD WAVE
The same old wave of analog I/Cs just won’t cut it anymore — what with the emergence of pocket-sized personal electronics, communications superhighways, and automobiles made more of silicon than metal. That’s why National Semiconductor is introducing a bold, new generation of analog solutions guaranteed to help you meet the design challenges of the digital future. Solutions built to deliver the tightest specs you’ll find anywhere.

You see, we want to be the supplier you look to for all your analog needs. So, the next time you’re faced with a really tough analog problem, give us a call. Or simply turn the page. And see for yourself why we’re not the same old wave.
YOU DEMAND SERVICE. AT DIGI-KEY YOU GET IT!

OVERALL PERFORMANCE

Engineering & Distribution Survey
Electronic Engineering Times 1993

<table>
<thead>
<tr>
<th>Company</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGI-KEY</td>
<td>90%</td>
</tr>
<tr>
<td>Marshall</td>
<td>53%</td>
</tr>
<tr>
<td>Wyle</td>
<td>51%</td>
</tr>
<tr>
<td>Pioneer</td>
<td>50%</td>
</tr>
<tr>
<td>Arrow</td>
<td>48%</td>
</tr>
<tr>
<td>Hamilton/Hallmark</td>
<td>44%</td>
</tr>
<tr>
<td>Newark</td>
<td>43%</td>
</tr>
</tbody>
</table>

In a recent 'Engineering & Distribution Survey' conducted by Electronic Engineering Times, respondents were asked to evaluate distributors with whom they have done business or were most familiar. The table above reflects the percentage of respondents who rated these distributors as excellent (6.5 responses) on a 6 point scale where 6=excellent and 1=poor in terms of OVERALL PERFORMANCE!

DIGI-KEY is a registered trademark of Digi-Key Corporation and is in no way affiliated with the other distributors evaluated in the survey or listed above.

Call, write or fax for your FREE CATALOG today!

Digi-Key Corporation
Quality Electronic Components, Superior Service
701 Brooks Ave. South, Thief River Falls, MN 56701
Toll Free: 1-800-344-4539, Fax: 218-681-3380

CIRCLE NO. 1
Our VSS makes almost any development environment more productive.

Get the world's first high-performance VHDL simulator with ASIC sign-off.

Put Synopsys' VHDL System Simulator™ (VSS) family in your development environment and double, triple, even quadruple your productivity. Multiple engines provide fast simulation throughout the design cycle—from conception to ASIC sign-off. And an integrated family of simulators—VSS Expert™ and VSS Professional™—lets you tailor your simulation solution to your design team's needs and delivers the best simulation value available.

Find out more. Call 1-800-568-2619, dept. N2, for this free booklet.

International inquiries, call 408-428-6451. Fax response also available at 408-435-5009.
Over 80 off-the-shelf models...

3KHz-1500MHz from $1.95

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specified frequency range?...Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, in connector, TO-, flatpack, surface-mount, or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55631 requirements*). Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard, other types on request.

Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000M ohms insulation resistance and up to 1000V dielectric voltage. For wide dynamic range applications involving up to 100mA primary current, use the T-H series. Fully detailed data appear in our 740-pg RF/IF Designer’s Handbook.

Need units in a hurry?...all models are covered by our exclusive one-week shipment guarantee. Only from Mini-Circuits.

*Units are not QPL listed.

For detailed specs on all Mini-Circuits products refer to • THOMAS REGISTER Vol. 23 • MICROWAVES PRODUCT DIRECTORY • EEM • MINI-CIRCUITS 740-pg HANDBOOK.

CIRCLE NO. 87
Nothing stacks up like our new interface chip.

Now computer designers can downsize and simplify PCMCIA power management in all application types.

A smaller PCMCIA interface. Our highly integrated monolithic Si9710CY interface switch eliminates many external components — reducing system size and improving reliability.

A more efficient PCMCIA solution. This PCMCIA rev. 2.1 compatible IC has on-resistance as low as 150 mΩ, the industry’s lowest, for improved tolerance on the output voltages. And its low 1-µA leakage current significantly extends battery life.

A simpler Plug and Play design. The Si9710CY, by eliminating up to seven power discretes and drivers, simplifies the design task and reduces design cycle time.

Get more efficient host adapter designs.

Contact your local Siliconix/TEMIC sales office. Or call our toll-free hot line and ask for more technical information. 1-800-554-5565, ext. 915.

Siliconix
A Member of the TEMIC Group
2201 Laurelwood Road, Santa Clara, CA 95054
Fax: 408-970-3995, Attn. 915
THE DESIGN MAGAZINE OF THE ELECTRONICS INDUSTRY

SPECIAL REPORT

Probing the limits of logic synthesis

Logic synthesis has freed designers from the complexities of gate-level design by converting RTL descriptions to optimized gate-level logic. But ASIC, FPGA, and CPLD designers are still constrained by a dependence on silicon. Designers will need to pay more—not less—attention to layout as silicon densities continue to increase.—Ray Weiss, Technical Editor

DESIGN IDEAS

Digital potentiometer controls LCD bias
Programmable diode biases bridge
Synchronized regulator produces coherent noise
Circuit measures software-execution time
Switching-regulator output goes below V_{REF}
Pulse-width adjuster reverses servo motor

TECHNOLOGY UPDATES

Intelligent power ICs:
Auto applications drive up single chip’s IQ

Power-actuator control becomes more elaborate with higher integration of CMOS logic and MOSFET switching. Concentrating this intelligence and high-current handling in single-chip SMT packages invokes neat power-dissipation techniques.—Brian Kerridge, Technical Editor

Continued on page 7
Belden Bends the Rules...

Replace Your Semi-Rigid Cable with High Performance Conformable® Coax, Sweep Tested to 20 GHz

Belden® Conformable Coax doesn’t stick to the straight and narrow. This precision cable moves anywhere you want and quickly conforms to suit your design. It’s flexible and hand-formable, so it can be easily shaped to make tight bends, coils and curves without forming tools and equipment.

Belden was the originator of the first patented hand-formable product. Now, Belden introduces an improved design which has been re-engineered to meet the most stringent requirements in the microwave industry. This improved design electrically and physically outperforms ANY hand-formable product available. A patented composite shield consisting of copper foil tape and tin-filled braid provides unmatched electrical stability and shielding performance.

Among the other advantages Belden Conformable Coax offers are:
• Low VSWR up to 20 GHz (50 ohm cables)
• Exceptional phase stability
• Longest flex life of any hand-formable product on the market
• Reduces labor, purchasing, manufacturing and packaging expenses associated with semi-rigid coax
• Drastically reduces equipment spec drawing requirements and shortens design time
• Retains shape after bending and does not buckle when reformed.

Choose the Conformable Coax you need:
• RG-405 type 50 ohm with .087” O.D.
• 75 ohm with .086” O.D. for high frequency video applications
• RG-402 type 50 ohm with .138” O.D.

Conformable Coax is available in bulk cable spools: 50, 100, 250, 500 and 1,000 feet. For more information about the full line, call and request New Product Bulletin NP106:

1-800-BELDEN-4

Copyright 1994, Belden Inc.
March 17, 1994 • 7

PC-based EDA-tool directory

PC-based EDA tools are challenging workstation-based tools for utility and low cost. In our directory, we've identified 83 vendors that offer a broad range of products.—Doug Conner, Technical Editor

Harmonious convergence

EDN sets to the task of naming the exploding market that’s growing out of the convergence of computer, communications, and consumer technologies...How does “C-Quad” strike you?
—Steven H Leibson, Editor-in-Chief

CALLING ALL AUTHORS

EDN—in collaboration with international book publisher Butterworth-Heinemann—is seeking authors to extend our exciting series of practical books about electronic hardware and software. Titles already in the EDN Series for design engineers include Analog Circuit Design, by Jim Williams; Operational Amplifiers, by Jiri Dostal; and Rechargeable Batteries Applications Handbook, by Gates Energy Products.

We have room in the series for many more professional titles. Whether you have an idea for a book or a completed manuscript, contact us. Developing an idea for a full-fledged book might be a lot easier than you think. Let EDN help you get published.

Contact: Frank Satlow, Series Editor
Butterworth-Heinemann
80 Montvale Ave
Stoneham, MA 02180
Phone (617) 438-8464, ext. 241
Fax (617) 438-8103

EDN Series

Embedded Systems... 80
Microprocessors .. 85
Components .. 88
Integrated Circuits ... 93
Test & Measurement .. 99
Computers & Peripherals 104
Power Sources ... 110

News Breaks .. 13
EDN’s International Advertisers Index 112
Career Opportunities .. 115

TECHNOLOGY UPDATES

NEW PRODUCTS

EDITORIAL

DEPARTMENTS

EDN's International Advertisers Index

March 17, 1994

Continued from page 5

Harmonious convergence

EDN sets to the task of naming the exploding market that’s growing out of the convergence of computer, communications, and consumer technologies...How does “C-Quad” strike you?
—Steven H Leibson, Editor-in-Chief

CALLING ALL AUTHORS

EDN—in collaboration with international book publisher Butterworth-Heinemann—is seeking authors to extend our exciting series of practical books about electronic hardware and software. Titles already in the EDN Series for design engineers include Analog Circuit Design, by Jim Williams; Operational Amplifiers, by Jiri Dostal; and Rechargeable Batteries Applications Handbook, by Gates Energy Products.

We have room in the series for many more professional titles. Whether you have an idea for a book or a completed manuscript, contact us. Developing an idea for a full-fledged book might be a lot easier than you think. Let EDN help you get published.

Contact: Frank Satlow, Series Editor
Butterworth-Heinemann
80 Montvale Ave
Stoneham, MA 02180
Phone (617) 438-8464, ext. 241
Fax (617) 438-8103
Here's the laser
What's the story on Toshiba? System solutions.

It's true. Nobody can add more value to your system more ways than Toshiba. From 32-bit RISC processors and design-defining ASICs to optimally-featured microcontrollers, right down to multi-layer PCBs, we're definitely thinking "big picture" when we look at your system plans.

Let us prove the point using an up-to-date laser printer as just one example. You'll put our wide selection of DRAM densities and organizations to good use as main memory and soup-up performance using our SRAMs as buffer memory. We've got the MROM you need for code storage. And memory cards for fonts, buffers and custom options.

essential market differentiation. Then our visible laser diodes and photo interrupters can make light of it all.

In an era of ever closer partnerships, our broad, broad line of semiconductors and ICs and our finely-honed system sensibilities give us a competitive advantage. More importantly, they give you a competitive advantage. By helping you keep a lid on costs and get to market sooner. And when success arrives, Toshiba's legendary manufacturing prowess assures you uninterrupted supply.

Of course, your system's quality is only as good as the sum of its parts. So we take great measures to assure the highest quality components on the market today.

We're proud of our ISO 9000 certification in Japan and expect certification in the U.S. by year end.

And we top it all off with an unrivaled customer story.

End of story? No, that's just the beginning. Call us today for all the ways we can make your next design a little more elegant, a little more effective and a lot more competitive. 1-800-879-4963.
Presenting The PCnet Family: Software-Compatible Ethernet Controllers That Address All Of Your Bus Needs.

Here's a prime example of how to get along with everyone — with the PCnet Ethernet controller family from Advanced Micro Devices. PCnet controllers are compatible with the most popular PC bus architectures, the most popular Network Operating Systems (NOS), and the entire controller family uses the same driver for each NOS.

It's the Ethernet controller family NOS vendors are already quite familiar with. In fact, it's vendor certified as 100% compatible with operating systems like NetWare®, Windows NT™, LAN Manager, and LANtastic®.

What's more, the PCnet family uses a high performance Bus Mastering architecture, for higher throughput and lower CPU utilization.
Talks To Any Driver.

Plus, your designs require no extra memory, saving you board space, money, and power. For additional power savings, PCnet devices support two power-down modes for notebook and green PC designs.

Virtually any design will love the PCnet controllers, since they're available now in VL, PCI, and jumperless Microsoft Plug and Play ISA versions. And our new PCnet-SCSI combines both high performance Ethernet and SCSI capabilities.

For more information on the PCnet family, call AMD® today. Soon your next PC will be talking to everyone.

800-222-9323

Advanced Micro Devices
CIRCLE NO. 73

EDN March 17, 1994 • 11
FASTER
(2 Gs/s Sample Rate, 500 MHz Bandwidth)

DEEPER
(8 Mbytes Acquisition Memory)

SMARTER
(Unsurpassed Triggering, Measurements & Waveform MATH)

BETTER,

LeCroy 9354,

(Curious?)

800-4-LeCroy
TSSI and See Technologies merge to form Summit Design

TSSI, a developer of software for test-program-development and timing-specification tools, is merging with See Technologies, a developer of electronic-system-design-automation (ESDA) tools. The result of the merger is Summit Design, a company that offers both test-development and ESDA tools.

The first ESDA offering from Summit is Visual HDL, a tool for graphically creating and verifying VHDL design. Visual HDL lets you specify a design using text or graphical specifications, such as block diagrams, state diagrams, flow charts, and truth tables. The tool also provides an interactive simulator with a source-level debugger. To simplify debugging, the debugger couples design input and simulation results in a cause-and-effect relationship.

According to the company, beta-site users spend less than one-third the time developing designs compared with text-editor-based VHDL-design methods. Visual HDL is available now for $12,500 running under Microsoft Windows. The company plans to ship a $25,000 Unix version in the first half of this year.

Summit is also introducing Xpert HDL, a VHDL-design-specification and -management tool that focuses on the top-down design of ICs and electronic systems. The tool streamlines the flow between specification, simulation, and synthesis; it includes an IEEE-1076-compliant VHDL parser and text editor that check for syntax errors on-line as you enter code. Xpert HDL also offers predefined templates that speed design of all standard VHDL constructs and let you customize them to enforce uniform coding styles across a design team. The tool makes on-line checks of VHDL to verify its coding for compatibility with Synopsys and Viewlogic synthesis tools. The object-oriented browser lets you traverse the design hierarchy to locate related pieces of code. For example, by specifying a signal, you can see everywhere that signal is driven in the VHDL description. Xpert HDL costs $7500 and will be available in April for Sun workstations.—by Doug Conner

Summit Design, Beaverton, OR, (503) 643-9281.

Workstations go portable

Two new SPARC-based workstations let you take your design work home or on the road. The first, from Sun Microsystems Computer Corp, provides new levels of workstation performance for a portable unit; the other, from Tadpole Technology Inc, is easier to take with you and costs less. Sun’s 13-lb unit has a “lunch-box” configuration; Tadpole’s, at 6 lbs, is a more conventional laptop style. Both are available in color and monochrome versions.

Sun’s Voyager uses a 60-MHz MicroSPARC II processor and delivers performance of 43 SPECint92 and 37 SPECfp92. Tadpole’s SPARCbook 3, with a 50-MHz MicroSPARC processor (the Texas Instruments TMS390S10) provides 26 SPECint92 and 21 SPECfp92. A price difference goes along with the performance difference: Sun’s units cost $10,000 to $15,000; Tadpole’s go for $7500 to $10,000.

Display capabilities reflect the price differences, too. Sun’s portables have 1024×768-pixel (color) or 1152×900-pixel (monochrome) displays; Tadpole’s units have 640×480-pixel displays, but special software lets you emulate workstation displays up to 1280×960 pixels. You can also connect any of the workstations to an external monitor and get a regular workstation display—for example, 1280×1024 or 1152×900 pixels with the Tadpole units, depending on model type.

Sun and Tadpole workstations are similarly configured. The Sun units can have 16 to 80 Mbytes of RAM; Tadpole’s have from 16 to 64 Mbytes. Sun has a 340-Mbyte hard disk; Tadpole offers both 340- and 520-Mbyte removable drives. All the workstations have two PCMCIA slots, allowing use of two Type I or II cards or one Type III device. Tadpole provides a built-in 14.4-kbps data/fax modem; Sun’s modem is an optional PCMCIA card. Sun’s units offer ISDN capability, as does one of Tadpole’s. Tadpole provides Solaris 1.1 or 2.3 software; Sun provides Solaris 2.3.

Tadpole claims the SPARCbook 3 operates for one hour on internal, rechargeable nickel-metal-hydride batteries and five hours from external nickel-cadmium batteries. Sun’s Voyager is more transportable than portable, in that battery operation is the exception rather than the rule. Sun claims system power consumption for the Voyager will be 40 to 50W max and 20 to 25W typ.—by Gary Legg

Sun Microsystems Computer Corp, Mountain View, CA, (800) 821-4643.

Tadpole Technology Inc, Austin, TX, (512) 219-2200.
Service will research electronics end users

The Business Research Group (BRG), a division of Cahners Publishing Company, has launched the Electronics Research Service (ERS), a market-research service for the semiconductor and electronics industries. ERS' first study was on multimedia: It estimated that, for 1994, North American companies will spend $4.8 billion on business and commercial multimedia applications. Other research topics include network integration and wireless communications.

BRG sells research reports that analyze specific markets by surveying OEMs and end users in the electronics and semiconductor industries. Research reports detail end-user buying behavior, captive-supplier applications, market trends, overseas-supplier trends, application development, and technology/industry standards.—by Jim Leonard

Server supports remote Unix access over Internet Protocol

Age Logic Inc has announced XoftWare/32 for Windows, Serial Edition, which is based on the company's Serial ConneXion technology. Serial ConneXion transmits compressed data over Internet Protocol lines, transmits Unix applications over remote and serial phone lines, and permits the access and display of multiple applications from multiple hosts. The software accommodates users who want to use serial-line connections within corporate environments and those who need to access Unix hosts from a PC via modem at a remote site.

XoftWare/32 for Windows is currently in beta testing. The company plans to release the package in April, and versions for Windows NT and for OS/2 will be available in the second quarter. The software comes with Age's Professional Edition utilities, which include a network file manager that manages display and transfer of local and remote files and allows users to print Unix files on local PC printers. XoftWare/32 for Windows costs $245; each supported host system requires Serial Host ConneXion, which costs $125.—by Fran Granville

Chip puts ATM on twisted-pair wire

Handling data rates as high as 155 Mbps, the ML6672 transceiver device connects asynchronous-transfer-mode (ATM) systems to Category 5 twisted-pair wire. The device replaces the fiber-optics drivers and receivers in what would typically be a synchronous-optical-network (SONET) link. The transceiver senses the strength of incoming signals and uses that information to tune an equalization circuit to remove distortions in the signal. It sends signals as far as 100m. Cost is $20 (1000) for the 32-pin plastic leaded chip carrier-packaged transceiver.

—by Richard A Quinnell

Fiber-optic module runs at 1.5 Gbps

The FTR-8510 integrated optical transceiver uses ordinary compact-disk laser diodes and multimode fiber but achieves data rates from 100 Mbps to 1.5 Gbps with a 10^-16 bit error rate. The module uses 0.8W at 5V and includes the optical receiver, a transmitter, and link-control logic. The control logic includes self-test and optical diagnostic circuits, so it can provide status information on power transmitted and received, bias voltages, and transmitter temperature. The module costs $600.

—by Richard A Quinnell

Wireless networks get a boost

In late January, the Electronics Industry Association of Alberta, Canada, selected Wi-LAN's Model 902-20 wireless local-area network (LAN) as best new technology of 1993. Model 902-20 is a 20-Mbps wireless LAN that plugs into conventional network interface cards; the unit handles three times more users than Ethernet can—at a rate exceeding the capability of standard Ethernet cable. For security, the wireless LAN's modulation technique makes radio signals difficult to intercept and decipher. The 902-20's multicode direct-sequence, spread-spectrum-modulation technology results from a partnership between the University of Calgary and AGT Ltd (Calgary, AB, Canada) under a grant from the National Research Council of Canada.—by Jim Leonard

SHORTS

Method and Finisar announce joint-development agreement. Method Electronics has announced a joint-development and license agreement with Finisar Inc to develop a line of high-speed, short-wave, low-cost optical data links. Method Electronics Inc, Chicago, IL, (800) 323-6858.

AMD and Digital announce foundry agreement. Advanced Micro Devices (AMD) and Digital Equipment Corp (DEC) have announced an agreement under which DEC will produce wafers for AMD's Am486 64-bit family at DEC's South Queensferry, Scotland, manufacturing facility. Under the agreement, DEC will use its 0.68-μm process technology. Advanced Micro Devices, Sunnyvale, CA, (408) 732-2400.

VHDL International User's Forum to meet in May. "Enabling the System Design Process" is the theme for the VHDL International User's Forum Spring 1994 Conference. The conference will take place on May 1 to 4 at the Claremont Resort and Spa in Oakland, CA. The conference comprises technical and user sessions on system aspects of conceptualization, design, test, synthesis, and modeling. VHDL International, Menlo Park, CA, (415) 329-0578.
If you are a designer who works on real-world digital circuits, you need an EDA system that allows you to efficiently verify and debug your design. The Design Center desktop EDA system with the PLogic digital circuit simulator provides the features you need.

- Digital worst-case (min/max) timing analysis helps you find timing problems in your design using the range of delays specified by the manufacturer. This technique can find problems that simple single-delay methods can’t—even with multiple runs.
- When there are problems with your design, such as setup/hold or worst-case timing violations, the Design Center eliminates the guesswork. Detailed warning messages lead you directly to the timing errors; interactive capabilities help you automatically associate selected messages with corresponding waveforms.
- The Design Center’s unencrypted libraries offer over 1,800 off-the-shelf digital devices including TTL, CMOS, 10K and 100K ECL, and PLD devices. All of this at no extra cost! You can also easily model new devices directly from specifications provided in data books. PLogic supports pin-to-pin delay specifications, timing constraints, and logic expressions, as well as a wide variety of low-level primitives.
- If you design with standard or complex PLDs, the Design Center with PLSyn provides you with fully integrated device-independent logic synthesis. Design and simulate using any mixture of programmable logic and discrete digital parts. Then, let PLSyn automatically partition and fit your programmable logic into one or more parts of your choosing.

You can count on the Design Center with PLogic for state-of-the-art technology, reliability, and performance. Call today for more information!

MicroSim Corporation
The Desktop EDA Company
20 Fairbanks • Irvine, CA 92718 • USA • (714) 770-3022
(800) 245-3022 • FAX: (714) 455-0554 • BBS: (714) 830-1550
Design Center and PSpice are registered trademarks of MicroSim Corporation. All other trademarks are the property of their respective owners.

• CIRCLE NO. 150 FOR IBM • CIRCLE NO. 152 FOR SPARCSTATION
Systems on silicon enter
New 0.5-micron, Cell-Based ASICs run 50% faster, consume 70% less power.

Systems on silicon have reached a higher level of performance and a lower level of power consumption with the introduction of NEC’s 0.5-micron, Cell-Based ASICs. Optimized for true 3V operation, our CB-C8 family offers exciting new possibilities for designers of telecom, personal computer and consumer systems.

CB-C8 ASICs give you a loaded speed of 220 picoseconds, power dissipation of only 0.8µW/MHz/cell and high integration of up to 600,000 gates. Compared to our previous generation of 0.8-micron ASICs, the new family offers a 50% boost in speed and a 70% drop in power consumption.

Since speed to market counts almost as much as internal system speed, we offer a comprehensive cell library to facilitate your development of 3V systems on silicon. Macros include:

- V30MX CPU (33MHz, 8086-compatible)
- PLL, GTL, PCI* and RAMBUS**
- A/D and D/A converters* *under development

Our OpenCAD® Design System also helps to shorten the development cycle. A unified front-to-back-end design package, OpenCAD allows you to mix and match our tools with those of the industry’s most popular vendors.

Fast enough to match speeds with the industry’s foremost microprocessors, yet featuring exceptionally low power dissipation, our CB-C8 ASICs offer a no-compromise solution to your design needs. For more information on how the CB-C8 family can improve performance for your cellular phone, personal digital assistant, multimedia platform, graphics system, PC or workstation, call NEC today.

All registered trademarks are property of their respective holders.

CIRCLE NO. 36
High-Bandwidth Computing and Internetworking.
Most FIFOs just aren’t cut out for these applications. TI’s are.

Texas Instruments FIFOs fit your applications like they were made for them. Because they are.

High-bandwidth computing FIFOs.
Parallel processing systems using RISC and X86 CPU architectures demand reduced latency and increased data integrity levels. TI’s high-bandwidth computing FIFOs allow faster transfer speeds and higher reliability by providing quick access times, parity generation and checking and bidirectional mailbox registers.

Internetworking FIFOs. Internetworking end equipment such as switches, hubs, bridges and routers provides connectivity and interoperability between the various LANs and WANs. Our internetworking FIFOs aid in protocol conversion by incorporating byte swapping and bus matching features to control the flow of information.

Why compromise?
These are just a part of TI’s application-specific FIFOs. So rather than compromising with traditional off-the-shelf FIFOs or custom solutions, you can buy an application-specific solution. One that helps you cut design time, reduce board and memory space and increase system performance. At TI, FIFO means fast in, fast out.

TI’s advanced FIFO portfolio offers solutions in standard and fine-pitch packaging. Architectures range from 64 to 4K word depths and 1- to 36-bit widths. High-speed clocked architectures feature multi-stage synchronization circuitry for improved metastability characteristics.

More than FIFOs.
With our FIFOs you get the Total Integration™ benefits you’ve come to expect from TI: leading-edge silicon, technical information, design tools and worldwide service and support.

So if you’re ready to begin using FIFOs that are really cut out for the job, return the reply card or call 1-800-477-8924, ext. 3033, today.

These are just a part of TI’s application-specific FIFOs. So rather than compromising with
90's Challenges. The 90's demand higher levels of performance and faster delivery than ever. Time-to-market, technological demands, and changing user needs make fast, simple SCSI seem as elusive as the horizon. To stay ahead in these challenging times, you need products you can count on, with proven ability to deliver the quality and reliability your customers require.

90's Products. After over a decade of industry leadership, NCR is still working hard to meet your needs and the challenges of the 90's. The NCR 53C90 family of SCSI Controllers is constantly evolving, implementing and offering state-of-the-art products. For example, the NCR 53C90 family supports multiple bus architectures, advanced SCSI-2 commands, fast SCSI data transfers and provides our exclusive TolerANT® SCSI driver and receiver technology, for reliable data transfers in every SCSI system.

90's Solutions. The SCSI challenges of the 90's can't be solved with silicon alone. NCR quality and service provide you with the competitive edge that can make your industry leading designs a reality. Whether you require SCSI-1 or fast SCSI-2, in any system architecture, NCR has the product to meet your needs today. You can count on us to keep you on the fast track with the right technology, at the right price, at the right time for all your SCSI requirements.

The NCR 53C90 Family

Proven Performance for the 90's and Beyond

CIRCLE NO. 91

NCR SCSI: Real Products, Real Solutions, Real Fast!

