EDN'S INNOVATION AWARD WINNERS pg 43
High-performance modular pulse generators pg 53
Analog behavioral models expedite simulation pg 67

Special Report:
18th annual μP/μC directory serves up the hottest chips pg 82
Now catch the bugs that defy logic.

The HP16500A logic analysis system shows what's bothering your designs.

Power up a new design and you're in for a battle. That's when you need the HP 16500A logic analysis system. With one modular system, you can focus measurement power on those pressing problems. Before things get out of hand.

Choose from a wide range of modules. The state/timing module provides advanced capabilities, including 100 MHz state speed for debugging RISC and high-end CISC processors. There's a 1 GSa/s scope for single-shot troubleshooting. A 1 GHz timing module for precision time-interval measurements. And pattern generation for functional testing.

And you get the industry's broadest microprocessor and bus support...more than 100 solutions to speed and simplify debugging of virtually any microprocessor based design. Plus an intuitive full-color, touch-screen interface to make setup and operation easier too.

So take control of the debugging process. Call 1-800-452-4844. Ask for Ext. 2604 and we'll send a brochure on the analysis system that can catch the toughest bugs before they start bothering you.

There is a better way.

CIRCLE NO. 17

* In Canada call 1-800-387-3867, Dept. 429.

©1991 Hewlett-Packard Co. TM/OL123/EDN
FOR APPLICATIONS WITH A FUTURE—TODAY

REAL PRODUCTS, NOW

Ziatech’s STD and STD 32 industrial computers provide a compact, low-cost alternative to VME, MULTIBUS and the AT bus. 8-, 16- and 32-bit solutions with sophisticated multiprocessing are available now.

Call for our brand-new 200+ page technical data book.

PHONE: 805-541-0488
FAX: 805-541-5088
EXCELLENCE

Setting the New Standard in PC Data Acquisition

It takes a serious commitment to quality to deliver data acquisition boards that reliably meet the most demanding specifications. The National Instruments AT-MIO-16F-5 board creates a new standard in excellence with features not found on typical data acquisition boards. These features include:

- 200 ksamples/sec sampling rate
- Software-configurable analog input and gain
- Optimum noise control
- True self-calibration
- Dither generator for extended resolution
- RTSI® bus for multi-board synchronization
- Custom instrumentation amplifier
- Microsoft Windows and DOS driver software

Software for programming the AT-MIO-16F-5 ranges from drivers for Microsoft Windows and DOS to LabWindows® application software. The quality, innovation, and performance of the AT-MIO-16F-5 sets the new standard in PC data acquisition. For more information on the AT-MIO-16F-5, our complete line of data acquisition boards, signal conditioning products, or software, call us.

(512) 794-0100 or (800) 433-3488
(U.S. and Canada)

See us at Wescon booth No. 2642
Circle No. 16
Our Model 91 will make your pulse race and help you function better.

Introducing the latest member of the 90 Series family: Model 91 Synthesized Pulse Function Generator. It delivers functions and pulses to 20 MHz with five digit frequency accuracy. Out the rear it has pulses to 50 MHz and a 100 MHz clock output. Choose ECL, CMOS or TTL levels, or set your own.

The functions and pulses can be swept or modulated, and there is even GPIB programmability. Plus an external frequency input that lets you use the Model 91 as a frequency counter.

With all these capabilities, Model 91 redefines the concept of an all-purpose benchtop instrument.

About all it doesn’t do is generate arbitrary waveforms, but there’s the Wavetek Model 95 Synthesized Arbitrary Function Generator for that.

Of course if you want even greater pulse generation capability, our four-channel Model 869 is among the most accurate pulse generators in the world.

For more information about our multi-purpose function generators, high performance pulse generators, or test development and arbitrary waveform software, call Wavetek at 1-800-874-4835.
A REVOLUTIONARY ADVANCE IN SPARC MULTIPROCESSING.

The industry's first integrated SPARC® multiprocessing solution — the CY7C605 Multiprocessing Cache Controller/MMU.

High-performance systems designers have migrated to RISC in a race for performance. Just as rapidly, there is a movement to multiprocessing, which represents the most cost-effective way to load more power into a single system.

Multiprocessing RISC design is not simple. There are substantial technological challenges, particularly in the area of multi-level memory systems.

Now we offer a breakthrough to help you implement multiprocessing systems rapidly.

Cache coherency without stealing processor cycles — a leap in performance.

Maintaining cache coherency is one of the biggest problems to solve in shared memory multiprocessing systems.

This approach solves it.

![SPARC Multiprocessing Cache Controller/MMU](image)

It is the only VLSI solution that performs concurrent bus snooping and processor execution.

Our unique dual cache tag directories provide for simultaneous bus snooping and processor access to cache. No other cache management unit provides dual tags on-chip.

As a result, your system maintains cache coherency without stealing execution cycles from the microprocessor.

An integrated part of the industry's highest performance SPARC chipset.

Our chipset approach simplifies the complexities of multiple CPUs working together in a shared memory system.

This VLSI solution means you don't have to design and pay for boards full of logic to accomplish fast multiprocessing.

It is all available now.

For more information on the industry's most complete multiprocessing solution, please call for our literature package today.

MBus compliant.

MBus compliance means you have a SPARC®-standard, plug-and-play route to even more powerful, higher revving systems.

Pin compatible with our CY7C604 Uniprocessing Cache Controller/MMU, this new device lets you cascade to build cache size to 256K.

SPARC multiprocessing is now enabled. Now you can design-in multiple high-performance SPARC chipsets. Our revolutionary Multiprocessing Cache Controller and Memory Management Unit (CMU-MP/CY7C605) provides memory management facilities and a unique cache architecture for higher performance. Our complete SPARC chipset solution shortens your time to market.

Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: (408) 943-2600, Telex: 821032 CYPRESS SNS UD, TWX: 910-997-6753. SPARC is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are based on an architecture developed by Sun Microsystems, Inc. (32) 2-652-0270 in Europe.
SPECIAL REPORTS

EDN's 18th Annual μP/μC Chip Directory 82

As current-generation μPs approach the RISC ideal of executing one instruction per cycle, some μPs are using super techniques to achieve even higher performance.—Michael Markowitz, Technical Editor

Directory Listings 89

EDN's Innovation Award Winners 43

On November 19, 1991, at a formal dinner at Wescon/91, EDN presented the awards for Innovator and Innovation of the Year. This was the second annual competition recognizing breakthroughs and creativity in the electronics industry.

TECHNOLOGY UPDATES

High-performance pulse generators: 53
Modular systems give freedom of choice

Manufacturers of high-performance pulse generators are turning to modular systems to increase versatility while keeping costs down.—Doug Conner, Technical Editor

Analog simulation: 67
Behavioral models expedite simulation

Analog behavioral modeling is not the antithesis of Spice, but another level on the simulation hierarchy. It's not a question of whether you trade in Spice-level models for behavioral models, but for what phase of the design and for what types of circuits you'll use each.—Anne Watson Swager, Technical Editor

Continued on page 7
Off-the-chart performance in a new 12-bit, 15MSPS A/D converter.

This one breaks the 74dB barrier.

Yes, it really is possible to get more than 74dB of “clean” dynamic range from a 12-bit converter... without breaking the laws of physics.

The secret is in the track-and-hold design. And that’s where the CLC935 excels. So you get a 12-bit, 15MSPS converter that has a 75dB SFSR (Spurious Free Signal Range) at 7.5MHz, a signal-to-noise ratio of 67dB out to Nyquist, 0.35 LSB differential non-linearity, and a 135MHz small-signal bandwidth. Now that’s a true performance breakthrough in an A/D.

Before now, the only way you could get this performance was with large, expensive board designs. Now, it’s available in a 40-pin DIP that takes less than 2.3 square inches of board space. And only 5.2W of power.

So if you’re bumping against A/D limits in radar, infrared and medical imaging, ultrasound, or instrumentation, call for details. Maybe the new CLC935 can give your system off-the-chart performance too.

CIRCLE NO. 19
EDITORIAL

Although electronics hardware from the Soviet Union is primitive by Western standards, there may be opportunities for the venture-some in software.

NEW PRODUCTS

Integrated Circuits .. 184
Computers & Peripherals ... 187
CAE & Software Development Tools 190
Test & Measurement Instruments 194
Components & Power Supplies 196

DEPARTMENTS

News Breaks .. 23
Career Opportunities ... 204
EDN’s International Advertisers Index 209

NEXT IN EDN

In the November 28 EDN News Edition, look for a Product Watch on disk-controller ICs and a Career Opportunities article on Futurebus+ boards.

Then, get ready for products. And more products.
It’s that time again at EDN Magazine—time to review and evaluate the products and technological developments that have affected the electronics industry over the last half year. In EDN’s two December International Product Showcase issues, we summarize the most significant products introduced since the July Showcases—some are new, some we’ve covered before in EDN.

The December 5, 1991, Showcase will cover products and issues in four technology areas: hardware and interconnect devices, integrated circuits, power sources, and software. In our second Showcase, December 19, 1991, we’ll switch the focus to components, computer-aided engineering, computers and peripherals, and instruments.

You’ll also find many of our regular departments as well as expanded literature coverage.
It's Also More Power

Introducing The 40MHz Am386™ Microprocessor—
The Speediest 386 On The Planet.

It looks like a mild mannered 386. In fact, it is: A genuine, plug-in replacement for the i386. Except it’s faster. Burns less power. Costs no more. And it's available now.

The Am386DX-40 microprocessor can transform any ordinary 33MHz system into an invincible, 25% faster, 40MHz Am386 system. So you can easily offer the world's fastest 386 performance.

It's not only super-fast, it's also super-efficient, thanks to its truly static

901 Thompson Place, P.O. Box 1473, Sunnyvale, CA 94088 © 1991 Advanced Micro Devices, Inc. Am386 is a trademark of Advanced Micro Devices, Inc. All brand or product names mentioned are trademarks or registered trademarks of their respective holders.

8 EDN November 21, 1991
ful Than A Locomotive.

operation. That means even notebooks and palmtops can attain breakthrough performance.

Best of all, the 40MHz Am386 microprocessor is available now, available to everyone, and available at surprisingly low prices. How's that for Truth, Justice and the American Way?

So find a phone booth and call AMD at 1-800-222-9323. And let the world's fastest 386 come to your rescue.

Advanced Micro Devices
"We're Not Your Competition."
If you think DSPs are priced
Our TMS320 family starts at
Cost is no longer a barrier to using DSPs. At Texas Instruments, our TMS320 family is well within your reach, thanks in large part to a decade of DSP leadership.

16-bit DSPs as low as $3
Our 16-bit, fixed-point solutions begin at $3. At that, they are on a price par with microcontrollers and are as easy to use, yet give you 10X the performance. These DSPs are extremely well suited to high-volume applications, providing you with opportunities to optimize price/performance ratios. In fact, our 16-bit DSPs are replacing microcontrollers in mainstream applications such as answering machines and disk drives.

32-bit DSPs starting at $25
You can get floating-point performance at a fixed-point price. Starting as low as $25, our 32-bit floating-point DSPs are finding widespread use in embedded, cost-sensitive applications. Performance is superior to RISC processors because of highly paralleled architectures.

In addition to a low unit price, several features contribute to overall cost-effectiveness. These devices are inherently easy to use and are optimized for use with high-level-language compilers, which helps you get to market faster.

When you require a custom approach, we have the unique capability to adapt our 16- and 32-bit DSPs to your needs. The entire TMS320 family is supported by an extensive array of development tools, readily accessible applications help and full documentation to help enhance your productivity and cut development time.

Passing savings on to you
In the 10 years since TI introduced its first single-chip DSP, we have shipped tens of millions of these devices worldwide. And we have applied the principles of manufacturing excellence learned from our commitment to DRAM manufacturing. This has resulted in the economies of scale that enable us to provide you with true value and dependable prices.

To put TI's DSPs within reach, call 1-800-336-5236, ext. 3537
We'll send you information on our TMS320 family, world-class support and cDSP capability.

© 1991 TI
dc to 3GHz from $11.45

lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss
- greater than 40dB stopband rejection
- 5-section, 30dB/octave rolloff
- VSWR less than 1.7 (typ)
- meets MIL-STD-202 tests
- rugged hermetically-sealed pin models
- BNC, Type N; SMA available
- surface-mount
- over 100 off-the-shelf models
- immediate delivery

Low Pass to 1200MHz

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Fo</th>
<th>Fc1</th>
<th>Fc2</th>
<th>Stop Band</th>
<th>VSWR</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLP-10</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>19</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>PLP-15</td>
<td>15</td>
<td>16</td>
<td>20</td>
<td>25</td>
<td>26</td>
<td>200</td>
</tr>
<tr>
<td>PLP-20</td>
<td>20</td>
<td>21</td>
<td>24</td>
<td>29</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>PLP-25</td>
<td>25</td>
<td>26</td>
<td>30</td>
<td>35</td>
<td>36</td>
<td>200</td>
</tr>
<tr>
<td>PLP-50</td>
<td>50</td>
<td>52</td>
<td>70</td>
<td>90</td>
<td>90</td>
<td>200</td>
</tr>
<tr>
<td>PLP-70</td>
<td>70</td>
<td>70</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>200</td>
</tr>
</tbody>
</table>

High Pass to 2500MHz

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Fo</th>
<th>Fc1</th>
<th>Fc2</th>
<th>Stop Band</th>
<th>VSWR</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-50</td>
<td>50</td>
<td>55</td>
<td>75</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>PHP-100</td>
<td>100</td>
<td>110</td>
<td>140</td>
<td>170</td>
<td>170</td>
<td>200</td>
</tr>
<tr>
<td>PHP-150</td>
<td>150</td>
<td>160</td>
<td>200</td>
<td>240</td>
<td>240</td>
<td>200</td>
</tr>
<tr>
<td>PHP-200</td>
<td>200</td>
<td>220</td>
<td>280</td>
<td>340</td>
<td>340</td>
<td>200</td>
</tr>
<tr>
<td>PHP-250</td>
<td>250</td>
<td>270</td>
<td>330</td>
<td>410</td>
<td>410</td>
<td>200</td>
</tr>
<tr>
<td>PHP-300</td>
<td>300</td>
<td>330</td>
<td>410</td>
<td>510</td>
<td>510</td>
<td>200</td>
</tr>
</tbody>
</table>

Bandpass 20 to 70MHz

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Fo</th>
<th>F1</th>
<th>F2</th>
<th>Stop Band</th>
<th>VSWR</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIF-21.4</td>
<td>21.4</td>
<td>21.4</td>
<td>25</td>
<td>85</td>
<td>85</td>
<td>135</td>
</tr>
<tr>
<td>PIF-30</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>120</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>PIF-40</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>160</td>
<td>160</td>
<td>200</td>
</tr>
<tr>
<td>PIF-50</td>
<td>50</td>
<td>50</td>
<td>55</td>
<td>200</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>PIF-70</td>
<td>70</td>
<td>70</td>
<td>85</td>
<td>260</td>
<td>260</td>
<td>200</td>
</tr>
</tbody>
</table>

Narrowband IF

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Fo</th>
<th>F1</th>
<th>F2</th>
<th>Stop Band</th>
<th>VSWR</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNB-10.7</td>
<td>10.7</td>
<td>10.7</td>
<td>11.5</td>
<td>25</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>PNB-21.4</td>
<td>21.4</td>
<td>21.4</td>
<td>25</td>
<td>85</td>
<td>85</td>
<td>135</td>
</tr>
<tr>
<td>PNB-30</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>130</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td>PNB-40</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>190</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>PNB-70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>210</td>
<td>210</td>
<td>240</td>
</tr>
</tbody>
</table>

P.O. BOX 350166, Brooklyn, New York 11235-0003 (718) 934-4600 FAX (718) 332-4661 Telex 685284 or 620156 WE ACCEPT AMERICAN EXPRESS
Before you buy CAE from the ATE leader, you’d better have some damn good reasons.
Some damn good reasons.

"On our foundry's recommendation, we selected AIDA ATPG for automatic vector generation. AIDA ATPG has consistently produced 95%+ fault coverage across a variety of DFT methods — full and partial scan, JTAG and boundary scan. Test pattern generation used to take us 3-6 weeks, but now we can do it in hours or overnight. And since our foundry supports the toolset, we can send our vectors directly into manufacturing."

Raju Joshi, Project Manager
Sun Microsystems, Inc.

"Using LASAR and Frencip, our own synthesis tool, we've developed a rigorous top-down methodology for large ASIC design. We start by simulating the design at the behavioral level with LASAR. We use our synthesis software to generate the gate-level description. We always use LASAR to verify the operation of the ASIC in the board environment. We depend on its accuracy for both functional verification of our designs and for worst-case timing analysis."

Francois Grillot, Director, R&D and Custom Products
Dassault Electronique

"As a manufacturer of fault-tolerant computers, Stratus puts a high priority on quality. It's this simple: LASAR finds board-level timing problems that other tools cannot find. And with Teradyne's hardware modeler, LASAR lets us see how an ASIC will behave with other complex ICs. That means when we go to silicon, we're confident that our designs will work in the system. We've designed 6 ASICs using LASAR, and we've achieved good first-pass silicon each time."

Sandy Hirschhorn, Director, Design Automation and Diagnostics
Stratus Computer

"The MultiSim Interactive Designer is excellent — it's the first CAE tool that works well with a top down design approach. It's set up so you can build and simulate block by block, and its speed makes it easy to find your mistakes, make changes, and try again without a lot of time spent recompiling."

Steve DeLong, Technical Team Leader
Jim Walsh, Technical Staff Member
Rockwell International Corporation

Design engineers are using Teradyne's CAE tools for lots of good reasons. Interactive design analysis. Accurate design verification. Tight integration between design and test. With Teradyne CAE, you get greater speed, accuracy, and reliability than with other CAE systems. That adds up to higher product quality and faster time-to-market. And in today's competitive environment, those are the best damn reasons of all.

To learn more, call Daryl Layzer today at 1-800-225-2699, ext. 3808, or FAX (408) 748-7761.
© 1991, Teradyne, Inc. AIDA, MultiSim, and Vanguard are trademarks of Teradyne, Inc. Frencip is a product of Dassault Electronique.
Signetics. Because we're putting right at you

©1991 Signetics Company
PAL is a trademark of AMD/MMI.

Philips Semiconductors
The key to getting to market faster, with a better design, is finding a single PLD supplier who meets all your needs.

That’s exactly what you get with Signetics. Only Signetics offers all the PLDs needed to design your entire system.

With Signetics you can choose from the most popular PLDs for the majority of your designs. Then you can pick the application specific devices needed for that critical portion of your design that requires performance, efficiency and a high level of customization.

More often than not you will need several different PLD architectures to complete a single design. Only Signetics delivers every PLD you need for your system design. This eliminates the need to deal with multiple vendors, multiple qualifications and multiple contracts.

These PLD devices range from standard PAL®-type devices like our 10ns CMOS 22V10 and 4.5ns ECL 20EV8 to application specific devices including 7.5ns 32-bit address decoders, 55MHz programmable state machines, 32-bit programmable bus interfaces, up to 5000-gate CMOS EPLDs and more.

Plus our complete PLD family is supported by industry-standard software and programmers. This allows you to eliminate the need for specialty programmers, and you can complete 100% of your design using a single software package.

So make the right selection. Call Signetics today to receive your PLD selection guide and software demo disk: 800-227-1817, ext. 7330.

Signetics offers you the complete PLD solution.

Popular PAL-type devices
- 10ns CMOS PL22V10
- 4.5ns ECL 100/10H20EV8-4
- 5ns programmable high-speed decoder (PHD16N8)
- 25ns zero standby power PLC18V8Z

Application specific PLDs
- 55MHz programmable state machines (PLUS105/405-55)
- 7.5ns 32-bit address decoder (PHD18N22-7)
- 32-bit programmable bus interface (PML2552-35)
- 10ns memory decoder (PLUS153-10, PLUS173-10)
- 5000-gate CMOS EPLD (PLV5000)
When it comes to microcontrollers...
The Choice Is Not Always Plain.

Hitachi's new H8/300 Family of 8-Bit Microcontrollers is beefier, and includes all the extras: The best in price/performance. High-level language capability. ZTAT™ one-time user-programmable EPROM. The most on-chip peripherals.

Hitachi's new and growing H8/300 Family of Microcontrollers takes 8-bit beyond the ordinary, offering the right mix of ingredients to satisfy your embedded-control appetite. Hitachi's new H8/300 Series' recipe for success includes:

The best price-performance. Put more spice into your applications with the new CMOS H8/300 Family. These microcontrollers combine a modern, general-purpose register architecture with fast processor speeds, and include a CPU core with a maximum 10 MHz clock speed for minimum instruction cycle times of 200ns... 16-bit adds and subtracts in a mere 200ns... 8 x 8-bit multiplies or 16/8-bit divides in only 1.4µs... and up to 32 Kbytes of ROM.

High level language capability. Enjoy fast development and easy maintenance, without the slow program execution typical of old-fashioned software. Hitachi's H8/300 microcontrollers work with "C", Forth, and real-time operating systems, like Hitachi's µITRON. You can also use fuzzy logic compilers to put advanced capabilities, such as artificial intelligence, into embedded systems—quickly and easily.

ZTAT. Get to market fast with Hitachi's ZTAT (Zero Turn-Around Time) one-time user-programmable EPROM. With these low-cost plastic package devices, production can start the very same day you finish development—with no mask charges, lead times, or large quantity commitments. You have a choice for every phase of your product's life cycle: Ceramic windowed devices for development... ZTAT for quick, small-to-medium-scale production... mask ROM devices for lowest-cost large-scale production.

On-chip peripherals. Now you can reduce your whole embedded control system to a single chip, thanks to the H8/300 Family's right mix of on-chip peripherals. Choose from a variety of timers, interrupts, and I/O ports, 8-bit A/Ds, serial communications channels, PWM timers, EEPROM, and much more.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM/RAM/EEPROM</td>
<td>8K/256/8K</td>
<td>8K/256/8K</td>
<td>16K/512/0</td>
<td>24K/1K/0</td>
<td>32K/1K/0</td>
<td>16K/512/0</td>
<td>32K/512/0</td>
</tr>
<tr>
<td>Timers</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Channel</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/D Converter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Ports</td>
<td>1-Bit I/O Common</td>
<td>47 I/O</td>
<td>19 I/O</td>
<td>8 I/O</td>
<td>16 I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Ports</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Features</td>
<td>Security Function</td>
<td>Parallel Handshake Port</td>
<td>Programmable Pull-up for All I/O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>DP-64S</td>
<td>QFP-80</td>
<td>PLCC-84</td>
<td>PLCC-84</td>
<td>PLCC-84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QFP-64</td>
<td>DC-64S w/Window</td>
<td>QFP-80</td>
<td>QFP-80</td>
<td>QFP-80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Serving it up... The H8/300 Family includes comprehensive development support: Documentation, easy-to-use cross-development tools, in-circuit emulators, and evaluation boards (with additional choices from third-party vendors).

The new Hitachi H8/300 Family of Microcontrollers. We've added all the right ingredients, so your next design can go beyond the ordinary. For more information, call or write today.

Literature Fast Action: For product literature only, CALL TOLL FREE, 1-800-285-1601; ask for literature number M21A001.

Hitachi America, Ltd.
Semiconductor & I.C. Division
Hitachi Plaza
2000 Sierra Point Parkway
Brisbane, CA 94005-1819

Our Standards Set Standards
Now designers of floppy disk controllers can solve the...

Multitasking Murder Mystery

Overrun Data Corruption Detector

for 765 Compatible Disk Controllers

© 1990 NEC Electronics Inc.

Free Software

Call 1-800-632-3531

FAX 1-800-729-9288

Dastardly deeds done in disk drives

There's a killer bug hidden in the microcode of many 765-compatible floppy disk controllers.

Often skulking unnoticed under MS-DOS, this data-eater is especially dangerous in OS/2 and other multi-tasking environments.

You can find out fast if your floppy controller is silently overwriting valuable data by asking for our free detector disk.

NEC nabs the nuisance

Our bug-free μPD72064 floppy disk controller squashes this bug and adds many valuable improvements.

- High performance digital phase lock loop logic
- IBM PC/AT registers
- PLCC and quad flat pack (QFP) samples available now
- Pin-compatible with WD37C65/A/B

It's no mystery why designers of IBM PC/AT compatibles specify NEC more than any other floppy disk controller. If you're concerned about reliability and data integrity, (and who isn't?), call today to receive Technical Info Pack #105 and to qualify for your free copy of our Data Corruption Detector.

NEC Electronics Inc.
401 Ellis St.
P.O. Box 7241
Mountain View, CA 94039-7241
1-800-632-3531/1-415-965-6158

CIRCLE NO. 26
EDN LOSES AN EDITOR AND FRIEND

Chris Terry, EDN technical editor, died in late October after a 9-month fight with cancer. Chris came to EDN in January of 1985 as EDN’s software editor, the last stop in his 25-year technical-writing career. He wrote articles for Microsystems, Creative Computing, and PC Magazine, as well as technical documentation for a number of private companies. Born near London, England, Chris grew up in Cambridge and graduated from Queen’s College. In 1958, Chris visited the United States and immigrated four months later.

Chris was a fan of Monty Python movies and Far Side cartoons and extended his love of humor to those around him. He was always happy to take the extra time to help out his colleagues. Not only was Chris knowledgeable and articulate about the subjects he covered, but he was also a good friend to everyone on the EDN staff. His presence will be sorely missed.—EDN Staff

8-BIT RISC μC OFFERS SPEED AT LOW COST

The PIC 17C42 8-bit microcontroller (μC) from Microchip executes most of its 55 instructions in a single 250-nsec cycle on the 16-MHz version. Program branches and special instructions for transferring data between program and data memory take more than one cycle. The μC uses a pipelined, dual-bus, modified Harvard architecture with an 8-bit data word and a 16-bit instruction word. Program memory on chip is 2k × 16 bits, and you can add as much as 64k × 16 bits off chip. There are 280 data-memory locations available on chip in static RAM. The chip offers as many as 33 user-configurable I/O pins and includes two PWM outputs, 11 interrupts, three 16-bit counters, and a USART serial port. The μC is available as a CMOS EPROM or in a one-time-programmable plastic package. Samples are available now and production quantities will be available in February 1992 for $6.25 (10,000).

The company is also introducing the Picmaster development system, which supports the new chip and previous μCs from the company. The development system runs under Microsoft Windows 3.0 and provides real-time in-circuit emulation. The complete development system, including device programmer, is $2995. Microchip Technology Inc, Chandler, AZ, (602) 963-7373, FAX (602) 899-9210.—Doug Conner

ACCELERATOR SPEEDS VHDL

You can couple Vantage Analysis Systems’ VHDL (VHSIC Hardware Description Language) simulator to Zycad’s XP hardware accelerator under an agreement between the companies, improving your gate-level VHDL-model simulation. The agreement is effective as of December 1991. The agreement shows a continued move toward tighter integration between software simulators and hardware accelerators. Such integration began over the summer with agreements between Cadence, Synopsys and Zycad, and Racal-Redac and Ikos (EDN, June 20, 1991, pg 20). A word of caution about having reasonable expectations, though: Hardware acceleration is most effective on gate-level models; its impact on behavioral models is minimal. Vantage Analysis Systems, Fremont, CA, (415) 659-0901. Zycad Corp, Menlo Park, CA, (415) 686-7400.—Michael C Markowitz
LOW-POWER RISC TARGETS EMBEDDED CONTROL

VLSI Technology is now offering both stand-alone devices and ASIC cores based on the low-power ARM6 (advanced RISC machine) 32-bit processor developed by ARM Ltd (Cambridge, UK). The core processor uses a 20-MHz clock to achieve an average 14-MIPS performance, yet consumes only 0.2W. You can further lower its power consumption by freezing the clock when the processor is idle, reducing its current draw to <10 µA. The company is offering the core processor as part of its ASIC library. It is also offering two stand-alone products: The ARM60 (VY86C060) is a $26.75 (10,000) packaged version of the core processor in a 100-pin quad flatpack (QFP). The ARM600 (VY86C600) contains the processor, 4 kbytes of cache memory, a write buffer, and a memory-management unit designed to support object-oriented programming. It also offers a coprocessor interface, letting the devices work with floating-point units. It is packaged in a 160-pin QFP and costs $65.25. Both devices feature JTAG boundary-scan on the I/O pins.

