The Software is the Instrument
...You Choose the Computer

LabWindows for DOS
LabVIEW for Windows
LabVIEW for Sun
LabVIEW for Macintosh

ACQUISITION
- GPIB
- Data Acquisition
- VXI
- RS-232
- Instrument Drivers

ANALYSIS
- DSP
- Statistics
- Linear Algebra
- Filters
- Windows

PRESENTATION
- Graphical User Interface
- Hard Copy
- File I/O

C and BASIC Programming

Graphical Programming

Call for FREE demo disks
(800) 433-3488 (U.S. and Canada)

See us at COMDEX, booth 52694
See us at WESCON, booth 2457

© Copyright 1992 National Instruments Corporation. All rights reserved. Product and company names listed are trademarks or trade names of their respective companies.
Sprague® tantalum chips set new world standards.

Performance that sets world standards plus important cost-cutting potential. Two major reasons to specify Sprague® solid tantalum chip capacitors. Our tantalum chip family provides extended ratings in both conformal and molded case models, ability to specify smaller case size for the same electrical performance plus fused chips and the industry's highest temperature capability. Type 1950 TANTAMOUNT® chips conform to EIA 535BAAD. Type 595D conformal coated chips offer the highest capacitance in the smallest case sizes. Type 8940 fused chips and Type 293D TANTAMOUNT® molded case chips conform to EIA 535BAAC. CWR06, CWR10 and CWR11 chips meet MIL-C-55365. Molded styles are rated to withstand +260°C for 30 sec. All Sprague® tantalum chips are supplied taped and reeled to EIA-481. For technical information contact Sprague®, 678 Lower Main Street, Sanford, ME 04073. Phone (207) 324-4140. FAX (207) 324-7223. For your "Quick Guide to Tantalum Chips" call (402) 563-6363.
106 MINUTES!

ORDER ENTRY TO SHIPPING

10:55 A.M.
Order entry and customer service is provided by a friendly, competent staff providing real time stock status, on line order entry and instant information retrieval.

From order entry to shipping, the typical Digi-Key order is processed in just 106 minutes! This is why more than 99% of all orders are shipped within 24 hours.

11:00 A.M.
Your order is inducted into Digi-Key’s intelligent conveyor system utilizing state-of-the art bar-coding and production technologies to achieve unparalleled speed and accuracy in order processing.

11:05 A.M.
Fully supervised by Digi-Key’s host computer, the conveyor’s programmed logic controllers flawlessly route your order, selectively diverting it to each relevant picking zone.

Plus, more than 95% of the products in the Digi-Key catalog are available for “off-the-shelf” delivery. This gives you a level of performance that is unequalled among electronic component distributors.

Call, write, or fax for your FREE CATALOG today!

11:54 A.M.
Your order has been filled in 59 minutes and is routed to quality assurance where it is checked for accuracy, quantity, quality and proper packaging.

11:59 A.M.
Designated zones for value-added product and exceptions ensure that even orders with truly unique requirements are handled routinely in Digi-Key’s fulfillment process.

12:06 P.M.
Your order is carefully packaged and prepared for shipment using anti-static, environmentally-safe, CFC-free packaging materials.

12:41 P.M.
Your order is shipped via one of Digi-Key’s 43 standard delivery options. Next day delivery would typically place this order in your hands the next morning.

Digi-Key
CORPORATION
701 Brooks Avenue South
Thief River Falls, MN 56701
Toll-Free: 1-800-344-4539
FAX: 218-681-3380

Circle No. 2
SURFACE-MOUNT or PLUG-IN

$3.95

Tough Mini-Circuits' TUF-mixers to 250°C for five minutes, or to the extreme shock and vibration stresses of MIL-STD-28837, or to 200 cycles of thermal shock from -55° to +100°C... they'll survive without any change in specs. They are mighty tough mixers!

Available with LO drive levels from +7 to +17dBm, performance features include very low conversion loss flat over the entire band, high isolation (L-R, L-I), and well-matched VSWR at all ports.

All-welded internal and external construction is used to assemble and package the TUF-unit in its tiny 0.5 by 0.2 by 0.25 in. metal case, for plug-in or surface-mount assembly.

TUF-Ultra-Rel™ mixers are guaranteed for five years and boast unprecedented "skinny" sigma (δ) unit-to-unit repeatability as shown in the Table.

Tough, tiny, and with tight repeatability... Mini-Circuits' Ultra-Rel™ TUF-mixers with a five-year guarantee, priced from $3.95... available only from Mini-Circuits.

---

**SPECIFICATIONS**

<table>
<thead>
<tr>
<th>Model</th>
<th>LO Power (dBm)</th>
<th>0.15-400</th>
<th>4.98</th>
<th>0.34</th>
<th>46</th>
<th>5.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUF-3</td>
<td>7</td>
<td>0.15-400</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
</tr>
<tr>
<td>TUF-3LH</td>
<td>10</td>
<td>2-600</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
</tr>
<tr>
<td>TUF-3M</td>
<td>13</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>TUF-3H</td>
<td>17</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>TUF-1</td>
<td>7</td>
<td>0.15-400</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
</tr>
<tr>
<td>TUF-2</td>
<td>10</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>TUF-2LH</td>
<td>13</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>TUF-2M</td>
<td>17</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5</td>
<td>7</td>
<td>0.15-400</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
</tr>
<tr>
<td>TUF-5LH</td>
<td>10</td>
<td>2-600</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
</tr>
<tr>
<td>TUF-5M</td>
<td>13</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5H</td>
<td>17</td>
<td>5.00</td>
<td>0.33</td>
<td>46</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5N</td>
<td>10</td>
<td>6.00</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860</td>
<td>17</td>
<td>6.00</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860LH</td>
<td>10</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860MH</td>
<td>13</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860H</td>
<td>17</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5LH</td>
<td>10</td>
<td>6.00</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5M</td>
<td>13</td>
<td>6.00</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5H</td>
<td>17</td>
<td>6.00</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5N</td>
<td>10</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860</td>
<td>17</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860LH</td>
<td>10</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860MH</td>
<td>13</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860H</td>
<td>17</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5LH</td>
<td>10</td>
<td>6.00</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5M</td>
<td>13</td>
<td>6.00</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5H</td>
<td>17</td>
<td>6.00</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>TUF-5N</td>
<td>10</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860</td>
<td>17</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860LH</td>
<td>10</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860MH</td>
<td>13</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>TUF-860H</td>
<td>17</td>
<td>7.50</td>
<td>0.17</td>
<td>50</td>
<td>8.95</td>
<td></td>
</tr>
</tbody>
</table>

---

For detailed specs on all Mini-Circuits products refer to • THOMAS REGISTER Vol. 23 • MICROWAVES PRODUCT DIRECTORY • EEM • MINI-CIRCUITS' 740-pg HANDBOOK.

CIRCLE NO. 3
In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits’ flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It’s just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits’ wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers’ Handbook.

All Mini-Circuits’ amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents.

Mini-Circuits’ monolithic amplifiers...for innovative do-it-yourself problem solvers.

### Chart: Mini-Circuits Amplifiers

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Gain</th>
<th>Output Power</th>
<th>Noise Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-1</td>
<td>1.04 MHz</td>
<td>1.40</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>MAV-1</td>
<td>1.15 MHz</td>
<td>1.45</td>
<td>1.55</td>
<td>1.65</td>
</tr>
<tr>
<td>MAR-2</td>
<td>1.40 MHz</td>
<td>1.45</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>MAV-2</td>
<td>1.45 MHz</td>
<td>1.45</td>
<td>1.55</td>
<td>1.65</td>
</tr>
<tr>
<td>MAR-3</td>
<td>1.50 MHz</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td>MAV-3</td>
<td>1.55 MHz</td>
<td>1.55</td>
<td>1.65</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Notes: Frequency range DC-1500MHz; Gain 1/2 dB less than shown.

**Typical Circuit Arrangement**

```
+VCC +RF (optional)
Vblock VIN
|       |
Vout  Cblock
```

**Designer’s Amplifier Kits**

DAK-2: 5 of each MAR model (35 pcs), only $59.95

DAK-2SM: 5 of each MAR-SM model (35 pcs) only $61.95

**Designer’s Chip Capacitor Kit**

KCAP-1: 50 of 17 values, 10pf to 0.1µf (850 pcs), $99.95

For detailed specs on all Mini-Circuits products refer to • THOMAS REGISTER Vol. 23 • MICROWAVES PRODUCT DIRECTORY • EEM • MINI-CIRCUITS’ 740-pg HANDBOOK.

CIRCLE NO. 4
PC power management

Today, no respectable business traveler leaves home without a portable computer. This boom has spurred the development of power-management products that ensure these computers have enough juice between battery charges. —John Gallant, Technical Editor

Design It Right—Part 2

This second installment of EDN’s Design It Right series on developing electronic products tells the stories of three computer-and-peripheral products. —Dan Strassberg, Senior Technical Editor

Designer’s guide to sampling A/D converters—Part 3

Part 3 concludes the series by examining the problems of interfacing the ADC to the rest of the system and the critical issues of grounding, layout, and filtering. —Walt Kester, Analog Devices

EDN hands-on project: Pads software performs complex designs for less

Although Pads high-performance design software is priced near the top for PC systems, it’s priced near the bottom when running on a workstation. The software can accommodate complex pc-board design without the limitations found in low-cost software. —Doug Conner, Technical Editor

Continued on page 7
POWER To Configure

MegaPAC™

Power: Up to 1200 Watts
Input: 110/220 VAC, strappable; 300 VDC
Outputs: 1 to 8 isolated and fully regulated, 2 to 95 VDC
Size: 11.8" L x 6.0" W x 3.4" H

Plug into instant power supply configurability with the new MegaPAC switcher from our Westcor division. MegaPAC outputs can be configured in virtually an infinite number of voltage and power combinations using up to 8 slide-in ModuPAC™ assemblies. Want to change a voltage or power level at your factory or at a customer site? No problem... shut down input power, slide out the ModuPAC you want to replace and slide in the new one. It's that simple.

MegaPAC's instant configurability takes Westcor's popular StakPAC to the next level of customization and flexibility. And its improved manufacturability means a substantial price reduction too! At the heart of each plug-in ModuPAC is a standard Vicor VI-26X series DC-DC converter module... over 1 million are operating reliably in systems world-wide. With potential applications around the globe, MegaPAC is designed to meet stringent UL, CSA, and IEC safety standards (approvals in process).

So take the risk out of specifying your system power supply. Contact us today and request ordering information... then sit back and relax... your custom-tailored MegaPAC will be delivered within four weeks.

Call VICOR EXPRESS (800) 735-6200 for information and be sure to ask for a MegaPAC data sheet. Or call WESTCOR (division of Vicor) at (408) 395-7050. Fax us at (508) 475-6715 or (408) 395-1518.

Component Solutions For Your Power System
32-bit PCs take on embedded applications

Instead of using a µC, you can now drop in a complete 386/486 PC to provide a user interface or to control hardware.—Ray Weiss, Technical Editor

Fault-tolerant 8.4-Gbyte disk array

Accelerator chips for Windows graphics

RISC/2: Half RISC, half CISC µPs break traditions

C-machine for personal communicators

16-bit 68HC16

16-bit microcontroller

8-bit COP8 µC

Computers & Peripherals.

Test & Measurement Instruments.

Components & Power Supplies.

Integrated Circuits.

CAE & Software Development Tools.

Inside EDN.

News Breaks.

Signals & Noise.

Editorial.

Design Ideas.

Career Opportunities.

EDN's International Advertisers Index.

EDN's Acronyms & Abbreviations.

Hands On.
FINALLY, One Company offers you the Power and the ease... with integrated Workstation tools from PADS...

PADS-View
- A complete design entry and simulation solution
- Mixed mode A/D simulation
- Multiple windows for probing simulation results
- Backward and forward annotation to PCB design
- Integrated analysis tools for Engineering Rule Checking
- Cross-probing between PCB and schematic

PADS-Look
- Complete PCB design solution for UNIX™ based workstations
- Easy to install, learn and use
- Excellent price performance ratio
- Complete support of all current printed circuit board technologies
- Specialized tools for analog, digital and high speed design

PADS-ForceRouter
- Autorouting for high density design and testability
- Gridless, shape based architecture supports: metric, fine pitch and off-grid placements
- High speed design toolset with table driven crosstalk analysis
- State-of-the-art "Design for Manufacturability"

PADS offers hardware independent EDA Solutions within your budget and to meet your toughest engineering challenges. PADS products offer you a consistent, easy-to-learn, easy-to-use design environment. For database compatibility, total migration and a common design philosophy between PC's and Workstations, call 1-800-554-SALES, or your authorized PADS partner.

CADware, Inc.
1-800-735-4223

ElectroCAD, Inc.
1-800-872-1036

The CAD T.E.A.M.
1-800-668-0726
John Gallant foresaw a strategic writing problem soon after he began investigating **power management for personal computers** for this issue’s Special Report. “I found that the topic was enormous. Anybody that has anything to do with making portable computers is putting power-management features into their products, almost down to the nuts and bolts. Certainly anything electrical has a ‘power hook’ in it these days.”

John’s problem was figuring out a way to limit the potentially enormous scope of the article. He decided to concentrate primarily on the power-management modes of the most widely used microprocessors for today’s portable computers, opting to include a synopsis of how the modes operate.

“Low-power management is one of the big revolutions of the 1990s, and the motivation is, of course, portable computers,” says John. But it’s not just hardware that’s being modified. Because of all these extra power hooks, BIOS vendors have had to come up with innovative power-management firmware. In his Special Report, John covers the developments in both hardware and software power management and also takes a look at what designers have to deal with before the complete changeover to 3V devices occurs.

Continuing his hands-on reports on design software, Doug Conner lets you know what it’s like to work with **Pads Logic for schematic entry and Pads 2000 for pc-board design**. (His hands-on review of Accel’s Tango products appears in the May 21, 1992, issue.) “I spent two solid weeks learning the software, and took a couple of days to design a board on it.” Overall, he was impressed and found only a few nits to pick.

By taking the time to learn this and other design-software packages, Doug says his future articles that cover the CAE software area can only benefit from his user perspective. He’s looking forward to evaluating more products during the coming year.

In Part 2 of Dan Strassberg’s Design It Right Series, you’re in for a behind-the-scenes design story of three computer products from Force, Tusk, and Quantum. Take a look at the lessons each company learned in the do’s and don’ts boxes—maybe there’s something you can use to further a pet project.

In Dan’s 4-part Design It Right series, only Part 2 covers products that fall outside the test and measurement area. Why? Dan polled all of EDN’s technical editors and sent letters to over 80 companies, asking everyone to nominate products that had good design stories associated with them. Out of about three dozen nominations, he selected the 12 products that he believed had the most educational design stories to tell. Except for the three computer products you’ll read about in this issue’s article, the rest are test related, which is not surprising (but also not intentional): Dan is our resident test expert.

After talking to Force, Quantum, and Tusk for Part 2, Dan found that the breakneck pace of the computer-and-Peripheral business allows little time to correct errors of any type. The technology is evolving so swiftly that design teams have to be more efficient in that area than in just about any other segment of electronic equipment manufacture. Getting in and out with clean designs is the name of the game.
AMD Introduces The World's First 386 Microprocessor With 3-Volt Technology.

Two standard dry-cell batteries. There's really nothing special about them. Aside from the fact that they can run a powerful portable 386 computer for a full eight hours. Provided, of course, that portable is built around a low-voltage Am386™ microprocessor.

Thanks to the low-voltage Am386 microprocessors, laptop, palmtop and notebook computer designs will become smaller, lighter, and more powerful than ever before.

With battery life of up to eight hours or more. That's a full day's worth of 386 performance—the per-
performance you need to run sophisticated applications like Windows™ 3.0.

And rest assured, the low-voltage Am386 microprocessors are proven compatible and comply fully with JEDEC standards for low-power, 3-volt computing. We can even supply you with the 3-volt EPROMs your systems will need. Other 3-volt system logic is also readily available.

For more information on the low-voltage Am386 microprocessors call AMD today at 1-800-222-9323. You'll never look at dry-cell batteries the same way again.

Advanced Micro Devices
"We're Not Your Competition."
If you're only getting half the picture...
...talk to LeCroy.

Your analog oscilloscope gave you the whole picture. You'd set the trigger and the timebase, then use delayed sweep to examine the details. Measure precise timing. Or compare pulses in a stream.

But when you cross over to digital, will you still get the whole picture? Most digital scopes can't show you a live waveform and an expanded portion simultaneously. And if you can't see both together, how can you tell where the expansion really is?

Fortunately, you do have a choice. LeCroy makes a whole range of Digital Oscilloscopes with long memories and unique displays. Like your analog scope, they show live traces and expansions simultaneously. You get digital measurement precision without compromising on display clarity.

So now, if you'd like to know more, talk to LeCroy. We'll make sure you get the whole picture.
With 18 million transistors and a total of 24 million elements, the 4-meg SRAM is the most complex memory device ever made.

But the products that will be built with it are even more extraordinary. Personal Digital Assistants, handheld notebook and pen-based computers—all with power only available in mainframes a few years ago. And complex telecommunications switches, video phones, robotics, and interactive cable systems will use the 4-meg SRAM too.

At Samsung, we’re proud to be part of these advancements. And proud to extend the leadership we earned with the world’s first 16-meg DRAM.

Our line of standard SRAMS is
the broadest available—with the new 128K and 512K densities, and parts down to 64K. Industrial temperature ranges, 3.0V parts, and 55ns speeds are among the line’s other highlights. And we offer additional low-power memory solutions, including SRAM memory cards and Pseudo SRAMs.

All technology that will let you build even more amazing things. Like computers with huge capabilities, small enough to fit in your hand.

For more information, please call 1-800-446-2760 today.

Or write to SRAM Marketing, Samsung Semiconductor Inc., 3655 No. First St., San Jose, CA 95134.
HP's 50 MBd Plastic Fiber-Optic Data Links. Anything else would be twisted.

Our new data links are so fast and cost-effective, it would be crazy to stick with twisted pair.

Sure, optical fiber is immune to noise, but who can afford it? With HP's new high-speed plastic fiber links, the answer is anyone.

That's because our new links rely on plastic optical fiber cable which keeps costs way below glass fiber, while offering far greater voltage isolation and noise immunity than twisted pair wire.

A quick turn for the best.

With data rates soaring to 50 MBd, HP's plastic fiber links offer the fastest solution for designing computer, telecommunications, or industrial applications. So you can avoid bottlenecks, and design in data multiplexing.

Perfectly flexible.

You can choose interlocking horizontal or vertical mounts for greater mechanical design flexibility. The analog in/out provides the electrical design flexibility you need to meet your cost and performance goals.

The whole ball of wax.

What's more, as the largest optoelectronic supplier in the U.S., HP offers you the industry's most complete package of products and support services. To find out more about HP's 50 MBd Plastic Fiber-Optic Data Links, call 1 (800) 752-0900, ext. 2948 in the U.S.* You'd be crazy not to.

There is a better way.

*In Europe, FAX to: (49) 7031-14-1750.
68300 ICEs with trace ability cost $4995

Huntsville Microsystems' $4995 Lite in-circuit emulators (ICEs) for 68300-series processors (including the 68340 and HC16 family) cost less than half as much as other comparably powerful hardware-based debugging tools for these processors. There are other 68300-series debugging tools in the same price range, but they lack some of the Lite units' key features, such as a 4k x 63-bit trace buffer. The 4.8 x 4.5 x 1.5-in. emulators, which are no larger than the pods of many other ICEs, clip directly onto the target processor's pins or plug directly into its socket. Emulation RAM is 256 kbytes. The emulators handle dynamic bus sizing and mapping of all chip-select signals. The vendor's Sourcegate debugger accompanies each unit. The debugger, available in MS-DOS and Unix versions, provides source-level debugging of code generated by all major C and Ada compilers. Huntsville Microsystems Inc, Huntsville, Al, (205) 881-6005.—by Dan Strassberg

PC/104 consortium gains momentum

The PC/104 Consortium, a group of companies that manufactures small, stack-together modules for embedded-computer applications, shows evidence of gaining momentum. At the recent Buscon exhibit in Boston, MA, 14 companies announced new PC/104 modules, and 13 other companies announced that they have recently joined the consortium. The consortium was formed in January 1992, and now has 46 member companies.

PC/104 modules conform to a standard, which is published by the consortium, that defines a compact, modular form-factor for adding PC and PC/AT functions to embedded applications. PC/104 modules measure 3.6 x 3.8 in. and provide a stacking bus connector that eliminates the need for backplanes and card cages. New PC/104 modules announced at Buscon perform a range of functions for embedded control that include data acquisition, processing, text-to-speech conversion, and touch-screen control. One company, WinSystems, introduced an 80386SX-based module that connects to an STD bus. PC/104 Consortium, Sunnyvale, CA, (408) 245-9348, FAX (408) 720-1322; WinSystems, Arlington, TX, (817) 274-7553, FAX (817) 548-1358.—by Gary Legg

Specify FPGA timing needs up front

A key concern for FPGA (field-programmable gate array) designers is whether the circuit will run fast enough to meet system timing requirements. XACT-Performance from Xilinx lets designers using the company's FPGAs specify the timing performance they need up front during schematic design. When you later run the automatic partitioning, place, and route tools, they will attempt to deliver a circuit that meets performance requirements.

The software lets you specify timing requirements in a straightforward format during schematic design. You enter the register transfer requirements for clock-to-setup, the I/O transfer requirements for pad-to-setup and clock-to-output, and pad-to-pad requirements. Unachievable performance requirements are typically flagged before you've spent much time on the design.

Older methods used network criticality assignments to provide short delays on selected nets. You don't know if your criticality assignments have had the desired effect until you evaluate the resulting delays of the placed and routed device. Thus the network criticality-assignment method often leads to an iterative design approach. The software eliminates or reduces these design iterations. The software is a free upgrade to registered users of XACT 4000. Others can upgrade for $2000. Xilinx Inc, San Jose, CA, (408) 559-7778. —by Doug Conner

Futurebus + products emerge at Buscon

New Futurebus+ chips and boards made their debut at the recent Buscon exhibit in Boston, MA. They joined a host of other products for the embedded-systems market, many of which are boards that have been upgraded with an 80486 or compatible processor.

The CA91C899 Logical Interface Futurebus + Engine (LIFE) chip from Newbridge Microsystems is the first 1-chip controller that fully complies with Futurebus + Profile B. New Futurebus + products from Myriad Logic include a High-Performance Parallel Interface (HIPPI) board, a 512-Mbyte memory board, and a carrier board for connecting Transputer networks. Among the 486-based boards announced at Buscon were Multibus I and II boards from Intel, STD 32 boards from Ziatech, STEbus and VME boards from Ar- com, and a PC/104 module from Ampro. Radstone Technology introduced a module that connects between a VME board and the VME backplane and allows live (power-on) insertion of boards.

Ampro, Sunnyvale, CA, (408) 522-2100, FAX (408) 720-1305; Arcom, Kansas City, MO, (816) 941-7025, FAX (816) 941-0343; Intel, Santa Clara, CA, (800) 438-4769; Myriad Logic, Silver Spring, MD, (301) 588-0604; Newbridge Microsystems, Kanata, ON, Canada, (800) 267-7231 or (613) 592-0714, FAX (613) 592-1320; Radstone Technology, Montvale, NJ, (800) 368-2738 or (201) 391-2700, FAX (201) 391-2899; Ziatech, San Luis Obispo, CA, (805) 541-0488.—by Gary Legg
FDDI chip set handles fiber or twisted pair

National Semiconductor has created a 2-chip set that lets designers create a compact FDDI (Fiber Distributed-Data Interface) adapter card for desktop computer systems. One chip (DP83256VF) handles the physical-layer interface, clock-recovery, and clock-distribution needs for the card. The other chip (DP83266VF) handles system interface, memory control, and the media-access-control (MAC) protocol. National is also offering software drivers to facilitate the chip set's use with network operating systems such as NetWare, LAN Manager, and the TCP/IP interface protocol.

The physical-layer chip (Player+) incorporates all of the necessary filter and timing components for data transmission and recovery on chip. It connects directly to fiber-optic transmitter and receiver modules for FDDI networks. The device, together with a twisted-pair transceiver, will also handle networks that substitute unshielded twisted-pair wire for optical fiber (SDDI).

The system interface chip (MACSI) has a system interface for direct connection to the Sbus used in Sun SPARCstations. The interface is also adaptable to EISA and Micro Channel buses. The chip incorporates 4608-byte FIFO transmit and receive buffers to reduce latency when used with slow system buses.

The 2-chip set costs $165 (100) and is available as two 160-pin PQFPs (plastic quad flatpacks) or as a 160-pin MACSI and a 100-pin Player+ device. The larger-pin-count Player+ (DV83257VF) makes available additional signals needed for scrambled-data applications. Evaluation boards (DP83200MK) for both fiber and twisted-pair networks are available for $3995. National Semiconductor, Santa Clara, CA, (408) 721-5000.

—by Richard Quinnell

Cadence offers design-for-manufacture software

Cadence Design Systems' DFA (design for assembly) and DFM (design for manufacture) software is part of the company's Allegro tool set for system design and is available as an option to the company's System Workbench. The software includes default checking rules that the user can override with custom ones.

The DFA software identifies components that do not match automatic assembly rules and verifies that the clearances between components are adequate for automatic assembly equipment, as well as for inspection and repair. The tool also identifies areas that might produce solder shorts and opens during wave soldering. The software verifies that the selected hole sizes are large enough for component insertion and small enough for proper soldering; that the specified drill sizes are appropriate for efficient shop handling; that there is sufficient annular ring for soldering; and that one-pass drilling can be done.

The DFM software automatically generates factory-fabrication data such as soldermask, solderpaste, and registration coupons. The tools allow users extensive control over the generated results through both default and user-defined design rules. Tools for the Sun-4 platform will be available in the fourth quarter of 1992 for $14,900, each with a floating license. Cadence Design Systems, San Jose, CA, (408) 943-1234.—by John Napier

Arrays displace high-speed discrete transistors

Discrete transistors are no longer the only high-speed analog design option. You can now also use four fixed-geometry transistor arrays from Harris Semiconductor to create high-speed functions, such as 3-GHz amplifiers and mixers. The arrays solve some of the temperature-drift problems of discrete designs because they are on the same die, have matched electrical performance, and will track identically with temperature.

The arrays contain various combinations of five 8-GHz nnp, 5.5-GHz npn and 5.5-GHz pnp transistors in SOICs. The HFA3046, '3127, '3096, and '3128 contain transistors in the following combinations, respectively: 5 npns, with two configured as a differential pair, 5 npns, 3 npns, and 2 npns; and 5 npns. Prices range from $3.10 to $3.80 (100). Harris Semiconductor, Melbourne, FL, (800) 442-7747, ext 7041.

—by Anne Watson Swager
CYPRESS MEMORY AND SILICON GRAPHICS WORKSTATIONS COMBINE TO CREATE SOME SEXY GRAPHIC EFFECTS. If you’re like most, you loved the stunning special effects in “The Lawnmower Man.” They gave you an imaginative preview of what Virtual Reality might look like in the near future. To design and create those effects, Angel Studios relied heavily on cutting-edge Silicon Graphics® workstations, spurred on by lightning-fast Cypress memory.

Cypress offers a full range of high-performance products, including SRAM and PROM memories, PLDs, SPARC microprocessors, logic products, BiCMOS ECL memories, and multichip modules. Products that can make your designs highly attractive. If you’re ready to embrace top line performance, call for the Cypress Data Book.

FOR A FREE DATA BOOK AND POSTER OF THIS AD CALL OUR HOTLINE: 1-800-858-1810* Ask for Dept 46.

*In Europe, fax your request to the above dept. at (32) 2-652-3504 or call (32) 2-652-0270. In Asia, fax to the above dept. at 1 (415) 961-4201.

© 1992 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone 1 (408) 943-2600, Telec: 821032 CYPRESS SD, TWX 910-997-0751. “The Lawnmower Man” image was created by Angel Studios, Carlsbad, California. © 1992 Allied Vision/Lane Pringle Productions. All rights reserved. Silicon Graphics is a registered trademark of Silicon Graphics, Inc.
the world's largest selection
2KHz to 10GHz from $2.95

With over 300 standard models, from 2-way to 48-way, 0°, 90° and 180°, 50- and 75-ohms, covering 2KHz to 10GHz, Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. And, with rapid turnaround time, we'll also supply "special" needs, such as wider bandwidth, higher isolation, lower insertion loss and phase matched ports.

Available for use in military and commercial requirements, models include plug-in, flat-pack, surface-mount, connectorized standard and custom designs. New ultra-miniature surface mount units provide excellent solutions in cellular communications, GPS receivers, Satcom receivers, wireless communications, and cable systems.

All units come with a one-year guarantee and unprecedented "skinny" sigma unit-to-unit and production run-to-production run repeatability. All catalog models guaranteed to ship in one week. Mini-Circuits...dedicated to exceed our customers' expectations.
The MACH™ Family From AMD:
The Fastest, Most Predictable High Density PLDs Available Today.

Oops! You’re a couple of nanoseconds shy this time, and it’s going to hurt. Perhaps next time you’ll choose a more predictable vehicle. And the most predictable high speed, high-density PLDs available are the MACH family from AMD.

Only the MACH Family offers you worst case delays of 15ns* or less. Because MACH parts are essentially PAL® devices, just like the kind you already know. Not some hybrid PLD/FPGA, where you don’t know how it performs — until it’s too late. So you don’t have to guess your delays or clock speeds, you just read them right off our datasheet.

But they’re not just ordinary

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Eqv. Gates</th>
<th>Macro Cells</th>
<th>Max. Delay</th>
<th>System Speed</th>
<th>I/O Pins</th>
<th>Hard-Wired Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACH 110</td>
<td>900</td>
<td>32</td>
<td>10ns</td>
<td>66.7 MHz</td>
<td>44</td>
<td>MASC 110</td>
</tr>
<tr>
<td>MACH 210</td>
<td>1800</td>
<td>64</td>
<td>10ns</td>
<td>66.7 MHz</td>
<td>44</td>
<td>MASC 210</td>
</tr>
<tr>
<td>MACH 120</td>
<td>1000</td>
<td>48</td>
<td>15ns</td>
<td>50 MHz</td>
<td>68</td>
<td>MASC 120</td>
</tr>
<tr>
<td>MACH 220</td>
<td>9400</td>
<td>96</td>
<td>15ns</td>
<td>50 MHz</td>
<td>68</td>
<td>MASC 220</td>
</tr>
<tr>
<td>MACH 130</td>
<td>1800</td>
<td>64</td>
<td>15ns</td>
<td>50 MHz</td>
<td>84</td>
<td>MASC 130</td>
</tr>
<tr>
<td>MACH 230</td>
<td>3600</td>
<td>198</td>
<td>15ns</td>
<td>50 MHz</td>
<td>84</td>
<td>MASC 230</td>
</tr>
</tbody>
</table>

*In applications with a full 16 product terms. Every MACH part is specified using real-life conditions with all outputs switching.
PAL devices. They're bigger and better, with densities ranging from 900 to 3600 gates, all in our submicron CMOS technology.

Nor will you face unpredictable delays when you order. Because the entire MACH family is now shipping in volume.

Working with them is equally predictable. You don't have to learn any new techniques, just use the software and test equipment you already know. Like ABEL, CUPL, OrCad, and others. Not to mention the software and support from over 20 FusionPLD vendors — all prepared to bring your products to market on time.

And each MACH part can migrate easily to a pin-compatible, hard-wired MASC™ counterpart for high volume. So you can get the volume you need, without redesign, NRE, or unforeseen delays.

So call AMD today at 1-800-222-9323. And let the MACH family make your design cycle a whole heck of a lot safer.
This is your chance to get the full power of embedded
SPARC. Don’t let it slip away.

This is one of those times when you just have to seize the day. Because opportunities like this are rare indeed.

You see, FORCE is the only company licensed by Sun to put SPARC®station 2 technology on VME.

So we’re the only ones who can give you validated hardware and software compatibility. Allowing you to run SunOS™ with any of your SPARCstation 2 applications and peripherals. Without a hitch.

We also have a whole new family of SPARC 2 products. With everything from our CPU-2CE (6U) board to the microforce single-slot system.

We even have 20-slot systems that allow you to customize I/O. Giving you the perfect combination of real-time and UNIX.

And our SPARC products provide the broadest software offering of any RISC architecture. Including SunOS, real-time operating systems and a host of application software.

So if you want a better grasp of embedded SPARC, call for a free brochure. 800-237-8863, ext. 5. Or in Europe, 49.89.608-14-0.

Because there’s no reason to let all this power slip through your fingers.
OrCAD’s Schematic Design Tools is the most popular electronic design automation product in the world. Designed by engineers for engineers, its “intelligent” interface and power features are a favorite for electronic designers in huge manufacturing companies and small job shops alike.

Schematic Design Tools offers incredible value in a single package: **30+ industry netlist formats** (or write your own); support for hundreds of displays, printers and plotters; the innovative ESP framework, which allows the user to seamlessly transfer information between OrCAD products and many third party products.

In the 60+ libraries are IEEE, TTL, ECL, CMOS symbols and much more. In fact, Schematic Design Tools has over **20,000 unique library parts**. Parts may be rotated, mirrored, converted to DeMorgan equivalent with the press of a single key.

**Introducing Schematic Design Tools 386+**

Designed specifically for 386/486 based PCs. A true protected-mode product using 32 bit addressing and data structures for maximum performance on today’s faster PCs.

**Features and enhancements:**

- Virtually unlimited design size
- Virtually unlimited netlisting capacity
- Faster netlisting due to improved memory management and 386/486 optimization
- Compatible with all OrCAD products including OrCAD PCB II, Programmable Logic Design Tools 386+, and Digital Simulation Tools

- Virtually unlimited graphic part size
- All existing SDT designs and libraries may be easily translated into Schematic Design Tools 386+ format.
- Schematic Design Tools 386+ is compatible with nearly every known printed circuit board, programmable logic and FPGA layout system.

Call today for information including a FREE demonstration disk. (503) 690-9881

OrCAD®

The Better Solution

3175 N.W. Alokele Drive • Hillsboro, OR 97124 USA
(503) 690-9881 • Fax (503) 690-9891

CIRCLE NO. 21
Taking responsibility for education

The editorial by Joan Morrow Lynch entitled “Everyone wins” (EDN, June 4, 1992) is gratifying because it gives examples of interest in science and engineering. I am a volunteer liaison between Hewlett-Packard (HP) and our local school district’s high schools, specializing in math and science education.

The editorial makes an interesting point: Lack of a demand from the students will defeat every program, every time. I see this every time I’m called upon to advise on the acquisition of another computer for the classroom. Schools think they need a Macintosh with a MIDI interface and a CD-ROM to teach the students. In fact, what schools need are students who believe their own future success in life depends on the education they receive from the school and in which they actively participate.

In a microprocessor-programming class I taught to some high-school students as part of their applied-technology course, I could give homework and exams. The students complained that I shouldn’t be giving them homework. One student was on the swimming team and had to practice three hours a day; my homework was cutting into his practice. I pointed out that practice for a sport, but not for intellectual activity.

Until we raise our expectations of what constitutes a good preparatory education, we will be in this crisis. It’s not the facts that you learn in school that are important, it’s the process of learning and training your mind to think.

I’m currently involved in a project with Liberty High School. Seat Hovercraft in Florida has donated one of their Hovercraft as a vehicle for applying physical principles to solving real-world problems. We are trying to assist Seat in lowering the noise generated by their products. The students are learning about how engineering and team activities actually occur. HP and other companies have also donated equipment and provided mentors. We’ve completed one year so far, and I’m impressed with this year’s results.

Looking back on this project, however, I wonder why all of this is necessary. It’s expensive and very time-consuming. The answer is simple. If we were to teach traditional physics in a traditional classroom environment, we wouldn’t have any students to teach. The Project Engineering class is “sexy,” and it captures their imagination. This isn’t bad, and it’s similar to the thrust of Lynch’s editorial, but why is it necessary?

Until the students and their parents take responsibility for their own education, programs such as these will be necessary, and they will be insufficient. For every 50 students who participate, 250 will breeze through at the lowest common denominator. They will feel good about themselves, but they will be uneducated.

Arnold S Berger, PhD
R&D Project Manager
Hewlett-Packard Co
Colorado Springs, CO

Reciprocal apologies are in order

Please accept my apologies for writing unclearly and for using unexplained acronyms. My letter to Signals & Noise in the June 18, 1992, issue (pg 31) was about programmable logic devices (PLDs), not PID.

Also, Little Rock (unlike our governor, Bill Clinton) is in Arkansas—abbreviated AR. AK [which also appeared in the June 18, 1992, issue] stands for Alaska.

Jim Honea
Electronic Design Engineer
Aerospace Controls Corp
Little Rock, AR

LCD Proto Kit

Everything you need to start your LCD application in just a few hours!

Kit provides serial interface to IBM PC for quick prototyping. Board also supports up to 240 x 128 pixels.

240 x 64 pixel SuperTwist LCD mounts directly onto CYB003 prototyping board.

The CY325 LCD Windows Controller provides parallel or serial high-level control of instrument-size LCDs. Up to 256 built-in windows support window-relative text, bargraphs, waveforms, and plots. Text and graphics are maintained in separate planes, facilitating special effects. Complete User Manual included.

Power supply provides +5v and Gnd for board, -12v for LCD, and +12v spare.

Sample routines in 8051 Assembler and QuickBasic.

4-wire RO1 8x16 character display for immediate gratification.

Everything you need to create complex screens in just a few hours!

Kit includes:
- The CY325 LCD Windows Controller provides parallel or serial high-level control of instrument-size LCDs. Up to 256 built-in windows support window-relative text, bargraphs, waveforms, and plots. Text and graphics are maintained in separate planes, facilitating special effects. Complete User Manual included.
- 4-wire RO1 style cable with DB25F connector for your IBM PC.
- Add your own 8051 CPU for stand alone operation.

$495 - Kit
Popular LCD Starter Kit.

The CY325 CMOS 40-pin DIP and 44-pin PLCC LCD Controller IC are available from stock @ $75 singles, $20/1000s.

CyberneticMicroSystems
Box 3000 • San Gregorio CA 94074
Tel: 415-726-3000 • Fax 415-726-3003

EDN October 15, 1992 • 27
Whatever you're working on, please stop. You deserve to take some time off. And with any member of the AMD 29K™ Family of embedded RISC processors, you can take several months off your design cycle.

That's because 29K processors' simple, highly integrated designs will knock time-consuming steps off your schedule. Take the inexpensive, new Am29200™ microcontroller. With many features like I/O controls and serial ports included on-chip, it's the easiest to use embedded processor available. Adding memory requires no interface circuitry. It's as simple as playing "Connect the dots."

Memory interface throughout the rest of the family is fast and easy too. Each processor in the 29K Family integrates easily with low-cost PLDs or simple glue logic to minimize your circuitry needs.

You'll also save valuable time when you're expanding your product line. The entire 29K family is binary compatible. So you just deter-
mine the performance you need and select the appropriate chip—from the Am29200 to the high-end Am29050™ processor. There’s no need to recompile your applications’ software as you scale up or down the performance ladder.

And thanks to the 29K’s RISC architecture, you can use inexpensive memory devices to lower your system costs and still deliver the high performance your customers demand.

For more information on the 29K embedded RISC family call today at 1-800-292-9263 Ext. 3. Then kick back and watch the AMD guys go to work.
Go ahead, search all you want. But we don’t think you’ll find a lower cost or higher quality 200 MB class disk drive than our new 7213.

The reason is simple. We made it with very few parts. Far fewer than any other drive in its class. So it’s not only easier to manufacture, it assures exceptional reliability. And that’s critical.

Because it’s that level of reliability that keeps your customers sold.

Now you might be thinking, “How could Maxtor possibly produce a quality 200 MB drive at such a low cost?” Well, after produc-
ing more than 3 million 7000 series drives, you get real good at it.
The 7213 is just one more example of the New Drive at Maxtor. A very serious commitment to customer satisfaction. Unmatched service and support. And visionary product design.

For more information, please call 1-800-4-MAXTOR. Quite frankly, you won't find a better bargain than this.