<table>
<thead>
<tr>
<th>SCSI</th>
<th>FAST SCSI*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53C90A</td>
<td>53CF90A</td>
<td>Single-bus architecture; SCSI sequences controlled by hardware state machine to minimize host intervention</td>
</tr>
<tr>
<td>53C90B</td>
<td>53CF90B</td>
<td>Adds pass-through parity for increased system reliability</td>
</tr>
<tr>
<td>53C94</td>
<td>53CF94</td>
<td>Adds split-bus architecture for more flexibility</td>
</tr>
<tr>
<td>53C96</td>
<td>53CF96</td>
<td>Adds support for differential transfers</td>
</tr>
</tbody>
</table>

For more information about NCR SCSI products and a free poster, call 1-800-334-5454.
Harmonious convergence

The world is rapidly going digital, and a lot of people are spending tremendous amounts of time and energy trying to name the market that's emerging from the convergence of computer, communications, and consumer technologies. I'd like to suggest an appropriate name, so that we can stop wasting time and energy on the name and concentrate on something useful—such as creating more products and services for the market.

Existing products and services that are the early fruits of this great digital convergence include such diverse items as CD players, µP-based televisions, music synthesizers, cellular telephones, digital bathroom scales, and on-line information services, such as CompuServe and Prodigy.

Thus, I submit for your approval the name "C-Quad" to represent the four dimensions of this market: convergence, computer, communications, and consumer. Here are the top 10 reasons for adopting this name:

10. It's a short, 2-syllable word that doesn't mean anything in particular, making it a perfect marketing tool for the '90s.
9. It has a military heritage (predecessors being C&C for "command and control," and C-cubed for "computers, command, and control"), thus satisfying the current requirement to convert military technology for civilian use.
8. It vaguely reminds you of "quadraphonic," a prehistoric C-Quad product.
7. Unlike PCMCIA, it's short enough to remember and much easier to pronounce.
6. It's cryptic enough to make you sound smart when you use it.
5. You can abbreviate it as "C4" to save space (it's ecological) and to look really cool.
4. The 4-D aspect indicates that this technology can take us anywhere in time and space.
3. I lived in Boulder, CO, which was an energy nexus during 1987's Harmonic Convergence, so, having been infused with the energies of that event, I am somewhat of a convergence expert.
2. It's a much better name than anything else currently on the table.
1. And, to help you become accustomed to the phrase, here are a few usage examples: director of C-Quad development, C-Quad engineer, C-Quad market analyst, C-Quad Magazine, VP of C-Quad marketing. I'm sure you get the idea. Use the phrase a bit, and it starts to roll off your tongue. Honest.

OK, with the market's name behind us, let's go forth and work up some really great products to make it take off.

Send me your comments via fax at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241, 300/1200/2400 8, N, 1. From the Main System Menu, enter ss/soapbox and select W to write us a letter.
With credit card sized PCMCIA devices suddenly everywhere, you may be seeing a special opportunity.

You may also be facing the challenge of working with ultra-thin core materials.

AlliedSignal offers you not only a complete range of products, but also expertise in the processing and handling of thin laminate materials.

Also, through our joint development program with raw material suppliers, fabricators and end users, we can discuss special laminates and prepregs for optimum performance and yield in PCMCIA cards.

Advancing the State-of-the-Art for Board-Mounted Converters.

Throwing out all the old design concepts, Power Trends has advanced the state-of-the-art again. This time it's for board-mounted DC-DC converters. By using switching frequencies greater than 650 kHz, planar magnetics and surface-mount construction—we have now produced the industry's smallest and most reliable 15 Watt isolated DC-DC converters.

Not only are the new products much smaller than competitive designs, but—with fewer components—they also significantly advance product reliability.

Three products are initially available—the PT3101A, a 48V-to-5V unit; the PT3102A, a 48V-to-12V unit; and the PT3103A, a 48V-to-15V unit. All three products operate over an input voltage range of 36 to 72 VDC and provide their rated power up to 70°C without additional heatsinks. They provide 80% efficiency, 500 VDC isolation, and are ideally suited for telecom, industrial, computer, medical, and other distributed-power applications requiring input-to-output isolation.

Send for a spec-and-applications brochure, or call and ask about samples.
The new UCC3912 is an electronic circuit breaker that knows better. When your designs demand high reliability, you can count on the UCC3912 to manage your hot swap and circuit breaker functions. All control and housekeeping functions are integrated, and are externally programmable.

Faster than a fuse or thermal breaker, the UCC3912 has both auto recovery and current limiting capability. Call, FAX or write us today for further information.

The UCC3912 Advantages

- Digital programmable current limit from 0 to 3A
- Integrated 0.2 ohm power MOSFET
- Power down/sleep mode capability
- 3V to 8V operation
- Power SOIC, low thermal resistance packaging
- Programmable on time/start delay
- Excellent for applications that switch or plug into a common bus, hotswap, or SCSI termpower
INTELLIGENT POWER ICs

Auto applications drive up single chip's IQ

BRIAN KERRIDGE, Technical Editor

The idea of microcontrollers and high-current switches sharing silicon in single-chip devices seems both incongruous and unlikely, but, nonetheless, is one direction intelligent power technology is moving. The requirement for this unusual combination follows mainly from automotive applications, which demand increasingly greater logic complexity and power handling coupled with lower cost and component count. Small package size is also a prerequisite, because these applications require the IC to mount inside the power actuator it controls.

Typical auto applications include control of mirrors, seats, windows, and instrument panels, and all require ICs with approximately 60V, 4A rating. Other applications, such as computer peripherals, telecommunications, and consumer products can be equally demanding. For example, disk drive and printer motors also require internal control ICs, and toasters, shavers, and battery chargers need off-line switching ability to 600V.

For many applications, logic circuits consisting of standard gates, shift registers, and latches generally provide adequate intelligence. But as logic density increases to include microcontrollers with EPROM, EEPROM, or masked ROM, these same applications benefit from a new level of sophistication. The ability to program and reprogram intelligent power functions allows the IC to adjust or adapt its control characteristics to match different requirements in the controlled device.

For example, resetting zero offsets or scale limits to counter aging or wear in mechanical parts optimizes performance and extends useful product life. Equally innovative, reprogramming current limits or temperature trips adapts devices to different environments or locations. Alternatively, initial programming in manufacture can adapt the same device to suit a family of models, maybe by programming output stage configuration from eight single-ended drivers, to four half H-bridges, to two full H-bridges. Yet other examples include setting up ICs for left- or right-hand functions in autos, or more simply, as a store for product identity, service, or diagnostic data.

Vendors variously describe their intelligent-power-device families as Smart power, SmartMOS, and Powerlogic. But whatever the family title, BCD is a common label for

SGS-Thomson's H081 technology demonstrator IC combines an ST6 8-bit microcontroller with a 60V, full H-bridge power output stage (R_{D(on)}=0.3\Omega).
INTELLIGENT POWER ICs

the process (bipolar, CMOS, and DMOS technologies combined on the same chip). DMOS (double-diffused MOS) describes a particular form of power-MOSFET switch that exhibits low \(R_{\text{DS(on)}} \) (Ref 1).

Each semiconductor technology in the BCD trio donates its own virtue: Bipolar parts add precision to circuits such as voltage references and current and temperature limits; CMOS parts establish the IC's overall IQ; and DMOS parts furnish output switching and power handling.

To meet user demand for higher logic density and power handling, vendors have moved their BCD processes from 4- to 2.5-µm lithography. Most recently, SGS-Thomson announced a process, labeled BCD3, that uses 1.2-µm line width.

Each line-width shrink yields valuable design gains. For example, at each shrink, not only does logic density multiply by approximately 2.5, but DMOS \(R_{\text{DS(on)}} \) approximately halves. This intriguing \(R_{\text{DS(on)}} \) bonus occurs because a lithography shrink concentrates individual cells that comprise a DMOS conduction channel. More cells in a given area of silicon produce a higher current density and lower resistance.

Currently, vendors' mainstream business runs on a 2.5-µm process, which typically yields a CMOS logic density around 1600 transistors/mm² and 60V DMOS power transistors with an \(R_{\text{DS(on)}} \) of 0.5Ω-mm². In contrast, SGS-Thomson's BCD3 process will yield 4000 transistors/mm² and \(R_{\text{DS(on)}} \) of 0.25Ω-mm².

Power limits feasibility

Although logic density and power handling are key factors, cost and size are of overriding importance in today's intelligent power ICs. At unit volume levels in this type of business, cost is directly proportional to IC die size. In practice, it's the power handling ability you demand from an intelligent power IC, rather than CMOS logic complexity, that mostly governs feasibility and price. In a typical intelligent power IC, bipolar and CMOS sections each occupy 25% of the die, with the DMOS power section taking up the remaining 50%.

Looking ahead

SGS-Thomson Microelectronics is the principal proponent of high-IQ power chips that embody a microcontroller. At present, the company offers samples of an H081 technology-demonstrator IC that includes an ST6 8-bit microcontroller with a 60V, 0.3Ω \(R_{\text{DS(on)}} \), 3A H-bridge power section. The company expects to ship commercial versions—equivalent in complexity to H081 and with on-chip EE-PROM or masked ROM—later this year. The volume price target is approximately $6. SGS-Thomson's further plans reveal that, by 1996, the BCD process will use 0.8- and 0.5-µm lithography. At that stage, you can expect the addition of flash memory and DSP cores to deliver intelligent power ICs a further IQ hike.

The Philips Powerlogic octal low-side driver for automotive applications is a typical example of BCD (bipolar, CMOS, and DMOS) technologies combined in a single chip. Bipolar parts provide precision for supply, references, and current-limiting circuits. CMOS offers logic gates, shift register, and latches. DMOS provides the power-handling elements.
Quick Just Got Quicker

4000 Usable Gate FPGA at over 150 MHz.

A new breed of superfast antifuse FPGA's is blowing away the competition in standard PREP™ benchmarks.

The WildCat series of FPGA's from QuickLogic introduces its first member - the WildCat 4000. With more than 4000 usable gates this cost-effective WildCat flies at an astounding 150 megahertz in the PREP DataPath benchmark.

Results, not Hype

Call or fax us for information on our $99 starter kit. This kit includes all the tools you need to enter, simulate, and analyze your design. You'll find that the WildCat 4000 delivers results in the most demanding high-performance applications. And you'll find out what Quick really means.

Look to the company that lives up to its name for fast solutions to today's high speed, high density design requirements. For QUICK response fax us at (408)987-2012 or call 1-800-842-FPGA (3742) to learn more about WildCat SuperFast FPGAs.
INTELLIGENT POWER ICs

Although lower R_{Dc} implies greater current handling for a given package size, users’ parallel demand for smaller packages threatens to partly negate this advantage. In addition to lower cost, users now require intelligent power ICs in small-outline (SO) packages, which fit within the actuators they control. To satisfy these demands, vendors have been driven to design new packages and to explore more elaborate mounting techniques (see box, “Knowing what’s watt”).

By concentrating complexity and power-handling ability in this way, product designers, particularly in automotive applications, attain a twofold objective. First, a self-contained sub-assembly simplifies final product assembly, and second, fewer internal and external connections give a significant boost to overall reliability.

Custom designs predominate

The range of vendors’ intelligent-power-ICs divides into various application categories as standard or custom designs. Philips Semiconductor’s BCD Logic range covers mainly standard designs in four voltage ratings: 70, 400, 650, and 700V. Philips’ higher voltage designs address applications in the company’s established lighting, TV, and consumer business. The most recent Powerlogic-70’s 70V, 4A process targets 100% automotive applications.

SGS-Thomson’s Multipower BCD range is a mixture of standard and custom ICs using the company’s 20 to 500V BCD process. Standard ICs include switching regulators up to 10A rating, power-factor-correction controllers, audio power amplifiers, and a range of motor controllers. SGS-Thomson’s custom business majors on computer peripheral applications such as disk-drive and printer motor controls, but it also covers automotive and telecommunications.

Designing a custom BCD IC is very complex. The IC vendor must custom design the devices with the customer’s unique requirements in mind. The designer must consider the voltage, current, and other characteristics of the application, and then choose the appropriate ICs from the vendor’s standard or custom offerings. Once the ICs are selected, the customer must work with the IC vendor to design the mounting scheme and heat sink necessary to dissipate the power generated by the ICs.

Knowing what’s watt

Many intelligent power IC designs use surface-mount variants of otherwise conventional multipin TO-220-style packages. Even though these packages comfortably handle power dissipation up to 20W, they do not suit automatic assembly, nor are they small enough for many new applications. And, even though standard small-outline packages meet the two latter requirements, they cannot dissipate more than 2W at best.

In order to satisfy combined requirements of dissipation, handling, and size, IC vendors have devised new packages and mounting techniques. The main innovation is the inclusion of a copper slug molded into the package and situated beneath the die. Fig A shows a range of mounting schemes that use heat transfer (via the slug) into increasingly larger heat sinks to achieve dissipations of 1 to 18W. Table 1 lists the thermal resistances junction-to-ambient, and power dissipation assuming a 50°C temperature rise above ambient temperature.

Fig Aa and b assume the use of standard fiber-glass resin pc-board material. Fig Ac and d assume insulated metal substrate (IMS). IMS is a 3-layer material consisting of an aluminum or copper plate separated from the etched-copper-foil layer by a thermally conductive dielectric layer.

Fig A-An SMT power small-outline package includes a copper slug. The slug contacts 6 cm² of pc-board copper used as a heat sink (a). A grid of 16 copper-filled holes in the pc-board contact a conventional heat sink (b). An insulated metal substrate (40 cm² replaces conventional pc-board material (c), and an additional heat sink is added (d).
Condor’s International Plus® linears have price, performance and the approvals you need.

Our International Plus linears offer performance, value and the important agency approvals you need, including IEC950 and VDE0871 Level B EMI. In fact, Condor has more approved linears in stock than anyone in the industry (including more than 30 models in IEC medical versions).

International Plus linears have what you’re looking for:

• 115 models (single- and multi-output)
• 7 power levels (3 to 288W)
• Worldwide AC input ranges
• OVP on all 5V outputs
• Hermetically sealed power transistors
• MTBF 200,000+ hours per Mil-Hdbk 217E
• 2-hour burn-in with cycling (8 hours on medical versions)
• Computerized testing (data sheets furnished)
• 3-year warranty — longest in the industry
• 30-day FREE evaluation (call us for samples)

If you’re looking for world class performance, quick turnaround, competitive pricing and full agency approvals, call Condor — the leader in linear D.C. power supplies.

Call for our free catalog, or see us in EEM!
No Data Acquisition Application Is Beyond Our Grasp.

Whether you're making scientific measurements to 24-bit resolution, performing FFTs in real time, or looking for a robust yet low cost solution, Data Translation has the right data acquisition solution for you. With more than 300 products, you can easily find exactly what you need.

Using our Windows-compatible software, you'll get your project up and running faster than ever. For immediate application gratification, choose one of our icon or menu-driven packages and you'll be acquiring data within minutes. Develop your applications using one of our DT-Open Layers™ compliant software tools, and rest assured that your code will run any supported board with little or no reprogramming.

Whatever your needs, call Data Translation first.
We have it all: the right hardware, easy-to-use software, and exceptional pre- and post-sales customer support.
And that's quite a handful.

FOR MORE INFORMATION, CALL 1-800-525-8528, EXT.

SOFTWARE
- DT VEE for Windows visual programming package
- Visual Basic Custom Controls for high speed plotting, data acquisition
- Extensive C drivers and DLLs for DOS & Windows

HARDWARE
- Up to 224 analog inputs
- Up to 1 MHz throughput
- Highest accuracy in the industry
- Simultaneous sampling
- Onboard DSP

DT VEE™ is based on HP VEE for Windows™

CIRCLE NO. 80
INTELLIGENT POWER ICs

much a vendor-led activity, although both Philips and SGS-Thomson encourage you to work with them at one of their design centers.

Harris Semiconductor's semicustom cell-based Power ASIC technology allows you more design independence. This 60V, BCD process uses the HPA2000 standard cell library. The process includes scalable lateral DMOS devices rated at 20A, which the company's mixed-signal Fastrack design system supports. Harris also offers a range of standard Power ASIC ICs, including 1-MHz pulse-width-modulation switching regulators and 80V full H-bridge driver for external MOSFETs.

Siliconix also favors using BCD ICs to drive external MOSFETs, particularly for current levels greater than 1.5A. The company believes that partitioning current at this level provides users an optimal cost-to-performance ratio. The principal advantage of external MOSFETs is a wider choice of RDS(on) as the company's range of Little Foot S0-8 power MOSFETs with RDS(on) values down to 60 mΩ demonstrates. Siliconix also contests the view that external MOSFETs preclude the possibilities of mounting control circuits internally. The company's recently released SQFP48 5A 3-phase motor driver with external MOSFETs occupies a 2×1.6-in. pc board and is small enough to fit inside the motor.

Table 1—Dissipation of SGS-Thomson Power SO-20 package (Using different mounting methods in Fig A)

<table>
<thead>
<tr>
<th>Fig</th>
<th>Thermal resistance Junction-to-air (°C/W)</th>
<th>Power dissipation (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>32</td>
<td>1.5</td>
</tr>
<tr>
<td>b</td>
<td>9</td>
<td>5.5</td>
</tr>
<tr>
<td>c</td>
<td>7</td>
<td>7.0</td>
</tr>
<tr>
<td>d</td>
<td>2.8</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: Dissipation assumes 50°C junction rise above ambient. (Data courtesy SGS-Thomson Microelectronics)
To build a new
At Toshiba, we see a new kind of tomorrow. It will accelerate the innovations of our next century — many not even imagined yet — by years.

One where restrictive corporate borders are transformed into paths of shared innovation. Enable applications like interactive television, multimedia, mobile computing and voice recognition to become commonplace.

And world-class companies work together for the benefit of all. Drastically reduce the size of computers, Personal Digital Assistants and communications devices.

A vision that's evident in our recent partnership with And establish an important, standardized technologi-cal springboard for future generations of highly dense chips.

IBM and Siemens. Remarkable, yes.

By forming an international alliance with these two industry leaders, we're pushing technology to places never before deemed practical, or even possible. But no less than you'd expect from a company with one of the industry's strongest R&D and patent records.

Together, we're developing an advanced generation of dynamic RAM — a 256 megabit DRAM chip. Remarkable, yes.

By pioneering 0.25 micron technology, electronic But no less than you'd expect from a company with one of the industry's strongest R&D and patent records.

pathways 1/1600 the width of a human hair are being used to pack 256 million bits of information — enough to hold 25,000 pages of text — onto a fingernail-sized chip.

The result will push the capacity of semiconductors by over 16 times. But that's only the beginning.

For more information on how Toshiba technology will play a part in your future, please call 1-800-879-4963.

Because at Toshiba, we're working on a world without borders. Cooperation through coalition. And innovation beyond expectation.
We not only have a ton of these,

Intel Flash Memory is shipping in high gear. Our factory capacity is up. Our prices are coming down. And we’re leading the industry in flash technology.

The shortage is over. With three flash factories now on line, Intel can support both your immediate and long-term needs. In fact, our sub-micron process in each factory allows us to provide multiple sources for our flash products to ensure delivery.

What’s more, our new capacity is so huge, we’ll outsupply all other flash manufacturers. Combined:

We’re also growing the market by driving down flash prices, making Intel Flash
but now you’ll also save a ton.

Memory a viable option for virtually any new design. In fact, since Q4 ‘93, we’ve dropped prices by as much as 31 percent. And by the end of the year, the volume price for our 120ns, 8Mb FlashFile™ devices will be as low as $20.

This is an opportune time to get the design wheels rolling, too. Because you can now purchase one hundred 8Mb devices for just $25 each.

With chips from 256Kb to 32Mb, to PCMCIA Flash Cards and ATA Flash Drives, Intel also gives you by far the broadest, most technologically advanced line of flash products in the industry.

So if you’re ready to load up on flash memory, call 1-800-879-4683, ext. 101 for complete information. Because Intel is more than ready to deliver.
A Symphony in EDA

Achieve Superior Performance With Interactive EDA Design Tools.

When you lead the best players in EDA, you lead with **MASSTECK**. We understand the importance of playing together with an entire suite of EDA products. MaxEDA for PCB is integrated with the top players in the **Open EDA Alliance for Windows**. With MaxEDA you conduct a design from inception to manufacturing.

Call today for superior EDA design performance

1-800-MASSTECK

1-800-627-7832

MASSTECK

Interactive EDA
PC-based EDA-tool directory

DOUG CONNER, Technical Editor

PC-based electronic-design-automation (EDA) tools have been nipping at the heels of workstation-based tools for years. Although in many cases, you must still look to the workstation-based EDA tools for leading-edge capabilities, a serious examination of PC-based EDA tools shows that they are not too far behind. Some of the same companies offering workstation-based tools also offer PC-based tools, often with virtually the same capabilities.

If you need the highest speed and the most leading-edge technology, buying a relatively inexpensive PC-based EDA tool may be false economy. Conversely, if you are spending money on Unix-based software and workstations to perform functions that you could perform just as well on a PC at a fraction of the price, you may be wasting money. The only way to make sure you are making the right choice is to occasionally evaluate the EDA tools for both workstations and PCs.

The accompanying table lists as many PC-based EDA-tool manufacturers as we could track down. If you're a user of PC-based tools, the table may bring to light a few companies that you might have overlooked. If you haven't been using PC-based EDA tools, you might want to contact some of the companies offering PC-based EDA tools and try some demonstration programs.

As the table shows, most companies provide free demo software that should give you a good idea of the tools' capabilities but usually doesn't let you enter design data. For a nominal price (deductible from a product purchase), most companies also provide manuals and functional software that has a few limitations, such as the lack of saving and printing capabilities. The functional software gives you a chance to try the software and get a feel for the speed on the computer you'll be using, all with a relatively small investment of time and money.

Many tool vendors suggest that their tools require the use of at least a 386-based computer with 4 Mbytes of RAM. About half recommend that for fast response, you need at least a 486-based computer with 8 Mbytes of RAM. Virtually all analog simulation tools require a math coprocessor, either to operate at all or to simulate circuits of any size. The floating-point computations are too slow otherwise.

When a company offers more than one tool or configuration, the table lists two of that vendor's products. It should also help you determine the companies involved in each category of tools. Keep in mind, though, that most of the categories are relatively general.

For example, the field-programmable gate-array (FPGA)/PLD-design column indicates that the company offers products for some or all of the PLD-design process. The product may map logic into PLDs or perform place-and-route operations for FPGAs. Contact the companies for more detailed information using a reader-service card or by phone.

The table shows prices in individual categories in which the company offers products. The prices are typically starting prices. An “X” indicates that the product category is included in the system-price column or in the price of another product category. The system price does not include optional product categories.

You can reach Technical Editor Doug Conner at (805) 461-9699.

Article Interest Quotient
(Circle One)
High 584 Medium 585 Low 586

Looking ahead

Managers are understandably reluctant to bring PCs into a company in which workstations are the standard. Adding an operating system (OS) and electronic-design-automation tools, many of which must communicate with each other, complicate an already-complicated situation. The intertool-communications problem requires careful consideration, but managers shouldn’t assume that the situation will be any more difficult than the problem of passing data between workstation-based tools.

Windows NT or another OS should soon bridge the gap between workstations and PCs. When the bridge becomes real, managers will be able to judge hardware and software on their actual merits and not on whether their companies are PC- or workstation-based.
PC-based EDA tools

<table>
<thead>
<tr>
<th>Category</th>
<th>Package</th>
<th>Schematic capture</th>
<th>PC-board layout</th>
<th>Auto-router</th>
<th>IC layout</th>
<th>FPGA / PLD design</th>
<th>Analog simulation</th>
<th>Transmission line / signal Integrity</th>
<th>Mixed A/D simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accel Technologies (619) 554-1000</td>
<td>1</td>
<td>$595</td>
<td>$995</td>
<td>$995</td>
<td>$5500</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 739-1010</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Micro Devices (408) 732-2400</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autocad Microcomputer Systems (306) 784-0500</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altac (805) 499-6867</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altera (408) 894-7000</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium P-CAD (800) 458-7695</td>
<td>1</td>
<td>$995</td>
<td>$7495</td>
<td>$3995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT&T Microelectronics (800) 372-2447</td>
<td>2</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$995</td>
<td></td>
</tr>
<tr>
<td>Bay Technology (408) 688-6519</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$4500</td>
<td></td>
</tr>
<tr>
<td>Cad Solutions Software (408) 366-1001</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3995</td>
<td></td>
</tr>
<tr>
<td>Cadence Design Systems (408) 944-7299</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$4995</td>
<td></td>
</tr>
<tr>
<td>CadSoft Computer (800) 858-8355</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$799</td>
<td></td>
</tr>
<tr>
<td>Campilano Computing (604) 522-6200</td>
<td>2</td>
<td>$995</td>
<td>$1500</td>
<td>$700</td>
<td></td>
<td></td>
<td></td>
<td>$1995</td>
<td></td>
</tr>
<tr>
<td>Chronology (206) 869-4227</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CINA (415) 940-1723</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$495</td>
<td></td>
</tr>
<tr>
<td>Compact Software (201) 981-1200</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$7995</td>
<td></td>
</tr>
<tr>
<td>Contec Microelectronics (408) 434-6767</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3500</td>
<td></td>
</tr>
<tr>
<td>Cooper and Chyan (408) 366-6966</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$9900</td>
<td></td>
</tr>
<tr>
<td>Cypress Semiconductor (408) 943-2600</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data I/O (206) 881-6444</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Computation (908) 681-7700</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>Dolphin Integration (408) 727-7619</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3500</td>
<td>$5950</td>
</tr>
<tr>
<td>Douglas Electronics (510) 452-8770</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1995</td>
<td>$1500</td>
</tr>
<tr>
<td>Elanix (818) 597-1414</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Electronic Design Tools (214) 871-9465</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineerrium (619) 292-1900</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exemplar Logic (510) 849-6937</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$5000</td>
<td></td>
</tr>
</tbody>
</table>