ARM Ltd will license its design to OEMs wishing to design custom controllers. The company also offers development tools that run on the SPARC workstation. VLSI Technology, San Jose, CA, (408) 434-7877, FAX (408) 434-7931, contact John Haller. ARM Ltd, (408) 399-5195, FAX (408) 399-5196, Tim O'Donnell, or in the UK, 223-813000, FAX 223-812800, Robin Saxby.—Richard A Quinnell

SWIVELING CURSOR POSITIONER MATCHES LAPTOP ERGONOMICS

Zirco’s Palmpoint cursor-positioning device employs a swiveling design to translate operator movements into cursor-positioning information. The device tilts side to side and front to back, creating a 2-D control plane. Because it employs tilt angles instead of translational movement, the Palmpoint uses far less desk space than a mouse. Unlike a trackball, the Palmpoint provides you with absolute-positioning feedback: its tilt angles indicate the cursor’s position. The initial version is designed for PCs. It has a 4-ft cord that plugs into a 9-pin serial port and draws less than 7 mA from either a 5 or 12V power supply. The positioner costs $169.95 with software drivers. Zirco Inc, Wheat Ridge, CO, (303) 421-2013, FAX (303) 423-8346.—Steven H Leibson

SOFTWARE SUITE SYNTHESIZES VHDL AND TEST LOGIC

The ASIC Navigator from Compass Design Automation synthesizes logic for implementation and behavioral VHDL (VHSIC Hardware Description Language) for documentation. The software synthesizes the logic by accepting circuit descriptions in forms ranging from Boolean expressions, bubble diagrams, schematics, architectural block diagrams, and VHDL statements. The logic synthesizers come in flavors optimized for specific functions; ROM and RAM compilers, datapath compilers, and state-machine compilers. Using your recommendations, the software also synthesizes and inserts test structures that enable such test methods as boundary scan, internal scan, built-in self-test, and multiplexed isolation. Using these structures, the software can create test vectors to adequately evaluate the design’s manufacture. The software assists in partitioning your design across multiple packages using such constraints as gate- and pin-count, packaging alternatives, and board limitations. Including the optional test assistant, the software costs between $140,000 and $150,000 and runs on DEC, HP, and Sun workstations. Beta software will be available in early 1992; full release is scheduled for the second quarter. Compass Design Automation, San Jose, CA, (408) 434-7943, FAX (408) 434-7820.—Michael C Markowitz
MicroSim Corporation now offers a versatile schematic capture front end, called Schematics, to our popular Circuit Analysis programs, PSpice and Probe. Schematics provides a unified system for designing and editing schematics, running analyses using PSpice, and viewing the results using Probe, all without leaving the Schematics environment. Any mix of analog and digital components can be used when defining a schematic for simulation.

Schematics provides a menu-driven interface for specifying analysis parameters and running simulations directly from the schematic display. If device simulation parameters need adjustment after running a simulation, they can be easily modified and the simulation rerun. Netlists for PSpice are generated automatically and can be examined on the screen.

Schematics was designed and written as a native Windows 3.0 application for the PC and is also available as an OpenWindows application for the Sun-4 and SPARCstation. Both packages include the Schematics library with symbols for all parts contained in the PSpice libraries—over 3,500 analog and 1,500 digital components. An integrated symbol editor with full editing capability allows new symbols to be created and new part attributes to be defined while working on a schematic.

Schematics is sold as part of the Genesis package and comes with MicroSim Corporation's extensive customer/product support. Our expert engineering team is always on hand to answer your technical product questions.

For further information on Schematics, or any other MicroSim Corporation product, call toll free at (800) 245-3022 or FAX at (714) 455-0554.
VMEBUS PROCESSOR TARGETS REAL-TIME APPLICATIONS

The VSCIM486 from Arcom is a VMEbus processor board that uses either a 20-MHz 80486SX or a 25- or 33-MHz 32-bit 80486DX CPU. The board is compatible with VMEbus and STEbus systems. The computing subsystem includes 4-Mbytes of dynamic RAM (DRAM) as standard, which is expandable to 64-Mbytes using a local module interface. 2-Mbytes of the DRAM is dual-ported to a VME bus. Another local module interface lets you build-in a direct-mapped memory cache of as much as 256 kbytes. Other hardware includes 128 kbytes of battery-backed static RAM (SRAM) (dual-ported to STEbus), super VGA controller with 1-Mbyte video RAM, floppy- and hard-disk controllers, and battery-backed clock. In addition to standard PC-type I/O ports, an 8- or 16-bit expansion interface is accessible via on-board connectors for tightly coupling additional memory or I/O peripheral hardware. VSCIM486SX (4-Mbyte DRAM) costs £1850, VSCIM486DX (33 MHz) costs £2890. Arcom Control Systems, Cambridge, UK, (223) 411200, FAX (223) 410457. In US, (816) 941-7025.—Brian Kerridge

CAHNER'S PUBLISES 1992 ECONOMIC OUTLOOK

The 1992 Cahners Economic Outlook, a yearly industry forecast from Cahners Economics Group, will be available to EDN readers in mid-December. The publication covers economic trends in the electronics and other technical industries. The booklet is regularly priced at $75, but is offered to readers for $21 (paid to Cahners Economics in advance). For a copy, write to Cahners Economics, Box 59, New Town Branch, Boston, MA 02298.—Susan Rose

ONE-TIME-PROGRAMMABLE MICROCONTROLLER JOINS FAMILY

Oki Semiconductor is extending its nX microcontroller line by adding a one-time-programmable version. The MSM65524/65P524 is built around the company’s nX850 8-bit core processor, and it adds the one-time programming ability to the already available ROM and ROMless versions of the controller. The CPU is an extension, or superset, of the 8051 microcontroller architecture. The redesigned processor requires only four clock cycles per instruction cycle, as compared with 12 clock cycles in the original microcontroller architecture.

You can program the microcontrollers with standard device programmers. The company provides special adapters for programming the chips in standard PROM programmers. The 8-bit microcontrollers have 4-, 8-, or 16-kbyte ROMs, and 128 or 384 bytes of RAM. The chips come in 40-pin DIPs, 44- and 68-pin plastic leaded chip carriers, and 44- and 64-pin quad flatpacks. Prices start at $6.51 (1000). Oki Semiconductor, Sunnyvale, CA, (408) 737-6352, FAX (408) 720-1918.—Ray Weiss

DUAL-CHANNEL SCSI IC SUPPORTS WIDE AND FAST TRANSFERS

The AIC-7770 SCSI-I/O channel IC targets EISA- and ISA-based PC-mother-board applications. Adding the IC to a mother-board design requires no glue logic. The IC can handle data transfers to the host CPU at the EISA bus’ maximum rate of 33 Mbytes/sec. The IC includes a dual-channel SCSI implementation that you can use as two independent 8-bit SCSI ports operating as fast as the 10-Mbyte/sec synchronous rate. You can also combine the two channels to implement a 16-bit SCSI port. The CMOS device comes packaged in a 160-pin quad flatpack and costs $55 (100). The company also has driver-software modules that provide compatibility with MS-DOS, Novell Netware, Unix, and OS/2 operating systems. Adaptec Inc, Milpitas, CA, (408) 945-8600, FAX (408) 262-2533.—Maury Wright
PRODUCTS: Passive components, including resistors, resistor networks, trimmers and inductors in through-hole and surface mount components.

OBJECTIVE: Develop procedures to reduce the customer's total cost of acquiring parts through distribution.

In recent years, distributors have assumed greatly increased responsibility in the electronic component supply chain. Because of this, their ability to monitor, control and improve quality has become a pivotal factor in the cost of acquisition. These facts are well recognized in the successful distributor/manufacturer partnership which exists between Vishay Electronic Components (VEC) and TTI.

The two organizations have a close working relationship dating back to 1974 when Dale® resistors became one of the first products distributed by TTI. Since then, Dale together with Vishay Resistors, Angstrohm, Ohmitek, Techno and Ultronix have become part of VEC—and part of TTI's growth pattern as well.

VEC centralized its distribution headquarters for all six companies in Columbus, Nebraska, to make this consolidation more efficient for its distributors and customers. Concurrently, TTI and VEC accelerated work on standardizing packaging and other labor-intensive areas which could provide more efficient product flow-through at the distributor level. As part of this, use of electronic data interchange (EDI) was expanded together with a system for verifying the accuracy of order entry and processing.

In assessing the results of this activity, a VEC spokesperson commented: "In many cases, it's administrative errors, rather than product defects, which create major 'spikes' in cost of acquisition. So we work closely with all our distributors to support their ability to deliver the specified part in the right quantity with the correct packing at the right time."

"The Total Quality Process system developed by TTI is an ideal vehicle to drive improvement because it interfaces directly with our own quality systems. This enables us to improve customer service by creating a closed loop between manufacturer and distributor which can efficiently identify problems, define the corrective action needed, and make sure it is taken."

This overall process is monitored through a Supplier Quality Report prepared on a quarterly basis and discussed at regular review meetings between the two companies. "These reports are vital," the VEC spokesman continued, "in enabling us to pinpoint variations in performance and in providing guidelines for improvement. The goals of TTI and VEC are identical. We want to totally eliminate errors. And we will."

For more information on how VEC's commitment to effective partnering can benefit your operation, please contact Joe Matejka, Vice President, Quality Assurance, Dale Electronics, Inc., 1122 23rd Street, Columbus, NE 68601-3647. Phone 402-563-6511. Fax 402-563-6418.
the world's largest selection
2KHz to 8GHz from $4.95

With over 300 models, from 2-way to 48-way, 0°, 90° and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2KHz to 800MHz, Mini-Circuits offers the world’s largest selection of off-the-shelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee. Unprecedented 4.5 sigma unit-to-unit repeatability also guaranteed, meaning units ordered today or next year will provide performance identical to those delivered last year.

It's all in the family—the 29K™ Family, that is. All the performance you need in a 32-bit embedded RISC processor. And all the support you need from our Fusion29K™ Partners, to bring your products to market faster than ever.

The 29K Family is the 32-bit embedded RISC architecture that keeps your performance high and your system costs low. And all 29K Family members are binary compatible, so your software runs on each device, without modification.

New family members push the performance envelope further. Our Am29030™ and Am29035™ processors offer advanced features like large on-chip caches, Scalable Clocking™ technology and programmable bus sizing—which ease design and lower system costs. With additional family members on the way.

The 29K Family also has the best embedded RISC support available—the Fusion29K Partners. The Fusion29K Partners include over
80 leading independent hardware and software vendors and consultants prepared to shorten your design cycle.

Together, they offer hundreds of development tools to get you to market quickly: Everything from compilers, debuggers, emulators, and logic analyzers, to complete application solutions.

So call AMD at 1-800-292-9263 Ext. 3 for information on the 29K Family, or a Fusion29K product catalog or newsletter. You'll find all the support you need in one big happy family.
Whether you fax it, fire it, send it, measure it, wire it, compute it,

The Analog family of

Precision
With the AD840, AD841 and AD842, there's no need to trade speed for accuracy. All three settle to 0.01% within 100 ns (840/842) and 110 ns (841) - critical in data acquisition and instrumentation applications - and offer low offset voltages and drifts, and fast slew rates.

FET Input
For op amps requiring low input current, the OP-42, OP-44, AD845 and AD843 are all remarkably fast - slew rates are 58, 120, 100 and 250 V/µs, respectively. In addition, they offer offset voltages of less than 1 mV and extremely low current noise.

Transimpedance Amplifiers
The OP-160, OP-260, AD844, AD846, AD9617 and AD9618 all utilize a current feedback architecture to achieve slew rates from 450 to 2000 V/µs without compromising stability - even in hostile environments. Other benefits include low power dissipation and high unity-gain bandwidth.

If whatever it is you're trying to do involves high-speed op amps, Analog Devices is the company to call. With our current products and new introductions, we have the broadest line of high-speed op amps available. A line that gives you the right combination of speed, precision, noise and price. So chances are, we've got exactly what you need for
shoot it, launch it, land it, test it, display it or air it, we’ve got it.

high-speed op amps.

Buffers
If you’re looking for extremely low distortion buffers, look at the specs of the AD9620 and AD9630—distortion at 20 MHz:
- 73 dBc and — 66 dBc, respectively; fast settling time: less than 8ns to 0.02%; and extremely low noise: 2.2 nV/√Hz.

General Purpose
With the right combination of speed, precision, power dissipation and high output drive capability, the AD827, AD829, AD847, AD848, AD849 and OP-64 are ideal general purpose solutions. And they’re ideally priced solutions—most singles are under $3, and duals are under $5.

Low Noise
It used to be you had to choose between speed or low noise. But with the AD829, you get both. It features voltage noise of 2 nV/√Hz and current noise of 1.5 pA/√Hz with a 50 MHz unity-gain bandwidth. Those specs, combined with the low price of $2.95/100s, make it ideal for both audio and video applications.

whatever application you’re working in. Call us at 1-800-262-5643, or write to Analog Devices, P.O. Box 9106, Norwood, MA 02062-9106, for a complete high-speed op amp selection guide and a free copy of our SPICE model library.

Analog Devices, One Technology Way, Norwood, MA 02062-9106. Distribution, offices and applications support available worldwide.

33
At 1 Meg
There's Simply
No Faster SRAM.

1 Meg. 20ns. Available Now!
Order them in a 256K x 4 or 128K x 8 configuration.
In a high density plastic SOJ package. Part of a full line of fast SRAMs.
For samples, orders or more information, call 1-206-834-8959.

SHARP
FROM SHARP MINDS
COME SHARP PRODUCTS™
EDITORIAL

USSR electronics; it’s not hardware

A few days ago I listened to Lester Thurow, an economist from the Massachusetts Institute of Technology, tell an audience about the state of private farms in the Soviet Union. Recently, Ukrainian agricultural administrators asked farmers if they wanted to run their own farms. Almost all of the responses were “No.” Puzzled, the administrators asked why not. The farmers responded that they could not get any tractors, so they wouldn’t be able to farm. “Even if tractors were available, where would we get the gasoline, the tires, and the spare parts?” they asked. In short, the Soviet’s farming infrastructure is a mess.

The Soviet Union’s electronics industry may have progressed further than farming, but it, too, still has a long way to go. During the summer, a friend of mine returned from the Soviet Union bearing an electronic instrument (photo). Several would-be entrepreneurs gave it to him and asked him to find a market for it in the US. The instrument does a credible job of measuring frequency, voltage, resistance, current, impedance, and other electrical quantities.

Unfortunately, the innards of the instrument appear to be relics of the late 60s or early 70s. Almost all of the circuitry uses discrete components—op amps and small-scale integrated circuits. At first, the circuit looks deceptively simple. Then it becomes clear that the control and display circuits require an additional pc board located below the top board that supplies the analog circuits.

In addition to the “low-tech” circuits, there are other features worth observing. Today’s instruments routinely use liquid-crystal displays, but the Soviet instrument employs discrete vacuum-fluorescent tubes, each of which has been hand soldered to the circuit board. The injection-molded plastic case is primitive as are the push-button switches and other controls. Obviously, few Western engineers, technicians, or students will give up their modern instruments for primitive ones. The Soviet entrepreneurs face a difficult time locating markets.

In the same vein, many Western companies find it primitive doing business in the USSR—or what will be left of it. However, all may not be gloom and doom; there are islands of commercial hope. The USSR has some top-notch computer programmers, and it’s possible for innovative companies to tap those resources. Given the shifting Soviet emphasis from defense to consumer products, more excellent programmers could be available for contract work. Software crosses international boundaries easily, and the initial investment in capital equipment for programmers is modest.

We don’t see a wholesale shift of programming projects from Western countries to the USSR, but we do see the opportunity for entrepreneurs to make money by organizing programming ventures. US programmers shouldn’t worry, however. With the increasing software content of all products, there should be plenty of work to go around.

Jon Titus
Editor

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8, N, 1.
Global Reach.

Siemens provides an extensive range of reliable advanced semiconductors for companies that manufacture and market worldwide.

For organizations with worldwide marketing and manufacturing interests, it is essential to have a global supplier who is responsive to your needs. Siemens is that partner, with the worldwide products, services and accessibility which has made us a leader in supplying solutions to organizations with global requirements.

With 197 manufacturing plants in 37 countries, Siemens provides world-class service, support, and manufacturing capabilities. And we back this commitment with over $40 billion in financial strength, as well as quality components, from the most common to the most technologically advanced ICs on the market. Complete with the European content you need to stay competitive in the World Market of 1992.

Siemens has a reputation for innovative, reliable products spanning a variety of markets. And our latest advancements prove that we’re keeping that innovation alive, supplying state-of-the-art solutions which can put the answer to your IC problem within reach.

Siemens offers the most comprehensive communication IC family in the world, which includes innovations such as the industry’s first single-chip solution in CMOS for echo cancellation circuit functions in ISDN. And all our

Innovative 8-bit microcontroller designs.

© 1991 Siemens Components, Inc. M11A 012 IC is a registered trademark of Siemens AG.

EDN November 21, 1991
communication ICs feature ISDN Oriented Modular Architecture (IOM™), the de facto industry standard pioneered by Siemens. Providing you with complete IC solutions which ease the incorporation of data, speech and graphics.

Siemens CMOS ASIC technology features both Sea-of-Gates and standard-cell product families. Our 1.5, 1.0 and sub-micron technologies are compatible with Toshiba even at the GDS2 database level, for true alternate sourcing worldwide. And they're fully supported by our ADVANCAD and industry-standard workstations and simulators, as well as the best service in the industry.

Plus, we supply the MIPS RISC microprocessor family, the only 32-bit CMOS microprocessors with five certified sources. Our superior manufacturing processes produce devices with lower power dissipation, and finer performance within your design parameters. And we’re the sole European supplier for these devices, which are ideal for workstations, file servers and multiprocessor systems, as well as embedded control applications.

For details on our world-class products, call (800) 456-9229. Or write:

Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514.

Ask for literature package M11A 012.

Siemens
World Wise, Market Smart.
Keeping reliability up as form factors go down.

THIS IS AMP TODAY.

.050 CL, leaf-contact design
In today’s tight-corner designs, reliability all too often depends on precise (and costly) manufacturing practices. Our CHAMP .050 connectors weigh in on your side with economic simplicity, and inherently tolerant contacts.

Overview: 0.050” centers, trapezoidal interface, dual-row leaf-contact design. Small, friendly, and forgiving.

Board-to-board: our proprietary compliant-receptacle, fixed-plug contact system tolerates wide mating depth variations that come with pcb warp—happy news for high-line-count designs—and offers superior performance in assembly, especially in blind-mate applications. Parallel, perpendicular, and in-line styles, 30-200 positions.

Shielded I/O: here, compliant plug and receptacle contacts take full advantage of the controlled header-to-plug interface to meet emerging global intermateability standards. Shielded receptacles and plugs provide EMI protection. Mass IDC termination and fast braid crimp keep production rates up; AMP tooling covers your volume requirements. 14-100 positions.

The CHAMP .050 high-density line: think of it as a very big factor in small-form design. For details, call our Product Information Center toll-free at 1-800-522-6752 (fax 717-561-6110). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.
OUR NEW PARTNERSHIP IS AS HOT AS IT GETS.
After all, it's Sun.

That's right, FORCE and Sun have teamed up to offer one of the brightest new products in embedded systems. The SPARC™ CPU-1E engine. It's a complete implementation of SPARCstation™ I, fully supported by the powerful SunOS™ and the real-time expertise of FORCE.

For the first time, you can design with SunOS and real-time on the same VME backplane. With industrystandard SPARC technology, no less.

And that's just the beginning. FORCE will spark embedded systems for generations to come, based on our partnership with Sun. In fact, we're already designing the SPARC CPU-2E. Of course, our entire family of SPARC-based products is 100% SunOS-compatible.

So nothing stands between you and the most powerful development environment in embedded systems. With SunOS and the SPARC CPU-1E, you can program, debug and observe real-time code. All within the same development and target system, thereby slashing costs and development time.

The SPARC CPU-1E accommodates up to 80 Mbytes of DRAM. You can run real-time, UNIX® Sun Windows™ and utility programs. Standard DMA-driven SCSI and Ethernet interfaces give you full network access. There's even an SBus™ interface for I/O expansion.

We also provide such leading real-time operating systems as VxWorks™, VADSWorks™, VRTX™, MTOS™, PDOS™ and OS-9/9000™ products. Along with over 2100 third-party applications from Sun's Catalyst™ program.

Finally, we can supply all your system components. Everything from SPARCstations and mass storage modules to expansion boards, monitors and keyboards.

But that's what you'd expect from the vendor with the broadest, most flexible line of embedded systems solutions. So call 1-800-BEST-VME, ext. 10 for more information or fax a request to (408) 374-1146.

And put the heat on your competition.

FORCE Computers, Inc. 3165 Winchester Blvd., Campbell, CA 95008-6557

All brands or products are trademarks of their respective holders.

© 1991 FORCE Computers, Inc.
AN APPLICATION EXAMPLE.
While the following example is for aircraft, it could apply to any air, land, sea or space system.

SEQUENCE ONE: The four-pushbutton display reads "ENGINE START," "BATTERY OK," "FUEL OK," "OXYGEN OK." The operator selects "ENGINE START."

SEQUENCE TWO: The four-pushbutton display now changes to read "ENGINE OK," "HYDRLC OK," "POWER OK," "CHECK LIST." The operator selects "CHECK LIST."

SEQUENCE THREE: The four-pushbutton display now reads "CHECK ICE," "CHECK FLAPS," "CHECK BRAKE," "SYSTEM OK." In this manner, the designer can program in as many sequences as required.

Design flexibility:
The programmable display system.

Vivisun Series 2000, now the leading programmable display pushbutton system, interfaces the operator with the host computer. The user-friendly LED dot-matrix displays can display any graphics or alpha-numeric and are available in green, red or amber. They can efficiently guide the operator through any complex sequence with no errors and no wasted time.

They also simplify operator training as well as control panel design. One Vivisun Series 2000 programmable display system can do the work of 50 or more dedicated switches. In short, Vivisun Series 2000 gives the design engineer more control over the design.

Contact us today.

AEROSPACE OPTICS INC.
3201 Sandy Lane, Fort Worth, Texas 76112
(817) 451-1141 • Telex 75-8461 • Fax (817) 654-3405
CIRCLE NO. 37

Vivisun Series 2000 programmable displays. The intelligent communications system.
EDN's second annual Innovator and Innovation Crusade came to a close on November 19 during the Wescon/91 show. At a black-tie banquet and reception, the EDN staff presented the awards for the Innovations of the Year—one winner in each of seven product categories—and the Innovator of the Year—the team of Paul Gulick and Arlie Conner from In Focus Systems Inc. EDN will present a check for $10,000 in Gulick's and Conner's names to the university of their choice. All of the winners were selected by votes from our readers.

INNOVATOR OF THE YEAR
Paul Gulick and Arlie Conner
In Focus Systems Inc, Tualatin, OR

INNOVATION OF THE YEAR
INTEGRATED CIRCUITS AND SEMICONDUCTORS
ISD10xx Analog Storage ICs
Information Storage Devices Inc, San Jose, CA

INNOVATION OF THE YEAR
TEST AND MEASUREMENT
HP54600A 100-MHz Digital Storage Oscilloscope
Hewlett-Packard Co, Colorado Springs, CO

INNOVATION OF THE YEAR
CAE/CAD
Falcon Framework For Concurrent Design
Mentor Graphics Corp, Wilsonville, OR

INNOVATION OF THE YEAR
COMPUTERS AND PERIPHERALS
Color LCD Technology
In Focus Systems Inc, Tualatin, OR

INNOVATION OF THE YEAR
COMPONENTS, HARDWARE, AND INTERCONNECTS
Isonic Interconnection System
Rogers Corp, Tempe, AZ

INNOVATION OF THE YEAR
SOFTWARE
IRMX For Windows
Intel Corp, Hillsboro, OR

INNOVATION OF THE YEAR
POWER SOURCES
Genesis High-Power-Density Battery
Gates Energy Products Inc, Gainesville, FL

Congratulations to the winners and the finalists, and thanks to all who took the effort to bring their products and people to the attention of EDN readers in the 1991 Innovation Crusade. The rules and instructions for next year's competition will be ready at the end of winter. If you'd like to order a nomination kit, Circle No. 410 on our reader service card or fax us at (617) 558-4470 and we'll put you on our mailing list. Good luck!
Paul Gulick and Arlie Conner

Defying the conventional additive-color approach to creating color displays, Paul Gulick and Arlie Conner labored on a subtractive approach to creating a color LCD projection panel built from three stacked monochrome panels. They exploited the birefringence effect, once perceived as one of the LCD's drawbacks, to create this breakthrough technology. The resulting triple supertwisted nematic (TSTN) LCD furnishes color pixels that emit smooth, continuous colors, brighter images, and higher quality images than other color LCD modules.

Conventional color LCD techniques mimic the additive-color triads used in CRTs, using additive-color filters over individual pixels, which reduce transmittance. The TSTN Color LCD module avoids the use of additive filters (red, green, and blue), thereby letting more light pass through. Instead of additive-color filters, the TSTN display employs polarizers and LCD panels tuned to three subtractive colors (yellow, cyan, and magenta), which produce the multicolor, single-element pixel and permit the brighter display.

ISD10xx Analog Storage ICs

The ISD10xx family of 28-pin nonvolatile CMOS ICs record, store, and reproduce from 12 to 20 seconds of analog information. In addition to speech and music, these ICs can store test waveforms, store correlation data, sample analog signals, and hold filter coefficients. For certain applications, these chips can replace ADC, memory, and DAC functions. Each chip processes and stores analog samples in a 128k-cell EEPROM array and can reconstruct and amplify linear outputs in real time. Two key features are reproduction quality and nonvolatility. For example, the ISD1016 features an S/N ratio of 40 dB and has a 3-dB bandwidth of 3.4 kHz, slightly above telephone-grade specifications. Because the EEPROM array consists of nonvolatile memory cells that use a proprietary CMOS EEPROM technology to store charges, the chip requires no backup supply to maintain its analog information. Each device operates from a 5V power supply and requires few external passive components—resistors and capacitors that control filtering and automatic gain control.

The key to the ICs' storage feature is the physics of nonvolatile floating-gate CMOS EEPROM cells, which are inherently capable of storing "gray scale" voltages that lie between hard-programmed digital states. Each gate acts as a capacitor with an extremely long decay time. These cell features are well known, but these ICs incorporate novel analog transceivers, supporting analog and digital circuits, and high-voltage and -frequency references to control storage and retrieval functions. Typical applications include voice-output products: phone-answering equipment, portable telephones, pagers, emergency equipment, and alarms. The ISD1012, 1016, and 1018 can store 12, 16, and 20 seconds of information, respectively. The devices cost $15, $18, and $20 (1000), respectively.
Falcon Framework For Concurrent Design

The Falcon Framework for Concurrent Design is the foundation of Mentor Graphics Corp's next-generation software suite, System 8.0. Falcon helps engineering organizations plan and coordinate product development in the following ways: it provides a consistent user interface for all design tools; it stores all project-related information and design data in a unified database; it provides ready and controlled data access; and it monitors all design activity to ensure fulfillment of project goals.

The framework comprises an extended version of the Open Software Foundation's Motif interface for Unix; a database manager that stores all design data in object-oriented data structures; a design-management environment that represents software and designs as hierarchical icons and includes version-control, configuration-management, and product-release facilities; and the Decision Support System.

The Decision Support System enables a design team to simulate a product's behavior based solely on specification parameters entered into its spreadsheet. You enter the equations that describe the desired model, and, based on the parameters, the spreadsheet calculates such factors as cost, power dissipation, and reliability. It can even perform preliminary thermal analyses. The software automatically extracts the data needed for the calculations from the framework's database and from other, linked databases—a purchasing department's list of sanctioned components, for example.