Maxtor
There's a new drive at Maxtor.
Once You Witness The Performance Of Our ACT™ 2 FPGAs, You'll Know The Real Leader Is Actel.

If you plan to move to the superior capacity, flexibility and cost of FPGAs, you should know the facts. Compare us against the industry "leader." You'll find our ACT 2 FPGAs turn in some very impressive numbers indeed.

#1 in architecture. The ACT 2 family's innovative PLICE antifuse technology provides the ideal programming and interconnection elements for high-density FPGAs. Our FPGAs offer superior reliability and design flexibility, and give you the most predictable FPGA performance available. And with more than 1 million FPGAs shipped, Actel has more experience manufacturing antifuse-based FPGAs than anyone. That's experience you can count on.

#1 in speed. The fastest ACT 2 family member—the A1225—offers 2,500 gates of pure speed. With a 4 ns logic delay and system-level speeds up to 66MHz, ACT 2 helps you make the most of your design.

#1 in ease-of-use. With ACT 2, designs are easily captured with standard PLD tools like ABEL™ and PLDesigner-XL, as well as with your favorite schematic capture program from Mentor Graphics, OrCAD, Valid Logic Systems and Viewlogic. And Actel's Action Logic® System rapidly converts captured designs into programmed Actel devices. For years, our 100% automatic placement and routing has simplified the design process. And it's still faster and easier than any other solution.

#1 in affordability. Our FPGAs also provide the best price/performance available. Actel offers
PGA Market Leader, Thoughts About Who’s #1.

Designing Made Simple.
Actel devices’ plentiful routing resources give you 85% gate utilization using 100% automatic placement and routing, letting you place and route a 4,000-gate design in our A1240 chip in only 30 minutes.

Greater Capacity.
With 8,000 gate-array equivalent gates, the A1280 has led the industry in capacity for over 2 years. And it’s still the only high-density, high-performance FPGA available in volume production.

Catch Our Next Act.
We’re building on this FPGA technology to set new performance levels with our upcoming ACT 3 FPGAs. Whichever ACT you catch, you’ll get a long-term partner and the best performance in town.

much quicker time-to-market and complete control of the design process, as well as competitive FPGA prices. Which saves you both money and time.

And #1 in service and support. Customers can call our technical hotline and talk to a real person—not voicemail. Or customers can use our automatic Action FACTS system to fax themselves quick answers to their application questions.

We’re building on our experience to bring you the most advanced products for any application, and we’re committed to establishing a quality, long-term partnership with you for your future success.

Call 1-800-228-3532 for more information on our powerful family of FPGAs. And discover how far the real industry leader can take you.

CIRCLE NO. 25

EDN October 15, 1992 • 33
Can Your Current MCUs Meet These Specs?
Your designs demand more from existing MCUs. As the leader in MCU technology, Mitsubishi offers you a breadth of 8- and 16-bit microcontrollers with the functions you want.

**Highest Integration**
Get the highest levels of on-chip functionality with a host of features you need most, including synchronous I/O, UARTs, programmable I/Os, A-D/D-A converters, LCD and VFD drivers, PWM, special timers and more.

**Lowest Power Dissipation**
We offer the lowest power dissipation available today - 4mA at 3.0V at 8MHz, for our most highly integrated 16-bit MCUs.

**Low Voltage**
For low voltage, our MCUs operate in the 2.7 to 5.5 volt range at 8MHz. For higher performance up to 25MHz, we offer 4.5 to 5.5 volt operation without paying the high power penalty.

**Largest On-Chip Memory**
Utilize up to 2 Kbytes RAM and 32 Kbytes ROM or OTP with our 16-bit MCUs, and up to 1 Kbyte RAM and 32 Kbytes ROM in our 8-bit MCUs, with expanded memory planned for the future. EPROM and ROMless versions are also available.

**Smallest Packages**
Get all these advantages in the smallest packages on the market. Mitsubishi offers a wide range of packaging options including 64- to 160-pin surface mount packages, with 0.50mm, 0.65mm and 0.80mm lead pitch. Shrink DIPs are available in 32- to 64-pin configurations.

For faster time to market, Mitsubishi provides development support tools for each phase of your product design.

For your best system solution, call Mitsubishi today at (408) 522-7498. For Eastern U.S. and Canada, call (408) 522-7499.

**MITSUBISHI**
**ELECTRONIC DEVICE GROUP**

CIRCLE NO. 26
INTRODUCING EPOCH.

We named our new set of IC design tools Epoch because it truly is a new way of looking at IC design.

Whether it's Mentor, Cadence, ViewLogic, VHDL, Verilog or EDIF, with Epoch, you can continue to work in your familiar CAE environment. At the same time, you'll have quick access to Epoch's powerful set of tools. Tools that can help you improve the quality of your physical designs and deliver those complex IC designs on time and within budget.

Epoch is a new version of a tool that engineers throughout the world have used for years to design ICs for all kinds of applications, from engine controllers to consumer electronics and from medical imaging to DSP.

Epoch was developed, tested and proven by a team of engineers with widespread experience in IC design, IC software and a wide variety of foundry processes. This same team is available to provide you with full technical support whenever you need it.

If you're ready to discover a new epoch in IC design productivity and commitment to support, call us. Cascade Design Automation: 1-800-258-8574.
Washington: off frequency

Today, more and more communication companies and groups want to claim portions of the radio-frequency (RF) spectrum. Unfortunately, the RF spectrum is already crowded, and its bounds are limited. We can't create extra frequencies for new applications. However, we can carefully apportion the frequencies to meet the needs of new technologies. But that's not always done. The US Senate has decided to join the battle for frequencies by preventing the US Federal Communications Commission (FCC) from reallocating a small set of frequencies. That's a bad approach to a complex problem.

A few months ago, the FCC proposed moving users in the 1.85- to 2.2-GHz band to other frequencies. The newly available spectrum would be opened to personal communication services and new services now only in experimental stages. The present users of the band are mainly railroads and utility companies that communicate between fixed points. With its usual wisdom, the Senate blocked the FCC from reallocating the frequencies around 2 GHz to new services. The ban is an amendment to a bill that several electronics-industry groups seek to kill. Likewise, President Bush has said that he will veto any bill that blocks frequency changes.

The National Telecommunications and Information Administration (NTIA) also looked into the problems of relocating the 1.85- to 2.2-GHz-band users to frequencies between 1.7 and 1.85 GHz. Government communications now use that band. However, by carefully planning the frequencies of new stations, the paths of communication links—and considering other factors, all but 2% of the existing stations—could coexist with present operations. Making radio-communication facilities change frequencies can be expensive, but it can be done. No one should assume they have proprietary rights to parts of the RF spectrum. I've stated several times that frequencies should be put to the highest and best use, and that's still my opinion.

Nicholas Negroponte, head of the MIT Media Laboratory, thinks that if both points in a communication path are fixed, communications should go by wire or fiber optics. On the other hand, if either of the points moves, it should communicate by wireless. We agree. Communicators with fixed bases should plan to relinquish valuable spectrum space to mobile users. FCC Commissioner Alfred Sikes estimates that such a blocking of the 1.85- to 2.2-GHz band could postpone new communication services by 15 years. If Congress succeeds in blocking the reallocation of frequencies to innovative forms of communication, consumers—and the electronics industry—will suffer. Let's get moving.

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8,N,1; on 9600-bps modems try (617) 558-4580, 4582, or 4398.

Jesse H. Neal
Editorial Achievement Awards
1990 Certificate, Best Editorial
1990 Certificate, Best Series
1987, 1981 (2), 1978 (2),
1977, 1976, 1975

American Society of Business Press Editors Award

Jon Titus
Editor
An AMP Micro-Strip interface acts like a natural extension of the microstrip configuration of your board. It accepts high-speed signals from board traces. Presents them with a consistent, controlled-impedance interface. And passes them through with an absolute bare minimum of fuss. Board to board or box to box, the signal doesn’t see an interconnect, and acts just as if it were on a continuous microstrip path, experiencing a carefully controlled 50 ohms per line. Reflection less than 5% at 1GHz. Crosstalk less than 4% at 1ns risetimes. Connector propagation delay of 0.05ns. Cable propagation delay of 1.4ns/ft. Astonishing numbers for an interconnect system; excellent news as signals approach 500ps risetimes.
The separable bus bar between contact rows makes all contacts available for signal, giving you a comfortable 40 lines per inch on 0.05" centers, in parallel or right-angle configurations. A range of parallel stack heights is available for "hot" applications such as workstation cpu module boards.

The transmission-line cable implementation extends from subsystem to subsystem, or box to box. Using silver-plated conductors on 0.0125" centers in a ground/signal/ground configuration, the teflon-insulated cables exhibit minimal crosstalk and delay. Our proprietary termination technique creates a consistent impedance characteristic at the connector interface.

Need high-speed help in product development, too? We can shorten your design cycle and cut your time to market with extensive services that range from design verification to routing, board layout/fabrication, and complete system architecture—using the latest techniques to develop unique, cost- and time-effective solutions to your problems.


AMP is a trademark of AMP Incorporated.
You'll find Synergy products built into the world's most demanding applications.

The Goal:
Design the world's only multifrequency Radar Target Generator System able to simulate hostile threats on the military's diverse radar systems.

The Problem:
To get the needed horsepower, sixteen 68040 CPU boards were required. However, with this many boards, VMEbus bandwidth limits would severely degrade system performance making the project unfeasible.

The Solution:
Synergy's V420 dual 68040 SBC. After evaluating several products, KOR Electronics selected eight V420s which could deliver 320 MIPS without VMEbus bandwidth degradation.

"Not only did we meet our project performance goals, we were able to reduce our costs by 40%.”

Unexpected Benefits:
Synergy's dual '040 solution cut KOR's hardware requirements by 50% while vastly increasing system reliability. These unexpected benefits reduced system costs by 40%.

In Synergy, KOR also found a design partner with strong integration expertise and dependable customer support.

“I recommend you call Synergy today.”

Next time you need high performance SBCs, do as KOR Electronics did. Call Synergy Microsystems. You'll be as satisfied as they are.
Although Pads high-performance design software is priced near the top for PC systems, it's priced near the bottom when running on a workstation. The software can accommodate complex pc-board design without the limitations found in low-cost software.

When considering schematic entry and pc-board layout tools for PCs, you can find a lot of software offering various price-performance tradeoffs. Pads Software offers several packages ranging from low-cost to high-performance. I tried the company's high-performance software, Pads Logic for schematic entry and Pads 2000 for pc-board design, to see how they perform. The software runs on DOS-based PCs and Unix workstations.

The capability of these software tools becomes apparent when you look at the tutorials. The 145-pg tutorial on schematic capture and 182-pg tutorial on pc-board layout are thorough. These tutorials don't just take you through the basics. They walk you through every advanced feature. I spent the better part of two weeks going through most of the tutorials. It's a lot of time, but when you're done, you'll know how to use the software on real work, not just how to get started. The schematic-entry tutorials take you through the hierarchical design. The pc-board design tutorials cover using the software for simple 2-layer designs and for multilayer through-hole and surface-mount designs. Designing a small, 4-layer pc-board after completing the tutorials was easy.

In just a few pages I can't go through the software in detail, but I'll try to give you a feeling for what the software can do and cover some of the features that I feel are worthy of note.

The ten choices in the basic menu structure appear across the top of the screen and match the ten function keys. You can also select the functions with a pointing device such as a mouse. I didn't make a specific count to see how many menu levels there are. The count differs with the path you are following, but my impression is about five. Initially I was not impressed with the menus; I felt a little lost trying to navigate through them. As I worked through the tutorials, the lost feeling left and I felt the menu system was Spartan but efficient.

The menu groups are well thought out. I seldom found myself wasting a lot of keystrokes on menu changes. For example, in schematic capture one menu covers all the component and connection additions. When you add a component, a new menu automatically pops up, letting you rotate, mirror, call up an alternate symbol, or complete the...
Power.
Everyone wants it. You need it. For military power supplies — ASAP.
Lots of power suppliers say that they have it. The big question is,

who do you trust?
Answer: the one supplier with 30+ years of experience. And

Mil/Pac™ — the most comprehensive line of
high density full mil power supplies.
In single, dual and triple configurations, at 20, 35, 50, 100 and 200 Watts. With input voltages of 28V dc, 155V dc, 115/220V ac, and 270V dc.
Field-proven topologies that meet all Mil-Stds including 461C, 704D, 810C, 901C, and Mil-Std-2000. The shock is that these are readily available now, off the shelf. So whenever reliability is imperative, trust abbott. [And by the way, just when is reliability ever really an option?]

Abbott Electronics, Inc., 2727 S. La Cienega Blvd., Los Angeles, CA 90034-2643 • Telephone 310/202-8820 • Fax 310/836-1027

CIRCLE NO. 32
placement. Similarly, in pc-board design work, one menu covers most of the functions you need when placing parts, while another menu covers routing.

In addition to the menus, there are some modeless commands for operations such as changing the grid. You type g25 and a carriage return to change to a 25-mil grid, regardless of where you are in the menu system. In schematic entry you can change sheets instantly using a modeless command (sh3 for sheet 3). A modeless search command lets you jump instantly to a specified grid point or a part and pin number. Modeless commands let you set and change the layer pair for pc-board routing, the current layer, and some other functions.

You can create keyboard macros for combining groups of commands to speed up any keyboard-intensive operations that you repeat often. The software also includes a timed automatic backup feature that helps you avoid losing work due to an unexpected power outage.

Schematic-entry software has been around for quite a few years now and many features are common across the industry. I'll just mention a few of the features to give a feeling for the level of detail in the software.

**Group functions**

One of the immediately apparent features of schematic entry that I appreciated was the design-oriented database. The entire design is in RAM at once, so sheet changes are fast.

Group functions for moves, copies, and deletes are an important productivity aid, especially if they are well thought out to cover most of the problems associated with this powerful command. The group function in Pads Logic lets you select the part of a design with a rectangular window and then highlights what has been selected for the move. If there are lines that go outside the window, you can select whether to maintain the connections during the move or disconnect them. You can also select whether to add or delete items from the group, a useful feature when you've captured parts you didn't want in the group or missed a few. The group menu also lets you select the origin point for the group move or copy. When you want to accurately place a group for a move or a copy, you set the origin on a convenient reference point and then the cursor attaches to that point during the move.

The schematic-entry software also includes true busing. The bus lines are named and automatically increment through the range of signals you specify. The auto incrementing of the names, such as bus DATA[00:31], provides the signal names, DATA00 through DATA31, without you typing each one in.

**Creating parts**

Libraries for schematic entry are the ordinary 7400 series, some microprocessors and peripheral ICs, a few analog ICs, and discrete components. As always, you'll have to add parts to the library to accomplish most designs. The tutorial has you add several different parts to the library for experience, giving you an easy template to follow for creating other parts.

In my sample design, I had to add a few parts. The 84-pin field-programmable gate array (FPGA) was quick to add because I could use the semiautomatic part generator. You enter the number of signals on the left and right sides of the symbol, and it automatically adds them to a properly sized rectangular symbol. You specify pin names, pin numbers, pin properties, and complete a short table for the database. The database for the part lets you add ten lines of your own information, which might include such things as a part description, the manufacturer, a price, or whatever you'd find useful.

If you need to create a new symbol, you just use the 2-D drawing menu. I created an op-amp symbol, although I could have copied it from one of the existing parts.
The software provides several different reports including the ordinary netlist and a bill of materials. You can use the options to output the netlist in about a dozen different formats to make it suitable for use with simulators and other software tools.

Transferring data between the schematic-entry software and the pc-board layout software is an important step. If the transfer is automatic, then it will save time and virtually eliminate inconsistencies that result in errors between the schematic and the pc-board layout. Although the usual direction at the start of a design is from schematic to pc-board layout, after design of the pc board has begun, you will need to back annotate the part identifiers and sometimes swap pins or gates from pc-board layout to schematic.

In addition, depending on the flexibility of the particular design project, the person laying out the pc board may be able to change connector pin numbers on cables, data or address lines on RAM, and make other changes that may simplify the layout. These changes must all be back annotated to the schematic.

Changes that require forward annotation from schematic to pc-board layout are common too. Design engineers sometimes find mistakes (usually known as improvements) after pc-board layout has begun. After a design is finished, correcting errors or adding desirable improvements requires the dreaded engineering change order, better known as an ECO.

In the process of evaluating the software, I had an opportunity to try forward and back annotations and ECO changes several times. The process is easy and gives you confidence that the automatic transfer of data is keeping an accurate match between schematic and pc-board design data.

Here is how the forward and backward transfer of data works. Initially you transfer the schematic for pc-board layout with a netlist transfer. As part of the netlist transfer, the pc-board layout software accepts pc-board layout decals for the parts used. If the package-decal exists in the library (or you've added it to the library), then the design will be immediately ready for placement when you start pc-board layout.

Once you've transferred your initial design, then the software tools handle subsequent schematic changes as additions or deletions of parts and connections. If you alter the schematic, you specify the new and old schematic using the ECO menu, and the software automatically creates a file containing the additions and deletions. You read the file into the pc-board layout software to make the changes.

If you've made changes to the layout that need to be back annotated to the schematic, the process works in reverse. You enter an ECO mode and make the needed changes to the layout, and Pads 2000 creates an ECO file. You enter the schematic ECO mode and read in the file to update the schematic. The end result is that Pads Logic makes it relatively quick and painless to keep the pc-board layout and schematic matched throughout the design process.

When you first transfer the netlist to the pc-board design, it dumps all the part decals at the board's origin. You can place the part decals using manual placement or autoplacement.

The autoplacement software requires a placement matrix. You set up the placement matrix by specifying the number of rows and columns and the spacing between the rows and columns. The software creates the matrix and then you can place it visually on the pc-board outline. You need at least enough matrix vertices for all the components you wish to place. Delete specific matrix points where you don't want to
Designing a signal processing system can be a bear of a problem—immense, mean, and unforgiving. Engineers grappling with conventional analog or digital technologies face risk and unpredictability at every turn, with no guarantee of success. Designers invest months of development time in a brutal design process that’s as lengthy as it is frustrating. Productivity and time to market are devoured in the struggle!

**SPROC Technology Tames The Task**

At the core of STAR Semiconductor's unique signal processing solution is the SPROC™ chip, the first-ever programmable signal processor using the “Sketch and Realize”™ design approach. With a single SPROC chip and a SPROClab development system, signal processing becomes a tame task.

Why wrestle with circuit breadboards crawling with sensitive analog components? Or agonize over line after line of assembly code? One SPROC chip integrates the functionality of hundreds of analog and passive components to cut system costs. And SPROClab employs system-level graphical programming so you can capture designs as signal flow block diagrams. You gain all the benefits of a digital solution—without writing software!

Stop laboring with trial-and-error debug methods, cumbersome logic analyzers, or software simulators to debug a design! Engineers using SPROC technology download designs directly onto actual silicon and interactively debug systems as they execute in real time! Using the SPROC chip's unique built-in probe feature, you can easily modify design specifications to tune system performance during execution.

With SPROC technology, engineers focus on designing to create better products in less time.

If you can’t bear to see your productivity mauled by the problems of signal processing design, call STAR Semiconductor at 908/647-9400. We’ll send you a brochure and demo disk telling how to tame your next signal processing project.

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>PREVIOUS TECHNOLOGY</th>
<th>PREVIOUS DEV. CYCLE</th>
<th>SPROC DEV. CYCLE</th>
<th>$ SAVINGS (1st YEAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure FSK modem</td>
<td>analog</td>
<td>6 months</td>
<td>3 weeks</td>
<td>$50,000†</td>
</tr>
<tr>
<td>Adaptive noise canceler</td>
<td>DSP</td>
<td>6 months</td>
<td>1 week</td>
<td>$57,500*</td>
</tr>
<tr>
<td>Power supply controller</td>
<td>analog</td>
<td>6 months</td>
<td>1 day</td>
<td>$60,000*</td>
</tr>
<tr>
<td>Closed-loop vibration controller</td>
<td>analog</td>
<td>3 months</td>
<td>2 weeks</td>
<td>$240,000†</td>
</tr>
</tbody>
</table>

†Total system savings including project overhead, engineering resource, and system hardware costs.
*Estimated savings in engineering resource based on cost of $10,000 per man month.

STOP LABORING WITH TRIAL-AND-ERROR DEBUG METHODS, CUMBERSOME LOGIC ANALYZERS, OR SOFTWARE SIMULATORS TO DEBUG A DESIGN!
place parts. You can preplace any special ICs and glue them down. After that's done, you can run autoplace and the software attempts to minimize the connection length of all networks as it places the parts.

You can exercise a certain amount of control over autoplace by manually placing some parts. For example, by placing a memory IC in one location, you can force other memories to be placed close to it. The tutorial discusses how to help autoplace come up with the placement you want, especially on those nonideal designs that are frequent in the real world.

I spent some time working with autoplace both in the tutorial and in designing another pc board, and I'm convinced this is a useful tool. It's not a gimmick that just works on some ideal TTL design. The software automates what it can and gives you the flexibility to correct or preplace what it can't.

After the initial placement you can make modifications manually or automatically to move parts, or swap parts and pins. You can maintain the original placement matrix or move parts off the matrix. Once you have the ICs in place, you can change the matrix or make a new one for placing decoupling capacitors and any other components suitable for autoplace.

Evaluating your parts placement is aided by several different tools. A ratsnest display lets you see the networks and connections to them. An interesting feature of the ratsnest display is that the connections dynamically change to show the shortest connection between all pins in a network. As you move parts around during placement, you'll see the order of networks change to minimize the length of the new connections.

A quantitative aid for placement is the total connection length, which measures the total orthogonal-connections length of all the networks, commonly referred to as the Manhattan length. Minimizing the connection length generally leads to a good placement, provided the placement leaves enough space between components to route the signals.

Two qualitative placement aides help you evaluate the relative difficulty of routing the design. One is a histogram that shows the density of signals in the routing channels. The other is a color-coded density map that shows the relative density of signals over the pc board.

Occasionally special component-placement requirements dictate an angular placement of parts, especially radial placements around a central point or simply fitting components onto an irregularly shaped pc board.

Software specifications

Pads Logic, $750. 2 Mbytes of extended memory, 4 Mbytes preferred.

Pads 2000 on DOS Systems, $12,500, including Pads-PowerRouter. $7000 without autorouter. On Sun SPARC and HP9000/700 workstations, $20,000, including Pads-PowerRouter.

The suggested memory for running Pads 2000 on DOS systems is 6 Mbytes of RAM for a 500-IC design, and as much as 16 Mbytes for designs with more than 2000 ICs.

The 32-bit database offers 1-µm resolution or 0.00001 in. and a maximum-dimension working area of 143 cm or 56.3 in. The database uses much finer resolution but limits the number to provide exact translation between metric and English units.

The software provides 30 layers for routing and documentation. Both the schematic-entry and pc-board-layout software provide the outputs for dot-matrix printers, laser printers, plotters, and photoplotters.

I tested the software on a 33-MHz 486 system with 12 Mbytes of RAM.

Pads Software Inc
119 Russell St, Suite 6
Littleton, MA 01460
(508) 486-9521
FAX (508) 486-8217
Circle No. 351
What do we say to motor control designers searching for a 5-A surface-mount solution?

Surfers spend many hours smoothing their boards to get better performance. Motor control designers do too, constantly seeking solutions requiring less space and providing increased power density. That's why Siliconix created the industry's first surface-mount, 5-A solution for 20-V to 40-V motors powering copiers, printers, and plotters.

**Surface-mount motor control for automated assembly.**

By combining the new Si9976 n-channel half-bridge driver with one of our LITTLE FOOT™ MOSFETs, such as the Si9940, you can develop completely surface-mount designs that save space and allow you to take full advantage of your automated assembly process.

The Si9976 has an integrated charge pump for built-in level shift plus on-board Schmitt trigger inputs for logic signal compatibility. And it's rugged — thanks to integrated undervoltage and short circuit protection.

Then there's LITTLE FOOT. A MOSFET SOIC family that delivers the industry's highest current ratings and power densities — as well as the industry's lowest on-resistance.

**Get a complete 5-A motor control solution.**

Contact your local Siliconix sales office. Or call our toll-free hot line now! 1-800-554-5565, ext. 973.

Ask for your Si9976 Motor Control Design Manual. And remember, at Siliconix we're committed to meeting your motor control requirements, both now, and in the future.

Siliconix
2201 Laurelwood Rd, Santa Clara, CA 95056
Fax:(408)727-5414, Attn-Mailstop:43-973
Schematic entry and pc-board layout

board. The layout software lets you rotate and place parts to 0.1° resolution.

You can place components automatically or manually on both sides of the board, a necessity for some surface-mount designs.

One last operation when placing parts is renumbering them on the pc-board to follow some logical sequence. The pc-board layout software can accomplish the renumbering operation automatically and provide the file for back annotating the schematic. You specify the numbering sequence such as right to left and top to bottom, create a fine matrix grid, and the software automatically does the renumbering. The software worked on my sample board, which did not have components neatly arranged in rows and columns—another step of drudgery removed from the pc-board designer's life. The one step you will need to perform manually is to move the part identifiers where you want them on the silkscreen.

Before you route a complex board, you need to setup the pad stacks. Much of the capability required for complex pc-board design centers around the pad-stack feature. Pad stacks essentially let you create different pads at the same x,y location on different layers of a multilayer design. Although many low-cost software packages allow you some flexibility in multilayer and surface-mount designs, you need to recognize the limitations when certain features are missing.

Without pad stacks, you usually have the same pad size and shape on all circuit layers. Furthermore, without pad stacks, pads and vias appear on every layer of a circuit board (Fig 1). The importance of these limitations is apparent on a 6-layer design. A typical 6-layer through-hole design will have two inner layers for power and ground. The other two inner layers are for routing signals. Although pads are needed around the through holes on the two outer routing layers for soldering components, pads are only necessary on inner layers when a signal connects to the hole, whether for a component pin or a via. When pads are placed on every layer even though they are not needed, the space for routes is unnecessarily restricted.

You don't need to be designing a 6-layer board to benefit from pad stacks. Even a 2-layer board may benefit if the design uses surface-mount components. Because surface-mount components don't require a through-hole, you can use the location of a pad on one side for a track or independent pad on the other side.

Complex pc-board designs may also use blind and buried vias. Fig 1 shows these two types of vias. The motivation for using blind

![Fig 1](image-url)

Fig 1—Without using pad stacks, through-hole pads and vias take up space on every board layer whether the pad is necessary or not (a). Pad stacks let you eliminate pads on inner layers when they are not necessary (b). Using the same manufacturing technology, you should be able to route more signals between IC pins by eliminating unnecessary pads on inner layers. Pad stacks also let you create blind and buried vias (c), which requires more manufacturing steps, but is useful when routing very dense pc-boards.
and buried vias is the same—to preserve space on other layers for routing.

You usually don’t need the capability to create pad stacks for 2- or 4-layer through-hole design. You may be able to perform some surface-mount designs without pad stacks. If you need to do 6-layer design or multilayer surface-mount boards, especially with components on both sides, you need flexible pad stacks. If you don’t have them, you’re unnecessarily limiting your design.

However, you need to remember that designing with pad stacks is more complex. Without pad stacks, pc-board design is essentially a 2-D design process. All pads and vias appear on every layer. With pad stacks, the design process becomes 3-D. Independent pads, vias, and tracks can exist at the same x,y location.

Another concern with pad stacks is the difficulty of modifying a manufactured pc board. Cuts and jumpers on pc boards designed with internal routing layers are painful enough when the vias go all the way through the board. Signals routed completely on internal layers with buried vias are difficult to alter. If your design process usually calls for a lot of changes to the pc board after it’s built, you’d better tighten up your design before advancing to internal routing layers with buried vias.

If pad stacks sound like a lot of complexity you don’t need, you can essentially ignore them for 2- or 4-layer designs with power and ground planes. If and when you need to use pad stacks, the tutorial material will bring you up to speed quickly on how to set them up and use them.

Manual routing tools
I found the manual routing tools easy to use from the start. Routes were easy to modify too. When routing boards, I generally spend a significant amount of time modifying tracks I’ve already put down, so I appreciate flexibility to modify the tracks easily; moving segments, corners, deleting corners, changing layers, and such.

With Pads 2000, I often found that the ability of the software to add an improved redundant track to an existing one was an easy way to modify the tracks. When you complete the redundant track, the software can automatically remove the part of the old track that is no longer needed.

Pads 2000 also lets you make T routes. You aren’t required to route from pin to pin. If a network contains three or more pins, you can route from anywhere along the old track that is no longer needed.

Pouring on the copper
The software has a copper-pour feature that I think is extremely useful. A good way to see what you can do with copper pour is to look at Fig 2, which I created using the capability. What the figure shows is a +5V plane with embedded +12V and -12V power distribution. In this case I used 50-mil
SCHEMATIC ENTRY AND PC-BOARD LAYOUT

traces, but the embedded tracks could be any size. To design this layer, I connected the +12V and -12V signals, set up the copper-pour area, and then performed a copper pour with parameters set to the desired, clearance, radius, allowable copper island size, and a few other parameters. The copper pour was specified to connect with the +5V network. The copper flood to create the plane and clearance was totally automatic. I made no manual edits or modifications to what you see.

The copper-pour feature is invaluable for squeezing a few difficult-to-route signals onto a plane. You must be careful not to break up the plane excessively. I avoid breaking up ground planes except to isolate analog and digital ground planes for sensitive circuits. You can use the copper-pour feature for grounding and shielding and other applications where an isolated copper plane is needed in an area containing signals.

Checking for space violations
During ordinary manual routing, the software does not warn or prevent you from making spacing errors. Any errors are clearly marked when you run a space check. Unless you are confident you know what you are doing, it's a good idea to run them occasionally before you lay down too many tracks with a chronic spacing error.

If you want to have on-line checking, you can use one of the manual modes, provided you are using the complete Pads 2000 package with autorouter. The autorouter lets you operate in a variety of modes from manual to fully automatic. Another 58-pg user's manual takes you through tutorials on using the autorouter. The manual covers strategies you can use to fine tune the router to do what you want. I didn't have time to run through the autorouter tutorials and learn to use it. The company also sells other autorouters.

My overall impression of the Pads software is that it can efficiently handle virtually any type of pc-board design work with the exception of high-speed, matched-line-length designs. The company plans shortly to introduce an electrodynamic checking module to better address the needs of high-speed pc-board design.

I felt the software had a good combination of automatic features and plenty of flexibility for efficient manual work. The only weak area I noticed was in the parts library for the schematic entry software.

While using the libraries I discovered two small problems. The LM319H part in the library is a dual comparator that should use a 10-pin TO-5 metal-can package. Although the pin numbering was correct for the metal can in the schematic, the pc-board decal called out was a 14-pin DIP. The other problem was more of an omission than an error. The 74LS32 part did not have a Demorgan equivalent, as was the case for other standard 7400-series gates.

My suspicious nature leads me to believe the library might have a few more problems. Although the problems I mentioned are small, they are a departure from the high quality I experienced with the rest of the software. Mark Pavitt, VP of marketing for Pads Software, said that the company is aware of a few problems in the libraries and is planning to license outside libraries for use with Pads Logic.
Our new LVT logic family gives you 5-volt performance at 3 volts. Because not all 3-volt systems are all 3 volts.

If you're ready for 5-V speed and 5-V drive from 3.3-V logic, step up to the new Low Voltage Technology (LVT) logic family of bus-interface circuits from Texas Instruments.

Our new LVT family isn't hastily recharacterized 5-V logic. It's designed to operate at 3.3 V from the ground up. It drives industry-standard 5-V buses at speeds faster than 5 ns. Plus, our exclusive Bus Hold feature conserves valuable board space and power by eliminating the need for external pull-up resistors—without affecting speed or drive.

Mixed-mode operation makes things easy
Our new LVT logic can interface directly to 5-V systems on both the input and output pins of the device while operating at 3.3 V. That makes it an excellent choice for the latest mixed-voltage systems where 5- to 3-V and 3- to 5-V TTL voltage translation is required.

SN74LVT245 Highlights
- Speed: tpd 4.0 ns max
- V_{cc} Range: 2.7 V-3.6 V
- Drive: -32/64 mA I_{p}/I_{ld}
- Low noise: V_{OLP} < 0.8 V (typ)
- Packages: SOIC, TSSOP & Widebus™
- Bus Hold: Eliminates pull-up resistors

Free sample available today
Simply fill out the attached reply card, or call (214) 995-6611, ext. 3010, today for a free TI SN74LVT245 octal transceiver. Plug it in and solve a few of life's little ups and downs.
Twice the Logic in Half the Space

DOUBLE-DENSITY™ FROM IDT

46% BOARD SAVINGS
IDT’s new 16-, 18-, and 20-bit Double-Density FCT-T Logic family offers the performance of two octal logic devices in one flow-through 48- or 56-pin high-density, JEDEC-standard, shrink small outline package (SSOP) or Cerpack, for twice the functionality in half the board space.

A WIDEBUS™ UPGRADE
IDT’s Double-Density logic family is more than twice as fast as ACT, uses 35% less power than ABT, and it’s form-, fit-, and function-compatible with both of TI’s Widebus families. The Double-Density family also offers typical pin-to-pin skew of 250ps and quiescent supply current at 0.05mA (typ.).

3 APPLICATION CHOICES
5V High Output Drive
Ideal for low-impedance bus and backplane applications.
5V Balanced Drive (Low Noise)
Contains on-chip, source-terminating resistors to minimize signal noise. These devices are ideal for driving point-to-point transmission lines and highly capacitive loads, such as a bank of DRAMs or SRAMs.

<table>
<thead>
<tr>
<th>DOUBLE-DENSITY CONFIGURATION*</th>
<th>I_{OH}</th>
<th>I_{OL}</th>
<th>t_{PD} (Max.)</th>
<th>I_{CCQ} (Typ.)</th>
<th>t_{P-TO-P}</th>
<th>GND BOUNCE (Typ.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Drive</td>
<td>-32 mA</td>
<td>+64 mA</td>
<td>4.1 ns</td>
<td>0.05 mA</td>
<td>250 ps</td>
<td>&lt;1.0 V</td>
</tr>
<tr>
<td>Balanced Drive</td>
<td>-24 mA</td>
<td>+24 mA</td>
<td>4.1 ns</td>
<td>0.05 mA</td>
<td>250 ps</td>
<td>&lt;0.6 V</td>
</tr>
<tr>
<td>3.3V</td>
<td>-8 mA</td>
<td>+24 mA</td>
<td>4.8 ns</td>
<td>0.05 mA</td>
<td>250 ps</td>
<td>&lt;0.3 V</td>
</tr>
</tbody>
</table>

*Specs are for '244 device

3.3V Low-Power Logic
Designed for regulated or unregulated 3.3V power supplies, these devices use less power than 5V parts, without sacrificing high speed. 5V-to-3.3V unidirectional and bidirectional translators are also available.

FREE SAMPLES
Call today for free samples and a copy of the new High-Performance Logic Data Book and start your Double-Density logic design today!

(800) 345-7015 • FAX: 408-492-8674
ASK FOR KIT CODE 3071

Integrated Device Technology, Inc.
How will our high speed logic ICs affect your power consumption?
It’s an unfortunate fact of life in electronics. As a system’s performance increases, so does its appetite for power.

Until now.

**SEE FOR YOURSELF.**

Because now Philips has introduced two advanced families of logic ICs that combine speed with surprisingly low power consumption.

For the truly speed-obsessed, Philips offers the entirely new HLL family. Fabricated in a sophisticated 0.6 micron CMOS process, it’s the fastest logic in the world.

Then there’s our LV-HCMOS range. It’s a refinement of Philips’ successful HCMOS family, delivering comparable performance on just 3.3 volts.

All devices operate from 3.6 volts right down to 1.2 volts, extending battery life and opening new design opportunities. So now you can have the logic you need for the latest portable systems, as well as the latest fast microprocessors.

And to maximize your all-round performance, there’s Philips’ systems know-how and worldwide application support.

All of which should help you win the most important race of all.

Being quickest to market.
NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today’s FPGAs, only Data I/O®'s new ABEL-FPGA™ Design Software has the power to pack in maximum logic. It combines the industry-standard ABEL Hardware Description Language (ABEL-HDL™) with our new intelligent FPGA Device Fitter™ technology. So, you can create more complex designs with less effort — ABEL-FPGA does the hard work for you! ABEL-FPGA’s powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, Cypress, ICT, National, Plus Logic, Texas Instruments, and Xilinx. And with built-in knowledge of its target architecture, each fitter masters the complex features of its device automatically, intelligently.

Practical, detailed documentation, complete with FPGA design examples, also helps to ensure that you get the most from each architecture. And for added design power and flexibility, ABEL-FPGA lets you specify place-and-route constraints directly in your circuit description, so you can easily migrate the same design between multiple FPGA vendors.

Pack more logic into your next FPGA design, with the single solution to all your FPGA behavioral entry needs: ABEL-FPGA.

Call us today to find out more about NEW ABEL-FPGA.

1-800-3-DataIO
(1-800-332-8246)
Plummetsing 386/486 prices are making the embedded 32-bit PC a viable option for control and monitoring applications. The embedded PC has increasingly become a drop-in alternative to less expensive but more design-intensive microcontrollers (µCs) and microprocessors. The idea behind an embedded PC is simple: Instead of designing in a µC or µP from scratch, why not just drop in a complete PC and treat the subsystem like an embedded controller? There are clear-cut advantages to using an embedded PC:

- Minimal system design because a PC is a complete subsystem
- Simpler cross development because embedded target matches PC host
- Low-cost, highly interactive, effective development tools
- Access to a huge base of PC applications
- Usable hardware from handheld and portable PCs
- Large PC engineering and programming talent pool
- User familiarity with DOS and Windows interfaces.

Many embedded systems engineers and managers are learning new design lessons. “I was a believer in the old way of doing your own complete system design,” says Bill Richardson, director of engineering at LeCroy Corp (Chestnut Ridge, NY), an instruments and oscilloscope vendor. “Luckily, some of my staff saw a new way—using an embedded PC—and pressed for it. And I finally listened to them. The result was that we got 2 to 3 times performance increases with an 386/486 at 60 to 70% less cost.” LeCroy used a PC mother board as the mainframe controller for its Model 7200A, an advanced, modular digital oscilloscope.

Embedded PCs aren't for everybody. If you need highly deterministic, real-time operation, an embedded controller is a much better bet. Embedded PCs, however, make sense for fast turnaround, not-quite-hard real-time systems with product-manufacturing run rates under 5000 units. Lots of applications let you drop in an embedded PC as a box, a mother board, a single-board computer, or a PC on a bus card.

**Embedding PCs**

Embedded PCs are busily at work in applications that range from controlling military systems to running amusement parks. Ruggedized PCs supported the Patriot Missile systems used in Operation Desert Storm and VME-based PCs (Radisys) act as controllers in Disney's new EuroDisney theme park in France. Also, take a look close to home. If your company is using new board or chip production equipment, you're apt to find

Pcs can be bundled with color LCDs for an easy drop-in package. Computer Dynamics' DisplayPac combines a 386/486 single-board computer with a color flat-panel display and touchscreen options.
So many interconnection choices.

Today, Augat has the right solution for your semiconductor and board to board interconnection needs. Augat is providing real solutions to interconnecting today’s Industry Standard Microprocessors with our extensive line of PGA and PLCC Sockets. We offer an enhanced metal latch SIMM Socket that allows easy insertion and extraction of the varied SIMM Module configurations that are available.

Augat’s patented PAI Contact Technology in our LGA socket, grants your requests for innovation by providing a real world solution to interconnecting the new LGA packages. This technology is the basis for our newly introduced MEZCON line (mezzanine board connector), which solves the typical problems associated with interconnecting parallel stacked boards on a high density grid.

If your board to board needs are more in-line with Industry Standard Bus Structures, Augat’s .100 inch centerline cardedge (PC, XT, AT-style), our .050 inch centerline cardedge (MCA Style), and our DIN family of connectors, are value oriented solutions for today’s motherboard to daughterboard interconnections.

When you look to Augat for solutions, we provide you with experience, technology and quality that maximizes your value and satisfies your needs.

We encourage you to get complete technical and delivery information on these or any other interconnection components you require.

452 John Dietsch Boulevard
Attleboro Falls, MA 02763 USA
Tel: (508) 699-9800 FAX: (508) 699-6717
**EMBEDDED PCs**

one or more embedded PCs.