EDN March 17, 1994
<table>
<thead>
<tr>
<th>Logic simulation (gate level)</th>
<th>Timing analysis</th>
<th>HDL synthesis</th>
<th>HDL simulation</th>
<th>Price</th>
<th>Minimum system (µP; Mbytes)</th>
<th>Demo software</th>
<th>Circle No.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional</td>
<td>X</td>
<td></td>
<td></td>
<td>$1695</td>
<td>286; 8</td>
<td>Free</td>
<td>427</td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>X</td>
<td></td>
<td></td>
<td>$10,950</td>
<td>386; 4</td>
<td>Free</td>
<td>428</td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>X</td>
<td></td>
<td></td>
<td>$995</td>
<td>386; 4</td>
<td>None</td>
<td>429</td>
<td>Design tools for Actel FPGAs</td>
</tr>
<tr>
<td>Optional</td>
<td>X</td>
<td></td>
<td></td>
<td>$2495</td>
<td>386; 4</td>
<td>None</td>
<td>430</td>
<td>Design tools for Actel FPGAs</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$125</td>
<td>386; 8</td>
<td>Free</td>
<td>431</td>
<td>Design tools for AMD PLDs</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$395</td>
<td>386; 8</td>
<td>Free</td>
<td>432</td>
<td>Design tools for AMD Mach 3 and 4 PLDs</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$695</td>
<td>286</td>
<td>Free</td>
<td>433</td>
<td>Tools run under DOS and Windows</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$249</td>
<td>286</td>
<td>Free</td>
<td>434</td>
<td>Tools run under DOS and Windows</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$995</td>
<td>386; 8</td>
<td>Free</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$495</td>
<td>386; 8</td>
<td>Free</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$2490</td>
<td>466; 16</td>
<td>Free</td>
<td>437</td>
<td>Design tools for Altera PLDs</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$495</td>
<td>466; 16</td>
<td>Free</td>
<td>438</td>
<td>Design tools for Altera PLDs</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$12,500</td>
<td>386; 4</td>
<td>$195</td>
<td>439</td>
<td>PC-board design tools</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$3995</td>
<td>386; 4</td>
<td>$195</td>
<td>440</td>
<td>PC-board design tools</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$5985</td>
<td>386; 8</td>
<td>30 days</td>
<td>441</td>
<td>For AT&T FPGAs, price includes optional tools</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$4500</td>
<td>466; 12</td>
<td>30 days</td>
<td>442</td>
<td>For AT&T FPGAs</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$4995</td>
<td>386; 4</td>
<td>Free</td>
<td>443</td>
<td>Microwave, RF, and analog design</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$5000</td>
<td>386; 4</td>
<td>Free</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$1,995</td>
<td>386; 4</td>
<td>Free</td>
<td>445</td>
<td>DOS-based CAM tools for pc boards</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$3,995</td>
<td>386; 4</td>
<td>Free</td>
<td>446</td>
<td>Windows-based CAM tools for pc boards</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$4,995</td>
<td>466; 16</td>
<td>Free</td>
<td>447</td>
<td>Tools for multiarchitecture FPGA design</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$11,97</td>
<td>386; 1</td>
<td>$12</td>
<td>448</td>
<td>16-bit systems</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$1,897</td>
<td>386; 1</td>
<td>$12</td>
<td>449</td>
<td>32-bit systems</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$4,950</td>
<td>386; 4</td>
<td>Free</td>
<td>450</td>
<td>FPGA design is only for Mac</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$4,950</td>
<td>386; 4</td>
<td>Free</td>
<td>451</td>
<td>PC board and router is only for Mac</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$995</td>
<td>386; 4</td>
<td>Free</td>
<td>452</td>
<td>Tools for timing analysis and timing diagrams</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$495</td>
<td>286</td>
<td>Free</td>
<td>453</td>
<td>Graphics tools to improve digital design and test</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$995</td>
<td>386; 8</td>
<td>Free</td>
<td>454</td>
<td>High-frequency, microwave, RF, and electromagnetic simulation</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$3,500</td>
<td>466; 4</td>
<td>None</td>
<td>455</td>
<td>Tools for analog and mixed-signal simulation</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$3,500</td>
<td>466; 4</td>
<td>None</td>
<td>456</td>
<td>2- and 3-D electromagnetic-field solver</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$990</td>
<td>386; 8</td>
<td>Free</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$4,995</td>
<td>466; 16</td>
<td>None</td>
<td>458</td>
<td>Design tools for Cypress PLDs</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$995</td>
<td>386; 4</td>
<td>None</td>
<td>459</td>
<td>Design tools for Cypress PLDs</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$1,995</td>
<td>386; 8</td>
<td>Free</td>
<td>460</td>
<td>FPGA and PLD design using ABEL and VHDL</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$2,995</td>
<td>386; 8</td>
<td>Free</td>
<td>461</td>
<td>FPGA and PLD design using ABEL and VHDL</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td>$6,95</td>
<td>8088; 3; 8088</td>
<td>Free</td>
<td>462</td>
<td>Autorouter for surface-mount designs</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td>$17,50</td>
<td>8088; 3; 8088</td>
<td>Free</td>
<td>463</td>
<td>Mixed-mode simulation</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$4,950</td>
<td>286</td>
<td>Free</td>
<td>464</td>
<td>Tools for timing analysis and timing diagrams</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>$8000</td>
<td>386; 16</td>
<td>Free</td>
<td>465</td>
<td>Verilog or VHDL for FPGA/PLD design</td>
</tr>
</tbody>
</table>

EDN March 17, 1994 • 43
PC-based EDA tools (Continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Package</th>
<th>Schematic capture</th>
<th>PC-board layout</th>
<th>Auto-router</th>
<th>IC layout</th>
<th>FPGA / PLD design</th>
<th>Analog simulation</th>
<th>Transmission line/signal integrity</th>
<th>Mixed A/D simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fintronic</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(415) 325-4474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontline Design Automation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 456-0222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holophase</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(305) 584-0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP-EEsof</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(818) 879-6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HyperLynx</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1295</td>
</tr>
<tr>
<td>(206) 869-2320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICT</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
</tr>
<tr>
<td>(408) 434-0678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrity Engineering</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(615) 626-6913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$5000</td>
</tr>
<tr>
<td>Intel</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
</tr>
<tr>
<td>(916) 356-3979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactive CAD Systems</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 970-0852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intergraph Electronics</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(205) 730-8532</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intusoft</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(310) 833-0710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isdata</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(510) 531-8553</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IST</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2800</td>
</tr>
<tr>
<td>(510) 736-2302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivex Design International</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$995</td>
</tr>
<tr>
<td>(503) 531-3555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice Semiconductor</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$795</td>
</tr>
<tr>
<td>(503) 681-0116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1995</td>
</tr>
<tr>
<td>Lewis Systems</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(214) 436-2177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Devices</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(301) 426-3986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Systems Corp</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$250</td>
</tr>
<tr>
<td>(315) 478-0722</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massteck</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(508) 486-0197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental Automation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(206) 841-2141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-Software</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 369-5400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsim</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irvine, CA</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1495</td>
</tr>
<tr>
<td>Minc</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2995</td>
</tr>
<tr>
<td>(719) 590-1155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Technology</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(503) 641-1340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorola</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(602) 962-2190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NeoCAD</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3995</td>
</tr>
<tr>
<td>(303) 442-9121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number One Systems</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$195</td>
</tr>
<tr>
<td>(415) 968-9306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio Automation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$195</td>
</tr>
<tr>
<td>(614) 592-1810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optotek</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2000</td>
</tr>
<tr>
<td>(613) 591-0336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#3000</td>
</tr>
<tr>
<td>Price</td>
<td>$14,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic simulation (gate level)</td>
<td>Timing analysis</td>
<td>HDL synthesis</td>
<td>HDL simulation</td>
<td>Price (µP; Mbytes)</td>
<td>Minimum system</td>
<td>Demo software</td>
<td>Circle No.</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>$10,000</td>
<td>386; 12</td>
<td>Free</td>
<td>470</td>
<td>Tools run under Windows NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6000</td>
<td>386</td>
<td>Free</td>
<td>471</td>
<td>Verilog simulator and graphical debug器</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$995</td>
<td>386</td>
<td>Free</td>
<td>472</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3000</td>
<td>386; 2</td>
<td>Free</td>
<td>473</td>
<td>Tools for high-frequency analog simulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$14,000</td>
<td>386; 16</td>
<td>Free</td>
<td>474</td>
<td>Tools for high-frequency analog simulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1295</td>
<td>386; 2</td>
<td>Free</td>
<td>475</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386</td>
<td>Free</td>
<td>476</td>
<td>Tools for designing with ICT PLDs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386</td>
<td>Free</td>
<td>477</td>
<td>Signal-integrity tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386</td>
<td>Free</td>
<td>478</td>
<td>Signal-integrity tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>479</td>
<td>Tools for designing with Intel PLDs</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>$10,000</td>
<td>386; 8</td>
<td>Free</td>
<td>477</td>
<td>Signal-integrity tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$17,000</td>
<td>386; 8</td>
<td>Free</td>
<td>478</td>
<td>Signal-integrity tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>386; 4</td>
<td>Free</td>
<td>479</td>
<td>Tools for designing with Intel PLDs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386; 4</td>
<td>$100</td>
<td>480</td>
<td>Tools run under DOS and Windows</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386; 4</td>
<td>$100</td>
<td>481</td>
<td>Tools run under Windows NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386</td>
<td>Free</td>
<td>482</td>
<td>Tools for designing with Lattice PLDs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386</td>
<td>Free</td>
<td>483</td>
<td>Tools for designing with Lattice PLDs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>484</td>
<td>Analog and mixed-mode simulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2600</td>
<td>8086</td>
<td>Free</td>
<td>485</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td>$3000</td>
<td>386; 8</td>
<td>$49</td>
<td>486</td>
<td>Tools for VHDL synthesis</td>
<td></td>
</tr>
<tr>
<td>Optional $2000</td>
<td>Optional $2000</td>
<td>Optional X</td>
<td></td>
<td>$4000</td>
<td>386; 8</td>
<td>Free</td>
<td>487</td>
<td>Windows-based pc-board design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386; 8</td>
<td>Free</td>
<td>488</td>
<td>Tools for designing with Lattice PLDs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>386; 8</td>
<td>Free</td>
<td>489</td>
<td>Tools for designing with Lattice PLDs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>490</td>
<td>ESDA tool and simulator</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$495</td>
<td>286</td>
<td>Free</td>
<td>491</td>
<td>PLD/FPGA-design software for DOS and Windows</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$255</td>
<td>286</td>
<td>Free</td>
<td>492</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$9950</td>
<td>386; 12</td>
<td>$25</td>
<td>493</td>
<td>PC-board design under Windows and Windows NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$4425</td>
<td>386; 12</td>
<td>$25</td>
<td>494</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$695</td>
<td>386; 4</td>
<td>Free</td>
<td>495</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$649</td>
<td>386; 4</td>
<td>Free</td>
<td>496</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6000</td>
<td>386; 16</td>
<td>None</td>
<td>497</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td>$18,900</td>
<td>386, Macintosh</td>
<td>Free</td>
<td>498</td>
<td>PLD design, including VHDL synthesis</td>
<td></td>
</tr>
<tr>
<td>Optional $2000</td>
<td>Optional $2000</td>
<td>Optional X</td>
<td></td>
<td>$7900</td>
<td>386, Macintosh</td>
<td>Free</td>
<td>499</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1995</td>
<td>386; 8</td>
<td>None</td>
<td>500</td>
<td>Fully-compliant VHDL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>501</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>502</td>
<td>Design tools for Motorola FPGAs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>503</td>
<td>Design tools for Motorola FPGAs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>504</td>
<td>Timing-driven place-and-route tools for FPGAs</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>$10,995</td>
<td>386; 16</td>
<td>30 days</td>
<td>502</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6995</td>
<td>386; 16</td>
<td>30 days</td>
<td>503</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3995</td>
<td>386; 16</td>
<td>Free</td>
<td>504</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>505</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>506</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>507</td>
<td>Microwave and RF linear analysis for DOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>508</td>
<td>Microwave and RF linear analysis for Windows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$195</td>
<td>$195</td>
<td></td>
<td>$375</td>
<td>386; 4</td>
<td>Free</td>
<td>509</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$195</td>
<td>$195</td>
<td></td>
<td>$375</td>
<td>386; 4</td>
<td>Free</td>
<td>510</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$195</td>
<td>$195</td>
<td></td>
<td>$2000</td>
<td>386; 4</td>
<td>Free</td>
<td>509</td>
<td>Microwave and RF linear analysis for Windows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$195</td>
<td>$195</td>
<td></td>
<td>$3000</td>
<td>386; 4</td>
<td>Free</td>
<td>510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Package</td>
<td>Schematic capture</td>
<td>PC-board layout</td>
<td>Auto-router</td>
<td>IC layout</td>
<td>FPGA/PLD design</td>
<td>Analog simulation</td>
<td>Transmission line/signal Integrity</td>
<td>Mixed A/D simulation</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>OrCAD</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>$1895</td>
<td>$1495</td>
<td>$1295</td>
<td>$5450</td>
</tr>
<tr>
<td>(503) 671-9500</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pads Software</td>
<td>1</td>
<td>$750</td>
<td>$1495</td>
<td>$5000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$3000</td>
</tr>
<tr>
<td>(508) 485-4300</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Three Logic</td>
<td>1</td>
<td>$495</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(503) 531-2410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protel Technology</td>
<td>1</td>
<td>$995</td>
<td>$2795</td>
<td>$2995</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 243-8143</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad Design</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$10,000</td>
</tr>
<tr>
<td>(803) 988-8250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickLogic</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 987-2000</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Active Concepts</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 252-2608</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Racal-Redac</td>
<td>1</td>
<td>$495</td>
<td>$6500</td>
<td>$1500</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(508) 692-4900</td>
<td>2</td>
<td>$495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ridley Engineering</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$399</td>
</tr>
<tr>
<td>(616) 926-1161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Technologies</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 737-2260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SimuCAD</td>
<td>1</td>
<td>$3750</td>
<td>$4125</td>
<td>$5625</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(510) 497-9700</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophia Systems</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$5625</td>
</tr>
<tr>
<td>and Technology (415) 493-6700</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum Software</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 738-4387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanner Research</td>
<td>1</td>
<td>$995</td>
<td>$3495</td>
<td>$1245</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$3650</td>
</tr>
<tr>
<td>(818) 792-3000</td>
<td>2</td>
<td>$2950</td>
<td>$9950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tatum Labs</td>
<td>1</td>
<td>$283</td>
<td>$775</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(313) 663-8810</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesoft</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$695</td>
</tr>
<tr>
<td>(404) 751-9785</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1385</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>1</td>
<td>Optional</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$695</td>
</tr>
<tr>
<td>(214) 997-5566</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Great SoftWestern</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(817) 383-4434</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$179</td>
</tr>
<tr>
<td>Ultimate Technologies</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2031) 2159-44444</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vamp</td>
<td>1</td>
<td>$495</td>
<td>$995</td>
<td>$1095</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$745</td>
</tr>
<tr>
<td>(213) 466-5533</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHDL Technology Group</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(610) 882-3130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viewlogic Systems</td>
<td>1</td>
<td>$1995</td>
<td>$21,000</td>
<td>$3995</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$10,900</td>
</tr>
<tr>
<td>(508) 480-0880</td>
<td>2</td>
<td>$9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$18,400</td>
</tr>
<tr>
<td>Visual Software Solutions</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>$995</td>
</tr>
<tr>
<td>(305) 346-8890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellspring Solutions</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(508) 965-7271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wintek</td>
<td>1</td>
<td>$495</td>
<td>$995</td>
<td>$1295</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(317) 448-1903</td>
<td>2</td>
<td>$400</td>
<td>$1295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wise Software Solutions</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(503) 626-7800</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xilinx</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(408) 859-7778</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

46 • EDN March 17, 1994
Logic simulation Timing analysis HDL synthesis HDL simulation Price Minimum system (µP; Mbytes) Demo software Circle Notes

<table>
<thead>
<tr>
<th>Logic simulation (gate level)</th>
<th>Timing analysis</th>
<th>HDL synthesis</th>
<th>HDL simulation</th>
<th>Price</th>
<th>Minimum system (µP; Mbytes)</th>
<th>Demo software</th>
<th>Circle No.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1995</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>$15,520 386:4 386:4</td>
<td>Free</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$4995 386:4 386:4</td>
<td>Free</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1995 386:8 386:8</td>
<td>Free</td>
<td>513</td>
<td>High performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$495 286</td>
<td>Free</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6785 386:4 386:4</td>
<td>Free</td>
<td>515</td>
<td>Schematic capture and netlist translation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$13,690 386:4</td>
<td>Free</td>
<td>516</td>
<td>Windows-based design tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$17,000 386:8</td>
<td>None</td>
<td>517</td>
<td>Windows-based high-performance design tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2995 386:4 386:4</td>
<td>Free</td>
<td>518</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1695 386:4 386:4</td>
<td>Free</td>
<td>519</td>
<td>Design tools for QuickLogic FPGAs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$495 386:4</td>
<td>Yes</td>
<td>520</td>
<td>Design tools for QuickLogic FPGAs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1195 386:4 386:4</td>
<td>Yes</td>
<td>521</td>
<td>Dynamic modeling using state diagrams</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1195 386:4 386:4</td>
<td>Yes</td>
<td>522</td>
<td>Dynamic modeling using state diagrams</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$995 386:2</td>
<td>Free</td>
<td>523</td>
<td>Power-supply design and simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$995 386:4 386:4</td>
<td>Free</td>
<td>524</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$399 486:8</td>
<td>Free</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$9500 486:8</td>
<td>Free</td>
<td>526</td>
<td>Graphical development of VHDL designs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2995 386:4 386:4</td>
<td>Free</td>
<td>527</td>
<td>Verilog ASIC/PLD simulation with fault simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1695 386:4 386:4</td>
<td>Free</td>
<td>528</td>
<td>Windows NT version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$495 286</td>
<td>Free</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1195 386:2</td>
<td>Free</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2495 386:4 386:4</td>
<td>Free</td>
<td>531</td>
<td>General-purpose analog simulator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6995 386:4 386:4</td>
<td>Free</td>
<td>532</td>
<td>Design tools for ASICs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$16,750 386:4 386:4</td>
<td>Free</td>
<td>533</td>
<td>Design tools for ASICs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$495 286</td>
<td>Free</td>
<td>534</td>
<td>Filter design, thermal analysis, curve fitting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1160 286 286</td>
<td>Free</td>
<td>535</td>
<td>Filter design, thermal analysis, curve fitting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$695 286</td>
<td>Free</td>
<td>536</td>
<td>Communications and signal-processing simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1385 286</td>
<td>Free</td>
<td>537</td>
<td>Communications and signal-processing simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2750 Math coprocessor: 4</td>
<td>Free</td>
<td>538</td>
<td>Design tools for TI programmable logic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$695 386:2 386:2</td>
<td>Free</td>
<td>539</td>
<td>For AutoCAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1990 386:2</td>
<td>Free</td>
<td>540</td>
<td>For Windows</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2995 Macintosh</td>
<td>Free</td>
<td>541</td>
<td>PC-board-level design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1495 Macintosh</td>
<td>Free</td>
<td>542</td>
<td>PC-board-level design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2995 486</td>
<td>Free</td>
<td>543</td>
<td>VHDL-modeling tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$5995 386:4 386:4</td>
<td>Free</td>
<td>544</td>
<td>Generates ABEL from state diagrams</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$10,000 386:4 386:4</td>
<td>Free</td>
<td>545</td>
<td>Generates ABEL from state diagrams</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$995 386:4 386:4</td>
<td>free</td>
<td>546</td>
<td>Verilog, limited capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$495 386:4 386:4</td>
<td>free</td>
<td>547</td>
<td>Verilog, full capability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$495 386:4 386:4</td>
<td>30 days</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$995 386:4 386:4</td>
<td>30 days</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$895 9088</td>
<td>Free</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1995 286</td>
<td>Free</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1295 386:2</td>
<td>Free</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$554 386:2</td>
<td>Free</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1995 386:4 386:4</td>
<td>Free</td>
<td>554</td>
<td>Xilinx FPGAs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1295 386:4 386:4</td>
<td>Free</td>
<td>555</td>
<td>Xilinx FPGAs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$11,995 386:4 386:4</td>
<td>Free</td>
<td>556</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$4500 386:4</td>
<td>Free</td>
<td>557</td>
<td></td>
</tr>
</tbody>
</table>

EDN March 17, 1994 • 47
Thanks to a piezoelectric vibrating gyroscope, their marriage will never have to be on shaky ground.

It was a match made in heaven. (Actually, it was made in a Murata research lab.) Our engineers developed an innovative compact vibrating gyroscope — the GYROSTAR™ — that’s 100 times more precise than any other gyroscope. When coupled with the latest video technology, it compensates for an unsteady hand on the camera. We also expect to find important roles for GYROSTAR in other technologies, such as navigation systems, automotive electronics and factory automation, by working closely with our customers. And those relationships, like the one in the photograph above, have unlimited potential. You see, we offer commitment.
in our relationships. Commitment to helping our customers create innovative solutions. So while we offer one of the broadest lines of components in the industry, including microwave-related products, EMI filters, ceramic capacitors and ceramic resonators, we want you to think of us as more than a source of high-quality, highly reliable components. More than a supplier of parts.

We want you to think of us as a small part in your success.

For more information, call 1-800-831-9172, ext. 006.
Logic synthesis has freed designers from the complexities of gate-level design by converting RTL descriptions to optimized gate-level logic. But ASIC, FPGA, and CPLD designers are still constrained by a dependence on silicon. Designers will need to pay more—not less—attention to layout as silicon densities continue to increase.

Photo courtesy Synopsys Inc

RAY WEISS, TECHNICAL EDITOR

A few years ago, logic synthesis seemed a first step into a world of higher level design. Back then, designers imagined being able to move higher and higher up the synthesis chain, until they could specify a design behaviorally and just push a button—and the software would do the rest. Nice dream, but not a reality for the '90s.

Why? Because design, even with high-level HDLs (hardware-description languages) and simulation, must eventually meet silicon “reality.” And that reality, especially at submicron or deep-submicron levels (below 0.5 µm L-effective) is not a nice, well-behaved world. Instead, it’s where elegant designs meet the layout monster, where signal interconnects dominate circuit delays, and where signal delays can no longer be described by simple fan-out models or RC trees. And that’s not all: Design rules will migrate down to 0.18 µm by 2002, with chip voltages moving down to less than 1V as well.

But that’s not the only reason for a reevaluation of logic synthesis’s reach. Silicon’s higher densities bring new system-level problems. And these problems need—nay, demand—the designer’s touch. Larger ASICs can be likened to systems, and, similar to systems, must be partitioned for design ease and clocking. And last, hardware design is still hardware design; writing code in VHDL or Verilog, even code that simulates well, does not guarantee working silicon.

Spam in a can

The first generation of American astronauts were tagged “Spam in a can” by test pilots because they were simply passengers and had little control over the actual
flights. Today's astronauts, however, are an integral part of flight planning and control. And, similarly, today's designers must take an active role in the design process.

Software-based design tools will not replace designers. True, you can do more with today's CAE tools, but you cannot actually walk away from design. Now, and in the foreseeable future, there is no substitute for the design engineer. Moreover, the fundamental limit on logic synthesis is the designer: Synthesis tools won't turn a bad design into a good one—or convert a bad designer into a competent one.

In fact, synthesis tools, coupled with HDL design, raise the design stakes. Schematics and gate-level design had built-in safety limits: Schematic drawings imposed discipline on signal connectivity and logic-block grouping, whereas an engineer using an HDL, say Verilog or VHDL, to define a design must internalize that discipline. Even worse, careless code can create logic anomalies that will trash a design. Engineers writing an HDL must be “hardware aware.” For example, in software, the expression B=B+1 carries implicit concepts on timing and computer exe-
Mainstream synthesis-control logic

Today’s engineers use logic synthesis primarily for control logic, optimizing and mapping combinatorial logic (equations) into a netlist—and ready for layout. They also use synthesis to instantiate major RTL components such as registers. Some tools, such as Synopsys’ Design Compiler, Cadence’s Synergy, Exemplar’s Core, and Compass Design’s ASIC Navigator, also enable designers to use module generators and megacell/cell libraries to select the correct element. Megacells can be hefty, including µPs, FPUs, ALUs, and DSPs. In effect, the synthesis tools provide a single interface to specify a design. Some synthesis tools, such as Synopsys’ Design Compiler, Cadence’s Synergy, and the forthcoming Viewlogic ViewSynthesis (was SilcSyn) provide some higher level synthesis capabilities. These capabilities include resource allocation and sharing for key RTL blocks, such as adders or registers.

Mainstream logic-synthesis tools from Synopsys, Mentor, Exemplar, Cadence, and Viewlogic also provide state-machine generators and mappings to optimized state machines. Many engineers find these tools work for general state machines, but, typically, they turn to hand design for highly optimized state machines. Industry consensus seems to say it’s still a bit early for efficient state-machine synthesis. However, engineers can define complex controls by defining multilevel state machines (state machines within state machines, etc); these can be defined with current synthesis tools.

Most synthesis users describe designs with an HDL, such as Verilog or VHDL. However, when using an HDL, it’s easy to lose touch with the design; you can define major RTL blocks with simple statements. Thus, a few lines of code can trigger major effects on a design’s timing or performance. Good logic designers, like master programmers, have to keep foremost in their minds the major flows of their designs, continually monitoring any changes that add, delete, or modify RTL blocks. Yesteryear’s schematics also served as block diagrams, illustrating the major RTL blocks and data flows. With HDL code, however, RTL blocks and their flows may not be obvious. For example, X=A+B+C instantiates two adders fed by three registers, defining a major flow. Yet the statements could be buried in complex control code—there’s no HDL highlighting for RTL definitions or flows.

Finally, writing Verilog or VHDL code does not automatically stop you from violating propagation delays or logic constraints such as setup or hold. Moreover, many constraints are functions of the ASIC process (voltage and temperature) as well as of the signal characteristics (slow or fast edges). Consequently, you cannot realistically estimate these timing delays until floor planning or place and route. You’ll have fewer problems downstream with synthesis if you keep these logic realities in mind when coding. Static timing analyzers can catch timing errors, but it’s far easier to design it right the first time.

Logic synthesis is only a small part of the overall design effort. Most system designs are dominated by their data-paths. Unless you are building a control-logic chip, 60 to 70% of a chip’s logic is made up of RTL blocks. These blocks generally define a chip-level data flow. Creating an optimum chip design generally means building an optimized data-flow path, one made up of these RTL elements and then, to control it, creating the control logic. Most designs move data between two or more bus systems (for example, CPU memory bus to an I/O bus). Even a µP can be seen as consuming two data flows, instruction and data, and outputting another data flow.

These data flows connect RTL blocks. The blocks generally are existing megacells or library elements or are generated via specialized module generators. Even though you can describe them in HDL code, selecting or generating the elements has not typically been a logic-synthesis function per se. However, the range of logic-synthesis tools is expanding to provide a common design interface to other synthesis or compilation tools. Synopsys’ Design Compiler, Cadence’s Synergy, and Intergraph’s ArchSyn, for example, call the appropriate module generators to create RTL blocks, such as memory or registers to meet design constraints; they also select RTL blocks that meet synthesis constraints.
800kHz Sampling

ADS7810 is our fastest 12-bit sampling A/D yet! The newest member of our innovative ADS Family, it's a full-function device, complete with clock, sample/hold, internal reference, and parallel microprocessor interface. Its CMOS structures and innovative design keep power dissipation below 250mW and allow operation from ±5V supplies.

World's Fastest

ADS7810's 800kHz sampling rate is guaranteed over the extended industrial temperature range of -40°C/+85°C making it the world’s fastest 12-bit, monolithic SAR ever—60% faster than its closest rival! And, it's the easiest A/D to use in this performance range. DC and AC accuracy are excellent, and “no missing codes” over temp at 12-bits is guaranteed. Other key specs include: 12 bit resolution, 69dB (min) SINAD, ±0.5LSB (max) INL, ±1LSB (max) DNL, standard ±10V input range, and 250mW (max) power dissipation. Available in 28-pin plastic DIPs, SOICs, and in die form. Priced from $29.45 in 100s, ADS7810 is the fastest member of the ADS Family that is

Bit for bit, the best A/Ds ever!
REAL VHDL, REAL SYNTHESIS, REAL WINDOWS—STARTING AT THE UNREAL PRICE OF $1,995.