Resulting design models become a sort of living specification: ongoing design information and predetermined parameters are treated as a working body of knowledge. If at any point in the cycle the parameters are violated, the system sends out an alarm to the appropriate project-team members.

The Falcon Framework is shipped free of charge as part of Mentor's System 8.0.

HP54600A 100-MHz DSO

The $2395 2-channel HP54600A and $2895 4-channel HP54601A digital-storage oscilloscopes (DSOs) couple analog-style controls—separate knobs for such functions as gain, position, and sweep speed—with real-time performance. No perceptible lag occurs when you observe the output of a circuit under test and manually adjust the parameters of that circuit. With the exception of a few expensive scopes that incorporate high-speed DSP µPs, nearly all DSOs exhibit a noticeable lag in display updates.

The scopes have an analog bandwidth of 100 MHz. You can use the entire bandwidth when viewing repetitive waveforms. The scopes have a resolution of 8 bits and a maximum vertical sensitivity of 2 mV/div.
Color LCD Technology

Triple supertwisted nematic technology (TSTN) yields an economical true-color LCD display. The display uses a subtractive system, bypassing additive systems' color filters and yielding a brighter screen, fewer "jaggies," and clearer images.

The widely accepted approach to obtaining color from an LCD display is to concentrate first on a good black-and-white image, and then to apply color filters in an additive color system. This system, based on supertwisted-nematic or active-matrix technology, has entailed great efforts to get rid of the inherent coloration of the displayed image. The TSTN technology takes the opposite approach of stacking magenta, cyan, and yellow color cells on top of one another to exploit the inherent coloration of the image in a subtractive color process, like that used in photography. This process yields higher transmission and better contrast than the additive process and, despite early doubts about its viability, is manufacturable at an economic price.

Four products currently use TSTN technology. A 10½-in. backlit monitor for desktop computers has 640×480 pixel screen resolution and 64 (Model 64M) or 4913 (Model 5000M) addressable colors. The display is compatible with CGA, MCGA, EGA, VGA, Macintosh SE, and Macintosh II graphics adapters. The 480CX and 5000CX are heat-resistant display generators that you place on the platform of an overhead projector for display on a screen, provided the lamp power does not exceed 600W. Prices of all modules are $1500 (OEM qty).

Interconnection System

The Isocon connector is a pressure-mated device that interconnects arrays of contact pads. The unit consists of flat, S-shaped beryllium copper conductors (nickel- and gold-plated) suspended in a high-stress-retention microcellular silicone. Applying downward force causes the conductors to rotate, providing a wiping action at each contact point. The microcellular silicone maintains the contact force and provides a gastight seal.

Isocon connectors provide a solderless demateable interconnect for electronic components, such as IC chip packages and pc boards. The connector can provide contact configurations and spacings down to a 50-mil pitch in grid—as many as 400 contacts per in.² of board surface. The connector can accommodate large variations in compression levels, so its performance is not adversely affected by diverse package and board tolerances. Because it has a lifetime in excess of 10,000 mate/unmate cycles, this connector is compatible with test and burn-in applications.

Isocon connectors consist of the conductor-populated silicone material permanently attached to a socket that aligns the IC of a multichip module package with the pc-board contact pads. The socket also controls compression in the silicone material. In most cases, the system is custom designed for each application. However, there is very little tooling cost associated with the Isocon array. Hardware costs depend on customer requirements and final contact-array complexity. Including socket hardware, the product is priced at $0.05 to $0.15 per contact.
IRMX For Windows

The IRMX for Windows operating system lets real-time software and DOS and Windows application programs run simultaneously on the same IBM PC/AT processor. The operating system also provides DOS extensions for real-time DOS or Windows program development.

Standard, unaltered DOS runs as a task under the operating system; Windows 3.0, also unaltered, runs as a DOS application. The operating system's real-time control comes from the multitasking kernel of IRMX, a real-time operating system that was previously limited to Multibus boards and systems.

Initially, DOS loads IRMX as an application program. This "application" then seizes control, switching the processor into protected mode and encapsulating DOS as a task under IRMX. DOS then resumes operation, unaware of its new environment. A DOS or Windows application program thus runs as an IRMX task and can communicate with other IRMX tasks.

The combined DOS and IRMX operating system has multiple layers. The nucleus is a 32-bit, real-time kernel that has 255 task-priority levels, preemptive scheduling, prioritized interrupt management, timer management, semaphores, mailboxes, and other means of intertask synchronization and communication. Other layers include an I/O system layer and a human-interface layer. The operating system, with libraries and documentation, costs $1995. Run-time disks are $150 each.

Genesis High-Power-Density Battery

In designing the Genesis battery, Gates Energy Products has accomplished an objective that has eluded lead-acid-battery designers for decades: reducing by approximately 40% the size and weight of a battery that delivers high power (720W) for approximately 15 min. Indeed, when called upon to deliver 1800W, the battery operates for 5 min vs as little as 30 sec for more conventional batteries of the same size.

Certain immutable rules constrain the design of lead-acid batteries. Obtaining higher current requires increasing the area of the battery plates. But increasing the plate area while holding the battery's size constant requires making the plates thinner. Previous attempts to make thinner plates resulted in reduced physical strength and shortened battery life. But the manufacturer's improvements in processes and materials have overcome those problems.

Having created a battery specifically for low- and medium-power uninterrupted power supplies, the manufacturer has tailored the battery's characteristics to that application—a feat not possible in a battery intended for a range of uses. For example, the hardened terminals eliminate the need to periodically tighten cable clamps. The batteries are sealed and require no maintenance; under normal operating conditions, their electrolyte system eliminates venting of hydrogen into the atmosphere. Their flame-retardant cases conform to UL standard 94V-0 and have built-in carrying handles. The batteries cost $94.50.
All logic analyzers give you integrated state and timing, sooner or later.

Why not now?
Introducing the new Philips PM 3580 family of logic analyzers from Fluke: the first instrument architecture to give you state and timing together on each channel— with a single probe.

Connect the probe to your board for state and you're automatically hooked up for timing. Or vice versa.

This means no more dual probing—a pain anytime and the source of loading problems—and no reconfiguration between state and timing. Which makes these analyzers simple to learn and use.

Plus, the pop-up menus and keyboard shortcuts guide you quickly through setup and data analysis. No matter if you use it every day or once a year.

What's more, capturing an elusive bug has never been easier with eight unrestricted trigger levels that let you select from state and...
Why not sooner?

timing trigger conditions on each level. But being simple doesn’t mean simplistic. Basic performance of the PM 3580 family ranges from 32 to 96 channels, each with 50 MHz state and up to 200 MHz timing, plus 3 nanosecond glitch capture and 2K of memory per channel. For 8-, 16- and 32-bit processors.

And you get all this for nearly half the cost of comparable analyzers.

We’d like to send you a video. Or show you how to make state and timing measurements at your workplace—

in 30 minutes or less. We’ll even bring the stopwatch so you can time us. And you can keep it to time the competition.

So call us today at 1-800-44-FLUKE.
Ask for extension 720.
Because sooner is better.

EDN November 21, 1991
Announcing A Simple Way To Get From PLDs To FPGAs.

If you're a PLD designer with an interest in fast, flexible FPGAs, but you think you don't have time to learn new design techniques, we'd like to change your mind.

First of all, you don't have to give up your existing PLD design tools or Boolean equations. Actel's ALES™ 1 program translates the output of PLD tools like CUPL™ and LOG/iC™ into logic optimized for our ACT™ devices. ABEL™ 4.0 includes optimization for Actel devices. Entire FPGA designs can be developed with PGADesigner.

Actel devices offer everything you want in an FPGA. Like high I/O and flip-flop counts. And 100% automatic place and route gets you to market fast.

Once your FPGA is designed, our Action Logic™ System (ALS) converts the captured design into a completed device in minutes. To give you true, high-density, field-programmable, channeled gate arrays.

Other FPGA manufacturers fall short on design verification. Our exclusive Actionprobe® diagnostic tools, give you 100% observability of internal logic signals. So you don’t have to give up testability for convenience.

It’s never been easier to make your innovative designs a reality. We offer you a complete family of powerful FPGAs, like the A1010 and A1020, available in 44, 68 and 84 pin PLCC versions and implementing up to 273 flip-flops or up to 546 latches. And the first member of our ACT 2 family, the power-
GAAs The Same Way

e Similarity Ends There.

More Flexibility And Capacity.
Designing with Actel FPGAs gives you more freedom than you ever imagined. More gates. More flip-flops. More I/O. In fact, our new A1280 is the largest FPGA in the world.

Small Footprint.
Actel FPGAs give you more gates per square inch. As much as ten times as many as the densest PLDs. That can save a lot of real estate.

More Fun.
Designing Actel FPGAs is so simple that you'll have more time to do the things that made you want to become an engineer in the first place. Or just relaxing. You've earned it.

ful A1280. With 8,000 gates, up to 998 flip-flops, and 140 I/O pins, it's the highest capacity FPGA today. And our A1240-1 is the fastest. In the A1240-1, 16-bit counters run at 75 MHz, 16-bit accumulators at 33 MHz. Enough capacity and speed to handle almost any application. The superior speed, capacity, and auto place and route capabilities of our FPGAs are made possible by Actel's revolutionary PLICE* antifuse programming element. The advanced technology that makes our family of FPGAs an ideal way to unleash your engineering creativity.

Call 1-800-228-3532 for your free FPGA Design Guide.

EDN November 21, 1991

CIRCLE NO. 56

Risk-Free Logic Integration
With apologies to our competitors, we plan to keep on leading the way in read/write IC technology.

And why not? For nearly two decades, Silicon Systems has been increasing performance and reducing power demands in an expanding range of pin-compatible functions. All designed for a world of ever-shrinking form factors.

Current achievements include low-power, +5v only read/write devices that consume under 5mW in idle mode. Our new two-terminal read/write amplifier for thin film and MIG heads. A read/write device for both 3-terminal

representative and update you on our latest developments. 1-800-624-8999, ext. 151

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680
Ph (714) 731-7110 Fax (714) 731-6925
European Hdq. U.K. Ph (44) 81-443-7061
Fax (44) 81-443-7022
Manufacturers of high-performance pulse generators are turning to modular systems to increase versatility while keeping costs down.

Doug Conner, Technical Editor

HIGH-PERFORMANCE PULSE GENERATORS

A single 100-MHz or greater pulse generator often can't satisfy every application. One engineer may need low-level pulses with sub-nanosecond transition times, another may need 10V pulse amplitudes and can tolerate slower edge rates. Some applications call for fast fixed edge rates, others need variable edge rates. To provide instruments that excel rather than compromise to meet these conflicting requirements, manufacturers are turning toward modular pulse generators.

Modular pulse generators let you select the performance you need and the right number of channels for your particular application. One channel is sufficient for you to test the maximum toggle rate of a flip-flop. Checking setup and hold times for a flip-flop requires two channels. Testing high-speed timing on complex ICs may take more than two channels. Fortunately, high-speed pulse generators are available with as many as 18 channels.

Modular pulse generators that support multiple channels offer you the choice of having more than one type of module for different performance requirements. If you have extra channels, you can dedicate them to other modules, which allows you to switch test parameters quickly. For example, you can choose a fast fixed-edge-rate module and add a second variable-edge-rate module. To have the same capability with non-modular pulse generators, you would need two complete systems—a more expensive alternative.

Pulse generators typically have to make tradeoffs among the maximum pulse-repetition rate, variable transition...
Neuralogix proudly announces the first true family of standard fuzzy logic ICs. Now artificial intelligence applications are no longer constrained by high cost, long development cycles, and complex software.

This ground-breaking line of high-speed, low-power CMOS devices represents the leading edge of fuzzy logic technology, and provides all the options you need for such diverse applications as pattern recognition, robotic control, positioning systems and more.

Devices now available include:

NLX230 Fuzzy Microcontroller
The first in a family of true hardware-based fuzzy logic controllers, this device makes artificial intelligence available for a wide range of consumer and industrial products at a price competitive with standard 8-bit microcontrollers. An applications development kit is available for only $395.

NLX110 Fuzzy Pattern Comparator. Specially designed for multiple pattern comparisons of serial real-time data, this device adds intelligence to video and speech recognition systems, as well as telemetry applications. An applications development kit is available for $395.

NLX112 and NLX113 Fuzzy Data Correlators. These chips are as simple to use as ordinary correlators, but are more than twice as fast and operate with noisy and incomplete data. The NLX112 performs 128-bit data comparisons with selective bit masking capability and easy word-length expansion via cascading devices. The more versatile NLX113 offers 32/64/128-bit selectivity, 50 MHz speed and separate clocking for data and reference patterns.

For a family portrait of detailed specifications and prices, contact Neuralogix today!
High-performance pulse generators

speeds or edge rates, and output amplitude. You need high pulse-repetition rates to test the maximum toggle rates on flip-flops, maximum frequencies for counters, and general simulation of high-speed clocks or data. And high pulse-repetition rates require fast transition or edge rates.

However, high pulse-repetition rates are difficult to maintain at high p-p output voltages because the voltage changes require extremely high slew rates. To keep slew rates reasonable, pulse-generator repetition rates and edge-transition rates go down as the output amplitudes go up.

Edge rates approximate reality

Variable transition rates are sometimes important for matching test inputs to actual circuit input characteristics. For example, a maximum-toggle-rate test may give different answers when stimulated by pulses with 200-psec transition speeds instead of a closer representation of what the circuit will see in practice, which might be a 2-nsec transition time.

Variable edge rates may also be important when using the pulse generator to stimulate circuit inputs that don't match the usual 50Ω source impedance of the pulse generator. You can adjust a variable-edge-rate pulse generator to a lower edge rate to minimize ringing in such cases. If you need variable edge rates, you'll probably have to settle for a lower maximum edge rate than fixed-rate machines can provide. Some pulse generators, such as the 9212 module from LeCroy (Table 1), offer fast variable edge rates, but they do so over a narrow range (350 psec to 1 nsec).

All the pulse generators listed in Table 1 offer a double-pulse mode. As the name implies, the pulse generator produces two pulses for each period or trigger. You can use the double-pulse output to drive the clock of a flip-flop and a second channel running with a single pulse per period to drive the data, allowing you to clock alternating ones and zeros into flip-flops and other circuits.

A burst mode, available on most pulse generators, is similar to double-pulse mode but extends the number of pulses generated after a trigger. The maximum number of pulses in a burst is programmable from 9999 up, depending on the instrument.

Tektronix's HFS 9000 series pulse generators offer the unique capability of having channel frequencies selectable at one-half, one-quarter, or one-eighth the base frequency. The different frequencies are useful for driving address lines when testing circuits such as multiplexers, demultiplexers, and memories, and for driving data lines when testing D/A converters.

Whenever you are using a pulse generator setup with more than one channel, you'll want to be able to vary the timing between the channels. You may need to remove the skew between channels or set up special timing relationships between waveforms. It's important that the pulse generator offers a sufficient delay range and provides adequate resolution in the size of the delay increments to perform these time-delay operations.

For example, if you want to test the setup- and hold-time require-
Table 1—Representative high-performance pulse generators

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product Description</th>
<th>Maximum Channels</th>
<th>Channels as priced</th>
<th>Price</th>
<th>Pulse-repetition rate</th>
<th>Pulse width</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley Nucleonics</td>
<td>Mainframe</td>
<td>1</td>
<td>0</td>
<td>$4250</td>
<td>100</td>
<td>1000</td>
<td>±1 nsec</td>
</tr>
<tr>
<td></td>
<td>Module</td>
<td>1</td>
<td>1</td>
<td>$2900</td>
<td>100 (or 300 external)</td>
<td>1000</td>
<td>±1 nsec</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>Mainframe</td>
<td>2</td>
<td>1</td>
<td>$12,700</td>
<td>300</td>
<td>10</td>
<td>5%</td>
</tr>
<tr>
<td>2nd channel</td>
<td>Factory option</td>
<td>1</td>
<td>1</td>
<td>$6600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8131A Mainframe</td>
<td>2</td>
<td>1</td>
<td>$16,000</td>
<td>500</td>
<td>5%</td>
<td>10</td>
<td>5%</td>
</tr>
<tr>
<td>2nd channel</td>
<td>Factory option</td>
<td>1</td>
<td>1</td>
<td>$8250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LeCroy Mainframe</td>
<td>2</td>
<td>0</td>
<td>$5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9211 Module</td>
<td>1</td>
<td>1</td>
<td>$1600</td>
<td>250</td>
<td>0.5%</td>
<td>10</td>
<td>0.5%</td>
</tr>
<tr>
<td>9212 Module</td>
<td>1</td>
<td>1</td>
<td>$2200</td>
<td>300</td>
<td>0.5%</td>
<td>10</td>
<td>0.5%</td>
</tr>
<tr>
<td>9213 Module</td>
<td>1</td>
<td>1</td>
<td>$1000</td>
<td>100</td>
<td>0.5%</td>
<td>10</td>
<td>0.5%</td>
</tr>
<tr>
<td>Philips PM5781</td>
<td>Fixed system</td>
<td>1</td>
<td>1</td>
<td>$9785</td>
<td>125</td>
<td>10</td>
<td>3%</td>
</tr>
<tr>
<td>PM5781 and Calibrator</td>
<td>1</td>
<td>1</td>
<td>$11,185</td>
<td>125</td>
<td>0.1%</td>
<td>10</td>
<td>1%</td>
</tr>
<tr>
<td>Tektronix HFS9009 Mainframe</td>
<td>18</td>
<td>0</td>
<td>$19,995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFS9010 Mainframe and two 9PG1 modules</td>
<td>6</td>
<td>4</td>
<td>$37,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFS9020 Mainframe and two 9PG2 modules</td>
<td>6</td>
<td>4</td>
<td>$36,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFS9030 Mainframe, one 9PG1, and one 9PG2</td>
<td>6</td>
<td>4</td>
<td>$37,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFS9PG1 Module</td>
<td>2</td>
<td>2</td>
<td>$11,000</td>
<td>630</td>
<td>1%</td>
<td>10</td>
<td>1%</td>
</tr>
<tr>
<td>HFS9PG2 Module</td>
<td>2</td>
<td>2</td>
<td>$7900</td>
<td>300</td>
<td>1%</td>
<td>10</td>
<td>1%</td>
</tr>
<tr>
<td>TM502A Mainframe</td>
<td>2</td>
<td>0</td>
<td>$395</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG502 Module</td>
<td>1</td>
<td>1</td>
<td>$3495</td>
<td>250</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>PG503 Module</td>
<td>1</td>
<td>1</td>
<td>$5250</td>
<td>250</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Wavetek 869 Mainframe</td>
<td>4</td>
<td>1</td>
<td>$16,095</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>869-C Module</td>
<td>1</td>
<td>1</td>
<td>$8620</td>
<td>100</td>
<td>5 PPM</td>
<td>100</td>
<td>1%</td>
</tr>
<tr>
<td>2000 Mainframe</td>
<td>4</td>
<td>0</td>
<td>$9880</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002FE Module</td>
<td>1</td>
<td>1</td>
<td>$8770</td>
<td>200</td>
<td>2%</td>
<td>100</td>
<td>2%</td>
</tr>
<tr>
<td>2005FE Module</td>
<td>1</td>
<td>1</td>
<td>$9465</td>
<td>200</td>
<td>2%</td>
<td>100</td>
<td>2%</td>
</tr>
<tr>
<td>2005 Module</td>
<td>1</td>
<td>1</td>
<td>$8840</td>
<td>200</td>
<td>2%</td>
<td>100</td>
<td>2%</td>
</tr>
<tr>
<td>2010 Module</td>
<td>1</td>
<td>1</td>
<td>$9890</td>
<td>200</td>
<td>2%</td>
<td>100</td>
<td>2%</td>
</tr>
</tbody>
</table>

Notes:
- Full range if not specified.
- NA = Not applicable.
- NS = Not specified by manufacturer.

EDN November 21, 1991
<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution (mV)</th>
<th>% Level</th>
<th>% Amplitude</th>
<th>Offset (mV)</th>
<th>10%–90% minimum (ps)</th>
<th>At V p-p* (ps)</th>
<th>20%–80% minimum (ps)</th>
<th>At V p-p* (ps)</th>
<th>Maximum</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>5V</td>
<td>NA</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>1000</td>
<td>5</td>
<td>700</td>
<td>1.0</td>
<td>Fixed</td>
</tr>
<tr>
<td>-5, 5V</td>
<td>5V</td>
<td>20</td>
<td>NS</td>
<td>0.1</td>
<td>15</td>
<td>NS</td>
<td>150</td>
<td>50</td>
<td>Fixed</td>
<td>Optical module options and amplitude to 300V.</td>
</tr>
<tr>
<td>-5, 5V</td>
<td>5V</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>40</td>
<td>1000</td>
<td>600</td>
<td>100 µsec</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-5, 5V</td>
<td>5V</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>40</td>
<td>200</td>
<td>3</td>
<td>200</td>
<td>5</td>
<td>Fixed</td>
</tr>
<tr>
<td>-5, 5V</td>
<td>5V</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1200</td>
<td>NS</td>
<td>1 msec</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-5, 5V</td>
<td>5V</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>NS</td>
<td>300</td>
<td>1 nsec</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-8, 8V</td>
<td>16V</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>6500</td>
<td>NS</td>
<td>95 µsec</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-10, 10V</td>
<td>10V</td>
<td>10</td>
<td>1</td>
<td>2.5</td>
<td>40</td>
<td>2000</td>
<td>1400</td>
<td>100 msec</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-10, 10V</td>
<td>10V</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>2000</td>
<td>1400</td>
<td>100 msec</td>
<td>Includes internal calibrator.</td>
<td></td>
</tr>
<tr>
<td>-2, 2.6V</td>
<td>30V</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>NS</td>
<td>200</td>
<td>1</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-2, 5.5V</td>
<td>5.5V</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>NS</td>
<td>1000</td>
<td>5</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-5, 5V</td>
<td>5V</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NS</td>
<td>1000</td>
<td>Fixed</td>
<td>Not programmable.</td>
<td></td>
</tr>
<tr>
<td>-2.5, 2.5V</td>
<td>2.5V</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NS</td>
<td>200</td>
<td>Fixed</td>
<td>Not programmable.</td>
<td></td>
</tr>
<tr>
<td>-5, 10V</td>
<td>10V</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>50</td>
<td>2000</td>
<td>1200</td>
<td>20 µsec</td>
<td>Includes 869-C module.</td>
<td></td>
</tr>
<tr>
<td>-3, 4V</td>
<td>3V</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>15</td>
<td>NS</td>
<td>320</td>
<td>2</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-5, 10V</td>
<td>5V</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>550</td>
<td>5</td>
<td>NS</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>-5, 10V</td>
<td>5V</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>1000</td>
<td>5</td>
<td>NS</td>
<td>2 µsec</td>
<td></td>
</tr>
<tr>
<td>-5, 15V</td>
<td>10V</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>50</td>
<td>2000</td>
<td>10</td>
<td>NS</td>
<td>2 µsec</td>
<td></td>
</tr>
</tbody>
</table>
High-performance pulse generators

869 has a pulse width and delay resolution of 100 psec and a monotonicity specification of 500 psec. If you don't measure the timing characteristics of the pulse generator's output, you won't be sure about the result of incremental timing changes.

If you need timing resolution of around 100 psec or less, the pulse generator's timing jitter is also an issue to consider. Timing jitter is a measure of the pulse-to-pulse timing variation. Although the less jitter the better, you can compensate for jitter much larger than the resolution by repeating the measurement many times and using statistical methods.

Buy accuracy or measure it

Accuracy specifications for both timing and voltage vary widely, as Table 1 shows. Programmable pulse generators specify their accuracy levels. Manual pulse generators, such as the PG502 and PG503 from Tektronix, and older units from some other manufacturers, have few accuracy or resolution specifications. They depend on you to use a separate oscilloscope, timer-counter, or other instrument to set and measure their timing and voltage outputs.

Programmable pulse generators may save you considerable time by not requiring you to measure their outputs to set timing and voltage values accurately. If you are going to depend on the accuracy of the pulse generator when setting parameters, however, pay careful attention to the accuracy specifications of the instruments. Internal self-calibration allows some instruments to offer much better accuracy than others.

Any time you need a pulse generator for use in an automated or semi-automated test setup using the IEEE-488 bus, you'll need a programmable one. Also, programmable pulse generators offer other benefits, such as the ability to store multiple setups for fast recall.

Some programmable pulse generators let you use multiple methods to set parameters. This feature lets you use whichever method is easiest for the type of tests you are making, but its implementation varies somewhat among the different manufacturers. Pulse generators that don't offer multiple parameter entry methods may force you to use a calculator to convert the settings you want into parameters the instrument will accept.

For example, when setting the voltage levels, you might prefer to set amplitude and offset for one test, whereas high and low values might be more appropriate for another test. For setting pulse-timing parameters, you may wish to set the period and vary pulsewidth for some tests. For other tests, you adjust frequency, pulsewidths, and delays with good timing resolution. Rise and fall times on pulse generators are fast and, depending on the pulse generator, may also be adjustable.

Pulse generators find application in many high-performance, analog and digital research, design, and verification operations. Many pulse generator applications require only fast fixed transitions, although some may benefit from variable transition rates.

Examples of pulse generator applications include measuring rise and fall times, transistor switching times, propagation delay times, output skew, and setup and hold times. Pulse generators can also help test metastability and duty cycle effects and measure maximum toggle rates for flip-flops, maximum frequencies for counters, general clock simulation for maximum frequency tests, input capacitance from RC time constants, comparator switching times, and slew rates.

Who needs a pulse generator?

Pulse generators fill an important instrument niche surrounded by function generators, data or word generators, and arbitrary waveform generators.

Function generators typically provide sine, triangle, square, and often other waveforms such as sawtooths. Rise and fall times of the square waves on function generators are not particularly fast, and function generators usually limit their pulses to 50% duty cycles (square waves).

Data or word generators provide a programmable sequence of digital states across many channels. Pulse edge rates and delay characteristics aren't typically programmable on digital word generators.

Although you have the ability to create any shape of waveform with an arbitrary waveform generator, you can't approach the short rise and fall times and high pulse-repetition rates possible with pulse generators.

Pulse generators concentrate on pulses and typically allow a wide variation in duty cycle. You usually have considerable range over which you can
Does your motor control application require a high-power drive that can operate directly from a 270V bus? Then DDC has the answer — the PWR-82333 — a smart-power, 3-phase, high-voltage motor drive. This unique hybrid combines the output drive stage with high- and low-side drives, protection logic, and an internal power supply. The PWR-82333 is a 30A motor drive with a maximum voltage rating of 500V. Designed for operation in systems powered from 270V, the PWR-82333 can deliver 10kW of power to your motor and requires only 6.3 square inches of heatsink area.

The PWR-82333 has Schmitt trigger digital inputs that control the high and low side of each phase. Digital OR’d protection of each phase eliminates a shoot-thru condition, by preventing simultaneous turn-on of both the upper and lower transistors. The logic controls the high- and low-side gate drivers. The PWR-82333 has a ground referenced low side; furthermore, to provide continuous gate drive — even during a motor stall — an internal de-dc converter supplies floating outputs to each of the high-side drives. The high- and low-side gate drivers control the N-channel IGBT output stage. The high-speed IGBTs allow output switching at 25kHz with output currents of 30A continuous and 50A peak. A flyback diode parallels each IGBT and controls motor produced regenerative energy. The PWR-82333 is available in a 2.1"W x 3.0"L x 0.39"H package and operates from -55° to +125°C case temperature.

DDC also offers a 200V 3-phase motor drive using a MOSFET output stage for lower voltage applications. Besides our 3-phase products, there are complementary 2-phase drives with both high & low voltage capability.

Give us a call for more information, data sheets, or a technical seminar to see how your motor control design can benefit from the reduced size, weight, and high reliability of DDC’s motor drive products.

Call Bob Fryer at 516-567-5600 extension 390 and realize the DDC power advantage today.
High-performance pulse generators

may want to set the duty factor and vary the period. When setting the pulse edge-transition rates, you may want to specify the value in rise time from 10% to 90%, or you may want to specify the slew rate.