Embedded PCs range from off-the-shelf PC systems to roll-your-own mother boards. Many low-level control applications can be run directly with a PC under DOS. “For a couple of contracts I worked on for large industrial controllers,” says Alvin Schneider, an engineering consultant in Minneapolis, MN, “PCs were just put into rugged boxes. One industrial application was to control molten metal flow. The PC had no problem handling it. However, you do have to be careful with DOS because it’s not preemptive. DOS services, such as graphics, can block critical interrupt processing.”

In addition, PCs serve as networked remote controllers, linking into industrial and commercial controllers. And for more complex applications, many engineers use PCs to front-end real-time embedded µCs or rack-mounted controllers. These PCs provide monitoring stations and user interfaces. Other designers simply take the PC hardware, drop DOS, and substitute deterministic, real-time operating software.

Low-power 386/486s open up embedded PCs to handheld and portable applications. Portable PC chips and boards are being designed into handheld instruments. “We couldn’t use PC technology before,” says the chief engineer at a handheld instrument company. “Now we’re developing our next-generation products using 386SLs and low-power 486s. We couldn’t use the CPUs before, but now they have the low-power operation to go along with their 32-bit processor power and ease of design.” (This engineer viewed using embedded 32-bit PCs as a competitive advantage and didn’t want to use his company’s name for fear of tipping off the competition.)

Bison Instruments (Minneapolis, MN) is now using the 486 single-board computer as the core for its new portable, 124-channel seismograph. “We used an Ampro LB/486 board piggybacked on a larger I/O board,” says John Nelson, vice president of engineering. “We saved in design time, starting off with a board ready to go, complete with peripherals. We needed the 32-bit processing power; we store the program in flash and the explo-

---

### Table 1—Representative 386/486 CPUs

<table>
<thead>
<tr>
<th>Vendor</th>
<th>CPU</th>
<th>Clock (MHz)</th>
<th>Price (1000)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>386DX</td>
<td>25, 33, 40</td>
<td>$63</td>
<td>Standard 386. PQFP.</td>
</tr>
<tr>
<td>Devices</td>
<td>386SX</td>
<td>25, 20, 25</td>
<td>$47</td>
<td>386 with 16-bit external bus. PQFP.</td>
</tr>
<tr>
<td></td>
<td>386SXIX</td>
<td>20, 25, 33</td>
<td>$54</td>
<td>3V 386SX with 16-bit external bus. PQFP.</td>
</tr>
<tr>
<td></td>
<td>386DXIX</td>
<td>25</td>
<td>$72</td>
<td>3V standard 386. PQFP.</td>
</tr>
<tr>
<td>Chips &amp;</td>
<td>38600DX</td>
<td>25, 33, 40</td>
<td>$152</td>
<td>Redesigned standard 386; same pinout; 10% faster.</td>
</tr>
<tr>
<td>Technology</td>
<td>38605DX</td>
<td>25, 33, 40</td>
<td>$167</td>
<td>Redesigned 386; extended pinout; 512-byte cache, faster.</td>
</tr>
<tr>
<td></td>
<td>486DX</td>
<td>25</td>
<td>$99</td>
<td>486 instruction set, in 386DX pinout; 1-byte cache.</td>
</tr>
<tr>
<td></td>
<td>486SLC</td>
<td>25</td>
<td>$99</td>
<td>3V, QFP, 16-bit bus, 486 instruction set in 386SLC pinout, comes with 1-byte cache.</td>
</tr>
<tr>
<td></td>
<td>486SLC</td>
<td>25</td>
<td>$99</td>
<td>16-bit instruction set in 386SLC pinout, comes with 1-byte cache.</td>
</tr>
<tr>
<td></td>
<td>486DX</td>
<td>16, 20, 25</td>
<td>$96</td>
<td>Standard 386, 32-bit external bus. PQFP.</td>
</tr>
<tr>
<td></td>
<td>386SX</td>
<td>25</td>
<td>$49</td>
<td>386 with 16-bit external bus. System management mode (SMM). PQFP.</td>
</tr>
<tr>
<td></td>
<td>386SL</td>
<td>16</td>
<td>$48 (3.3W)</td>
<td>Redesigned 386SX for low-power applications. 3.3V operation with SMM, cache.</td>
</tr>
<tr>
<td></td>
<td>486SX</td>
<td>16</td>
<td>$99 (174%)</td>
<td>486 with 16-bit external bus, no FPU.</td>
</tr>
<tr>
<td></td>
<td>486DX</td>
<td>25, 30, 50</td>
<td>$367</td>
<td>Standard 486 with FPU. PQFP.</td>
</tr>
<tr>
<td></td>
<td>486DX2</td>
<td>50</td>
<td>$487</td>
<td>Same as Cyrix.</td>
</tr>
<tr>
<td></td>
<td>486SLC</td>
<td>25</td>
<td>$99</td>
<td>Same as Cyrix.</td>
</tr>
<tr>
<td></td>
<td>486SLC</td>
<td>40</td>
<td>$119</td>
<td>Same as Cyrix.</td>
</tr>
</tbody>
</table>

**Notes:**
1. Price when bundled with 87DLC FPU.
2. Price when unit comes with 3.3V part.
EMBEDDED PCs

rati on data on hard disk. Actually, we used to be a 68K house, but we switched over to the 486. The cost of PC software relative to cross-development tools made the 486 very attractive and hard to resist.”

Many engineers get the best of both worlds, mixing PCs with real-time μCs. For example, GEC Express Lift Company (Northamptonshire, UK) uses PCs and PCs on standard bus Eurocards for its elevator control systems. The elevators have 8-bit onboard processors, and each group of eight processors is controlled by a 68020. Embedded PCs act as the maintenance console for each elevator group. Full PCs are used as remote management stations that link to elevator groups.

“Initially we couldn’t use PCs for control because they were too expensive,” says J. Michael Gallagher, senior design engineer at GEC. “Now it’s different. We’ve got a 386 card that plugs right into our main group single-height Eurocard industrial bus. We’re considering doing more with PCs. A major factor is low-cost, specialized software that is easily available, such as expert system tools.”

PCs have also invaded military turf. Ruggedized PCs offer a relatively low-cost, standard platform for upgrading and replacing existing equipment. For example, the US Navy’s MAUDE (Multiple Auxiliary Device Emulator) program uses ruggedized PCs to emulate NTDS (Navy Tactical Data System) peripherals and, in some cases, CPUs for tactical systems. The software emulates the older equipment and links to the Navy NTDS systems via the NTDS bus. Special interface boards, such as the Sabtech Navigator II Serial NTDS, turn the PC into an NTDS node. Today’s 32-bit PCs deliver a lot more processing power than much older equipment and can emulate obsolete peripherals or be used

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Software</th>
<th>Price</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annabooks</td>
<td>AT BIOS Kit</td>
<td>$199</td>
<td>C source BIOS. Comes with 10 licenses.</td>
</tr>
<tr>
<td></td>
<td>MOS-DOS</td>
<td>$595</td>
<td>(3.xx) High-level drivers to create flash file system. Over 10 licenses, $5 to $7 royalty.</td>
</tr>
<tr>
<td></td>
<td>Developers Kit</td>
<td>$695</td>
<td>(5.0)</td>
</tr>
<tr>
<td></td>
<td>MS FLASH File Developers Kit</td>
<td>$95</td>
<td>ROM version of DOS comes with Mini-BIOS.</td>
</tr>
<tr>
<td></td>
<td>C-thru-ROM</td>
<td>$495</td>
<td>Kernel and DOS-like I/O services link to C object DOS 3.3.1 compatible OS.</td>
</tr>
<tr>
<td></td>
<td>Flex OS</td>
<td>OEM²</td>
<td>Full DOS 5.0 and Windows compatibility.</td>
</tr>
<tr>
<td></td>
<td>PalmDOS</td>
<td>OEM²</td>
<td>DOS for paintops. Works with PCMCIA, power management.</td>
</tr>
<tr>
<td>Digital Research</td>
<td>Divy</td>
<td>$229</td>
<td>Multitasking kernel sits on top of DOS. Single and multiprocessing versions.</td>
</tr>
<tr>
<td></td>
<td>Divvy/MPX</td>
<td>$429</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Embedded DOS</td>
<td>$995,</td>
<td>Multitasking, re-entrant DOS. Runs in RAM.</td>
</tr>
<tr>
<td></td>
<td>Boot Tool Kit</td>
<td>$149</td>
<td>Builds bootable object with DOS services. No royalty.</td>
</tr>
<tr>
<td>JMI Software Consultants</td>
<td>C Executive</td>
<td>$2300</td>
<td>Multitasking kernel follows C I/O standards. Easy for C programmers to use.</td>
</tr>
<tr>
<td></td>
<td>AMX 86</td>
<td>$3000</td>
<td>Multitasking kernel. Supports DOS command-task application. Runs in 386/486 real mode.</td>
</tr>
<tr>
<td></td>
<td>AMX 386</td>
<td>$4000</td>
<td>Protected-mode multitasking kernel. Uses extended memory with Phar Lap extender.</td>
</tr>
<tr>
<td>Integrated Systems</td>
<td>pSOS</td>
<td>From</td>
<td>Popular multitasking OS. Supports DOS as a task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4000</td>
<td></td>
</tr>
<tr>
<td>Intel</td>
<td>IRMX for Windows</td>
<td>$5595</td>
<td>Multitasking kernel runs DOS or Windows as task. Supports Windows DDE (dynamic data exchange).</td>
</tr>
<tr>
<td></td>
<td>ExecCite</td>
<td>$99</td>
<td>$198 Runs .exe files without DOS. Comes with file system. 16-kbyte RAM.</td>
</tr>
<tr>
<td>Microsoft</td>
<td>DOS 3.3</td>
<td>OEM²</td>
<td>DOS 3.3, 5.0 are available for ROM. DOS 5.0 supports flash memory, power management.</td>
</tr>
<tr>
<td></td>
<td>DOS 5.0</td>
<td>OEM²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Windows 3.1</td>
<td>OEM</td>
<td>ROMable version for embedded systems; windowed; cooperative; multitasking.</td>
</tr>
<tr>
<td>Microware</td>
<td>OS-9000</td>
<td>$995</td>
<td>Full OS. Supports DOS and Windows as a task. Emulates DOS BIOS. Runs major DOS applications.</td>
</tr>
<tr>
<td>Ready Systems</td>
<td>VRTX-32/386</td>
<td>$12,500</td>
<td>Development environment; real-time kernel for 386 protected mode; source-level debugger; runs VRTX-32/386 kernel.</td>
</tr>
<tr>
<td>US Software</td>
<td>MultiTaskl 80x86</td>
<td>$24.95</td>
<td>Multitasking OS kernel. Runs DOS as a task.</td>
</tr>
<tr>
<td></td>
<td>MultiTaskl 386/486</td>
<td>$34.95</td>
<td>Protected-mode multitasking OS kernel.</td>
</tr>
<tr>
<td></td>
<td>ProtoTaskl 386/486</td>
<td>$14.95</td>
<td>Multitasking OS runs on PC for testing Multi-Taskl code on host PC.</td>
</tr>
<tr>
<td></td>
<td>GoFast 387</td>
<td>$24.95</td>
<td>ROMable 387 emulator for 386SX, 486SX. Fast-floating point. Used by Intel.</td>
</tr>
<tr>
<td>Ziatech</td>
<td>STAR System STARWindows</td>
<td>$295</td>
<td>Runs on Ziatech STDBus board and provides multiprocessing with CPUs communincating, using the STDBus as a LAN medium. STAR-Windows lets CPUs running DOS pass info to CPU running Windows via DDE.</td>
</tr>
</tbody>
</table>

Notes:
1. OEM pricing to be negotiated.
2. Annabooks sells small volumes of these Microsoft products.
in lieu of more expensive NTDS test sets.

According to Bill Travin, the US Navy's FSG-7 program maintenance officer, NTDS emulators have saved the Navy well over $1 billion. "Not only are the PCs cheaper," he says, "but they are state of the art, and all kinds of engineers and programmers can work with them. These PCs saved us both money and time."

Of course, drawbacks exist to getting on the fast-moving PC technology train. For one thing, when you buy into PCs, you also buy into the accelerated PC design cycles, with large technology shifts in products, chip sets, and CPUs. "PC's are a different case," says LeCroy's Richardson. "The evolution of products is unbelievable—try nine months or less. Components don't stay still. You have to be able to move with it. You can buy off-the-shelf components and motherboard boards because of PC standards, but you have to qualify your vendors and test for compatibility. With PCs, you're basically trading NRE and design time for quality control, test, and manufacturing flexibility. In general, we've found PC quality to be very high."

A PC running with DOS isn't highly deterministic. "There are a number of undocumented features that can limit performance," says John Foster, the author of Anna­books' BIOS- and PROM-Kits. "But," he notes, "the saving grace is that there is the range of CPU performance available. In many cases, for moderate control applications, you can solve a performance problem by simply dropping in a faster PC. The 386 CPU rates are up to 40 MHz now and moving. And the hardware reliability is very good."

DOS's reliance on rotating memory is a problem for many applications that need more reliable storage. Alternatives include Microsoft's flash memory file system (also sold by Annabooks) for Intel flash memory, as well as disk emulators based on flash, EPROM/PROM, and battery-backed SRAM. Another problem is, believe it or not, running an embedded PC without a keyboard (DOS requires a keyboard for the power-up sequence). Embedded DOS usually takes care of the problem. However, if you're just dropping in a standard PC, you can buy specialized keyboard encoders or eliminators from Vetra that plug into the keyboard socket. The encoder not only generates the key-

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Board</th>
<th>Price</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcom</td>
<td>SCIM386SX</td>
<td>£827</td>
<td>16/20/25-MHz 386SX to 4-Byte DRAM, STEbus board and local expansion bus.</td>
</tr>
<tr>
<td>Ampro</td>
<td>CoreModule 386SX</td>
<td>$571</td>
<td>PC/104 compatible; 25 MHz; 3.6x3.8 in.; 4-Byte RAM; 1-Byte solid-state disk.</td>
</tr>
<tr>
<td>Computer Dynamics</td>
<td>SBC-SXE</td>
<td>$815</td>
<td>25-MHz 386EX; 1.5-Byte ROM/ROM; 16-Byte DRAM; to 765-byte flash ROM.</td>
</tr>
<tr>
<td>Diversified</td>
<td>CAT975</td>
<td>$755</td>
<td>Passive backplane 386SX; to 16-Byte DRAM; 1-Byte PROM disk; watchdog timer; VGA-IDE interface.</td>
</tr>
<tr>
<td>Dolch</td>
<td>486 Apache</td>
<td>$2500</td>
<td>Passive backplane board; 50 MHz; to 32-Byte DRAM.</td>
</tr>
<tr>
<td>Dyna Five Corp</td>
<td>Baby Bullet 386SX-25</td>
<td>$1095</td>
<td>1-board computer; 25-MHz 386SX, IDE; AT bus; solid-state disk; watchdog timer.</td>
</tr>
<tr>
<td>Dynatemp</td>
<td>V486</td>
<td>$2564</td>
<td>VMEbus 3U height; 20, 33 MHz.</td>
</tr>
<tr>
<td>I-Bus</td>
<td>I486/50</td>
<td>$1710</td>
<td>Passive backplane 486DX; 50 MHz; to 32-Byte DRAM; watchdog timer; IDE. Optional 266-kbyte secondary cache daughter board.</td>
</tr>
<tr>
<td>Industrial Computer Source</td>
<td>SB486T/33</td>
<td>$2195</td>
<td>Passive backplane CPU card; to 32-Byte DRAM.</td>
</tr>
<tr>
<td>MCSI</td>
<td>IND-386SX</td>
<td>$995</td>
<td>Diskless 386SX; ISA bus; 4-Byte PROM disk; watchdog timer; 25 MHz; 16-Byte RAM.</td>
</tr>
<tr>
<td>Micro/sys</td>
<td>WindowCard486</td>
<td>$3655</td>
<td>1-board computer with 2025 MHz 486. Embedded Windows 3.1 in flash EPROM.</td>
</tr>
<tr>
<td>Prolog</td>
<td>7874</td>
<td>$2495</td>
<td>STD-32 bus card; 25/33-MHz 486. 4-Byte DRAM (to 16 Mbytes). Flash memory with DOS 5.0. DMA controllers.</td>
</tr>
<tr>
<td>Radiosys</td>
<td>EMC-2100</td>
<td>$1195</td>
<td>System has box, CPU card, VGA controller, disk, 8-slot chassis. 386SL, 16 MHz, 1-Mbyte DRAM. Private bus. 25-MHz 386SL available ($625).</td>
</tr>
<tr>
<td>Winsystems</td>
<td>MCM-SB486DX</td>
<td>$995</td>
<td>486DX 25 MHz, to 8-Byte DRAM STD Bus. Watchdog timer; power/fail reset.</td>
</tr>
</tbody>
</table>
EMBEDDED PCs

board power-up responses but also converts switch closures to keyboard inputs.

PC software

Let's face it, the classic MS-DOS PC is not a full real-time system. However, many control and monitoring applications don't require the real-time determinism or accuracy needed in fighter-plane electronics. PCs are limited in I/Os, number of interrupts (16), and interrupt response. Moreover, PC software, such as DOS, is single threaded, running only a single task at a time.

The good news it that there are still ways to take advantage of the huge PC hardware and software base. These include using a

- Standard PC with a disk or ROMable DOS. Disks can be replaced with silicon disks such as DOS 3.3/5.0, DR DOS 6.0, ROM-DOS, and C-thru-ROM, or ROMable Windows,
- Multitasking operating system that sits on top of DOS and schedules tasks on a cooperative, priority basis, such as Divvy,
- Real-time multitasking kernel that includes DOS as a task, such as Multi-Task!, OS-9000, iRMX for Windows, pSOS, and OS-9000
- Real-time kernel that provides DOS file and Int 21 (interrupt 21) services. The kernel may support multiple DOS task threads, reentrant services. These include embedded DOS and AMX,
- Real-time kernel that is not DOS compatible but runs on PC hardware. Some also execute on a PC host for debugging. These include C Executive, VRTX, MTOS, VxWorks, and OS-9.

Microsoft fields a ROMable DOS (3.3 and 5.0), as does Digital Research with DR DOS 6.0. Digital Research just released its PalmDOS, a special ROMable DOS for low-power, portable palmtop applications. This is a stripped-down DOS with provisions for PCMCIA cards, flash memory, and power management. It takes a minimum of 58 kbytes of ROM.

MS-DOS 5.0 also has a power-management driver that takes advantage of the new Intel/Microsoft Advanced Power Management system (Power.Exe BIOS API) that supports four power states—ready, standby, suspend, and off. ROMed MS-DOS 5.0 takes as little as 57 kbytes of ROM. Both DR DOS 6.0 and MS-DOS 5.0 have PCMCIA card drivers and ROM disk emulators. DR DOS has provisions for linking into a network, including security passwords and hidden partitions.

If you are willing to spend a few megabytes for OS storage, you can even get embedded Windows 3.1. Microsoft is fielding ROMable Windows, complete with PCMCIA drivers, power management, and disk emulator. In Windows, power management comes as an installable driver and a virtual device. Developers can add options using DLLs (Dynamic Link Libraries).

One way to put multitasking into embedded PCs is to run a multitasking kernel above DOS. That is what Micro/sys' Divvy does. This kernel delivers a cooperative scheduling layer above DOS with multiple tasks. This technique is effective for many industrial control applications that don't have hard real-time requirements. Divvy is compatible with standard DOS development languages and tools.

Many control applications combine DOS software with specialized real-time application code. A real-time kernel that runs DOS or Windows as a task with other real-time tasks works well for this class of application. Users get a well-known interface and a PC application if needed, while the real-time work is handled by the multitasking kernel. For example, Intel's iRMX real-time OS for Windows runs Windows or DOS as an iRMX task with other tasks.

DOS, with all its warts, is an extremely well-documented and well-known application-program interface (API). An army of PC programmers knows the inner workings of Int 21 requests for DOS services, as well as the DOS file system innards. One way to tap into that expertise is to provide DOS-like services on a real-time kernel. Some systems, such as AMX, provide a real-time kernel with multiple tasks and a single DOS thread. Others, such as embedded DOS, deliver a real-time kernel that handles multiple DOS threads.
A different tack is to use low-cost PC hardware but run a standard real-time operating-system kernel such as VRTX, C Executive, MTOS, and VxWorks. Some of these kernels, such as C Executive, can run on both the host and the target system. Other kernels, such as VRTX, MTOS, VxWorks, OS-9, and pSOS, are part of sophisticated cross-development environments that support interactive PC-host to embedded-PC target debugging.

You can take your PC in a lot of hardware flavors. Just what form...
**EMBEDDED PCs**

It takes is dependent on a number of factors, including price, portability, power and size requirements, and processing needs. Outside of just bolting a PC onto your equipment, you can use a

- Standard-form-factor mother board
- ISA passive backplane with a CPU card
- Single-board PC
- Single-board PC interfacing to STD, VME, or STE buses
- PC chip set to roll your own PC.

If you have the room and power, you can simply bolt-in a PC or drop-in a standard-form-factor PC mother board. This approach becomes less attractive in harsh environments or tight spaces. Mother boards are the cheapest way to go, but they may not be optimal for cooling, with the base generating heat that rises among the plug-in cards. Also, CPU replacement is much harder and the PC ISA bus is not a high reliability connector/backplane combination.

Many engineers simply drop-in PCs and link them to single-board computers for control. “If you need a keyboard, a floppy disk, and an interface, a PC is a good choice,” says Robert Coomer, president of R.L.C (Atascadero, CA), a single-board computer vendor of 186-based systems. “A lot of our customers actually use a PC for the interfaces and then turn to µC-based SBCs for real-time control.”

One popular PC industrial-automation alternative relies on passive ISA backplanes, which are used to seat AT card PCs and peripheral cards. Cooling characteristics are much better, and CPU cards are easily swapped. With this structure, the CPU cards are more reliable, but systems still provide the advantage of using standard PC I/O cards and a range of specialized engineering and peripheral cards.

Self-contained single-board computers are one way to build and embed a PC. A single-board computer holds a complete PC and has I/O interfaces. It can have bus interfaces as well. These computers are more expensive than other options but have small form factors and high board densities, making them ideal for embedded in-size critical applications. Some single-board computers have connectors for adding daughter cards to increase expandability.

An attractive alternative that combines single-board computers and the ISA bus is the PC/104 standard. Pioneered by Ampro, it has been accepted by more than 25 board vendors, including CPU board vendors such as Dyna Five. Instead of relying on a bus to interconnect boards, PC/104 proposes stacking the single-board computer modules and linking them with a PC bus that uses higher reliability, onboard stack connectors. PC/104 is a proposed extension to the IEEE PC bus standard. The modules can also be combined on a carrier card.

Module stacks save space; there is no need for a separate bus backplane. (National Semicon­ductor tried a such a busless stack years ago with its MA2300, based on an 8-bit NSC800 µC.) A 3-module, PC/104 stack is only 2 in. high. The modules, based on the Ampro “MiniModule” form, are 3.6 x 3.8 in. Stacking also minimizes bus drive requirements, due to smaller bus signal runs, dropping to 6 mA for PC/104.

PCs are also now an option for most standard bus systems, including STD, STE, and VME buses. For example, you can buy a STDbus or VMEbus PC card, drop it into your system, and take advantage of low-cost PC technology. PCs are increasingly used in these bus systems for control and user interfacing. Thus, engineers can take advantage of the wide base of PC development software for specialized bus systems.

For the classic board designer, rolling your own PC can be a piece of cake if the design is straightforward; it can also be complex, depending on system interfacing and processing. Most PC chip-set vendors have ready-to-go board designs. However, small production-run projects may have difficulties getting access to chips and services, for PC
A Truly **New Compiler Comes Along Only Once In A Generation.**

Introducing *Ultra C.* It lets you explore the boundaries of performance for hard real time.

When performance counts, you need a C compiler that will produce the fastest, tightest code possible—especially in demanding hard real-time applications. Yet most C compilers commonly used today were originally written ten or more years ago. Since then, computer scientists have learned a lot about how to make better compilers.

That’s why Microware undertook the epic task of creating an all-new C compiler based on the latest academic research—a compiler able to eke out every drop of performance from modern 16-, 32- and 64-bit CISC and RISC microprocessors. Microware’s *Ultra C* uses a modular architecture that creates a virtual playing field for vigorous action by dozens of optimizers to analyze, arrange, accelerate and compress code into fast, compact executables. Heuristic analysis of register and variable usage far surpasses the capabilities of what most human programmers could do themselves.

**State-of-the-art, plus...**

Of course *Ultra C* has all features expected in a state-of-the-art compiler, such as full ANSI C compliance, C source code symbolic debugging, and a comprehensive set of standard libraries including support for the extensive real-time capabilities of the OS-9 and OS-9000* Real-Time Operating Systems. Options allow selection of either ANSI or K&R compatibility. You can even turn the optimization knobs yourself to best match your application’s requirements.

**Built-in quality and reliability**

You can count on *Ultra C* right now, because it’s probably the most thoroughly tested new compiler in history. Before the first copy went into beta test, it successfully passed the massive Plum Hall ANSI C Validation Suite—eight major sections, in all over 500,000 lines of C compiler torture track. Compilers are not a sideline at Microware—we’ve been developing them in-house since 1978.

**CISC now, RISC soon**

*Ultra C* is available now for all 680X0 family and 386/486 family CPUs running Microware’s OS-9 and OS-9000 Real-Time Operating Systems. RISC versions are coming soon.

Call Microware Today!

1-800-475-9000

In California, call (408) 980-0201

**MORE CHOICES • MORE OPTIONS • TOTAL SUPPORT**
chip-set vendors are used to dealing in large sales volumes. A production run of 100 to 1000 systems may not be large enough to attract necessary vendor support services. This vendor attitude may change as Intel and Microsoft put increasing emphasis on embedded PCs.

Finally, pay careful attention to the emerging PCMCIA standard, originally aimed at defining laptop memory cards. The standard defines a series of credit-card-size cards, 3.3, 5.0, and 10.5 mm in thickness. The first form, the 3.3-mm cards, is now the de facto mechanism for adding memory to laptops, as well as peripherals such as modems and Ethernet connections. Coming are a raft of PC peripherals, including hard disks for the larger card forms.

PCMCIA cards have a good chance of becoming the add-on peripheral standard of the '90s. More than just a memory-card form, PCMCIA can be viewed as the add-on bus or the peripheral bus for PCs. For embedded systems, PCMCIA cards offer a cheap, rugged, compact removable mechanism to add memory, peripherals, connectivity, or functionality to a controller.

**References**

With Four Times The Performance Of The Competition, Nobody Else In The Field Is Even In The Running.

Our innovative controllers keep you on the fast track of communications.

With our advanced 8-channel Enhanced Serial Communication Controller—the ESCC8 (SAB82538)—Siemens demonstrates once again why we lead the pack in communication IC technology.

The World's First 8-Channel Multi-Protocol Data IC.

The ESCC8 is the latest in a long line of advanced communications controllers which have made us the industry leaders. Like the HSCX (SAB82525) for telecommunications and the ESCC2 (SAB82532), the first 2-Mbit asynchronous multi-protocol communications controller.

The ESCC8 offers a superior price/performance solution for your communications applications. Compared to the standard 2-channel devices, the ESCC8 provides four times the data throughput, and the fastest speeds in the industry—up to 10 Mbit/sec synchronous and 2 Mbit/sec asynchronous. Which lets you replace four 2-channel devices with one ESCC8, for substantial savings in time, boardspace, and development costs.

The ESCC8 also supports a wide range of protocol options—including X.25 LAPB, ISDN, LAPD, HDLC, SDLC, and both async and BISYNC—plus easy adaptability to either Intel® or Motorola® microprocessors through the use of a 16-bit data bus interface. For fast, reliable and accurate multi-protocolling.

A New Breed Of Performance ICs.

With 16- or 32-bit CRC handling and 28 programmable universal I/Os, the ESCC8 gives you superior performance in a communications controller. And only the ESCC8 offers a collision detect resolution scheme which provides multiple masters on one bus to prioritize data instructions, plus 64-byte FIFOs per channel for increased storage capabilities.

And Siemens continues to hold a leadership position throughout the rest of the industry, with innovations like the DSP-based ARCOFI-SP, the world's most advanced speakerphone IC for digital terminals. As well as advancements in CMOS echo cancellation technology which have made us the front-runner in single-chip ISDN U-interface transceivers.

For an ESCC8/ESCC2 evaluation kit, or more information on our full line of innovative communications ICs, call 800-456-9229. And put yourself on the fast track of communications.

Ask for literature package M12A014.

Siemens World Wise, Market Smart.
Pick up the number one real-time operating system.

And run with it.

In today’s competitive market, it’s important to run with the best. And when it comes to real time, the iRMX* operating system is the clear favorite.

You see, iRMX has a 13-year track record for proven reliability. In fact, only DOS runs on more X86 systems. Now, iRMX for Windows provides the first real-time operating system with guaranteed response time that runs DOS and standard-mode Windows on the i386™ and i486™ architecture. That’s right, true real time on a PC! iRMX for Windows brings more than just affordable hardware to real time. It also gives you a head start on development with access to the huge installed base of DOS applications and tools. In fact, you even have the option to run Windows†† (including Windows 3.1).

So take the first step, call (800) GET-iRMX (800-438-4769)* and ask for Lit. Pack. #2D. And start running real time with your favorite DOS and Windows software.
Fault-tolerant 8.4-Gbyte disk array moves 20 Mbytes/sec over SCSI-2 bus

The $31,650 Rimfire 6710 disk-array subsystem provides 8.4 Gbytes of high-speed data storage in a fault-tolerant package by ganging nine 3.5-in. hard-disk drives in a RAID-3 configuration. RAID stands for redundant array of independent (formerly “inexpensive”) disks. The RAID-3 configuration stores user data on eight of the nine hard drives; the ninth drive stores parity information. If one drive fails, the subsystem continues operating by regenerating the missing bit on the fly.

Operating the eight data drives in parallel also allows the disk array to deliver a 20-Mbyte/sec burst transfer rate and a sustained rate of more than 19 Mbytes/sec over a 16-bit SCSI-2 port. If you use the subsystem as an 8-bit peripheral, you halve the transfer rate. The subsystem’s SCSI-2 port operates as an 8- or 16-bit port, synchronously or asynchronously, using either the fast or slow SCSI protocol.

Each drive in the array resides on its own carrier. You can swap out a drive while the array is operating (hot swap), and the array can then automatically regenerate data on the replacement drive. You select whether regeneration occurs as a background task during inactive time periods, in an interleaved mode that partitions the disk accesses between the data-rebuilding and normal data-access operations, or in a dedicated mode that locks out user data requests.

Replacement disks need not be the same size or even from the same manufacturer. They only need have at least as much capacity as the drive you’re replacing. This feature protects you from the inevitable obsolescence of a particular hard-disk drive or even an entire disk format. (Have you attempted to buy any 12-in. hard-disk drives recently?)

An RS-232C port allows you an alternative to the SCSI-2 port for maintenance operations. The vendor supplies DOS-based maintenance software that lets you configure the subsystem, monitor its performance, and run diagnostic tests. You can also conduct remote diagnostics by connecting a modem to the serial port. A keypad and LCD provide local control of the unit.

The array measures 7 x 17 x 22 in. You can mount it in a rack or operate it as a desktop unit. The subsystem’s power supply automatically switches between 90-130V and 180-264V settings and accepts 50- or 60-Hz power. The unit weighs approximately 60 lbs, including the disk drives.—Steven H Leibson

Ciprico Inc, 2800 Campus Dr, Plymouth, MN 55441. Phone (612) 551-4000. FAX (612) 551-4002.

Circle No. 381

Nine 3.5-in. hard-disk drives mounted on independent carriers in a RAID-3 (redundant array of independent disks) configuration provide fault-tolerant storage of 8.4 Gbytes.
Accelerator chips speed Windows graphics

Three single-chip graphical-user-interface (GUI) accelerator chips speed up applications running under Windows 3.0 and 3.1, X-Windo Systems, and AutoCAD. The 86C801 and 86C805 utilize dynamic RAM (DRAM) for the display memory, and the 86C928 utilizes video RAM (VRAM). The 86C801 connects to a 16-bit ISA bus, the 86C05 connects to a 32-bit 386DX/486 local bus or a 32-bit EISA bus, and the 86C928 connects to any one of the three buses.

These GUI accelerators implement functions on-chip that Microsoft has defined as critical to running Windows. These functions include line drawing, hardware cursor, bitblt, and clipping. Because the devices accelerate these functions, common GUI operations, such as opening and resizing windows, pulling down menus, painting menu backgrounds, and dragging and scrolling, appear instantaneous to the user.

In addition, the chips accelerate 24-bit true-color graphics for Windows 3.1 applications. Unlike SVGA controllers, where the CPU performs all 24-bit operations, these accelerator chips offload 24-bit-color operations from the CPU and implement these tasks themselves. For multimedia applications, the chips have a Genlock function to synchronize the accelerator's video output with an external NTSC or PAL video signal. In addition, via a shared memory architecture, an 86C928-based Windows accelerator board can handle real-time video signals via a video-coprocessor attachment.

The 86C801 and 86C805 accelerators both operate with as much as 2 Mbytes of DRAM. The 86C928 operates with as much as 4 Mbytes of VRAM. All three of the accelerators are compatible with existing drivers for the company's 86C911 accelerator. The 86C801 comes in a 160-pin plastic quad flatpack (PQFP) and costs $29 (1000). The 86C805 comes in a 184-pin PQFP and costs $35 (1000). The 86C928 comes in a 208-pin PQFP and costs $65 (1000). — John Gallant

S3 Inc, 2880 San Tomas Expressway, Santa Clara, CA 95051.
Phone (408) 980-5400. FAX (408) 980-5444.

Circle No. 382

The 86C928 GUI accelerator can attach to a local bus and 4 Mbytes of VRAM to accelerate graphics from 18× to 30× over SVGA modes.
SONY MAKES THE CHIP, SUN MAKES THE HISTORY.

Sun Microsystems' new SPARCstation™ 10 is fast making history running at speeds to
400 MIPS and beyond. Inside is SuperCache: a Sony-designed, 20 ns,
one-meg, self-timed static RAM that's optimized for SPARC® processors. The CXK77910J-20.

This synchronous "STRAM" gives Sun's power users three times more
fast cache than any other workstation. You, too, can make history with Sony SRAMs and
other breakthrough ICs. Call 800-288-SONY. Or FAX your current requirements
to 714-229-4333 in U.S.A., 416-499-8290 in Canada.

Sony is a trademark of Sony. Sun, Sun Microsystems, and SuperCache are trademarks or registered trademarks of Sun Microsystems, Inc. All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. SPARCstation is licensed exclusively to Sun Microsystems, Inc.
components in many applications.

The new 500V IR2125 and 20V IR2121 with 1A/2A source/sink capability can each independently drive one FET or IGBT in a wide variety of motor drive and other applications. Programmable current limiting protects both transistor and drive, and the ride-thru feature can be set to take full advantage of today's rugged devices.

The 500V IR2110 with 2A source/sink capability is setting the industry standard for a half-bridge driver. It's driving pairs of FETs or IGBTs in motor control, UPS, solid state ballast, and switching power supply applications all the way up to 500 kHz.

Designate IR. And leave the driving to us.

Write or call 1-800-245-5549 for data.
RISC/2: Half RISC, half CISC µPs break traditions

There's an old saying, "Whenever anything becomes common knowledge, it's probably wrong." Take RISC technology: these days, RISC processors have fallen into a kind of ho-hum, lockstep, taken-for-granted technology. Many developers believe RISC µPs have now settled down to a long and hard, but stable and well-defined development path, a path leading to hefty RISC CPUs.

That's a far cry from when stripped-down, hungry RISC µPs first barged into the desktop arena—things started with a bang. First-generation commercial RISC came barreling out of its corner at the bell, swinging away at its CISC opponent. Faster, smaller, cheaper was its battle cry. And RISC performance won the day. Today, RISC dominates the workstation/server ring.

Now commercial RISC is shifting to accelerated RISCs such as TI's SuperSPARC, Cypress' HyperSPARC, Mips' R4000, and DEC's Alpha. Using superpipelining or superscalar techniques, they crank CPU performance by kicking up clock rates and issuing more instructions per clock cycle; in super pipelining by shaving the clock and starting an instruction every half cycle; and in superscalar by decoding and starting multiple instructions every clock cycle.

RISC technology has congealed into a nice set of common definitions: load/store execution, pipelining, simple instruction sets, hard-wired minimal logic (compared with microprogrammed CISC), relying on software for most exception processing, simple addressing, fixed-length instructions, a large register set, and fast single-cycle execution (dependent on a tight ALU cycle and a mechanism feeding instructions every cycle). Implicitly associated with these definitions are general-purpose register machines having on-chip or tightly coupled caches, on-chip FPUs, and instruction sets that increasingly look alike.

And so here we are, all nice and safe and cozy, comfortable in commonly accepted definitions of desktop RISC. No more surprises, we say; nice going. Wrong. A new RISC perturbation has been seeping from the woodwork: embedded, minimal RISC. These are stripped down µPs combining 32-bit RISC throughput with low power and penny-pinching cost. "RISC/2" (RISC-over-two) is probably as good a tag as any for this deviant branch of the RISC tribe that harbors latent CISC traits.

RISC/2 µPs target embedded or portable applications and so lack many of the amenities and wide buses of their desktop cousins. Whereas RISC stripped down hardware to the bare metal for speed, RISC/2 aims at mixing RISC and CISC flavors, seeking an optimal triad of speed, low power, and low cost. Two such 32-bit RISC/2 CPUs are the ARM family (formerly Acorn and now made by VLSI Technology and Plessey) and the Hyperstone (from Hyperstone Electronics, GmbH, and soon to be a Zilog core). Both are minimal CPUs with significant RISC sins. Apple, by the way, has selected ARM to power its Personal Communicator, supposedly the next killer information appliance after PCs.

RISC/2 competition is growing. Entering the ring is a new contender: Hobbit, a 32-bit RISC/2 µP from AT&T, targets personal communications. A RISC µP by many standards, Hobbit, a resurrection of AT&T's C-machine research, violates RISC canons with a stack-oriented architecture (no user-accessible registers) that—horror of horrors—operates directly on memory. The low-power Hobbit comes complete with a support chip set and runs the Penpoint OS for portables.

RISC (and CISC) µP vendors that waited for portable applications to fall gently into their laps now have a fight on their hands. There's a moral here: don't drop your dukes and assume that current technology is forever. Technology tends to defeat the status quo, making fixed definitions obsolete and spawning new contenders as it mutates. Watch yourself in the technology clinches and don't take any wooden definitions.
Many engineers believe that the next killer hardware after the PC will be personal communicators. These are small handheld devices with high processing power, graphical interfaces, and communications capability. AT&T has tailored a RISC processor and chip set for personal communications: the Hobbit, or ATT92010 µP, accompanied by a 4-chip set. The chips include a system management device, a display controller, a PC-MCIA interface device, and a P-ISA (private bus) interface device.

Hobbit and its support chips are low-power devices, with performance that matches first-generation commercial RISC. Although Hobbit's performance is roughly comparable to that of a 25-MHz 80486, its architecture is optimized to execute C programs. It is a stack-based machine that has no user-addressable registers. Instead, the CPU caches the application stack—the stack that a C compiler creates for each function's activation environment (which holds the function's local variables). The top of the stack is cached on chip but is addressed as memory, not as registers.

Instead of moving the stack into registers for fast code access, as most RISC processors do, Hobbit provides direct access to the actual function stack. The CPU caches the top of the user stack in a 256-byte cache. When a function is called, the hardware fills the stack with the function's activation environment. Similarly, the hardware pops the environment when control returns to the calling function. Unlike classical stacks, user code can't PUSH or POP data onto the stack. However, users can ensure more efficient stack usage by using Hobbit instructions that prepare the stack and ensure that there is enough room on the stack for a function. Additionally, the top of the stack cache serves as a fast accumulator—interim results of operations can be put on the stack for local storage. The 256-byte stack has a 87% hit ratio according to AT&T studies.