PROsim™ delivers 28-state, high-performance, full-timing simulation. PROsim integrated with PROvhdl and PROcapture gives you a powerful, multi-level simulation package, with back-annotation to PROcapture for the fastest design and debug capability available on a PC. PROsim, $4,995.

PROcapture™, our advanced, Windows-based design-entry solution gives you the widest variety of libraries available on the PC platform. EDN Reader's Choice Survey rated Viewlogic tools as the best schematic entry solution. PROcapture, $1,995.

PROsynthesis™ produces gate-level representations from VHDL descriptions in a fraction of the time schematics would take. Create FPGAs and CPLDs in VHDL and have the freedom to target whatever silicon you choose from the broadest set of libraries available today. Incorporating FPGA architecture-specific algorithms, PROsynthesis optimizes silicon utilization in increasingly complex FPGAs. PROsynthesis, $4,995.

The newest member of the PRO Series™ family, PROvhdl™ brings the power of high-level design to your PC. Now you can develop more innovative FPGA and CPLD designs faster than ever before. Integrate it with other PRO Series tools for full system-level design. PROvhdl, $1,995.

VHDL, top-down design, programmable logic—your path to market has never been faster.

Power, integration, performance, product range, the broadest vendor support in design kits and libraries — you can't get a better suite of integrated design tools for the PC at any price, much less one as competitive as this.

Put major-league performance on your PCs. Call 1-800-873-8439 today and ask about the PRO Series.

CALL 1-800-873-8439 NOW FOR A FREE DEMO DISK
LOGIC SYNTHESIS

Currently, engineers using Synopsys logic-synthesis tools break designs down into synthesizable partitions. The average partition runs 4000 to 6000 equivalent ASIC gates, with some partitions running out to 10,000 (or more) gates. Other synthesis tools claim larger partitions; these include Viewlogic’s SileSyn (recently acquired from Racal-Redac) and Compass Design’s ASIC Navigator, which does automatic partitioning and is integrated with layout.

Full- and partial-scan test generators are now part of most major logic-synthesis tool sets; they provide ASIC testability. Scan generators are also available from test vendors, such as Sunrise Test Systems (TestGen) and CrossCheck (Aida II). Using scan technology, the active flip-flops in a design partition into sets that form sequential scan chains. These scan chains enable active FF values to be set and shifted in for test or to be shifted out for comparison. Partial-scan techniques link most FFs but leave out critical ones for secondary access.

Scan techniques use a more complex, slower flip-flop element that multiplexes in scan shift data and outputs scan data. Scan test has a number of problems, including a 5 to 15% additional logic overhead, scan-connection inefficiencies (better layout after placement), and ensuring that clock triggers are phased to avoid excess power consumption (all flip-flops firing on a fast edge can ruin a chip).

Silicon reality

Designers should never forget that silicon underlies system- and logic-design processes. Unless designs translate and map into working silicon, the logic is useless. Moreover, the underlying silicon is not a fixed target. Silicon capabilities are continually migrating: Gate realities change; interconnect causes the bulk of a signal delay (up to 80%). Interconnect between logic elements becomes the critical portion for design. Unfortunately, signal-delay estimation is no longer a simple matter, especially on deep-submicron processes where the old standby of lumped RC trees is no

<table>
<thead>
<tr>
<th>Table 1—Synthesis tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Altera</td>
</tr>
<tr>
<td>Cadence Design Systems</td>
</tr>
<tr>
<td>Comdisco</td>
</tr>
<tr>
<td>Cypress</td>
</tr>
<tr>
<td>Data I/O</td>
</tr>
<tr>
<td>Exemplar</td>
</tr>
<tr>
<td>Intergraph</td>
</tr>
<tr>
<td>JRS Research</td>
</tr>
<tr>
<td>Mentor Graphics</td>
</tr>
<tr>
<td>Minc</td>
</tr>
<tr>
<td>MicroSim</td>
</tr>
<tr>
<td>Synopsys</td>
</tr>
<tr>
<td>Viewlogic</td>
</tr>
</tbody>
</table>

Looking ahead

Today’s EDA vendors are tailoring tools and environments to user design methods and needs. The vendors are trying to meld their tools into existing design environments and methods. This approach differs from the previous tool generation, which was generally a one-size-fits-all or do-it-your-way or forget-about-it school. However, many tools continue to plug away in splendid isolation, ignoring existing design knowledge and the design process. Good logic and system designers never lose sight of the final silicon—that design is independent of layout. Yet the reciprocal is not true; many tools, especially back-end physical tools, do not try to use existing design knowledge to optimize the silicon.

Today, system design houses are turning to floor planners or prefloor planners to reflect final silicon timing. To minimize hand-off iterations to the foundry, accurate timing estimates and constraints are prerequisites. Similarly, physical layout tools need system design knowledge for effective floor planning, placement, and routing. Critical layout-design data includes which logic elements form RTL entities; the flows between the major RTL blocks; and the overall design data flow from input, to RTL blocks, to outputs. Many back-end tools currently interrogate the design netlists to figure out overall design structure and flow. Common formats and mechanisms are necessary to define and pass this key information to back-end tools.

It’s time for front-end design and back-end layout to cooperate. The design side cannot afford to ignore layout consequences. And it’s silly for physical layout tools to recreate the design rather than rely on top-level design perspectives and flows.
Logic synthesis enables engineers to map their RTL-level designs into ASIC technologies. The problem, however, has been that synthesis takes place on the design side of the house—not the silicon or physical side. It's increasingly difficult for design-side synthesis to build logic to meet design constraints without effective knowledge of the final layout. At 0.5 µm and below, synthesis needs closer ties to silicon layout to predict circuit delays.

There are two approaches to linking synthesis and physical IC design. In the first, the synthesizer provides timing constraints to the physical tools to direct layout, which is called synthesis-directed layout. Additionally, layout estimates are fed back to the synthesis tools to verify timing. Synopsys has taken this tack, defining interfaces to deliver timing constraints (PDEF) as well as interfaces to handle feedback (SDEF). A new version of the Design Compiler, due out soon, has a built-in synthesis “floor manager” that dispatches synthesis constraints to a floor planner and receives back-timing feedback to reoptimize the logic. Physical-tool vendors are working to integrate their products with Synopsys' tools (HLD's Design Planner) and ArcSys' ArcCell.

In the second approach, the synthesizer uses layout algorithms and tools to predict final signal routing. The tools also modify the design netlist to reflect layout needs and signal projections. Cadence takes this approach using its well-established IC tools. The Cadence Synergy synthesis tool set adds Place-and-Route. In PBS, timing is reanalyzed using topology. The synthesizer reoptimizes the design to meet timing constraints. Where needed, it rearranges loads, resizes buffers and gate, relocations, and reduces potential long wire runs. Cadence claims a 10 to 30% overall system improvement using PBS.

Functional- and logic-level simulation have to be supplemented with transistor-level modeling, especially for deep-submicron design. This modeling will have to track signal-edge effects, parasitic effects, and power dissipation. At the higher clock rates, frequency becomes a key factor in CMOS-circuit power dissipation—the faster the clock, the more power burned.

FPGA/CPLD synthesis

FPGAs and CPLDs came late to synthesis. Built around proprietary logic blocks (FPGAs) or variations of 22V10 PALs (CPLDs), these chips lend themselves to old-fashioned, 5400/7400 TTL-style, schematic-capture-based design. Early adapters and most FPGA engineers still design that way. However, as logic densities increase, engineers are turning to high-level HDLs and logic synthesis for FPGA and CPLD design.

Logic synthesis for FPGAs and CPLDs has yet to reach ASIC efficiencies. Part of the problem is that mainstream algorithms and techniques were developed for ASIC gate arrays and standard cells with their underlying gate elements. ASIC fine-granularity architectures made it easy to map logic to the base gates using 2-level or multi-level optimizations.

In contrast, FPGAs have a proprietary core-logic block, typically a mix-
How to Get a Benchful of Signals Without a Bench Full of Generators.

Gone are the days of scouring the lab for function-specific generators.

At a price that’s less than many single-purpose generators, Wavetek’s new Model 395 does the job of seven different signal sources and does every job extremely well.

In an instant you can choose from a host of signals, from clean sine waves up to 40 MHz to complex pulse trains and arbitrary waveforms. When you use Model 395 as a pulse generator, for example, you can individually control the amplitudes, widths, and rise and fall times for up to ten pulses in a train.

On-screen help makes signal selection easier than ever.

You can create many signals that might otherwise require hooking together two, three or more generators. With gating, looping, linking, signal summing, and complete arbitrary waveform capability, our universal signal source can produce just about any waveform you can conceive. You can even store any setup for later use – for recall at the touch of a button!

So come to the source for all your signal needs. Call Wavetek today at 1-800-223-9885, and get all the details on the new Model 395 universal signal source.

The Universal Signal Source.

WAVETEK

© 1993 Wavetek Corporation
Get a sample of reality.

Looking for analog confidence in a digital oscilloscope? Tektronix’ TDS 350 sets the standard with Digital Real Time. Its incredible one gigasample/second sampling delivers real-life capture like never before—both for single shot or repetitive events.

Select peak detect for slow events, or push the scope to its full 200 MHz bandwidth—with no aliasing. And, like the entire TDS 300 family, the TDS 350 sets a new standard in price/performance: under $4000.

Analog look and feel.

The TDS 300 family is simple and intuitive; just like your trusty analog scope. Even the digital interface is simplified with on-screen icons. You may never have to crack open the instruction manual!

High-end digital features. Each model features over 20 automatic measurements. Continuous update for hands-free operation.

There’s a TDS 300 Series scope for every application. And every budget.

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>TDS 310</th>
<th>TDS 320</th>
<th>TDS 350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>50 MHz</td>
<td>100 MHz</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Max. Sample Rate</td>
<td>200 MS/s</td>
<td>500 MS/s</td>
<td>1 GS/s</td>
</tr>
<tr>
<td>Sweep Speeds</td>
<td>10 ms/div - 5 ns/div</td>
<td>5 ms/div - 5 ns/div</td>
<td>2.5 ms/div - 5 ns/div</td>
</tr>
<tr>
<td>Channels</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vertical Sensitivity</td>
<td>2 mV - 10 V</td>
<td>2 mV - 10 V</td>
<td>2 mV - 10 V</td>
</tr>
<tr>
<td>Vertical Resolution</td>
<td>8 bits</td>
<td>8 bits</td>
<td>8 bits</td>
</tr>
<tr>
<td>Record Length</td>
<td>16 kChannel</td>
<td>16 kChannel</td>
<td>16 kChannel</td>
</tr>
<tr>
<td>Standard Advanced Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comm. IO (Option 1A)</td>
<td>GPIB/RS-232, Centronics and VGA video output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>$2295</td>
<td>$2895</td>
<td>$3995</td>
</tr>
</tbody>
</table>

Get real. For more real-time benefits of the TDS 300 family, call your authorized Tektronix distributor today. Or call Tektronix at (800) 426-2200, ext. 212.
LOGIC SYNTHESIS

The synthesis of combinational logic is a process of converting a set of logic equations into a form that is suitable for implementation on a digital circuit. This process is often performed using logic synthesis tools, which are software programs that automate the process of converting high-level descriptions of digital circuits into low-level descriptions that can be used to generate the actual circuit components.

The process of logic synthesis begins with a high-level description of the digital circuit, such as a set of logic equations or a circuit diagram. The logic synthesis tool then uses a set of algorithms to transform the high-level description into a more detailed description of the circuit, which is then used to generate the actual circuit components.

One common approach to logic synthesis is to use a two-step process that involves creating a network of logic gates, known as a network of logic functions (NOLF), and then transforming the NOLF into a more efficient form, known as a network of multiplexers (NOM), which can be used to generate the actual circuit components.

Logic synthesis tools are typically used in conjunction with other EDA (electronic design automation) tools, such as schematic capture, simulation, and layout tools, to create a complete digital design.

The benefits of using logic synthesis tools include increased design productivity, improved design quality, and reduced design costs. By automating the process of creating digital circuits, logic synthesis tools can help designers to create more complex circuits in less time, with fewer errors, and at lower cost.

However, logic synthesis is not a perfect solution, and there are some limitations to the process. For example, the results of logic synthesis may not always meet the requirements of the original design, and the process can be computationally intensive, which can slow down the development process. Despite these limitations, logic synthesis tools remain an important tool in the design of digital circuits.
logic synthesis

Technology that targets data-path applications (AT&T is a second source for earlier Xilinx parts). AT&T is working on its own advanced module generator that has extensions for RTL blocks and data flow.

Other FPGA competitors include Actel, QuickLogic, and Cypress. Even though these FPGAs are not RAM-based, they are highly routable parts that ease logic-synthesis place and route. Similar to the Xilinx parts, these FPGAs have their own proprietary core-logic blocks (Cypress FPGAs are based on QuickLogic parts). These proprietary FPGA cores, with their special routing resources and priorities, complicate logic synthesis. The Actel

For free information on synthesis-related tools such as those described in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Location</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArcSys</td>
<td>Sunnyvale, CA (408) 738-8881</td>
<td>(IC-layout tools) Circle No. 396</td>
</tr>
<tr>
<td>Exemplar Logic Inc</td>
<td>Berkeley, CA (510) 849-0937</td>
<td>(FPGA/CPLD synthesis tools) Circle No. 397</td>
</tr>
<tr>
<td>Fintronic USA</td>
<td>Menlo Park, CA (415) 325-4474</td>
<td>(Verilog-simulator tools, UDL1 compiler/simulator) Circle No. 398</td>
</tr>
<tr>
<td>GenRad</td>
<td>Concord, MA (508) 369-4400</td>
<td>(VHDL simulator) Circle No. 399</td>
</tr>
<tr>
<td>High Level Design Systems</td>
<td>Santa Clara, CA (408) 748-3470</td>
<td>(gate-array floor planner) Circle No. 400</td>
</tr>
<tr>
<td>Ixas Systems</td>
<td>Sunnyvale, CA (408) 245-1900</td>
<td>(logic accelerator, VHDL simulator) Circle No. 401</td>
</tr>
<tr>
<td>i-Logix</td>
<td>Burlington, MA (617) 272-8090</td>
<td>(front-end, graphical-design VHDL, Verilog) Circle No. 402</td>
</tr>
<tr>
<td>Intergraph Electronics</td>
<td>Mountain View, CA (205) 730-8625</td>
<td>(synthesis, simulation IC) (VHDL/Verilog tools) Circle No. 403</td>
</tr>
<tr>
<td>Mentor Graphics</td>
<td>Wilconville, OR (503) 685-7000</td>
<td>(full CAD, IC tool sets, simulator, synthesis) Circle No. 404</td>
</tr>
<tr>
<td>MicroSim Corp</td>
<td>Irvine, CA (714) 770-3022</td>
<td>(PLD/CPLD logic synthesis, simulation tool) Circle No. 405</td>
</tr>
<tr>
<td>Model Technology</td>
<td>Beaverton, OR (503) 641-1340</td>
<td>(VHDL environment with simulator) Circle No. 406</td>
</tr>
<tr>
<td>Neocad</td>
<td>Boulder, CO (800) 682-3143</td>
<td>(independent place-and-route FPGA tools) Circle No. 407</td>
</tr>
<tr>
<td>Nexwave Design Automation</td>
<td>Palo Alto, CA (415) 655-9791</td>
<td>(VHDL timing simulator) Circle No. 408</td>
</tr>
<tr>
<td>OpenVerilog International</td>
<td>Sunnyvale, CA (408) 776-1684</td>
<td>(VHDL user/vendor group) Circle No. 409</td>
</tr>
<tr>
<td>Philips Electronic Design & Tools</td>
<td>Eindhoven, The Netherlands (31) 35 89 1505</td>
<td>(dynamic timing, signal-analysis tools) Circle No. 410</td>
</tr>
<tr>
<td>Quad Design Technology</td>
<td>Camarillo, CA (805) 980-8250</td>
<td>(static timing, signal-analysis tools) Circle No. 411</td>
</tr>
<tr>
<td>Redwood Design Automation</td>
<td>San Jose, CA (408) 291-3650</td>
<td>(high-level design tools, cycle-level simulator) Circle No. 412</td>
</tr>
<tr>
<td>Silicon Automation Systems Inc</td>
<td>Sunnyvale, CA (408) 437-9161</td>
<td>(Verilog simulation) Circle No. 413</td>
</tr>
<tr>
<td>SiLVAR-Lisco</td>
<td>Sunnyvale, CA (408) 991-6000</td>
<td>(Verilog simulator) Circle No. 414</td>
</tr>
<tr>
<td>Simucad</td>
<td>Union City, CA (510) 487-9700</td>
<td>(Verilog, logic simulator, fault simulation) Circle No. 415</td>
</tr>
<tr>
<td>Sunrise Test Systems Inc</td>
<td>Sunnyvale, CA (408) 739-4000</td>
<td>(scan generator/test simulator) Circle No. 416</td>
</tr>
<tr>
<td>Synopsys Inc</td>
<td>Mountain View, CA (415) 962-5000</td>
<td>(VHDL simulators, synthesis/test-synthesis tools) Circle No. 417</td>
</tr>
<tr>
<td>System Science Inc</td>
<td>Palo Alto, CA (415) 812-1800</td>
<td>(Verilog debug environment, Verilog/logical simulator, fault simulation) Circle No. 418</td>
</tr>
<tr>
<td>Vantage Analysis Systems</td>
<td>Fremont, CA (510) 650-9091</td>
<td>(VHDL compiler/simulator) Circle No. 419</td>
</tr>
<tr>
<td>VHDL International</td>
<td>Menlo Park, CA (415) 329-0578</td>
<td>(full CAD tool set, VHDL simulator) Circle No. 420</td>
</tr>
<tr>
<td>Viewlogic Systems Inc</td>
<td>Marlborough, MA (508) 4800-881</td>
<td>(VHDL industry organization) Circle No. 421</td>
</tr>
<tr>
<td>Vista Technologies</td>
<td>Schaumburg, IL (708) 706-9200</td>
<td>(full CAD tool set, VHDL simulator) Circle No. 422</td>
</tr>
<tr>
<td>Wellspring Solutions</td>
<td>Sutton, MA (508) 865-7271</td>
<td>(Verilog simulator for PCs) Circle No. 423</td>
</tr>
</tbody>
</table>

Super Circle Number

For more information on synthesis-related tools available from all of the vendors listed in this box, you need only circle one number on the postage-paid reader service card. Circle No. 396

60 • EDN March 17, 1994
The best thing about our 500 MHz scope isn’t the price.

It’s what you get for it.

Just like an analog scope, HP’s 500 MHz oscilloscope has a real-time display that responds instantly to changes in your waveforms or controls.

A bright trace and convenient, push-button functions like Autostore let you easily see and store tough-to-find signals.

Pretrigger viewing and delayed sweep mode help you save time by grabbing and displaying signals before or after the trigger event.

How we can offer you a 500 MHz, delayed sweep scope that’s within budget, without compromise.

High bandwidth digital scopes have always forced you to sacrifice two things you love about analog scopes: a familiar look and feel and immediate, believable displays.

Our engineers didn’t think you should have to make that compromise. So they designed the HP 54610A oscilloscope with the analog-style interface you’re comfortable with, and a new digital architecture that produces waveform displays superior to analog scopes.

The result: you get the quality and performance you’d expect from HP. At a price you wouldn’t.

Call HP DIRECT at 1-800-452-4844*, Ext. 7667 to talk to an HP engineer about your scope needs.

Want to speak to someone about the HP 54610A scope features and specifications, or your specific application needs? Calling HP DIRECT is the fast, easy way to get all your questions answered — with no obligation to order.

You see, HP DIRECT is your direct line to information and solutions for HP basic test instruments. With one simple call, you can get quick product specifications or any technical literature you may need to make the right decision. Or if you want one-on-one technical support, you can speak to an engineer who has firsthand experience with HP products. And, of course, if you’re ready to order, we can help you do that, too.

So give us a call. And discover how much more you really get from HP today.

* In Canada, call 1-800-267-3967, Dept. 476.

There is a better way.
And that’s no exaggeration.

You get more math functionality for computing derivatives and integrals, differential equations, advanced vector and matrix operations, statistical functions, curve fitting, and fast Fourier and wavelet transforms. It has a wider range of symbolic capabilities, and lets you do polar, contour and parametric plotting.

Simply enter equations in real math notation anywhere in the on-screen worksheet. Add text and graphics, display results in 2-D and 3-D, change variables and instantly update answers. Then print your results in presentation-quality documents.

Best of all, Mathcad PLUS 5.0 is more powerful than spreadsheets or calculators and easier than programming languages. And that’s no exaggeration, either.

Mathcad PLUS 5.0 is $299.95. Call now for more information, or mail or fax the coupon below.

Call: 1-800-967-5075 • Fax: (716) 873-1191

FREE MATHCAD PLUS 5.0 INFORMATION KIT

For more information on Mathcad PLUS 5.0, mail or fax this coupon.

Name: ____________________________ Title: ____________________________

Company: ____________________________ Address: ____________________________

City: ____________________________ State: ____________________________ Zip: ____________________________

Country: ____________________________ Phone: ____________________________

MathSoft, Inc. P.O. Box 1038, Cambridge, MA 02138-1038 USA
Phone: 1-800-967-5075 • Fax: 1-617-872-0099

MathSoft Europe, P.O. Box 58, Linslade, UK EH54 7AE
Phone: +44 1555 705711 • Fax: +44 1555 450714

© 1994 MathSoft Inc. TM and ® signify manufacturer’s trademark or registered trademark respectively. *Order price may vary.

References
5. Straussberg, Dan, "Boundary-scan testing," EDN, October 14, 1993, pg 78.

You can reach Technical Editor Ray Weiss by phone at (818) 704-9454; fax (818) 704-7083.

Article Interest Quotient
(Circle One)
High 593 Medium 594 Low 595
When it comes to performance, packaging and price, our references are impeccable.

Introducing the AD780. The world’s best performing 2.5V reference.

When it comes to voltage references, the AD780 is truly superlative. It’s the highest precision 2.5V voltage reference on the market. In fact, with its temperature coefficient of 3ppm/°C and initial accuracy of 1mV, no other voltage reference comes close to its performance over the industrial temperature range. It has by far the lowest noise in its category and at just $5.50 (in thousands) for the B-grade and $3.30 (in thousands) for the A-grade, it’s also the lowest priced. But the AD780 isn’t merely superlative, it’s completely unique. It’s the only reference capable of providing either a 2.5V or 3.0V output while maintaining the industry standard pinout.

Incidentally, the AD780 also offers the versatility of being available in industrial grade, surface-mount packaging. All of which means if you’re seeking a truly superlative voltage reference, the AD780 is one reference you should check. So call us at 1-800-ANALOG-D (262-5643) for a free sample and datasheet or write to us at the address below.

Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106.

CIRCLE NO. 74
INTRODUCING MICRO-CAP IV. MORE SPICE. MORE SPEED. MORE CIRCUIT.

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12-year tradition of setting CAE price/performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles — on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICRO-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface — windows, pull-down menus, mouse support, on-line HELP and documentation — that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example, from SPICE 2G.6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At $2495, MICRO-CAP outperforms comparable PC-based analog simulators — even those $5000+ packages — with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed — on larger circuits.
Check Out the Standard in Power Components

- ISO 9001 Certified
- Worldwide Agency Approvals
- Largest Selection of Input/Output Combinations in the Industry
- Over 2.5 Million Modules in the Field

1-800-735-6200

Component Solutions For Your Power System

Vicor Corporation 23 Frontage Road, Andover, MA 01810 USA • TEL: (508) 470-2900 • FAX: (508) 475-5745

CIRCLE NO. 103
The LTC1142 dual-output ultra high-efficiency synchronous regulator controller, available in a compact 28-lead SSOP, maximizes battery life in a small amount of board space. The LTC1143 dual-output high-efficiency regulator controller is available in a space-saving narrow 16-lead SOIC package.

Both devices feature advanced Burst Mode™ power management circuitry providing high efficiencies at load currents from a few milliamps to amps. Standby current is a low 160µA per regulator.

Both the LTC1142 and LTC1143 incorporate two independent regulator blocks providing 3.3V and 5V outputs with individual shutdown to less than 20µA. The LTC1142 operates over a 5V to 20V input range, allowing 10-12 cell battery packs.

The LTC1142 also supports full synchronous MOSFET switching for both regulator sections for efficiencies which can exceed 95%. The LTC1143 uses the fewest external components in the least amount of board space with efficiencies around 90%.

These versatile controllers also provide short circuit protection, very low dropout operation and excellent transient response. Pricing starts at $5.45 in 1000 piece quantities for the LTC1143CS.

For more details, contact Linear Technology Corporation, 1630 McCarthy Boulevard, Milpitas, California 95035/408-432-1900. For literature only, call 1-800-4-LINEAR.
Digital potentiometer controls LCD bias

Michael Cortopassi, Dauphin Technology, Lombard, IL

Designers of pen-based computers can easily relegate some controls that were previously mechanical, such as switches and potentiometers, to on-screen icons. For example, the circuit in Fig 1 shows one way that digital logic can control the -24V-dc LCD bias using two general-purpose I/O command lines. The DS-1669 from Dallas Semiconductor is a 64-step potentiometer available in 10-, 50-, and 100-kΩ ranges. The up-count (UC) and down-count (DC) pins digitally control the wiper of the potentiometer. A low-going pulse to either of these pins increases or decreases, respectively, the wiper's position on the pot relative to RL. This change in position adjusts the base current in Q1, whose collector connects to the adjust pin on an LM337 negative voltage regulator. By changing the amount of current injected into the LM337's adjust pin, the circuitry simulates having another resistor in parallel with R1, and the voltage output at V_out changes accordingly. Tapping a pen on icons that represent contrast—or other computer functions, including brightness, LCD/CRT and suspend/resume—controls the I/O pins.

![Fig 1](image_url)—To digitally control the -24V-dc LCD bias, this circuit uses a 64-step potentiometer to adjust the base current in Q1.

Programmable diode biases bridge

Patrick J Worcester, KAKM TV, Anchorage, AK

A programmable reference diode, such as the Motorola TL431A, can supply constant-current bias for a silicon pressure-sensor bridge (Fig 1). This circuit is simpler than using an op amp and separate reference diode or than using a current diode, which requires temperature compensation.

The TL431A produces a V_REF of 2.5V over a current range of 1 to 100 mA. The value of V_REF/R2 sets the necessary bias current for the bridge sensor, as specified by the sensor manufacturer. The reference diode current, set by R1 and the supply voltage V_S, usually equals the bridge current. As an example, for a supply of 12V, a reference diode and bridge current of 1 mA, and a bridge impedance of 5 kΩ, R1 should equal 2250Ω, and R2 should equal 2500Ω. The bridge output has a common-mode voltage equal to V_REF plus one-half times the voltage across the bridge.