When setting parameters, another feature that differentiates products is the display. Some programmable instruments show a single parameter readout on a numeric or alphanumeric display. Others show multiple parameters, sometimes on a CRT display. LeCroy's model 9210 has a touch-sensitive CRT display for selecting which parameters to set and a keypad and rotary encoder for setting the parameters' values. Tektronix's HFS 9000 series and Wavetek's model 2000 show multiple simulated waveforms, including the timing relationship, on CRT displays.

You don't need a complete parameter display with simulated waveforms in a manual pulse generator because you have to observe the waveform on an oscilloscope anyway just to set parameters. On programmable pulse generators with more than two channels, it's necessary to have the simulated waveform display to avoid errors and keep track of what you have programmed. Without the simulated waveform display, you would probably need to have enough oscilloscope channels to cover all of the pulse generator channels, or you would have to waste time moving scope probes around.

Pulse generators typically offer external triggering in addition to using internal period generation. Many pulse generators also offer external gating and external duration trigger modes. External gating enables the pulse generator to produce pulses when the gate signal is present. External duration uses the trigger-input pulsewidth to determine the pulsewidth of the output waveform, but the amplitude and edge rates are those programmed on the pulse generator. External duration essentially works as a signal-conditioning mode.

Although not having a high enough output amplitude on a pulse generator may leave you unable to perform a test, having too high an amplitude can cause you to damage or destroy the circuit you are testing. All pulse generators have variable attenuation to set the pulse amplitude and offset to a value within the pulse generator's limits. To prevent inadvertent overvoltage accidents, most pulse generators also let you set a voltage limit.

For more information . . .

For more information on the pulse generators discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Berkeley Nucleonics Corp
1121 Regatta Square
Richmond, CA 94804
(510) 234-1100
FAX (510) 236-3105
Circle No. 716

Philips Test and Measurement
Building HKF
5600 MD Eindhoven
The Netherlands
Phone local office
Circle No. 719

Hewlett-Packard Co
10210 Pruneridge Ave
Cupertino, CA 95014
(800) 752-0900
Circle No. 717

In North America, contact:
John Fluke Mfg Co
Box 9090
Everett, WA 98206
(206) 347-6100
Circle No. 720

LeCroy Corp
700 Chestnut Ridge Rd
Chestnut Ridge, NY 10977
(914) 578-6020
FAX (914) 578-5981
Circle No. 718

Tektronix
Box 500
Beaverton, OR 97077
(800) 355-9433
Circle No. 721

Wavetek San Diego
9045 Balboa Ave
San Diego, CA 92123
(619) 270-2200
TWX 910-335-2007
Circle No. 722

Pulse generators typically offer external triggering in addition to using internal period generation. Many pulse generators also offer external gating and external duration trigger modes. External gating enables the pulse generator to produce pulses when the gate signal is present. External duration uses the trigger-input pulsewidth to determine the pulsewidth of the output waveform, but the amplitude and edge rates are those programmed on the pulse generator. External duration essentially works as a signal-conditioning mode.

Although not having a high enough output amplitude on a pulse generator may leave you unable to perform a test, having too high an amplitude can cause you to damage or destroy the circuit you are testing. All pulse generators have variable attenuation to set the pulse amplitude and offset to a value within the pulse generator's limits. To prevent inadvertent overvoltage accidents, most pulse generators also let you set a voltage limit.

Just Ask . . .

Have you been stumped by a design problem? Can't interpret a spec sheet? Ask EDN. Our editors are ready to help.

The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help.

Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask__edn Special Interest Group.

Article Interest Quotient
(Circle One)
High 512 Medium 513 Low 514

EDN November 21, 1991
Mitsubishi
Shaved 2ns Off
The World's
Fastest SRAM.

Ultra Fast

Talk about cutting-edge technology!
Mitsubishi's 8ns 256K BiCMOS SRAM thrusts you into the next generation of chip design with higher performance and density for ultra-fast cache applications like workstations, minicomputers and digital signal processing systems.

Center Power-Ground Pins

This 32K x 8 SRAM is the first to use a 0.6 micron BiCMOS process plus two pairs of center power-ground pins to reduce noise. The result is blazing speed in a small footprint 32-pin SOJ package.

If that's more speed than you need, this SRAM is also available in 10ns and 12ns access times. For more information, call 408-730-5900 ext. 2106.

We'll help make your leading-edge designs razor sharp.

MITSUBISHI
ELECTRONIC DEVICE GROUP
CCD Image Sensors
The CCD technology that led to Sony's leadership in color video cameras is now available to you.

High Speed SRAMs
Broad family covers all your fast-processor cache-memory requirements.

1-Meg SRAMs
Largest, most diverse family in the industry. The first products scheduled to come from our new San Antonio fab.

ECL Standard Logic
Wide range of high-speed, high-performance ECL logic devices. Low cost and design simplicity.

ECL Gate Arrays
Super high-speed operation combined with low power consumption and extensive I/O interfaces.

Digital Audio

Interactive Video
Sony's A/V IC leadership applies directly to new multimedia systems. Superior bipolar linear technology in encoder/decoder.

GaAs FETs
State-of-the-art performance, reliability and uniformity. Ideal when low noise is critical.

STRAM
High speed performance, self-timed RAM with register synchronous SRAM.

A/D Converters
18 models including the world's fastest. Fewer pins, smaller packages, low power consumption, and guaranteed low error rates.

D/A Converters
High speeds to 500 MHz, low glitch energy, and low power consumption in very small packages.

Laser Diodes
Wide power range, high reliability, huge selection. Ideal for optical disk, laser printer and microsurgery designs.
If you can't get the parts you need, you can't get your best designs out the door. And that's where we can help. With cutting edge SRAMs—high and low speed. With high speed A/D and D/A converters. With high speed ECL logic chips. And with a long list of other components—the same components that have made Sony's consumer electronics so successful.

Perhaps more important, we're always here to help. With a design center to support your design engineers, in developing applications all the way through production. With a service department to answer your questions and expedite your orders. And with world-class manufacturing, plus new facilities in San Antonio, Texas, to produce the technology you'll need next year.

To learn more about our custom design support, our competitive prices, and our full line of components, just call us today at (714) 229-4331 or (416) 499-1414 in Canada. You can even FAX us your current requirements at (714) 229-4285 or (416) 499-8290 in Canada.

SONY

Sony is a registered trademark of Sony Corporation. Prices and specifications are subject to change without notice. The purchase of products is subject to availability and Sony's standard terms and conditions of sales.

CIRCLE NO. 59
HT216 Local Bus VGA Controller
The industry’s first local bus VGA controller, the HT216, dramatically improves the performance of all graphics applications.

By placing the VGA graphics controller on the CPU local bus and incorporating Windows™ raster operations functions, the HT216 displays Windows applications two to four times faster than standard VGA controllers—at very little added cost.

HTK320—A 386DX-based High Performance Chip Set
The HTK320 significantly improves 386DX systems performance with a high degree of systems integration and support for local bus peripherals.

A High Degree of Systems Integration
This two-chip set design, which supports internal tag RAMs and reaches systems frequencies of up to 40MHz, consists of an ISA Bus controller chip and a Memory Controller Unit (MCU). With many features integrated directly into the chip set, a high performance, fully compatible IBM PC/AT can be developed with only four external TTL devices.

Local Bus CPU Implementation—The Bus of the Future
The chip set architecture supports the connection of high-speed I/O devices such as VGA, SCSI and LAN controllers directly on the 386DX local processor bus. This design eliminates the 8MHz ISA Bus bottleneck.

Advanced Cache Design
The cache controller of the HTK320 features integral tag RAMs, which allow for two-way set associativity for higher performance, while reducing component count and cost. A unique supporting feature of the cache architecture is a five-deep write buffer with byte gathering. DRAMs may be freely configured using 256K to 16MB devices.

Catch the Bus of the Future
Call Headland Technology to find out more about the HTK320, the HT216 and our other local bus core logic and graphics products.

Catch the local bus now. Don’t get left behind.
Analog behavioral modeling is not the antithesis of Spice, but another level on the simulation hierarchy. It’s not a question of whether you trade in Spice-level models for behavioral models, but for what phase of the design and for what types of circuits you’ll use each.

Anne Watson Swager, Technical Editor

ANALOG SIMULATION

Behavioral models expedite simulation

After finally conquering doubts and difficulties associated with simulating complex circuits with Spice, advancing to analog behavioral models may seem like too big a step, too fast. However, without using some form of behavioral modeling, reaching the end of a complete simulation can be difficult. Chances are very high that at some point during the simulation you’ll hit a brick wall: no model for a crucial component exists, the circuit is too complex to simulate in a reasonable amount of time, or you simply can’t model a certain part of the system using the basic electrical Spice elements.

These problems—lack of models, slow simulation speeds, and non-electrical characteristics—are exactly what behavioral modeling can alleviate. Behavioral modeling is an attempt to capture a component’s actions, without specifying that component’s structural details. It lets you build models for components more easily, and speeds up simulation times.

Using behavioral modeling can be as simple as manipulating basic Spice primitives and polynomial statements or using an actual behavioral simulator, such as Analogy Inc’s Saber. More often than not, you’ll write your own behavioral models or statements. However, the macromodels available from IC vendors are a type of behavioral model, and you can obtain models from independent consultants. As part of a Spice course he teaches for RCG Research, Ron Kielkowski presents behavioral models for devices ranging from adders and subtractors to 555 timers.

One example of how behavioral models can expedite simulation is in emulating the behavior of a complex load. You may know certain mathematical or transfer-function characteristics of that load, but there may be no circuit equivalent. Thus, it is a futile exercise to develop a model using Spice primitives. It is also futile to run a simulation without taking into account the load’s effect. Using a behavioral model of the load makes the simulation more realistic and saves unnecessary modeling time.
Analogue Simulation

Behavioral modeling can exist both within and outside the realm of circuit simulation. Most of the software in Table 1 is circuit-design and -verification oriented, but software also exists that purely serves block-level simulations. Because of its conceptual/analytical nature, behavioral modeling is a good tool with which to simulate your overall system. Then, when simulating circuit detail, these models can substitute for peripheral components while you are concentrating on others to speed the simulation.

Behavioral models don’t necessarily emulate only a component’s ideal characteristics. Although many of the Spice behavioral features model only ideal summers or integrators, table look-up features let you insert real data. And, using hardware-description languages, you can include as much detail as necessary to capture those component effects that have the greatest bearing on your design. Ian Getreu, Analogy Inc’s VP of Modeling, emphasizes that behavioral modeling of analog components is a technique, not a level of accuracy. According to Getreu, behavioral models implemented with a hardware-description language “can be more accurate, just as accurate, or less accurate than models obtained from primitive or functional approaches.” It’s up to you to decide how many real effects are necessary for your simulation.

Drawbacks exist

Despite its advantages, behavioral simulation is not a panacea for all modeling problems. Some effects are impossible to model. Some expressions have no solution, or have solutions that are infinitely large. Any simulator will still have to deal with the stiff mathematical problem of discontinuities. According to Dick Akers, director of Mentor Graphics’ analog business unit, the more discontinuities, the more difficulties any analog simulator will have. A behavioral simulation can still have convergence problems when modeling a truly general non-linearity.

Thus, it’s important to take a good look at what you really need to accomplish and pick the appropriate tools. Do you need to be able to write your own models? Is model accuracy or model speed more important? Do you need both fast and accurate models for different phases of the design process? Do you simply want to augment your existing library of Spice models with a few behavioral ones?

Unfortunately, matching your requirements with the available software requires wading through vendor rhetoric. There is not a single definition of behavioral modeling. One broad definition of a behavioral model is any model that is more abstract than a transistor-level model. Another definition is the ability to model a component using mathematical equations. Macromodels are also often loosely called behavioral—they still use the basic Spice set of electrical elements, but instead of trying to implement an IC’s function exactly, a macromodel uses electronic components to mimic other components’ functions.

In some cases, Spice vendors’ behavioral models are macromodels that implement certain functions, such as ideal integrators and summers. Other upgraded Spice software includes features that let you directly input equations and table-look-up features in Spice text files. Still other behavioral models are based on hardware-description languages, which provide the greatest flexibility, to describe both electrical and nonelectrical components.

The various definitions and implementations of behavioral modeling don’t oppose one another, but refer to different levels in the simulation hierarchy. Understanding the limits of each step in the hierarchy will help determine whether the models available at each step are sufficient for your simulation task.

Fit modeling into a hierarchy

There are essentially three analog-simulation levels: structural, functional/macromodel, and pure behavioral. The structural level, often called the primitive level, is exemplified by Spice. At the structural level, the simulator uses a basic set of components, which in Spice is a set of about 30 devices including resistors, capacitors, inductors, transistors, and various voltage and current sources. A structural-level simulation implements an entire circuit in terms of these basic elements.

One step up from the structural level is the functional level. At this level, the model omits certain structural details to speed up the simulation. An example of a functional-level model is the Boyle op amp. This model still uses basic structural elements, but isn’t an exact replica of any particular op amp. Instead of exactly mimicking a circuit, this model uses predefined building blocks, such as current sources, to model the circuit’s action.

All macromodels are essentially functional-level models. Some CAE vendors would argue that macromodels are behavioral because they omit structural detail. Others claim...
Table 1—Analog behavioral modeling features of representative simulators

<table>
<thead>
<tr>
<th>Company</th>
<th>Simulator and option name</th>
<th>General description</th>
<th>Key behavioral modeling features</th>
<th>Hardware platforms</th>
<th>Starting price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anacad</td>
<td>Eldo simulator with Eldo-Fas</td>
<td>Proprietary simulator and modeling language aimed primarily for large-IC designers.</td>
<td>Capable of time- and frequency-domain simulation of any lumped parameter, linear, or nonlinear system.</td>
<td>Sun, HP/Apollo, DEC, IBM</td>
<td>$30,000</td>
</tr>
<tr>
<td>Analogy</td>
<td>Saber simulator with Mast language</td>
<td>Proprietary simulator based on Mast hardware-description language.</td>
<td>Flexible language lets you model real behaviors, nonelectrical components, and mixed analog/digital systems. Optional graphics package lets users implement functions without writing Mast code. Includes Spice-level simulation capability.</td>
<td>Sun, HP/Apollo, DEC, Solbourne, and Intergraph</td>
<td>$15,000</td>
</tr>
<tr>
<td>Cadence Design Systems</td>
<td>Analog Artist with analog functional blocks library</td>
<td>Complete front-to-back design system including Cadence Spice.</td>
<td>Analog functional blocks library includes higher-level functions such as dividers, multipliers, poles, and level shifters.</td>
<td>Sun, HP/Apollo, DEC, IBM</td>
<td>$30,000 (Analog Artist) $5000 (library)</td>
</tr>
<tr>
<td>Contec Microelectronics</td>
<td>ContecSpice 3C.1 with analog and digital behavioral options</td>
<td>Spice 9C.1-based, mixed-level circuit simulator.</td>
<td>Includes analog modeling options for digital and analog circuits. Models transfer functions, differential equations, and nonlinear functions.</td>
<td>Sun, HP/Apollo, DEC, IBM</td>
<td>$4700 (PC) $9100 (Sun) $4500 (each option, PC) $8500 (each option, Sun)</td>
</tr>
<tr>
<td>Deutsch Research</td>
<td>TurboSpice</td>
<td>Spice 3E.2-based circuit simulator with backwards compatibility to Spice 2G.6.</td>
<td>Includes general functions blocks for which users supply defining set of equations.</td>
<td>PC, Mac</td>
<td>$1995</td>
</tr>
<tr>
<td>Electrical Engineering Software</td>
<td>Precise 4.0</td>
<td>Spice 2G.6-based circuit simulator.</td>
<td>Lets users write expressions using built-in math functions. Allows use of if-then-else constructs using a subset of the C programming language.</td>
<td>Sun, HP/Apollo, DEC, IBM, and Cray</td>
<td>$19,500</td>
</tr>
<tr>
<td>Harris Semiconductor</td>
<td>Mixed-Signal Fastrack with Asim</td>
<td>Complete design system linked to company's fabrication processes. Asim linked to cdSSpice using subroutine calls.</td>
<td>Automatically generates macro and behavioral models using mathematical expressions, tabular look-up models, and s-domain models.</td>
<td>Sun, HP/Apollo, Fastrack with cdSSpice</td>
<td>$30,000 (Fastrack with cdSSpice) $10,000 (Asim)</td>
</tr>
<tr>
<td>Intusoft</td>
<td>lsSpice</td>
<td>Spice 2G.6-based circuit simulator.</td>
<td>Includes math functions built from Spice primitives.</td>
<td>PC</td>
<td>$95</td>
</tr>
<tr>
<td>Mentor Graphics</td>
<td>Analog Station with Accusim 7.1</td>
<td>Spice 2E and 2G.6-based circuit simulator.</td>
<td>Library of system modeling blocks includes mathematical, frequency-domain, and time-domain models. Predefined models include dc motors and tachometers.</td>
<td>HP/Apollo</td>
<td>$24,900 (simulator) $7900 (parts library)</td>
</tr>
<tr>
<td>Meta-Software</td>
<td>HS Spice</td>
<td>Spice 2G.6-based circuit simulator.</td>
<td>Enhanced voltage- and current-controlled sources let users describe functions with equations, tables, and delay elements.</td>
<td>PC, Sun, HP/Apollo, DEC, Cray</td>
<td>$2800 (PC) $20,000 (average workstation)</td>
</tr>
<tr>
<td>MicroSim</td>
<td>PSpice with analog behavioral option</td>
<td>Spice 2G.6-based circuit simulator.</td>
<td>Enhanced voltage- and current-controlled sources let users describe functions with equations, tables, and transfer functions. Also lets users enter a set of filter parameters.</td>
<td>PC, Mac, Sun, VAX/VMS</td>
<td>$950 (PSpice) $450 (option)</td>
</tr>
<tr>
<td>Spectrum Software</td>
<td>Micro-Cap III</td>
<td>Proprietary equation solver uses Spice-like device models. Includes schematic-based editor and window-based user interface.</td>
<td>Enhanced controlled sources let users enter mathematical expressions and use look-up tables.</td>
<td>IBM PC/XT/AT and compatibles</td>
<td>$1495</td>
</tr>
<tr>
<td>Tesoft</td>
<td>Tesla and Modgen model generator</td>
<td>Proprietary block-diagram simulator.</td>
<td>Models circuits at the block level only, using a model library consisting of 50 blocks, which include analog functions, digital functions, and test and measurement blocks.</td>
<td>PC/XT</td>
<td>$695 (simulator) $495 (model generator)</td>
</tr>
<tr>
<td>Valid Logic Systems</td>
<td>Analog Workbench II with profile option</td>
<td>Complete design system with enhanced Spice-based simulator.</td>
<td>Complete design system includes piece-wise linear analysis and enhancements to the company's Profile Spice Plus. Lets users enter designs at the block-diagram level using basic analog blocks, Includes if-then-else constructs.</td>
<td>Sun, Dec, IBM</td>
<td>$17,000 (Analog Workbench II) $15,000 (Profile)</td>
</tr>
</tbody>
</table>

Note:
Price includes all software necessary to use behavioral modeling features.
that macromodel is just a fancy name for a subcircuit. Semantics aside, the bottom line is that macromodels are built from the same primitive-level blocks, and are thus subject to whatever benefits or limitations those blocks have. Macromodels can be quite complex and offer a great degree of flexibility.

The most abstract level of analog modeling is behavioral. A purely behavioral model doesn't have to convert models to any information about actual physical structure. A behavioral model doesn't have to convert models to a set of predefined primitives.

You'll find so-called behavioral features implemented at each level of this hierarchy. For example, the ability to model circuits behaviorally exists even in the most basic Spice package. You could argue that modeling an ideal op amp using a voltage-controlled voltage source is one example of a behavioral model. In fact, most behavioral features of Spice and Spice upgrades are related to manipulating the control sources.

One of the most basic forms of behavioral modeling at the structural level is the use of Spice's polynomial source. You can use the polynomial source to implement functions, such as summers and multipliers involving one or two controlled sources. These 1-D and 2-D polynomial sources solve for a function according to equations of the following respective forms:

\[V_{OUT} = P_0 + P_1 V_1 + P_2 V_1^2 + P_3 V_1^3 \ldots \]

and

\[V_{OUT} = P_0 + P_1 V_1 + P_2 V_2 + P_3 V_1^2 + P_4 V_1 V_2 + P_5 V_2^2 \ldots \]

By selecting constants for the various \(P \) coefficients, you can create a variety of functions, including a squarer, a multiplier, and a summer. To square a single voltage or current, use the 1-D polynomial statement. Set the \(P_2 \) coefficient to 1 and set all others to zero. To create a summer that adds \(V_1 \) and \(V_2 \), simply...
High-efficiency step-down regulation is simple using the MAX639.

Complete Regulator Uses Only 4 External Components

The new MAX639 switching regulator extends battery life by providing the world's highest-efficiency step-down regulation. Efficiency is greater than 90% at output currents from 2mA to 200mA, thanks to an ultra-low 20µA quiescent current. The MAX639 saves space, requiring only four small, inexpensive external components. Its unique "constant peak current" design allows the use of physically smaller external components than typical switching regulators, making it perfect for surface-mounted applications.

- **High Efficiencies:**
 - 94% at I_{OUT} = 75mA
 - 92% at I_{OUT} = 150mA
- **Up to 200mA Output Current**
- **Ultra-Low 20µA Supply Current**
- **8-Pin SOIC and DIP Packages**
- **Wide Input Voltage Range:**
 - Up to +11.5V
- **Pre-Set +5V or Adjustable Output**
- **Logic-Controlled Shutdown**
- **Pin-Compatible with the MAX638**

FREE Power Supply Design Guide

Including: Application Notes ♦ Data Sheets ♦ Cards For Free Samples

To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

MAXIM

EDN November 21, 1991 CIRCLE NO. 62
Analog Simulation

use the 2-D poly statement, setting P_1 and P_2 to 1 and all other coefficients to zero. To create a multiplier that computes $V_1 \times V_2$, again use the 2-D poly source and make all coefficients zero, except for P_4.

You can implement a number of functions using this polynomial source, but manipulating the poly statement can only go so far. For example, it's not nearly as straightforward to take the square root of a voltage as it is to square that voltage. Thus, much of the software listed in Table 1 goes beyond basic Spice by including transfer and equation-based functions. These upgrades fit into the functional/macromodel level in the simulation hierarchy.

Again, most of these options rely on the controlled sources. The transfer-function option relies on defining input and output source voltages or currents and the coefficients of the terms in the transfer function. With some vendors' software, you actually enter what looks similar to an s-domain numerator or denominator. With others you enter the coefficients.

For example, you can input a simple RC network's Laplace-domain transfer function, which is of the form

$$\frac{V_{\text{OUT}}(s)}{V_{\text{IN}}(s)} = \frac{1}{sRC+1}$$

Using $R=1 \text{kΩ}$ and $C=1 \text{µF}$, the corresponding PSpice text code looks like

```
ERC 5 0 LAPLACE {V(10)} = {1/(1+.001+s)}.
```

In ContecSpice, the text code would look like

```
erc out 0 in 0 dncoeffs=1e-3 1
```

where `dncoeffs` stands for the denominator coefficients.

Another version of Spice enhancements is the table look-up feature (Listing 1). Using software with this feature, you can enter a series of input and output values in a table. During the simulation, the program compares an expression that you define to this set of values, and linearly interpolates between the entries. Listing 1 is one example and shows the HSpice code for a behavioral N-channel MOSFET model. Although most of the features described up to this point model ideal behaviors, this table feature lets you use real data from either a data-sheet curve or actual test data.

Few of the Spice vendors have added language-type constructs to their packages. Exceptions are Electrical Engineering's Precise version 4.0 and Valid Logic System's Profile, which let you use if-then-else statements. Profile builds on the company's Spice Plus simulator, and includes various enhancements and piece-wise linear models.

Hardware-description languages represent the most abstract way to model a circuit and a high-level function. Currently, it's difficult to speak of analog hardware-description languages without almost exclusively referring to Analogy's Saber simulator and Mast language. However, other languages exist, and more are starting to appear, such as Dazix/Intergraph's Diablo, which is currently in beta testing and will be available in the first quarter of 1992.
FIRST 8-CHANNEL SIMULTANEOUS A/D — NO PHASE DELAY!

Channel-to-Channel Phase Delay is 4ns Max!

Maxim’s new MAX155 monolithic A/D converter simultaneously samples 8 input signals, then sequentially digitizes them to 8-bit accuracy in 3.6µs per channel. Ideal for DSP, single-shot multi-channel measurements and signal analysis, the MAX155 features both dynamic as well as DC specifications, and operates from a single +5V supply.

Maxim 155 = NO PHASE DELAY

NO MULTIPLEXING SKEW
(ALL CHANNELS)

NO PHASE DELAY
(ALL CHANNELS)

SINGLE T/H A/Ds = PHASE DELAY

MULTIPLEXING SKEW
(CH1 TO CH8)

PHASE DELAY DUE TO
MULTIPLEXING SKEW
(CH1 TO CH8)

8 T/Hs simultaneously sample to reduce channel-to-channel phase delay to less than 4ns, compared to several microseconds for A/Ds with a single T/H.

Complete, Easy-to-use Solution

MAX155 is a one-chip data-acquisition system, complete with a +2.5V voltage reference, an 8x8 RAM to store results, and an 8-bit microprocessor interface. The 8 analog inputs handle unipolar or bipolar, single-ended or differential signals. All for only $10*

FREE A/D Converter Design Guide

Including: Application Notes + Data Sheets + Cards For Free Samples

To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8035; California, (408) 248-5300; Colorado, (303) 779-0800; Connecticut, (203) 384-1112; Delaware, (302) 778-5383; Florida, (305) 426-4601; Georgia, (404) 447-6124; Idaho, (208) 396-8430; Illinois, (708) 359-6252; Indiana, (317) 644-9462; Iowa, (319) 393-2232; Kansas, (316) 436-6445; Kentucky, (502) 864-5000; Michigan, (313) 352-5454; Minnesota, (507) 775-5000; Mississippi, (678) 393-4545; New Jersey, (609) 692-0000; New Mexico, (505) 896-8436; New York, (516) 671-1000; Ohio, (216) 659-9224; Oklahoma, (405) 278-0714; Oregon, (503) 292-8840; Pennsylvania, (610) 778-5333; Rhode Island, (401) 225-5161; South Carolina, (803) 561-5050; Tennessee, (615) 471-6124; Texas, (512) 396-8033; Utah, (801) 561-5050; Virginia, (703) 644-5700; Washington, (206) 823-6635; West Virginia, (304) 377-2714; Wisconsin, (414) 476-2790; Canada, (613) 225-5161; (604) 439-1373; (414) 337-7540.

* 1000-up FOB USA, suggested resale.

Maxim is a registered trademark of Maxim Integrated Products © 1991 Maxim Integrated Products.
Analog Simulation

The major difference between a hardware-description language and Spice-level simulators is the coupling between the simulator and the models. Saber, for example, unlike Spice, has no built-in models. Spice's built-in models are both a convenience and a restriction. With Spice, you can only use existing models. Hardware-description languages have no such restrictions. Saber's algorithms solve nonlinear, ordinary differential equations without any prior knowledge of what it is simulating. Thus, creating new or different models doesn't require any changes to the simulator.

Using a hardware-description language lets you perform primitive-level simulations, but also lets you get away from the restrictions those primitives impose. The installed base of Spice models and users is so great, that these vendors have to include the ability to perform Spice level simulations. For example, Saber includes a conversion program, Spitos (standing for Spice to Saber), that lets you input Spice code.

The one catch with hardware-description languages is the language itself. Although Saber includes a large library of function blocks, to create new models you may have to learn the Mast language. Unfortunately, Mast doesn't conform to any familiar syntax. Because engineers don't want to learn yet another language, Analogy has added some graphical design features to make it easier for users to generate Mast code (Fig 1). Diablo, which runs on Dazix's Apex simulator, has a C-like syntax and includes a graphical interface.