Hobbit also takes an innovative approach toward the classic RISC problem of keeping the instruction flow going. To do this, Hobbit essentially works as two separate machines: a fetch/decode machine and an execution unit. The fetch/decode machine is made up of a prefetch buffer, or instruction cache, of 3 kbytes, and a 3-stage, pipelined prefetch/decode unit. The fetch/decode machine fetches instructions, caches them, and decodes them before they are needed for execution. The decoded instructions are converted into a 110-bit control word that is held in a 32-entry decoded instruction cache, which then feeds instructions to the execution unit as needed.

AT&T's Hobbit combines RISC performance with C-machine stack architecture. Variable-length instructions are fetched, decoded, and stored as fixed-length codewords for execution.
ITT Cannon's commercial D subminiature connectors give you optimum power and efficiency with minimum real estate. We offer like a

the industry's broadest line, featuring surface mount hamster

and combo D® connectors, plus accessories. And that can

with high-density configurations yielding 30-40% bench

size reduction, you can meet the demands 250.

of tomorrow's technology today.
This 2-step tactic is very clever. Hobbit uses variable-length instructions, which it fetches, decodes early, and converts into fixed-length control words for fast execution. Thus, this µP has the benefits of variable-length instructions (compact code), as well as fixed-length instructions (faster execution).

If an instruction is followed by a branch, the branch is included in the leading instruction's decoded control word. In effect, branches are folded into the preceding instruction, compacting execution code. Each instruction control word has two address fields and a branch-prediction bit (set by the compiler) to preselect which path to take. Successfully predicted branches take only one pipeline cycle in the execution unit, whereas unsuccessful branches cost three cycles.

**AT&T Hobbit 32-bit µP**

- 25-MHz clock
- Stack-oriented RISC architecture
- 15.6 VAX MIPS at 25 MHz
- 34 variable-length instructions
- 512-byte stack cache
- 3-kbyte instruction cache, MMU
- 32-bit external address and data buses
- 250 mW at 3.3V; 900 mW at 5V
- 132-pin PQFP, JTAG compatible
- $35 for CPU (10,000); $100 for CPU and chip set (less P-ISA bus interface chip). Sampling now, production 4Q92.

The CPU has a shallow, 3-stage pipelined execution unit and an MMU (memory-management unit) with two 32-entry translation lookaside buffers (TLBs), one each for data and instructions. The shallow pipeline and interruptible major instructions (MPY, DIV, and others) give Hobbit a relatively fast interrupt latency of 800 nsec.—Ray Weiss

**16-bit 68HC16 includes 48-kbyte flash EEPROM**

Flash EEPROM is on its way to being a mainstream memory option for embedded control. Flash has the advantage of being electrically reprogrammable; it will eventually be onboard programmable with standard logic voltages. Motorola has moved flash EEPROM onto its 16-bit microcontrollers (µCs). The 68HC16 µC uses changeable flash for program memory.

Two configurations of 48-kbyte flash EEPROM for the 68HC16 include a single 48-kbyte flash memory, the 68HC916Y1, or 48-kbyte flash divided into a 32- and a 16-kbyte memory (the 68HC916X1). The smaller, 16-kbyte memory is block erasable: It's divided into eight blocks of two kbytes each. These blocks can be addressed individually for erasing, which minimizes overall erasure. The other flash blocks must be fully erased before recording new data. Data is written by byte or word; 12V dc is required to erase and write the

The 68HC916Y1 combines 48 kbytes of flash EEPROM memory with a 16-bit CPU and a full set of peripherals. Flash memory makes it easy to reprogram.
INTroducing MICRO-CAP IV. 
More SPICE. More Speed. 
More Circuit.

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12-year tradition of setting CAE price/performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles — on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICRO-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MCA schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface — windows, pull-down menus, mouse support, on-line HELP and documentation — that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example, from SPICE 2G.6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At $2,495, MICRO-CAP outperforms comparable PC-based analog simulators — even those $5000+ packages — with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed — on larger circuits.

1021 S Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387 FAX (408) 738-4702
flash EEPROM memory. Motorola is, however, working on moving its charge-pump technology, which is used in 5V programming of small EEPROM blocks in µCs, to the large on-chip flash memories.

The 16-bit 68HC16 is a superset of the 8-bit 68HC11. The 68HC16 handles all 68HC11 resources and instructions. The 68HC16 improves on the 68HC11 in that it routinely accommodates 1-Mbyte addressing. It is, however, working on moving its multiply-accumulate unit (MAC).

Motorola 68HC916Y1 16-bit µC
- 16-bit µC, 16.78-MHz clock (from 32 kHz or 4 MHz)
- Accumulator-based design, with 2 accumulators; 2 index registers
- Up to 48 kbytes of flash EEPROM, 2 kbytes of RAM
- Inter Module Bus connects units
- 240-, 480-, 1300-nsec ADD/MPY/DIV
- 1.4-µsec MPY/ACCUMULATE cycle
- 8/16-bit external, multiplexed bus
- Choice of advanced timer modules with capture, compare, pulses
- ADC, serial communication channels, memory interfaces, watchdog timer
- 100 I/O pins
- Sample qty, first quarter 1993; in 160-pin PQFP, $75.

The µC has an accumulator-based architecture. Processing centers around two 8-bit accumulators (like the 68HC11) and a 16-bit accumulator. The two 8-bit accumulators can be treated as a single, 16-bit accumulator register.

The µC has a modular structure that is built on the Inter Module Bus (IMB), an on-chip support bus, which is the same bus that serves as a base for the 683xx specialized µC. This bus makes it easy for you to add peripherals in the future. The IMB modules include a General Purpose Timer (GPT) with free running timer/counters, compare/capture registers, and two PWM channels; a System Control Interface Module (SCIM), which interfaces external memory and provides 12 programmable chip selects and a watchdog timer; a Time Processing Unit (TPU), which is a sophisticated timing subsystem with 16 timer channels; a Queued Serial Module (QSM), which queues operations for a serial port and has a standard UART.

The 68HC916Y1 combines the 16-bit CPU with a single 48-kbyte flash EEPROM memory, two kbytes of static RAM, TPU and GPU timer modules, and an 8-channel, 10-bit A/D converter. The 68HC916X1 has two flash EEPROM memories—32- and 16-kbyte block erasable—along with a GPT timer module, a QSM, and an 8-channel, 10-bit A/D converter.—Ray Weiss
Motorola Inc, Advanced Microcontroller Div, 6501 William Cannon Drive W, Austin, TX 78735. Phone (512) 891-3255. FAX (512) 891-2652.
Circle No. 396

16-bit µC beefs up peripherals and adds 48-kbyte ROM

Sixteen-bit processors are attracting designers who’ve run out of 8-bit processing power but can’t afford to step up to 32 bits. Sixteen-bit processors offer better addressing, higher processing power, larger peripheral sets, and more on-chip memory. NEC’s 16-bit K3 family’s top-of-the-line µPD-78K356 integrates 48 kbytes of ROM/EPROM and 2 kbytes of RAM with a set of timing and signal-conversion peripherals, including a 2-µsec, 10-bit A/D converter.

With a 32-MHz external clock, the 78K356 has a basic instruction cycle of 125 nsec (NOP), which places it in the faster, 16-bit category. Register-based, the processor operates on eight register banks, each comprising eight 16-bit registers. Context switching is easy because only the bank-select field in the Program Status Word changes. The chip also can treat the registers as 8-bit registers, organized as 16 banks of 16 registers each.

The 78K356 accesses a 64-kbyte unified address space. The processor supports external memory with a multiplexed external bus, 16-bit address, and 16-bit data. A 16-bit stack pointer references a LIFO memory stack. The processor maintains user and supervisor modes to separate the system from application processing.

Processor throughput is upped via features that include a multiply-accumulate function, which will do single or multiple MAC cycles using a sequencer to run the ALU; a Macro Service Function, which processes interrupt events on a cycle-stealing basis, offloading the CPU; and DMA, which efficiently transfers data blocks. In addition, A/D conversion can be directly triggered from timer events, saving code.

The 8-channel, 10-bit A/D converter has three operating modes: under-input control, software control, or timing-triggered control. Four external signals can trigger conversion. One option allows pulses on one line to walk the conversion down the channels, converting the next channel at each suc-
Introducing VRSA-Tile
The High-Speed, High Density, Precision Solution

RPA160 Sample Macrocell Specifications

Current Feedback Op Amp
- Offset Voltage: 4 mV
- Bandwidth: 160 MHz
- Slew Rate: 700 V/µs

High-Speed Phase Lock Loop
- Max. Frequency: 150 MHz
- Lock Range: ±50% f₀
- Supply Sensitivity: 0.2%/V

Precision Low-Noise Amplifier
- Offset Voltage: 0.1 mV
- Input Bias Current: 500 nA
- Gain Bandwidth: 25 MHz
- Noise Voltage: 2.5 nV/√Hz

It's Here! VRSA-Tile (Versatile Raytheon Smart ASICs) is Raytheon Semiconductor's newest family of high-speed, precision analog and mixed-signal ASICs. Both array and standard cells will be offered using a variety of high-performance, complementary bipolar and CBiCMOS technologies. And all are supported by a comprehensive PC and workstation-based CAD system.

For more information, give us a call at 1-800-722-7074.
In France: 01-46-3106-76
In Germany: 089-53-09-93-0
In Japan: 03-3280-4776
In the U.K.: 0264-33-46-16

Raytheon Company, Semiconductor Division
350 Ellis Street, Mountain View, CA 94043

RPA160 is Raytheon's new precision 16-tile array and the first member of the VRSA-Tile family. It provides you, the system designer, with high-speed system performance from component level macrocells.

Emitter sizes of 6 µ², complementary bipolar processing with 4 GHz f₁ NPNs and 1.5 f₁ GHz vertical PNPs, thin-film resistors, and 20 predesigned and characterized macrocells — with analog signal processing speeds in excess of 200 MHz!

Think of the possibilities — like integrating your video processing, communications, or instrumentation subsystems on a single IC.

Show us your design — and we'll show you how easily and quickly it can be integrated on an RPA160. Prototypes can be turned around in six to ten weeks.

If you've been waiting for a VRSA-Tile high-speed precision array, it's here!
These units have gull wing construction and are packaged in shipping tubes, which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductors are ideal for noise, spike and power filtering applications in Power Supplies, DC-DC Converters and Switching Regulators.

- Transformers have input voltages of 5V, 12V, 24V and 48V. Output voltages to 300V.
- Transformers can be used for self-saturating or linear switching applications.
- Schematics and parts list provided with transformers.
- Inductors to 20mH with DC currents to 23 amps.
- Inductors have split windings.

Developed by ByteCraft Ltd for National Semiconductor, the C compiler relies on multiple expert systems for efficiency. The systems select the right assembly-language instruction sequences and addressing for optimal operation. A profile of the target hardware is built and used as a database for the expert systems. Intermediate code passes through rule-based expert systems at different optimization stages. Code is optimized for local centers of reference, for minimal temporary storage or size, and to minimize register references (it actually scoreboards register references to eliminate redundancies).

ByteCraft uses these techniques for other C compilers, notably one for the 68HC05 (another minimal µC), which comes close to achieving hand-coded assembler efficiencies.

The compiler includes a C preprocessor. The compiler supports standard C constructs such as break, case, continue, do...while, for, goto, if, if..else, return, return expr, switch, and the following data types: char and int (8 bits), long (16 bits), pointer (8/16 bits), and short (8 bits). COP8C extensions are binary constants, interrupt functions, direct I/O port access, bit arrays, in-line assembly language, and direct register access. Variable modifiers include auto, const, extern, register, signed, static, unsigned, and volatile.

National's COP8 is a low-cost, minimal-architecture 8-bit µC with a 1-µsec ADD. Accumulator-based, the CPU has two index registers, up to 8 kbytes of program memory, and up to 256 bytes of RAM. Using C for the COP8 helps to eliminate register references, moving programming to a higher level. Because of the COP8's restricted RAM, you must minimize function-call depth and the number of local variables.—Ray Weiss

ByteCraft Ltd, 421 King St N, Waterloo, Ont, N2J 4E4, Canada. Phone (519) 888-6911. FAX (519) 746-6751.

National Semiconductor, Box 58090, Santa Clara, CA 95052. Phone (408) 721-6816. FAX (408) 730-6241.
One call can turn your bright new idea into reality.

The fact is, the state-of-the-art in LCDs is changing rapidly. Applications are growing dramatically, too.

Nobody knows more about LCDs and new product applications than we do. And no one can offer you better design support, more innovative engineering, better quality, or higher reliability.

The fact is, we're the largest supplier of LCDs in the world — with a national distribution network to serve you. And we're cost-competitive worldwide, too.

So if you're looking for new product support or existing product improvement in LCDs, you now know who to call: Optrex: (313) 471-6220. Or FAX (313) 471-4767.
NEW AT WESCON/92

5 SHOWS UNDER ONE ROOF

More Products, More Opportunities to Increase Your Technical Knowledge, More Answers to Your Design Questions

**INTRODUCING**

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EC WORLD</strong></td>
<td>EC WORLD, the world’s largest electronic component event focusing on resistors, relays, capacitors, switches, cable, connectors, enclosures, and associated devices for the design engineer</td>
</tr>
<tr>
<td><strong>ITM</strong></td>
<td>ITM, an expanded world class event for test and measurement, featuring ATE, test and measurement equipment, instrumentation, data acquisition systems, calibration hardware, IEEE I/O devices, and similar products</td>
</tr>
<tr>
<td><strong>IC EXPO</strong></td>
<td>IC EXPO, the show for manufacturers of ICs, Semiconductors, ASICS, ROMs, RAMs and similar products</td>
</tr>
<tr>
<td><strong>COMPUTOOLS</strong></td>
<td>COMPUTOOLS, a computer show for engineers, encompassing hardware and software, EDA tools, workstations, PCs, boards, LANs, CAD/CAM and related products</td>
</tr>
<tr>
<td><strong>EPEX</strong></td>
<td>EPEX, the electronic production expo for worldwide contract manufacturers, surface mount, PCB suppliers, design houses, and products which service this market</td>
</tr>
</tbody>
</table>

You can attend exhibits and technical sessions at any Wescon/92 show with just one admission ticket.

For Complimentary Registration

Call 1-800-877-2668

November 17-19, 1992
Anaheim Convention Center, Anaheim, CA
How do you get 1600 x 1280 resolution in an X-terminal design right away?

Use TI's TLC34074 Video Interface.

It's the first 200-MHz video interface optimized for X terminals, enabling 1600 x 1280 resolution at a 72-Hz refresh rate. And it's in distributor stocks now.

The TLC34074 from Texas Instruments integrates a complete grey-scale graphics system back-end onto a single chip, eliminating up to 30 components.

Best yet, it is pin compatible with TI's full-featured TLC34076 palette that supports monochrome to 16- and 24-bit-per-pixel true color. Which allows you to make system cost/performance trade-offs while maintaining a common architecture.

More advantages
- Both devices are compatible with virtually any video controller architecture: CISC and RISC microcontrollers, including TI's TMS340 graphics coprocessors, as well as hard-wired controllers.
- Handles Big- or Little-Endian formats with no hardware modifications.
- Direct interface to VRAM and controller.

For more information
About TI's '34074/76 mail the return card. For faster response call (214) 995-6611, ext. 3429, your local sales office or an authorized TI distributor.
Mass storage

ATT91C020
ATT93C010
91C611
That's AT&T "Customerizing."

A 3-chip disk drive solution!
A mass storage chip set that eliminates as many as 5 to 8 ICs as well as a dozen discrete components—drastically reducing your time-to-market while maximizing your disk capacity.
That's what "Customerizing" is all about!

**Low power solution**
AT&T's solution sharply decreases disk drive power demand, increases battery life, and allows for lower heat dissipation, a critical concern in small form-factor devices.
It also supports multiple data rates for zoned band recording as well as embedded servo formats and split data field techniques.

**All-CMOS solution**
The chip set is designed in a common CMOS process, allowing for future integration to a single device, resulting in even greater space and power savings, and producing the smallest possible form factor.
All the devices are highly programmable, permitting product differentiation and evolution—and providing unprecedented levels of power management.

**Integrated solution**
Our hard drive solution features the first all-CMOS read channel ICs, fabricated with AT&T's advanced, low-power 0.9 µm drawn mixed-mode CMOS process.
This CMOS process advantage is combined with high integration and substantial system design and test expertise to minimize the number of external components needed to implement disk drive electronics.
The chip set is supported by evaluation kits, which provide both a hardware and a software platform on which to build a prototype disk drive, as well as a fast means of evaluating the devices.
To get the evaluation kit, along with complete technical information on AT&T's 3-chip disk drive solution, just give AT&T Microelectronics a call at 1 800 372-2447, ext. 908.

AT&T Microelectronics

CIRCLE NO. 59
No logic analyzer is, for that matter.

Because at speeds above 25 MHz, even the best designer needs a scope to handle nightmares like race conditions, ground bounce, and crosstalk. And not just any scope, but one tailored specifically for high-speed digital design.

At Tektronix, we understand this need all too well. As proof, we’ve not only designed and built a great logic analyzer — our powerful new GPX — but also a perfect companion. The TDS 640 digitizing oscilloscope.

To get you started, the GPX provides more channels than cable TV. Up to 160, for instance, of 80 MHz state analysis, and 32 channels of 1 GHz timing or 160 channels of 200 MHz transitional timing.

In short, enough to handle the world’s fastest microprocessors. And with that kind of performance, you can easily track your system at clock rates well beyond 50 MHz, which allows you to locate complex coding errors quickly and accurately.
Enter the TDS 640.

With a 500 MHz bandwidth and 2 GS/s real-time sampling on four channels, the TDS displays logic and timing errors with absolute accuracy. And because it was created with the digital designer in mind, the TDS lets you trigger directly on common digital circuit events like glitches, runt pulses, and excessive clock jitter or skew. Put all that together with the power of the GPX and you have a remarkably effective solution.

Cost effective, too. In fact, the GPX and TDS together sell for less than competing scope/logic analyzer combinations. And if you buy the pair between now and February 28, 1993, we'll take an additional 10% off the retail price.

Enough, already.

For more information on the very best high-speed digital design tools available, call Tektronix today at 800-426-2200.
Tango gives you two powerful choices in printed circuit board design. There's Tango-PCB PLUS, our advanced PCB layout tool for the designer with complex design requirements and our entry-level Tango-PCB, a comprehensive, yet low-cost program for less demanding designs.

Tango's interface puts you never more than two mouse clicks away from any command. On-line help, pop-up menus, dialog boxes, prompt line and unique "speed palette" and "hot spots" all combine to make Tango quick to learn, intuitive and easy to use.

Tango-PCB and Tango-PCB PLUS both feature: user-defined sizes of tracks, pads, arcs, fills, text and grids; versatile moving, mirroring, rotating and releasing of components; full support for net lists from popular schematic programs; comprehensive block operations; design verification tools; SMT support; unlimited zoom levels and autopanning; NC drill files; and crisp output to a wide array of printers, plotters and photoplotters.

Tango-PCB PLUS increases design productivity by adding: automated component placement; integrated design rule check; photoplot file viewer; output in DXF and PostScript"; and EMS (expanded memory) support.

Both packages give you Tango's well-known price-performance leadership. And as with all of ACCEL's complete Tango family of electronic design automation tools (schematic entry, board layout and autorouting, PLD design, thermal analysis and logic simulation), our customers receive service, documentation and technical support that is second to none. Call us to learn more about how a modest investment in Tango PCB tools can help you become more productive.
A story of three computer products

Dan Strassberg, Senior Technical Editor

This second installment of EDN's Design It Right series on developing electronic products tells the stories of three computer-and-peripheral products. The Force CPU-2S is the first in a family of VMEbus boards, each of which provides the capabilities of a Sun Microsystems SPARCstation in a single-board plug-in format. The Quantum Go*Drive 2½-inch (diameter) hard-disk drives have helped to make notebook PCs a reality. The Tusk Supertablet is in the vanguard of what many observers think is a revolution—pen-based computing. In one of its many embodiments, this chameleon-like product is a pen PC.

Of these products, the CPU-2S and the Go*Drives come from established companies that have refined their methods of developing products over the course of several years. One reason that Force is noteworthy is the very strong influence of its quality organization. Quantum is worth learning about because it is in a business that lives or dies by time to volume deliveries. The firm has developed a successful 8-year relationship with a manufacturing partner in Japan. When Quantum needed to cut new-product development time drastically, the company recognized that it had to transform both its own culture and that of its partner. The transformation worked.

On the other hand, Tusk is a new company that has designed an unconventional product—perhaps a revolutionary one. The firm is concentrating on market research, product definition, design, and marketing. It won't be building the product itself, but will rely on contract assembly. Don't be fooled, though: Tusk isn't taking this approach out of naivete or a lack of manufacturing expertise. The firm's management team includes a seasoned operations executive with heavy experience in desktop-PC manufacturing. Like Quantum, Tusk is simply being pragmatic. By using contract assembly, the firm is delegating a task to those who can perform it best and is focusing its own resources where they can make a unique contribution.
How You Know And What You Know

At Force Computers, on almost any day, the burning question of the day is "How do you know?" The Quality Department asks that question relentlessly to promote a disciplined thinking style whose purpose is resolving problems while they are still minor...before they have a chance to grow into crises.

Force didn't invent the idea of repeatedly asking people how they know. The registrars who visit a company's facilities to provide certification of compliance to international quality standards such as ISO 9001 use the same technique. During certification, the registrars interview employees who perform a variety of jobs. Whenever an employee asserts that something is true, a registrar is likely to ask "How do you know?" Having achieved the correct mindset, Force is well on its way to obtaining certification under ISO 9001; the firm's German subsidiary has received it already.

In the case of the CPU-2S, the technique worked—by minimizing the number of schedule slips caused by unplanned events. The entire project took just 15 months from inception to shipment. The $7995 (US base price) CPU-2S is in effect a Sun SPARCstation on a remarkably complex 14-layer 6U-size VMEbus pc board that contains a RISC µP, a high-performance numeric coprocessor, several custom VLSI ICs, and as much as 64M bytes of RAM. It is the first member of a family of three boards whose total sales are expected to exceed 10,000 units over four to five years.

Despite its complexity, and even though there had been neither a full breadboard nor a full simulation, the very first CPU-2S board came up and ran without any modifications. (Although the board didn't run at first, it would have, had it not been for a defective crystal. After two days of fruitless troubleshooting, a frustrated engineer bounced his screwdriver off the crystal can. Then the board began to work.)

Even though the prototype was a success, Force did make changes to improve manufacturability before putting the design into production. These changes were relatively minor, however, and from the time engineering finalized them, only 45 days elapsed until manufacturing declared the first lot complete. The 45-day interval represented a nearly ½ reduction from the time required on earlier Force products.

If you have inferred that Force's design process is organized and disciplined, you're right. Unlike many companies of its size (about 85 people work at the US headquarters; the German subsidiary employs perhaps half again as many), Force adheres to a formal product-development protocol. Of course, the existence of a script can't guarantee that everything always happens as planned. (The crystal problem is an example of something that didn't.) But when things go wrong, a disciplined, methodical problem-solving approach stands the best chance of producing a solution in a reasonable time.

One of the disciplines Force has developed—if not perfected—is sharing resources among projects. Sharing resources isn't something Force particularly likes to do; in an ideal world, a company could commit people to work exclusively on...
Force's lessons cover issues from microscopic to global

In designing a complex pc board, pay attention to component placement. If you do, the rest will fall in place. Careful placement is the key to routing, manufacturability, and reliability.

Don't assume that, when you have selected a set of design tools, they will magically become useful right away.

Encourage the people who will use new tools to receive training, and allow time for them to train and come up to speed. Tools affect the way people do their jobs and the way an organization operates. If your expectations about how fast you will be able to integrate a new tool into your operation are set too high, the results may be chaos and missed deadlines.

Don't be satisfied with "good" results in manufacturing. Even when the results meet your expectations, strive for continued improvements. Chances are, if you ask "How do you know that you can't do better?" you won't get a good answer. At Force, this approach—the opposite of "If it ain't broke, don't fix it"—results in a continuous stream of process improvements that reduce rework and raise both quality and profitability. An example is an improved method of soldering through-hole mounted components on boards containing surfacemounted components on both sides.

Such boards now go through the solder wave in a carrier that covers all of the solder-side surfacemounted parts.

Plan and execute a concurrent-engineering program. Concurrent engineering works! Not only will working simultaneously on design, manufacturing, and sales issues reduce the time from concept to delivery, the cross-pollination of ideas that naturally follows will improve the product. Because of contact with people from various disciplines, designers in a concurrent-engineering program get a better picture of what is required for the product to succeed. As a result, they incorporate features that improve the product's chances of success.

During design, design it right. After review, test it right. During manufacturing, plan and execute a concurrent-engineering program. After review, test it right. During product test, work for better test results. And after product test, improve the product by applying the lessons learned.

VOTE! Please also use the Information Retrieval Service card to rate this article (circle one):

High Interest 479   Medium Interest 480   Low Interest 481

Don't assume that crises will arise on each project on which a shared person is working. Allow slack time in your schedule to cover temporary losses of shared people. If you get ahead of your schedule, don't relax or congratulate yourself; a crisis on one of the other projects could still set you back.

When you must share resources, communication becomes the key to setting and keeping realistic schedules. For this purpose, Force runs weekly concurrent-engineering meetings. At first, each project had its own meeting. Then the company tried a single meeting for all projects. The single meeting became too unwieldy, however, so project-oriented meetings resumed. These meetings have a rigid 1-hour time limit. A representative of the Quality Department attends; when a project is running smoothly, it is likely that team members' only contact with the quality group will occur at these weekly meetings.

A project's initial meeting establishes the input and output requirements for each contributing group. Each group determines what items or information it will need as inputs to produce a particular output. A group's input requirements become some other group's output requirements and give rise, in turn, to more input requirements. When all groups have established their input and output requirements, they can determine how much time they will need for each task. At this point, there is enough information to construct a schedule. Of course, constructing the schedule would be easier if no resources were shared, and staying on schedule would be a snap if crises never arose.

Force Computers Inc
3165 Winchester Blvd
Campbell, CA 95008
(408) 370-6300
FAX (408) 374-1146
Circle No. 511
Throughout the electronics industry in the '90s, reducing time to market is probably the single most important objective of R&D managers. And if there is one part of the industry that lives and dies by time to market, it's hard-disk drives. But as Larry Willson, Director of Development for Quantum Corp's 2½-in. products points out, in hard drives, although the time from the inception of a development project to the product announcement is very important (this is the period that most people think of as "time to market"), what is really crucial is the time to volume deliveries.

In the disk business, competition is so keen that missteps often prove fatal. The field is littered with the corpses of companies that announced products they hadn't learned to produce in volume and couldn't deliver reliably in quantity before competitors could. Naturally, an industry that emphasizes time to volume requires unusually close cooperation between design and manufacturing.

Quantum designs all of its drives at its Milpitas, CA headquarters and manufactures its high-capacity, high-performance workstation drives in the US. However, high-volume personal-computer products, including 2½-in. drives, are built by a Japanese partner, Matsushita Kotubuki Electronics Industries (MKE) in Ipponmatsu. The two firms have been working together for more than eight years.

Quantum long ago established an enviable reputation for product quality. When the company said it was ready to ship a product in volume, it really was able to do so, and the product performed as advertised. Quantum's problem had been that it usually wasn't ready to accept volume orders until its competitors had locked in the juiciest OEM contracts. To survive, the firm had to change its culture; it had to learn how to shorten development cycles without sacrificing its vaunted quality. But because of Quantum's reliance on a Japanese manufacturing partner, changing Quantum's culture involved changing the culture of two corporations operating in two very different societies six thousand miles apart.

The solution was an approach that Quantum calls fast cycle time or FCT. One element of FCT is what Quantum calls the "bump" environment. The company locates all team members close enough to each other that in doing their jobs they almost literally bump into one another. These informal contacts lead to exchanges of information that otherwise might remain privy to only a few team members. For products that will be produced in Japan, MKE representatives are part of the bump groups.

Another element of FCT that be-
The first product on which Quantum tried FCT was the Go*Drive 40/80 duo, the first members of what is now a 6-member family of 2½-in. drives for laptop and notebook PCs. Besides the original pair, the family now includes the Go*Drive 60/120 and the Go*Drive GRS 80/160. As you've probably discerned, the numbers at the end of the model designation are the drives' approximate formatted capacities in Mbytes. In each model pair, the first unit has a single platter and the second has two. Thanks to technology improvements during the 10 months between the introduction of the first and third drive pairs, the latest 1-platter unit boasts almost the same capacity as did the original 2-platter model.

Over the production life of the family, the firm expects to ship approximately 1.5 million units. Current estimated street prices (single-piece quantity) with a 16-bit ISA bus integrated-drive-electronics (IDE) interface are around $220 for 40 Mbytes, $260 for 60 Mbytes, and $300 to $330 for 80 Mbytes. Units with a SCSI interface sell for about $10 more.

According to Quantum, the Go*Drive family was the industry's first series of 2½-in. drives. Developing the first two drives took 17 months between the introduction of the first and third drive pairs.
months. These products included so many novel elements that the company classified them as revolutionary, even though no advance, by itself, represented a revolutionary improvement over existing practices. Whereas the 17-month cycle marked a dramatic reduction from earlier programs that Quantum had classified as revolutionary, the less extensive program to develop the 60 and 120-Mbyte models, also conducted using FCT, took just six months. Bringing out the single-platter 80-Mbyte unit and its 2-platter 160-Mbyte counterpart required a mere four months.

Six thousand miles from home

The MKE engineers who become part of bump groups are not the only ones who cross the Pacific during Quantum development programs; engineers from Milpitas spend many weeks at MKE. To prepare for trans-Pacific assignments, people from each company receive training in the other country's language and customs. During the away-from-home assignments, the guests develop lasting friendships with their hosts. As the two companies continue to work together, these friendships are certain to improve cooperation even further.

In the area of manufacturability, Quantum personnel have learned not to second guess their MKE counterparts. Early attempts in Milpitas to develop production tooling for the Go* Drive family yielded fixtures that MKE couldn't use; MKE had to replace the fixtures with units of its own design.

MKE's interest in optimizing the production process extends beyond tooling. MKE engineers aren't shy about telling Quantum when elements of a design should be altered to simplify manufacturing. Quantum has found that the MKE people research the suggested changes meticulously and propose most of them before volume production begins, avoiding the cost of making running changes. The modifications are nearly always practical and usually improve quality as they reduce cost. The result is that everybody wins: MKE and Quantum share in the savings; Quantum's customers benefit from improved reliability.

Quantum Corp
500 McCarthy Blvd
Milpitas, CA 95035
(408) 894-4000
FAX (408) 894-5088
Nellie Connors
Circle No. 512

---

Don’t try to be all things to all people

Reading about its features and specs may make you lust after the Tusk Supertablet PC. But at a price of over $5000, the machine costs considerably more than laptop or notebook PCs. So, despite its dazzling list of features, it isn’t a computer for all seasons, and Tusk is taking great care not to represent it or sell it as such. The company doesn’t even plan to release the unit to the retail channel through which most general-purpose PCs are sold. Rather, the firm is targeting the Supertablet at a host of special applications where, despite its price, it will be an economical solution or the only practical solution.

Defining what the Supertablet is—and isn't—is a challenge, because the machine can be so many things. What looks straightforward enough often is anything but. The Supertablet's chameleon-like ability to adapt to the needs of specific applications might make you think that its designers wanted to please everyone. But at over $5000, the unit is not priced like a general-purpose PC, and Tusk has no intention of trying to sell it to a mass market.
things. It can be a pen-based PC—but it doesn’t have to be. It can be a portable high-resolution monochrome-graphics workstation with a 1280 × 1024-pixel, 11-in.-diagonal, 64-shade, paper-white display—but it doesn’t have to be; it will also be available with a monochrome LCD having the standard 640 × 480-pixel VGA resolution. (The 1280 × 1024-pixel version provides a built-in double-scan VGA capability, so applications that don’t support 1280 × 1024 pixels can provide near-full-screen displays.) The computer can also be very light—but it isn’t always. There really is no standard model.

The heart of the Supertablet is a <6-lb (with VGA-resolution LCD) pen-based PC that has a 25-MHz i386SL µ.P, fast local-bus video, support for simultaneous displays on the LCD and an external CRT, a math-coprocessor socket, an internal 2400-bps data/9600-bps FAX modem (9600-bps data/FAX modem optional), 8 Mbytes of RAM (expandable to 20 Mbytes), an 85-, or 190-Mbyte hard disk, and batteries that provide 4 hours of operation without invoking any of the power-conserving features. The tablet includes standard connectors, for example for the RS-232C and printer ports and the modem’s telephone connection. For protection from the environment, these connectors are covered.

Oil wells to PCs

Bill Hart, one of Tusk’s two founders and the person behind the technical aspects of the Supertablet, is an ME, not an EE. His background is in instruments for oil-well surveying. Oil fields are far from the most hospitable environment for electronic equipment, and Hart carried the lessons he learned in packaging well-survey equipment into the Supertablet design.

Changing markets require PC designers to react fast

Involve the mechanical and electrical architects in the market research. Through focus groups and in-depth interviews with representatives of targeted groups of users, Tusk conducted extensive market research. However, the firm was half way through the definition process before the design team conducted its first concept review. Although the team members were never confused about the fact that they were developing a rugged computer, users’ specific ruggedness requirements caused some rethinking of approaches the team had already decided on. In retrospect, had the team known about the customer requirements sooner, the tablet’s development costs would have been somewhat lower.

Don’t attempt to use outside vendors for leading-edge technologies. Tusk had little success with such attempts. In one case, Tusk engaged a BIOS house to extend the firmware to handle the pen and i386SL power-management functions. However, the BIOS firm was so involved in support for core i386SL functions, that to stay on schedule, Tusk had to bring the BIOS development in house.

Once you have defined the product’s feature set, limit changes to those necessary to meet manufacturing requirements.

But don’t be inflexible in applying the preceding rule. Tusk based the Supertablet’s original release date on the projected availability of pen-based operating systems. When the operating-system release dates slipped—not altogether unexpectedly—the computer’s release date slipped too. When the release date slipped, Tusk had to revisit the feature set, because the hardware technology continued to evolve. Holding the feature set constant would have resulted in a design that had less than the 18 months of sales life the firm had been counting on to recoup its investment.
EDITOR'S ANALYSIS

A cynical view of early manufacturing involvement

A very high percentage of the companies mentioned in this series suggested among their do’s and don’ts that you should get manufacturing involved early in the design process; most suggest manufacturing involvement from the very beginning. As one who has worked in both design and manufacturing, I have a slightly jaundiced view of involving manufacturing in design.

I spent over 20 years in design and three years in manufacturing and test engineering, and it seems to me that design engineers’ interest in having manufacturing participate in design often has little to do with hearing another group’s ideas. Rather, designers espouse manufacturing involvement for defensive reasons: When production or test problems crop up, the designers can say “Well, the problems aren’t my fault; there was a manufacturing person on the project team and he (she) endorsed the design.”

Too many design engineers are used to treating manufacturing people as if they were second-class citizens, and too many manufacturing people stand in awe of designers. Too many design engineers are convinced that if only manufacturing people were a little smarter . . . if they had just one tenth of the brain power of designers, all of manufacturing’s problems would go away.

I suggest that these designers walk a mile or two in a manufacturing engineer’s shoes. And I suggest to managers that they examine their company’s culture. Companies that send a message that design engineers are first class but manufacturing engineers aren’t encourage the design of products that will be troublesome to manufacture. You can send messages about the value of different jobs in a variety of ways—through pay scales, through stock options, through perks such as office size . . . even through things like which department has a rug on the floor and which doesn’t.

I submit that the problem begins long before most engineers collect a paycheck. Veneration of design and denigration of manufacturing begin in college. Most EE faculty members have never held jobs outside of academia.

including a full PC keyboard (not just a keyboard port) and a floppy-disk drive, but little else. Docking the tablet requires merely dropping it into a slot and tilting it back a few degrees. Alignment between the connector’s mating halves is automatic.

No clamshell

When you place the tablet in the docking station, you have a lightweight (roughly 10-lb) desktop or laptop PC. To carry this unit around, you don’t fold it up clamshell style as you would most laptops; you remove the tablet and place it face down atop the keyboard. Then you place the two stacked objects in a portfolio that also accommodates the battery’s quick charger. The complete package with the portfolio weighs roughly 12 or 13 lbs. Although that weight sounds high for a laptop PC in 1992, it is not high for a portable high-resolution graphics workstation.

The docking station replicates all of the tablet’s standard I/O connectors, so you can connect external peripherals to the tablet via the station. You can also remove the tablet from the station without disconnecting the peripherals. But because the connectors on the tablet and on the station are identical, you can reconnect the peripherals directly to the tablet.

Many Supertablet users will never see the docking station or the portfolio, however. Thanks to features designed into the tablet, users with no keyboard will easily be able to run applications that depend on text entry. Several other pen computers require software that uses part of the screen to emulate a QWERTY keyboard; such software can conflict with the applications. On the Supertablet, around the periphery of the screen, etched into the protective glass are alphanumeric “keys” that you “press” by tapping the pen against them. The PC’s special BIOS recognizes such “key presses” just as if they came from the docking station’s keyboard.

By making the use of the docking
station optional for text entry, the tablet’s designers have freed up the ZIP connector for attaching accessories. In most cases, accessory units will come not from Tusk but from vendors who will resell the Supertablet into specialized markets.

This is a hard-hat job

One attachment is a receiver that picks up signals from GPS (Global Positioning System) satellites orbiting the earth. Envision this: A worker for a utility—a telephone or electric company—carries a receiver-equipped tablet. The tablet’s screen displays a map of the worker’s surroundings; the area shown changes as the worker moves about. Overlaid on the map are the locations and identifying codes of facilities (poles, transformers, and conduits, for example). The tablet’s hard disk stores the maps.

The worker drives to a job site in a truck, alights from the truck to perform repairs or tests, and, while out of the truck, uses the pen and tablet to enter data about the operations performed. Upon returning to the truck, the worker detaches the receiver from the tablet and slips the tablet into a specialized docking station on the truck’s dashboard. (Like the receiver, this station is not a Tusk product.) The docking station is linked to a transmitter in the truck, which sends the newly entered data to a central computer containing the master facilities database. The computer then automatically broadcasts database updates to the tablets carried by the utility’s other workers.

Although this example might sound fanciful, it’s real. The technology will be available by the time you read this; Tusk expects to ship its first Supertables to customers in early October. All manufacturing will be done by an independent contract-assembly firm, hence the design will either be producible at the outset or it will very quickly become so. When a product’s designers and manufacturer have this kind of arms’-length relationship, design problems that might otherwise linger beneath the surface tend to receive quick attention. Moreover, Tusk doesn’t lack for in-house manufacturing expertise. Its operations group is headed by an executive who directed desktop-PC manufacturing at IBM Corp’s Boca Raton (FL) facility.

Tusk Inc
1310 Gateway Rd, Suite 201
Lake Park, FL 33403
(800) 275-8875; (407) 881-9050
FAX (407) 844-4351

Next in Design It Right . . .

Part III of Design It Right, which will appear in the October 29, 1992 issue of EDN, will cover leverage, or how to get the biggest bang for your R&D bucks. In it, you’ll discover how one company replaced a proprietary µP board in a high-performance instrument with an 80X86 mother board and standard PC peripherals. The approach brought with it some unexpected responsibilities for the designers. You’ll also read how a new company found that its suppliers were as interested in its success as its own employees. As a result, the suppliers became, in effect, members of the design team. Finally, you’ll learn about a company’s experiences in designing a product around the VXI modular-instrument standard.

Article Interest Quotient
(Circle One)
High 479 Medium 480 Low 481
Melcher Power Supplies

A Leader By Any Standard

The seal of approval of the world's major testing and approval authorities ensures worldwide acceptance of Melcher power supplies. Melcher products are designed and built to meet the very high safety and quality standards demanded by our customers all over the world. They also comply with the general standards of EN, VDE, SEV, UL and CSA as well as with specifications for telecommunications, railway and many other specialized applications.

Melcher has also earned the distinction of being one of the first in its field to achieve ISO 9000 certification — ensuring that its top-rated products can meet the industry's highest quality standards.