![Fig 1](image_url)—Using a programmable reference diode is a simple way to supply constant-current bias for a silicon pressure-sensor bridge.
Synchronized regulator produces coherent noise

Jim Williams, Sean Gold, and Steve Pietkiewicz, Linear Technology, Milpitas, CA

By using a gated-oscillator architecture instead of a clocked-PWM one, gated-oscillator-type switching regulators permit high efficiency over extended ranges of output current. This architecture eliminates the housekeeping currents associated with the continuous operation of fixed-frequency designs. Gated-oscillator regulators simply self-clock at whatever frequency is necessary to maintain the output voltage. Typically, loop-oscillation frequency ranges from a few hertz to the kilohertz region, depending on the load.

In most cases, this asynchronous, variable-frequency operation doesn’t create any problems. However, some systems are sensitive to the asynchronous characteristics. The system in Fig 1 slightly modifies a gate-oscillator-type switching regulator by synchronizing its loop-oscillation frequency to the system’s clock. The oscillation frequency and its attendant switching noise, albeit variable, become coherent with system operation.

To analyze the system in Fig 1, temporarily ignore the flip-flop, and assume the circuit directly connects the A_{OUT} and FB pin of the LT1107 regulator. When the output voltage decays, the set pin drops below V_{REF} causing A_{OUT} to fall. The internal comparator then switches to high, biasing the oscillator and output transistor into conduction. L_1 receives drive pulses, and the circuit deposits this inductor’s flyback events into the 100-µF capacitor via the diode, ultimately restoring output voltage. This action overdrives the set pin, causing the IC to switch off until it requires another cycle. This oscillator cycle’s frequency is load-dependent and variable.

Now, interposing a flip-flop into the path between the A_{OUT} and FB pins, as the figure shows, synchronizes the regulator to the circuit-generated clock. When the output decays far enough, the A_{OUT} pin goes low. At the next clock pulse, the flip-flop’s Q_2 output sets low, biasing the comparator-oscillator. This turns on the power switch, which pulses L_1, L_2 responds in flyback fashion and deposits its energy into the output capacitor to maintain output voltage. This operation is similar to the previously described case, except that the flip-flop now synchronizes the sequence of events with the system clock. Although the resulting loop’s oscillation frequency is variable, the frequency and all attendant switching noise is synchronous and coherent with the system clock.

The circuit requires a start-up sequence because the output provides power for the clock. The circuit connects the flip-flop’s remaining section as a buffer to furnish start-up. The flip-flop’s connected CLR, and CLK, lines monitors output voltage via the 221-, 82.5-, and 100-kΩ resistor string. When power is applied, Q_1 sets CLR low, which permits the LT1107 to switch, thereby raising the output voltage. When the output goes high enough, Q_1 sets CLR high, and normal loop operation commences. Although this circuit uses a step-up regulator, the technique also works with other types.

To Vote For This Design, Circle No. 408

Fig 1—A synchronizing flip-flop forces the LT1107 gate-oscillator-type switching regulator’s noise to be coherent with the 100-kHz clock.

EDN BBS/DL_SIG #1383

To Vote For This Design, Circle No. 408

EDN March 17, 1994
DATEL's new ADS-944 is without competition ... unless you consider devices with inferior performance, greater power consumption, larger packages and much higher prices competitive. Evaluate an ADS-944 and you'll agree ... there's no comparison.

DATEL offers a complete line of DIP-packaged, 14-bit, sampling A/D's with throughputs from 0.5 to 10MHz. Call today for details.

Incomparable price, performance, size and power!

- No missing codes over temperature
- 76dB SNR, −74dB THD @ Nyquist
- Edge triggered; no pipeline delay
- Small 32-pin TDIP; TTL compatible
- 2.9 Watts power dissipation
- MIL-STD-883 screening optional
- $479 (OEM, USA)

Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Rate</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Integral Nonlinearity</td>
<td>±3/4</td>
<td></td>
<td></td>
<td>±3/4</td>
<td></td>
<td></td>
<td>±1</td>
<td></td>
<td></td>
<td>LSB's</td>
</tr>
<tr>
<td>Differential Nonlinearity</td>
<td>−0.95</td>
<td>±0.5</td>
<td>+0.95</td>
<td>−0.95</td>
<td>±0.5</td>
<td>+1.0</td>
<td>−0.95</td>
<td>±0.5</td>
<td>+1.25</td>
<td>LSB's</td>
</tr>
<tr>
<td>No Missing Codes</td>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>Total Harmonic Distortion*</td>
<td>−74</td>
<td>−72</td>
<td></td>
<td>−74</td>
<td>−72</td>
<td></td>
<td>−73</td>
<td>−70</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio*</td>
<td>73</td>
<td>76</td>
<td></td>
<td>73</td>
<td>76</td>
<td></td>
<td>72</td>
<td>75</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

* f_m = 2.45MHz
Circuit measures software-execution time
Yongping Xia, EBT Inc, Torrance, CA

Especially helpful for developing real-time application programs, the circuit in Fig 1 plugs into a PC printer port and measures the execution time of a piece of software. The CD4536 is a 16/24-bit binary counter with a built-in oscillator. This counter has an 8-bit prescaler, which the chip bypasses if the 8_BY pin is high. When this is the case, the CD4536 is a 16-bit counter, and its A through D inputs select which bit is connected to output DO. If the 8_BY pin is low, the CD4536 is a 24-bit counter and the inputs select which 9 to 24 bits connect to output DO. Setting the R pin high clears the counter, and setting CINH high inhibits the counter. With the components values shown in the figure, the oscillation frequency is around 100 kHz. The printer port can directly power the CD4536 because it needs only several milliamps.

A PC printer port has an 8-bit output port. As Fig 1 shows, D_0 to D_3 select the counter’s output bit, D_4 disables the counter, D_5 sets the bypass function, D_6 resets the counter, and D_7 powers the chip. The printer port uses input pin 11 to read the selected bit off the counter.

Listing 1’s C program controls the test. First, the program finds the PC’s printer port address. This address is its

Listing 1—Execution-time measurements

```
#include <conio.h>
#include <stdio.h>
#include <dos.h>
#include <bios.h>
define RESET_ON Ox40
define RESET_OFF Oxbf
define BYPASS_ON Ox20
define BYPASS_OFF Oxdf
define CLOCK_ON Oxef
define CLOCK_OFF Ox10

int out= OxBO , i, out_port , in_port;  
long in , data;  
float temp, dis;  
type def unsigned int WORD;

teast_procedure ()
{  
    /* your procedure */
}

long get_data(void)  
/* read ctr bit by bit */
{
in=0;
for (i=15; i=1; i--)  
{  
    in=2;
    outportb(out_port, outr);  
    delay();
    if ((inportb(in_port) & Ox80)>>0)
    {  
        in++;  
    }
    return in;
}

void clear_counter()  
/* clear ctr */
{  
    out-out & RESET_ON;  
    outportb(out_port, out);  
    out-port & RESET_OFF;  
    outportb(out_port, out);  
}

void set_bypass(int bp)
/* select 16/24-bit ctr */
{
    if (bp=0)  
    out-out & BYPASS_ON;  
    else  
    out-out & BYPASS_OFF;  
    outportb(out_port, out);
}

void main(void)
{  
    clrscr();  /* clear screen */  
    out-port=(WORD far *)IEX_PTR(&0x0040,A); /* find printer */  
    in-port-out-port; /* port address */  
    outportb(out_port, out);  /* power on */  
    delay(1000);
    clear_counter();  /* clear ctr */  
    set_bypass();  /* set 16-bit ctr */  
    out-out & CLOCK_ON;  
    outportb(out_port, out);  /* start ctr */  
    delay(200);  /* delay 200 msec */  
    out-out & CLOCK_OFF;  
    outportb(out_port, out);  /* stop ctr */  
    temp=(float)get_data()200; /* clear counter */  
    set_bypass();  /* set 24-bit ctr */  
    out-out & CLOCK_ON;  
    outportb(out_port, out);  /* start ctr */  
    test_procedure();  /* run test procedure */  
    out-out & CLOCK_OFF;  /* stop ctr */  
    outportb(out_port, out);  /* get data */  
    if (data<256)
    {  
        clear_counter();  /* get counter number */  
        set_bypass();  /* set 16-bit ctr */  
        test_procedure();  /* and test again */  
        if (data=256)
        {  
            dis=(float)(data/temp);  /* find execution time in msec */  
            printf("execution time is 1.2f msec\n",dis);  /* display result */  
            getch();  /* hit any key to return */  
        }
    }
    else
    data=256;
    dis=(float)(data/temp);  /* find execution time in msec */  
    printf("execution time is 1.2f msec\n",dis);  /* display result */  
    getch();  /* hit any key to return */  
}
```
ESD Testing for RS232 Interface Circuits – Design Note 80
Gary Maulding

In 1992 Linear Technology introduced the first RS232 interface circuits capable of surviving in excess of ±10kV ESD transients. Since that time, LTC has introduced more than 30 products with this level of protection. The inherent ruggedness of these products eliminates the need to use external protection devices in most applications. Not one unit has been returned from the field to Linear Technology for an ESD related failure analysis since the enhanced ESD protected devices were introduced.

The ±10kV ESD voltage rating is based on the Human Body ESD Model. When evaluated with other standard ESD test methods, the superior ESD ruggedness of LTC’s transceivers gives equally impressive results when compared to older conventional designs.

The various ESD test methodologies all share a common configuration as shown in Figure 1. A source capacitor is first charged to a high voltage, then the high voltage power supply is disconnected from the capacitor, and the capacitor is connected to the device under test through a limiting resistor. The value of the test capacitor and the limiting resistor differ among the various test standards.

The Human Body Model is the most commonly used ESD test in the United States and is the test method prescribed by Mil-Std-883. This method simulates the ESD discharge waveform seen from human contact to a piece of electronic equipment. The source capacitor is 100pF, limited by 1.5kΩ for the human body model. Linear Technology’s RS232 transceivers can withstand in excess of ±10V when tested with the Human Body Model.

The machine model, commonly used for ESD testing in Japan, is a more severe ESD test. This model simulates metallic contact between the device under test and a charged body. The source capacitor is 200pF with no limiting resistor. The higher source capacitance and the absence of a limiting resistor causes the device under test to be subjected to more voltage, energy, and current than human body model testing. Therefore failures occur at lower test voltages with machine model than with human body model testing. LTC’s RS232 transceivers can withstand ±3.5kV when tested with the machine model.

The IEC-801 test method fits between the human body and machine methods in severity. The source capacitor is 150pF with a 330Ω limiting resistor. LTC’s RS232 transceivers pass test voltages of ±7.5kV with the IEC-801 method.

The performance of LTC’s 10kV protected RS232 transceivers to each of these test conditions is summarized in Table 1. Also included are protection levels achieved to machine model testing by including a simple RC network on the RS232 line pins. The RC network used is a “T” network formed with two 200Ω resistors and a 220pF capacitor to ground. The added resistance and capacitance are small enough to have negligible effect on RS232 signals, but provide a great increase in ESD protection at a lower cost than using TransZorbs® with a diode network, which is commonly used for ESD protection. Test voltages higher than those shown in

TransZorb® is a registered trademark of General Instruments, GSI

![Figure 1. ESD Test Standards](image-url)
Table 1 sometimes cause device damage. The damage seen most commonly is an increase in driver output leakage with functionality failures occurring at even higher voltages.

Table 1. LTC RS232 Transceiver ESD Test Results

<table>
<thead>
<tr>
<th>ESD Test Model</th>
<th>Driver Pin Protection</th>
<th>Receiver Pin Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Body</td>
<td>±10kV</td>
<td>±10kV</td>
</tr>
<tr>
<td>Machine</td>
<td>±3.5kV</td>
<td>±6kV</td>
</tr>
<tr>
<td>IEC-801</td>
<td>±7.5kV</td>
<td>±8kV</td>
</tr>
<tr>
<td>Machine Model with RC Network on RS232 Pins</td>
<td>±10kV</td>
<td>±10kV</td>
</tr>
</tbody>
</table>

ESD Transients During Powered Operation

The test methods discussed so far involve testing for permanent damage to the integrated circuit from ESD transients. In today’s portable electronics, interconnection of cables to the communications ports may occur while the equipment is operating. This makes it imperative that the circuit can tolerate the ESD transient with minimal disruption of system operation. LTC’s RS232 interface circuits can withstand 10kV ESD transients while operating, shut down, or powered down. Disruption of data transfer is unavoidable during the ESD transient event, but data transmission may resume upon the completion of the event.

Figure 2 is a scope photograph of the data transmission interruption and recovery seen when a -10kV ESD transient strikes a communications line. The test circuit of Figure 3 was used to record this event. The ESD strike is applied to the driver output of an LT1180A and the receiver input of an LT1331. The ESD transient is of too short a duration to be recorded on the photograph, but the effects of the transient can be seen by the corruption of data after the strike. The circuits require about 20µs to recover from the event, after which data transmission continues normally.

For literature on our Interface Products, call 1-800-4-LINEAR. For applications help, call (408) 432-1900, Ext. 453
Finally, precision attenuation accurate over 10 to 1000MHz and -55°C to +100°C. Standard and custom models are available in the TOAT(pin)- and ZFAT(SMA)-series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels.

The 50-ohm components perform with 6µsec switching speed and can handle power levels typically to +15dBm. Rugged hermetically-sealed TO-8 units and SMA connector versions can withstand the strenuous shock, vibration, and temperature stresses of MIL requirements. TOAT pin models are priced at only $59.95 (1-9 qty); ZFAT SMA versions are $89.95 (1-9 qty).

Take advantage of this striking price/performance breakthrough to stimulate new applications as you implement present designs and plan future systems. All units are available for immediate delivery, with a one-yr. guarantee, and three-sigma unit-to-unit repeatability.
output-port address, and address+1 is the input-port address. After clearing the counter and enabling the clock, the program lets the counter free-run for 1 msec and then reads the counter bit-by-bit. The resultant number indicates how many clock cycles occur during 1 msec and determines the oscillation frequency. Next, the program sets the CD4536 to be a 24-bit counter, clears the counter, starts the clock, runs the test procedure, and stops the clock. If the reading is too small, the program sets the CD4536 to a 16-bit counter and reruns the test. Based on the known clock frequency and counter number, calculating the execution time of the tested procedure is easy. Since the maximum counter number and clock are 24 bits and 10 µsec, respectively, the maximum execution time this circuit can measure is 160 seconds.

Switching-regulator output goes below V_{REF}

Michael Keagy, Maxim Integrated Products, Sunnyvale, CA

The feedback arrangement of typical switching regulators doesn't allow the regulated outputs to go lower than the reference voltage. If you try to lower the output by modifying the feedback network, the compensation components the manufacturer recommends may no longer stabilize the regulator's error amplifier. An external reference voltage (Fig 1) helps overcome this problem.

IC$_1$ regulates by keeping the voltage at its FB pin equal to the internal V_{REF}, which normally sets a lower limit of 2.21V for V_{OUT}. The FB voltage usually results from a resistive divider that connects between V_{OUT} and ground. However, this circuit connects the divider between V_{OUT} and the higher-voltage shunt-regulator output of D$_2$. As you adjust R_5, the resulting output voltage ranges from 2.21 to approximately 1.2V, according to the following equation, where $V_{FB}=V_{\text{REF}}=2.21$V, and V_z = zener voltage = 7.5V:

$$V_{\text{OUT}}=V_{FB}(R_1+R_2)/R_2-V_z(R/R_2).$$

Because IC$_1$'s error amplifier is inherently stable, the simple compensation components R_1 and C_1 ensure that the circuit is stable. You can set V_{OUT} lower than 1.2V if you also modify the compensation network. And, the feedback modification shown in this circuit can let other regulators produce outputs lower than V_{REF} if you can stabilize their error amplifiers.

IC$_1$'s highest allowable input voltage is 40V. If V_{IN} differs significantly from 40V, adjust R_1 as necessary to return the zener current to approximately 1.5 mA. R_3 is an optional load resistor that prevents the otherwise unloaded output from approaching the zener voltage.

The circuit can supply 5A and offers 0.75%/V line regulation for inputs between 30 and 40V. Load regulation for the output currents between 0.1 and 5A is 0.4%/A. Losses occur in D$_p$, which drops about 0.2V, and in the inductor, whose series resistance is approximately 0.06Ω. Together, these components consume about 2W at 5A. C_1 and the internal, power Darlington transistor also consume power.

When supplying 1A, Fig 1's efficiency for $V_{\text{REF}}=1.2$V is approximately 50%—and 60% for $V_{\text{OUT}}=2$V. Efficiency degrades at light loads because of relatively high supply current. The levels at dc—8.5 mA in the IC and 1.5 mA in the zener diode—decrease somewhat with the switching frequency. IC$_1$'s internal Darlington switch drops about 1.8V. Other regulators that have lower voltage drops across the switch will have higher efficiencies at lower load currents.

Fig 1—Connecting the R_4 and R_5 feedback network to 7.5V instead of to ground enables this switching regulator to produce a regulated output that's lower than its internal reference voltage.

EDN March 17, 1994
In Crystals and Oscillators.
Quality means performance and reliability. You can be confident you’ll achieve your design goals every time. With Ecliptek crystals and oscillators.
A wide selection of competitively-priced products for maximum design flexibility. Plus fast delivery to help you meet your deadlines.
We put crystals and oscillators in a whole new light. See EEM 1993/94 for technical details. Or call 714-433-1200.

Pulse-width adjuster reverses servo motor
Joe Utasi, Jomar Products Corp, Cincinnati, OH

Typical remote-control systems and robotics applications use standard R/C servos, which often require a reversal of the direction of rotation. Since varying the input signal’s pulse width between 1 and 2 msec controls the servo’s output position, a circuit that adjusts the pulse width to cause direction reversal can often come in handy. Many such circuits exist that use relatively sophisticated servo-control ICs, but the implementation in Fig 1 uses a standard CMOS IC to produce a reliable design at low cost.

Q₁ functions as an input buffer, which allows correct control even if the input is not logic-level compatible with the CMOS chip. At the beginning of the active-high normal servo pulse, the output of Q₁ goes low, triggering timer IC₁₄, which the circuit sets for 3 msec. This action forces the clear line of timer IC₁₈ high, getting this second timer ready to accept a trigger pulse. At the end of the normal servo pulse, Q₁ goes low, timer IC₁₈—which is configured as a latch—triggers, and its output remains high until IC₁₄ times out. Since IC₁₈’s output doesn’t go high until the original input pulse goes low, the output of IC₁₈ is the difference between the input and IC₁₄’s 3-msec timer. Thus, as the input signal increases in width, the output decreases, and the circuit essentially reverses the direction of the servo-control pulse. D₁ and C₁ filter battery noise caused by the servo system and ensure that the servo-pulse reverser does not introduce any jitter into the system. EDN BBS/DL_SIG #1389

To Vote For This Design, Circle No. 411

To shorten the duration of an input pulse and thereby reverse the direction of the servo-control pulse, this circuit essentially subtracts the input pulse width from timer IC₁₄’s fixed-pulse-width output.
WORLD'S SMALLEST MOST ACCURATE QUAD 12-BIT VOUT DAC

Cut Space, Eliminate Costly Trims!

The MAX536/MAX537 is ideal for servo-control, offset/gain-adjust, and other applications where high precision and small form-factor are critical. 12-bit monotonicity, ±1/2LSB relative accuracy, and ±1LSB Total Unadjusted Error* (MAX536) are guaranteed with no zero- or full-scale adjustments. The four DACs can be updated either independently or simultaneously via a single command register, and the serial interface is fully compatible with SPI™, QSPI™, and MicroWire™.

- 3-Wire Serial Interface
- Frees µP I/O Pins
- ±1 LSB TUE* Eliminates Trims
- 16-Pin SOIC/DIP Save Space
- ±5V Supply Operation (MAX537)
- Low-Noise Precision Output Buffers On-Chip
- Parallel Versions Also Available (MAX526/MAX527)

FREE D/A Converter Design Guide—Sent Within 24 Hours!
Includes: Data Sheets and Cards for Free Samples
CALL TOLL FREE 1-800-998-8800 ext. 6444
For a Design Guide or Free Sample
MasterCard® and Visa® are accepted for Evaluation Kits or small quantity orders.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194.

Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc.; CO, Component Sales; CT, Comp Rep Associates; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M-Squared, Inc.; ID, E.S. Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Deltron; LA, BP Sales; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Mel Foster Technical Sales, Inc.; MS, M-Squared, Inc.; MO, Deltron; CT, E.S. Chase; NE, Deltron; NY (Reno, Tahoe area only) Pro Associates, Inc.; NH, Comp Rep Associates; NJ, Parallax, TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Comp; NC, M-Squared, Inc.; OH, Lyons Corporation; OK, BP Sales; OR, E.S. Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC, M-Squared, Inc.; TN, M-Squared, Inc.; TX, BP Sales; UT, Lucombe Engineering Co.; VA, Micro-Comp, Inc.; WA, E.S. Chase; WI, Heartland Technical Marketing, Inc.

Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

*SPI and QSPI are registered trademarks of Motorola and MicroWire of National Semiconductor
*Total Unadjusted Error (TUE) = Sum of Linearity, Offset and Gain Errors.
WORLD’S LOWEST POWER 5V 12-BIT DACs

VOUT DAC Draws Only 300µA (max) From Single +5V Supply!

Designed for portable and battery-powered applications, the new serial MAX538/MAX539 comes in a tiny 8-pin SOIC package, and cuts supply current by 3 times over the closest competition. In addition, it's the first +5V-powered VOUT DAC to provide true 12-bit ±1/2LSB linearity.

- Serial Interface Saves µP Pins
- SPI™, QSPI™, µWire™ Compatible
- Rail-to-Rail Output Amplifier
- Internal Reference Version (MAX531)
- Guaranteed Monotonic Over Temp
- Priced from only $4.85*
- Parallel Version Available (MAX530)

FREE D/A Converter Design Guide—Sent Within 24 Hours!
Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800 ext. 6444
For a Design Guide or Free Sample
MasterCard® and Visa® are accepted for Evaluation Kits or small quantity orders.
Connect your design to VLSI's battery of ARM™ silicon and software, and energize your system with the most power-efficient 32-bit RISC processor available today.

From a rich family of off-the-shelf controllers to user-configurable ASIC-based solutions utilizing the ARM core as an embeddable FSB™ library element, VLSI gives you the flexibility to implement your ARM design exactly the way you want. Exactly the way you need. Nobody else can do that.

With the world's smallest 32-bit RISC chip, we bring you the highest MIPS/mA and lowest $/MIPS ratios of any 32-bit RISC on the market. High performance and low power.

3V or 5V.

Our ARM products are charged by a set of tools that are easy to use.

With a powerful real time multitasking operating system, and a graphical development environment that's fully symbolic.

Products and tools you can design with. Service and support you can depend on. And costs you can live with.

So don’t wait to find out how VLSI's ARM solutions can boost your particular application. Call us today at (602) 752-6630 or Fax us at (602) 752-6001.

We’ll give you a real jump on your competition!

VLSI ARM: The Embeddable RISC Machine™
LanICE moves PC-based in-circuit emulators onto Ethernet

The world is going distributed. One evidence of this phenomenon is the increasing number of development teams who are connecting their targets to the LANs to which their workstations or PCs are connected. This allows the team members to develop software in the comfort of their own offices and provides all team members with access to the target. The target itself can be anywhere that is accessible to the LAN.

One company that is facilitating this move is Nohau. It basing its in-circuit emulators (ICEs) on boards that plug into IBM PCs. Until now, users had to control the ICE with a PC that was very close to the target or use an RS-232C box to connect to the ICE via a standard but slow COM port.

The Nohau LanICE box allows you to connect the ICEs to your network. It is based on a 66-MHz 486. In essence, it is a PC without a keyboard or a display but with an Ethernet interface and all the software to control the ICE from a workstation running X Windows. LanICE comes in a tower configuration that houses as many as five emulators.

LanICE's 10-Mbps interface maintains high throughput to the ICE. This allows program downloads, single-stepping, and other operations to run very quickly from a workstation or a networked PC.

LanICE creates Transfer Control Protocol/Internet Protocol (TCP/IP) messages that contain all of the font and other information X Windows needs to display in an MS-DOS-compatible or a Microsoft Windows-compatible window. When you use the Windows-compatible window, the ICE works as if you were using a PC directly connected to the ICE. The LanICE costs $3500. -David Shear

Nohau Corp., Campbell, CA. (408) 378-1820. Circle No. 336
IDT adds the Quarter-Size Outline Package (QSOP) to complete its winning hand of surface-mount packages for its high-speed FCT Logic family. With products available in TSSOP, QSOP, SSOP, and standard SOIC packages, IDT now offers the industry’s widest line of high-density packaging for both Octal and Double-Density logic.

Dramatic Space Savings!

At half the length and width of industry standard SOIC packages, the new QSOP package is the most compact Octal package available. In addition to the area savings, the new package is only 0.0645 inches high, making it ideal for low profile applications.

The Fastest 5V and 3.3V Logic

IDT’s Logic family is the highest performing, lowest power bus interface solution. Available in a wide variety of 5V and 3.3V functions, and speed grades from 6.5ns to 3.2ns (t_{pd} max), IDT’s FCT Logic family supports all levels of performance at competitive prices.

Quiet, Low-noise Outputs

IDT’s FCT Logic is offered in a variety of low-noise output drive configurations to minimize ground bounce and to match specific design requirements. Output configurations include: standard TTL-compatible high drive and very low-noise balanced drive with source terminating resistors.

Call Today!

Call or FAX IDT today and receive a QSOP cross reference guide, sample package card, Logic Design Guide and Logic Data Book. Add IDT’s Logic to your hand— you’ll be the winner!
You’ll find our Sales Specialists are really bright.

The GE Rental/Lease Sales Specialists are knowledgeable professionals who are ready to assist you in any way – from helping you select the right test equipment to advising you on how to use it. They can suggest both industrial and electronic test equipment applications, alternative equipment and accessories. And if you ever have a problem with the equipment once it's on your site, they'll work with you to make it right.

In fact, we'll work with you to make your entire rental experience with GE Rental/Lease right. From help in selecting equipment to fast delivery to our unmatched customer service. Just call 1-800-GE-RENTS. We'll help you see the light.
Optimized libraries for TI C30 and C40 DSPs

Two new libraries are available for the Texas Instruments TMS320C30 and TMS320C40 DSPs. STD/Mathlib is a runtime library that contains 33 mathematical functions commonly used in machine control, DSP, and graphics. The library also includes hand-coded trigonometric, transcendental, hyperbolic, and other functions. STD/Mathlib costs $495 on DOS and $695 on Sun/OS.