A discussion of languages invariably leads to a discussion of the development of a standard analog hardware-description language. A volunteer committee of analog simulation software vendors is actively evaluating various approaches and features of a standard language. However, a standard language is clearly in its formative stages. CAE vendors themselves admit that any agreed-upon standard for an analog hardware-description language is a way off.

Despite the lack of common definitions and standards, behavioral modeling has some real benefits now. If you need to take advantage of the current crop of behavioral tools, be aware that they won't necessarily become part of any standard. Be aware also that you may have to modify your tool set down the line. The safest bet is to stay with a standard set of primitive-level models, such as Spice, simply because of the current installed base. Vendors definitely respect Spice's usefulness and pervasiveness. Any models you develop or obtain as part of a library, if Spice compatible, will run in some form on the simulators of the future.

Reference

Article Interest Quotient (Circle One)
High 515 Medium 516 Low 517
Over 2500 Standard Models
Add Up to Your
Power System Solution

Over 2500 standard models add up to a lot of flexibility. Whatever your requirements...input voltage, output voltages, power levels or temperature...odds are that Vicor has your solution.

Our component-level power solutions feature high efficiency and low-noise FM control, in small standard packages, at prices that won't break your budget. Give us a call...let us show you how quickly and easily power components add up to your total power system solution.
With Harris, you can get a MUX for not much. Because no one else offers multiplexers in such a multiplicity of models. So you can buy the perfect MUX for the job at hand. No more. No less.

Start with our general purpose DG50XA family. The crux of this MUX family is price. They're among the lowest cost MUXes around.

For more performance, move on up to the HI-50X family. Their dielectric isolation means quick switching and less chance of latchup. Then there's our HI-50XA family. Same as before, only better. Because the HI-50XA family has overvoltage protection. To protect your
not lots of bucks.

design from nasty spikes.

Wait. There's more. Our Harris HI-54X family is the perfect match when you need Rds(on) matching. And finally, there's our MUXes with the most. The Harris IH-51XX family. They've got the kind of fault protection the San Andreas could use. Should input voltage even think about getting out of hand, this MUX is off. Definitely off. Protecting your circuit from becoming definitely dead.

So find out more about getting more MUX for less bucks. Just call 1-800-4-HARRIS, extension 1161.
The basic idea behind our new critical boot code. A remarkable design that allows one 1Mb Boot Block Flash Memory chip to eliminate up to three memory chips.

It also allows you to reconfigure your system quickly and easily so you don’t lose precious time getting to market. Also, future updates—which it’s for hardware or software—are easy. For instance, updating a PC BIOS is as easy and cheap as sending your customers a floppy disk. And all
you need to change your embedded program code is a serial link. Life should be so simple.

Intel Boot Block Flash Memory has two configurations compatible with microprocessors and microcontrollers that boot from either high or low memory. Such as the i960™ microprocessor or the industry-standard Intel386™ and Intel486™ microprocessor families.

Now that you have the basic idea, we'd like you to know more. So call (800)548-4725 and ask for Literature Packet #A6A38. And be the first on your block to make updating easy with Intel's new Boot Block Flash Memory.
Among recently announced and released high-end processors, three approaches threaten to supersede current RISC processors. The emerging superlative µPs attain their superb performance via superscalar, superpipelined, and very-long-instruction-word (VLIW) techniques. One of the fundamental tenets of RISC (reduced-instruction-set computer) based architectures is that high performance results from single-cycle execution of most instructions. As basic RISC implementations approach that barrier—vendors claim many RISC processors operate in the range of 1.2 to 1.5 instructions per cycle, depending on the instruction mix and cache size—µPs that use these advanced scheduling techniques are breaking through it.

Though more complex in implementation, the superscalar approach to high performance is conceptually simpler than the superpipelined approach. Superscalar processors contain multiple execution units. During each clock cycle, a superscalar µP can theoretically execute as many instructions as it contains execution units because each execution unit operates independent of the others. These execution units can perform integer, floating-point, or fixed-point operations or specialized functions such as multiplication or barrel shifts. Among the available crop of superscalar implementations are Intel's i960, National's 32SF641, and SGS Thomson-Inmos' T9000. IBM's RS/6000 and Intel's C4 Clipper are multichip superscalar processors.

In contrast, a superpipelined approach, as found in the C4 and in the R4000, which will soon be available from several vendors, refines the existing RISC pipeline by breaking each stage of the pipe into m latched substages. As a result, the superpipelined processor's internal circuits can operate at (cycle time)/m. In practice, both the C4 and the R4000 use two substages that allow them to run the fetch, decode, and execution stages twice as fast as the system clock.

As their name implies, VLIW µPs' instructions are wide enough to specify multiple instructions. The VLIW µP is, in some senses, a subtype of superscalar processors. For greatest performance, these processors, like superscalar processors, rely on multiple execution units. According to Ref 2, one difference between VLIW and superscalar processors is that VLIW instructions are easier to decode and schedule because each part of an instruction is mapped to its own subprocessor with its own decodes. Superscalar processors, on the other hand, must dynamically select and issue instructions at run time based on what resources are already being used and whether the necessary operands are available. The only current commercial VLIW implementation is Intel's i860 µP.

All three techniques have advantages and disadvantages. Superscalar's advantage is that, in theory, the architecture scales well; to increase performance further, just add another functional unit. The benefit of
Superpipelined, superscalar, and very-long-instruction-word (VLIW) μPs can speed information flow to a torrent compared to the trickle of conventional μPs. (Photo courtesy Intergraph Corp, Advanced Processor Div; photography, Tim Tabke, Phoenix Productions; design, Greg Meadows, Meadows Graphic Arts; model making, Steve Pombo, Pombo Enterprises.)
Superscalar µPs require complicated scheduling and scoreboardng to ensure proper instruction issue.

Superpipelining is its ability to increase the throughput of existing code without recompiling. VLIW machines stand out for the density of their code resulting from the ease of parallel scheduling in hardware, provided the parallelism of the application code meets or exceeds the parallelism of the processor.

All of these approaches suffer from a common problem. Because these techniques execute instructions in parallel, the applications they are running must have high instruction-level parallelism. Applications with such parallelism have three characteristics: They have few conditional branches or jumps; instructions don't depend on the results of other, immediately preceding instructions; and proximate instructions don't compete for the same hardware resources.

Conditional branches and jumps can stall the pipelines of all of these superprocessors as the pipes are flushed and refilled. Anecdotal data suggests that these branches and jumps occur, on average, every six to nine instructions, depending on the application. An often-discussed technique to alleviate some of these stalls is branch prediction or speculative execution, where the processor makes educated guesses about whether a branch is or isn't taken. National's Swordfish uses branch prediction. The AMD29000 has a Branch Target Cache that caches the taken branches in the expectation that taken branches are likely to be taken in subsequent iterations.

Superpipelined processors suffer from conditional branches and jumps as a result of greater startup times. In Fig 1, adapted from Jouppi's research (Refs 1, 2, and 3), notice how long it takes to begin execution of two instructions using the various techniques. An ideal base machine starts processing the second instruction on cycle 1. Both the ideal 2nd-degree superscalar processor and the VLIW processor, which, in this example, contain two functional units, start the second instruction as soon as they begin operating. The 2nd-degree superpipelined processor, whose pipeline contains two substages, starts this instruction on cycle 0.5. This processor pays a similar half-cycle penalty on all subsequent conditional jumps and branches.

The instructions in many applications use the results of preceding instructions as operands. If subsequent instructions need these results before they are available, the µP must stall, crippling attempts at parallel execution. In some cases, compilers can reorganize the code to extract some additional parallelism, but compiler technology is not as efficient as it needs to be.

Jouppi defined a class conflict as occurring when succeeding instructions compete for the same hardware resources. Because superpipelining keeps instructions flowing through a single pipe, competing for resources isn't a problem in superpipelined µPs. And since VLIW instructions account for that processor type's resources, VLIW doesn't suffer from class conflicts either. Superscalar processors, though, may suffer performance degradation as a result of class conflicts.

The potential class conflicts of all superscalar devices lead to instruction-issue restrictions. The performance of each superscalar implementation degrades when instructions that violate these restrictions are fed into the devices. The only issue restrictions on superpipelined and VLIW processors are due to data dependencies—data must be available before the processor tries to use it—and delayed branch conditions.

The logic complexity of a superscalar design comes from the instruction-issue and scoreboardng features necessary to avoid class conflicts and unmet data dependencies. The scoreboard monitors when results and registers are available for successive operations. The in-

Fig 1—Ideal 2nd-degree superscalar and VLIW machines finish executing 10 instructions a half cycle faster than a 2nd-degree superpipelined CPU. Unfortunately, data dependencies, conditional branches, and instruction mixes cause deviations from the ideal.
Now there's a monolithic integrating ADC that's a bull's-eye in price/performance. The Harris HI-7159, it's the highest resolution multi-slope integrating IC ADC on the market. With a full 18 bits, for 10 times the resolution of any competitor (Electronic Design, 1/10/91).

And the HI-7159 is right on the money, too. Just $15 in 100-lot quantities.

And that price includes serial and parallel BCD outputs for easy interface to microprocessors. Plus instant, accurate response to step changes, for excellent compatibility with MUXes.

So find out more about the most accurate ADC of all. Call 1-800-4-HARRIS, extension 1159.

Harris

HARRIS SEMICONDUCTOR

Data Size: 5½ digits (200,000 counts)
Resolution (18 bit): To 10 µV
Conversion Rate: To 60 cps
Linearity: ± 0.0015%
Superpipelined µPs increase performance by decreasing the distance signals have to travel between clocks and by shrinking the clock cycles.

Manufacturers of µPs and µCs

For more information on µPs and µCs such as those described in this article and the accompanying tables, circle the appropriate numbers on the Information Retrieval Service card or use EDN’s Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Advanced Micro Devices (AMD)
901 Thomson Pl
Sunnyvale, CA 94088
(408) 732-2400
for literature, (800) 922-9000
David Frink
Circle No. 650

Allied-Signal
Microelectronics Center
9140 Old Annapolis Rd
Columbia, MD 21045
(301) 964-4047
FAX (301) 962-5813
Circle No. 651

American Neurologics Inc
411 Central Park Dr
Sanford, FL 32771
(407) 323-5939
FAX (407) 322-5699
Circle No. 652

Bipolar Integrated Technology Inc (BIT)
1050 NW Compton Dr
Beaverton, OR 97006
(503) 829-5400
FAX (503) 890-1498
Scott Dunagan
Circle No. 653

C-Cube Microsystems
399-A W Trimble Rd
San Jose, CA 95131
(408) 944-6300
FAX (408) 944-6314
Circle No. 654

California Micro Devices
2000 W 14th St
Tempe, AZ 85281
(602) 968-4431
FAX (602) 821-6288
Circle No. 655

Cypress Semiconductor
3801 N First St
San Jose, CA 95134
(408) 943-2802
for literature, (800) 952-6200
FAX (408) 943-2741
John Hamburger
Circle No. 656

Cyrix Corp
1850 N Greenville Suite 184
Richardson, TX 75081
(214) 254-8988
FAX (214) 234-8397
Circle No. 657

Dallas Semiconductor
4350 Beltwood Pkwy
Dallas, TX 75244
(214) 450-7200
FAX (214) 450-0470
Circle No. 658

Eurosil Electronic GmbH
Erfurter Str 16
89077 Eching
Germany
(983) 190-6128
Circle No. 659

Fujitsu Microelectronics Inc
Advanced Products Div
77 Rio Robles
San Jose, CA 95134
(408) 922-9000
FAX (408) 943-1417
Circle No. 660

Fujitsu Microelectronics Inc
IC Div
3545 N First St
San Jose, CA 95134
(800) 642-7616
FAX (408) 432-9044
Circle No. 661

GEC-Plessey Semiconductor
160 Smith St
Farmington, NY 11735
(516) 283-8866
FAX (516) 283-8961
Dale Wilson, ext 566
Circle No. 662

Harris Semiconductor Corp
Box 883
Melbourne, FL 32902
(407) 724-3800
FAX (407) 729-5691
Circle No. 663

Hewlett-Packard Co
Custom Information Center
19310 Pruneriave MS
49A
Cupertino, CA 95014
(800) 752-9900
Circle No. 664

Hitachi America Ltd
Semiconductor and IC Div
2000 Sierra Point Pkwy
MS 980
Brisbane, CA 94005
(800) 448-2244;
(415) 589-6200
FAX (415) 589-4277
Circle No. 665

Hitachi America Ltd
Semiconductor and IC Div
2000 Sierra Point Pkwy
MS 980
Brisbane, CA 94005
(800) 448-2244;
(415) 589-6200
FAX (415) 589-4277
Circle No. 665

Hyperstone Electronics GmbH
Robert Bosch Str 11
7750 Konstanz
Germany
(0757) 316-770
FAX (0757) 315-1725
Christian Duffner
Circle No. 666

Inmos
3-10 Electronics Dr
Carrollton, TX 75006
(214) 466-8844;
(214) 466-7352
Keith Mayer
Circle No. 667

Integrated Device Technology (IDT)
3001 Stender Way
Santa Clara, CA 95051
(408) 727-6116
FAX (408) 492-8674
Circle No. 668

Intel Corp
3065 Bowers Ave
Santa Clara, CA 95051
(408) 765-5227
Circle No. 669

Intel Corp
Embedded Processor Group
5000 W Chandler Blvd
Chandler, AZ 85249
(402) 554-2336;
for literature, (800) 548-4725
Circle No. 670

Intergraph Corp
Advanced Processor Div
2400 Geng Rd
Palo Alto, CA 94303
(415) 494-8800
FAX (415) 586-9024
Circle No. 671

Intermetall GmbH (ITT)
Box 840
D-7890 Freiburg
Germany
701-5170
FAX 761-51779
Circle No. 672

LSI Logic Corp
1501 McCarthy Blvd
Milpitas, CA 95035
(800) 222-6477;
(408) 433-8000
FAX (408) 433-7477
Circle No. 673

Matra-Harris Semiconductor
2895 Northwestern Pkwy
Santa Clara, CA 95051
(408) 749-4492
FAX (408) 749-4399
Circle No. 674

Microchip Technology Inc
2555 W Chandler Blvd
Chandler, AZ 85224
(900) 437-2769;
(602) 963-7373
Circle No. 675

Mitsubishi Electronics America Inc
1050 E Arques Ave
Sunnyvale, CA 94086
(408) 730-5890
Circle No. 676

Motorola Inc
Integrated Circuits Div
3501 Ed Bluestein Blvd
Austin, TX 78721
(512) 929-4990
Circle No. 677

Motorola Inc
Microprocessor and Memory Technologies Group
6501 William Cannon Dr W
Austin, TX 78735
(512) 891-2000
FAX (512) 891-2652
Circle No. 678

National Semiconductor Corp
4101 Danfield Ct
Fort Collins, CO 80525
(970) 226-9500
Circle No. 679

NEC Electronics Inc
Box 7241
Mountain View, CA 94039
(415) 990-9900;
for literature, (800) 632-3331
FAX (408) 729-9228
Circle No. 680

NCR Corp
2001 Danfield Ct
Fort Collins, CO 80525
(970) 226-9500
Circle No. 680

...
Newbridge Microsystems
603 March Rd
Kanata, ON, K2K 2M5
Canada
(866) 207-7231, (613) 592-0714
FAX (613) 592-1320
Carol Norton
Circle No. 682

NY Philips
Eindhoven, The Netherlands
(314) 079-3333
Circle No. 683

Oki Semiconductor Inc
780 N Mary Ave
Sunnyvale, CA 94086
(408) 720-1900
FAX (408) 720-1918
Circle No. 684

Panasonic Industrial Co
(Matsushita)
425 E Algonquin Rd
Arlington Heights, IL 60005
(708) 640-5163
FAX (708) 640-4340
Circle No. 685

Performance Semiconductor Inc
610 E Weddell Dr
Sunnyvale, CA 94089
(408) 734-8200
FAX (408) 734-0258
Circle No. 686

Rockwell International Corp
Digital Communications Div
4311 Jamboree Rd
Newport Beach, CA 92658
(800) 854-8099;
in CA, (800) 422-4230
Circle No. 687

Rohm Corp
3034 Owen Dr
Antioch, TN 37013
(615) 641-2020
Circle No. 688

Ross Technology
7748 Hwy 290 W
Suite 400
Austin, TX 78736
(512) 448-9969
FAX (512) 448-8969
Circle No. 689

Seeg Technology Inc
1849 Fortune Dr
San Jose, CA 95131
(408) 432-9569
Circle No. 690

SGS-Thomson Microelectronics
Via C Olivetti 2
20041 Agrate Brianza, Italy
(393) 9655-5590
Circle No. 691

SGS-Thomson Microelectronics
13710 Rouset
21, Avenue Pernier
Rouset - BP 12, France
(42) 4553-2288
Circle No. 692

Sharp Microelectronics Corp
Sharp Plaza
Mahwah, NJ 07430
(201) 529-8200
Circle No. 693

Siemens AG
Semiconductor Group
HL MCB MC
D-8000 Munich
Postfach 80 1709
Germany
Circle No. 694

Siemens Components Inc
Semiconductor Group
2191 Laurelwood Rd
Santa Clara, CA 95054
(408) 980-4500
FAX (408) 980-4529
Circle No. 696

Sierra Semiconductor
2075 N Capitol Ave
San Jose, CA 95132
(408) 262-9900
Circle No. 697

Vote...
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 506 Medium Interest 507 Low Interest 508
Table 1—Index to µP and µC chips in EDN's annual directory

<table>
<thead>
<tr>
<th>Application areas</th>
<th>Page</th>
<th>µP/µC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COP800</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>PIC 165x family</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>TLC9-90</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>8048 family</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>8051/8052 family</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>TMS570 family</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>6805/68HC05</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>6801/6810/68HC11</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>6500/1, 65C134,</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>65C265, 38000,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37700</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Z8, Super6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z80</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>ST9</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Z80D064/180</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>6800/6802</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>6800/68309</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>6500/65CDx</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>8086/8088</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>2280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB/300 family</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>78K series</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>65C16/65C802</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>80186/80188</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>80236</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>MCS-96 family</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>HPC16000</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>80C166</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>32-bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750A</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Transputer family</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Z8000, 216C00</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>340x0 Graphics</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>µP family</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>68000</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>68300</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Series 32000</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>VY85Cxxx ARM</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>Clipper</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Hyperstone</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>SPARC family</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Mips family</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>29000</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>88000</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>i68606 family</td>
<td>181</td>
<td></td>
</tr>
</tbody>
</table>

References

Article Interest Quotient
(Circle One)

High 506 Medium 507 Low 508
COP800

HARDWARE

- **CLOCK**
- **HALT**
- **PROGRAM COUNTER (16)**
- **ROM**
- **RAM**
- **INSTRUCTION DECODER**
- **IO CONTROL REG**
- **SERVO RTN**
- **READ REG**
- **IO ADDR REG**
- **ACCUR**
- **STATUS**
- **ALU**
- **TIMER/COUNTER**
- **INTERRUPT**
- **MICROWIRE PLUS**
- **IN**
- **OUT**
- **BUS 8**

CHARACTERISTICS

- **AVAILABILITY:** Now.
- **COST:** Less than $1 to $5 for standard parts in high volume.
- **SOURCE:** Sierra Semiconductor.

CORE: Sierra uses the COP800 core for custom designs. National designs with a configurable-controller approach using a set of microcontroller building blocks.

DESCRIPTION: 8-bit CMOS single-chip family in which varying amounts of memory, peripheral functions, and I/O surround a purposely simple core µP. Some 20 parts exist. Initial core has provision for addressing 32-kbyte program memory. The program and data memory are treated separately, so the COP800 has a Harvard architecture.

SOFTWARE

- **I—DATA-MANIPULATION INSTRUCTIONS**
 - Add, add with carry, and subtract with borrow.
 - Logicals include rotates, shift compares, and conditionals.
 - Decimal correct.
 - Increment and decrement.
 - Bit manipulation: set, reset, and test individual bits in data memory, which includes those in data registers and I/O ports.

- **II—DATA-MOVEMENT INSTRUCTIONS**
 - Load and exchange instructions with optional automatic post increment or decrement of the associated pointer. Most allow the use of either the B or X pointer. Decrement register and skip if zero.

- **III—PROGRAM-MANIPULATION INSTR**
 - Jump instructions: relative, absolute, absolute long, and indirect.
 - Subroutine, subroutine long, return, and skip (only the amount of available RAM limits subroutine levels).
 - Push and pop.

- **IV—POWER-SAVING INSTR**
 - Halt mode, which is entered by setting data bit and exited by reset or low-to-high transition on the CKO pin.

Note:

1. Program-branch decisions are implemented in skip-the-next-instruction manner.

SPECIFICATION SUMMARY: 15-bit program counter can address 32-byte program memory, which can include data and data tables. All data, control, and I/O registers are mapped into data-side memory space. Two bidirectional 8-bit and two unidirectional 4-bit I/O ports max. Each I/O pin has software-selectable options to adapt the chip to specific applications. On-chip peripheral functions include software-selectable I/O of as many as 39 I/O pins, 3-wire serial I/O, 16-bit timer/counter with capture register and auto reload, and a multisource interrupt. Maximum speed is 1-µsec instruction cycle (most instructions take one cycle). Clock for 1-µsec cycle is 10 MHz. Operates over 2.5 to 6V range and draws 9 mA running full speed at 1-µsec cycles but is typically less than 1 μA when halted.

HARDWARE

- **HARDWARE SUPPORT**
 - **SOFTWARE**
 - **SUPPORT**
 - **EDN November 21, 1991**
 - **89**
PIC 16C5X FAMILY

AVAILABILITY: Now.
COST: Less than $1.50 in volume.
SECOND SOURCE: None.

Description: A family of single-chip CMOS EPROM-based microcontrollers that use only 33 single-cycle/single-word instructions. The family offers various amounts of I/O, RAM, and one-time programmable EPROM. Oscillator frequency ranges from dc to 20 MHz. Although it qualifies for the RISC moniker based on its 33 instructions, the label doesn’t entirely fit. The family only has a 2-stage pipeline without delayed branches or load delay slots, rather than a 4- or 5-stage pipeline with delayed branches and load delay slots. The chips have a 2-address instruction format rather than the 3-address instruction format typical of RISC machines. Also, the PIC family must be programmed in assembly language—there are no high-level compilers.

8-BIT CMOS

Microchip Technology Inc
Phone (602) 963-7373
For more information, Circle No. 352

Status: To date, 75 million PICs have been sold worldwide, generally in high-volume, low-end consumer, personal computer, and automotive applications. CMOS one-time programmable versions were introduced in 1989. Microchip has recently announced 3V one-time programmable versions. Derivatives containing analog and EEPROM are planned for winter release.

HARDWARE

- EPROM 512x12 to 2048x12
- STACK 1
- STACK 2
- RTCC PIN
- WATCHDOG TIMER
- WOT/RTCC PRESCALER
- OSC1
- OSC2
- MCLR
- OSCILLATOR TIMING & CONTROL
- CLKOUT
- OPTION REG
- EPROM W
- GENERAL PURPOSE REGISTER FILE
- STATUS (13)
- RTCC (11)
- FSR (14)
- LITERAL
- ALU

Hardware notes:
1. 12-bit-wide instruction word allows single-cycle execution of all instructions.
2. All current devices are fully static, silicon-gate CMOS designs that feature an 8-bit real-time clock counter, watchdog timer, and 2-level program-counter-save stack for subroutine nesting.
3. Security EPROM fuse for user’s code protection. Microchip also offers serialized coding in the EPROM.
4. A lower-cost RC-oscillator version is also available for applications that aren’t timing critical.

SUPPORT

Microchip offers two IBM PC-hosted development systems. One, the Pic-Pak II is a low-end development system that allows for assembly, execution, debugging, and analysis of microcode. The $495 price includes a PC-host or stand-alone programmer and UV-erasable samples. The Pic-ICE development system (52495) offers full-speed emulation to support real-time code development. The system includes in-circuit emulation pod with an 8k capture-trace buffer, programmer, and diagnostic demo board. High-volume programming support is available from Microchip, Data I/O (Redmond, WA), and Logical Devices (Fort Lauderdale, FL).

SOFTWARE

Picalc cross-assembler is an IBM PC- or NEC 9801-hosted software tool that offers full-featured macro and conditional assembly capability. Picosim simulator software allows simulation of the PIC16C5X products on an instruction level. The simulator allows single-step, execute-until-break, and trace modes. Pic-ICE emulator software offers an interface with pull-down menus.
TLCS-90

AVAILABILITY: Now.

COST: Prices range from $3.75 to $10 (10,000).

SECOND SOURCE: None.

CORE: The TLCS-90 family is based on a Toshiba proprietary core. The core will be used as a standard cell for building future devices.

Description: The TLCS-90 family consists of single-chip 8-bit µCs. Peripheral options include ADCs and DACs, PWM, stepper motor control, servo control, µDMA, memory management (to 8 Mbytes), zero cross detection, pattern generation, EPROM and OTP EPROM, masked ROM (to 32 kbytes), and internal RAM (to 1 kbyte). The architecture uses a pipelined instruction-fetch mechanism. 16-bit arithmetic operations allow the µC to perform high-precision calculations.

HARDWARE CHARACTERISTICS SOFTWARE

Toshiba America Electronic Components

(714) 455-2000

FAX (714) 859-3983

For more information, Circle No. 353

Status: Although the TLCS-90 family has been available in the Far East for several years, it has just recently been introduced in the US. The application base for the device includes such products as typewriters, coin changers, VCRs, and robotics. Toshiba is trying to expand the family's market position by expanding the range of on-chip peripherals, operating frequencies, packaging options, and customization.

HARDWARE SUPPORT SOFTWARE

Toshiba provides an emulation system containing the controller, emulator, extension board, and experimental/evaluation board. The system uses a PC as a host. An emulation pod for the HP84000 system is available from Andover Systems.

EDN November 21, 1991
8048 FAMILY

AVAILABILITY: Now.
COST: Masked-ROM parts are less than $1.20 in high volume (100,000). EPROM parts cost less than $6 (100). CMOS parts from second sources cost as little as $3 (100,000). Windowless-PROM parts cost $8 (5000).

SECOND SOURCE: Toshiba, NEC, Signetics/Philips, National Semiconductor, Oki, Fujitsu, UMC (Taiwan), with volume spread out among suppliers.
CORE: Zymos has been using 80C49 as a core for ASICs for several years. Others are following because 8048/49 combines popularity with small core size.

Description: Broad family of single-chip controller-type µCs, including a version that can function as a slave (8041). Basic models don’t have serial communications ports (some versions from Philips do), but they can use 8080/85 peripherals for I/O expansion. See 8051 listing for enhanced version.

HARDWARE

- PROGRAM SIDE
 - MEM-ADDR REG
 - ROM (EPROM ON 8748)
 - BANKS ARE SOFTWARE SELECTED TO BE ACTIVE ONE AT A TIME. FIRST TWO REGISTERS IN EACH BANK ARE MEMORY POINTERS.
 - INSTRUCTION REG
 - ACC (8)
 - ALU
 - BANK 0
 - BANK 1
 - STACK (8 LEVELS SUBR)

- DATA SIDE
 - MEM-ADDR REG
 - GEN RAM AREA
 - BANK 0

- CONTROL BUS
 - MODE SELECT
 - CLK 6-11 MHz

- CONTROL FOR EXT BUS
 - PORT 0
 - PORT 1
 - PORT 2
 - INT

- TIME/EVENT CNTR

Software notes:
1. Diagram is for basic 8048. Table indicates some other basic parts, most of which exist in both NMOS and CMOS.
2. CMOS parts are designated 80C48, 80C49, 80C50, etc.
3. There are many other variations of the basic 8048 among the many suppliers. For example, Intel’s 8041/42 chips are software compatible but are configurable as slaves to host µPs for interface applications. The National NS 405/455 uses the 8048 core as the basis of a terminal controller. Siemens has the telecommunications-oriented 80C382/482. A number of semicustom houses use the 8048 as a core processor in their libraries.