Certified
ISO 9001
EN 29001

Supplying great Performance

MELCHER
MELCHER Inc., Chelmsford, MA 01824
Tel. (800) 828-9712, Fax (508) 256-4642

CIRCLE NO. 63
From KEPCO...

Keyboard-Controlled Power Supplies at old-fashioned knob prices.

Kepco's new DPS series provides 75 Watts of well-behaved d-c power in four ranges from 0-12.5V to 0-125.0V. Conventional control knobs are not to be found! DPS is controlled by a convenient front panel keypad that commands a built-in microprocessor to set voltage, current limit, range, OVP, displays and over-current protection. Remote talk-listen control is exercised via a simple RS232C connection that may be addressed in BASIC or most common languages. Keypad SLEW controls permit continuous adjustment of the voltage up and down for fine adjustment while the output is enabled. Separate large-character LED displays are provided for both voltage and current.

<table>
<thead>
<tr>
<th>DPS MODEL TABLE</th>
<th>d-c OUTPUT HIGH RANGE</th>
<th>d-c OUTPUT LOW RANGE</th>
<th>RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
<td>VOLTS</td>
<td>AMPERES</td>
<td>VOLTS</td>
</tr>
<tr>
<td>DPS 12.5-6M</td>
<td>0-12.5</td>
<td>0-6</td>
<td>0-6</td>
</tr>
<tr>
<td>DPS 25-3M</td>
<td>0-25</td>
<td>0-3</td>
<td>0-9</td>
</tr>
<tr>
<td>DPS 40-2M</td>
<td>0-40</td>
<td>0-2</td>
<td>0-15</td>
</tr>
<tr>
<td>DPS 125-0.5M</td>
<td>0-125</td>
<td>0-0.5</td>
<td>0-60</td>
</tr>
</tbody>
</table>

| DPS GENERAL SPECIFICATIONS | | |
|----------------------------|----------------------------|
| INPUT                       | CONDITION | RATING DESCRIPTION |
| a-c Voltage                 | User selectable | 115-230 Va-c ± 10% |
| Current                     | Max load 115Va-c | 1.4A |
| Fuse                        | 115Va-c | 3A |
|                            | 230Va-c | 2A |
| Frequency                   | Range | 50-60Hz |
| OUTPUT                      | Microprocessor controlled | Linear, series-pass |
| Type of stabilizer          | Voltage | |
| Voltage                     | Voltage limit mode | 0 to 40°C | 0-100% rating in two ranges |
| Current                     | OCP | Over current protection disables output |
|                            | Short circuit protect | Enables output after 10 seconds |
| Error sense                 | Drop | 0.25V per lead |
| Isolation voltage           | Output to ground | 400 Vd-c or peak |
| Leakage current             | rms at 110Va-c | 50 microamperes |
| Output to ground            | p-p at 110 Va-c | 0.5 milliamperes |
| Series connection           | Max voltage off gnd | 400V |
| Parallel connection         | Control limit | NA |
| OVP                         | Voltage stop | |

| CONTROL                     | | |
| Type                        | Local | Keypad |
|                            | Remote | RS232C |
| Dynamics                    | Rise time | <16 msec |
| (Resistive load)            | Fall time | <75 msec |
| Isolation                   | Control-output | Optical |
| Range                       | Current capacity | Automatic |
| Memory                      | Store settings | 3 volatile locations |

| MECHANICAL                   | | |
| Input connection             | Detachable line cord | IEC type |
| Output connections           | Front | Binding posts |
| Meters                      | Two LED | Three digit |
|                            | Remote | |
| Indicators                  | LED | |
|                            | OPE (output enable) | |
| Mounting                    | 19" rack | RA 56 |
| Cooling                     | — | Convection |
| Dimensions                  | Outside HxWxD | 4.5"x13.1"x8.5" |
| Panel finish                | Fed Std 595 | Color 26440, Gray |
| Weight                      | Packed for shipment | 14.5lb/6.6Kg |
|                            | NET | 13lb/5.9Kg |

Data subject to change without notice. © 1992 KEPCO, Inc. Litho in USA
From KEPCO...

Keyboard-Controlled Power Supplies at old-fashioned knob prices.

DIMENSIONS

Dimensions in light face type are in inches, dimensions in bold face type are in millimeters.

RACK ADAPTER
MODEL RA 56
For mounting in standard 19" rack.
We Like to Illustrate How Well We Adapt

SUN SPARC Station SBus

DEC TURBOchannel™

IBM Micro Channel™

PC-AT, ISA, EISA

VMIC® SBS-5521

VMIC® TCN-5521

VMIC® MCN-5521

VMIC® ATX-5521

VMEbus

Link Your Sun Sparc, DEC, IBM, PC-AT, ISA or EISA Bus to VMEbus Computers.

VMIC's new family of VMEbus adapters gives you the ability to easily connect your workstation to your VMEbus. VMIC's new adapter family links Sun Sparc Stations, DEC 5000 Workstations, IBM 6000 Series Workstations, and machines based on PC-AT, ISA or EISA bus to VMEbus computers.

The product line supports master(s) and slave(s) in the VMEbus chassis and features a software-controlled dynamic address mapping mode. A software transparent mode is supported at power-up and requires no additional initialization.

VMIC also offers a Reflective Memory product line. Call VMIC toll-free and let us illustrate how easy it is to connect you.

1-800-322-3616

VMIC®

VME Microsystems International Corporation
12090 South Memorial Parkway
Huntsville, AL 35803-3308
(205)880-0444 FAX (205)882-0859

CIRCLE NO. 64

TURBOchannel is a trademark of Digital Equipment Corporation.
Micro Channel is a trademark of International Business Machines Corporation.
Memories of Tomorrow. Available Today.
NEC offers the industry’s broadest line of high-speed memories.

Memory access is as critical as processing speed in the design of a successful system. For memories fast enough to run with your leading-edge processor, come to NEC. We’ll help you select the optimum match for your processor and system parameters from the industry’s broadest line of high-speed memories.

NEC memories combine fast-access with high-density.

- **Fast SRAM**
  - 1M: 15ns x8, x9, x16, x18
  - 20ns x1, x4
  - 4M: 20ns x1, x4, x8

- **DRAM**
  - 4M: 60ns x1, x4
  - 70ns x8, x9, x16, x18
  - 16M: 60ns x1, x4

- **VRAM**
  - 2M: 70ns x8

- **SRAM**
  - 256K: 55ns x8
  - 1M: 70ns x8

NEC is the front-runner in memory design because we give you more speed and more choice, including low-voltage and thin-package options. For memories fast enough to keep pace with the future, call NEC today.

From the leader in memory technology
Power-management ICs secure your portable application between battery charges, letting you keep a firm grip on your data. (Photo courtesy Cirrus Logic Inc)
POWER MANAGEMENT

Today, no respectable business traveler leaves home without a portable computer. This boom has spurred the development of power-management products that ensure these computers have enough juice between battery charges.

John Gallant, Technical Editor

In recent years, the portable computer has spawned an outbreak of innovations to conserve battery power. When portable computers were in their infancy in the late 1980s, computer vendors generally used an all-CMOS design surrounding a 16-MHz 886SX µP to extend battery life. Although an all-CMOS design can conserve power in low-frequency applications, higher-performance CPUs warrant more power-saving features to achieve useful battery life between charges. These power-saving features are revolutionizing the design of mobile computers ranging from laptops and notebooks to check-book-sized palm tops. The obvious way to conserve power in a CMOS design is to use a low clock rate whenever possible. Because CMOS drivers consume power only during clock transitions,
fewer transitions are less power consuming than many transitions. In fact, CMOS drivers display linear power dissipation vs the clock frequency. However, to achieve the maximum performance of the computer, you need to run the clock at the maximum CPU speed. Therefore, to manage the power consumption in high-performance portable computers, vendors use techniques to lower the frequency or even shut off the clock to portions of the computer that aren’t currently in use. In essence, vendors manage power consumption by minimizing the duty cycle of the system clock rate relative to the maximum CPU clock rate. An effective power-management policy also removes the power to any device not in use.

To achieve effective power management, CPU vendors and third-party IC and software vendors have worked closely to integrate specific power-management features in products intended for mobile use. One of the innovations in CPUs is Intel’s i386SL Superset. In 1990, Intel introduced the SL Superset, which consists of an i386SL CPU ($122 (1000) for a 25-MHz version) and an 82360SL ($32 (1000)) peripheral controller. The i386SL CPU contains a 16-, 20-, or 25-MHz 386 µP core that has the same page-management memory system as a standard i386 µP. In addition, on-chip hardware implements an expanded memory system that is compatible with the LIM 4.0 standard.

A super chip manages all

The 82360SL contains many of the I/O peripheral features found in core logic. These features include serial ports, parallel ports, timers, interrupt handlers, and DMA controllers. The chip also has keyboard, floppy-disk drive, and IDE-disk drive control features. The chip generates dynamic RAM (DRAM) refresh signals and has a low-power timer to refresh low-power DRAMs. A system-management mode (SMM) is the main feature of the SL Superset to conserve power. The SMM lets you write software to monitor and control system power transparent to normal operations. The ingredients that let you implement SMM are a system-management interrupt (SMI), a system-management RAM (SM-RAM), and an I/O port called Ideaport.

The 82360SL generates the SMI in response to system interrupts that monitor system activity and battery status. The SMI connects directly to the CPU and is similar to a nonmaskable interrupt (NMI), which is unaffected by the interrupt-enable bit in the CPU’s flag register. The SMI has a higher priority than the NMI, however. The SM-RAM consists of a separate 64 kbytes of memory space that the CPU switches into locations 030000H through 03FFFFH when the CPU recognizes an SMI. The CPU saves its contents to the SM-RAM area and switches to real mode for execution of the SMI handler code at the absolute 038000H address. You can implement handler code to independently control the speed or stop the CPU, math coprocessor, DMA, or keyboard clocks.

The SL Superset has 13 power-management timers to keep track of external-device idle times. The Ideaport can control power to as many as six external devices. The SMI handler, resident in the 82360SL, monitors and interprets system events to provide three different power-management states—
The 3V revolution

A quiet revolution is going on. In the 1960s, when TTL became the logic family of choice, a 5V supply was chosen to provide adequate noise immunity. TTL’s totem-pole output configuration produces a typical 3V logic high-output level, which provides a 0.6V margin above the typical V_{OH} threshold of 2.4V. However, the advent of CMOS in the 1970s created a logic configuration having an output swing to the supply rail. Although the supply rail has remained at 5V for many years to maintain TTL-to-CMOS logic compatibility, a 5V rail is unnecessary and in many respects remains as 1960s hangover.

Because the CMOS output can swing to the rail, a 3V supply in an all-CMOS design provides the same noise margin as TTL. A change to a 3V rail provides a couple of benefits. One benefit is power savings. Joule’s law (P = V^2/R) states that the power consumption is proportional to V^2. Therefore, a simple change from a 5V supply to a 3V supply reaps a power savings of 3^2/5^2 = 0.36, or 36% less current drain from the power supply.

In addition, a lower supply rail permits device designs using smaller geometries. The relentless drive to integrate more performance and higher speed into CPUs is forcing vendors to use component geometries less than 0.8 μm. However, geometries of 0.5 and 0.6 μm exhibit reliability problems due to gate-oxide breakdown and hot electron effects when using a 5V supply rail. A 3V supply rail reduces the failure mechanisms to acceptable reliability figures.

Although JEDEC defined a low-voltage 3.3V standard for TTL devices in 1984, the emphasis on low-power portable-computer design in the 1990s is providing the impetus to change from a 5 to a 3.3V standard. The current JEDEC standard has a ±10% tolerance, which permits operation from 3 to 3.6V.

Pundits predict that by 1995 there will be a complete switch over to 3V devices. But in the interim, portable-computer designers must deal with systems that have a mixture of 5 and 3V components. Currently 3V CPUs, memory, core logic, and video controllers are available. But other peripheral devices, such as PCMCIA controllers, I²Sbus expansion slots, and floppy- and hard-disk-drive controllers still require a 5V supply.

To prevent a 5V output from overdriving a 3V input system, designers may opt for both a 3V and a 5V local bus on the motherboard. The buses communicate via 3-to-5V translators. Some vendors provide the level translators on chip so that the core runs at 3.3V and the peripheral I/O drivers run at either 3.3 or 5V selectable by the system designer.
chip, which was announced in June 1992, operates at 20 MHz. AMD also offers a 25-MHz Am386DXLV ($61 (1000)) low-power µP that operates from 3.3V and has an SMI interface.

AMD has formed an alliance, called FusionPC, with a number of core logic and BIOS vendors to guarantee that their low-power µPs interoperate with peripheral components. As a consequence, you can choose how to implement the power-management features. For example, Headland Technology’s HT25 ($37.55 (1000)) core-logic chip connects directly to the SMI line on the Am386SXLV and Am386DXLV µPs. The HT25 performs the peripheral-support functions on a single chip and operates at 25 MHz from a 3V supply. The HT25 generates the SMI when one of its 44 activity monitors detects device idle time. The chip can control or stop the CPU and math-coprocessor clock speeds and supports slow-refresh and self-refresh DRAMs during suspend mode.

To effectively manage the system power, all of the computer subsystems must have power-management capabilities. For example, a system might use a Motorola 68HC05G8 ($16 (1000)) or a Signetics 87C752 ($7.50 (10,000)) µC that contains A/D converters to monitor battery conditions via an external resistor divider. When the battery weakens, the µC generates a battery-low or a battery-dead indication for an activity monitor. In addition, these µCs have timers and counters that can monitor device activity on chip. The biggest current drain in portable computers is the video subsystem, primarily the backlight for the LCD screen. To ensure maximum battery life, an LCD controller must provide flexible options to minimize power consumption when the LCD is not in use.

Cirrus Logic’s CL-GD6412 ($65) LCD VGA-controller chip features standby, suspend, and shutdown modes. Cirrus defines its standby and suspend modes differently from Intel. In standby mode, the chip suspends power to the LCD, but all other functions continue. In suspend mode, the chip suspends all video-subsystem operations except maintenance of the operating state and video-RAM contents. In shutdown mode, the chip stores the operating state and video-RAM contents to the hard disk before removing power from the entire video subsystem. In addition, when driving a dual-scan panel, the CL-GD6412 achieves the required panel-refresh rate using one half the normal-dot clock rate. The lower-dot clock rate proportionally reduces the video-subsystem power. The chip operates from either 3 or 5V supplies.

SMOS Systems’s SPC8107 ($18 (1000)) LCD VGA controller operates from 3V and features four soft-
TRY AND TALK YOUR WAY OUT OF THIS ONE

Introducing HYDRITECH—the new nickel hydride battery with 25% more power than the best nickel cadmium battery. With HYDRITECH, your cellular phones can give users additional talk time without recharging. HYDRITECH’s enhanced performance allows you to add more features and design a lighter, smaller product. All with one hour charge capability. And its environmentally preferred. Gates Energy is the only company that offers a full line of nickel hydride batteries and unparalleled assistance to apply this new technology to your designs. If you’re interested in designing cellular phones with more talk time, then there’s no excuse for not using HYDRITECH. So, just give Gates Energy a call at 1-800-67-POWER. HYDRITECH. It’s the one power source you can’t talk your way out of.

THE NEW HYDRITECH BATTERY FROM Gates Energy Products
PC POWER MANAGEMENT

ware- and one hardware-controlled power-saving modes. In all of the power-saving modes, the controller disables the LCD screen. In software mode 1, the CPU can read and write to the video RAM. Software mode 2 prevents CPU access to the video RAM. Modes 1 and 2 refresh video memory at 64 or 8 kHz. Software mode 3 is similar to software mode 2 but also disables memory refresh and optionally disables the clock oscillator. Software mode 4 is similar to software mode 2 but uses self-refresh DRAMs to maintain the video-RAM contents.

In the hardware mode, called suspend mode, the CPU can't access the video RAM, and the controller provides the control for self-refresh DRAMs, disables the clock oscillator, and deactivates all CPU interface signals.

The power-saving modes of LCD VGA controllers represent typical subsystem options designers have for conserving power in portable computers. With so many options available, it isn't surprising that portable-computer designers rely on BIOS vendors to supply power-management firmware in ROM that coordinates the system's power-down modes. One such BIOS vendor is Phoenix Technologies Ltd. Phoenix offers the Phoenixmiser, which operates with the PhoenixBIOS 386SL to administer all of the power-management features of Intel's SL Superset under Microsoft's Windows. Because Phoenixmiser and the PhoenixBIOS 386SL offer numerous custom options, the product cost is negotiable for OEM vendors.

The Phoenixmiser manages five system states. The on state runs the system at the specified setup speed with all devices at full power. A component power-management control state controls power to individual devices, such as the LCD panel, backlight, hard-disk drive, and parallel and serial ports. An idle state turns off the power between individual keystrokes and the CPU, floating-point unit, and keyboard controller. A standby state turns off the display and the hard- and floppy-disk drives, and saves the status in system memory. The suspend state places the system memory into slow-refresh mode and cuts the keyboard clock in half. The suspend state stores all system status to the hard disk and removes power from the system. Upon resume, the system reads the status from disk to return to the same point in the application.

Systemsoft is another software vendor that offers power-management firmware along with a system BIOS in ROM for Intel's SL Superset. The Maximizer's (5.35) configuration utility provides user-adjustable settings to provide flexible power management. When using the utility, the screen displays a number of system-level power-management fields. The fields include turning the power management on and off and programmable timeouts for four different power-down modes. A CPU standby mode halts the CPU clock after a programmed system-inactivity period. A global standby mode reduces the power further by removing power to controllable peripherals. A 5V suspend mode conserves 99% of battery drain and saves system information in DRAM. A zero-volt suspend mode shuts off all system power and saves system information to disk. The bottom of the screen's menu lets you select hot keys to turn on the standby and suspend modes.

An optional APM Interface module ($2) for the Maximizer lets you take advantage of the Advanced

For more information . . .

For more information on power-management products such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Advanced Micro Devices Inc
901 Thompson Pl
Sunnyvale, CA 94083
(408) 732-2400
Circle No. 500

Cirrus Logic Inc
3100 W Warren Ave
 Fremont, CA 94538
(510) 623-8300
FAX (510) 226-1700
Circle No. 501

Cyrix Corp
2703 N Central Expressway
Richardson, TX 75080
(214) 234-8387
FAX (214) 699-9837
Circle No. 502

Headland Technology Inc
46221 Landing Pkwy
Fremont, CA 94538
(510) 623-7857
FAX (510) 666-0379
Circle No. 503

Intel Corp
2625 Welch Ave
Santa Clara, CA 95051
(408) 765-4302
Circle No. 504

Inte1 Technology Inc
139 E Fair Ct
Sunnyvale, CA 94086
(408) 737-0888
FAX (408) 737-3838
Circle No. 506

Motorola Inc
6501 Williams Cannon Dr W
Austin, TX 78735
(512) 891-2035
Circle No. 505

Oak Technology Inc
3430 S Mariposa St
San Jose, CA 95117
(408) 452-6500
FAX (408) 452-1985
Circle No. 507

Phoenix Technologies Ltd
811 E Arques Ave
Sunnyvale, CA 94088
(408) 991-2000
Circle No. 508

Signetics Corp
3110 Bayshore Blvd
Sunnyvale, CA 94086
Circle No. 509

SMOS Systems Inc
2460 N First St
San Jose, CA 95110
(408) 922-0238
FAX (408) 922-0238
Circle No. 510

Systemsoft Corp
311 Speen St
Natick, MA 01760
(508) 651-0088
FAX (508) 641-0618
Circle No. 510

VOTE . . .

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 476 Medium Interest 477 Low Interest 478
If the performance specifications don’t convince you,

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>Formatted Megabytes</th>
<th>Internal Transfer Rate (Mb/sec)</th>
<th>Spindle Speed (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST11200</td>
<td>3.5&quot;</td>
<td>1,050</td>
<td>40</td>
</tr>
<tr>
<td>Wren 9</td>
<td>5.25&quot;</td>
<td>1,900</td>
<td>31</td>
</tr>
<tr>
<td>Elite 2</td>
<td>5.25&quot;</td>
<td>2,129</td>
<td>40</td>
</tr>
<tr>
<td>Elite 3</td>
<td>5.25&quot;</td>
<td>2,904</td>
<td>52</td>
</tr>
</tbody>
</table>

the five-year warranty will.

When a drive offers specifications like these, you want it to last a long, long time. And now, with Seagate’s new five-year warranties on these top-of-the-line drives, that longevity is guaranteed.

The drives on this chart represent the leading-edge technology products that make Seagate the first name in high-performance disc drives. They’re ideal for applications like workstations, fileservers, arrays, minicomputers and even mainframes—the systems where drive longevity is especially vital.

New five-year warranties are just one of the many ways Seagate is working toward new levels of leadership in quality, technology and service. Call Seagate today at (408) 438-6550 for complete product and warranty information.
Power Management (APM) feature in Windows 3.1. Microsoft and Intel jointly defined the application program interface, which lets an application running in Windows 3.1 send a command to the BIOS layer to manage the system power. Until APM, all power-down modes relied on timers to determine device inactivity. Because the timeouts are arbitrary, a system can be on much longer than necessary. APM sends a direct command from the application layer to the BIOS layer whenever an application doesn't require full system power. The APM interface module allows control of peripheral devices via Maximizer's global standby mode, whenever the module recognizes the APM command.

Chip set is BIOS independent

One disadvantage of managing system power at the BIOS level is the dependence on a specific operating system. To eliminate this dependence, Oak Technology offers a 3-chip set, called the Oaknote sub-system, to provide all of the core logic and display control for 386SX- or Cx486SLC-based systems. The chip set operates at 8 to 33 MHz and consists of the OTI-041 ($56 (1000)) system controller, OTI-042 ($56 (1000)) peripheral controller, and OTI-043 ($43 (1000)) VGA-display controller. The chip set has power-management features that include activity monitors, programmable I/O pins, and automatic wake-up modes. The activity monitor circuits track system interrupts, keyboard, networking, modem, and peripheral activities. Based on this activity, the chip set can enter power-saving modes independent of the BIOS firmware. Because the power management resides in on-chip hardware, it is transparent to the operating system.

The portable-computer designer is confronted with many possible avenues when considering power management. Besides choosing an appropriate CPU, the designer must use peripheral ICs that complement the CPU's power-management mode. The designer must also select a BIOS vendor that supports both the mode and a specified operating system or choose a hardware implementation that is independent of the software. In any case, ROM-resident power-management firmware that is tuned to the chosen system configuration makes power management more tractable.
In μC designs, board space is money.

WSI's single-chip PSD3XX Programmable μC Peripheral saves board space and design time. And a bundle in cold, hard cash.

WSI's PSD3XX μC peripherals pack everything you need for embedded-control designs: programmable logic, SRAM, and 256Kb, 512Kb, or 1Mb of EPROM program store. Plus advanced features like paging, cascading, code security, and address/data tracking. All on one easy-to-configure chip that works with any 8- or 16-bit μC.

By using WSI's PSD3XX, you save on PC board space, traces, power consumption, and all of the inventory, assembly, and testing costs associated with a discrete design. And we're not talking small change — using WSI's PSD3XX instead of a discrete-chip solution can save you 25 to 50%!

Plus, WSI's new, aggressive pricing structure lets you design-in the PSD3XX today for system cost reduction or new product designs.

For a free Design Kit plus free PSD3XX Cost-Saving Analysis software, call today!

800/877-6220

47280 Kato Road
Fremont, California 94538

© 1992 WSI. All rights reserved. WSI, PSD, and particular members of the PSD3XX family are trademarks of WaferScale Integration Inc.

CIRCLE NO. 67
WHO POWERED THE HEART OF OLYMPIC COMMUNICATIONS IN BARCELONA?
Keeping the world in touch with the Olympic action from Barcelona was a daunting task requiring some of the world's most sophisticated communications hardware - SGS-THOMSON was right there at the heart of things.

SGS-THOMSON's Transputer, for example, with its advanced parallel processing capabilities was an integral part of the central switching network used to connect the Olympics exchange to the rest of the world.

And when RICOH, maker of the official Olympics fax machine needed a single smart power LSI chip to control and drive the three main fax motors, it was SGS-THOMSON that had the design and technology to do the job.

These, and devices like linecard chip sets, single chip telephones, DSPs and multichip solutions for advanced ISDN systems are what have helped establish SGS-THOMSON as the brighter power in telecommunications. For more information call SGS-THOMSON today.
DATEL's New, 16-bit, 500 KHz ADS-930
shines with outstanding performance, complete functionality, and low price - all in a 40-pin TDIP.

**Functionally Complete**
Includes FIFO!

**Size**
1/2 to 1/6 the volume of any sampling A/D of comparable performance

**Price**
A 43 to 68% savings over any equivalent device

For complete data call or write DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048. Telephone: (508)339-3000, FAX: (508)339-6356. For immediate assistance: all USA, EST business hours 1-800-233-2765; Western region only, PST business hours 1-800-452-0719.

---

**Performance**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>16 Bits</td>
</tr>
<tr>
<td>Conversion Rate</td>
<td>500 KHz</td>
</tr>
<tr>
<td>THD</td>
<td>-89dB</td>
</tr>
<tr>
<td>SNRD</td>
<td>83dB</td>
</tr>
<tr>
<td>Peak Harmonics</td>
<td>90dB</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>3.4 watts</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>ADS-930MC 0 to +70°C</td>
</tr>
</tbody>
</table>
Layout, grounding, and filtering complete sampling ADC system

Walt Kester, Analog Devices

Part 1 covered sampling ADCs' static and dynamic characteristics and how to protect the analog input. Part 2 discussed four key peripheral circuits. Part 3 concludes the series by examining the problems of interfacing the ADC to the rest of the system and the critical issues of grounding, layout, and filtering.

After you've selected an ADC based on its performance characteristics and considered the requirements of the peripheral circuits, you'll need to interface the ADC to the rest of the system. Then you'll have to address pc-board layout, grounding, and filtering the power-supply output, all of which can present challenges to the sampling-ADC-system designer.

To enhance performance and simplify the external circuitry, many sampling-ADC systems include digital-signal-processing (DSP) chips. The following guidelines for determining ADC interface requirements assume the presence of a DSP µP. One of the key factors to consider when interfacing an ADC to a system is the data-output configuration. Sampling ADCs have either parallel data outputs (one pin per bit) or a single serial-output data line. First, consider the parallel case.

Many parallel-output sampling ADCs have 3-state outputs that the IC's output-enable pin enables or disables. Connecting these 3-state outputs directly to a backplane data bus may be tempting, but severe noise problems may result for several reasons. All ADCs have a small amount of internal stray capacitance (typically 0.1 to 0.5 pF) between the digital outputs and the analog input. Although ADC manufacturers make every attempt during the design and layout phase to keep this capacitance to a minimum, noise on the external digital connections can couple back to the analog input. Connecting the digital output lines directly to a backplane bus often causes excessive overshoot and ringing and possibly other high-frequency noise on the digital-output lines. The effect of the noise is to decrease the ADC's overall S/N ratio and effective number of bits. Code-dependent noise also tends to increase the harmonic distortion of the ADC.

The best approach for preventing this potential problem is to provide an intermediate buffer latch close to the ADC's parallel data outputs. This latch will isolate the noisy signals on the data bus from the ADC's data outputs, thus minimizing any coupling into the ADC's analog input. Consult the data sheet regarding exactly how you should clock the data from the ADC into the buffer latch. Sampling ADCs usually have a conversion-complete or busy signal for this purpose. To further reduce the possibility of noise corrupting the ADC's analog input, don't access the data in the intermediate latch during the ADC's conversion time. The data-sheet timing information should indicate the best time to access the output data.

Fig 1 shows a simplified parallel interface between the AD676 16-bit, 100k-sample/sec ADC and the ADSP-2101 DSP µP. (The device pins have been relabeled to simplify the following discussion.) In a real-time DSP application such as digital filtering, the processor must complete its series of instructions within the ADC's sampling interval. Note that the clock edge from the sampling-clock generator initiates the conver-
Sampling A/D Converters

Although some DSP µPs can generate lower-frequency clocks from the DSP master clock, using these signals as precision sampling-clock sources may cause excess timing jitter. Generating the ADC sampling clock from a low-noise crystal-oscillator circuit is a better idea.

After the ADC completes the conversion, it asserts the conversion-complete line, which interrupts the DSP processor. The processor places the ADC's address on the data-memory address bus and asserts the data-memory select line. The circuit then asserts the DSP processor's read line, and the trailing edge of the read pulse latches the ADC data into the processor's internal registers. At this point, the processor is free to address other peripherals that share the common data bus.

Because of the high-speed internal DSP clock (50 MHz for the ADSP-2101), the read pulse's width may be too narrow for the pulse to properly access the data in the buffer latch. If this is the case, adding the appropriate number of programmable software wait states to the DSP processor will both increase the width of the read pulse and cause the data-memory select and address lines to remain asserted for a correspondingly longer period of time. In the case of the ADSP-2101, one wait state is one instruction cycle, or 80 nsec.

Interfacing serial outputs

 Sampling ADCs that have a serial output usually interface to a DSP µP's serial port as Fig 2 shows. The sampling-clock generator is a low-noise oscillator. The ADC presents its output data on the serial data line one bit at a time. The serial-clock signal from the ADC latches the individual bits into the serial-input shift register of the µP's serial-clock port. After the serial data transfers into the serial-input register, the ADC's serial-port logic generates the processor-interrupt signal.

Compared with parallel-output ADCs, the advantages of using serial-output ADCs include fewer interface connections and reduced noise because of fewer digital runs. However, the number of serial ports available on the DSP µP limits the number of peripheral serial devices you can use.

Note that until recently, manufacturers usually classified data-conversion devices in one of two groups: high resolution or high speed. As a result, two sets of techniques for applying the converters evolved. Today's high-performance sampling ADCs, however, have blurred the boundary between high resolution and high speed. For example, an ADC having an effective sampling rate of 100k samples/sec may require an internal clock running at several megahertz. This internal-clock requirement is especially true of sigma-delta converters. An 18-bit sigma-delta ADC may have a throughput rate of 50k samples/sec, but the oversampling frequency may be 64 times as high (3.2 MHz). Moreover, the ADC may interface to a DSP µP having an instruction-cycle time of less than 100 nsec and an internal clock running at 50 MHz. This combination of high resolution and high speed may present problems for design engineers whose primary experience has been with ADCs having one characteristic or the other, but not both.

To achieve optimal performance from both parallel- and serial-output sampling ADCs, mount the converter on a pc board that has a low-impedance ground plane. The ground plane (or planes) serves as a low-impedance return path for high-frequency transient currents. If you use a double-sided pc board, dedicate one side of
the board to the ground plane. As you lay out the board, you will inevitably lose portions of the ground plane to feedthrough holes and crossover runs. If you lose more than 25% of the original area, consider using a multilayer board. A multilayer pc board allows for much greater component density without sacrificing the ground-plane area. The layers that are not grounded handle the crossovers.

In multiple-board systems containing both analog and digital components, the common practice is to maintain separate analog and digital ground planes on each pc board. Analog components are grounded and bypassed to the analog ground plane; digital components are grounded and bypassed to the digital ground plane. The analog and digital ground planes of each pc board connect to separate ground planes on the backplane. Ultimately, the analog and digital grounds connect at a single point (sometimes called the star ground) in the system. This point is usually at the power supplies.

These guidelines can be confusing when you’re dealing with ADCs that have both analog and digital ground pins. Fig 3 is a simplified diagram of an ADC containing both analog and digital circuits. Because of the inductance and resistance of the wire bond, the analog and digital grounds do not connect within the package. If a connection were made from point A to point B in Fig 3, the noisy digital current would modulate the relatively constant low-noise analog current. Thus, the connection would create digital noise within the analog circuits and degrade the ADC’s performance. Most manufacturers recommend connecting the analog- and digital-ground pins externally and using short connections to connect the pins directly to the ground plane.

If you need to maintain separate analog and digital grounds, try connecting the analog- and digital-ground pins at the ADC. This procedure may work on a pc board having one ADC, but problems can arise in systems that have multiple pc boards and ADCs. In such systems, joining the analog and digital grounds at each ADC can create ground loops between the analog and digital ground planes. On the other hand, if you connect...
SAMPLING A/D CONVERTERS

the ADC's analog-ground pins to the analog ground plane and the digital-ground pins to the digital ground plane, then the noise on the ADC's digital-ground pins can couple into the ADC's analog circuits through the stray capacitance.

To properly ground a multiple-board system, connect the analog-ground pins and the digital-ground pins of each ADC to the pc-board analog ground plane. In other words, treat the ADCs as if they were purely analog components. You should also bypass the ADCs' power-supply pins to the analog ground plane. Although this approach will slightly increase the noise on the analog ground plane, the alternative—having noise voltage between the analog- and digital-ground pins—can severely degrade an ADC's performance and is a worse choice. You should connect the ground pins of the digital circuits that connect to an ADC's digital outputs to the digital ground plane. The noise voltage between the two ground planes will slightly lower the noise margins at the digital-logic interface, but this reduction is usually acceptable.

If an ADC requires +5V, -5V, or both, use dedicated power supplies rather than supplies that also supply TTL, CMOS, or ECL circuits. If an ADC's power dissipation is low enough, consider deriving the voltages from the 15V analog supplies using 3-terminal regulators. If you can't avoid using the digital supplies for an ADC, be sure to include plenty of decoupling RC or LC filtering circuits on the pc board. You should treat the sampling-clock-generation circuits as analog components and do all grounding and decoupling with respect to the pc-board analog ground plane.

Pc-board layout dos and don'ts

Doing the pc-board layout will be considerably easier if you follow a few more guidelines. For example, try to physically separate critical analog circuits from the digital circuits as Fig 4 shows. Don't let the ADC analog-input line cross digital traces. If crossovers are necessary, minimize coupling by crossing the traces at right angles to each other. Keep the sampling-clock-generation circuits close to the ADC and don't allow the sampling-clock trace to cross digital traces or the ADC's analog-input line. Use as many pins as possible on the board's connector for grounds, and use power or ground pins to isolate the analog-input pin from the digital pins.

You can minimize digital noise on the pc board by using logic families that are no faster than necessary. In other words, don't use HCMOS when 4000-series CMOS is fast enough. Also, use differential drivers and receivers to transfer analog signals across noisy interfaces. These components have high common-mode rejection ratios at audio frequencies as well as low THD specifications. For high-frequency applications in which you must use single-ended techniques, transferring the signal across a noisy interface and maintaining acceptable dynamic range may be impossible. In this case, your only alternative may be repartitioning the system so that critical analog circuits are on the same pc board as the ADC or ADCs.

Building prototypes of precision-ADC systems is vital for successful performance. For best results, use double-sided, copper-clad pc-board material. Keep lead lengths short, follow good grounding and decoupling practices, and use point-to-point wiring for interconnections. If at all possible, avoid using sockets for the ADC (in both the prototype and the final layout) because of their parasitic capacitance and inductance. If sockets are necessary, an acceptable compromise is using individual spring-loaded "pin sockets" for each IC pin.

Manufacturers of sampling ADCs offer evaluation boards that contain the necessary support circuits for testing the device. Most manufacturers will supply you with copies of the artwork necessary to transfer the evaluation-board layout directly to your pc board. Even if you must do your own layout, you can still use the evaluation-board layout as a guide.

Bypass the power supplies to the proper ground plane at the ADC power pins with quality ceramic capacitors. Keep the bypass-capacitor lead lengths to an absolute minimum. In some applications, you may need to use surface-mounted chip capacitors for mini-
New power inductor from Sony® technology.

Insert molded with ferrite resin.

Low magnetic field interference.

Cost efficient and convenient.

New from Sony® ferrite-resin technology—Mold Choke Coils. Insert molded with durable ferrite resin which was UL approved for safe installation in electronic devices, Mold Choke Coils have significantly less self radiation and noise induction than conventional choke coils. Available in radial tape and stick case series.

For details and specifications, contact Rubycon, agents for Mold Choke Coils.

Rubycon America, Inc.

4293 Lee Avenue
Gurnee, Illinois 60031
708-249-3450
FAX 708-578-1300
mal inductance. Values of 0.01 to 0.1 µF work well for high-frequency decoupling.

To bypass low-frequency power-supply noise, use high-quality tantalum or aluminum electrolytic capacitors of 5 to 10 µF. Place these capacitors near the point where the power supplies enter the pc board. If your system uses switching power supplies, you may need pi-network filters, which are available as single-bulkhead, feedthrough-mounting components. One caveat you should be aware of is that manufacturers of sampling ADCs commonly include on their data sheets disclaimers regarding the performance of the ADC in systems using switching power supplies. Although linear supplies are your safest bet, the extra power dissipation they require is not acceptable in many systems. If you must use switching supplies, use them with caution. The following general guidelines will help you avoid some of the most common pitfalls.

Switching supplies generate conducted noise, capacitively coupled noise, and magnetically coupled noise. The noise transients on the output lines of switching supplies are short-duration voltage spikes. Although the actual switching frequencies may range from 10 to 100 kHz, these spikes can contain frequency components that extend into the hundreds of megahertz.

Because of the wide variations in the noise characteristics of commercially available switching supplies, you should always purchase these supplies in accordance with your specification-control drawing. Although specifying switching supplies in terms of rms noise is common practice, you must also specify the peak amplitudes of the switching spikes under the output loading conditions you expect in your system. You should also insist that the switching-supply manufacturer inform you of any internal supply changes that may alter the spike amplitudes or durations or the switching frequency. These changes may require corresponding changes in your external power-supply filtering networks.

Filtering switching-supply outputs that provide several amperes and generate voltage spikes having high-frequency components is a challenge. For this reason, you should place the initial filtering burden on the switching-supply manufacturer. Even so, you may need to add further external filtering. Fig 5 shows a general circuit for external filtering. Note that series inductors isolate both the output and common lines from the external circuits. Because the load currents may be several amperes, make sure that the inductors you choose don't saturate. Split-core inductors are a good choice. Two large electrolytic capacitors follow the split-core inductors in Fig 5. You may have to do some system-level experimentation to determine the optimal point at which to locate the junction of these capacitors. Chassis ground, system star ground, and floating ground are all candidates.

Place a large solid-tantalum or aluminum electrolytic capacitor of 1 to 10 µF on the pc board near the point where the power enters the board. A high-frequency, pi-network filter built from ceramic capacitors and ferrite beads should follow the electrolytic capacitor. Pi networks are available as components that you can mount directly on the pc board. Bypass the power pin of each IC on the board using a high-quality ceramic capacitor; use minimum lead lengths between the supply pin and ground. In some cases, you may need sur-

Fig 5—Filtering switching-power-supply outputs is a challenge. In this filter, series split-core inductors isolate both the output and common lines from the external circuits. Two large electrolytic capacitors follow the inductors. You may have to do some system-level experimentation to determine the optimal point at which to locate the junction of these capacitors.
Specify Signal Planar SMPS Transformers and Inductors.

Signal has taken the magic out of SMPS off-line magnetics design...and production...with the introduction of its PLANAR Series, the first off-the-shelf transformers and inductors for switch mode power supplies.

Utilizing the latest in high-power density PLANAR technology, Signal's SHF-2000 Series accommodates the full international range of input voltages, operates at frequencies up to 1 MHz, and delivers up to 200 watts of dc power at the most commonly used output voltages. And, all with remarkably low, repeatable leakage inductance.

Even more importantly, they're worry free. No need to prepare complex manufacturing drawings with detailed winding instructions, or to use special wire and difficult winding separation techniques to satisfy safety requirements. Signal does it all without demanding height you can't afford! One-, two-, and three-output magnetic sets are off-the-shelf and ready to drop into your power supply.

Signal transformers and inductors are available through Signal's PRONTO 24-Hour Off-the-Shelf shipment program. For additional technical data and application notes, contact: Signal Transformer, 500 Bayview Ave., Inwood, NY 11696.

To Improve Your Switch Mode Power Supply, It Takes Repeat Performance.

BUY DIRECT (516) 239-5777 Fax: (516) 239-7208
COST REDUCTION

- Specify Only the Power You Need
- Use Scalable Power
- Simplify Cabinetry
- Specify Industry Standard Connectors
- Provide Ample Airflow
- Eliminate Unneeded Features

For Information on Standard Distributed and Custom Switching Power Supplies
CALL
1-407-831-2000

EDN-DESIGN FEATURE

SAMPLING A/D CONVERTERS

face-mount capacitors to minimize the effects of lead inductance.