The DSP/Veclib library of DSP functions for the TMS320C40 includes more than 300 hand-coded functions, such as FFTs, convolutions, and correlations. It is available for DOS and Sun/OS systems and costs $3000. —David Shear

PC-based, 4×6-in. SBC incorporates video

The 16-MHz V-40 µP-based single-board computer (SBC) contains 640 kbytes of user DRAM, disk controllers, and a VGA video/LCD controller. To round out the PC-based architecture, the 4×6-in. SBC also includes a 128- to 256-kbyte BIOS flash EPROM, three RS-232C ports, a parallel port, a real-time clock with a battery, and an optional ARCnet interface. The PC/+v consumes 2W and costs $300. —David Shear

Simulation library offers block diagram

Engineers designing digital communications can now prototype their designs with block diagrams using Hyperception's Hypersignal for Windows advanced transmission library. It works with the Hypersignal for Windows block-diagram simulation software.

The new blocks in the library include baseband transmission models, modulation, demodulation, carrier and clock recovery, arbitrary filter design, and system-performance measures. Hypersignal for Windows costs $1495. —David Shear

SIEMENS

For the finest components, call toll free...

Siemens Components, Inc., Special Products Division

<table>
<thead>
<tr>
<th>Component</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitors/RFI</td>
<td>800-888-7729</td>
</tr>
<tr>
<td>Ferrites</td>
<td>800-888-7728</td>
</tr>
<tr>
<td>Thermistors</td>
<td>800-888-7728</td>
</tr>
<tr>
<td>Varistors/</td>
<td>800-888-7728</td>
</tr>
<tr>
<td>Surge Protectors</td>
<td>800-888-7728</td>
</tr>
<tr>
<td>Saw Products</td>
<td>800-888-7728</td>
</tr>
<tr>
<td>Microwave</td>
<td>800-888-7728</td>
</tr>
<tr>
<td>Ceramics</td>
<td>800-888-7728</td>
</tr>
<tr>
<td>Switches/Connectors</td>
<td>800-888-7728</td>
</tr>
</tbody>
</table>

Personal DSO with four full channels combines performance and portability.

- 100 MS/s sampling rate per channel (2 channel mode).
- Auto measurement, auto set-up and auto sequence.
- 7” CRT displays bright clear waveforms.
- Optional built-in printer for immediate hard copy.
- 128 K record length (2 channel mode).

For more information call 800-258-2552
Yokogawa Corporation of America
The Most Advanced Subsystem To Measure Temperature Also Measures Less Than An Inch.

Introducing the AD1B60. The only intelligent digitizing signal conditioner component.

When we say there's nothing like the AD1B60, it isn't advertising hype; it's fact. Not only does it provide excitation, linearization, compensation, scaling and self-calibration for thermocouples and RTD's, it does so in just one small surface-mount package. And since it eliminates the need to write and debug linearization software, the AD1B60 is incredibly easy to use. So if you're looking to cut design costs, get to market faster and reduce inventory requirements, there's only one thing to do. Call Analog Devices at 1-800-ANALOG-D (262-5643).

We'll send you a datasheet on the AD1B60 and a brochure detailing our full line of industrial components.

Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106.
Toshiba 8-bit µC offers 60 kbytes of ROM elbow room

For most microcontroller (µC) system designers, there's never enough memory; they're continually shoehorning code into small memory spaces. Toshiba's TLCS-870 8-bit µCs give these designers some breathing space—up to 60 kbytes of ROM and 2 kbytes of RAM. Built with a register-banked architecture, the 870 has a 2-MHz internal bus and a full instruction set.

You can buy a lot of code forgiveness with 60 kbytes. With that much ROM, you can pay more attention to code correctness than just to code size. Not only that, but a 2-kbyte RAM, even with 16 banks of eight registers each, leaves a lot of room for stack operations. The 870 supports a software stack and has the room for it. The large code space, moderate-size RAM, and software stack make C a viable programming option. Toshiba offers its own C compiler.

The 870 has a full set of peripherals, including an 8-bit ADC, three 8-bit timer/counters, two 16-bit timer/counters, a watchdog timer, and three serial interfaces. Additionally, the 100-lead chip provides 90 I/O pins for data input and output.

To conserve power, the 870 has a dual clocking system: an 8-MHz fast clock and a 32-kHz slow clock. It has five power-saving modes: Stop (no oscillator), Slow (32.8-kHz clock), Idle1 (CPU stopped, peripherals on fast clock), Idle2 (CPU stopped, peripherals use fast or slow clocks), Sleep (CPU stopped, peripherals use slow clock). Interrupts trigger an exit from these modes. Toshiba supplies development tools for the 870; these include the C compiler, an assembler/linker/loader/library, and an in-circuit emulator.

—Ray Weiss
Circle No. 404
8/32-bit \(\mu\)C combines RISC and traditional design

RISC technology is not confined to 32-bit, high-memory-bandwidth processors. For example, although Hitachi's H8/300H 32-bit microcontroller (\(\mu\)C) is not quite RISC, it combines RISC design techniques (simple instructions, pipelining) with traditional \(\mu\)C design. Using 2- or 4-byte instructions, the CPU delivers a peak instruction rate of 7.6 MIPS with a 16-MHz external rate; Hitachi claims a 1.9-MIPS Dhrystone rate.

The H8/300 integrates up to 64 kbytes of on-chip program ROM with off-chip DRAM. It has up to 2 kbytes of RAM for fast local data access but also enables programs to make use of a large, slower, low-cost DRAM. Designing in the chip is easy; the \(\mu\)C has an on-chip DRAM controller, complete with programmable wait states, row-access/column-access strobes, and refresh cycles. The device lets you execute code from the DRAM, but doing so reduces execution rates. For example, memory fetches would take longer with this method, and with a 16-byte-wide DRAM bus, a 32-bit instruction would take two memory cycles to access.

The H8/300H is a full-fledged \(\mu\)C, not a RISC CPU with a few peripherals. It includes a timer complex with a free-running clock; a 10-bit ADC; a timing-pattern generator for stepper-motor, motor-control, and event-generation applications; an 8-bit DAC; and three serial I/O ports. A DMA controller offloads the CPU; the controller directs an I/O stream to or from memory without causing the CPU to spend the overhead to take, process, and return from an interrupt. The \(\mu\)C comes in a 100-pin chip and has up to 48 I/O pins for monitoring and control.

Development tools from Hitachi and third-party vendors include a C compiler, a GNU development environment, an assembler/linker/loader/library, a simulator/debugger, and an in-circuit emulator.—Ray Weiss

\[\text{Circle No. 405}\]
Hold on to your hat. Harris has pulled together the latest in high speed signal processing and packed it into an information-rich seminar that will make your head spin. In just a half day we’ll brief you on the latest in video processing, A/D conversion, communications ICs, digital IF processing, and more. You’ll get an overview of the 100 hot new Harris products. And you’ll walk away with the data you need to make smarter design choices. And it’s free. How’s that for getting up to speed?

To register call 1-800-4-HARRIS, ext. 7192
For a complete schedule by fax, call Harris AnswerFAX at 407-724-3818 and request document #7066.
Insulated-gate, bipolar power transistors switch at 100 kHz. Six members of a line of UltraFast 500V IGBTs have higher usable current densities than similarly rated power transistors, resulting in less costly devices. The devices suit single-ended topologies. The transistors are also available packaged with fast-recovery diodes. DC ratings range from 14 to 59A. $1.50 to $10 (1000). International Rectifier Corp, El Segundo, CA. (310) 322-3332.

Rack-mounted case holds PCs in industrial applications. A series of ruggedized rack-mounted cases for PC mother boards and adapters measures 4U (7 in.) high and 17.7 in. deep. The cases have predefined mounting positions for all sizes and formats of 386 and 486 motherboards. A hinged front cover is lockable. The front panel meets the IP21 sealing spec. A removable mass-storage subassembly accepts hard drives. The manufacturer can also supply 8-, 12-, or 14-slot passive backplanes and power supplies, $600 (wired, power supply, 8-slot backplane). BICC-Vero Electronics Inc, Hamden, CT. (203) 287-0062.

Gang jack features eight positions and four cavities. The TM5RL-3232 gang jack has plastic holdowns and measures 0.46 in. high (shielded version, 0.47 in.). The jack accepts the company's 8-position plug. Typical applications are LAN pc boards. $5.27 (100). Single-position unit: $1.56 (100). Hirose Electric USA Inc, Simi Valley, CA. (805) 522-7958.

Ultraminiature selector switches measure 0.157 and 0.236 in. square. The 7600 Series of single-pole, multiple-throw selector switches come in surface-mount and through-hole versions. The rotary switches have five or 10 positions—four throws plus one off or nine throws plus one off. $1.14 and $1.53, respectively. Bournes Inc, Riverside, CA. (909) 781-5140.

Extender card brings PCMCIA bus out into the open. A 5V, 68-pin PCMCIA extender card accepts Type I, II, and III PCMCIA cards. The extender card has test posts for all pins. $169.95 (10). Swart Interconnect, South San Francisco, CA. (415) 588-4450.
TestPoint is a software tool for building test, measurement, and data acquisition applications for Windows. TestPoint lets you build complete applications without drawing, connecting, or wiring icons or writing lines of code.

New Capabilities
TestPoint brings extraordinary capability to instrument control and data acquisition for the benchtop or production line. TestPoint's software functions can replace hardware functions worth thousands of dollars, provide new measurement capabilities and simplify testing.

Better Tests
Sharp graphics and clear indicators eliminate errors and improve accuracy.

Cut Through the Paperwork
TestPoint can “hot link” to your spreadsheets, databases and word processing files so the paperwork is done the instant the test is finished.

There is no faster, better or easier way to build applications. Guaranteed!
Goodbye electronic cottage. Say hello to a communications world in which users will roam free like nomads, yet remain as interconnected as if they were still hard-wired to their desks.

Silicon Systems is the one mixed-signal integrated circuits (MSICs®) company now involved in all facets of this smaller, yet highly evolved, state of portable communications: WAN digital transmission, LANs, modems and wireless communications.

Partnering with farsighted design engineers like you, we’re developing low-power, high-performance and small-footprint communications ICs for motherboard, daughterboard, and PCMCIA card integration. For wide area network digital transmission. For wire line and wireless modems with data/fax capability. For portable LANs. And for high-frequency wireless applications as well as a wide range of other portable systems.

In this small world your next big idea becomes all the more achievable when you take advantage of our custom MSICs product expertise. Our design centers in North America and Asia. And our comprehensive CMOS, Bipolar and BiCMOS fab process capabilities. Join us. Call us for our Communications Tool Kit Brochure, and if you’d like, we’ll tell you how to contact your nearest Silicon Systems representative.

1-800-624-8999, ext. 151.

Silicon Systems, Inc.
Communications/Industrial Products Division
14351 Myford Road, Tustin, CA 92680
Ph (714) 573-6000 Fax (714) 573-6906
Cypress Semiconductor, the PLD and memory vendor, is determined to become a major player in high-end programmable logic. Cypress’ latest entry is its own proprietary complex PLD (CPLD). It combines flash-memory reprogrammability with a high-routability, fixed-speed interconnect that links as many as 256 macrocells. The Flash370 introduction follows a January release of the company’s pASIC380 field-programmable gate-array (FPGA) family, based on the Quicklogic FPGA.

Built on a multilayer-multiplexed programmable interconnect, the CPLD delivers 10-nsec pin-to-pin combinational logic delays. These delays are maximums for any logic combination or path on the chip. Maximums for the macrocell D flip-flops reach 6-nsec setup time and 6.5-nsec delay (input pin to D input, D output to output pin) with a maximum external clock rate of 70 MHz (not counting board delays). Internal clock rates are 110 MHz max for register-to-register transfers. Cypress claims 60-MHz external and 80-MHz internal clock rates (average maximum frequency) running the Prep benchmarks.

The Flash370 integrates PAL-like macrocells into logic blocks, with 16 macrocells per logic block. I/O feeds into the programmable interconnect as well as into adjacent logic blocks. Each logic block has 36 inputs, including feedback terms from the macrocells. Each macrocell uses up to 16 product terms as inputs.

The macrocells share these sets of product terms with adjacent macrocells. The Flash370 overlaps these product terms for adjacent macrocells: The first macrocell gets the first 16 product terms (one through 16), the second macrocell gets 16 product terms shifted four terms down (five through 20), the third macrocell gets 16 product terms shifted another four terms down (nine through 24), etc. This product-term overlap enables the macrocells to share product terms without stripping terms from or taking over adjacent macrocells.

The device provides only fixed delays; there are no other delays due to term sharing or expanders. Because the programmable-interconnect delays are fixed, there are no penalties for large fan-outs. Outputs also go through the programmable interconnect and, therefore, cause no additional delays. You can shift or reprogram the logic that feeds output-I/O pins without delay penalties. These CPLDs provide a large number of product terms, ideal for implementing control logic. However, as with most other CPLDs, you must make some compromises to fit large numbers of macrocells—22V10 look­alikes. For one thing, the maximum number of signals available to the logic block is 36. These signals, in turn, feed the 16 macrocells that make up the logic block. The total number of product terms available to each logic block is 96. The macrocells share these signals, and three adjacent macrocells can use most of the signals. The CPLD builds on Cypress’s flash-memory technology and currently requires 12V for programming.

Cypress offers the Warp II development tools for the Flash370 line and is working on fitters, back-end tools that fit the netlist onto the FPGA architecture, for third-party tools. A fitter is available for Data I/O’s Abel system. Warp II supports Cypress PLDs, FPGAs, and the new CPLDs. Warp II enables you to design in the VHDL high-level hardware-description language, which is synthesized and mapped into a chip. The tool includes a functional simulator and a timing analyzer. Warp II sells for $995 and comes in versions for PCs and Sun workstations.—Ray Weiss

Cypress Semiconductor, San Jose, CA. (408) 943-2600. Circle No. 340

FPGA targets dynamically reloadable logic

In the main, logic design has been a relatively conservative activity; core-design techniques have not changed in 20 years. That is about to change, as logic designers come to grips with dynamically reconfigurable logic: programmable logic that is reconfigured on the fly while the logic is running.

Pushing that changeover is Atmel with its first dynamically reconfigurable field-programmable gate-array (FPGA), the AT6000 family. Based on the Crosspoint FPGA technology Atmel acquired last year, the SRAM-based AT6000 builds on a matrix of several small core-logic cells. Underlying SRAMs that must be loaded on initialization define these logic cells and their configurations. These configuration SRAMs can be loaded dynamically during circuit operation. Moreover, you can specify loading any cell or set of sequential cells via a serial, pin-oriented load. Thus, you can dynamically reconfigure portions of your logic during runtime, similar to the way a computer can load a new application or thread into memory for execution. This technique enables computers to time-share memory for multiple applications and lets you do the same with logic: load in specific logic functions for time-dependent execution.
The AT6000's array of moderately fine-grained cells is organized into an X-Y matrix. Each cell has a D flip-flop with multiplexer-oriented logic. You can configure the cells as basic SSI/MSI functions with or without the flip-flop. These cells are ordered in 8X8 local submatrices. The cells can serve as switches that connect cell to cell, cell to local bus, cell to express bus, or local bus to local bus. You can use a cell to turn a signal 90° and to connect it to a local or express bus or to an adjacent cell. The relatively large number of cells easily provides registers for data-path implementations.

You can interconnect these cells via a busing network, which has local buses (connects as many as eight cells) and express buses for long distances. You can move signals from bus to bus via repeaters, which can be tri-stated and have a delay of 1.6 or 2.1 nsec for express or local connections, respectively. The chip includes logic for vertical (column) clock distribution and asynchronous reset for the cell D flip-flops.

The cell registers have a 2-nsec setup time and a 2-nsec output delay. Cell logic delays are on the order of 2.2 nsec for a NAND and 2.4 nsec for an EXOR gate delay. I/O-buffer delays are 1.2 and 3.5 nsec, respectively. Each I/O can sink or source 12 mA, and you can combine I/Os for more power. All delays—express or local bus, local connections, gate, and flip-flop—are highly predictable. Thus, routing is highly deterministic for timing.

Atmel supplies an FPGA Physical Design System for $995. It includes a macro library, an automatic place-and-route tool, a static-timing analyzer, a design-rule checker, a load bit-stream generator, and other utilities. These tools integrate with Viewlogic Viewdraw (schematic) and Viewsim (functional simulator). Prototyping board kits are also available.

---Ray Weiss
Atmel, San Jose, CA. (408) 441-0311.
Circle No. 341

Atmel AT6000 FPGA family

<table>
<thead>
<tr>
<th>No. of cells</th>
<th>AT6002</th>
<th>AT6003</th>
<th>AT6005</th>
<th>AT6010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum registers</td>
<td>1024</td>
<td>1600</td>
<td>3136</td>
<td>6400</td>
</tr>
<tr>
<td>Maximum I/Os</td>
<td>96</td>
<td>120</td>
<td>108</td>
<td>173</td>
</tr>
<tr>
<td>Cell (rows x columns)</td>
<td>32 x 32</td>
<td>40 x 40</td>
<td>56 x 56</td>
<td>80 x 80</td>
</tr>
<tr>
<td>Typical operating current (mA)</td>
<td>30</td>
<td>45</td>
<td>80</td>
<td>173</td>
</tr>
<tr>
<td>Package</td>
<td>44-pin PLCC</td>
<td>44/84-pin PLCC</td>
<td>68-pin PLCC</td>
<td>84-pin PLCC</td>
</tr>
<tr>
<td>Price (5000)</td>
<td>$16</td>
<td>N/A</td>
<td>$72</td>
<td>N/A</td>
</tr>
</tbody>
</table>

One Stop Shopping!

All your circuit board needs under one roof:

PCB MANUFACTURING
- 2 day turn on multi-layers
- Prototype and production
- Gerber Data Test
- FR4, Polymide
- Turnkey assembly
- PCMCIA up to 6 layers

PCB DESIGN LAYOUTS
- Layouts for Economical manufacturing
- Backplanes
- Impedance Control
- Analog and ECL
- Surface Mount
- 3 CAD Workstations

TECHNICAL SUPPORT
- Free Design Layout Tips
- Free MFG Cost Cutting Tips
- We accept Gerber Data Via Modem

EXTERNAL POWER SUPPLIES

Large variety from stock

ISO 9000 Registered Factory

- Pin Configurations for North American and other International requirements.
- Approved to: UL, CSA, VDE, TUV, IEC 950, IEC 742, T-Mark, SAA, Scandinavian and other International standards
- Wall plug-in and table-top models
- Linear & Switching types
- AC-AC, AC-DC, DC-DC, single, dual & triple output types
- Custom or standard designs

Send for FREE catalog & engineering samples.

GlobTek, Inc.

186 Veterans Drive • Northvale, NJ 07647 U.S.A.
Phone: (201) 784-1000 • FAX: (201) 784-0111
FAST-CHARGE NiCd & NiMH BATTERIES IN UNDER 1 HOUR

Safe and Reliable Solution Needs Only Low-Cost Components

The MAX712 and MAX713 are complete battery charging systems in a single IC. Each contains an A/D converter, analog power control circuitry, and all the intelligence necessary to safely and reliably fast-charge and trickle-charge Nickel-Cadmium or Nickel-Metal-Hydride batteries. Automatic switch-over from fast-charge to trickle-charge protects batteries. So do user-set charge rates, temperature detection points, and time-out periods.

- Charge 1 to 16 Cells in Series
- Needs Only Low-Cost Components
- Voltage-Slope, Temperature, and Time-Out Detection
- Fast-Charge at 4C to C/3 Rates (15 minutes to 3 hours)
- Trickle-Charge at C/16 Rate (16 hours)
- 16-Pin Narrow SOICs and DIPs
- Complete Evaluation Kit*
- Only $3.10**

Linear Current-Regulation Application

The MAX712 and MAX713 determine fast-charge termination using a sophisticated combination of voltage-slope, temperature, and time-out detection. The MAX712 uses zero-slope detection; the MAX713 uses negative-slope detection.

FREE Power Supply Design Guide—Sent Within 24 Hours!
Includes: Data Sheets and Cards For Free Samples

CALL TOLL FREE 1-800-998-8800
For a Design Guide or Free Sample

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194.

Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc.; CT, Component Sales; DE, Comp Rep Associates; FL, TAI Corporation; GA, M-Squared, Inc.; ID, E.S. Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Deltron; LA, BP Sales; MA, Comp Rep Associates; MI, Micro Tech Sales; MN, Malt Foster Technical Sales, Inc.; MS, M-Squared, Inc.; MO, Deltron; MT, E.S. Chase; NE, Deltron; NV (Reno, Tahoe area only) Pro Associates, Inc.; NJ, Comp Rep Associates; NY, Parallax, TAI Corporation; OH, Lyons Corporation; OK, BP Sales; OR, E.S. Chase; PA (Philadelphia area) Lyons Corporation; SC, M-Squared, Inc.; TN, M-Squared, Inc.; TX, BP Sales; UT, Luscombe Engineering Co.; VA, Micro-Comp, Inc.; WA, E.S. Chase; WI, Heartland Technical Marketing, Inc.

Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

**1000-up Recommended Resale, FOB, USA

Maxim is a registered trademark of Maxim Integrated Products. © 1994 Maxim Integrated Products

CIRCLE NO. 48
INTEGRATED CIRCUITS

FREE INFO, FREE POSTAGE

Use our postage-paid reader-service cards to get more information on any of these products.

Self-timed SRAMs operate with Pentium µP. The CXK77910A, a 1-Mbit synchronous self-timed SRAM, comes in 10- and 12-nsec cycle times and suits use with Pentium and SPARC µPs. The device integrates input registers, high-speed memory, and output registers onto a monolithic chip, which eliminates the need for off-chip pulse generation. The device has a 128k×9-bit organization and consumes 945 mW. Sample price is $100 for either speed. Sony Component Products Co., Cypress, CA. (800) 288-7669. Circle No. 345

Analog transceiver is faster than digital versions. The ML6580 is a bus transceiver that has a propagation delay of 1.5 nsec. The low propagation delay of the octal device lets data and addresses move between a µP and memory at high speeds. A µP operating at 66 MHz reads data on each clock tick, which is 15 nsec. Conventional digital receivers would take two clock ticks, or 30 nsec. The chip can drive 50-pF loads operating at 50 MHz and has a 300-mV typ ground bounce. 1.5-nsec version, $700 (100). Micro Linear Corp., San Jose, CA. (408) 433-5200. Circle No. 346

Low-cost wideband buffers consume just 3.5 mA. The CLC109 and CLC111 closed-loop unity-gain buffer amplifiers feature respective bandwidths of 270 and 800 MHz, slew rates of 350 and 3500 V/µsec, and typical supply currents of 3.5 and 10.5 mA when operating on ±5V supplies. The buffers can also operate on single 3V supplies. The CLC109’s gain flatness is ±0.1 dB to 30 MHz. The CLC111 features low distortion of ~62 dBc for second and third harmonics (at 20 MHz and 1000 Ω loads) and a 1.40 dB output impedance. In 8-pin plastic DIPs and SOICs, 100-piece prices for the 109 and 111 are $1.49 and $2.75, respectively. Comlinear Corp., Fort Collins, CO. (303) 225-7437. Circle No. 347

Synchronous SRAMs suit cache memories. The MT55SLC2K36, a 66-or 50-MHz synchronous SRAM, has a 32k×36-bit organization. The devices provide zero-wait states for cache memories, operate at 3.3V, and have 5V tolerant inputs and outputs. Options include support for 4-cycle burst-mode access and pipelined and nonpipelined operations. Cycle times are as fast as 15 nsec, and access times are as fast as 7 nsec (pipelined) and 12 nsec (nonpipelined). The devices come in a 100-pin thin flatpack, 12-nsec version; $40 (100). Micron Semiconductor Inc., Boise, ID. (208) 368-3900. Circle No. 348

Four-quadrant multiplier inputs four channels. Each channel of the MLT04 accepts a 12.5V input and delivers a normalized voltage output that implements a factory-calibrated transfer function of X×Y/2.5V. With ±5V supplies, typical power dissipation is 150 mW. In an 18-pin DIP or SOIC ($91.95 in 100), the MLT04 includes a stable 1.23V bandgap reference and individual output amplifiers. It requires no external components. Nonlinearity error is typically 0.2% with 0.005%/°C total error over temperature. Analog Devices Inc, Wilmington, MA. (617) 937-1428. Circle No. 349

Dual op amp combines precision with speed. The LM6182 dual current-feedback amplifier features a 100-MHz bandwidth and a 2000V/µsec slew rate. Precision specifications include a maximum offset voltage of 3 mV and maximum inverting and noninverting bias currents of 5 and 2 µA, respectively. The op amp supplies 100 mA of output current. A high-power output stage enables each amplifier to directly drive a 2V signal into 50 or 75Ω back-terminated coaxial cable over the −25 to +85°C temperature range. Differential gain and phase are 0.05% and 0.04°, respectively. A and standard grades cost $4.30 and $3.60 (1000), respectively. National Semiconductor Corp, Santa Clara, CA. (408) 721-6973. Circle No. 350

Cache RAMs operate with 55-MHz 486 µPs. The CXK784862Q-33/55 RAMs operate as a cache memory for 33- and 55-MHz 486 µPs, respectively. The device is a 2-way set-associative, zero-wait-state cache that operates with high-speed memory, and output registers onto a monolithic chip, which eliminates the need for off-chip pulse generation. The device has a 128k×9-bit organization and consumes 945 mW. Sample price is $100 for either speed. Sony Component Products Co., Cypress, CA. (800) 288-7669. Circle No. 343

Single-supply op amps cost cents/channel. The 4-MHz dual OP292 and quad OP492 cost $1.32 (1000) and $2.16, respectively, making per-channel costs $0.66 and $0.54, respectively. Operating from a single 5V supply, the OP292’s guaranteed maximum dc specifications include 800-µV offset and 10-µV/°C drift with 700-nA input offset current over the IC’s −40 to +125°C operating temperature range. Both amplifiers feature voltage and current noise of 15 nV/√Hz and 0.7 pA/√Hz, respectively. Slew rate is typically 4V/µsec, and channel separation at 1 kHz is 100 dB. The dual and quad amplifiers come in 8- and 14-pin DIPs and SOICs, respectively. Analog Devices, Wilmington, MA. (800) 879-4963. Circle No. 344
Replace 1 TL7705, 1 Resistor, and 2 Capacitors for Less Cost

Tell Us What Price Quote You Need!

MAX709 versus TL7705 Comparison

- External Components Required: MAXIM 0, TI 3
- Operating Supply Current: MAXIM 65μA, TL7705 35μA
- Power Supply Glitch Immunity: MAXIM Yes, TI No
- +5V Reset Threshold Options: MAXIM 2, TI 1
- +3V Reset Threshold Options: MAXIM 3, TI 1
- Guaranteed Min Reset Delay: MAXIM Yes, TI No

Low-Cost μP Supervisors Replace Several Components

<table>
<thead>
<tr>
<th>Part</th>
<th>Reset Threshold (V)</th>
<th>Manual Reset</th>
<th>Extra Comparator (Power Fail)</th>
<th>Battery Backup Switchover</th>
<th>Watchdog Timer</th>
<th>Active High Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX703</td>
<td>4.65</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX704</td>
<td>4.40</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX705</td>
<td>4.65</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX706</td>
<td>4.40/3.08/2.93/2.63</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MAX707</td>
<td>4.65</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX708</td>
<td>4.40/3.08/2.93/2.63</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX709</td>
<td>4.65/4.40/3.08/2.93/2.63</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MAX813L</td>
<td>4.65</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

FREE μP Supervisory Design Guide—Sent Within 24 Hours!
Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800
For a Design Guide or Free Sample

LOW-COST μP SUPERVISORS

MasterCard® and Visa® are accepted for Evaluation Kits or small quantity orders.
If You're Looking For Product Acceptance In North America, UL Holds The Key.