8-BIT NMOS AND CMOS

Intel Corp
Embedded Controller Operation
Phone (802) 961-8051
For more information, Circle No. 354

Status: Intel is still bullish about the 8048. However, Intel chose the 8051 over the 8048 as the kick-off core for ASICs and says it has no definite plans to use the 8048 as an ASIC core.

Hardware notes:
1. Diagram is for basic 8048. Table indicates some other basic parts, most of which exist in both NMOS and CMOS.
2. CMOS parts are designated 80C48, 80C49, 80C50, etc.
3. There are many other variations of the basic 8048 among the many suppliers. For example, Intel’s 8041/42 chips are software compatible but are configurable as slaves to host µPs for interface applications. The National NS 405/455 uses the 8048 core as the basis of a terminal controller. Siemens has the telecommunications-oriented 80C382/482. A number of semicustom houses use the 8048 as a core processor in their libraries.

SUPPORT

From Intel: Intel plays down 8048 support, saying that there are now numerous third-party OEM suppliers of PC-hosted emulators for the 8048 family.
From NEC: Ekakit 84C-1 stand-alone emulator (less than $2000).

From others: Because of the broad-based popularity of this family, dozens of independent sources of development and application software exist, including support on universal development systems from Tektronix (Beaverton, OR) and Applied Microsystems (Redmond, WA).

Program library: Insite Library contains a variety of application programs.
8051/8052 FAMILY

Availability: A variety of devices is available from Intel and all of the second sources.

Cost: In 10,000 qty, $1.60 for 8051; $14.50 for 8751; $2 for 80C51; $13.50 for 87C51; $16 for 8752; $3 for 80C52; $4 for 83C51FA; $20 for 87C51FA; $5.20 for 83C51FB; $24 for 87C51FB; $4.60 for 80C54; $22.50 for 87C54; $5.50 for 83C51FC; $30.35 for 87C51FC; $5.80 for 80C58; and $26.40 for 87C58.

Second source: Siemens, Signetics/Philips, Fujitsu, Oki, and Harris-Matra (France) licensed.

Core: Intel's ASIC Components Group is using the 80C51 as its starting point to spawn a range of microcontrollers.

Description: Expandable single-chip controller, an enhanced version of the same supplier's widely used 8048 family. Architecturally, it features nonpaged addressing for easier programming; more interrupts with extra RAM-register banks to service them; increased stack depth; and new instructions, such as multiply, divide, and compare.

Hardware

- **Control Regs.**
- **RAM 128/256**
- **Serial Port**
- **Interrupts**
- **Timers**
- **ACC**
- **B**
- **PSW**

- **Instruction Reg**

- **Clock 12 MHz**

- **Data Path**

- **External Ports**

- **External Memory (with Mem Latch)**

- **Low Order Address & Data Multiplexed**

- **High Order Address**

- **Control BUS**

- **Control Latch**

- **Address Reg**

- **RAM 4 Banks of 8 REGS**

Notes:
1. The 16 members of the 8051 family have between 128 and 256 bytes of RAM and differ mainly in their amount and form of on-chip ROM.
2. The 8051's Boolean-processor capabilities refer to the way instructions can single out bits in RAM, accumulators, I/O registers; perform complex bit tests and comparisons; then execute relative jumps based on results.
3. Intel has one 8052 model preprogrammed with a full Basic interpreter.
4. Dallas Semiconductor (Dallas, TX) offers an 8051-instruction-code-compatible µP ($9.70 (1000)), which converts as much as 64 kbytes of SRAM into lithium-backed nonvolatile memory. The chip also provides a serial bootstrap loader for initialization, crash-proofing circuitry to save current state, and on-chip software encryption that loads and executes the application in unintelligible form.

Software

I—DATA-MANIPULATION INSTRUCTIONS

Arithmetic, including add, subtract, multiply, and divide.

II—DATA-MOVEMENT INSTRUCTIONS

Bit manipulation, including complex tests on bits and branching on results.

III—PROGRAM-MANIPULATION INSTR

Register addressing for the 8 working registers in the 4 register banks. Direct, indirect, and indirect data addressing for more general data accessing.

IV—PROGRAM-STATUS-MANIP INSTR

CPU's program-status word is fully accessible via software. Status bits in timer and UART are also software accessible.

Specification summary: Expandable single-chip µC. Split-memory architecture has 2 to 32 kbytes of ROM on chip and 128 bytes to 2 kbytes of RAM on chip. Each memory is expandable externally to 128 kbytes.

From Intel: ICE-51/PC in-circuit emulator ($5495) supports the entire MCS-51 family including 8051, 8052, 8XC51FX, and 80C52. Comes with macroassembler and editor. PCs, running DOS 3.1 or later versions, and Intellec Series III/IV development systems host the emulator. Nohau (Campbell, CA) and MetaLink (Chandler, AZ) provide PC-hosted emulation systems for Signetics/Philips standard and derivative µCs.

From others: Many third-party software suppliers offer C compilers for 8051 with special features suited to microcontroller applications. Three such compilers are Micro Computer Control's (Hopewell, NJ) for $1495, Archimedes Software's (San Francisco, CA) for $851, and Franklin Software Inc's (San Jose, CA) for $995. All are hosted on IBM PC.
TMS370 FAMILY

DESCRIPTION: Software-compatible family of CMOS µCs with on-chip EEPROM and peripheral support functions. Modular design architecture provides flexible reconfiguration and reduction in product design time. Various family members incorporate an 8-channel, 8-bit A/D converter, enhanced timers, serial peripheral interface, serial communications interface, EPROM, EEPROM, and ROM. Instructions typically perform combined load, operation, and store functions, increasing system performance and code efficiency. One-time programmables and form-factor emulator versions replace ROM with EPROM or EEPROM and allow prototyping and small production runs.

HARDWARE CHARACTERISTICS SOFTWARE

<table>
<thead>
<tr>
<th>HARDWARE</th>
<th>CHARACTERISTICS</th>
<th>SOFTWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERRUPTS OSCILLATOR CLOCK SYSTEM CONTROL</td>
<td>A/D CONVERTER SERIAL COMMUNICATIONS INTERFACE TIMER 1 WATCHDOG</td>
<td>I—DATA-MANIPULATION INSTRUCTIONS Add, subtract, 8 x 8-bit multiply, 16 x 8-bit divide, and BCD. Rotates right and left. Bit test. Set bit.</td>
</tr>
<tr>
<td>CPU RAM (256 BYTES Usable As Registers)</td>
<td>SERIAL PERIPHERAL INTERFACE</td>
<td>II—DATA-MOVEMENT INSTRUCTIONS Dual-operand moves avoid time wasted going through accumulator. Apply to many instructions. Indexing via B register. 16-bit moves.</td>
</tr>
<tr>
<td>PROGRAM MEMORY ROM, EPROM, OR EEPROM</td>
<td>DATA EEPROM 256 OR 512 BYTES</td>
<td>III—PROGRAM-MANIPULATION INSTR Call and return. Trap. Bit test and jump on both I/O and memory. Conditional jumps using program-counter-relative addressing.</td>
</tr>
<tr>
<td>BUS EXPANSION</td>
<td>TIMER 2</td>
<td>IV—PROGRAM-STATUS-MANIP INSTR Status register contains carry, sign, zero, overflow, and interrupt enable. Instructions to change carry and interrupt enable.</td>
</tr>
<tr>
<td>ADDRESS DATA Lsb Msb Msb CONTROL</td>
<td></td>
<td>Specification summary: The programmable timer module uses the on-chip dual-port RAM to store its commands as well as the timer values. This module allows input capture on as many as six pins, four of which have a programmable prescaler. The TMS370 CMOS family members use a 5V supply over the oscillator frequency range of 2 to 20 MHz and over the temperature range of -40 to +85°C. The application program, register file, and peripheral file share memory space.</td>
</tr>
</tbody>
</table>

Hardware note:
Diagram reflects the TMS370x5x, which supplements the 370Cx1x's single 16-bit timer, serial peripheral interface, programmable timer, 128-bit SRAM, and optional 256-bit EEPROM with a second 16-bit timer, a serial communications interface, memory-expansion ports, another 128 bits of SRAM, and an 8-channel, 8-bit ADC. The 370Cx3x contains a programmable timing module with watchdog timer, a miniserial communications interface, an 8-channel, 8-bit ADC, 256-bit SRAM, and optional EEPROM.

From Tl: XDS/11 is a PC-driven interactive development system ($2850). It provides full-speed, in-circuit emulation and debugging functions. XDS/22 development system ($2850) adds extended breakpoint, trace, and timing functions to the XDS/11 system. A design kit ($370) lets you analyze and simulate using the TMS370 family. EEProm programmer ($1250) comes with power and interface cables, software, and sockets for the 370 family and EPROMs such as the 2732, 2764, 27128, and 27256. A gang programmer head attachment ($2550) allows you to program as many as 16 devices concurrently.

From others:
From Tl: Cross-assembler, linker, full ANSI C compiler, and C source debugger available on IBM PCs under DOS or OS/2, Sun-3, Sun-4, and DEC VAXs under VMS. From others: Allen Ashley (Pasadena, CA) supplies an assembler/linker and emitters (Cambridge, MA) offers a C compiler that runs on IBM PCs. Macrochip Research (Carrollton, TX) has an assembler and midrange emulator for both IBM and Macintosh personal computers. P&E Microcomputer Systems (Woburn, MA) provides an integrated assembler and simulator for IBM PCs.
The 22V10 was a pretty good part in its day. But now its days are numbered.

Because Altera’s new 15ns EP610 is more dense, flexible and less costly.

In fact, the EP610 delivers 60% more macrocells than the 22V10. Which lets you pack a lot more functionality into the same board space and give any design a shot of new life.

And while the 22V10 was rigid, the EP610’s programmable clocks and flip-flops give you incredible flexibility. Which means you can program the EP610’s registers for D-, T-, JK- or SR-operation or for asynchronous clocks. So it’s perfect for all kinds of applications, including counters, state machines, memory and peripheral interfaces, asynchronous logic and more.

Best of all, you get all this at a lower price than the 22V10.

The EP610 also gives you a wide selection of low-cost Altera and third-party development tools to choose from. And a great future to look forward to—the rest of the Altera Classic™ EPLD family. Like our 68-pin, 48-macrocell, 20ns EP1810 with more density and I/O than other mid-range CMOS PLDs. And our 12ns, 20-pin EP330 that replaces over 20 kinds of PAL’s and GAL’s.

And breathe new life into your designs.
Finally, engineering software that clears the way to problem solving without programming.

```c
void service(id)
int eid;
{ int stat, byte;
/*serial poll inst*/
byte=hpi_b_poll(eid);
if ((byte<0)||! (byte==0)) {  
  printf("SRQ Prob/
return; }
stat=my_read(eid, DVM_  
if (stat>0) {  
  buffy[stat] = '\0'; i;  
  printf("Data from instrumen
else printf("I/O read error

main() {  
int busid, stat, MTA, MLA;
char command[MAXCHARS];
busid=open("/dev/hpi7", O_RDWR); /* open raw HP-HB*/
MTA=hpi_bus_status(busid, CURRENT_BUS_ADDRESS) + 64;
MLA=hpi_bus_status(busid, CURRENT_BUS_ADDRESS) + 32;
stat = BUTTON_BIT;
sprintf(command, "KM%02o", stat); /* 2 octal digits */
```

With HP VEE, you simply link the icons.

Computers are great for problem solving, if only programming didn't get in the way and slow you down. And now, it doesn't have to. Because the HP visual engineering environment (HP VEE) lets you solve problems without programming.

With HP VEE, you explore solutions visually by arranging and linking icons on the CRT. Each icon represents and executes a specific function for data collection, analysis—from simple mathematics to complex algorithms—and presentation. You don't have to write a single line of code.

There are two HP VEE software packages for prototyping, experimentation, and problem modeling. HP VEE-Engine, at $995*, is a general-purpose tool for analysis and presentation of existing data.

HP VEE-Test includes HP VEE-Engine and adds extensive I/O capability, including soft panels and device I/O objects for $5,000*.

So, if programming is keeping you from solutions, call 1-800-752-0900. Ask for Ext. 2380, and we'll send a brochure on clearing the way with HP VEE.

* U.S. list prices.

There is a better way.
6805/68HC05

AVAILABILITY: Motorola can build customer-specified versions in less than six months.

COST: $1 to $8. CMOS parts are more expensive than NMOS ones.

SECOND SOURCE: Harris, Hitachi, and SGS Thomson.

CORE: Motorola and NCR have a joint ASIC pact to use CMOS 6805 as a core along with NCR’s similar 6502 µP core. SGS Thomson calls its core the ST6.

Description: Family of single-chip µCs based loosely on 6800 architecture. Family offers various amounts of I/O, RAM, and ROM. Internal bus frequencies span dc to 4 MHz. Some parts contain an on-chip A/D converter, EEPROM, serial I/O, and software security. Customer-specified microcontrollers use this core for mixing and matching of peripherals to reduce cost for specific customer applications.

HARDWARE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Family</th>
<th>Bus speed (MHz)</th>
<th>Instructions</th>
<th>On-chip ROM</th>
<th>I/O pins</th>
<th>Timer</th>
<th>Interupts</th>
<th>Power consumption (mW)</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>6805</td>
<td>1</td>
<td>1k</td>
<td>84</td>
<td>14</td>
<td>3</td>
<td>0.01</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Max</td>
<td>3</td>
<td>4k</td>
<td>176</td>
<td>32</td>
<td>5</td>
<td>700</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>68HC05</td>
<td>Min</td>
<td>0k</td>
<td>95</td>
<td>32</td>
<td>2</td>
<td>0.25</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Max</td>
<td>4</td>
<td>13k</td>
<td>304</td>
<td>32</td>
<td>2</td>
<td>0.25</td>
<td>68</td>
<td>68</td>
</tr>
</tbody>
</table>

Specifications:
- **Data Manipulation Instructions:**
 - All 6800 arithmetic, logic, and shift instructions. Bit set, clear, and branch on bit test. Bit tests can be made on all I/O and direct-page memory bits. 68HC05 has 8 x 8-bit multiply.
- **Data-Movement Instructions:**
 - Relative addressing allows data relocation. True indexing within the 256-location limits of 8-bit index.
 - 18 conditional branches, including branch of interrupt line test.
- **Program-Status-Manip Instr:**
 - Instructions for manipulating bits in status register and timer.
- **Power-Saving Instructions:**
 - CMOS 6805s have Stop and Wait instructions and will safely reset themselves when the clock is reapplied.

Description:
- **Hardware:**
 - 1. Diagram is for nonexpandable Model P2 in a 28-pin package.
 - 2. Comparison of 6805 with 6800: Stack is only 64 bytes deep. Only one accumulator.
 - 3. Note additional 116 bytes in ROM for built-in self-check program that tests I/O, ROM pattern, RAM, and interrupts. Special pin initiates program.
 - 4. Harris has ROMless emulator versions (68EM05/C4, D2) for prototyping and low-volume production. Harris brings all ROM access buses out for direct interfacing to industry-standard EPROMs. Available in 40-pin piggyback for 2764.
 - 5. Motorola currently has five field-programmable 68HC05 versions with on-chip EPROM instead of masked ROM to permit development and low-volume production.

Software:
- Cross-assembler/translator for 68HC05.
- Motorola Microprocessor Products Group
 - Phone (512) 891-2000
 - For more information, Circle No. 357

Status: Motorola continues to expand the 6805 family, using its CSIC (customer-specified integrated circuit) concept.

SUPPORT

From Motorola: The less costly M68705EVM (HMOs) and M68HC05EVM (CMOS) boards, which have ports to a terminal and host computer, provide target-system emulation.

From Harris: Single-board evaluation kit that interfaces to IBM PC via RS-232C line.

From SGS Thomson: INICE4-8 development and emulation system.

From others: A number of third-party companies, including Sophia Systems (Santa Clara, CA) and American Automation (Tustin, CA), provide hardware emulators for the 6805 family. Most of these emulators interface to IBM PCs.
8-BIT NMOS AND CMOS

Motorola Microprocessor Products Group
Phone (512) 891-2000
For more information, Circle No. 358

Status: This family has been well received. Motorola is now following migration of customers to more powerful single-chip devices and is concentrating on the 68HC11 enhancement of the 6801, such as increased on-chip EEPROM. The company is also adding various peripheral functions in many of the family derivatives.

HARDWARE CHARACTERISTICS SOFTWARE

I—DATA-MANIPULATION INSTRUCTIONS

Arithmetic and logic.

Instructions to take advantage of 2 accumulators, including 8 x 8-bit multiply. 68HC11 has additional 16-bit operations, integer and fractional divisors, and bit manipulation.

II—DATA-MOVEMENT INSTRUCTIONS

Can reach the first 256 locations of memory with short instructions.

Can list-process efficiently with the index register (2 on 68HC11) and add accumulator to index register within a 64-kbyte range.

Relative addressing allows data relocation. Has 16-bit load and store.

III—PROGRAM-MANIPULATION INSTR

Has PDP-11 branches and conditional branches. Has unlimited subroutine nesting via stack pointer, addressing LIFO stacks in RAM.

Eight levels of prioritized, vectored interrupts (21 on 68HC11).

IV—PROGRAM-STATUS-MANIP INSTR

Instructions for storing status register or transferring to or from accumulator. 68HC11 has additional active bits related to stop mode.

V—POWER-SAVING INSTRUCTIONS

6801 has sleep instruction. 68HC11 has Stop and Wait instructions similar to 146805 but with disabling provision via a bit in the status register.

Specification summary:

Expandable single-chip µC with common memory architecture in which all instructions, data, I/O, control, and data registers share the same memory space. This scheme allows I/O to be handled like memory with all instructions applying. Instruction set is upgradable with 6800, with 10 additional instructions for 6801 and 88 new op codes for 68HC11. The ROM, RAM, and I/O resources for 6801 and 68HC11 families are detailed in the table. Internal bus speed to 2 MHz for 6801 and from dc (asleep) to 4 MHz for 68HC11. The 6801 is fabricated in NMOS, the 6301 is fabricated in CMOS, and the Motorola 68HC11 is fabricated in static CMOS to allow dormant, micropower “asleep” state. 6801 in 40-pin DIP, 6301 in 64-pin DIP and flatpack, and 68HC11 in 48-pin DIP and 52-, 68-, and 84-pin PLCCs.

Software notes:

1. 6801 has all 6800 µP instructions plus 10 new ones to handle additional resources such as advanced serial I/O ports and timers.

Hardware notes:

2. Motorola provides one-time-programmable versions of some HC11 family members that have EPROM program memories in inexpensive windowless packages for one-time programming in moderate-volume production (to 10,000).

3. Motorola’s 68HC11 is a much enhanced 6801 that runs at 3 and 4 MHz. 68HC11A8 has a 512-byte EEPROM, 68HC811E2 has a 2-kbyte EEPROM, 68HC711E8 has a 12-kbyte EEPROM, and 68HC711K4 has a 24-kbyte EEPROM.
Oh no. Please, not now. Not with manufacturing release next week.

The Prototype Doesn’t Work.

Six ASICs, fifteen PLDs and the whole thing’s gone south. Maybe I should go south too. Yeah, hop a bus. Head for Mexico.

The Prototype Doesn’t Work.

Software? Could be. Hardware? Might be. So where do I start? At the beginning, of course. And just where is that, smart guy?

The Prototype Doesn’t Work.

And my performance review comes up next month. Maybe they’ll just forget about all this, right? Yeah. Sure.

The Prototype Doesn’t Work.

Wait. What about that glitch in the handshake on the first pass? Couldn’t reproduce it. Maybe it just reproduced itself.

The Prototype Doesn’t Work.

These are just a few of the reasons Tek makes a complete line of scopes, logic analyzers and signal sources. Instrumentation that can quickly get to the core of your prototype’s problems. Whether they’re digital, analog or software. Because even when your prototype doesn’t work, Tek does. **Talk To Tek/1-800-426-2200**
Challenging the limits of is the core of our success.

For NCR, it's defined by the very things that drive our industry. The changing technology that is the core of what we do. And people who join you in a partnership and provide service that actually exceeds customer expectation.

Because our designers avidly pursue new ideas, they can help make the complex a bit simpler.

And when your challenge is to design a system that goes beyond known boundaries – they will provide myriad resources to help you push that design to the limit.

Those resources include industry-leading products like mixed-signal ASICs, Ethernet and SCSI, already considered standards. Or, when your latest design requires a custom solution, these products become the cores for unique devices – providing ever-increasing levels of integration in ever-decreasing space. Moreover, because you can design systems at higher levels of abstraction… you're free to explore a universe of limitless applications… and still save time, money and reduce the
our universe

And your design, when completed, will test and perform exactly as agreed. After all, your success, and ours... depends on it.

For more information, call NCR Microelectronics Division: 1-800-334-5454.
Tango is the pacesetter in affordable, PC-based electronic design with the quality and productivity that engineering professionals demand, and the easiest-to-use interface available on any platform, at any price.

Tango’s powerful line-up. Build your personal CAE/CAD workstation with Tango’s start-to-finish design tools. Tango-Schematic, includes over 10,000 different parts. Experience Tango-PLD’s powerful approach to top-down logic design with its C-like design language and schematic entry options. Add interactive logic simulation with Susie.™

Affordably-priced, our popular PCB layout tools have designed tens of thousands of boards. There’s Tango-PCB PLUS, for complex designs and Tango-PCB, a comprehensive, yet economical program for less demanding requirements.

Tango designers have three fast and efficient autorouting options: the high-performance Tango-Route; multi-grid, multi-layer Tango-Route PLUS; and Tango-Route PRO, the fastest PC-based, high-completion autorouter with its automated operation and advanced SMT support.

Tango’s unrivaled after-sale support.

Your investment in Tango software includes clear, concise documentation; responsive, knowledgeable technical support; affordable feature-based updates; our 24-hour Tango BBS; directories of service bureaus and design consultants; a quarterly newsletter; and our 30-day money-back guarantee.

Give us a call to discuss your own design requirements. You’ll find our customer service is as friendly as our software.

Call for complete specs and free evaluation packages.
6500/1, 65C134, 65C265, 38000, 37700

NMOS AND CMOS

8-BIT (AND 16-BIT)

Rockwell International
Digital Communications Div
Phone (800) 854-8999; in CA (800) 422-4230
For more information, Circle No. 359

Mitsubishi Electronics America Inc
Phone (408) 730-5900
For more information, Circle No. 360

Western Design Center Inc
Phone (602) 962-4545
For more information, Circle No. 361

Status: Mitsubishi has replaced their M50740 series with the M38000 family of 8-bit µPs. These processors are software compatible with the M50740 and offer lower power dissipation.

Hardware notes:
1. Diagram favors initial Rockwell 6500/1 version. Most other versions are more complex.
2. 740 Series parts are all CMOS and have as many as 16 kytes of ROM and 512 bytes of RAM. Some models have special functions such as UARTs, 8-bit A/D converters, LCD drivers, or high-voltage (−35V) outputs. Some have 56 pins of I/O.
3. Mitsubishi’s new CMOS M37700 version has an 8-bit external/16-bit internal data bus, much like the 68C816 version of the 6502 µP. On chip, it can have as many as 32 kytes of ROM, 8 kytes of RAM, eight 16-bit timers, 2 UARTs, 1 watchdog timer, and an 8-channel 8-bit ADC. Memory is expandable to 16 Mbytes off chip. New members of this family will offer DMA and DRAM controllers and real-time I/O ports.
4. The W65C265 has a 65C816 (static) core, UART, four 16-bit timers, 4 x 8-bit ROM, 192 x 8-bit RAM, 56 I/O pins, and low-power features.

Software notes:
1. 6500/1 instruction set is identical to that of previous 650X family devices such as 6502, with the exception of bit-manipulation instructions for some devices. No new instructions added to handle new on-chip features such as timers and I/O because the µP handles them as if in external memory space.
2. Mitsubishi chips have some added instructions.
3. WDC’s 65C134 adds some instructions and an operating voltage range of 1.8 to 5.25V.

Software:

1. Cross software available from 2500 AD Software (Buena Vista, CA).
2. Cross software for MS-DOS (Has plans for a C compiler and forth interpreter.)
3. Many software packages available from third parties for the W65C02/W65C816 µPs.

Support:

From Rockwell: Cross software available from 2500 AD Software (Buena Vista, CA).
From Mitsubishi: Cross software for MS-DOS. (Has plans for a C compiler and forth interpreter.)
From WDC: Many software packages available from third parties for the W65C02/W65C816 µPs.
Z8, SUPER8

AVAILABILITY: Now for ROMless and 1-, 2-, 4-, 8-, and 16-kbyte parts; 2-, 4-, and 8-kbyte EPROM; and one-time programmable at 8, 12, 16, and 20 MHz. SGS Thomson has a 4-kbyte EPROM and an 8-kbyte ROM.

COST: Less than $3.50 for NMOS ZS 28 in volume. $4.95 for NMOS Super8 in volume. (28-pin version for $1.) Less than $5 for CMOS Z8.

SECOND SOURCE: SGS Thomson (licensed); Sharp for both NMOS and CMOS; VLSI Technology for CMOS.

CORE: From Zilog and VLSI Technology. SGS Thomson aims to convert CMOS; VLSI Technology for CMOS.

COST: Less than $3.50 for NMOS Z8 in volume. $4.95 for NMOS Super8.

SECOND SOURCE: SGS Thomson (licensed); Sharp for both NMOS and

AVAILABILITY: Now for ROMless and 1-, 2-, 4-, 8-,

Description: Z8 is a single-chip μC that is a composite of many machines. You can't necessarily use its powerful features simultaneously, a common problem with single-chip units. Not really compatible with supplier's Z80 or Z8000 because architecture is so different; closest to Z8000. However, slave Z8 versions interface to Z80 and Z8000 buses. Super8 version has

HARDWARE

Characteristics

SOFTWARE

Hardware notes:
1. Diagram applies to basic NMOS/CMOS version. Many other versions exist.
2. The 124/236 working registers (272 on Super8) are truly general purpose. Any one can be used as an accumulator or index register.
3. The register pointer singles out a "workspace" of 16 working registers for fast access. Eight such workspaces are possible in the 124/236-register space (16 in Super8) and provide a mechanism for fast context switching upon interrupt.
4. SGS has not announced any CMOS Z8s. Instead it has introduced the ST9 ASIC core in 1.5-μm CMOS. According to SGS, this core reaches

Software note:
The data- and program-manipulation instructions use the working registers in the CPU. The instructions that apply to the external data RAM are essentially just loads and stores. (There is a similarity to RISC philosophy.)

Specification summary: Unique architecture with 3 memory spaces: program memory (0, 2, 4, 8, or 16 kbytes in internal masked ROM; rest to 64 kbytes external), and CPU register file (256-byte space that includes 124/236 general-purpose working register/accumulators). Executes 129 instructions at 0.6 to 3.0 μsec at 8-MHz internal clock (16-MHz oscillator). Has built-in duplex UART (96 kbps) and two 8-bit timers, each with 6-bit prescaler. Enhanced Super8 has 352 bytes of on-chip data and control registers, 256 of which are general purpose. New multiply and divide instructions on Super8. Its on-chip peripheral functions include DMA, two 16-bit timer/counters, maximum of 40 I/O lines, full-duplex UART, and optional synchronous/asynchronous serial channel. Has 600-nsec interrupt response with 37 interrupt sources.

Software development tools:
- From Zilog: Z8 volume is growing rapidly. Meanwhile, second-source SGS Thomson has turned its CMOS efforts to its ST9 μP (featured elsewhere in the directory), a proprietary enhancement of the Z8 that SGS Thomson uses for an ASIC building block.