Many system designers try to use off-the-shelf 3-terminal regulators to filter high-frequency switching-power-supply noise. Unfortunately, such devices don't have sufficient bandwidth to reject this noise. A custom-designed, wide-bandwidth regulator that uses a high-frequency op amp and a high-frequency series-pass transistor might serve as an adequate filter. But designing such a regulator is difficult, especially if the load current is several hundred milliamps. If you're not skilled in such design or if cost is a factor, leave well enough alone.

Always check the performance of the switching supply in your system by temporarily replacing it with a low-noise linear supply. You can then compare system performance and observe the effects of the switcher on the S/N ratio and other system criteria. In some high-resolution applications—such as professional audio applications using ADCs that have an 18-bit dynamic range—linear supplies are almost always required.

References


Author's biography

Walt Kester is a corporate staff applications engineer at Analog Devices (Greensboro, NC) and has been with the company for 23 years. His principal responsibility is applications support for linear and converter products. A member of IEEE, Walt has a BSEE from North Carolina State University (Raleigh, NC) and a MSEE from Duke University (Durham, NC). In his leisure time, Walt enjoys travel and carpentry.

Article Interest Quotient (Circle One)
High 470 Medium 471 Low 472
DESIGN WITH FEWER BOUNDARIES

Design should never be held back by a power supply. Which is why external power holds so much potential. As products become smaller, portable and more efficient, external power opens your options, giving you the edge to push the boundaries of design.

APPROVAL COMES EASIER

Ault's external power supply can be approved independently. This allows you to focus on your design, with one less thing to worry about. Ault has worked with major agencies around the world to get products to market as quickly as possible.

GLOBAL COMPETITION REQUIRES GLOBAL PLAYERS

And Ault plays by the global rules—cell-based production, just-in-time delivery and total quality control. Ault is an American-based company who manufactures worldwide, to meet global standards of quality, delivery and price. So when you design in Ault, you're using the finest in the world.

THE BIGGEST MINDS ARE THINKING SMALL

Downsizing. It's a sure way to develop a more competitive product. And a good reason to keep the power external. In keeping with the concept, Ault's products are smaller themselves... running with the power and reliability you need.

IT'S COOLER OUTSIDE

External power puts heat where it belongs: outside the product. Our products follow the same principle. An efficient board design provides superior heat dissipation, making our external power internally cooler... another compelling reason to keep the power outside.

WE POWER INNOVATION

With a complete line of external battery chargers, transformers, linear and switching power supplies up to 100 watts... we've been powering innovation for over 25 years. A compelling reason to call Ault today.

Compelling Reasons For Leaving The Power Out Of Your Next Design.

Ault, Inc., 7300 Boone Avenue North, Minneapolis, MN 55428
TEL: 612-493-1900 FAX: 612-493-1911

ISO 9002 REGISTERED
At last. A personal output device that combines the best features of a desktop laser printer with the ability to produce large C-size drawings. It's called ProTracer™ — a monochrome inkjet printer/plotter designed for the personal use of PC CAD professionals.

MEDIA FLEXIBILITY

ProTracer is a desktop printer/plotter that lets you produce A, B, as well as large C-size output. It prints sharp, precise lines on a variety of media including plain and bond paper, plotter paper, and most vellum.

SPEED

ProTracer is fast and quiet because it uses the latest Canon inkjet technology and an Intel i960™ processor. Just compare it to any other large format plotter and you'll see. A complex C-size drawing often takes over half an hour on a pen plotter, while ProTracer completes the same drawing in as little as five minutes!

HIGH QUALITY OUTPUT

ProTracer achieves its high quality output by utilizing a 64 nozzle printhead to deliver crisp lines and bold, high contrast blacks. Its 360 dpi resolution assures sharp lines needed for everything from the most complex engineering drawings to sophisticated text and graphics used in letters and reports.

VERSATILE AND EXPANDABLE

Unlike other large format devices, ProTracer isn't limited to plotting. Instead, it can produce high quality finished output for a variety of applications including word processing, spreadsheets, and desktop
of a laser printer. larger scale.

C size (17" x 22")

publishing. Start with the ProTracer base unit, then choose from optional HP-GL® and PostScript® language emulations, memory expansion boards, and sheet feeders.

<table>
<thead>
<tr>
<th>PROTRACER BASE UNIT</th>
<th>PROTRACER WITH HP-GL</th>
<th>PROTRACER FULLY CONFIGURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customized ADI and PADI drivers for AutoCAD users</td>
<td>ProTracer base unit</td>
<td>ProTracer base unit</td>
</tr>
<tr>
<td>Epson and ProPrinter emulations</td>
<td>HP-GL emulation card</td>
<td>HP-GL emulation card</td>
</tr>
<tr>
<td></td>
<td>5 MB memory</td>
<td>PostScript language emulation card</td>
</tr>
</tbody>
</table>

$1499
$2249
$2897

FIRST RATE CUSTOMER SERVICE

At Pacific Data Products, we're well known for our devotion to customer service. We offer a 60-day money back guarantee of satisfaction, one year and optional extended warranties, and free lifetime technical support. Should you require a replacement unit while under warranty, one will be rushed to you immediately to minimize your downtime.

If you'd like to expand your personal printing and plotting capabilities, call Pacific Data Products at (619) 625-3577, Fax (619) 552-0889.
The Perfect Fit.
TDK Low-Profile Components Reduce Power Supply Circuitry’s Space Coefficient.

In the past, power supply circuitry has tended to lag behind other circuit integration technology in terms of miniaturization.

TDK has solved this problem by developing low-profile components that enable you to make your switching power supply designs more compact and efficient.

These include:
- PC-50, an ultra-low power loss/high flux density power ferrite material that has switching frequencies of up to 1MHz.
- EPC Cores, ultra-thin cores that utilize high performance ferrite material.
- HC Series, large capacitance, multilayer ceramic chip capacitors realizing 47µF.

TDK also offers power transformers, DC to DC Converters, and other reliable, space-saving components that fully meet international safety standards.

Call or write us today for more information.
1.5 to 5V converter supplies 200 mA

Jim Williams, Linear Technology Corp, Milpitas, CA

Some 1.5V-powered systems, such as survival 2-way radios and remote, transducer-fed data-acquisition systems, require much more power than stand-alone IC regulators can provide. The converter in Fig 1 supplies 200 mA at 5V from a 1.5V input.

The circuit is essentially a flyback regulator. The LT1170 (IC1) switching regulator's low saturation losses and ease of use permit high-power operation and design simplicity. Unfortunately, the device has a 3V minimum supply requirement. Bootstrapping its supply pin from the 5V output is possible but requires some form of start-up mechanism. The 1.5V-powered LT1073 switching regulator (IC2) provides a start-up loop. When power is applied, IC2 runs and its SW1 pin periodically pulls current through L1. L1 responds with high-voltage flyback events. The circuit rectifies these events, and the 470-µF capacitor stores the rectified voltage, thus producing the circuit’s dc output. The output divider-string values cause IC2 to turn off when the circuit output crosses approximately 4.5V.

Once IC2 turns off, it obviously can no longer drive L1, but IC1 can. There is some overlap between the time the start-up loop turns off and IC1 turns on, but it has no detrimental effect. The start-up loop functions over a range of loads and battery voltages. Start-up currents approach 1A, so you must pay attention to IC2’s saturation and drive characteristics. The worst case for the start-up loop is a nearly depleted battery and heavy output loading.

Fig 2a is a plot of the input and output characteristics for the circuit. Note that the circuit will start into

Fig 1—Using two switching regulators—one for low-voltage start up—this converter provides 200 mA at 5V from a 1.5V source.

Fig 2—Performance curves of input vs output (a) and efficiency vs output (b) show this converter’s start-up voltage of 1.2V and its high efficiency at higher output currents.
all loads with $V_{\text{BATTERY}} = 1.2\,\text{V}$. Start-up is possible down to $1.0\,\text{V}$ at reduced loads. Once the circuit has started, the plot shows it will drive 200-mA loads down to $V_{\text{BATTERY}} = 0.6\,\text{V}$. Fig 2b shows the circuit’s efficiency at two supply voltages over a range of output currents.

At lower currents, the circuit’s quiescent power degrades efficiency. At lower supply voltages, fixed junction-saturation losses are responsible for the lower overall efficiency. **EDN BBS/DL_SIG #1186**

To Vote For This Design, Circle No. 396

---

**Self-sensing heater controls thermostat**

Oleg Ayranov, Paul-Scherrer-Institut, Villigen, Switzerland

Fig 1’s circuit controls a thermostat by using a 1-component heater and temperature sensor. The idea is based on three fundamental considerations:

- Self-controlling PTC (positive temperature coefficient) resistors fed by a constant voltage implement only coarse temperature control.
- The resistance of a linear PTC resistor at low voltage depends only on its temperature, not on the applied voltage or the current.
- The balance of a Wheatstone resistor bridge depends only on the resistor values, not on the applied voltage.

The circuit uses a copper wire-wound resistor, $R_T$, as a self-sensing heater. The resistor has a value of 82Ω at 20°C. Keeping the resistor bridge in balance ($+V_1 = -V_1$) requires that $R_T$ be 1000Ω. Because copper has a temperature coefficient of 3900 ppm/°K, $R_T$ equals 1000Ω when the temperature is approximately 76°C. If the temperature of $R_T$ changes in any direction, a deviant voltage ($V_D$) arises between the two arms of the bridge. The op amp amplifies this deviant voltage up to the value $V_O$ and changes the drive voltage of the bridge ($V_D$) proportionally via $Q_1$. $V_D$ does not change the ratios of the resistors ($R_1/R_2$ and $R_T/R_3$) in a direct way, but changes the power dissipation of $R_T$. Consequently, the temperature of $R_T$ closes the control loop. $R_4$ provides fine adjustment of the bridge.

Choosing the op amp for this circuit is critical. Because the op amp operates with a single supply ($+V_{CC} = 24\,\text{V}$, $-V_{CC} = 0\,\text{V}$), its input-voltage range must include 0V. At the same time, the op amp’s common-mode rejection ratio in this range must not degrade. In the data books, the common-mode rejection of an op amp is declared only as an unsigned quantity in decibels, which doesn’t allow a unique conclusion about the amplifier’s behavior with a common-mode input signal. In this case, the behavior of $V_O$ with the op-amp inputs close to 0V is important. If when the inputs are close to 0V, $V_O$ also approaches 0V, the bridge remains without current. So without additional measures, the control loop could have an unwelcome second stable state.

The most simple way to prevent this unwelcome state would be to use an N-channel depletion FET for $Q_1$. The bridge would not remain without current even if $V_O = 0\,\text{V}$, which means the unwelcome case could never occur because $V_D > 0\,\text{V}$ with $V_O = 0\,\text{V}$. Unfortunately, depletion FETs for power applications have
SPDT switches with built-in driver

ABSORPTIVE or REFLECTIVE  dc to 5GHz

Truly incredible... superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in plug-in or SMA connector models, from only $14.95. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units... high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55°C to +100°C span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS

**Absorptive SPDT**

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Ins. Loss (dB)</th>
<th>Isolation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc-500-2000</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>500-2000</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>2000-5000</td>
<td>20</td>
<td>22.5</td>
</tr>
</tbody>
</table>

**Reflective SPDT**

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>1dB Comp. (dBm)</th>
<th>RF Input (max dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc-500-2000</td>
<td>1.25</td>
<td>20</td>
</tr>
<tr>
<td>500-2000</td>
<td>1.35</td>
<td>20</td>
</tr>
<tr>
<td>2000-5000</td>
<td>1.4</td>
<td>20</td>
</tr>
</tbody>
</table>

**Price, $**

- YSWA-2-50DR (pin) $23.95
- ZYSWA-2-50DR (SMA) $79.95

- YSW-2-50DR (pin) $14.95
- ZYSW-2-50DR (SMA) $59.95

For detailed specs on all Mini-Circuits products refer to • THOMAS REGISTER Vol. 23 • MICROWAVES PRODUCT DIRECTORY • EEM • MINI-CIRCUITS’ 746-pg HANDBOOK
Introducing...second generation CD quality, stereo hi-fidelity digital audio record/playback for PC-AT 386/486 or compatible. Now with DVl/CDI/CD-ROM XA audio compression up to 44.1 kHz.

Featuring...real time direct-to-disk data transfer...18 bit resolution...64x oversampling...22kHz audio response...0.005% THD...6.25 to 50 kHz programmable sample rate...92dB dynamic range...90db s/n...plus 4:1 AD PCM compression.

For broadcast quality recording, editing and transmission in high-end entertainment systems, A/V presentions and interactive CDI/DVI applications.

Phone 1 (800) 338-4231 for details on the 2nd generation AUDIO PRO Model SX-15.

CIRCLE NO. 78

Raltron manufactures its compact VC 7025 Voltage Controlled Crystal Oscillator to meet your Phase Locked Loop specifications, delivering deviation sensitivity or pullability of up to ±100 PPM/V. Big performance in a small package. At a price you've been looking for.

VCXO WITH PULLABILITY

Raltron manufactures a complete line of the highest quality VCXO's to both standard and custom specifications. Send us your VCXO specifications today or call (305) 593-6033 for more information.

Raltron Electronics Corp.
2315 NW 107th Avenue, Miami, Florida 33172 U.S.A.
FAX (305) 594-3973
TELEX 441588 RALS E N
(305) 593-6033

CIRCLE NO. 79

How to use our bulletin board:

This icon identifies those Design Ideas that have computer-readable material posted on EDN's bulletin-board system (BBS). Call our free BBS at (617) 558-4241 (300/1200/2400/9600 8,N,1).

Not every Design Idea has downloadable material, but each one does have a BBS number printed at the end of it. Once you get into the system, you can use that number to find more information on a particular idea. If you'd like to comment on any Design Idea, include the number in the subject field of your message.
Ceibo DS-51 is a real-time in-circuit emulator dedicated to the 8051 family of microcontrollers. It is serially linked to a PC/XT/AT or compatible systems. The software includes Source Level Debugger for PLM and C, a unique Source Level Assembler Debugger, Performance Analyzer, On-line Assembler and Disassembler, and many other features.

DS-51 accepts files generated by the most common 8051 Assemblers and High-Level Language Compilers. Standard systems are supplied with 128 KBytes of Internal Memory, 64K Hardware Breakpoints, 32Kx32 Trace Memory and Logic Analyzer with external test points, and Personality Probe C52 supporting the following microcontrollers: 80C31/2, 80C51/2, 8x8C51FA/FB, 8xC524, 8xC528, 8xC550, 8xC652, 8xC652/4 and others. Other Personality Probes are available for 8xC575, 8xC751, 8xC451, 8xC552/562, 8xC851 and other 8051 derivatives.

Ceibo MP-51 is a high-quality Microcontroller, EPROM and PLD Programmer dedicated to all the microcontrollers belonging to the 8051 family, 24 to 32-pin EPROMs and high-density PLDs. Adapters are available for all the possible packages, such as DIP, LCC, PLCC and QFP.

The supported devices are EPROMs (2716 to 27040), PLDs (AT16V8, AT22V10, AT7V50, AT2500, ATH3000, AT5V000) and Microcontrollers (8751H, 8751B, 8751FA, 8751FB, 8751FC, 8751GB, 8751F, 87C451, 87C524, 87C528, 87C550, 87C552, 87C562, 87C575, 87C592, 87C652, 87C654, 87C751, 87C752, 87C054, etc.).

MP-51 allows to enable or disable the PLD or Microcontroller security capabilities. MP-51 loads different file formats: Intel Hex, Intel OMF, Binary, Motorola S-records, JEDEC, etc.

Ceibo/Signetics DS-752 is a Development System that supports the 83C751/2 and 87C751/2 Signetics/Phillips microcontrollers.

DS-752 introduces a new concept in development systems, combining two main innovations in the field of in-circuit emulators:

- A registered pattern is used to convert a standard microcontroller into a bond-out like chip. This technique avoids the use of expensive bond-out chips, while permitting access to the internal busses of the microcontroller.
- The use of new 5000-gate PLDs to implement the circuitry of an in-circuit emulator leads to a very small system with only a few components inside.

DS-752 comes with a powerful software package that includes a High-Level Language Source Level Debugger, Source Level Assembler Debugger, Online Assembler and Disassembler, Conditional Breakpoints, 64K-deep Software Trace Buffer, and other functions that make it an easy-to-use tool.

Visit us at ELECTRONICA 92—HALL 22—STAND C31—MUNICH
Ceibo/Signetics DB-51 is a high-performance system design board dedicated to the Signetics 80C51 family of Microcontrollers. It provides an easy-to-use flexible instrument which enables the user to build a primary prototype, analyze and debug it, make changes, and continue debugging.

The software supplied with DB-51 includes Source Level Debugger for PLM and C, a unique Assembler Debugger, Performance Analyzer, Source Level Online Assembler and Disassembler, Software Trace, Conditional Breakpoints and many other features. DB-51 provides 32K of user code memory. This RAM memory permits downloading and modifying of user's programs.

The following Microcontrollers are fully supported: 8x31/51, 8x32/52, 8xC31/51, 8xC32/52, 8xC451, 8xC524, 8xC528, 8xC550, 8xC552, 8xC662, 8xC752, 8xC652/4, 8xC851 and others with external memory addressing and a UART. The 8xCL410 and 8xC7511/2 have a limited support.

DB-51 has a special wire-wrap area for prototyping and is supplied with a User’s Manual that includes examples and applications.
For Capacitors that Perform Every Time, Just Say IC.

If you're serious about product quality, the name to know in capacitors is IC. Since 1935, IC has engineered capacitors to the industry's highest quality standards.

IC backs this commitment with the latest equipment and manufacturing techniques, including burn-in testing of every capacitor. It's your assurance that every IC capacitor will perform the first time, every time, to keep your products or system at peak performance.

IC distributors stock a wide range of IC capacitors at a location near you. They're backed by IC's extensive inventory, for the fastest possible delivery.

Up goes performance! Down come inspection costs. Make it all happen with IC. Call us today!

Ask for FREE Capacitor Engineering Guide.

ILLINOIS CAPACITOR, INC.
3757 West Touhy Avenue, Lincolnwood, IL 60645
(708) 675-1760 • Fax: (708) 673-2850
CIRCLE NO. 80
With Quad Flat Pack Carrier Adaptors

- Two piece assembly consisting of:
  - Quad Flat Pack Emulator.
  - Foot and Socket/Test Probe Assembly.
- Simply solder or socket the Emulator Foot.
- Excellent lead coplanarity for reliable solder connection.
- Plug the two assemblies together with .050" center gold pins.
- Socket Test Probe assembly has overlay for easy pin probing.
- Recessed screw and nut provide extra mechanical strength.
- Custom overlays and configurations available upon request.
- Available in many sizes.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 81

EDN DESIGN IDEAS

Linear regulator suppresses surges

Brian Houghton, Colorado State University, Ft Collins, CO

The linear regulator in Fig 1 functions as a surge suppressor, protecting a downstream switching regulator from transients. The circuit can protect 24V circuitry from long, 10J surges that reach as high as 150V dc.

In operation, the input voltage is normally less than the desired clamp voltage (zener diode D1 sets the clamp voltage). Here, the base of transistor Q2 will be at ground, cutting off emitter current. Because Q2 is off, transistor Q3 will also be off. Thus the pass transistor, Q1, sees a gate-to-source voltage approximately equal to zener diode D3’s rating, saturating Q1 on.

If the input voltage rises above the breakdown voltage of zener diode D1, the resulting bias voltage across R1 will turn Q2 on, putting Q3 into the linear mode. Q3’s increasing collector current will raise Q1’s gate voltage, tending to turn Q1 off. The circuit will reset itself when the input voltage drops to normal levels.

Capacitor C1 sets the dominant pole of the feedback loop when the circuit regulates. D2 reduces R1’s power dissipation during low input-voltage conditions. R1’s power-handling capability plays a dominant role in the circuit’s ability to handle repeated surges. With the components shown, the circuit withstood 130V surges lasting 0.1 sec at a 1-Hz repetition rate.

EDN BBS /DL_SIG #1134

To Vote For This Design, Circle No. 398

Fig 1—This linear regulator sits upstream of a switching regulator. The linear regulator operates only during power surges, protecting the switching circuitry.
The LT1241 family of pulse width modulators from Linear Technology enable 500kHz operation of off-line switching regulators—with only 50ns of current sense propagation delay. The LT1241/2/3/4/5 are pin-compatible with 3842 type parts and contain all the circuitry necessary for off-line switchers: temperature compensated reference, high gain error amplifier, fast current sensing comparator with blanking, and high current totem pole output stage.

Each of these parts has improved speed and lower quiescent current (8mA typical) than 3842 type devices. Start up current has been reduced to 170µA typical. Cross conduction current spikes in the totem pole output stage have been eliminated—making 500kHz operation practical. To make the LT1241 family easier to use, we’ve added true blanking to the current sense comparator which virtually eliminates the filter and allows the current sense loop to operate with minimum delays.

The LT1241 family eliminates "Band-Aids" in power supply design. Parts are available in 8-pin SO packages or 8-pin DIP. Pricing in 1000-up quantities starts at $1.96. For details, contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035/408-432-1900. For literature only call 800-637-5545.
When Techron began making power amplifiers in 1951, they had no idea how its technology would come to impact human life. What began as a power source for the music industry grew into the wellspring for some of mankind’s greatest achievements and most exciting new developments. A pathway to which Techron is now fully dedicated.

Techron’s reputation for creating a reliable high-power source led it first to industrial and medical applications. A leading blue-chip company required the power, speed and fidelity to run Magnetic Resonance Imaging systems that only a Techron amp could provide. Techron responded with a custom product that could supply the gradient sub-system with precise, controlled power day after day, never wavering.

Since then, the Techron spark of ingenuity has helped pave numerous inroads to a better way of life. After MRI applications came many exciting new fields of research. Most recently, research to make other medical procedures safer and less painful. The clean, steady reliability of Techron power is there.


It started with a product: Strong, clean, reliable power amplifiers. But it grew to fuel a generation of strong new ideas that not only are improving our lives today, but building a better future. We’re proud to be a part of it. And we’re committed to staying here. Right behind your greatest ideas.
Remote, single-point I/O adapters. The Smartmux, for use with industrial computers and Allen-Bradley PLCs (programmable logic controllers), provides high-speed data collection and control of analog and digital single-point I/O. The adapter transfers data at 50, 115, and 230 kbytes/sec. DOS drivers for DOS 1-2-3, C, Pascal, and Basic are available. $225. Western Reserve Controls, 68 W Center St, Suite 125, Akron, OH 44320. Phone (216) 762-1611. FAX (216) 762-1622. Circle No. 304

Development board. The Fast 8 Forth development board is a multipurpose board. You can use it for rapid prototyping in specific applications or as an embedded controller. A separate dual-serial-port chip allows debugging of stand-alone systems that use the Super 8 chip serial port in single-chip configurations. RS-485 LAN compatibility eases design in distributed-control systems. $229. Space-Time Productions, 3124 Meriday, Suite 103, Rockford, IL 61109. Phone (815) 874-2296. Circle No. 305

Single-board computer. The MVME197 uses the full power of the 50-MHz 88110 µP. Key computer features include high-density ASICs; SCSI, Ethernet, and parallel interfaces; a serial port; Unix system V support; and VME D64 protocol compliance. The computer comes with VMExec development tools. $9995. MOTOROLA Inc, 2900 S 16th St, Billerica, MA 01821. Phone (508) 663-0666. FAX (508) 663-6678. Circle No. 308

Frame grabber. The LG-3 is a gray-scale NuBus frame grabber that can capture 8-bit 640 x 480-pixel images in 1/8 of a second. On-board frame storage may be expanded from the minimum 1 Mbyte to 64 Mbytes. You can connect the unit to four video sources simultaneously. You can use any of the eight lookup tables to modify the digitized video. Software controls the digitization range. $895. Scion Corp, 152 W Patrick St, Frederick, MD 21701. Phone (301) 695-7870. FAX (301) 695-0655. Circle No. 307

Compression board. The Super Motion Compression card is compatible with Microsoft’s DV-MCI development environment and uses a JPEG chip set to allow the compression and decompression of video at 30 frames per second. This design lets the card function across a range of ISA-based platforms. In addition to Microsoft Windows 3.0 or higher, card requirements include a 16-bit, full-size slot; a hard disk or mass-storage device with a 400-kbps continuous transfer rate; DOS-DOS or PC-DOS version 3.3 or greater; and New Media Graphics’ Super VideoWindows ISA board with a bidirectional NMG-VideoBus. Power requirements are 3.8A at 5V and 10 mA at ±12V. $1995. New Media Graphics Corp, 780 Boston Rd, Billerica, MA 01821. Phone (508) 663-0666. FAX (508) 663-6678. Circle No. 308

VMEbus board. The HKMIPS/V3500 board uses the R3500 RISC processor and provides a sustained performance of 32 VAX MIPS and 11 MFLOPS. It features 64 kbytes each of direct-mapped data and instruction cache, onboard Ethernet and SCSI interfaces, as much as 32 Mbytes of local dynamic RAM (DRAM), and as much as 1 Mbyte of EPROM. The board also features two programmable counter/timers, a real-time clock with 32 kbytes of nonvolatile RAM, and four serial ports compatible with the RS-232C and RS-422A protocols. $9995 with 32 Mbytes of DRAM. Heurikon Corp, 8810 Excelior Dr, Madison, WI 53717. Phone (608) 831-0900. FAX (608) 831-4429. Circle No. 309

Industrial displays. Rackview is a flat-panel display monitor. It is available in high-contrast, 16-level monochrome-electroluminescent or 185,000-color active-matrix TFT versions. An optional 128 x 128-point-resolution infrared touch screen is available for a direct user/screen interface. $4400. Dolch Computer Systems, 372 Turquoise St, Milpitas, CA 95035. Phone (408) 987-6755. FAX (408) 283-6305. Circle No. 310

Optical storage systems. The OpStar 6613 is based on the 12-in. Worm technology and provides end users with storage from 6.55 Gbits in a single drive...
to 327.5 Gbits in a jukebox. OpStar jukeboxes range from desktop models to desk-side units. Media removability lets you secure data while also providing data transportability between systems. From $5695 for drive that accepts 650-Mbit optical disks. Data General Corp, 4400 Computer Dr, Westboro, MA 01580. Phone (508) 366-8911.

Circle No. 311

EDN·NEW PRODUCTS
Computers & Peripherals

Accelerator. The TokaMac II FX is a 33-MHz 68040-based accelerator for the Macintosh IIfx. In addition to the 33-MHz processor, the unit uses a 128-kbyte zero-wait-state second-level cache. The unit requires a combined processor direct slot (PDS) and NuBus design to provide the speed of the PDS and to bypass the I/O performance bottlenecks of the NuBus. The unit, with a built-in math coprocessor and large on-board caches, increases performance of the Macintosh IIfx by as much as 200%. The cache produces data-miss rates of 3%. Fusion Data Systems, 8920 Business Park Dr, Suite 350, Austin, TX 78759. Phone (512) 338-5326. FAX (512) 794-9997.

Circle No. 312

Trackball. Spaceball 2003 provides the visual feedback critical for effective 3-D design. It features a VCR mode that lets users instantly record and playback 3-D sequences as they generate them with the device. You can use the device in conjunction with a mouse or a digitizing tablet. The design consists of a sphere fixed on a partially concave stand. $1595. CalComp Inc, 14555 N 82nd St, Scottsdale, AZ 85260. Phone (602) 948-6540.

Circle No. 313

Monochrome terminal. The NCD15r combines high-performance MIPS R3000 RISC electronics with the compact 15-in. 1024 x 800-pixel monitor used in the company's CISC units. The base electronics uses a 33-MHz processor plus an ASIC. The unit comes with 4 Mbits of standard dynamic RAM, which is expandable to 20 Mbits using single in-line memory modules. $1895. Network Computing Devices Inc, 350 N Bernardo Ave, Mountain View, CA 94043. Phone (415) 694-0650. FAX (415) 961-7711.

Circle No. 314

SPEED READING FOR
No one does megahertz so mega-fast. Because Harris monolithic devices give you -3 dB bandwidths up to 850 MHz. Plus excellent gain flatness of 0.14 dB to 100 MHz.

And unlike high-power discretes, Harris monolithic devices are low power. To drive your creativity. Not your power supply.

So for fast linear solutions, call this number. 1-800-4-HARRIS, ext. 7025. Fast.

HARRIS SEMICONDUCTOR

THE OP AMPS WITH THE FASTEST EDGES

To give you an edge, Harris HFA1100 850 MHz op amps deliver the fastest edges around. The output signal matches the 220 MHz input signal with a delay measured at just 2 ns. And the HFA1130 has a programmable output clamp to boot.
Computer. The 5025 Micro PC is the smallest 386SX card available for passive-backplane PC operation. A keyboard and monitor are not required for operation. The CMOS card requires less than 1.5W. Three solid-state disks are included. The first contains DOS 3.31. The second is a flash memory for programs; the flash programmer and software are built in. The third disk can hold 1.5 Mbits of battery-backed RAM for logging process variables and data. The solid-state disks complement a standard 4-Mbit dynamic RAM. From $595 for a 16-MHz version.

Octagon Systems Corp, 6510 W 91st Ave, Westminster, CO 80030. Phone (303) 430-1500. FAX (303) 436-8126. Circle No. 316

Graphics terminal. The IC-20 is compatible with the entire command set of the DEC VT340 terminal. It is also compatible with ANSI 3.64 graphics primitives and local macros. The unit uses a back-lit LCD with a resolution of 320 x 240 pixels in graphics mode or 16 lines of 40 characters in text mode. Data entry is via a 51-key membrane keypad mounted on the enclosure’s front panel.

Converter. The A2000 converts the RS-232C communications standard to the electrical signals required by RS-485. The unit is also an RS-485 repeater. It provides automatic control of bus direction without any hand-shaking signals from the host. Bus control is completely transparent to the user. The unit amplifies the RS-485 signal to drive as many as 32 additional drivers. Optical isolation equals 1500V ac. Surge protection is provided on the RS-485 output connections. $200. DGH Corp, Box 5638, Manchester, NH 03108. Phone (603) 622-0452. FAX (603) 622-0487. Circle No. 318

Fiber-optic multiplexer. The FMX900 simultaneously transmits and receives data channels with full handshake. Both RTS/CTS and DSR/DTR handshakes are provided. A single chassis lets you extend as many as 16 asynchronous 19.2-kbaud ports through a single pair of glass fibers. The enclosure contains a power supply and a mother board that accepts plug-in cards. The unit transmits at 3 Mbaud in serial format, $2900 for a version that connects eight RS-232C ports to eight terminals located 300 meters apart. Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (800) 548-6132. FAX (602) 889-1510. Circle No. 319

ANALOG DESIGNERS.

THE PIN DRIVER WITH THE WORLD’S FASTEST DATA RATE

Product: HFA5250 Pin Driver
Data Rate: 500 MHz
Rise and Fall Rate: <1 ns
Minimum Pulse Width: 1 ns
Slew Rate: 2500 V/sec
Output Range: 2 Vdc to 7 Vdc

The HFA5250 ranks as the world’s fastest pin driver for automatic test equipment. With a data rate of 500 megasamples/second, it’s over twice as fast as the closest competitor.

Wideband Buffers

<table>
<thead>
<tr>
<th>Product</th>
<th>HFA1110/1112</th>
<th>HFA1110/1112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>100 MHz</td>
<td>100 MHz</td>
</tr>
<tr>
<td>Rise and Fall Time</td>
<td>100 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>Minimum Pulse Width</td>
<td>100 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>1000 V/sec</td>
<td>1000 V/sec</td>
</tr>
<tr>
<td>Pinout</td>
<td>5-pin</td>
<td>5-pin</td>
</tr>
<tr>
<td>Price (100s)</td>
<td>$2.95</td>
<td>$2.95</td>
</tr>
</tbody>
</table>

Our HFA1110/1112 buffer amps offer wide bandwidth and gain flatness of 0.14 dB to 100 MHz.

Transistor Arrays

For extremely fast NPNs and PNP s on a single die, Harris transistor arrays are available as high-performance analog cells, enabling you to design your own differential amps, S/Hs, comparators, mixers and more.

Applications

- High-Resolution Displays
- RF Transmitters/Receivers
- Medical Imaging Systems
- Radar Systems
- Flash A/D Drivers
- Video Switching and Routing/Line Drivers
- Fiber Optics
- ATE
- Wireless Communications

CIRCLE NO. 85
The BOS/S. A baker's dozen worth of functions in one tasty package.

The versatile Bi-polar Operational Source/Sink power supply with a full complement of features.

The BOS/S can satisfy even the most demanding power supply appetites. It delivers four modes of operation: a bi-polar supply, operational supply, sourcing supply and sinking supply. In addition to delivering DC power, it also gives you the dozen functions you see above. And like any product from Electronic Measurements, the BOS/S is a breeze to use.

The BOS/S. When it comes to versatility any other power supply is just half-baked.

For details, call or write:
Energy analyzer. The 21-lb, battery-or ac-powered 8000-2 is an 8-channel instrument that combines features of a 3-phase true-rms voltmeter, a clamp-on ammeter, a wattmeter, a phase-angle meter, a harmonic-distortion analyzer, a neutral-to-ground monitor, and an out-of-limits event monitor. Among the unit’s capabilities are motor inrush-current measurement, rate-structure analysis, and harmonic analysis to IEEE-519 and IEC-555. From $6320. Dranetz Technologies Inc, Box 4019, Edison, NJ 08818. Phone (908) 287-3680; FAX (908) 248-9240.

Pattern-matching software. Gemmatch DSP32C software now works with the DT2878 and DT2841 ISA bus DSP and data-acquisition series. It allows real-time comparison of waveforms having data rates to 100 ksamples/sec. In determining whether patterns match, the software lets you apply tolerances to waveform segments. It lets you divide waveforms into as many as 2000 segments, and you specify that a match has been achieved if m of n segments lie inside the tolerance band. Developer’s edition, including one year of updates, $3500. Genius Corp, 2006 Woodrun SE, Lowell, MI 49331. Phone (516) 484-6427; (616) 897-5252. FAX (616) 897-0906.

Cable-TV/TV-signal-level meter. The 8.375 x 4.75 x 7.875-in., 10.5-lb, battery-powered 951 meter can automatically search, measure, and store signal levels on 32 channels. There are two display modes: a bar-graph display of eight channels on an LCD screen and an LED display in dBmV or other engineering units. To conserve its batteries, the unit powers down automatically after a period of disuse. $1695. Leader Instruments Corp, 380 Oser Ave, Hauppauge, NY 11788. Phone (800) 645-5104; (516) 231-6600.

Frame-relay testers. The PC-based Sherlock LT, 5400, and 5410 wide-area network protocol analyzers and monitors now include a local-management interface. The interface permits frame-relay decoding and supports 7-level system network architecture (SNA) decoding, X.25 decoding, and synchronous testing to 72 kbps. Asynchronous testing is supported to 98.4 kbps, as are bit- and block-error-rate testing. The vendor offers a variety of plug-in interfaces that conform to various standards. Frame-relay option, $895. International Data Sciences Inc, 501 Jefferson Ave, Warwick, RI 02886. Phone (800) 437-3282; (401) 737-9900. FAX (401) 737-9911.

10-MHz-to-20-GHz synthesized signal generator. At $32,500, the 83732A costs 40% less than the vendor’s most nearly comparable previous product. The generator provides output power of 10 dBm with harmonics below -55 dBc and spurious amplitude, frequency, and pulse modulation below -60 dBc. A digital pulse generator produces 25-nsec-width pulses whose rise and fall times are less than 10 nsec and whose on/off ratios exceed 80 dB. An option that improves the frequency resolution to 1 Hz adds $2000. Delivery, 12 weeks. ARO. Hewlett-Packard Co, Box 58059, MS 51L-SJ, Santa Clara, CA 95051. Phone (800) 452-4844.

Mixed-signal and digital IC testers. The 82000M and 82000P are test systems for mixed-signal ASIC evaluation and IC production testing, respectively. The 82000 model D100X offers improved pulse performance (relative to that of the vendor’s 82000 model D100) for testing of digital ICs at speeds to 100 MHz. Fully-equipped 128-channel D100X system, approximately $225,000. Hewlett-Packard Co, Box 58059, MS 51L-SJ, Santa Clara, CA 95051. Phone (800) 452-4844.

Spread-spectrum generator and demodulator for ISA bus. The $2250 ST-101 is a direct-sequence generator; the $800 ST-102 is a programmable demodulator. Both boards let you program binary- and quadrature-phase-shift-keyed spreading sequences that include as many as 256k chips. Chirp rates can range from 0.5 to 10 MHz. You can order the boards for intermediate frequencies of 10.7 or 21.4 MHz. The software provided with each board supports the simultaneous operation of four boards of each type. Sigtek Inc, 4618 Dower Dr, Ellicott City, MD 21043. Phone (410) 465-9192. FAX (410) 750-3350.

Board-test system. The GR179X platinum test system is actually a version of GenRad’s GR275X system that accommodates customer-developed fixtures and test programs that originally ran on GR179X systems two decades ago. Conversion and verification of GR179X programs takes 2 to 8 hours. Upgrades of the system provide access to the GR275X’s full capabilities, including digital testing at a 20-MHz data rate. The 128-channel system, from $425,000. GenRad Inc, 300 Baker Ave, Concord, MA 01742. Phone (508) 369-4400, ext 2970.

250W to 4-kW dynamic loads. The IEEE-488-programmable DCL series of electronic loads includes models with power ratings of 250W, 750W, 1.5 kW, and 4 kW; voltage ratings to 400V; and current ratings to 600A. The units can impose square-wave loading to 12 kHz (sine-wave bandwidth is 34 kHz). When operating in the constant-current mode, the units can impose arbitrary-waveform loading, $2400 to $12,000. Transistor Devices Inc, 274 S Salem St, Randolph, NJ 07869. Phone (201) 361-6622. FAX (201) 361-7665.

Calibration-automation software. Met/Cal V3.0 for MS-DOS PCs generates, checks, and documents calibration procedures; executes those procedures in computer-aided or closed-loop modes; records the results; and produces calibration certificates and reports. The software’s record-keeping procedures comply with standards such as ISO 9000 and MIL-STD-45662A. V3.0 adds support for the vendors’ 5700A calibrator, 5790A measurement standard, PM 6680 counter/timer, 90-series Sopemeters and handheld DMMs, and Hydra series...
Other 12-bit 1.0 MSPS ADCs cost so much, you’d think they came in a package like this.

Introducing the AD1671.
The first 12-bit, 1.25 MSPS ADC under $50.

If you wanted a high speed 12-bit 1.0 MSPS A/D converter, you had to pay up to $150 (1000s) for one of those precious packages.

But not anymore, thanks to the AD1671. Because our newest 12-bit monolithic fast ADC lists for just $46.50 (1000s).

Yet even at this price, the AD1671 performs like a gem. It’s 25% faster (1.25 MSPS), has the best S/N+D, and it’s more complete and easier to use than any comparable ADC. Plus it’s available in both DIP and surface mount packages.

For a data sheet, samples and more information on the AD1671, the A/D converter that offers priceless performance at the absolutely lowest price, contact Analog Devices at 1-800-262-5643, or fax us your request at 1-617-937-1011. Or write us at the address below.

Analog Devices, One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106. Distribution, offices and application support available worldwide.

CIRCLE NO. 88
data-acquisition instruments. Also included is support for the Tektronix SG5030 leveled sine-wave source. $5750; upgrade for current users, $600. **John Fluke Mfg Co Inc**, Box 9090, Everett, WA 98206. Phone (800) 443-5853.

Circle No. 476


Circle No. 477

**Optical reference receivers**. The ORS series of reference receivers lets you verify network compliance with the SONET (synchronous optical network) and SDH (synchronous digital hierarchy) standards. The ORS52 works with the OC-1 51.84-Mbps standard; the ORS156 works with the OC-3/STM-1 155.52-Mbps standard; and the ORS622 works with the OC-12/STM-4 622.08-Mbps standard. You can select optical-to-electrical converters with several different sensitivities. From $3995. **Tektronix Inc**, Box 1520, Pittsfield, MA 01202. Phone (800) 426-2200.