The big news today is that UL is accepted all across Canada. And with the signing of a cooperative assistance agreement with the Asociacion Nacional de Normalizacion y Certificacion del Sector Electrico (ANCE), the first independent standards and product certification organization accredited by the Mexican government — UL is the first organization of its kind to offer manufacturers access to certifications for all of North America.

And since UL provides certification that allows immediate acceptance across the entire United States, saving time and money to gain acceptance across North America has never been easier.

In fact, no other safety certification service can deliver what UL provides. And because we operate as a not-for-profit organization, you can be assured that our primary objective remains safety.

So if you're looking for one source that not only handles product safety certification across the United States, but also facilitates expanding your products' acceptance beyond the borders, we can hand you the key.

U.S. Headquarters: Barbara Olds
PHONE: 708-272-8800, EXT. 43319
FAX: 708-272-9562

Canada: John Woods
PHONE: 613-742-6965
FAX: 613-742-6965
EDN·NEW PRODUCTS
TEST & MEASUREMENT

ISA bus waveform-capture board takes 500M samples/sec in real-time

The 350-MHz-bandwidth DA500 waveform-capture board from Signatec represents a significant accomplishment. Its top acquisition speed is 500M samples/sec, putting it in the same class as some of today's faster real-time-sampling benchtop scopes. Moreover, when you install a piggyback RAM card, the 8M-sample memory is as deep as that on the deepest-memory benchtop scope. And when higher-capacity SRAMs become available, the 8M-sample capacity will increase by a factor of four. Nevertheless, The DA500 doesn’t have the wide attenuation range of a general-purpose DSO. And, despite several trigger modes, the product lacks the trigger flexibility of a modern benchtop scope. That’s why the vendor calls the $6950 board a waveform digitizer and not a scope.

Even before the advent of devices that will allow a piggybacked 32-Mbyte acquisition memory, you can couple the DA500 via an auxiliary bus to some of the vendor’s other ISA bus boards. At 200M samples/sec and below, the DA500 can pump as many as 256M samples into a MEM500 board. The DA500 can drive up to four MEM500s, allowing 1 Gbyte of memory—the equivalent of over 5 sec of data at 200M samples/sec.

The board has two channels, but when you use both, the top acquisition speed declines to 25M samples/sec. If you want to acquire more channels at higher speeds, you can have as many as three additional DA500s act as slave boards attached to the first one and run all of them at 500M samples/sec.

The DA500’s spec sheet is more detailed than those of most DSOs. (Suppliers of waveform digitizers generally provide more performance detail than DSO vendors.) With a signal frequency of 250 MHz and a sample rate of 500M samples/sec, the board’s effective linearity is 7 bits. Its typical aperture jitter is 2 psec. The input attenuator spans 30 dB in 2-dB steps.

As you might imagine, the board dissipates a lot of power for a device that resides within a PC. Its maximum dissipation is 24W. Signatec provides two power-saving modes. In Off mode, the board powers down almost fully. Standby mode disables the data-acquisition circuits, reducing the dissipation by almost 90%. If the temperature of the ADC rises above 65 ° C, the board goes into the standby mode.- Dan Strassberg
Signatec Inc, Corona, CA. (909) 734-3001.

Circle No . 335

Are You Planning to Export?

FULL COMPLIANCE TESTING TO IEC555

Voltech makes it possible with the PM3000A universal power analyzer. This highly accurate, powerful, easy to use, digital instrument lets you test single and three-phase equipment to the European standard IEC555 part 2, for steady state and fluctuating harmonics, and part 3 for fluctuating voltages (FLICKER).

Typical equipment affected by IEC555 includes: television receivers, audio amplifiers, computers and printers, lighting equipment, electrical appliances, information technology equipment, photocopy machines, power tools, waterheaters and most other AC powered devices and systems.

What’s more, the PC software included with the instrument offers additional flexibility:

- Fluctuating harmonics are displayed as real-time bar graphics.
- Graphic displays show harmonic variations in time.
- Flickermeter calculations include Pst and Pit values.
- Voltage deviations (dc, dmax, and dt) are automatically calculated as required by IEC555 part 3.

For less than the cost of a flickermeter, you get a power analyzer capable of over 400 different power related measurements with push-button convenience. The PM3000A can easily measure "nasty" distorted signals such as PWM motor drives, electronic lighting ballasts and power supplies.

Remember, every Voltech customer receives free firmware and software upgrades for the life of their analyzer. For more information, including free catalogs and application notes, call Voltech today.

Voltech, Inc. 200 Butterfield Drive, Ashland, MA 01721
Tel: (508) 881-7329 Fax: (508) 879-8669

INNOVATIONS IN MEASUREMENT & ANALYSIS.

CIRCLE NO . 30

Voltech makes it possible with the PM3000A universal power analyzer. This highly accurate, powerful, easy to use, digital instrument lets you test single and three-phase equipment to the European standard IEC555 part 2, for steady state and fluctuating harmonics, and part 3 for fluctuating voltages (FLICKER).

Typical equipment affected by IEC555 includes: television receivers, audio amplifiers, computers and printers, lighting equipment, electrical appliances, information technology equipment, photocopy machines, power tools, waterheaters and most other AC powered devices and systems.

What’s more, the PC software included with the instrument offers additional flexibility:

- Fluctuating harmonics are displayed as real-time bar graphics.
- Graphic displays show harmonic variations in time.
- Flickermeter calculations include Pst and Pit values.
- Voltage deviations (dc, dmax, and dt) are automatically calculated as required by IEC555 part 3.

For less than the cost of a flickermeter, you get a power analyzer capable of over 400 different power related measurements with push-button convenience. The PM3000A can easily measure "nasty" distorted signals such as PWM motor drives, electronic lighting ballasts and power supplies.

Remember, every Voltech customer receives free firmware and software upgrades for the life of their analyzer. For more information, including free catalogs and application notes, call Voltech today.

Voltech, Inc. 200 Butterfield Drive, Ashland, MA 01721
Tel: (508) 881-7329 Fax: (508) 879-8669

INNOVATIONS IN MEASUREMENT & ANALYSIS.

CIRCLE NO . 30
The availability of DUAL ISOLATED OUTPUTS creates cost and space savings in many applications. Fully safeguarded for over voltage, over temperature and continuous short circuit protection, these FIXED Hi-Frequency units minimize technical problems.

Networkable ADC/DAC/DSP unit resolves 18 bits. The 8.73×1.72×12-in. BNK5618 contains two 18-bit delta-sigma ADCs; each can acquire 48k samples/sec, two 18-bit DACs, a DSP56001 processor, 294 kbytes of zero-wait-state RAM, an RS-232C port, and an RS-422 port that supports the CSMA/CD networking protocol. You can connect as many as 250 of the units to a network. $2895 (1); $1895 (51). Spectrum analysis software costs $51. BNK Electronics Inc, Englewood Cliffs, NJ. (201) 894-5965. Circle No. 309

Software accelerates LabView DSP operations up to 100×. QuView works with both Windows and Macintosh versions of National Instrument's LabView and with the vendor's ISA bus and Nubus plug-in boards, which are based on the AT&T 32C and TI TMS320C30 DSPs. The boards interface with external data-acquisition and control units. The acceleration software is free of charge to purchasers of the vendor's DSP or data-acquisition hardware units. From $9500. Sheldon Instruments, Orem, UT. (801) 376-7861. Circle No. 310

ISA bus DMM board resolves 5½ digits. The SM-2020 makes 4-wire resistance measurements as well as dc and 10-Hz to 100-kHz true-rms ac voltage and current measurements. Resolution is ±300,000 counts (equivalent to over 19 bits). For dc, the error is 100 ppm for one year. The accompanying software includes libraries for Windows and DOS that allow writing control programs in Quick C and Visual C++. The board is also compatible with ATEasy, LabView for Windows, and LabWindows for DOS. $995. Sigmetrics Corp, Seattle, WA. (206) 524-4074. Circle No. 311

Handheld, clamp-on instruments measure power quality. The $795 CPM2000 (for ac) and the $995 CPM2100 (for ac and dc) measure ac frequency, power factor, and volt-amperes (to 2 MVA), voltage (to 750V ac and 1 kV dc), current (to 2000A), and resistance (to 400 kΩ). A 100-Hz lowpass filter lets you detect the presence of harmonics. The meters also check diodes and indicate continuity audibly. Wavetek Corp, San Diego, CA. (619) 279-2200. Circle No. 314

$500 triple-output benchtop dc power supply produces 35W. The E3630A furnishes 0 to 6V at up to 2.5A.
Looking for powerful electronic design with Windows® ease-of-use? TangoPRO™ for Windows delivers. We built TangoPRO to exacting Windows standards to ensure familiarity and the shortest learning curve. Others claiming Windows compatibility have merely ported DOS tools, omitting even basic Windows conventions like drag and drop.

Hot Features

Easy to use, yet powerful enough to tackle your toughest digital or analog designs. The new TangoPRO for Windows V 2.0 features comprehensive schematic entry and PCB layout with:
- Integrated libraries
- Hotlinked cross-probing
- Bi-directional ECOs
- 32-bit precision
- Unlimited design size
- 0.1-degree rotation
- An integrated 100% completion autorouter, and much, much more.

Limited Time Competitive Upgrade

Free Eval Package

Test drive TangoPRO yourself with our full-function evaluation package, complete with software and tutorial guide.

Call 800 488-0680

*Competitive upgrade to TangoPRO Schematic Lite, $189, includes OrCAD/SDT file and library translator. Competitive upgrade to TangoPRO PCB Lite, $995 Offer expires March 31, 1994. Call for details.

New Lite Versions Now Available

We've tailored versions of TangoPRO Schematic and TangoPRO PCB for less demanding designs and tighter budgets. Get the same great interface and 90% of the features for one-fifth the price! Special Limited-time, competitive upgrade prices now available.

Call today for free evaluation software and complete specifications, or to set up a personal sales presentation. Choose TangoPRO for complex designs, or TangoPRO Lite. Both put Real Power and Real Windows to work for you.

Tango

ACCEL Technologies, Inc.

800 488-0680 – Sales
619 554-1000 – Service
619 554-1019 – Fax
Dynamic Signal Analysis
with SRS FFT Spectrum Analyzers

The new SR770 FFT Analyzer

has the outstanding performance and value you've come to expect from SRS Spectrum Analyzers - 90 dB dynamic range, 100 kHz real-time bandwidth - plus a versatile synthesized source that generates clean sinewaves, two-tone signals, white and pink noise, and chirps.

The low distortion (-80 dBc) source is internally synchronized to generate frequency response measurements accurate to 0.05 dB. Both the SR760 and the SR770 quickly perform harmonic, band, sideband and 1/3 octave analysis. Additional capabilities including data tables, GO/NO GO testing and selective windowing bring performance and versatility to every measurement.

- 476 µHz to 100 kHz frequency range
- 90 dB dynamic range
- Low distortion source (SR770 only) - sine, two-tone, chirp, white and pink noise
- 3.5 inch DOS formatted disk drive
- Direct hardcopy to printers and plotters
- GPIB, RS-232 and printer interfaces

SR770 $6500 (U.S. list)
SR760 $4750

Frequency response - Using the SR770’s low distortion synthesized source, Bode plots of amplitude, phase and group delay are quickly generated.

Two-tone response - Intermodulation products at -90 dBc are easily measured with the outstanding dynamic range of the SR760 and SR770.

Data analysis - Easy to use analysis functions include 1/3 octave, band, sideband and THD. Math functions and a responsive marker provide power and flexibility.

STANFORD RESEARCH SYSTEMS
1290-D Reamwood Avenue • Sunnyvale, CA 94089
TEL (408)744-9040 • FAX 4087449049
CIRCLE NO. 95
and has a pair of tracking 0 to 20 V outputs at up to 0.5 A. Normal-mode noise is under 0.35 mV; common-mode current is under 1 μA. Line and load regulation are each 0.01%. Separate digital meters simultaneously monitor the voltage and current at any output. Hewlett-Packard Co, Santa Clara, CA. (800) 452-4844, ext 7941.

Fiber-optic isolation systems let you safely view waveforms from high-CMV sources. The A6905S and A6906S each consist of a specially designed probe rated to withstand common-mode voltages as high as 850 V, a battery-powered transmitter, a fiber-optic cable, and a receiver unit that connects to your measuring instrument via a 50 or 75Ω coaxial cable. The $2695 A6905S, which features 15-MHz bandwidth and a 10-V/μsec slew rate, uses optical cables up to 100 m long. The $6750 A6906S offers 100-MHz bandwidth, 120-dB CMRR at dc, and an output that can slew at 100 V/μsec. This unit, which permits control of all parameters via IEEE-488, includes an optical cable 200 m long. Tektronix Inc, Beaverton, OR. (800) 426-2200, ext 215.

16-channel thermocouple data-acquisition unit plugs into PC's parallel port. You can connect up to 16 grounded thermocouples to the DI-221 TC's built-in terminals. The unit, which incorporates a temperature sensor for cold-junction compensation and auto-zero circuits to correct for amplifier drift, can average as many as 32,000 consecutive readings for noise cancellation. Thermocouple outputs are linearized in real time using DSP-based 10th-order polynomial compensation. You can select a full-scale range of ±200 or ±1200°C. $1395. Dataq Instruments Inc, Akron, OH. (216) 668-1444.

We'd like to reintroduce ourselves. Combine the reputation of General Radio for quality products and engineering excellence; with renewed commitment to R&D and innovation, the result—QuadTech, formerly GenRad Instruments. The first members of QuadTech's new family of RLC Meters—the Models 7400 and 7500—set new performance standards for passive component and materials testing.

The Numbers Speak Louder Than Words.

Designed for easy and efficient operation, the QuadTech 7500 outperforms all other multi-frequency, automatic RLC meters. Test component parameters in the 10 Hz to 2 MHz range with ±0.01% accuracy over a broad range of test conditions. Add an intuitive user interface, internal storage for 50 test setups, a swept parameter display (e.g., Q or ESR vs. frequency), a unique automatic accuracy function that eliminates the need for complex calculations—and much more. You'll agree that QuadTech sets the standard by which all other RLC meters are measured.

And all QuadTech products are backed by our 45-day money-back guarantee and lifetime warranty. Call one of our Technical Sales Engineers today, at 1-800-722-1330 to discuss your testing requirements.
Low-cost multimedia workstations perform engineering tasks, too

Two new Hewlett-Packard workstations designed primarily for commercial applications, such as financial trading and document and image management, also suit electronic-design work. Both are software-compatible with current HP 9000 Series 700 workstations, and both have computing power that is impressive for their price tags. With emulation software, they can run PC applications.

The new HP 9000 Series 700 models, the 60-MHz 712/60 and the 80-MHz 712/80i, use HP's new low-cost PA-7100LC processor. The 712/60, which sells for as little as $3995, delivers 58 SPECint92; the 712/80i, beginning at $8820, performs at 84 SPECint92. Both deliver 79 SPECfp92. According to comparison data provided by HP, that's better performance per dollar than any competitor provides.

Reasonably priced graphics and multimedia capabilities in the new workstations result from several innovations. For example, the PA-7100LC processor has fast MPEG decompression capability built in, allowing the display of video at a full-motion 30 frames/sec. To reduce the amount of expensive video RAM (VRAM) needed, HP uses a patented process called "color recovery." This approach uses only 8 bits per pixel, reducing VRAM by two-thirds, but, according to HP, most users can't distinguish the results from 24-bit "true" color.

The entry-level ($3995) 712/60 includes a 15-in. color monitor (for 1024×768-pixel display), 16 Mbytes of memory, and a 260-Mbyte hard disk. The lowest-priced ($8820) 712/80i has the same memory and disk configuration, but has a 17-in. color monitor for a 1280×1024-pixel display. A 12-in., 1024×768-pixel color flat-panel display will be available before midyear for $10,595.

Gary Legg
Hewlett-Packard Co, Palo Alto, CA. Phone (800) 637-7740; in Canada, (800) 387-3867.

Fax modem is PCMCIA compliant. The PCMCIA144FAX modem has a 14.4-kbps line speed, V.42 error correction, and V.42bis and MNP 2-5 data compression that handles data throughput up to 57.6 kbps. A fully integrated DAA on the modem complies with PCMCIA Type II standards. The modem supports V.32, V.32bis, V.22bis, V.22, V.21, 212, 103 data standards and V.29, V.27ter, and V.21 fax standards. Fax functions include background send and receive, multiple transmissions, graphics file conversion to fax format, and viewing before sending. $999.

Ven-Tel Inc, San Jose, CA. (800) 538-5121.

Circle No. 320

PCMCIA-card drive replaces floppy-disk drive. The CDD300 memory-card drive physically replaces a conventional 3.5/5.25-in. floppy-disk drive. The unit interfaces directly to a conventional 3.5/5.25-in. floppy-disk drive. The unit interfaces directly to a conventional 3.5/5.25-in. floppy-disk drive.

The entry-level ($3995) 712/60 includes a 15-in. color monitor (for 1024×768-pixel display), 16 Mbytes of memory, and a 260-Mbyte hard disk. The lowest-priced ($8820) 712/80i has the same memory and disk configuration, but has a 17-in. color monitor for a 1280×1024-pixel display. A 12-in., 1024×768-pixel color flat-panel display will be available before midyear for $10,595.

Gary Legg
Hewlett-Packard Co, Palo Alto, CA. Phone (800) 637-7740; in Canada, (800) 387-3867.

Fax modem is PCMCIA compliant. The PCMCIA144FAX modem has a 14.4-kbps line speed, V.42 error correction, and V.42bis and MNP 2-5 data compression that handles data throughput up to 57.6 kbps. A fully integrated DAA on the modem complies with PCMCIA Type II standards. The modem supports V.32, V.32bis, V.22bis, V.22, V.21, 212, 103 data standards and V.29, V.27ter, and V.21 fax standards. Fax functions include background send and receive, multiple transmissions, graphics file conversion to fax format, and viewing before sending. $999.

Ven-Tel Inc, San Jose, CA. (800) 538-5121.

Circle No. 320

PCMCIA-card drive replaces floppy-disk drive. The CDD300 memory-card drive physically replaces a conventional 3.5/5.25-in. floppy-disk drive. The unit interfaces directly to a standard host system and is compatible with 1.44-Mbyte/720-kbyte and 1.2-Mbyte/360-kbyte disk formats. The single- or dual-slot unit accepts Type I and II PCMCIA 2.0 (JEIDA 4.1)-compatible

FREE INFO, FREE POSTAGE
Use our postage-paid reader-service cards to get more information on any of these products.

SRAM cards. Single- and dual-slot units cost $250 and $360, respectively. Aval Corp, Dublin, Ireland. (1) 2892136.

Circle No. 321

Host adapter delivers instant PCMCIA-to-SCSI connections. The SlimSCSI, a rugged, credit-card-sized I/O device, lets users attach peripherals to their portable systems. The 16-bit SCSI adapter fits PCMCIA Type II or III slots. Users can daisy chain as many as seven devices simultaneously. The adapter achieves data-transfer rates of 2 Mbytes/sec. $349. Adaptec, Milpitas, CA. (408) 945-8600.

Circle No. 323

Card upgrade offers lower power consumption. The IBM PC/AT-compatible Cardio-86 uses the power-management schemes of Chips and Technologies F868A µP to make power consumption less than that of its predecessor, Cardio-386. The credit-card-sized mother board retains full support of the PC/AT bus's 8-MHz clock performance; its interface is Epson's All-in-one System Interface (EASI), and an interface that is not an EASI is available for PCMCIA support. $250 (1000). S-MOS Systems, San Jose, CA. (408) 922-0238.

Circle No. 324
EPSON

WORLD LEADER IN MEMORY CARD TECHNOLOGY PRESENTS:

MEMORY CARDS

JEIDA/PCMCIA 68 PIN STD

<table>
<thead>
<tr>
<th>Density</th>
<th>256KB - 16MB</th>
<th>16KB - 4MB</th>
<th>128KB - 16MB</th>
<th>64KB - 4MB</th>
<th>16KB - 2MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask ROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEPROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEDEC/JEIDA 60 & 88 PIN STD</td>
<td>1MB - 8MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: FOR DETAILED INFORMATION ON CARD EDGE MEMORY CARDS, PLEASE CONTACT EPSON.

SPECIALTY CARDS

DUAL OPERATING VOLTAGE: 3.3 & 5.0 V OPERATING VOLTAGE FOR SRAM & MROM CARDS.

SRAM WITH SUB-BATTERY: ADDITIONAL RECHARGEABLE LITHIUM BATTERY, WHICH ALLOWS REPLACEMENT OF MAIN BATTERY WITHOUT DATA LOSS, FOR APPROX. 10 MINUTE.

HIGH SPEED & LOW POWER: UTILIZING THE LATEST HIGH SPEED IC'S SPECIAL GATE ARRAYS AND LOW POWER CONTROL IC'S.

COMBINATION CARDS

FOR DUAL PURPOSE APPLICATIONS: (i.e. SOFTWARE AND STORAGE)

<table>
<thead>
<tr>
<th>Flash</th>
<th>OTP</th>
<th>MROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>256KB-2MB</td>
<td>256KB-2MB</td>
<td>512KB-2MB</td>
</tr>
<tr>
<td>SRAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64KB-2MB</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FLASH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256KB-2MB</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

I/O CARDS COMING SOON

FAX MODEM CARD
LAN CARD

EPSON EPSON AMERICA, INC.
COMPONENT SALES DEPARTMENT
TEL: (310) 787-6300, FAX: (310) 782-5320

CIRCLE NO. 72
Touch display plugs into VGA output. The VAMP II flat-panel display lets you drive a 262,000-color TFT LCD and touchscreen directly from your PC's VGA analog output. A 10.4-in., 640×480-pixel display generates 6 bits per color. An optional resistive touchscreen comes with an RS-232C cable. Capacitive and infrared touchscreens are also available. The display consumes <25W. $3995 (OEM). Computer Dynamics, Greer, SC. (803) 872-1017. Circle No. 328

Mathematica applications library available for EEs. The Electrical Engineering Pack is the first in a series of Mathematica applications libraries. The EE pack is a collection of notebooks and packages written in Mathematica. The collection helps EEs use Mathematica for circuit-analysis, transmission-line, antenna-design, and other problems. The customizable pack also provides a set of Mathematica functions for common tasks. The software runs on Macintosh, Microsoft Windows, and X-Window systems equipped with Mathematica 2.2. $195. Wolfram Research Inc, Champaign, IL. (800) 441-6284. Circle No. 326

Electronic book provides on-line access to Mathcad features. Mathcad 5.0 Treasure, Volume I: Mathcad Foundations, a "book" that runs on PCs, Macs, and Unix workstations, gives Mathcad 5.0 users interactive, on-line access to all the mathematical features and algorithms of Mathcad. It also provides detailed explanations and examples of how those features operate. Every number, formula, and plot in the book is live and interactive, letting users adapt them for individual problems. The book includes tips, techniques, and examples for making full use of Mathcad 5.0's functions. $99. MathSoft Inc, Cambridge, MA. (617) 577-1017. Circle No. 327

Card automatically controls multiple drives. The PCMCIA Type II Multi Drive I/O card simultaneously controls drives for CD-ROMs, floppy disks, fixed hard disks, removable-cartridge hard disks, QIC-80 tape, QIC-3010 tape, and QIC-3020 tape. The first drive connects directly to the card, and the rest daisy chain to the unit. The card senses drive capacity and type without user intervention. $199. PacRim, Hayward, CA. (510) 782-1017. Circle No. 328

PCL chip and board support SCSI peripherals. The 32-bit 36C70 PCL local bus-to-SCSI II IC forms the basis of the TMC-3260 PCL-to-SCSI board. Together, the chip and card offer fast-synchronous 10-Mbyte/sec support for high-performance SCSI peripherals. The products support Windows NT, OS/2, Unix, NetWare, Interactive Sunsoft/Unix, and UnixWare. Chip, $20 (OEM); card, $259. Future Domain, Irvine, CA. (714) 253-0400. Circle No. 329

1.3-Gbyte magneto-optical drive fits half-height slot. The JY-800 magneto-optical disk drive features a compact half-height package for horizontal or vertical mounting. The 1.3-Gbyte drive has a 40-msec seek time and effective transfer rate up to 2 Mbytes/sec. The drive fits in standard 5.25-in. floppy-drive bays and is compatible with PCs, Macintoshes, and Unix workstations. Average power dissipation is 17W. $2400. Sharp Electronics Corp, Mahwah, NJ. (800) 642-0261. Circle No. 330

Frame grabber acquires images in real time. The DT55-LC, a PC/AT ISA-bus/EISA-compatible optically isolated frame grabber, provides 12-bit A/D conversion for 32 analog input channels (16 differential). The board also includes testing capabilities for off-line and real-time fault detection. A software-controlled front-panel LED turns on at system reset, and the software turns it off when the test is complete. $1199. VME Microsystems International Corp, Huntsville, AL. (205) 880-0444. Circle No. 333

Scanning board includes testing. The VMIATX-$125, a PC/AT ISA bus/EISA-compatible optically isolated scanning board, provides 12-bit A/D conversion for 32 analog input channels (16 differential). The board also includes testing capabilities for off-line and real-time fault detection. A software-controlled front-panel LED turns on at system reset, and the software turns it off when the test is complete. $1199. VME Microsystems International Corp, Huntsville, AL. (205) 880-0444. Circle No. 333

Touch monitor measures 17 in. The TruPoint-DS17 touch monitor, a 17-in., flat, square touch monitor, provides a screen with 1.5 times as much space as a standard 14-in. screen, giving developers more area for displaying graphics and touch buttons. The flat, square CRT reduces image distortion and makes viewing images at the edge of the display easier, according to the vendor. The display provides flicker-free 1280×1024-pixel, 74-Hz noninterlaced resolution and a 30- to 78-kHz horizontal scan rate. $1975. MicroTouch Systems Inc, Methuen, MA. (508) 659-9000. Circle No. 334
TDK Ferrite Cores for EMI/RFI Suppression come in all shapes and sizes with initial permeability (µA) ranging from 45-1,500.

Take, for example, TDK Ferrite EMI Suppressors for Cables. Once attached to power or interface cables, these small ferrite cores absorb high frequency EMI without affecting signal transmission. Even large power surges can be absorbed without saturation.

Our singular understanding of ferrite and its properties has enabled TDK to develop products such as ferrite bead cores, ferrite chip EMI suppressors, and multi-hole ferrite plates, to name only a few.