Software development tools:
- From Allen Ashley: Development packages are available from JK Engineering (Singapore, 66-744-8414), in the US, IAM (Sacramento, CA) distributes JK Engineering's products. Development packages in various configurations are also available from Zilog Inc (Campbell, CA) and Inner Access (Belmont, CA). Emulation packages are available from Orion Instruments (Redwood City, CA), Microtek (Beaverton, OR), Creative Technology (Atlanta, GA), and Sophia Systems (Santa Clara, CA). This list isn't exhaustive.
THE TEMPUS™ CONNECTOR FROM ITT CANNON PROVIDES FASTER SIGNAL SPEED AND SPACE SAVINGS. BOTH ARE ESSENTIAL WHEN DESIGNED FOR FUTUREBUS+. THIS INTERCONNECT SYSTEM MEETS WORLDWIDE DEMAND FOR HARD METRIC IN 2 MM PITCH. FOR DESIGN FLEXIBILITY, THE MODULES ARE STACKABLE. FOR INCREASED ELECTRICAL PERFORMANCE, THE TEMPUS CONNECTOR HAS A SHORTER this connector's STUB LENGTH AND IS DESIGNED WITH A 45° CONTACT ANGLE. LAPTOPS TO MAINFRAMES, IT MEETS HIGH DATA RATE TRANSMISSION REQUIREMENTS. CIRCLE NO. 72
A few words of advice from high-performance µPLDs.

Many designers have hot, high-performance designs. Literally.

Fortunately, Intel has a simple way to reduce system heat and still get incredible performance. The µPLD Family of programmable logic devices.

Take, for example, the 85C220 and 85C224. They operate at 80MHz (100 MHz internally) with only a 10ns total propagation delay.

And since µPLDs are manufactured using Intel's CHMOS® technology, they require just 1/4 the power of their pin-compatible bipolar PAL® alternatives. Which means they can lower system heat by 35 percent and help reduce board-level failures, too. So they're certain to give your high-performance system a boost. And send chills up the spine of your motherboard.

Learn more about Intel µPLDs and receive a µPLD/PAL heat comparison. Call (800) 548-4725 and ask for Literature Packet #1A28.

Otherwise, you could take some heat over your system design.

Chill out, PAL.
Z80

AVAILABLE FOR 6-, 8-, 10-, and 20-MHz CMOS and 4-, 6-, and 8-MHz NMOS.

COST: Because of the many aggressive second sources for this most widely used part, NMOS prices have dropped to between $0.80 and $1.10. CMOS prices have dropped to between $1 and $1.20 in high volume. The 10-MHz CMOS part costs $2.50 (100).

SECOND SOURCE: Goldstar, NEC, SGS Thomson, Sharp, and Toshiba. Goldstar, SGS Thomson, Sharp, and Toshiba, as well as Zillog, have CMOS versions. Additional sources mentioned by Zillog are VLSI Technology and Rohm.

CORE: Zilog and Hitachi use the Z80 µ.P as an ASIC core in their enhanced versions of this core, the 64180 and Z80. Zilog, Hitachi, and Toshiba all offer a range of specialized processors built around the Z80 core.

Description: Superset of widely used 8080/85; adds hardware and software features. Not pin-for-pin compatible with 8080 or 8085 but can use 8080 software and peripherals—although to do so would not take full advantage of Z80 and its peripherals, and it might require additional logic for interfacing. The Z80 and its peripherals are now available in quad flatpacks and all peripherals have been upgraded to run at 10 MHz. The 20-MHz version is only available from Zillog.

Zilog Inc
Intelligent Peripheral Controllers Product Line
Phone (408) 370-8000
For more information, Circle No. 363

Status: By far the most successful 8-bit µ.P. The Z80 is still being used in new designs but may be superseded by the new enhanced versions. Of these, the Zilog Z180/Hitachi 64180 seems to be the most popular, but the Zilog Z280 represents the greatest Z80 enhancement. The Z80’s momentum will probably last for the rest of this century, especially in ASIC-core form, which allows the company to execute its superintegrated strategy of building highly specialized microcontrollers around the Z80 core.

Hardware notes:
1. Support chips include peripheral interface, timer, serial communications, and DMA. All provide daisy-chained vectored interrupt for CPU and are being converted to CMOS.
2. All Z80 enhancements are in CMOS. The first is the Zilog Z180/Hitachi 64180, to which many Z80 designers are converting. The second is the supplier’s Z280, which boosts the Z80 into minicomputer performance. In addition, the NEC 78XX single-chip device is similar. Most are covered elsewhere in this directory.

HARDWARE

- Clock
- Memory
- Control lines
- Special 8-bit peripherals
- 8080 STD peripherals
- Status

8-BIT NMOS AND CMOS

Characteristics

Software

I—DATA-MANIPULATION INSTRUCTIONS
8-bit arithmetic and logic.

II—DATA-MOVEMENT INSTRUCTIONS
8- or 16-bit register or memory loads.

III—PROGRAM-MANIPULATION INSTRUCTIONS
Relative-jump capability. Interrupt capability with three types of selectable response.

IV—PROGRAM-STATUS-MANIP INSTRUCTIONS
Seven flag bits, including arithmetic and overflow, can be stored and tested.

Specification summary: Upwardly compatible with 8080A software, but adds 50 instructions, some of which are advance block-move and block-search macros. Instructions executed in 0.5 to 1.8 µsec (1.5 µsec avg) for 8-MHz Z80 and 1.0 to 5.5 µsec (2 µsec avg) for 4-MHz Z80. 6-, 8-, 10-, and 20-MHz versions are also available. User can switch between two identical banks of CPU registers for fast response to interrupts. NMOS circuitry requires a single-phase clock and one 5V supply at 60 mA for a 2-MHz Z80 and 90 mA for a 4-MHz Z80. TTL-compatible I/O and built-in automatic-refresh signals for dynamic RAMs. MIL-temperature parts available. CMOS version consumes only 15 mA at 4 MHz and less than 10 µA in power-down (clock-stopped) mode. NMOS and CMOS versions available in DIP, quad flatpack, and PLCC.

Support

A variety of software supports the Z80 including assemblers and cross-assemblers, software simulators, high-level-language compilers, the venerable CP/M operating system (Digital Research), and the M5/X operating system, which is popular in Japan. Other third-party suppliers include 2500 AD, Archimedes, Avocet Systems, Energetek, Huntsville Micro, Softaid, Software Development Systems, Microtec Research, and Z-World.

Some of the many third parties that supply Z80 hardware support are Applied Micro, Boston Systems, Emulogic, Hewlett-Packard, Huntsville Microsystems, Nicolet, Orion, Sophia Systems, Tektronix, Zax, and Z-World. Contact nearest Zillog sales office for more information.
ST9

AVAILABILITY: Now for ROMless, ROM, EPROM, and one-time programmable parts to 24 MHz (external).

COST: From $8.70 to $11 in volume (with ROM).

SECOND SOURCE: Siemens (announced).

CORE: SGS Thomson is building the family around its proprietary core.

Description: The ST9 microcontroller family is built around the combination of the ST9 register-file-based CPU, of memory options including ROM, RAM, EPROM, and EEPROM, and intelligent peripheral modules. Among these peripherals functions include vectored interrupts and DMA.

The register-file architecture lets you split memory into Data and Program sections and offers flexible operation in embedded control applications.

Hardware characteristics:

- **Data-Manipulation Instructions**: Add, add with carry, subtract, subtract with borrow on both 8- and 16-bit data. Decrement, Increment, and Decrement of byte and word. 8 x 8 multiply, 16 - 8 divide, and stepped 32 ÷ 16 divide. Logicals: 8- and 16-bit AND, OR, XOR, and Compare, Complement, and Rotate and Shift byte and word.

- **Data-Movement Instructions**: Addressing modes of load byte and word: immediate, register direct, register indirect, register indirect with post-increment, register-indexed, and register bit. Memory direct, memory indirect, memory indirect with post-increment, memory indirect with pre-decrement, memory indexed with immediate short and long offsets and register offset, memory indirect block transfer between memory spaces. Push and Pop for system and user stack.

- **Program-Manipulation Instr**: Jump Unconditional and Relative, Jump Relative Conditional, Decrement Byte/Word and Jump if Non-zero, Call and Return, and Interrupt Return.

- **Program-Status-Manip Instr**: Set Register Pointers for independent 8- and 16-register groups for fast context switching. Push effective address for C compiler optimization. Sign Extend 8 to 16 bits. Wait for Interrupt and Halt. Compare and Jump if True/False, otherwise post-increment.

Specification summary: Architecture features 3 memory spaces: program memory, data memory, and the register file. Program memory is 0, 8, 16, or 32 kbytes of internal masked ROM or EPROM; as much as 64 kbytes of external memory; or 8 Mbytes with bankswitch. The register file offers 224 general-purpose registers. All devices include an SPI interface, and a Timer/Watchdog. On-chip peripheral functions can include 16-bit multifunction timers, 8-bit A/D converters with watchdog, full-duplex UART with Baud Rate Generator and as many as nine 8-bit I/O ports. The devices are available in 40- and 48-pin DILs and 44-, 68-, and 84-pin PLCCs.

Software notes:

1. The microcode of the ST9 instruction set is optimized to operate on 16-bit data through the 8-bit ALU (8-bit ADD executes in 500 nsec and a 16-bit ADDW requires 830 nsec at the maximum 12-MHz internal speed using a 24-MHz external oscillator).

2. Instructions affecting memory require a working register pair as a pointer and operate in the memory space selected (either the program or data memory.)

Hardware notes:

1. Diagram is of the company's ST9040.

2. All peripheral-control registers are placed into pages within the register file, allowing a complete upgrade path between family members. This upgrade path is based on common code and the retention of all of the 224 general-purpose registers.

3. You can group all registers in two banks of eight registers or one group of 16, allowing fast context switching upon interrupt.

4. The CPU lets you assign each peripheral its own interrupt and DMA priority level.

Hardware:

From SGS-Thomson: Development package includes real-time emulators, adaptable to all present and future ST9s.

Evaluation Boards: The EVMST9 is adaptable to all present and future family members.

Support:

From SGS-Thomson: PC- and Sun-3 and Sun-4-hosted software development tools (including high-level macro-assembler, incremental linker, archiver, and software simulator). ANSI C compiler.

From Others: Verilog USA (Dallas, TX) offers the Logiscope Software Quality Auditing Tool for the macro-assembler.
As you would expect, the perfect Christmas calculator can do polar plots.

The HP 48SX will revolutionize the way you work.

No wonder the revolutionary HP 48SX is on so many wish lists this year. It's the only scientific calculator that has over 2,100 built-in functions and custom capabilities.

You can type an equation just like it appears in a textbook. Graph an equation and determine its characteristics while viewing it. Or, with automatic unit management, enter data in any given unit and get the answer in the unit you want. And all with the option of accessing PCs via a built-in serial I/O.

And when you buy an HP 48SX this holiday season, you'll also be helping America's kids excel! Your purchase of an HP 48SX will help equip selected high schools with a $5,000 set of calculators and other key teaching materials.

So put an HP 48SX on your shopping list now, and see your nearest HP retailer today.

HP calculators. The best for your success.

EDN November 21, 1991
The opportunity for automated, low-cost assembly is a key benefit of surface-mount technology but is often wiped out by the high price of surface-mount components. Now Mini-Circuits offers a new series of mixers to meet the pricing and quality demands of SMT... only $3.30 in 1,000 quantity ($3.95 in quantity of 10), lower than most conventionally-packaged mixers.

The Ultra-Rel™ SCM-series spans 1 to 2500 MHz and is housed in a rugged non-hermetic 0.38 by 0.75 by 0.2 in. high (max. dimensions) plastic/ceramic package. Spacing between connections is 0.2 in.

Each SCM is built to meet severe environmental stresses including mechanical shock/vibration as well as temperature shock. Operating and temperature storage range is -55° to +100°C. Ultra-Rel™ SCM mixers come with a five-year guarantee, ready for off-the-shelf delivery, and available in tape-and-reel format (500 qty, 32 mm).

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered for your initial prototype design.

When you think SMT for low-cost production, think of Mini-Circuits’ low-cost Ultra-Rel™ SCM mixers.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SCM-1</th>
<th>SCM-2</th>
<th>SCM-5</th>
<th>SCM-2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. Range (MHz)</td>
<td>LO, RF 1-500</td>
<td>10-1000</td>
<td>1250-1800</td>
<td>500-2500</td>
</tr>
<tr>
<td>if DC-500</td>
<td>DC-500</td>
<td>DC-500</td>
<td>DC-500</td>
<td></td>
</tr>
<tr>
<td>Conversion Loss (dB)</td>
<td>mid-band 6.0</td>
<td>6.0</td>
<td>5.5</td>
<td>5.7</td>
</tr>
<tr>
<td>total range</td>
<td>6.5</td>
<td>7.0</td>
<td>5.5</td>
<td>6.4</td>
</tr>
<tr>
<td>Isolation (dB)</td>
<td>L-R, L-I</td>
<td>L-R, L-I</td>
<td>L-R, L-I</td>
<td>L-R, L-I</td>
</tr>
<tr>
<td>low-band</td>
<td>60</td>
<td>50</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>mid-band</td>
<td>45</td>
<td>45</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>high-band</td>
<td>40</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>PRICE (1000 qty)</td>
<td>3.30</td>
<td>4.15</td>
<td>8.65</td>
<td>8.85</td>
</tr>
<tr>
<td>(1-9 qty)</td>
<td>4.25</td>
<td>5.45</td>
<td>11.95</td>
<td>11.95</td>
</tr>
</tbody>
</table>

Units are shipped in anti-static plastic "tubes" or "sticks" for automatic insertion.

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6852844 or 620156
Z180, HD64180

Availability: Now for 6-, 8-, and 10-MHz parts.

Cost: For 10-MHz Z180, $12 (100) and $6 (1000). For 6-MHz HD64180, $6 (100) and $5 (1000).

Second Source: None.

Core: Zilog and Hitachi consider the basic Z180 and 64180 a standard cell for building high-integration μPs and microcontrollers.

Description: Jointly developed enhancement of Z80 with various peripheral functions such as memory management (to reach larger, 1M-byte memory space), 2 DMA channels, 2 serial ports, and timers added on CMOS CPU chip. Z-suffix versions are totally compatible with Z80-family peripherals chips. Both Z- and R-suffix devices interface to the 6800 and Intel 680x series buses.

Status: CMOS enhancements to the widely used Z80. Has on-chip memory-management unit (MMU), multiple DMA channels, and UART. These chips don’t have sophisticated big-computer features, such as separate peripherals chips. Both the Z180 and 64180’s MMUs translate between the Z80 64-kbyte address space and their own 1M-byte space. These families have received a boost from all Z80 users and third-party supporters of the venerable Z80.

Hardware notes:
1. Diagram is for basic core. Both Zilog and Hitachi are expanding upon this core.
2. The 647180W is a single-chip version of the 64180 and adds 16 kbytes of one-time-programmable EPROM, 512 bytes of RAM, 54 I/O pins, a 16-bit timer, and a 6-channel analog comparator. It comes in 84-pin PLCCs, 80-pin flatpacks, and 90-pin shrink DIPs. Because of EPROM, Hitachi bills this style μC as a zero-turnaround-time part, saying it is cost-effective in volumes as great as 10k. Hitachi also sells the part in CMOS CPU chip. Z-suffix versions are totally compatible with Z80-family peripherals. CMOS versions provide 50 mW of power in sleep and halt modes. Packaged in 64-pin DIP and 68-pin PLCC.

Software notes:
1. Only new instructions beyond Z80 instructions listed.
2. The MMU adds base registers to Z80 16-bit addresses to produce the 20-bit addresses needed externally.
3. Trap interrupt can be used both for catching undefined op codes and for letting users extend instruction set.

Hardware support:
- **Zilog:** Zilog offers a Z180 and serial communications controller (SCC) applications board to test and evaluate the chips.
- **Hitachi:** Hitachi Adaptive System Emulator ($7000) plus H8605M01S, a 256-kbyte memory board for use with IBM PC, HP6400, or DEC VAX as host. Real-time operation as fast as 8 MHz and real-time tracer buffer for 2048 machine cycles. All hardware lines are captured, and the trace is automatically disassembled.
- **From Others:** Several companies offer hardware support for the family. Among these suppliers are American Automation, Huntsville Microsystems, Sophia Systems, Z-World, Softaid, Zax, and Orion.

Software support:
- **Microtec Research (Santa Clara, CA) supplies macroassembler, utilities, Pascal, and C compilers (to run on IBM PC and DEC VAX hosts). Avocet (Rockport, ME) and Allen Ashley (Pasadena, CA) have announced IBM PC-based assemblers. Hitachi provides help so that the additional 64180 instructions can be treated as macros on a Z80 macroassembler. Boston Systems Office (Waltham, MA) offers a VAX-hosted assembler ($1200). Software compatible with CP/M (Digital Research) and MSX (Microsoft) operating systems (latter being result of project for Japanese market). American Automation has cross software to go with development hardware (assembler, C compiler, and debugger).
- **Archimedes (San Francisco, CA) offers a C compiler ($995 for IBM PC; $3995 for MicroVAX; and $7995 for VAX).**
HARDWARE -- CHARACTERISTICS -- SOFTWARE ----

HARDWARE

COST: As with other mature μPs, costs have dropped, in this case to a second source: Hitachi and SGS Thomson. The 6800 series is compatible with the original 6800 at source-code level, especially at the low and high ends. Even the new CPU members are precisely compatible with the original 6800, designed to be fast and to permit structured programming.

6800/6802, 6809/6309

Description: The 8-bit 6800 CPU was the original part in the family named after it. That family has been broadened to include not only the 2-chip 6802/6846 and 6809 covered here but also the single-chip 6801, the low-end single-chip devices, and the 6804 and the 6805. Note, however, that new CPU members are precisely compatible with the original 6800, especially at the low and high ends. Even the 6809 is only software compatible with the original 6800 at source-code level.

PART DESCRIPTION CLOCK speed (MHz) ROM x(8) RAM x(8) COST (100 qty)

6800 CPU needs 2-phase clock 1-2 -- -- $4-$5

6802 CPU clock & RAM 1-2 (4-MHz ext) 128 -- $4-$5

6809 CPU 2 -- $5-$6

6309 CPU CMOS 3 -- $9.50

Hardware notes:
1. Diagram shows 6800 and 6802. The 6809 has another 16-bit index and a second "user" stack pointer, which makes the 6809 more powerful than the 6800; these additional resources give the 6809 many more instructions. On simple benchmarks, the 6809 runs to 270% faster than the equivalent speed 6800, programs in 42% fewer instructions, and uses 33% less code.
2. Basic 6809 version has on-chip clock. Minimum system results with the following parts: 6809, 6810, and 6846. 6809E version has off-chip clock. An early valid-memory-address (VMA) signal on 6809E allows 3-MHz bus operation with a 2-MHz memory. External clock permits multiprocessing.
3. The MMU (6829) allows the 6809 to run 32 concurrent protected tasks per management unit in a 24-byte address space.
4. Hitachi CMOS version (6309) has 2-, 2.5-, and 3-MHz bus timing; the Sync and CWAI instructions allow a low-power sleep mode.

SOFTWARE

I—DATA-MANIPULATION INSTRUCTIONS

Arithmetic and logic.

Instructions to take advantage of two accumulators. 6809 has unsigned 8 × 8-bit multiply with 16-bit product.

II—DATA-MOVEMENT INSTRUCTIONS

Can reach the first 256 locations of memory with short instructions.

6809 can use four index registers for merging three source blocks into one destination block.

Can autoincrement and autodecrement by 1 or 2 directly and indirectly. Page zero can be software relocated during program execution, effectively increasing its size.

Indexing uses the “true indexing” relationship between base and offset (0, 5, 8, 16 bits) rather than the 6800 relationship.

Can utilize the user stack for Polish-notation operations or interpretive languages.

III—PROGRAM-MANIPULATION INSTR

Has PDP-11-type branches and conditional branches. Unlimited subroutine nesting via stack pointer addressing LIFO stacks in RAM.

Does not have vectored interrupt but can achieve function with software or with 6828 priority interrupt controller.

6809 has extensive relative addressing with wide reach, which allows creation of position-independent code and opens door to use of off-the-shelf, mass-produced standard firmware in ROMs.

IV—PROGRAM-STATUS-MANIP INSTR

6809 has instructions for manipulating the status register (condition-code register). It may be transferred or exchanged with any 8-bit register or pushed or pulled on either stack; any number of flag bits may be set or cleared in one instruction.

V—POWER-SAVING INSTRUCTIONS

6809 has SYNC and CWAI to put CMOS CPU in sleep mode. Sync instruction stops μP until it gets go-ahead signal from interrupt line.

Specification summary for 6800:
Common-memory architecture with 16-bit (64-kbyte) memory space for instructions, data, and I/O; all can be 8-bits wide. Instruction set is patterned after the PDP-11 mini as closely as possible in shorter word machine with limited CPU registers. Execution times from 2 to 5 μsec. NMOS circuitry requires one 5V supply, 500mW; housed in 40-pin DIP. Versions with −55°C to +125°C range also available.

Specification summary for 6809:
An 8-bit machine with extensive 16-bit addressing capability. Has two 16-bit index registers and a 16-bit user stack pointer that can also be software-specified as a third index register. Upwardly compatible with 6800, but only at source-code level. Bus operates at 2 MHz, so basic speed is similar to that of 6800, but greater efficiency of 16-bit addressing increases throughput. Instruction set has 59 mnemonics and 7 addressing selections for a total of 1464 instruction-­addressing options. Instructions vary in length from 1 to 5 bytes, with register-inherent operations executing in 1 μsec at 2-MHz bus speed (320-nsec memory access). Longest instruction takes 20 cycles. The 6800 direct or page-zero register is retained but can be software relocated anywhere in memory via programmable register. The chip requires one 5V supply. Two versions, each in 40-pin DIP.

SUPPORT

From Motorola: Emulators range from low-cost (hundreds of dollars) to HDS-300 system (about $5000) plus personality modules ($5000).

Support systems and OEM boards available from Motorola Semiconductor Div, 5005 E McDowell Rd, Phoenix, AZ 85008. Phone (602) 244-6900 or (602) 438-3500.

From others: Tektronix and Hewlett-Packard development systems support the 6800. Micro Industries (Westerville, OH) says it has acquired an exclusive license to Motorola’s "Micromodule" 8-bit boards.

Motorola Microprocessor Products Group
Phone (512) 440-2000
For more information, Circle No. 367

Status: Introduced in 1974, the 6800 has been the foundation of one of the longest lived and broadest μP families. Among its progeny are the 6809 covered here and the following Motorola μPs and μCs, which are described elsewhere in this directory: the 6805, 6801, and 68HC11. The 6800 is now past its prime and is not recommended for new design. We retain it in the directory for reference. But the newer 6802 and 6809 continue to be shipped in volume. For new designs, Motorola steers designers to the 16- and 32-bit 68000 family (68008 has an 8-bit bus) or to the 68HC11.
Let's talk real 8051 8096/196 in-circuit emulation. . . and DSP's too!

Signum Systems' in-circuit emulators offer more standard features than you'd expect, and some you wouldn't.

Features You'd Expect
- Windowed/mouse interface
- Flash download 115 k-baud
- Debug in C and PL/M
- Non-intrusive to target or PC
- Full speed emulation

Signum Extras
- C-51 and C-96 HLL debugger with locals support
- Full bank switching support
- Up to 256K emulation program RAM
- Graphic trigger window
- 32K x 80 real-time trace
- Access on-the-fly to:
 - All emulation RAM contents
 - 3 complex trace triggers
 - 8 level sequencer
 - Trace and execution displays
 - 256K address breakpoints
 - 2 16-bit event counters
- Performance analysis
- Unlimited user support

Performance . . . Ultimately Depends on You
See what Graphic Triggering can do for you. For the first time you can have intuitive, precise control of the full debugging power of your emulator. You'll avoid errors and get more done.

Debugging in a High Level Language means that eventually you will have to track something right down to a member of a local complex structure. Signum lets you zoom in on any structure— with just the click of a mouse.

Opportunity . . . The Signum Advantage
The right tools do make a difference, and there's no equality among emulators. You have to actually use them to appreciate what they can do for you. Better features that are easier to use mean you're finished sooner. That's performance, and that is exactly what we are about at Signum Systems.

Prove it to yourself, check out a Signum emulator today! Write or call to evaluate the Signum advantage.

10 DAY FREE TRIAL

© 1991 Signum Systems
* System capable of 32 MHz; actual emulation speeds limited by current device speeds.
Take your best shot.
For emulation, analysis or chip support, we’re the pros who’ll improve your score.
We’re American Arium, and we’ve created a winning combination: EZ-PRO® development software and emulators from American Automation and high-performance logic analyzers from Arium.

From the RCA 1802 to the Intel i960, the Motorola 68040 to the MIPS R3000A, we now deliver support for virtually any chip you select.
Our development systems will keep your embedded projects on course with compilers, assemblers, C source level debug, variable tracking, extensive triggering and selective trace.

To give you an easy shot at debugging, our logic analyzers feature solid disassemblers, timestamp, symbolic debug, performance analysis and expanded memory with high-speed timing to 400 MHz. And to keep you clear of hidden traps, we’ve developed a fully integrated set of relocating linkers, assemblers, language translators, disasmblers and more than 20 different cross compilers.
Make your next project an easy chip shot. Call the pros: American Arium.
650X/65COX

AVAILABILITY: Now.

COST: WDC's CMOS prices range from $2 in lower speed, high volume to $50 for high speed, lower volume.

SECOND SOURCE: WDC created and licensed most of the CMOS designs. It has licensed Rockwell, California Micro Devices, ITT-Intermetall in West Germany, and about 20 other companies.

CORE: WDC has developed the semicustom 6502 core as NCR and others now use it. Many suppliers now specify it as part of their cell libraries.

Description: Original design team's goal was to achieve as much PDP-11-style addressing capability as would fit in an economical chip. Because of the µP's short 8-bit index registers, it is optimally suited only to applications requiring access of smaller blocks of memory, although it benchmarks ahead of most other 8-bit µPs with respect to its speed of execution of high-level languages, such as Basic and Pascal. New CMOS parts consume little power and have small economical die that gets still smaller with today's finer geometries. See 6500/1 for single-chip versions and 65SC16/602 for 16-bit internal version.

Notes on CMOS versions:
1. CMOS 65CCXX family members are slight enhancements of NMOS counterparts and can serve as plug-in replacements.
2. Among hardware enhancements are a new 4-phase clock that gives decreased memory access time and a memory-lock output and busenable input that simplify multiprocessor designs.
3. Among the software enhancements are the treating of all unused op codes as NOPs and removing the page-boundary restrictions on JMP indirect.
4. Decimal mode is automatically set off upon reset or interrupt, and the N, V, and Z flags are made active during decimal mode.
5. A BRK followed by interrupt is executed. 6. See instruction set for comments on new instructions.

8-BIT NMOS AND CMOS

Originator of 6502 Commodore (Westchester, PA) no longer sells chips to the merchant market. WDC developed CMOS version.

Western Design Center Inc
Phone (602) 962-4545
For more information, Circle No. 368

Status: The falling share of market for this µP appears to indicate that it has reached the end of its life cycle. However, the architecture lives on in the form of single-chip versions (see 6500/1 and especially the 50740 in this directory) and ASIC versions. Some of these have very large unit volumes, so the 6502 architecture may remain, by volume, the leading 8-bit architecture in the world.

I—DATA-MANIPULATION INSTRUCTIONS
Arithmetic and logic. Decimal mode via control bit in status register. Can operate on locations in memory space, which can be either RAM or I/O ports. CMOS parts have bit manipulation.

II—DATA-MOVEMENT INSTRUCTIONS
True indexed addressing, although index offset is limited to 8 bits in 2 CPU registers—X and Y. Short-form addressing to zero page. Has two sophisticated indirect-indexed and indexed-indirect instructions for handling tables. CMOS parts have indexed-absolute indirect and zero-page indirect.

III—PROGRAM-MANIPULATION INSTR
Conditional branches with signed relative addresses. Nonmaskable and/or maskable interrupt, depending on model. CMOS parts have branches on bit test. Stack pointer for implementing 256-byte LIFO in external RAM.