Circle No. 478

**2-channel analog scopes with menued user interface**. The $1540 60-MHz TAS 455 and the $2195 100-MHz TAS 465 include such convenience features as a ground trace that appears on the screen for a few seconds any time you touch a channel’s position control, and a trigger-level trace that appears superimposed on the trigger waveform whenever you adjust the trigger level. Moreover, the scopes’ menu structure is identical to that of the DSOs in the vendor’s TDS series for all functions the two series have in common. The scopes come with an unusual 3-year warranty: If, because of defects in materials or workmanship, a TAS scope fails within three years of purchase, the vendor will replace it. **Tektronix Inc**, Box 1520, Pittsfield, MA 01202. Phone (800) 426-2200.

Circle No. 479

National presents the most important EPROM news in recent memory.
Frequency synthesizers that change frequency in 5 µsec. You can set the frequency of the 500D (1 to 500 MHz), 620D (1 to 620 MHz), and 1000D (0.1 to 1000 MHz) from the units' front panels or remotely via TTL BCD inputs. An IEEE-488 interface is optional. You can order the units with resolution as fine as 0.1 Hz. The synthesizers switch to within 0.1 radian of a new frequency in 5 µsec, if the old and new frequencies are above 10 MHz. A table look-up option provides phase-continuous switching and even faster transient response. Single-sideband phase noise (1-Hz bandwidth) is below −100 dBc 100 Hz from the carrier and below −120 dBc 10 kHz from the carrier. An optional oven-controlled crystal oscillator is stable to within 3 ppb/day and ±10 ppb from 0 to 50°C. From $6610 to $12,145 (for a model 1000D with 0.1-Hz resolution and oven-controlled oscillator). Delivery, six weeks ARO. Programmed Test Sources Inc, Box 517, Littleton, MA 01460. Phone (508) 486-3008. FAX (508) 486-4495. Circle No. 480

IEEE-488 interface for HP Series 700 workstations. The SCS1488/H connects to the SCSI port of a Hewlett-Packard Series 700 Model 706 or 710 and enables the workstation to control IEEE-488 instruments and peripherals. The unit, which conforms to HP's standard-instrument-control-library (SICL) applications-programming interface, transfers data at 1 Mbyte/sec. You can daisy chain the interfaces to control as many as 98 devices. $1495 including SICL software. IOTech Inc, 25971 Cannon Rd, Cleveland, OH 44146. Phone (216) 439-4091. FAX (216) 439-4093. TWX 6502620864. Circle No. 481

Generator of 65-psec-rise-time 7.5V pulses. The 10,070A produces positive or negative pulses that have a 125-psec fall time and 1.5-psec jitter. You can adjust the pulse width from

COUNT ON LONG-TERM SUPPORT FOR INDUSTRY-STANDARD EPROMS.

At National, we’re committed to EPROMs. Our 16-kbit to 4-Mbit solutions employ an Alternate Metal Ground (AMG) architecture to ensure the smallest non-volatile memory die size in the industry-making them very cost-effective. And that's something you simply can't forget.

1-800-72-EPROM, Ext. 207

ELIMINATE WAIT STATES WITH OUR NEW PROCESSOR-ORIENTED EPROMS.

With data float times of just 25ns, our processor-oriented EPROMs have eliminated glue logic and wait states. What's more, their advanced timing circuits optimize hold times, which removes the need for latches or buffers. Which is why you should gravitate towards National.

1-800-72-EPROM, Ext. 207
End the connector compromise...

1. SIMPLE PUSH BUTTON RELEASE

2. OPTIONS FOR 3, 7, 9 AND 12 POSITIONS

3. NO SHOCK PLASTIC HOUSING

...in patient monitoring equipment

Only Hypertronics ends the compromise in quick-disconnect plugs and receptacles...by combining patient-proof design, economical plastic housings and the reliability of military approved contacts in a line of electrical connectors.

Our injection-molded polycarbonate and polysulfone housings completely shroud current-carrying elements to avoid both reliability and repair problems, as well as user hazards. Yet a simple push-button release allows quick disconnects by untrained personnel.

The economically priced D Series connectors are available in 3, 7, 9 and 12 position modules. Each incorporates the Hypertac® low insertion force contact for unique operational and cost efficiency.

Now you can have it all...in long-life, user-friendly circular connectors for medical, personal computer and other equipment. End the connector compromise by calling 1-800-225-9228, toll free.

HYPERTAC®:
Inserting pin into hyperboloid sleeve.

HYPERTRONICS CORPORATION
"New Horizons in Connectors"
16 Brent Drive, Hudson, MA 01749 (508) 568-0451 FAX (508) 568-0680
CIRCLE NO. 90
EDN·NEW PRODUCTS

Test & Measurement Instruments

100 psec to 10 nsec in 2.5-psec steps. You can adjust the amplitude over an 81-dB range in 1-dB steps. The repetition rate, trigger delay, and baseline offset are also adjustable. The front panel includes a keypad and an LCD. Suggested list price, $13,400. Delivery, 12 weeks ARO. Picosecond Pulse Labs Inc, Box 44, Boulder, CO 80306. Phone (303) 443-1249. FAX (303) 447-2236.

Circle No. 482

5½-digit, 0.1-Hz to 16-MHz frequency synthesizer. The 6.5 x 4.5 x 0.75-in. SM-102 provides a TTL square wave for a 50Ω load. The unit has 8-decade frequency ranges. Frequencies are accurate to ±10 ppm from 0 to 50°C. Frequency stability of ±1 ppm over this range is optional. Following a command to change frequency, the unit’s output settles within 10% of the new frequency in 10 msec. $528 (1); OEM qty available. Delivery, 30 to 45 days. Syntest Corp, 40 Locke Dr, Marlborough, MA 01752. Phone (508) 481-7827. FAX (508) 481-5769.

Circle No. 483

AC/DC dielectric analyzer. The 1870 performs tests specified by agencies such as the International Electrotechnical Commission and Underwriters' Laboratories. The unit measures insulation resistance to >10⁴Ω at test voltages to 500V dc. The basic inaccuracy is <1%, and the unit offers automatic range selection and pass/fail detection. All functions are accessible from the front panel and from an IEEE-488 interface. $8450. QuadTech Inc, 45 Main St, Bolton, MA 01740. Phone (800) 253-1230; (508) 779-8300. FAX (508) 779-0247.

Circle No. 484

High-speed PS/2 interface for benchtop IC test systems. The PS/2 HSI board lets you interface the vendor's ETS series testers to PCs that use the Micro Channel Architecture bus—for example, the IBM PS/2 series. The interface, which costs less than

EXTEND BATTERY LIFE WITH 5V EPROMS THAT CONSUME UNDER 10mA.

Now you can get the most out of your in-line powered and battery-operated designs with our new family of high-performance 5V EPROMs. In fact, they’re the only 5V solutions available today that consume under 10mA. So if you hunger for low-power EPROMs, call National for the lowdown.

1-800-72-EPROM, Ext. 207

Data shows memory excels at three.

MAXIMIZE LOW-POWER DESIGNS WITH STATE-OF-THE-ART 3V EPROMS.

Our latest EPROM innovations represent a major breakthrough for the world of low-power designs: three volts. As a result, they’re ideal for everything from PCs to slimline mass storage and cellular phones to consumer electronics. Now there’s some data that’s truly unforgettable.

1-800-72-EPROM, Ext. 207
CONDITIONED
"FRONT END" POWER
RUGGED AC-DC OFF LINE SOURCES

Features include 600 watt low profile 2" high package; lightweight, unpotted designs; environmental performance to Mil-Std-810D; -55°C to +85°C operation without derating; extended MTBF greater than 350,000 hours...

Call toll free for additional technical information and application assistance 1-800-421-8181 (in California 805/484-4221)

ARNOLD MAGNETICS CORPORATION
4000 Via Pescador, Camarillo, California 93012 • Phone: (805) 484-4221 • Fax: (805) 484-4113

CIRCLE NO. 91
EDN·NEW PRODUCTS
Test & Measurement Instruments

$5000, lets the test systems run under IBM's OS/2, a true 32-bit operating system. The vendor claims that using the 32-bit OS provides enhanced throughput in comparison with operation under a 16-bit OS. System prices, less than $300 per pin. Hilevel Technology Inc, 2991 Dow Ave, Tustin, CA 92680. Phone (800) 445-3835; (714) 573-1888. FAX (714) 573-1899. Circle No. 485

Portable spectrum analyzers. The HP 8560 E series includes a $26,000 unit that operates from 2.9 GHz to 30 Hz, a $31,000 unit that covers 6.5 GHz to 30 Hz, and a $36,000 unit that covers 26.5 GHz to 9 kHz (30 Hz optional). Below 1 GHz, phase noise is $-113$ dBc/Hz at a 10-kHz offset from the carrier. The units' frequency references are accurate to $\pm 270$ Hz after a 5-minute warmup and to $\pm 180$ Hz after a 10-minute warm-up. Hewlett-Packard Co, Box 58059, MS 51L-SJ, Santa Clara, CA 95051. Phone (800) 452-4844. Circle No. 486

Tunable laser sources. The 8167A operates at wavelengths near 1300 nm; the 8168A operates in the vicinity of 1550 nm. Each unit permits a $\pm 50$-nm wavelength adjustment. Accuracy is $\pm 0.1$ nm; repeatability is better than $\pm 0.05$ nm. Resolution is 0.015 nm at 1300 nm and 0.02 nm at 1550 nm. Each unit, approximately $80,000. Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 452-4844. Circle No. 487

Spacer for microwave wafer probing. The Microwave Wafer Spacer enhances the accuracy of probing-system calibration and on-wafer measurements by reducing errors from nonuniform, multimode propagation. The quartz substrate accommodates wafers to 4-in. D. A plenum with laser-drilled vacuum vias permits securing the DUT-spacer ensemble to the wafer chuck. $850. Tektronix Inc, Box 1520, Pittsfield, MA 01202. Phone (800) 426-2200. Circle No. 488

EPROMs from National.

Our commitment to providing a broad range of EPROMs is clearly outlined by the matrix below. We've made substantial investments in updating our fabs and processes in order to bring you innovative solutions that deliver unsurpassed performance. And that's really something worth remembering.

<table>
<thead>
<tr>
<th>Standard Product</th>
<th>Processor-Oriented</th>
<th>Low-Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 16-kbit-4-Mbit</td>
<td>• 25ns $T_{AC}$ eliminates wait states</td>
<td></td>
</tr>
<tr>
<td>• 100ns access times</td>
<td>• 7ns $T_{AH}$ eliminates glue logic</td>
<td></td>
</tr>
<tr>
<td>• DIPs, PLCCs, OTPs, TSOPs</td>
<td>• 120ns access times</td>
<td></td>
</tr>
<tr>
<td>• JEDEC Std Pin Config</td>
<td>• DIPS, PLCCs, OTPs</td>
<td></td>
</tr>
<tr>
<td>- 2K-512K x 8 (byte)</td>
<td>• JEDEC Std Pin Config</td>
<td></td>
</tr>
<tr>
<td>- 64K x 16 (word)</td>
<td>- 2K-512K x 8 (byte)</td>
<td></td>
</tr>
<tr>
<td>- 64K x 16 (word)</td>
<td>- 64K x 16 (word)</td>
<td></td>
</tr>
</tbody>
</table>

5V Low-Current

- Active current
  - 4.5mA
- Standby current
  - 100µA
- 200ns access times
- JEDEC Std Pin Config

Low-Voltage

- 3.3V $\pm 0.3V$
- Low current operation ($I_{CC}$)
  - 15mA & 20µA (standby)
- Low power
  - 50mW & 33µW (standby)
- 120ns access times
- TSOPIs, PLCCs

For a free information kit and memory databook, return the reply card, give us a call, or fax us at 1-800-888-5113.

1-800-72-EPROM, Ext. 207

Blue LEDs. The L200CWGB6 aqua-blue LED is housed in a T-1-3/4 package and has a 150-mcd output intensity. The unit is available in a clear narrow-beam style and operates at a 20-mA forward current. Operating wavelength equals 482 nm. From $12.50 (1000). Delivery, stock to six weeks ARO. Ledtronics Inc, 4009 Pacific Coast Hwy, Torrance, CA 90505. Phone (310) 549-9995. FAX (310) 549-4820. Circle No. 423

**Synchronizer.** AstroSYNC/180 keeps two shafts running at any desired speed ratio without mechanical coupling. Users program a gear ratio A/B by simply entering the numbers A and B on the keypad or by using a remote command via RS-422 or -485 communication. The unit continuously monitors position and computes the optimum dc control signal, keeping the shaft speed synchronized and the position matched. Multiple units can be slaved together for multiaxis synchronization. From $700 (OEM qty). Astrosystems Inc, 6 Nevada Dr, Lake Success, NY 11042. Phone (516) 328-1600. TWX 510-223-0411. Circle No. 424

**Power module.** MHW9002 Series power modules are for use in telecommunications equipment. They operate from a 5.8V supply and require only 5 mW of RF input power. The modules are available in versions that cover four frequency bands—the 1 version covers 824 to 849 MHz and outputs 31.5 dBm min; the 2 version has an 870- to 905-MHz operating range and a 31.5-dBm output; the 3 version spans 980 to 915 MHz and outputs 32 dBm; and the 4 version operates at 898 to 925 MHz and outputs 31.5 dBm. $18 to $21.20 (OEM qty). Delivery, 12 to 16 weeks ARO. Motorola Inc, E114, 5005 E McDowell Rd, Phoenix, AZ 85008. Phone (602) 244-3818. FAX (602) 244-4597. Circle No. 425

**Mounting board.** The PB-16M8 16-channel mounting board accepts two Mini-8 series I/O modules. The board features industry-standard logic connections through a 50-pin header connector. 2A line fuses, LED status indicators, and carrier strips for field-wiring terminations. $58 (25). Gordos, 1000 N Second St, Rogers, AR 72756. Phone (800) 726-0300; (501) 636-5000. FAX (501) 636-2305. Circle No. 426

**Terminal blocks.** Series 88 and 89 terminal blocks accept wire sizes of #12 through #30 AWG. Terminal spacing is 0.2 in. and 5 mm for the 88 and 89 units, respectively. Both lines are available in vertical and right-angle versions in lengths of 2 to 12 positions. The blocks conform to VDE specifications. $0.20 per position (250). Beau Interconnect Systems, Box 10, Laconia, NH 03247. Phone (603) 524-5243. FAX (603) 524-1627. Circle No. 427

**Photoelectric sensors.** The E3S sensor features NEMA 4X and 6 ratings. They are available in standard (-A) and miniature (-B) versions in through-beam, retroreflective, and diffuse reflective modes. Response time equals 0.5 msec. From $80. Omron Electronics Inc, 1 E Commerce Dr, Schaumburg, IL 60173. Phone (708) 843-7900. FAX (708) 843-7787. Circle No. 428

**Pressure gauge kit.** This kit contains interface circuitry that converts the output of an MPX2100 pressure sensor to a 0.5 to 4.5V output that is then translated by a bar-graph display driver to interface with a 10-segment LED bar-graph display. The boards are designed to provide a 15 psi, full-scale pressure measurement. The kit contains a completely assembled evaluation board, application note, MPX2100 data sheet, MC3274 data sheet, and a sensor brochure. $75. Motorola Inc, 5005 E McDowell Rd, Phoenix, AZ 85008. Phone (602) 244-5395. FAX (602) 244-5680. Circle No. 429

**Flex circuit connectors.** FPC connectors allow vertical or right-angle connection of flexible etched cable, flat flex cable, and flexible printed circuits to a pc board. The right-angle versions mate with either side of the cable. The vertical unit has a detent that holds the actuator in the open position to provide a zero-force insertion. The connectors are available with 4 to 30 positions. $0.38 to $0.80 (250,000). Delivery, six weeks ARO. AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (508) 522-6702. Circle No. 430

**Grommet edging.** Spring-Fast composites are clad with a polymer that ensures abrasion resistance and provides electrical insulation. The product is recognized by all certification groups and meets all Bellcore flammability requirements. The edging easily snaps into place to cushion cable pathways through metal wall slots and along cabinet edges. $2.72 per grommet. Device Technologies Inc, Box 968, Framingham, MA 01701. Phone (508) 877-4223. FAX (508) 877-8179. Circle No. 431

**Crystals.** These crystals operate over a range of 6 to 30 MHz and have a ±150 ppm pulling range from nominal load capacitance. Room-temperature frequency tolerance equals ±10 ppm. The units are housed in a leaded package measuring 0.33 x 0.434 x 0.18 in. $4.80 (100). Delivery, six weeks ARO. Standard Crystal Corp 9940 E Baldwin Pl, El Monte, CA 91731. Phone (800) 423-4578. FAX (818) 443-9049. Circle No. 432
**Enclosures.** Ratiopac cases can be used as desktop units or as 19-in. rack-mounted enclosures. All dimensions are identical to a 19-in. subrack for mounting bus-structured backplanes and plug-in units from the front or rear. The cases will accommodate a 3U unit in a 3U case or a 6U unit in a 6U case. The line includes a variety of widths in 3 and 6U heights. From $124 for a 3U unit. Schruff Inc, 170 Commerce Dr, Warwick, RI 02886. Phone (800) 451-8755; (401) 732-3770. FAX (401) 738-2904. Circle No. 433

**Power transistor.** The MRF10031 is designed for common base-amplifier applications in military and commercial transmitters. The unit will provide a 9.5-dB gain operating from 36V and will handle 10-µsec pulses at a 50% duty cycle for a period of 3.5 msec. The transistor will output a minimum of 50W pk over its operating range of 960 to 1215 MHz. $95.50. Delivery, stock to 12 weeks ARO. Motorola Inc, MD 56-102, Box 52073, Phoenix, AZ 85072. Phone (602) 244-3818. FAX (602) 244-4597. Circle No. 434

**MOSFETs.** The Si9420DY and Si9410DY are rated for 200 and 30V, respectively. The units are housed in 8-pin surface-mount packages and are mounted on low thermal-impedance copper lead frames, which allow the units to dissipate 2.5W. The Si9410DY features a 4.5V gate drive. Si9410DY, $0.77; Si9420DY, $0.46 (OEM qty). Siliconix Inc, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (408) 988-8000. Circle No. 435

**Adapter.** Model ANC-9222P adapter accepts 14 x 14 pin-grid-array devices with as many as 132 pins and converts the layout to wire-wrap pins. The unit is available with 3-level wire-wrap pins or 0.18-in. gold-plated machine pins. The units feature labeled test points for each of the 132 pins and two LED status circuits that provide a visual indication for user-selected signals. $115. Antona Corp, 1643½ Westwood Blvd, West Los Angeles, CA 90024. Phone (310) 473-8995. FAX (310) 473-7112. Circle No. 436

**Power transformers.** SPW-2300 Series units are rated for 12 VA and have outputs ranging from 5 to 230V ac. In addition to shrouded primaries, each transformer has insulating anchor and crossover tapes. Each unit is totally immersed in 100% solid epoxy to withstand aqueous and solvent pc-board cleaning processes. $5 (OEM qty). Prem Magnetics Inc, 3521 N Chapel Hill Rd, McHenry, IL 60050. Phone (815) 385-2700. Circle No. 437

**Interface module.** The PE-65745 is a surface-mount 10Base-T isolation interface transformer. The transfer-molded
part operates with Level One's LXT901 and Fujitsu's MB86961 transceiver chips. The unit withstands infrared and vapor-phase reflow soldering. The unit meets the IEEE-802.3 standards and FCC/VDE emissions requirements. $2.25 (1000). Pulse Engineering Inc, Box 12235, San Diego, CA 92112. Phone (619) 674-8100. FAX (619) 674-8262. Circle No. 438

Socket. The Correct-A-Chip programmed socket lets you incorporate additional circuitry within the socket envelope to create a semihybrid daughter board. The socket lets you lay out function sites on mother boards, and various plug-in functions can then be socketed into the sites. To upgrade designs, you replace the original ICs with newer devices that have better performance; the socket easily converts from one package style to another. $15 (500). Delivery, four to six weeks ARO. Aries Electronics Inc, Box 130, Frenchtown, NJ 08825. Phone (908) 996-6841. FAX (908) 996-3891. Circle No. 439

Capacitors. These polypropylene devices have 1 and 2% tolerances and are available in values ranging from 0.001 to 10 µF. The devices come with working voltage ratings of 67, 135, 270, and 660V ac and 100, 200, 400, and 1000V dc. Operating range spans -55 to +105°C. $1 (1000) for 1% units. Delivery, 8 to 10 weeks ARO. Electrocube, 1307 S. Myrtle Ave, Monrovia, CA 91016. Phone (818) 301-0122. Circle No. 440

Board connectors. Model 301B-48TRU connectors are designed to connect PC-memory-upgrade boards for HP Laserjet printers. Contacts are rated for 1A at 500V ac. Contact and insulation resistance equal 30 mΩ and 100Ω, respectively. The insulators carry a 94V-0 UL rating. Operating range spans -55 to +105°C. Opus America, 26821 Reuther, Unit D, Santa Clarita, CA 91331. Phone (805) 252-4760. FAX (805) 252-9214. Circle No. 441

Solid-state relays. The HSSR-8060 and -8400 operate as single-pole, normally open switches. The 8060 can switch loads of 28V dc, 24V ac, or 48V dc. They have a 1.5A rating and a 0.4Ω on resistance. The 8400 will switch 110 or 220V ac loads. It has a 300mA current rating. HSSR-8060, $3.65; HSSR-8400, $3.47. Hewlett-Packard Co, Box 58059, Santa Clara, CA 95052. Contact local sales office. Circle No. 442

Rechargeable battery. These nickel hydride batteries have 40% more capacity than similar-sized NiCd units. The batteries can be charged in 1 hour and have a wide discharge range, -20 to +60°C. Life is specified as 500 charge-discharge cycles. The units are available in cadmium-free standard cells and high-capacity versions that contain

We Build 100% Of Our Memory Cards.

You never have to wait when Mitsubishi makes your memory cards.

Memory card manufacturing and delivery schedules are directly proportional to availability of the ICs that go inside. At Mitsubishi, we produce 100% of our own DRAMs, SRAMs, flash memory, EEPROMs, OTPROMs, MROMs and peripheral circuitry in our own fully automated manufacturing facilities.

Ranked among the world's top ten semiconductor suppliers, Mitsubishi is always a front-runner in next-generation memory densities and technologies. So, we consistently offer our cards in the highest memory densities and in the current versions of PCMCIA, JEIDA and JEDEC standards. As a technology leader in ASICs, Mitsubishi also supports custom card requirements.

Since we don't have to wait for our ICs, you won't have to wait for your cards.

Call (408) 730-5900, ext. 2214.
Components & Power Supplies

Transistors. The high-speed IGBTs have BV_{CES} ratings of 600 to 1000V and have a fall time of 0.5 to 0.8 µsec. Low-conduction-loss GL models also have a 600 to 1000V BV_{CES} rating and a fall time of 1 to 1.5 µsec. Current ratings range from 25 to 55A for GF units and 30 to 75A for the GL devices. From $9 to $28 (100). Advanced Power Technology, 405 SW Columbia St, Bend, OR 97702. Phone (503) 382-8028.

Resistor networks. These gull-wing resistors come in narrow (Series 4K00T), medium (Series 4800T), and wide (Series 4400T) types. The narrow-body units are available with 8, 14, and 16 pins with a resistance range of 10 to 100 kΩ. The medium-body units are available with five tolerances and come in 14-, 16-, 18-, and 20-pin versions. The wide-body units are housed in 16- and 20-pin packages. From $1.76 (OEM qty). Bourns Networks Inc, 1400 N 1000 W, Logan, UT 84321. Phone (801) 750-7333.

Circuit breaker. The SSP-21120 solid-state power controllers replace circuit breakers. The line includes versions rated for 40, 60, and 80A at voltages as high as 28V dc. Fault and F-I trip characteristics can be factory set. The controllers have a 6.3-mΩ on-resistance and dissipate only 12W. A built-in test monitors the status of both the internal and external circuitry in real time. Operating range spans -55 to +105°C. From $1295. ILC Data Device Corp, 105 Wilbur Pl, Bohemia, NY 11716. Phone (516) 567-5600, ext 7419. FAX (516) 567-7358.

Ribbon connector. The metal-shell, right-angle ribbon connectors in the Lyte Series have a 0.085-in. pitch and are available with 14, 24, 36, and 50 contact positions. The connectors have sturdy bail latches for secure locking. Operating range spans -55 to +105°C. $1 to $3. Delivery, stock to six weeks ARO. Cinch Connectors, 1500 Morse Ave, Elk Grove Village, IL 60007. Phone (708) 981-6000.

Optical data link. This optical data link comprises the FTM-8500 transmitter, the FRM-8500 receiver, and the FCC-2000 link controller. The link will accommodate data transmission speeds of 100 Mbps to 1.5 Gbps over distances of 500m. Bit error rates are <10^{-12}, and laser-light source life is specified at 200,000 hours. The transmitter and receiver modules consume <1W of power and operate from 5 and 12V supplies. The modules work with standard multimode fiber. FTM-8500, $310; FRM-8500, $300; FCC-2000, $60. Finisar Corp, 3515 Edison Way, Menlo Park, CA 94025. Phone (415) 364-2722.

The 3900 meets more standards. Starting at just $2995,* the 3900 family of device programmers gives you more for your money. Whether you're concerned with safety, noise, ESD, EMI, or reliability, the 3900 lets you rest easy. It has been approved by internationally recognized safety organizations such as TUV and CSA, and complies with the strictest EMI and ESD standards—VDE 0871B and IEC 801-2. So, it can program more devices and support more packages—in any environment.

To hear more reasons why the 3900 is the engineer's ultimate programmer, call today. We'll send you a FREE copy of our popular Wall Chart of Programmable Devices.

1-800-3-DataI/O
(1-800-332-8246)
True-color PC RAMDAC. The Bt485 provides 75-, 85-, 100-, and 135-MHz video bandwidth to work with 1280 x 1024-pixel graphics. It offers 16.7 million colors in 24-bit true-color mode and is compatible with VGA, superVGA, Windows-based systems, Targa, and Macintosh standards. The chip connects directly to the video-RAM frame buffer, and it provides the serialization and timing logic. A TTL on-chip clock doubler eliminates the need for ECL logic. The 75-MHz version, $22.65 (100). Brooktree Corp., 9950 Barnes Canyon Rd, San Diego, CA 92121. Phone (619) 452-7580. FAX (619) 452-1249. Circle No. 401

Dual comparator. The SPT9691 features a common-mode input-voltage range of -4 to +8V and a maximum propagation delay of 3 nsec. The dual comparators use JFET input stages, which have typical input bias currents of ±0.1 nA. The 3-dB bandwidths of each device track each other and are typically 300 MHz. The open-loop gain is 60 dB, and the input capacitance is 1 pF. The 20-pin plastic leaded chip carrier, which operates from 0 to 70°C, $16.40 (1000). Delivery, four to six weeks ARO. Signal Processing Technologies, 1510 Quail Lake Loop, Colorado Springs, CO 80906. Phone (800) 643-3778, ext 778; (719) 540-3914. FAX (719) 540-3970. Circle No. 402

Instrumentation amplifier. The INA114 instrumentation amplifier provides 50-µV offset voltage; 0.25-µV/°C offset voltage drift; 2-nA input bias current; 115-dB CMRR; 3-mA quiescent current; and ±40V input overvoltage protection. A 3-op-amp design fits into an 8-pin DIP that operates from ±2.25 to ±18V. $3.25 (1000). Burr-Brown Corp., Box 11400, Tucson, AZ 85734. Phone (800) 548-6312; (602) 746-1111. FAX (602) 889-1510. Circle No. 403

Computer chip set. The EF8290WB chip set consists of two 160-pin plastic quad flatpacks—the 82EC392 bus controller and the 82EC495 system controller. The chip set works with 386DX, 486SX, and 486DX µPs running at 20 to 50 MHz. You switch to a 386 µP mode by connecting a pin to Vss. The chip set has 64-, 128-, 256-, and 512-kbyte cache-memory sizes. The chip set also works with the Weitek 3167 and 4167 coprocessors. $24 (100). Efif Microsystems Inc., 800 Charcot Ave, #110, San Jose, CA 95131. Phone (408) 943-1688. FAX (408) 943-1689. Circle No. 404

Low-voltage 80C51 µC. The 80CL51 is pin-for-pin compatible with the 80C51 microcontroller (µC). It operates from 1.8 to 6V dc and oscillator frequencies from dc to 3.58 MHz. The CMOS chip...
draws 50 µA when operating at 1.8V and 32 kHz; when operating at 3V and 3.58 MHz, the chip draws 2.5 mA. Power-down current draw is 10 µA when operating at 1.8V. The 80C51 has eight more external interrupts than an 80C51 µC and can wake the controller from power-down mode. DIP version, $3.20 (10,000). Signetics Co, Box 3409, Sunnyvale, CA 94088. Phone (408) 991-2000.

FPGA family. The ATT1C05 and ATT1C11 are the first members of the Optimized Reconfigurable Cell Array (ORCA) FPGA family; they have densities of 5000 and 11,000 gates, respectively. The ORCA family has densities ranging from 3000 to 20,000 gates and clock rates as fast as 80 MHz. Configurable look-up tables in each logic block optimizes logic utilization. ATT1C05, $240; ATT1C11, $710 (100). AT&T Microelectronics, 52AL040420, 555 Union Blvd, Allentown, PA 18103. Phone (908) 771-2788.

H-bridge motor driver. The PWR-82341 has two MOSFET H-bridge output stages that deliver 10A peak and 5A continuous current. The output stages can switch at 50 kHz and operate from a 100V dc supply voltage. A hermetically sealed metal package occupies 2.5 in.² of board space. Internal logic for the two output phases prevent simultaneous turn-on of upper and lower transistors. The device operates from −55 to +125°C. $510. Delivery, from stock to 90 days ARO.

Ferroelectric RAM. The FM 1208 is a 4-bit nonvolatile ferroelectric RAM organized as 512×8 bits. It uses 1.5-µm silicon-gate CMOS technology. The chip operates from a 5V supply and consumes a maximum power of 44 mW. The I/O ports are TTL compatible, and the operation is synchronous on the high-to-low transition of CE signal. The read and write cycles are symmetrical and have a read-access time of 250 nsec. $2.95 (1000). Ramtron International Corp, 1850 Ramtron Dr, Colorado Springs, CO 80921. Phone (800) 545-3726; (719) 481-7000. FAX (719) 481-9170.

No Noise Is Good Noise

The SR560 Low-Noise Preamplifier

is the ideal voltage amplifier for the most demanding applications. With a low 4 nV/√Hz of input noise, even the smallest signals won't get lost. Two adjustable signal filters, each configurable as high or low pass, attenuate unwanted interference. Internal batteries provide operation isolated from the AC line.

And the best news of all, the SR560 is priced at only $1895, including remote interface. Whether you need lower noise, higher gain, or greater bandwidth, call Stanford Research Systems and take a closer look at the SR560.

Stanford Research Systems
1290 D Reamwood Avenue, Sunnyvale, CA 94089
TEL (408) 744-9040 FAX 4087449049

CIRCLE NO. 101
delay of 10 nsec. In DIPs, GAL6002B-15, $9; GAL26CV12B-10, $8 (1000).

Lattice Semiconductor Corp, 5555 NE Moore Ct, Hillsboro, OR 97124. Phone (503) 681-0118. FAX (503) 681-3037. TLX 277338. Circle No. 409

**3.3V DRAMs.** This set of four 4-Mbyte dynamic RAMs operate from 3.3V. The devices come in versions having 70- or 80-nsec access time and typically consume 190 mW for a 70-nsec access time. The devices feature page and early write access modes. They consume 1.8 mW in standby mode, and they have a self-refresh mode. The M5M4V4160, M5M4V4170, and M5M4V4260 have a 256k × 16-bit organization. The M5M4V4900 has a 512k × 8-bit organization. $28 (100). Mitsubishi Electronics America Inc, 1050 E Arques Ave, Sunnyvale, CA 94086. Phone (408) 780-5900. Circle No. 410

Variable-gain amplifier. The CLC522 amplifier integrates a 2-quadrant multiplier, two input buffers, and an output current-feedback op amp to implement a variable-gain amplifier in a 14-pin DIP. You need two external resistors to set the maximum gain from 2V/V to 100V/V. The gain-control range is 40 dB from the maximum setting. At 10V/V gain setting, the bandwidth is 165 MHz. $9.26 (1000). Comlinear Corp, 4800 Wheaton Dr, Fort Collins, CO 80525. Phone (303) 226-0500. FAX (303) 226-0564. TLX 450881. Circle No. 411

**Low-voltage SRAMs.** The DS2016 is a 2k × 8-bit static RAM (SRAM), and the DS2064 is an 8k × 8-bit SRAM. Both devices operate from 2.7 to 5.5V. At 3V the standby current is less than 50 nA. Access times are 300 nsec when operating at 3V and 150 nsec when operating at 5V. The devices operate from −40 to +85°C and come in 600-mil DIPs or 300-mil SOIC packages. In DIPs, DS2016, $3.30; DS2064, $7 (1000). Dallas Semiconductor, 4401 S Beltwood Pkwy, Dallas, TX 75244. Phone (214) 450-0448. FAX (214) 450-0470. Circle No. 412

**Flash PLD.** The Flash PALC22V10D is an electrically erasable and reprogrammable 22V10 PLD. The chip has a 10-nsec propagation delay and draws 90 mA from a 5V supply. You can program the part using standard PLD programmers such as ABEL, PLDesigner, LOGIC, and CUPL. You can erase and program the part with the Cypress QuickPro II programmer running version 2.078 or higher. The 24-pin DIP, $15.55 (100). Cypress Semiconductor, 3901 N First St, San Jose, CA 95134. Phone (408) 943-2600. Circle No. 413

**Sampling A/D converters.** The ADS-188 and ADS-188A are 12-bit sampling A/D converters in 24-pin DIPs. The hybrids operate as fast as 5 MHz and con-
sume 1.8W operating from ±15 and 5V supplies. Typical harmonic distortion is -73 dB, and the signal-to-noise ratio is 66 dB. The ADS-118 has 3-state outputs, and the ADS-118A features direct adjustment of offset and gain errors. The operating temperature ranges from 0 to 70°C. $203. Delivery, stock to six weeks ARO. Datel Inc, 11 Cabot Blvd, Mansfield, MA 02048. Phone (508) 339-3000. FAX (508) 339-6356. Circle No. 414

Communications chip sets. The PHY1001 and PHY1002 2-chip sets provide fax, modem, voice, and caller-ID functions. They operate at 14,400 bps, which conforms to V.32bis data and V.17 fax standards. Both chip sets include voice compression as standard. The PHY1002 is a reduced-part version of the PHY1001 for low-power applications. The PHY1002 consumes 450 mW operating and 80 mW in sleep mode. PHY1001, $40; PHY1002, $50 (1000). Phylon Inc, 4027 Clipper Ct, Fremont, CA 94538. Phone (510) 656-2606. FAX (510) 656-0902. Circle No. 415

Clocked FIFO memories. This series of memories operates as fast as 67 MHz. The SN74ACT7813, SN74ACT7805, and SN74ACT7803 have 64×18-bit, 256×18-bit, and 512×18-bit organizations, respectively. The architecture synchronizes the output- and input-ready flags to the read and write clocks, respectively. SN74ACT7813-40DL, $15.60; SN74ACT7805-40DL, $18.10; SN74ACT7803-40DL, $20.50. Texas Instruments Inc, Semiconductor Group (SC-92047), Box 809066, Dallas, TX 75380. Phone (214) 995-6611, ext 3990. Circle No. 416

1-GHz frequency synthesizer. The UMA1016xT integrates a 1-GHz prescaler to synthesize frequencies in the 500-MHz to 1-GHz range. The device can change frequencies within 100 μsec. Two separate divider-ratio registers permit the IC to switch from transmit to receive frequencies without reloading data. A 5-Mbps, 3-wire serial interface passes channel information to the chip. $3.60. Philips Semiconductors, Box 218, Bldg RAF-1, 5000 MD Eindhoven, The Netherlands. Phone 40 722091. FAX 40 724825. Circle No. 417

Synchronous buck regulator. You can combine the SN9150CY synchronous buck regulator controller with a MOSFET half-bridge to implement a 7.5W, 3.3V, or 5V power supply. The chip operates from a 6 to 16.5V dc input voltage and features dual 100-mA output drivers. You can use a switching frequency as fast as 300 kHz. The chip has overcurrent protection and a low-current standby mode. $2 (OEM qty). Siliconix Power MOSFET, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (800) 554-5565, ext 1400. Circle No. 418

GET MORE FROM OHMITE!

Ohmite's advanced surface mount power resistor design gives you the broadest selection in the industry:
- Six Power Ratings - 0.8 to 3.0 watts
- Five Package Sizes
- Two Mounting Styles - Pedestal and Recessed Foot Mount
- Three Construction Types - Film, Wirewound, and Power Film
- Wide Ohmic Range - .005 ohm to 10 Megohm
- Wide Tolerance Choice - 0.1% to 5%

You get even more from Ohmite with full compatibility to major vacuum pick and place equipment and our patented flexible J-bend terminations which reduce solder joint breakage due to thermal expansion and vibration.

Your answer to Surface Mount Power Resistor Technology is Ohmite.
Tel 708-675-2600 Fax 708-675-1505

OHMITE®
Since 1925, Ohmite Manufacturing Co. has been in the forefront of innovative electronic component technology. Progressive and competitive, Ohmite maintains a tradition of quality and service.
Ohmite Manufacturing Co., 3601 Howard St, Skokie, IL 60076 Tel 708-675-2600 Fax 708-675-1505

CIRCLE NO. 87 EDN October 15, 1992 • 171
Sierra Systems undefeated on the 68040.
Two benchmarks were selected, Dhrystone 2.1 (the Toy program) and the Sierra Systems production C compiler (the Real program). The compiler was selected because both its size and complexity are representative of real-world applications.

The Sierra C™ compiler delivers unchallenged compilation times with industry leading runtime performance on all applications. Add our equally fast QuickFix™ source-level debugger, and you have a package with all the quality, speed, and ease-of-use demanded by today's design teams.

Table:

<table>
<thead>
<tr>
<th></th>
<th>WON</th>
<th>LOST</th>
<th>TOY PROGRAM</th>
<th>REAL PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DHRYSTONES</td>
<td>EXECUTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PER SEC.</td>
<td>TIME SEC.</td>
</tr>
<tr>
<td>SIERRA SYSTEMS</td>
<td>12</td>
<td>0</td>
<td>31604</td>
<td>5.73</td>
</tr>
<tr>
<td>GNU</td>
<td>9</td>
<td>3</td>
<td>24390</td>
<td>6.11</td>
</tr>
<tr>
<td>MICROTEC RESEARCH</td>
<td>7</td>
<td>5</td>
<td>23854</td>
<td>6.49</td>
</tr>
<tr>
<td>OASYS/GREEN HILLS</td>
<td>6</td>
<td>6</td>
<td>28571</td>
<td>7.80</td>
</tr>
<tr>
<td>INTERMETRICS</td>
<td>4</td>
<td>8</td>
<td>23234</td>
<td>7.50</td>
</tr>
<tr>
<td>INTROL</td>
<td>4</td>
<td>8</td>
<td>19098</td>
<td>7.03</td>
</tr>
<tr>
<td>SOFTWARE DEV. SYS.</td>
<td>0</td>
<td>12</td>
<td>16415</td>
<td>9.47</td>
</tr>
</tbody>
</table>

68332 and 68010 standings also available.
For more detailed results, additional information, and a competitive edge for your products, call 800-776-4888.

Won/Lost Record: For each benchmark, the compilers' run-time performances were compared to each other with wins and losses totaled in round-robin fashion. (See Dhrystones and Execution Time columns on scoreboard.)

Compilers: GNU 2.0, Intermetrics 8.0, Intro! 3.0, Microtec Research 4.2d, Oasys/Green Hills 1.8.5Re, Sierra Systems 3.0, Software Development Systems 5.1.