CEL, TDK’s Component Engineering Laboratory, can help you with your product selection, or can custom design and test manufacture EMI/RFI suppression components to meet your specific requirements.

Call or write your local TDK office today for more information.
25W dc/dc converters handle wide input ranges. The model 2500 series of 25W dc/dc converters handle 2:1 input ranges of 9 to 18V dc, 18 to 36V dc, or 36 to 72V dc. The series comprises single-, double-, and triple-output models. Outputs are 5, 6, 12, 15, ±5, ±12, ±15V. The units exhibit 500V input-output isolation and 85% efficiency. Accuracy measures ±1%, and line/load regulation specs are ±0.5%. All units undergo a 72-hr burn-in. The units measure 3 X 2.56 X 0.75 in. $90.30 to $104.30. Delivery is stock to four weeks. Conversion Devices Inc, Brockton, MA. (508) 559-0880. Circle No. 351

Dual IGBT power modules contain complete half bridge. The model VIE 12S isolated-gate transistor (IGBT) power modules feature a fully isolated gate drive, dual 1200V/150A IGBTs connected as a half-bridge. The modules also contain transformers that achieve a 2500V input-to-output isolation. The modules’s on-board supply powers the modules’s gating and protection circuitry. 150A version, $228.15; 100A version, $152.75; 75A version, $113.75. IXYS Corp, Santa Clara, CA. (408) 962-0700. Circle No. 352

Switched-mode converter ICs meet emerging voltage standards. You can adjust the output of models MAX746 and MAX747 step-down regulator ICs over the range of 14.5 to 2V. Typical efficiency for 5 to 3.3V loads is 88%. The units consume 800 µA of quiescent current and 0.6 µA in shutdown mode. The MAX746 drives an external N-channel MOSFET, the MAX747 a P-channel. The units also have a low-battery detector, adjustable current limiting, and soft start. $2.25 (1000). Maxim Integrated Products, Sunnyvale, CA. (408) 737-7600. Circle No. 353

Supply is hot-swappable. The model LT1700 400W ac/dc universal converter supplies 54V dc (power output jumps to 550W for inputs above 155V ac). The supply measures 4 X 5 X 5.7 in. The unit features power-factor correction and no inrush current. The unit also sports transient suppression, filtering, and shock and vibration immunity. You can parallel as many as three units in one 5.25-in. rack without forced-air cooling or heat sinking. A negative temperature coefficient allows for safe 48V backup-battery charging. $1036 (one), delivery is six weeks ARO. Melcher Inc, Chelmsford, MA. (508) 256-1812. Circle No. 354

FREE INFO, FREE POSTAGE
Use our postage-paid reader-service cards to get more information on any of these products.

Imagine what you could do with
Samarium
MGOe 32 Magnets

Another industry first from EPSON

Smaller, thinner, stronger than any other magnets... because they need no bulky anti-corrosion coating... EPSON's new DIANET® 32 Sintered Samarium Cobalt Magnets offer a step forward in mini-magnet design. And the same size/weight advantages benefit larger designs too. You can specify DIANET Series anisotropic magnets with axial or transverse orientation in virtually any size, shape, or thickness you design. EPSON DIANET Series magnets have a very narrow range of deviation in magnetic characteristics and high dimensional accuracy. The high coercive force Bhc is nearly equal to Br to minimize the influence from external magnetic fields.

For information, call our Representative

EPSON®
International Magnaproducts, Inc.
IMI Eastern Office (219) 465-1998 or Western Office (303) 650-1903
This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.
ELE TECH ELECTRONICS, INC.
16019 Kaplan Ave, Industry, CA 91744 (818) 333-6394

CIRCLE NO. 236

CIRCLE NO. 237

CIRCLE NO. 238

Gang, Set & Match

- PROMs - the total solution for Gang/Set programming of EPROMs and EEPROMs
- 8, 16 or 32-bit programming of device sets in a single operation (24 to 32 pins)
- Optional modules for ganging 40-pin PROMs, 40-pin DIP PROMs or 32-pin PLCC EPROMs
- 4 Mb RAM standard - expandable to 64 M
- Serial and parallel ports
- "Stand-alone" or PC operation

Eletech Microsystems, Inc.
Tel: (408) 888-1118 Fax: (408) 888-1323

CIRCLE NO. 240

HiWIRE II

Schematic and PCB Software

With support for expanded and extended memory, HiWIRE II can handle your most demanding schematic and PCB designs. The unique HiWIRE II editor allows you to display and edit schematics and PCBs simultaneously, using the same commands for each. HiWIRE II is $995 and is guaranteed.

CIRCLE NO. 241

Talk Is Cheap,
Even Digitally SM

MODEL: VF1410
- QuivVoice™ technology
- Plays up to 16 messages stored in external EPROM
- 10 direct-trigger pins
- CVS boundary
- 3-6 V single supply
- DIP or surface-mount
- Low cost

Let your product speak for itself!

Our QuivVoice family of digital voice boards and ICs gives your products the competitive edge by letting them talk in real voice. Imagine how much more "user friendly" your product will become! Conventional voice technology requires high tooling cost and long turn-around time, while QuivVoice technology allows you to create a voice EPROM in just minutes with low-cost in-house equipment! Change messages easily or customize messages for each of your customers!

Eletech Electronics, Inc.
16019 Kaplan Ave, Industry, CA 91744 (818) 333-6394

CIRCLE NO. 242

Power Electronics Course by Dr. Cuk

A new five-day course on converter TOPOLOGIES, MAGNETICS, and CONTROL includes Laboratory and Computer Aided Design Workshops. Learns both the basics as well as the latest innovations in the switching power supply design. This highly acclaimed course by Dr. Cuk of Caltech will be held from June 6 to 10, 1994 in the Lecture Hall of new TESLAco R&D building in Irvine, California. The first next course will be in September 1994. In-house courses are also available. For more information and free color brochure call:

Telson Co.
Tel: (714) 727-1960
Fax: (714) 727-3789

CIRCLE NO. 243

CIRCLE NO. 244

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

112 • EDN March 17, 1994
Advin

PILOT-U84 Universal Programmer
The Leader in New FPGA Support
- Altera MAX 7064, 7128 • Xilinx 1735D, 1762D etc
- Intel FX-740, FX-780; 87C196 XD, KR, IR, MC etc
- Moto 68HC711D1, E9, 68HC705 C8, C9, P9 etc
- WSI PSD-4XX, -5XX, PAC, SAM • Attal 39C040 etc
- AMD MACH435, 29F040, 1683-4 • Lattice pl51 etc
- All packages to 256-pin: PLCC, PGA, QFP, TQFP, SOIC
For immediate support, please call 800-627-2456 FAX: (408) 736-2503

CIRCLE NO. 246
PC COMPATIBLE

"Never before has such power been so affordable"

- 286 Class Performance
- 1 MB RAM (all configurations)
- Standard EIA-232, EIA-422, EIA-485
- Sealed Membrane or Elastomeric Keypad
- Supertwist LCD, Displays 16x24 Characters
- Plus Graphic Capability of 192x128 Pixel Display
- Three Models Available PCL-100, PCL-200, and PCL-300
- PCL-300 Available with 20-64 MB Hard Drive
- Full Line of Hand Held Terminals Available
- Full Warranty

Two Technologies
419 Sargon Way
Horsham, PA 19044
Tel (215) 441-5305
Fax (215) 441-0423

CIRCLE NO. 253

DIRECT PLUG-IN ADAPTS
SOME EUROPEAN UNITS ARE
NOW STOCKED!

Hundreds of standard models available with AC or DC output, UL/CSA approval, regulation & other options. Many standard European, Asian, British, and Australian configurations also available with approvals. We now stock some European adaptors too.

For a catalog or a quotation, contact CUI Stack, Inc., 9640 SW Sunshine Ct., #700, Beaverton, OR 97005. 503/643-4899, FAX 503/643-6129.

CIRCLE NO. 254

PC I/O BOARDS

- 16 Channel Opto-Isolated Input
- 16 Channel Reed Relay Output
- 16 In/16 Out Combo
- 8 In/8 Out Combo
- Latching Relay Board
- 48 Digital I/O Board
- Interrupt Capability
- Made in USA

Seallevel Systems Inc.
P.O. Box 830
Liberty, SC 29657
803-843-4343

CIRCLE NO. 255

Universal Programmers
SUPERPRO II® $599
SUPERPRO II/P $899

These high performance & low cost desktop programmers support more than 2,500 devices with free software updates via BBS. The support includes E(EPROM), FLASH, BIPOLAR, PLD, GAL, EPLD, PEEL, MICRO, etc. Adapters are available up to 84 pin PLCC, PGA, & SOIC package.

ROM MASTER programs up to 4MB EPROM $129.

XELTEK
757 N. Pastoria Avenue
Sunnyvale, CA 94085
(408) 245-7884 FAX
(408) 245-7082 BBS

CIRCLE NO. 257

PCB RUSH SERVICE
Proto Manufacturing

- 24 hour Multi/Rigid
- 10 day std delivery
- Design & CAM
- Laser Plotting
- LPI/DFS
- Mil GF & Gl
- Nice People

Dial (800) PCB-RUSH
Sun Circuits Incorporated
5124 Calle del Sol
Santa Clara, CA 95054
(408)727-7784 fax (408)727-0347

BBS/Modem (408) 988-3591

CIRCLE NO. 258

200MSa/s
Digital Oscilloscope

- 200 MSa/s Sampling Rate
- up to 128K Samples/Channel
- PC-BASED INSTRUMENT
- 2 Analog Channels (2 ch. Oscilloscope)
- 8 Digital Channels (8 ch. Logic Analyzer)
- All 10 channels can be used at same time
- Simultaneous use of all 10 channels
- Cross Triggering of Digital and Analog
- 125 MHz Single Shot Bandwidth

$1799 DSO-28200 (200MSa/s, 4K/Ch)
$2285 DSO-28264 (200MSa/s, 128K/Ch)

GENERAL SILICONES CO., USA
650 W. Duarte Rd. Arcadia CA 91007 USA
Tel: (818) 445-6036 Telex: 3716189 GSCUI
Fax (818) 445-6084

CIRCLE NO. 256

400 MHz
Logic Analyzer

- up to 128 Channels
- up to 400 MHz
- up to 16K Samples/Channel
- Variable Threshold
- 8 External Clocks
- 16 Level Triggering
- Pattern Generator (Option)

$1299 - LA32200 (200 MHz, 32 Ch) Pods & Software
$1899 - LA32400 (400 MHz, 32 Ch) included
Also Available:
$799 - LA12100 (100 MHz, 24 Ch, TTL only)

Palm Springs, CA 92262
(760) 347-1234 FAX 760-347-4598

CIRCLE NO. 259

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

114 • EDN March 17, 1994
SIMULATION ENGINEERS

Lockheed Aeronautical Systems Company is currently seeking the following Simulation Engineers for our facility in Marietta, GA.

- Develops computer system architecture for real-time simulation applications. Includes selection/development and integration of VME board-level hardware, development of operating system and real-time executive software, development of input/output device drivers, development of communication and data collection software, etc. Integrates and debugs simulation applications on target hardware.

- Develops static and dynamic software stimulations of avionics equipment for hardware-in-the-loop stimulations supporting avionics systems integration. Includes design, integration and operation of avionics hot benches. Uses bus analyzers and other test equipment.

The above positions require a BS degree in Engineering/Computer Science; 5+ years’ experience in real-time man-in-the-loop and/or hardware-in-the-loop simulation development; and experience developing Ada software in the UNIX environment (preferably using Vads, VadsWorks, and CASE tools such as CADRE/teamwork, RTM and InterLeaf). Positions also require experience/familiarity in one or more of the following areas: MIL-STD-1553 data bus, Arinc 429 data bus, and aircraft/avionics systems.

We offer excellent salaries and a comprehensive benefit program including company paid relocation. Please forward resume to: Search SE, Dept. EDN-3/17, 5775 Peachtree-Dunwoody Rd., Ste. C-175, Atlanta, GA 30342. Lockheed is an equal opportunity/affirmative action employer.
At Dell, we've made a business of being different. Of doing the unexpected. That's why we were the industry's first direct marketer. First to offer on-site service. First to introduce written guarantees for service, compatibility, and response time. And the very last to follow the crowd.

We recognize difference for what it is: empowerment. Currently, we're looking for engineers who can make a difference in our products...and our future. If this sounds like you, come make a difference at Dell.

Hardware Engineers
PC hardware logic designers, with 3-5 years experience with Intel® microprocessors. Responsible for design/debugging complex PCs for high-volume production. Prefer BSEE.

Mechanical Engineers
Must have 5-7 years experience related to the design and testing of PC enclosures for high-volume production, and working knowledge of 3D solid modeling, software, Pro/Engineer, plastics, sheet-metal parts, and thermal/shock testing principles.

PC Monitor Engineers
Board-level designer/analysis experience for PC monitors. Prefer BSEE with more than 5 years in the PC industry, working knowledge of analog components, digital video, audio, and DSP technologies.

System Programmers
Software design engineer, must have at least 2 years experience with PC products, storage peripherals, SCSI and device driver coding/support, and experience programming with C and Assembly languages.

For more information, mail or fax your resume to:

DELL
Where Difference Works.

Dell Computer Corporation • Staffing Department, EDN394
9505 Arboretum Boulevard • Austin, TX 78759-7299

FAX: 512 728-3330

Copyright 1994 Dell Computer Corporation. All rights reserved. Intel is a registered trademark of Intel Corporation. Dell cannot be responsible for errors in typography.
ENGINEERING OPPORTUNITIES

Lockheed Aeronautical Systems Company is currently seeking the following Electronic Systems professionals for our facility in Marietta, GA.

SYSTEMS ENGINEER
Establishes program electromagnetic environmental effects (E'E) requirements and provides design direction to achieve electromagnetic compatibility (EMC). Requires 10-15 years' progressive experience in E'E analysis, design and testing. Should have experience with EMC, HERO, HERF, RADHAZ, TEMPEST, nuclear hardening, ESD, TREE, S/N, and lightning protection, and be familiar with MIL-STDs 461, 6051 and 188. Must be NARTE EMC certified.

ELECTROMAGNETICS ENGINEER
Performs antenna design, RF analysis, and RF/electromagnetic testing. Requires 5-7 years' experience in the area of RF technology, with demonstrated experience in aircraft design and test. Knowledge of EMC/EMI, radomes also desirable.

CONFIGURATION & DATA MANAGEMENT ENGINEER
Performs standard CM/DM functions including proposal processing, subcontract interpretation, diverse data management tasks, and CCB operation. Requires 8+ years' avionics/electrical experience.

COMPUTER RESOURCES ENGINEER
Provides support to Avionics Systems organizations. Coordinates preparation of Software Development Status Report inputs from Avionics organizations. Requires 5+ years' experience in software development including 2 years' experience in a VAX/VMS environment. Should have experience with real-time processing and safety/security concerns, as well as Ada knowledge.

AVIONICS ENGINEER
Plans and performs radar systems design. Requires 7+ years' airborne radar design, development and integration experience. Should have experience in color weather radar, wind-shear detection and ground mapping, as well as integration of 1553 systems. Experience with Westinghouse systems and FAA certification experience helpful.

EXPERIMENTAL TEST DESIGN ENGINEER
Provides technical, administrative and operations-oriented shop-related expertise and coordination for the fabrication, assembly and finish application of special technology models, test hardware and prototype construction and/or modification. Requires 5+ years' experience in an administrative, technical discipline, or supervisory capacity in a fabrication environment, with "hands-on" experience in fabrication operations, with tooling knowledge. Should have BS degree in Business or Operations Management. OSHA and hazardous waste training required.

ENGINEERING ADMINISTRATION ANALYST
Prepares, coordinates and analyzes engineering job schedules, direct and overhead budgets, job instructions and status reports. Also plans, implements and monitors programs utilizing C/SCS criteria. Requires BS degree in Industrial Management, Business Administration or related with 2-5 years' experience in engineering operations.

OTHER ENGINEERING OPENINGS
AIRCRAFT AVIONICS/ELECTRONIC EQUIPMENT INSTALLATION
AIRCRAFT ELECTRICAL POWER SYSTEMS
WIND TUNNEL (LOW SPEED - COMPRESSIBLE FLOW)
All of the above positions require a BS degree in Electrical Engineering/Computer Science or equivalent, unless otherwise noted. Must have or be able to obtain high level security clearance.

We offer excellent salaries and a comprehensive benefits program including company paid relocation. Please forward resume including salary requirements to: Search EO, Dept. EDN-3/17, 5775 Peachtree-Dunwoody Rd., Suite C-175, Atlanta, GA 30342. Lockheed is an equal opportunity/affirmative action employer.

Lockheed Aeronautical Systems Company
Low Profile .2" Ht.

- Manufactured and tested to MIL-T-27
- Frequency range 20 Hz to 250 KHz
- Available from 100 milliwatts to 3 watts
- Impedance from 20 ohms to 100 K ohms
- Operating temperature -55°C to +130°C
- Low profile .2" ht.

PICO surface mount units utilize materials and methods to withstand extreme temperature (220°C) of vapor phase, I.R., and other reflow procedures without degradation of electrical or mechanical characteristics.

See EEM or send direct for Free PICO Catalog.
Call toll free 800-431-1064 in NY call 914-699-5514 FAX 914-699-5565

PICO Electronics, Inc.
453 N. MacQuesten Pkwy., Mt. Vernon, N.Y. 10552

CIRCLE NO. 31

EDN-INTERNATIONAL ADVERTISERS INDEX

<table>
<thead>
<tr>
<th>Company</th>
<th>Page Circle</th>
<th>Company</th>
<th>Page Circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accel Technologies Inc</td>
<td>101</td>
<td>77</td>
<td>Murata Electronics North America</td>
</tr>
<tr>
<td>Advanced Micro Devices</td>
<td>10-11</td>
<td>73</td>
<td>Murrietta Circuit Design</td>
</tr>
<tr>
<td>Advin Systems</td>
<td>113</td>
<td>246</td>
<td>NCI</td>
</tr>
<tr>
<td>Allied Signal</td>
<td>113</td>
<td>247</td>
<td>NCR Corp</td>
</tr>
<tr>
<td>Laminate Systems</td>
<td>24</td>
<td>64</td>
<td>NEC Corp</td>
</tr>
<tr>
<td>Analog Devices Inc</td>
<td>63</td>
<td>74</td>
<td>National Semiconductor C2-A-C</td>
</tr>
<tr>
<td>Annabooks</td>
<td>112</td>
<td>239</td>
<td>Nohau Corp</td>
</tr>
<tr>
<td>Asahi Kasei Microsystems Co Ltd</td>
<td>119</td>
<td>37</td>
<td>Oyster Terminals</td>
</tr>
<tr>
<td>B&G Microsystems</td>
<td>113</td>
<td>247</td>
<td>Pico Electronics</td>
</tr>
<tr>
<td>BYDTEK Corporation</td>
<td>111</td>
<td>232</td>
<td>Power Trends Inc</td>
</tr>
<tr>
<td>Belden Wire & Cable Co</td>
<td>6</td>
<td>78</td>
<td>Quad Tech</td>
</tr>
<tr>
<td>Burr-Brown Corp</td>
<td>53</td>
<td>65</td>
<td>Quicklogic</td>
</tr>
<tr>
<td>Capilano</td>
<td>113</td>
<td>248</td>
<td>Sealevel</td>
</tr>
<tr>
<td>Capital Equipment Corp</td>
<td>89-90</td>
<td>91-70</td>
<td>Siemens Components Inc 54 A-D</td>
</tr>
<tr>
<td>Cermetak</td>
<td>113</td>
<td>250</td>
<td>Sierra Circuits</td>
</tr>
<tr>
<td>Cirrex Corp</td>
<td>112</td>
<td>236</td>
<td>Silicon Systems Inc</td>
</tr>
<tr>
<td>Condor Inc</td>
<td>31</td>
<td>79</td>
<td>Siliconix Inc</td>
</tr>
<tr>
<td>CuStack Inc</td>
<td>114</td>
<td>254</td>
<td>Spectrum Software</td>
</tr>
<tr>
<td>Cybernetic MicroSystems Inc</td>
<td>33</td>
<td>9</td>
<td>Stag Microsystems</td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
<td>C4</td>
<td></td>
<td>Stanford Research Systems Inc</td>
</tr>
<tr>
<td>Data I/O Corp</td>
<td>112</td>
<td>242</td>
<td>Sun Circuits</td>
</tr>
<tr>
<td>Data Translation Inc</td>
<td>32</td>
<td>80</td>
<td>Synopsys</td>
</tr>
<tr>
<td>Datel Inc</td>
<td>69</td>
<td>81</td>
<td>TDK Corp</td>
</tr>
<tr>
<td>Digi-Key Corp</td>
<td>1</td>
<td>1</td>
<td>TESLAc</td>
</tr>
<tr>
<td>Eagle-Pichner Industries Inc</td>
<td>88</td>
<td>28</td>
<td>Tektronix Inc</td>
</tr>
<tr>
<td>Echipet Corp</td>
<td>76</td>
<td>17</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>Eleotech</td>
<td>112</td>
<td>238</td>
<td>The Hirol Co</td>
</tr>
<tr>
<td>Epson America Inc</td>
<td>105</td>
<td>72</td>
<td>Toshiba America Electronics Components</td>
</tr>
<tr>
<td>GE Rental/Lease</td>
<td>82</td>
<td>82</td>
<td>98-99</td>
</tr>
<tr>
<td>General Silicones Co</td>
<td>114</td>
<td>256</td>
<td>34-100-101</td>
</tr>
<tr>
<td>GlobTek Inc</td>
<td>94</td>
<td>29</td>
<td>Tribal Microsystems</td>
</tr>
<tr>
<td>Harris Semiconductor</td>
<td>87</td>
<td>34</td>
<td>Two Technologies Inc</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>61</td>
<td>83</td>
<td>US Logic</td>
</tr>
<tr>
<td>Incredible Technology</td>
<td>111</td>
<td>233</td>
<td>Underwriters Laboratory</td>
</tr>
<tr>
<td>Innovative Software Design</td>
<td>112</td>
<td>237</td>
<td>Unitrode Integrated Circuits</td>
</tr>
<tr>
<td>Integrated Device Technology</td>
<td>81</td>
<td>84</td>
<td>VLSI Technology Inc</td>
</tr>
<tr>
<td>Intel Corp</td>
<td>36-39</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>International Rectifier</td>
<td>C3</td>
<td>76</td>
<td>Vico Corp</td>
</tr>
<tr>
<td>LeCroy Corp</td>
<td>12</td>
<td>85</td>
<td>Viewlogic Systems Inc</td>
</tr>
<tr>
<td>Linear Technology Corp</td>
<td>66</td>
<td>69</td>
<td>Virginia Panel Corp</td>
</tr>
<tr>
<td></td>
<td>71-72</td>
<td></td>
<td>Voltech Inc</td>
</tr>
<tr>
<td>Logical Devices</td>
<td>113</td>
<td>252</td>
<td>Watec Corp</td>
</tr>
<tr>
<td>Loral Data Systems</td>
<td>120</td>
<td>39</td>
<td>Wintek Corp</td>
</tr>
<tr>
<td>MCSI</td>
<td>112</td>
<td>243</td>
<td>Xeltek</td>
</tr>
<tr>
<td>Massteck</td>
<td>40</td>
<td>86</td>
<td>Yokogawa Corp of America</td>
</tr>
<tr>
<td>MathSoft Inc</td>
<td>62</td>
<td>16</td>
<td>Zworld Engineering</td>
</tr>
<tr>
<td>Maxim Integrated Products</td>
<td>75</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>47</td>
<td>Recruitment Advertising</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>MicroSim Corp</td>
<td>15150-1512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>3</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>
Integrated monolithic Base Band IC for cordless phones.

The value-packed AK2353B C-MOS Base Band IC offers high level mixed signal integration with wide voltage operation:

- Voice Band Filters,
- 2400 bps MSK MODEM,
- Comparator, 3.58MHz Oscillator,
- Frequency Inverter Scrambler,
- Frame Detection, and more,

in a 44pin QFP or 64pin VQFP.

<table>
<thead>
<tr>
<th>CORDLESS ANALOG TELEPHONE PRODUCT FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOICE BAND FILTERS</td>
</tr>
<tr>
<td>AK2351E</td>
</tr>
<tr>
<td>AK2351F</td>
</tr>
<tr>
<td>AK2352</td>
</tr>
<tr>
<td>AK2353</td>
</tr>
<tr>
<td>AK2354</td>
</tr>
<tr>
<td>AK2359</td>
</tr>
<tr>
<td>AK2356</td>
</tr>
</tbody>
</table>
Loral Makes a Replacement for the Versatec V80™ That Uses No Liquid Chemicals.

NEW FROM LORAL

The Loral 9080 is a plug-compatible, exact replacement for the Versatec V80. It gives you everything you want and need in a high speed printer/plotter. With the 9080, you get clean, crisp copies every time using an environmentally-friendly dry process. No chemical inks or toners.

EASY TO INSTALL AND USE

Installation couldn’t be easier. Simply unplug the V80 and plug in the 9080. The 9080 is designed to work with all existing Versatec V80 software and hardware interfaces.

Powered by the Astro-Med Print Engine, the 9080 prints high-resolution documents at 200 dpi on fanfold or roll paper. Print Speed is 15 pages per minute. Plot speed is one inch per second. Price is under $12,000.

To order the Model 9080, call (813) 378-6984. For more information write: Loral Data Systems, P.O. Box 3041 M/S41, Sarasota, FL 34230 or call our hotline (813) 377-5590.
Power-full tiny inverter.

Or how to shrink a 1hp, 3-phase motor control inverter to fit your pocket...book.

Take six IR surface-mount IGBT CoPacks with built-in diodes. Add one 600V IR2130J three-phase driver. And you end up with a 1hp inverter about the size of a credit card.

The lower part count, size and weight reductions bring added value to your end product. Your customers benefit from the pass-along savings. And you gain the competitive edge.

Thanks to the most compatible line of power devices ever. Value-priced to save you money. In stock to save you delivery time. Send for our data "Shrink Pak." Quicker yet, call. 1-800-245-5549.

You'll see how small your inverters can get.

Available now at key IR distributors.
Introducing the pASIC380 FPGA family. It brings Cypress's well-deserved reputation for high-speed parts to FPGAs. Utilizing advanced 0.65 micron anti-fuse technology, the new pASIC380 family is a full 50% faster than any competitive part. Its unconstrained interconnect ensures phenomenal performance and allows 100% gate utilization even with fully automatic place and route. This also means minimal timing variability. And, as part of the comprehensive UltraLogic™ family, pASIC380 is supported by Warp™ VHDL open-design tools. What could possibly be easier? See for yourself, fast! Call the pASIC380 FPGA data sheet hotline at 1-800-858-1810, Dept. C4F.

*In Europe, fax requests to the above Dept. at (32) 2-652-1504 or call (32) 2-652-0270. In Asia, fax requests to the above Dept. at1-415-940-4343. UltraLogic and Warp are trademarks of Cypress. © 1994 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134, Phone 1-408-943-2600.