Hosts: 33 MHz Z800 Zeos PC and Sun SPARCstation IPC. All compilers were run on the PC, except for GNU and Oasys/Green Hills, which were run on the Sun. Running the Sierra Systems compiler on both host systems allowed the Sun times to be scaled to PC time for the scoreboard.

Target: Motorola VME167, 25 MHz 68040 with caches enabled.
Synthesis tools. For designing programmable logic, the PLDesigner-XL family works with VHDL (VHSIC-Hardware-Description-Language) language entry or an extended version of Mine’s Design Synthesis Language. The software is available in three configurations. The Prodigy Series includes the Mine language input and offers single-device software from $2995. The Professional Series offers multiple-device partitioning and schematic interfaces from $4995. The Virtuoso Series has VHDL input and the choice of any two CPLD (complex PLD) or FPGA (field-programmable-gate-array) device libraries from $8995. Mine Inc., 6755 Earl Dr, Colorado Springs, CO 80918. Phone (719) 590-1155.

Circle No. 449

Thermal analysis software. The Circuit Board Thermometer version 2.0 has translators for P-CAD, PADS, PCB, Tango, and Orcad circuit-board-layout programs. The Windows software performs conduction, conduction with natural convection, forced convection, and transient thermal analyses. The software interpolates temperature and heat-flow contour plots. $2475. Lakeview Software Corp., Laurel Lakes Executive Park, 8377 Cherry Lane, Laurel, MD 20707. Phone (301) 317-0726. FAX (301) 317-0587.

Circle No. 450

C compiler and development tools. C Transition Pack consists of a compiler and development tools for migrating C applications from version 1.0 to 2.0 of Solaris. Transition packs for C++, Pascal, and Fortran are available. C version, $995; others, from $1995. Sunpro, 2550 Garcia Ave, Mountain View, CA 94043. Phone (415) 960-1300. FAX (415) 969-9131.

Circle No. 451

MMIC element library. Generic Smart Library is a user-definable MMIC (monolithic microwave integrated circuit) element library that can be customized for virtually any analog GaAs-IC foundry. You can fit the parameters for each library model to match the characteristics of the foundry. The library exactly synchronizes electrical element models with physical MMIC element layout representations. From $12,000. Eesof Inc., 5601 Lindero Canyon Rd, Westlake Village, CA 91362. Phone (800) 343-3763; (818) 991-7530. FAX (818) 991-7109. TLX 384809.

Circle No. 452

Model-development software. The Modeltools software package provides on-demand models for development of fully functional hardware simulation for board and system designers. The software features easier data entry, automatic generation of model software, and model verification. It requires the LM-family hardware-modeling system on the network. $9000. Logic Modeling Corp., 1520 McCandless Dr, Milpitas, CA 95035. Phone (408) 957-5200. FAX (408) 945-9181.

Circle No. 453

Software development tools for DSP. The cross-software development tool kit for the Mips R3000 family of RISC (reduced-instruction-set-computer) processors runs on PC-DOS and Unix. It includes an ANSI C compiler, libraries in source code, an assembler, a linker, a locator, and a debugger. The compiler works with both hardware and software floating-point operations. Processor-specific optimizations include register allocation, peephole optimization, leaf-function handling, and function inlining. Complete tool kit, from $6990; individual components, from $1750. Boston Systems Office/Tasking, Norfolk Pl, 393 Elm St, Dedham, MA 02026. Phone (617) 320-9400. FAX (617) 320-9212.

Circle No. 454

Object-oriented design on Mac. Macanalyst and Macdesigner 3.3 let you apply object-oriented-design methods to development projects in computer-aided software engineering (CASE). Other features include real-time extensions, data modeling, screen prototyping, requirement database, and global data dictionary. The software requires at least 4 Mbytes of RAM and system 6.0, 7.0, A/UX 2.0, or later. Macanalyst/Combo, $995; Macanalyst/Expert, $1595; Macdesigner, $995. Educational pricing available. Excel Software, Box 1414, Marshalltown, IA 50158. Phone (515) 752-5359. FAX (515) 752-2435.

Circle No. 455

Digital-signal-processing software. The Monarch series of DSP software comprises four packages. Digital Filters provides finite-impulse-response (FIR) and infinite-impulse-response (IIR) filter-design methods. Adaptive Filters offers adaptive algorithms for single and multidimensional signals. Siglab is a signals and systems laboratory for DSP to simulate and test designs. Code Generators implement digital filters on DSP μPs. Adaptive Filters, $399; Digital Filters, Siglab, and Code Generator, $99 each. The Athena Group Inc., 3424 NW 31st St, Gainesville, FL 32605. Phone (800) 741-7440; (904) 371-2567. FAX (904) 375-5182.

Circle No. 456

Speech-synthesis-integration tool kit. The Sound Bytes Developer’s Kit is a library of subroutines. You use it with the company’s Sound Bytes software, which allows you to incorporate speech synthesis into new and existing applications. The software, written in C, converts text into speech and is available for the Macintosh with 2 Mbytes of RAM and system 6.0.x or higher. From $3750. Emerson and Stern Associates Inc., 10150 Sorrento Valley Rd, Suite 210, San Diego, CA 92121. Phone (619) 457-2562.

Circle No. 457

Modem evaluation software. For most industry-standard modems, Taskit provides ready-to-run evaluation scripts for the latest requirement from EIA and CCITT; new test procedures can be added to the package. Modem types covered include V.Fast, V.32bis, V.32, V.22, V.22bis, and Bell 212A. Software with sample test documentation and results, $2450. Telecom Analysis Systems Inc., 34 Industrial Way E, Easton, NJ 07724. Phone (201) 544-8700. FAX (201) 544-8347. TWX 510-601-5535.

Circle No. 458

Microprocessor development tools. A set of development tools for Motorola’s 16-bit 68000 and 68302 microprocessors include Validata/XEL integrated debugger, an optional optimizing C compiler, an instruction-set simulator, and EL 1600 emulator. The tools are based on the company’s emulation-link architecture, which provides network accessibility and a high-level debugging capability. Each tool, priced separately, $2000 to $15,050. Applied Microsystems Inc., Box 97002, Redmond, WA 98073. Phone (800) 426-3825; (206) 882-2000. FAX (206) 883-3049.

Circle No. 459

CAE tool for MS-Windows. Previously known as Simulab, Simulink is a computer-aided engineering tool for simulating nonlinear dynamic systems. This version uses the Simulink/Matlab open architecture, simulation, modeling, analysis, and design. The software can be “linked” or integrated with other

EDN October 15, 1992 • 173

Scientific graphing package. Plotit 2.0 converts data into charts and graphs for analysis. It accepts data from dBase database files, Excel or Lotus 1-2-3 spreadsheet files, or ASCII files. Fastfont technology provides outline fonts and access to third-party fonts. You can choose from more than 60 2-or 3-D or SPQC (Statistical Process Quality Control) graphs including pie graphs, pareto charts, bubble graphs, and fence plots. $495. Scientific Programming Enterprises, Box 669, Haslett, MI 48840. Phone (517) 339-9859. FAX (517) 339-4376.  

Table-driven cross-disassembler. The XDASM table-driven cross-disassembler for more than 20 common processor families allows you to add tables for future processors. The software automatically assigns label names, de-blocks subroutines, inserts assembler directives, and provides multiple cross-reference tables. It also allows full control of the disassembly using a separate TAG file. $249. Data Sync Engineering, Box 146, East Stroudsburg, PA 18301. Phone (717) 421-1977.  

PLD design software. MacAbel 4.1 provides PLD design on the Macintosh. Based on Data I/O’s Abel package, the software reads in a high-level-language description of a circuit. It then automatically optimizes the logic and converts it to a programmer load file that can be used by any JEDEC-compatible programmer. $1995. Capilano Computing Systems Ltd, 960 Quayside Dr, Suite 406, New Westminster, BC V3M 6G2, Canada. Phone (800) 444-9064; in Canada, (604) 522-6200.  

Logic-synthesis software. The Benchkit utility aids users in determining the capabilities of PLD and FPGA synthesis software. The utility generates random Boolean equations in the format required as input for most universal programmable-logic tools. You specify parameters to control the generation of the random equations. Free. Mine Inc, 6755 Earl Dr, Colorado Springs, CO 80918. Phone (719) 590-1155.  


ICE for NEC V40 and V50. The UEM in-circuit emulator for NEC’s V40/50 microprocessors consists of a full-featured emulator and a source-level debugger for C. The debugger works with many compilers and assemblers, including those from Microsoft, Borland, and Intel. The software works with both 8 and 16-bit versions of the processors. $7000. Softaid Inc, 8300 Guilford Rd, Columbia, MD 21046. Phone (800) 433-8812; (410) 290-7760.  

Toyocom's SMD SAW Filter for Cellular Phones  

It’s a bit of an understatement to simply say that our new SMD SAW filter is small. Because at 4.8 mm x 5.5 mm x 1.7 mm and with an extremely low insertion loss of 2.5 dB typical, the TQS-729D is about 1/100th the size of a traditional ceramic filter.  

With more than 50 years of experience, and an unwavering commitment to R&D, TOYOCOM is uniquely qualified to develop products that far surpass comparable devices in terms of quality, dependability and longevity. And size.  

When it comes to synthetic quartz crystal SMDs for computer and communication applications, TOYOCOM answers the call.  

Find out more about our growing family of standard products.  

Call 1-800-TOYOCOM today. Call direct: (708) 593-6780 in Chicago; (714) 689-9081 in Los Angeles.
This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

MICROCONTROLLERS
- C Programmable
- Data Acquisition
- Control / Test
- Excellent Support
- From $159 Qty 1
- New Keyboard Display Modules

Use our Little Giant™ and Tiny Giant™ miniature controllers to computerize your product, plant or test department. Features built-in power supply, digital I/O to 48+ lines, serial I/O (RS232 / RS485), A/D converters to 20 bits, solenoid drivers, time of day clock, battery backed memory, watchdog, field wiring connectors, up to 8 x 40 LCD with graphics, and more! Our $195 interactive Dynamic C™ makes serious software development easy.

CALL OR WRITE FOR FREE DEMO DISK!
Ask about our demo VIDEO

Z-World Engineering
1724 Picasso Ave., Davis, CA 95616
(916) 757-3737 Fax: (916) 753-5141
(916) 753-0618 (Call from your fax, request catalog #18)

CIRCLE NO. 230

JOYSTICKS & TRACKBALLS

For the OEM

Complete line of precision low profile designs with optional features to suit most requirements. Both panel mount and desktop models available.
- Competitive Prices
- American Made Quality

CH PRODUCTS
970 Park Center Drive
Vista, CA 92083
(760) 993-5518

CIRCLE NO. 232

UNIVERSAL PROGRAMMER, EMULATOR & TESTER

TUP-400 $745.00
TUP-300 $575.00
- New improved hardware and software
- The most complete PC based Universal Programmer. Programs PIC/PAL, GAL, EPL, EPLD, PAL, MAX, MACH,... (See Data Sheet for complete list)
- 1536 Timer... (See Data Sheet for complete list)
- 1 year warranty, 30 day money back guarantee

CH PRODUCTS
51 E. Campbell Avenue
Campbell, CA 95008
(408) 378-2912
Fax: (408) 378-7869

CIRCLE NO. 231

ROM-IT™
EPROM EMULATION SYSTEM

The Most Flexible EPROM Emulator You Can Get Today!

- Emulates up to 8 Megabit EPROMS through one standard serial port.
- Downloads 2-Megabit programs in less than 23 seconds.
- Allows you to examine and modify individual bytes or blocks.
- Accepts Intel Hex, Motorola S-Record and Binary files.
- Software available for IBM PC and compatibles.
- Base 27256 EPROM System $395.00. Other configurations available.

ORDER TODAY—IT'S EASY
CALL OR FAX FOR MORE INFORMATION

Incredible Technologies, Inc.
(708) 437-2433 (708) 437-2473 Fax
Visa and MasterCard accepted.

CIRCLE NO. 233

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN October 15, 1992 • 175
RS-232/ GPIB-488 SOLUTIONS FOR INSTRUMENTATION PROGRAM STORAGE & TRANSFER NEEDS

The Easi-Disk Simples Your Data Acquisition, Transfer, and Retrieval Needs Completely

• IBMA/MS-DOS PC Compatible
• RS-232, GPIB-488, 8-Bit Parallel, RS-485, RS-422, and other Interfaces
• Host or Manual Controls
• Remote Polling
• 0'- and 5'- Floppy Disks or Removable RAM
• Stand-Alone, Rackmount or "Built-in" OEM
• 110Vac, 220Vac, 6VDC, 12VDC, or Battery Operation
• Stand-Alone Price is $795, Controller Card Price is $495, in Singles with Quantity Discounts

Application Notes Available
ADP "One for All" Tape Backup System Featuring 160 Meg of Storage for Multiple PC Backups

ANALOG & DIGITAL PERIPHERALS, INC.
P.O. BOX 489
TROY, OHIO 45373
PHONE 513/339-2241
FAX 513/339-0070

CIRCLE NO. 246

TOP DRAWER™

HOT-PLUGGABLE CONNECTORS

• Hot pluggable capability
• Currents to 200 amps
• Insertable/removable contacts
• Solder, crimp & board mount
• Off-the-shelf industry standard
• SMPS compatible

EELCON
P.O. Box 1885, Fremont, CA 94538
Phone (510) 442-2450 FAX (510) 442-2590

CIRCLE NO. 249

R&M Prediction and FMECA Software

Powertronic Systems offers software to predict reliability, maintainability and FMECA. Since 1982, hundreds of users have selected from our large, versatile, integrated software family for military and industrial equipment, electrical or mechanical. Program highlights include: visible assembly hierarchy, defaults and library data, extensive report sorting, user defined reports, what-if and derating analysis, and concurrent engineering data links.

MIL-HDBK-217
MIL-HDBK-472
MIL-HDBK-338
Bellcore

CIRCLE NO. 252

Free Catalog

The World's Largest Collection of Adapters & Accessories for VLSI/Surface Mount Devices

• Emulator Pods & Adapters
• Debug Tools
• Programming Adapters
• Socket Converters

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX 408-982-0664

CIRCLE NO. 251

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
Looking for a Quality Programmer?

**SPRINT Universal Programmers**

Call now and find out why Sprint is the fastest growing 84 pin programmer in North America.

Tel 800/722-4122 FAX 206/883-8601 for a free demo disk

**SMS North America Inc.**

CIRCLE NO. 254

---

**"NO KNOBS"**

E²POT™ Digitally Controlled Potentiometers

- Allow Automated System Adjustments
- Nonvolatile Wiper Position Storage
- Low Power CMOS Technology
- Temperature Compensated
- Improve System Reliability
- Through Hole & Surface Mount Packages

Xicor, Inc., 1511 Buckeye Drive, Milpitas, California 95035-7463
(408) 432-8924 FAX 408-432-0680

CIRCLE NO. 260

---

**END WARPAGE WITH PAGE STIFFENERS**

- Rigidize boards during, after assembly
- Prevent vibration and shock damage.
- One-step installation means no hardware
- Use as a ground, or carry up to 64 amps

Send for Circuit Components Board Stiffeners Application Bulletin.

Circuit Components Inc.
2400 S. Roosevelt St.
Tempe, AZ 85282
602/967-0624
CIRCLE NO. 258

---

**Digital Voice Module**

DM1000LP-1 (425, EPROM chip extra)
- Plays natural-sounding pre-digitized voice
- Playback triggered by contact closures
- Up to 256 seconds of messages (8M-bit EPROM)
- Digitized by using our VP880 digitization board
- Totally self-contained, single-voltage requirement
- Low power consumption, great for battery operation
- Built-in 3W power amplifier
- Many other models available, call for brochure

Eletech Electronics, Inc.
1262 East Katella Avenue, Anaheim, CA 92805
Tel: 714-385-1707 Fax: 714-385-1708

CIRCLE NO. 259

---

**ABEL-PLD:**

Logic design for less.

- 150 PLD architectures
- Intelligent synthesis and optimization
- Upgradable to full-featured ABEL-Design Software
- Software includes the 212 multi-programmer with logic module, ABEL-PLD™ and PROMlink™ Ltd. PC Interface Software
- Supports 20- and 24-pin CMOS logic devices

Call Data I/O Direct today to order

**ABEL-PLD**

CIRCLE NO. 261

---

**Save $1000 on our entry-level logic system.**

- Full hex keypad for extensive editing
- Optional EPROM and microcontroller modules

Call Data I/O Direct today to order the 212 Logic System.

**DATA I/O**

CIRCLE NO. 262

---

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
## EDN-Career Opportunities

1992 Recruitment Editorial Calendar

<table>
<thead>
<tr>
<th>Issue</th>
<th>Issue Date</th>
<th>Ad Deadline</th>
<th>Editorial Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDN Products &amp; Careers</td>
<td>Nov. 5</td>
<td>Oct. 22</td>
<td>COMIDEX/WESCON SPECIAL ISSUE • Special Supplement: Design for Portability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Microprocessors • Wescon/Comdex Hot Products • CAE Software • Diversity Special Series</td>
</tr>
<tr>
<td>EDN Magazine</td>
<td>Nov. 12</td>
<td>Oct. 22</td>
<td>COMIDEX/WESCON SPECIAL ISSUE • Integrated Circuits • Test &amp; Measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Design it Right Series—Part IV</td>
</tr>
<tr>
<td>WESCON '92 SHOWGUIDE &amp;</td>
<td>Oct. 9</td>
<td></td>
<td>A free page available to all advertisers running a full page in 2 out of 3 WESCON issues.</td>
</tr>
<tr>
<td>PRODUCT SPOTLIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDN Products &amp; Careers</td>
<td>Nov. 19</td>
<td>Nov. 5</td>
<td>CAE Software • EDN's “Innovation Crusade”—Winners Coverage • Communications Technology • Regional Profile: So. California, Nevada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19th Annual Microprocessor Directory • ASICs • Sensors • EDN’s “Innovation Crusade”—Winners Coverage</td>
</tr>
<tr>
<td>EDN Magazine</td>
<td>Nov. 26</td>
<td>Nov. 5</td>
<td>ICs &amp; Portable Computers • Power Sources • Laptops/Portables • Low-power Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Regional Profile: Massachusetts, New Hampshire</td>
</tr>
<tr>
<td>EDN Products &amp; Careers</td>
<td>Dec. 3</td>
<td>Nov. 19</td>
<td>INTERNATIONAL PRODUCT SHOWCASE—Vol. I • Power Sources • ICs &amp; Semiconductors • Software • Hardware &amp; Interconnect</td>
</tr>
<tr>
<td></td>
<td>Dec. 10</td>
<td>Nov. 19</td>
<td>INTERNATIONAL PRODUCT SHOWCASE—Vol. II • Computers &amp; Peripherals</td>
</tr>
<tr>
<td></td>
<td>Dec. 24</td>
<td>Dec. 3</td>
<td>• Components • Test &amp; Measurement • CAE</td>
</tr>
</tbody>
</table>

Call today for information on Recruitment Advertising:

East Coast: Janet O. Penn (201) 228-8610
West Coast: Judy Telander (310) 826-3818
National: Roberta Renard (201) 228-8602

---

**SPELLMAN**

**HIGH VOLTAGE ELECTRONICS CORPORATION**

Spellman, a leader in High Voltage Power Supply Technology has immediate openings for two talented individuals in Engineering.

**Electrical Engineer: BSEE or MSEE**

8 to 10 years experience. Candidate will support development of X-Ray Power Supplies for Industrial and Medical applications. Background must include extensive experience in High Power (3KW-100KW), High Voltage (1KV-165KV) Power Supply Design. Candidate must have a working knowledge of Resonant Converter Topologies. Experience with Programmable Logic Devices (PLD's) a plus. Experience with X-Ray tubes and systems a plus.

**Electro-Mechanical Designer:**

8 to 10 years experience. Candidate's Design background must include extensive Auto-CAD or related experience as applied to sheet metal and plastics development for High Voltage Power Supplies. The candidate will also have a working knowledge in the use of P-CAP's for schematic entry and P-CAD for P. C. Board design. Mechanical Engineering Degree a plus.

Spellman is an equal opportunity employer and offers competitive salaries and benefits including a 401(k) plan. For immediate consideration, please forward your resume and salary history to:

**Spellman High Voltage Electronics Corp.**  
**7 Fairchild Ave.**  
**Plainview, NY 11803**  
**Attn.: Personnel Department**

---

**THIS IS THE LAST TIME YOU'LL BE BOXED IN.**

Our VME and Futurebus+ technology is happening faster than ever. With applications such as workstations, simulators, robotics, telecommunications and other real-time applications using SPARC® and 680x0, and 80x86 technology, our growth is racing ahead.

So we need people who have some thoughts on BUS technology and ways to apply it. If you can imagine some great new ideas, we have the stability and resources to let you run with them, and we promise not to box you in.

**SR. STAFF DESIGN ENGINEER**

Design current and future single board computer products using the latest high performance microprocessors, SCSI controller, LAN controller and DRAM devices. Along with a BSEE (MSEE preferred), the qualified candidate will have an understanding of high speed logic design using CMOS, TTL, BiCMOS and BTL logic families. Eight to ten years of board level design experience is required.

Force Computers is a privately held company. As such, we offer our employees competitive compensation packages and excellent benefits. Please send your resume to: Human Resources, Force Computers Inc., Dept. EDN1092, 3165 Winchester Blvd., Campbell, CA 95008. We are an equal opportunity employer. SPARC is a registered trademark of SPARC International, Inc.
Professional Profile
Announcing a new placement service for professional engineers!

To help you advance your career, Placement Services, Ltd. has formed the EDN Career News Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutely free. There are no fees or charges.
- The computer never forgets. When your type of job comes up, it remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and its affiliated offices.

Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.

- Your background and career objectives will periodically be reviewed with you by a PSL professional placement person.

We hope you're happy in your current position. At the same time, chances are there is an ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Career News Databank. To do so, just mail the completed form below along with a copy of your resume, to:
Placement Services, Ltd., Inc.

EDN Databank
A DIVISION OF PLACEMENT SERVICES LTD., INC.

265 S. Main Street, Akron, OH 44308 216/762-6270
Thomson Consumer Electronics, manufacturer of RCA and GE brand consumer electronics products, is exploring new business opportunities in the Cable TV industry, with an exciting opportunity for a Systems Development Engineer to assume a key role within our headquarters product development group. Your technical skills, experience and knowledge of the cable industry are needed to assist in developing revolutionary new technologies that will reshape the future of cable television. In this highly visible position, you will work closely with other members of our Research and Development team, bringing these new technologies from concept to reality.

Your background must include a BS degree in Electrical Engineering (advanced degree preferred), and at least five years' experience in the design and development of video systems. Cable television systems experience is essential; knowledge of digital compression and transmission techniques is desired.

Thomson offers excellent salaries and benefits, plus an exceptional opportunity for professional growth and recognition with a global leader in television technology. Please send your resume, in confidence, to Professional Relations-#4853, MS27-134, Thomson Consumer Electronics, P.O. Box 1976, Indianapolis, IN 46206-1976, or FAX it to us at (317) 231-4052. An equal opportunity employer.

Loral Information Display Systems, a division of Loral Corporation (NYSE), designer of digital electronic information systems and graphic displays for military applications, has the following immediate opportunities:

**DIGITAL DESIGN ENGINEER** - BSEE with 8-10 years experience in high speed microprocessor based computer graphics design. Experience in military displays and display processor design preferred. Knowledge of CAE simulation technologies helpful.

**MECHANICAL ENGINEER** - BSME with 5-10 years experience in military electronic packaging design, analysis and quality testing. Strong background in chassis design, PWBs, CCAs, harness and thermal analysis. Prefer finite element experience with ANSYS.

**PROJECT ENGINEER** - BSEE with 5 years experience in project engineering or project management in a military electronics development engineering environment. Must have extensive scheduling, budgeting, and customer interface experience. Systems engineering background helpful.

**RELIABILITY ENGINEER** - BSEE with 5-10 years experience in reliability analysis and predictions, creating reliability test plans and performing stress analysis. Knowledge of Mil Std 217, 781, 785, and 1629 necessary. Background in failure analysis and maintainability a plus.

**INTEGRATION ENGINEER** - BSEE with 8-10 years experience in hardware/software design experience plus proven experience in Engineering Lab Integration and Testing.

**MARKETING ENGINEER** - BSEE with minimum 7-10 years experience in technical marketing of military electronic or avionics systems to prime contractors, Air Force and Navy. Prefer specific background in airborne and ground display systems. Responsibilities include generating new business opportunities with prime DOD contractors and Air Force and Navy customers.

Loral Information Display Systems is a progressive company offering unusual growth opportunities in our own office park in NE Atlanta. We provide top industry pay and benefits. If interested, please send or fax resume with salary history to: Robert C. Hall, Loral Information Display Systems, Dept. EDN015, 6765 Peachtree Industrial Blvd., Atlanta, GA 30360. FAX (404) 448-9163. EOE, M/F/H/V. U.S. Citizenship required.

“**A DIVISION OF LORAL CORPORATION**

EDN October 15, 1992 • 181
You can control any IEEE-488 (HP-IB, GP-IB, 488.2) device with our cards, cables and software for the PC/AT/386, EISA, Micro Channel and Macintosh II. You get fast hardware and software support for all the popular languages, plus a software library of time saving utilities. Instrument control has never been easier.

FREE
Informative Catalog 800-234-4CEC
Applications help 617-273-1818

Twinax/Triax Patching System

Trompeter’s New J74 family of dual twinax/triax self-normalizing jacks are designed for use in mil/aero and commercial 78/124 applications where signals must be protected from extraneous noise through non-signal-carrying shielding, and interfacing connectors must provide contact surfaces isolated from each other and their outer shields. The series features the J74T-R, a self-terminating normal-through, dual patch jack which automatically provides a normal-through signal (without the use of looping plugs) and terminates the unused side.

J74T-R is the same size as our J14 coax patch jacks allowing you mix up to 20 jacks on a 3.5”x19” panel. Trompeter’s new twinax/triax patching system (jacks, plugs, looping plugs, monitor plugs, panels, patch cords and cable assemblies) combined with Trompeter’s proven lines of Twinax/Triax products provide for improved transmission capabilities and interference rejection of data transmission systems.

Send for a Free 4-page Product Bulletin.

For pricing and availability contact your Local Trompeter Rep or call our New 800# for Sales/Service/Technical Support.

(800) 982-COAX Inside California Call… (800) 655-2028

Quality doesn’t cost… It pays.

See us at SMPTE and WESCON
Send Information, Circle No. 46

Be an Author!

When you write for EDN, you earn professional recognition. And . . . you earn money.

EDN publishes leading edge, state-of-the-art design information that is read by 161,000 electronics engineers and engineering managers worldwide. That’s an audience that could belong to you.

If you have any clever engineering ideas and methods that you’d like to share with your professional colleagues send your proposal to: Joan Morrow-Lynch, Managing Editor, EDN, 275 Washington Street, Newton, MA 02158-1650.

For a FREE EDN Writer’s Guide -- which includes tips on how to write for EDN and other technical publications -- please circle number 800 on reader service card.
Looking For A Quality BoardHouse?
All Your Circuit Board Needs Under One Roof

PCB Manufacturing
- 2 day turn around on multi-layers
- Prototype and production
- Gerber Data Review
- Gerber Data Test
- Turnkey assembly

PCB Layout
- Backplanes
- Impedance Control
- Analog and ECL
- SMT both sides

Technical Assistance
- PCB layouts on multi-layers
- Mfg cost cutting tips
- Artwork standards
- Gerber Data via modem, 24 hours (714)970-5015
- Asian

CALL FOR A QUOTE!
A Manufacturing, Layout, and Support Center

W.H. BRADY CO.
THIN FILM PRODUCTS
8225 W. Parkland Ct. • P.O. Box 571 • Milwaukee, WI 53201
Phone: 414-355-8300 • Fax: 414-354-0453
Copyright 1991 W.H. Brady Co. All rights reserved.

To order these items, call Phone: 414-355-8300 or Fax: 414-354-0453 or Mail: W.H. Brady Co., P.O. Box 571, Milwaukee, WI 53201

TOUCH SCREEN PROJECT?
We stock touch screens, decoding electronics and software for immediate delivery.

- Analog and matrix touch screens.
- Decoding electronics and software (enables screen to function as a mouse).
- High gloss and anti-glare surface finishes.
- Custom manufactured screens also available.

W.H. BRADY CO.
Thin Film Products
8225 W. Parkland Ct. • P.O. Box 571 • Milwaukee, WI 53201
Phone: 414-355-8300 • Fax: 414-354-0453
Copyright 1991 W.H. Brady Co. All rights reserved.
ADC—analog-to-digital converter
BIOS—basic input-output system
CMOS—complementary metal-oxide semiconductor
CPU—central processing unit
CRT—cathode-ray tube
DMA—direct memory access
DRAM—dynamic RAM
DSP—digital signal processing
ECL—emitter-coupled logic
ECO—engineering change order
EPROM—erasable PROM
FCT—fast cycle time, Quantum Corp’s name for its approach to reducing time to volume deliveries
FPGA—field-programmable gate array
HCMOS—high-speed complementary metal-oxide semiconductor
IDE—integrated drive electronics
IEEE—Institute of Electronic and Electrical Engineers
I/O—input-output
ISA—the industry-standard architecture bus used for personal-computer input-output cards
ISO 9001—an International Standards Organization standard covering the methods by which companies ensure quality in all aspects of their operations
JEDEC—Joint Electron Device Engineering Council
LC—inductance-capacitance
LCD—liquid-crystal display
MS-DOS—Microsoft disk operating system
NMI—nonmaskable interrupt
PC board—printed-circuit board
PC—personal computer
PCMCIA—Personal Computer Memory Card International Association
PROM—programmable read-only memory
RAM—random-access memory
RC—resistance-capacitance
RISC—reduced-instruction-set computer
ROM—read-only memory
RS-232C—an Electronic Industries Association standard for serial communication; the most common serial-communication standard in personal computers
SAR—successive-approximation register
SBC—single-board computer
SCSI—small computer systems interface, a high-speed bus used to interface external peripherals to PCs and workstations
6U—a physical size designation for VMEbus boards; a 6U board measures 6.29 x 9.18 in.
SM-RAM—system-management RAM
SMM—system-management mode
S/N—signal-to-noise (ratio)
SRAM—static RAM
THD—total harmonic distortion
TTL—transistor-transistor logic
VGA—a display or display adapter conforming to IBM Corp’s video-graphics-array standard; the lowest common denominator of VGA displays is 640 x 480-pixel resolution
VLSI—very-large-scale integration
VME—Versa Module Eurocard
ZIF—zero insertion force

DIE-CUT COMPONENTS
FOR PAGERS
CELLULAR PHONES & COMPUTERS

• Scratch Resistant Lenses
• EMI/RFI Shielding
• Water Repellent
• Speaker Felts
• Gaskets

• Parts from prototype through production
• Rolls or individual pieces
• With or without adhesive
• Multi-component assembly
• JIT delivery worldwide

Quality parts on time

REPS WANTED

the hirol company
1170 West McNab Road
Fort Lauderdale, Florida 33309 U.S.A.
(305) 974-4900 • Fax (305) 975-4734

CIRCLE NO. 105

CIRCLE NO. 106

Globe Motors now offers a size 21 permanent magnet DC motor capable of delivering to 57.5 W at 3240 RPM. IM-21 motors feature high energy ceramic magnets to withstand high pulse currents without demagnetizing. Options include EMI filters and optical encoders.

GLOBE MOTORS
A Division of Labinal Components and Systems, Inc.
2275 Stanley Avenue • Dayton, Ohio 45404 • Fax: 513/229-8531

5 1 3 / 2 2 8 3 1 7 1
Pressure-sensor demo boards offer display choices

Sensors and transducers often seem difficult to use. Many require special bridge and conditioning circuits before they can supply a usable signal. Many of today's sensors incorporate signal-conditioning circuits. Interest in sensors runs high because most of us have to measure the conditions of real things. After temperature, pressure is perhaps the most widely measured physical variable.

Two demonstration kits let you experiment with modern pressure sensors from Motorola. (Although called kits, the two units are sold assembled and tested.) The kits give you a choice of a bar-graph or a digital pressure display. If you have put off investigating pressure sensors, these kits can ease your first experiences.

The bar-graph kit, KITDEVB129/D, measures pressure in 10 levels of 10 kilopascals (kPa) each, from 10 to 100 kPa. (For reference, 100 kPa is about equal to atmospheric pressure at sea level.) Because the pressure sensor in this kit has two openings, you measure pressure against local atmospheric pressure. By switching your hose connection on the sensor, you can measure vacuum. Two potentiometers let you adjust the sensor's zero and its full-scale range.

The KITDEVB114/D supplies the digital display and is more complex. It provides a microcontroller that drives the liquid-crystal display and auto-zeros the sensor's output. The display shows pressure in 0.1 lb/in.² increments from 0 to 15 lb/in.². Although this sensor also measures pressure relative to local atmospheric pressure, it has only one connection, so you can't measure vacuum. The KITDEVB114/D provides a software listing for the measuring and displaying program, so you can learn what the microcontroller does and how it does it.

Both kits provide a test point that lets you measure the sensor's output voltage, so you can acquire data with a computer or data logger. The kits also supply schematic diagrams, information about the pressure sensor, and an overview of the manufacturer's other pressure-sensor devices. You furnish power sources and plastic tubing with an inside diameter of 0.125 in. to connect your pressure or vacuum source to the sensors. The bar-graph unit requires a power supply between 6.8 and 13.2V dc. The bar-graph kit operates from a 5V dc power supply.

—Jon Titus

Cost for the bar-graph kit, KITDEVB129/D, is $50. The price for the LCD kit, KITDEVB114/D, is $95. Motorola Inc, Literature Distribution Center, Box 20924, Phoenix, AZ 85063. Phone (602) 994-6561.

Demo board eases data-acquisition-system design tasks

Designing a complex data-acquisition system doesn't have to be a daunting task. Today's data-converter chips offer capabilities that let you design a data-acquisition system on a small circuit board. Typical of the all-in-one data-acquisition chips is the LM12458, which has been available for some time from National Semiconductor. However, engineers faced with the chip's data sheet may be taken aback by all of its programmable features.

To help ease the job of designing your own data-acquisition system, National Semiconductor also supplies a demonstration board and demonstration software to control it. The LM12458EVAL board occupies a short 8-bit slot in ISA-bus computers, and it lets you acquire data from as many as eight analog signals. You make connections through a 37-pin D-type female connector. You supply the male connector. The board's DIP switches and jumpers lets you choose specific I/O addresses and the proper interrupt for operation, but the board comes preset for an address range (120H) and an interrupt (IRQ2) that won't cause conflicts in most personal computers.

Keep in mind that the board is meant to demonstrate how the chip operates and to let you experiment with its various operating modes. Don't use the board as an add-in card for routine data-acquisition tasks. There is no signal buffering, filtering, or other signal-conditioning circuitry on the board. If after using the demonstration board you choose to specify the LM12458 chip in a design, you'll want to provide your own analog and digital support circuits. The documentation provides an example of the minimum circuitry you'll need.

Because the chip furnishes so many programmable options, the demonstration software is the key. Before you try to use the board, run through the demonstration routine. By doing so, you'll find out more about how you can control the data-acquisition operations and the timing functions on the chip. For example, an on-chip RAM lets you set up an 8-step sampling program that acquires information at specific intervals. You'll be able to program an on-chip 16-bit timer that controls the sampling sequence. The software also lets you examine your data and adjust the program steps, timing intervals, voltage references, and other parameters. You can also save your data-acquisition setups, as well as any data you acquire, in disk files.

The software requires a hard disk, at least 400 kbytes of memory,
Only $851 for iceMASTER-PE
The world's most innovative 8051 emulator is incredibly affordable. MetaLink's unique Advanced Emulation Technology (AET, patent pending) delivers the best possible emulator value for engineers, consultants and students.

AET is a revolutionary design architecture that provides more features with 75% fewer components, smaller board space and lower cost. Emulator and probe electronics are integrated in a single package only 3" by 4".

MetaLink also delivers leading-edge customer service, including a 30 day money back guarantee, 10 day trial for qualified customers, rental plans and free technical support.

- Up to 40 MHZ Operation
- 64K Emulation Code Memory
- 64K External Data Memory
- 128K Hardware Breakpoints
- 16K Trace Memory
- Transparent Trace (View Trace While Executing)
- Real Time & Nonintrusive
- Symbolic & Source-Level Debug
- Built-In Self-Test
- Windowed User Interface
- Serial Link to Any PC
- Performance Analyzer
- Macro Cross Assembler
- Supports 8031/8052's
- Support BX827/BX752

HOT NEW ICE!

Call today for FREE DEMO DISK!
(800) METAICE (800) 638-2423
MetaLink Corporation P.O. Box 1329 Chandler, AZ 85244-1329
Phone: (602) 926-0797 FAX: (602) 926-1198

CIRCLE NO. 107

If space is your problem,
UTMC delivers your ASIC solution.

Space is always a problem when you are designing a satellite. You don't have room for bulky, power-hungry boards. To increase functionality while minimizing space, UTMC is the only company that integrates 1553 functions as macros on ASICs.

If your project calls for parts that must survive harsh environments on Earth, in the air or beyond, call UTMC for a full spectrum of solutions.

800-645-UTMC
1575 Garden of the Gods Road
Colorado Springs, Colorado 80907

CIRCLE NO. 108

EDN-HANDS ON!

and MS-DOS, version 3.3 or higher. The demonstration software provides pull-down menus, and you can point to menu items with a mouse. Extensive help screens give you information on a myriad of topics involving timing, setting up the board, and the chip's pinouts. Unfortunately, if you need help, you have to leave the part of the software you're working on and go to the help menu. There is no context-sensitive help available. However, because the help information is complete and in concert with the demonstration routines, you'll be able to figure out how to use the board.

After you become familiar with the operations of the converter board and the chip, you can access the chip's internal registers and memory locations on your own. I suggest using C, Basic, or another language that lets you transfer and command words to and from the device with relative ease. Although the chip can operate in either 16- or 8-bit parallel modes, the board supplies the chip in the 8-bit configuration. If you're not willing to face dozens of status and control bits, internal registers, and an internal FIFO memory, the demonstration board may not help in your design. Instead, consider an off-the-shelf board that supplies its own driver software.

However, if you feel comfortable programming control bytes and bits, both the chip and the board provide a powerful way to get the data-acquisition system you require with a lot of flexibility built in. The board provides an inexpensive introduction to designing your own data-acquisition system from the chip level on up. You can purchase the board from any National Semiconductor distributor, worldwide.

-Jon Titus

LM12458EVAL board, National Semiconductor. Phone (800) 272-9959, (408) 721-4902. FAX (408) 721-6346. $225.
PERFORMANCE
- Innovative Power Distribution for the most demanding high-speed systems
- Precision Signal Transmission based on patented controlled impedance design
- Low, Low Crosstalk many models less than 8%

QUALITY
- 3-Year Warranty
- 100% Level 3 Testing
- MIL 55110 In-House PCB Fab
- ISO 9001... On-Track for '92

FULL RANGE OF DESIGNS
- 3U, 6U, 9U, 12SU For FB+
- 3 to 21 Slots
- Bus Bar Kits

FAST DELIVERY
- Stock to 2 Weeks...Most popular sizes
- In-House PCB insures timely delivery

PRICE
- No Premium for unequaled quality/performance

System Packaging Products From
MUPAC CORPORATION
10 Mupac Drive
Brockton, MA 02401
TEL: (508) 588-6110
1-800-92MUPAC
FAX: (508) 588-0498
A Carlo Gavazzi Group Co.
CIRCLE NO. 111
Belden is racking up the numbers with DataTwist™

Now that Belden offers expanded selections of DataTwist cables, you have everything you need for EIA/TIA Categories 3, 4 and 5 premise wiring in one high-performance family of cables.

- DataTwist Three
- DataTwist Four
- DataTwist Five
- Dual DataTwist
- DataBrite™
- Patch and Cross-Connect Cables

All cables are UL, NEC and CSA rated, and offered in plenum versions with Belden's own Flamarrest® jackets. Choose pair counts up to 25, shielded or unshielded. Cooper Industries/Belden Division, Richmond, IN. For more information call: 1-800-BELDEN-4.

COOPER
Belden
Quality from Cooper Industries

© Copyright, 1992, Cooper Industries, Inc.