IV—PROGRAM-STATUS-MANIP INSTR
Push and pull status register from memory stack. Set and clear carry, decimal mode, and interrupt bits. 6502 and 6512 have external input to one status bit, useful for handshaking with peripherals.

V—POWER-SAVING INSTRUCTIONS
Wait and Stop on 65C02, respectively, stop processor and disconnect clock to lower power consumption. New operating voltage range of 1.2 to 5.25V with an Ioc of 0.1 μA/kHz at 2.8V.

Specification summary: Common-memory architecture with instructions, data, and I/O in same 64-kbyte space; 57 instructions (68 for CMOS). Many instructions provide choice of 13 PDP-11-type addressing modes (15 for CMOS). Advanced indexed-indirect addressing mode. NMOS and CMOS silicon-gate, depletion-mode circuitry requires one 5V, 250-mV supply. Some CMOS parts can run at 8-MHz clock frequency (125 nsec/cycle). CMOS parts require 4 mA/MHz for operation and 10 μW for standby. Although it supplies the µPs in DIPs and PLCCs, WDC recommends using the 44-pin PLCC for higher performance and reliability.

HARDWARE

CHARACTERISTICS

SOFTWARE

I—DATA-MANIPULATION INSTRUCTIONS

Arithmetic and logic. Decimal mode via control bit in status register. Can operate on locations in memory space, which can be either RAM or I/O ports. CMOS parts have bit manipulation.

II—DATA-MOVEMENT INSTRUCTIONS

True indexed addressing, although index offset is limited to 8 bits in 2 CPU registers—X and Y. Short-form addressing to zero page. Has two sophisticated indirect-indexed and indexed-indirect instructions for handling tables. CMOS parts have indexed-absolute indirect and zero-page indirect.

III—PROGRAM-MANIPULATION INSTR

Conditional branches with signed relative addresses. Nonmaskable and/or maskable interrupt, depending on model. CMOS parts have branches on bit test. Stack pointer for implementing 256-byte LIFO in external RAM.

IV—PROGRAM-STATUS-MANIP INSTR

Push and pull status register from memory stack. Set and clear carry, decimal mode, and interrupt bits. 6502 and 6512 have external input to one status bit, useful for handshaking with peripherals.

V—POWER-SAVING INSTRUCTIONS

Wait and Stop on 65C02, respectively, stop processor and disconnect clock to lower power consumption. New operating voltage range of 1.2 to 5.25V with an Ioc of 0.1 μA/kHz at 2.8V.

Specification summary: Common-memory architecture with instructions, data, and I/O in same 64-kbyte space; 57 instructions (68 for CMOS). Many instructions provide choice of 13 PDP-11-type addressing modes (15 for CMOS). Advanced indexed-indirect addressing mode. NMOS and CMOS silicon-gate, depletion-mode circuitry requires one 5V, 250-mV supply. Some CMOS parts can run at 8-MHz clock frequency (125 nsec/cycle). CMOS parts require 4 mA/MHz for operation and 10 μW for standby. Although it supplies the µPs in DIPs and PLCCs, WDC recommends using the 44-pin PLCC for higher performance and reliability.

HARDWARE

SUPPORT

From Rockwell: LCE emulator ($1250), which interfaces to IBM PC host. Western Design Center recommends using Hewlett-Packard (Colorado Springs, CO) logic analyzers and WDC Toolbox ICE with IBM PC host ($4995).

From California Micro Devices: GEM-I ICE package ($3750) capable of interfacing with a variety of host computers including ISIS development system and Apple. Functions as a stand-alone assembler and disassembler using a nonintelligent terminal. Evaluation board for 65SC150 ($499) that functions as in-circuit system when coupled with GEM-I.

From NCR: Hardware emulator interfaces to Apple IIe through RS-232C port. Allows complete in-circuit software debugging.

From Dynatemp (Irvine, CA): AIM-65 single-board computer and RM industrial modules.

SOFTWARE

From California Micro Devices: 65SC00 macroassembler for Apple Computer ($100), assembler for Intel ISIS ($1800), and Fortran assembler ($1800).

From NCR: Monitor for use in conjunction with emulator. Supports breakpoint, change memory and registers, software trace, and real-time execution.

From others: Because the 6500 has been so widely used, there are innumerable sources of software at different language levels: for example, Byte Works (Albuquerque, NM), Roger-Wagner Publishing (El Cajon, CA), and 2500 AD (Aurora, CO), Avocet (Rockport, ME), California Microsystems (Union City, CA), and American Automation (Tustin, CA).
8086/8088

AVAILABILITY: Now.

COST: Under $10 (1000) for NMOS 8086/88, under $15 (1000) for CMOS 8086/88. Siemens' NMOS parts are under $4.50 (1000). Chips and Technologies 8680 single-chip PC costs $35 (10,000).

SECOND SOURCE: For 8086/8088: AMD, Harris, Matra-Harris, Fujitsu, Siemens, and OKI. Chips and Technologies' 8680 single-chip PC is source-code compatible with the 8086.

Description: The 8086, 8088, and their low-power CMOS implementations (80C86/80C88) share a 16-bit internal architecture that has a software base of more than 10,000 DOS applications. The 8088 (used in the original IBM PC and its clones) has an 8-bit external data bus to allow the manufacture of lower cost systems with full 16-bit software capability. C&T's 8680 combines an 8086-compatible core with CGA-compatible graphics, power management, a memory controller, device emulation, a serial port, and system logic.

HARDWARE CHARACTERISTICS

SOFTWARE

I—DATA-MANIPULATION INSTRUCTIONS

- 8-bit signed and unsigned arithmetic in binary or decimal, including multiply and divide.
- Logicals.
- Bit, byte, word, and block operations.

II—DATA-MOVEMENT INSTRUCTIONS

- Addressing modes include literal, relative (to register and to segment), register, base-plus index, and base-relative indexed.
- Use of segment registers: Programmer can, through software, set up four areas in memory with four segment registers—a program area, a stack area, and two data areas. These areas need not be full 64 kbytes, and they can overlap. Programmer can alter the four area locations by modifying the segment-register contents.

III—PROGRAM-MANAGEMENT INSTR

- Has call, jump, and return instructions both inside program segments and to different segments. Intra-segment call and jump use self-relative displacement for position-independent code. Conditional jump upon Boolean functions of flags within ±128 bytes of instruction. Iteration control of loops, a repeat prefix for rapid iteration in hardware-repeated string operations.

IV—PROGRAM-STATUS-MANIP INSTR

- In addition to 8080/85 flags: overflow, interrupt enable, direction (for strings), and single-step trap flags.

Specification summary for 8086/88: 16-bit CPU that can reach 1 MB byte using "segment" address-extension registers. Register-to-register operations execute at 0.6 μsec with 5-MHz clock (0.37 μsec with 8-MHz clock). MOS ion-implanted, depletion-load, silicon-gate circuitry; requires 5V at 340 mA (substrate bias generated on chip). In 40-pin DIP, device is pin programmed to switch eight pins from minimum to maximum application program, or TSR (terminate-stay-resident) programs.

From Intel: Macroassembler, including linker, locator, mapper, and librar. High-level-language compilers include PL/M, C, Fortran, and Pascal. DB-86 software debugger provides windowed, menu-driven, source-level debugging with full source-code display. Hosts include PC-DOS and VAX/VMS. Prices start at $750 (for DOS versions).

From others: Because of wide base of 8086/8088-based systems, particularly the IBM PC, there exists third-party software of all sorts, enough to fill whole catalogs. Check with Intel and various trade journals.
What happens when you “sandwich” low profile components to drastically reduce the space needed for power circuitry?

At TDK it means enhancing mechanical performance, reliability and safety while creating the world’s thinnest switching power supply.

Utilizing our original material and design technology, TDK has developed various high performance components for switching power supplies. These include the new PC 50 ferrite with low power loss and high flux density, ultra-thin EPC Cores and Large-Capacitance Multilayer Ceramic Chip Capacitors, HC Series.

Call or write today for more information on TDK Components for Switching Power Supplies.
Since we're one of the largest memory suppliers in the world and the Samsung SRAM program is one of the best, our advertising agency thought we should find a more dignified way to get our new fast 1-megs into your hands.

But we know that once you try them you'll buy them. And we believe these guys are, once again, over-thinking. So: free SRAM it is.

Our fast 1-megs run at 20 ns and are in full production in large quantities now.

<table>
<thead>
<tr>
<th>Part</th>
<th>Organization</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM641005*</td>
<td>256K x 4</td>
<td>Separate I/O</td>
</tr>
<tr>
<td>KM641001*</td>
<td>256K x 4</td>
<td></td>
</tr>
<tr>
<td>KM681001*</td>
<td>128K x 8</td>
<td></td>
</tr>
<tr>
<td>KM611001*</td>
<td>1M x 1</td>
<td></td>
</tr>
</tbody>
</table>

Like our 256K and 64K parts, which we're sampling now and will have in full production Q1 1992, they're part of our major SRAM
commitment. We use our formidable DRAM capacity to make them.

All parts are in DIP and SOJ. Our new 256K and 64K chips run at 15 ns.

So if speed, technology, superb breadth of line, and state-of-the-art parts aren’t enough for you—maybe our free chip offer will be.

<table>
<thead>
<tr>
<th>Part</th>
<th>Organization</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM64358B</td>
<td>64K x 4</td>
<td>Output Enable</td>
</tr>
<tr>
<td>KM64259B</td>
<td>64K x 4</td>
<td>Sep. I/O, High Z</td>
</tr>
<tr>
<td>KM64260B</td>
<td>64K x 4</td>
<td>Sep. I/O, Low Z</td>
</tr>
<tr>
<td>KM64257B</td>
<td>32K x 8</td>
<td></td>
</tr>
<tr>
<td>KM61257A</td>
<td>256K x 1</td>
<td></td>
</tr>
<tr>
<td>KM64257A</td>
<td>64K x 4</td>
<td></td>
</tr>
<tr>
<td>KM6466B</td>
<td>16K x 4</td>
<td>Output Enable</td>
</tr>
<tr>
<td>KM6456B</td>
<td>16K x 4</td>
<td></td>
</tr>
<tr>
<td>KM6863B</td>
<td>8K x 8</td>
<td></td>
</tr>
</tbody>
</table>

Call for a free 1-MEG SRAM
1-800-423-7364 or 408-954-7229

Technology that works for life.
Only Glassman can deliver three different series of high voltage DC power supplies...all with 3½ inch panels and your choice of 100, 300, or 500 watts of space-saving power. The Series EH, ER, and EW are available in various models starting with DC ranges from 0 to 1 kV.

All models feature air insulation for light weight and easy serviceability, low stored energy for safety, and automatic crossover from constant-voltage to constant-current regulation for protection from overloads, arcs, and shorts. They can be ordered with dual analog meters, digital meters, or a blank panel for OEM/system applications. Common specifications include:

- **Voltage regulation**: < 0.005%, line or load
- **Ripple**: < 0.02% (0.03%, EH) at full load
- **Current regulation**: < 0.05% from short circuit to rated load
- **Operation**: Local/remote control and monitoring
- **Polarity**: Positive, negative, or reversible

The Series EW even provides a bonus. For outputs up to 84% of rated voltage, maximum current capability is equivalent to a 600 W supply!

For more information on these or other supplies, ranging from 1 kV to 500 kV, 15 W to 15 kW, or anything in between, write or call today. All are backed by responsive application assistance, the best on-time delivery in the industry, a 3-year no-nonsense warranty, and factory service available on three continents. Glassman can deliver...with no problems!
Z280

AVAILABILITY: Now for 10- and 12.5-MHz versions.

COST: About $18 in large volumes.

SECOND SOURCE: None.

CORE: Zilog is incorporating elements of Z280 in its megacell library, so it can rapidly put together new combinations. The company claims it can turn around a semicustom design using its megacells in a matter of days. However, it does not plan to offer ASIC tools to customers.

Description: Enhanced Z80 µ.P, upgraded to the point that it has most of the features of larger 16/32-bit machines. It has "privileged" system-control hardware and associated software for multituser, multitasking operating systems. It has memory management for virtual memory and incorporates cache to achieve high throughput with moderate-speed external memories.

HARDWARE -- CHARACTERISTICS -- SOFTWARE

Hardware notes:

1. Diagram indicates how basic Z80 CPU has been enhanced by adding other functions to the chip. Not so apparent are other enhancements to the Z80 CPU, such as more powerful, generalized 16-bit data and addressing operations.

2. The integration not only lowers system cost, but provides a speed advantage: When all subsystems are on chip, the system speed automatically increases.

Software note:

Only those instructions that are enhancements of basic Z80 set are covered. Otherwise, the Z280 is object-code compatible with Z80 (and 8080).

Zilog Inc

Phone: (408) 370-8000

For more information, Circle No. 370

Status: The Z280 became available in late 1987. The Z280 lets designers upgrade Z80-based PCs into multiuser systems that have large virtual memories and, claims Zilog, high performance. Compared with other Z80 enhancements, such as the Zilog Z180/Hitachi 64180, the Z280 offers a greater performance edge. Zilog is also pushing the Z280 as an upgrade for dedicated systems using Z80s as embedded controllers.

From others: Softaid (Columbia, MD) has a low-cost real-time development system, and CDS (704) 876-2346 offers evaluation boards for several popular buses. Logic analyzers are sold by Hewlett-Packard and Tektronix.

From Zilog: You can obtain a debug monitor program and a cross-assembler with Zilog's evaluation board. Zilog plans no other software support.

From others: 2500 AD is shipping a cross-assembler and is reported to be working on a C compiler. CDS offers both a cross-assembler and a C compiler.
H8/300 FAMILY

AVAILABILITY: Now.
COST: In large volumes, the H8/310 naked die costs less than $10. Other devices, in 100 qty, range from $14.25 for the H8/322 to $25 for the H8/350.
SECOND SOURCE: None.
CORE: Hitachi considers the basic H8/300 CPU as a standard cell for building high-integration µPs and µCs.
Description: The H8/300 family of single-chip microcontrollers offers 16-bit internal data paths with an 8-bit ALU and external data bus. The family shares the 8/16-bit core CPU, which features a general-purpose register architecture that allows any register to act as an accumulator.

HARDWARE CHARACTERISTICS

Hardware note:
The H8/300 CPU is register based and allows 200-nsec instruction execution. This family provides sixteen 8-bit registers, which you can concatenate into eight 16-bit registers. All instructions are either 2 or 4 bytes. The 16-bit data paths facilitate arithmetic operations for address calculations. Both the 330 and 350 devices include an on-chip A/D converter with 12.2-µsec conversion time.

Software note:
Arithmetic and logic instructions are performed as register-to-register operations or with immediate data. There are 8 addressing modes: register direct, register indirect, register indirect with displacement, register indirect with post-increment or predecrement, absolute, immediate, pc-relative, and memory indirect. All instructions are either 2 or 4 bytes long.

HARDWARE SUPPORT

Hitachi supplies a common base unit and personality modules for in-circuit emulation of all H-series devices (about $6000). Hewlett-Packard (Palo Alto, CA) and Sophia Systems (Palo Alto, CA) also offer development systems.

Evaluation Boards: Hitachi supplies boards (about $400) for evaluation and limited program development. The boards offer an in-line assembler and limited debug monitor. A consistent interface is provided by an XRAY software module to the simulation/debugger, evaluation board, and in-circuit emulator.

Hitachi supplies a complete tool chain consisting of an ANSI C compiler, assembler, linker, loader, utilities, and a software simulator/debugger for workstation and PC hosts. Third-party vendors Microtec Research (Santa Clara, CA), Avocet (Rockport, ME), and Software Environments (Dallas, TX) supply similar products. Special software, such as a Fuzzy Logic compiler and a real-time operating system, is provided by Togai infralogic (Irvine, CA) and Byte-BOS (San Francisco, CA), respectively.

Software note:
Arithmetic and logic instructions are performed as register-to-register operations or with immediate data. There are 8 addressing modes: register direct, register indirect, register indirect with displacement, register indirect with post-increment or predecrement, absolute, immediate, pc-relative, and memory indirect. All instructions are either 2 or 4 bytes long.
Finally...precision attenuation accurate over 10 to 1000MHz and -55°C to +100°C. Standard and custom models are available in the TOAT(pin)- and ZFAT(SMA)-series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels.

The 50-ohm components perform with 6µsec switching speed and can handle power levels typically to +10dBm. Rugged hermetically-sealed TO-8 units and SMA connector versions can withstand the strenuous shock, vibration, and temperature stresses of MIL requirements. TOAT pin models are priced at only $59.95 (1-9 qty); ZFAT SMA versions are $89.95 (1-9 qty).

Take advantage of this striking price/performance breakthrough to stimulate new applications as you implement present designs and plan future systems. All units are available for immediate delivery, with a one-yr. guarantee, and three-sigma unit-to-unit repeatability.

<table>
<thead>
<tr>
<th>TOAT-R512</th>
<th>TOAT-124</th>
<th>TOAT-3610</th>
<th>TOAT-51020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (dB) (+/-dB)</td>
<td>Accuracy (dB) (+/-dB)</td>
<td>Accuracy (dB) (+/-dB)</td>
<td>Accuracy (dB) (+/-dB)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.12</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>1.5</td>
<td>0.3</td>
<td>3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>2.0</td>
<td>0.2</td>
<td>4.0</td>
<td>0.3</td>
</tr>
<tr>
<td>2.5</td>
<td>0.32</td>
<td>5.0</td>
<td>0.5</td>
</tr>
<tr>
<td>3.0</td>
<td>0.4</td>
<td>6.0</td>
<td>0.5</td>
</tr>
<tr>
<td>3.5</td>
<td>0.52</td>
<td>7.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Price $ (1-9 qty) TOAT $59.95/ZFAT $89.95

bold faced values are individual elements in the units

finding new ways...
setting higher standards

Mini-Circuits

P.O. Box 350168, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6852944 or 620156

CIRCLE NO. 80
Single-chip keys for smarter displays.

NEC’s 75X Series is one of the most powerful and popular in the industry.

LCD/FIP (fluorescent indicator panel) controllers and drivers are all integrated into a single-chip solution. We offer a wide variety of ROM capacities, peripherals and package types including OTP for specialized low voltage needs.

The 75X Series single-chip solution helps you simplify programming while reducing overall system cost and size.

To find out which of our single-chip keys fits your LCD/FIP display, contact NEC today.
78K SERIES

AVAILABILITY: Now.
COST: $6 to $20 (1000).
SECOND SOURCE: None.

Description: The 78K2 Series is a family of 8-bit microcontrollers, whereas the 78K3 Series is a 16-bit family. Both offer features for real-time applications. These µCs feature a Peripheral Management Unit which handles many of the repetitive interrupt requests without CPU intervention. The family has a 3-byte prefetch to reduce external program-fetching latency. Available peripherals include DACs and ADCs, timers, serial I/O ports, UARTs, and real-time output ports. On-chip memory can include as much as 2 kbytes of RAM, as much as 32 kbytes of ROM or OTP EPROM, and as much as 512 bytes of EEPROM.

NEC Electronics
Phone (415) 969-6000
FAX (415) 965-6130
Literature (800) 632-3531
Technical support (800) 366-9782
For more information, Circle No. 372

--- HARDWARE -- CHARACTERISTICS-- SOFTWARE -------

PROGRAMMABLE INTERRUPT CONTROLLER

TIMER/COUNTER UNIT
(REAL-TIME PULSE UNIT)

MEMORY

CONTROL

ALU

MICRO ROM

GENERAL REGISTERS
128 BYTES
AND DATA MEMORY 128 BYTES

SYSTEM CONTROL
AND BUS CONTROL
AND PREFETCH CONTROL

WATCHDOG TIMER

I/O PORTS

8/16-BIT CMOS

Status: The K series of microcontrollers is currently used in applications such as hard-disk drive control, audio, communication, and environmental control.

Hardware note:
Diagram favors µPD7821x, which features synchronous and asynchronous serial I/O, counter/timers with compare and capture registers, multichannel ADCs, DACs, and a peripheral-management unit.

Software note:
The 78K series has eight 8-byte register banks mapped in RAM. You can use each bank either as 8 bytes or four 16-bit words. Switching banks provides a fast method for switching contexts when interrupt service routines are entered. Context switching also utilizes the register banks as separate working registers for multitasking operations.

Software:
The RA78K is the relocatable macro assembler for the 78K Series. The assembler includes a structured assembler preprocessor that provides many of the control and assignment features found in C compilers. A C compiler is also available.

EDN November 21, 1991
65C816/65C802

AVAILABILITY: Now.
COST: Prices range from about $2 to $50.
SECOND SOURCE: VLSI and California Micro Devices said to be main sources, but WDC says it has licensed others in US and abroad.
CORE: All suppliers are considering this as a µP megacell in their libraries.

Description: CMOS 8/16-bit µPs featuring software compatibility with 8-bit 6502 (both original NMOS 6502 and enhanced CMOS 65C02). The -802 is pin-for-pin compatible with the 6502, so it can be plugged into existing sockets. The -816 has a different pinout, but expands the addressing range of the 6502 from 64 kbytes to 16 Mbytes. Additional hardware enhancements on the -816 allow it to be used for multiprocessor systems and in systems that have data and program caches.

HARDWARE CHARACTERISTICS SOFTWARE

I—DATA-MANIPULATION INSTRUCTIONS
The 6502/65C02 instructions with 16-bit versions of add, subtract, BCD, and logicals. No multiply, but 65C832 version will have provisions for floating point on chip.

II—DATA-MOVEMENT INSTRUCTIONS
6502/65C02 instructions, but with choice of 8- or 16-bit indexing and 8-or 16-bit data widths.

III—PROGRAM-MANIPULATION INSTR
Wait for interrupt and stop clock (restart via interrupt). Abort instruction on -816 via pin input acts as interrupt and directs program to perform memory repair and retry.

IV—PROGRAM-STATUS-MANIP INSTR
Additional bits in status register allow software selection of 8- or 16-bit modes for indexing and data. Also, E bit associated with status register (but not handled as part of it) provides software choice of emulation or native mode.

Specification summary: Enhanced 6502 with 16-bit internal data option and 24-bit addressing option, software selectable. Data I/O off chip remains 8 bits, however. The -802 version is hardware compatible with 6502 (or 65SC02) and can be plug-in replacement. It will reset into 6502 emulation mode, but can be software-switched into varying degrees of 16-bit operation. The -816 is almost identical internally to the -802, but it has different pinouts because it brings the additional bits for 24-bit data I/O to off-chip memory, coprocessors, and data and program caching. Performance is mostly identical to 6502 of same clock speed, except that extended addressing and data modes take additional cycles. Clock to 12 MHz. Fabricated in 1.2-µm CMOS and features 3-mA/MHz power consumption, 1 µA in standby mode. Although it supplies the µPs in DIPs and PLCCs, WDC recommends using the 44-pin PLCC for higher performance and reliability.

Software notes:
1. Upon reset, -802 and -816 are in 6502 emulation mode. To go to native (enhanced) mode, the E-bit must be reset to 0 via an exchange with previously reset carry-bit in status register.
2. Full-sized 16-bit registers may facilitate high-level-language compiler-writing as compared with 6502. The 16-bit index registers and the 16-bit stack pointer with no page-1 confinement help facilitate compiler writing. Further, the more sophisticated stack-pointer addressing modes directly serve needs of compiler writers.
3. Tendency of native (enhanced) mode coding to become trickier than 6502 due to tightly packed architecture (all 266 op codes used) provides opportunity to flip back and forth dynamically between modes and between register and data widths.

Hardware notes:
1. Compare diagram with previous 6502/65C02 to see nature of architectural enhancements. The 8-bit registers have been widened to 16 bits, and the 16-bit registers widened to 24 bits.
2. The -816’s control-bus outputs facilitate multiprocessing, caching, and virtual memory. The control-bus inputs let you abort instructions for virtual memory as well as control-bus access.

HARDWARE SUPPORT

WDC recommends Hewlett-Packard (Colorado Springs, CO) logic analyzers and WDC Toolbox ICE with IBM PC host ($4995).

SOFTWARE

From Byte Works (Albuquerque, NM): The ORCA/M cross-assembly and utility package. C and Pascal compilers are also available.
From Apple (Cupertino, CA): Assembler and debugger ($100) and C compiler.
From others: Supporting products are also available from S-C Software (Dallas, TX); Roger-Wagner Publishing (El Cajon, CA); 2500 AD (Aurora, CO); California Microsystems (Union City, CA); and American Automation (Fustin, CA).

Western Design Center Inc
Phone (602) 962-4545
For more information, Circle No. 373

Status: Apple’s use of the 65C816 in the IIGS upgrade provides a firm basis for hardware and software availability. Software support is growing as third-party houses that have supported the 6502-based Apple computers convert software to take advantage of the expanded memory and other capabilities of the 65C816.
Nothing's faster than the chips being developed today, and nothing's slower than hand wiring or trying to analyze these high-density, surface mounted quad flat pack (QFP) devices for test. No worry, Pomona has the answer.

You can choose Pomona's 5711 SMT Test Clip to grab onto all 132 pins of a Motorola 68020 or 68030, or the 5713, to simultaneously access all 100 pins of an Intel 80386SX. Immediately, your interface with logic analyzers, on-line circuit test systems, or lab instruments will be faster, easier, and reliable. A locking mechanism firmly holds the glass-filled, Nylon insulated clip onto the device, making positive contact with each of the IC's gull-wing leads via specially configured, gold-plated, beryllium copper pins. Above, multi-rows of gold-plated phosphor-bronze pins provide an easy-to-access pattern. Suddenly, interface problems are solved.

If you anticipate testing various pin-count PLCC or SOIC devices, Pomona's Test Clip Kits will make testing faster too. And, to make the interface between your test clip and logic analyzer sockets or emulator pods easier, Pomona's Flying Leads are available in low-cost packs, or supplied with the 5711 and 5713 Test Clips as kits. Of course, all of Pomona's other SMT test accessories are ready to make your IC testing faster and less expensive.

See your Authorized Pomona Distributor or contact POMONA ELECTRONICS, 1500 E. Ninth St., P.O. Box 2767, Pomona, CA 91769. (714) 623-3463. FAX (714) 629-3317.

ITT Pomona
AN ITT ELECTRONICS COMPANY
Discover our strengths.

FREE SMT/IC TEST ACCESSORIES BROCHURE! Includes new models for 100, 120, 128, 144, 168, 184, 196 and 208 pin-count devices.

Nylon is a registered trademark of DuPont

CIRCLE NO. 82
THE NEW MICRO-CAP III™
SO YOU CAN TEST-FLY
EVEN MORE MODELS.

It wasn't easy. But we did it. Made the long-time best-selling IBM® PC-based interactive CAE tool even better.

Take modeling power. We've significantly expanded math expression capabilities to permit comprehensive analog behavioral modeling. And, beyond Gummel Poon BJT and Level 3 MOS, you're now ready for nonlinear magnetics modeling. Even MESFET modeling.

Analysis and simulation is faster, too. Because the program's now in "C" and assembly language. That also means more capacity — for simulating even larger circuits.

As always, count on fast circuit creation, thanks to window-based operation and a schematic editor. Rapid, right-from-schematics analysis — AC, DC, fourier and transient — via SPICE-like routines. The ability to combine digital/analog circuit simulations using integrated switch models and parameterized macros. And stepped component values that streamline multiple-plot generation.

And don't forget MICRO-CAP III's extended routine list — from impedance, Nyquist diagrams and BH plots to Monte Carlo for statistical analysis of production yield. The algebraic formula parsers for plotting virtually any function. The support for Hercules, CGA, MCGA, EGA and VGA displays. Output for plotters and laser printers.

Cost? Still only $1495. Evaluation versions still only $150. Brochure and demo disk still free for the asking. Call or write for yours today. And see how easily you can get ideas up and flying.

Spectrum
1021 S Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387
Hardware notes:
1. Diagram is for 80C186EC. As with the 186EA and EB versions, the EC incorporates several power-saving features. These devices are fully static and offer a power-management unit with idle and powerdown modes. Powerdown mode turns off power to both the CPU and the on-chip peripherals, idle mode keeps the CPU active. The XL offers a powerdown mode but sacrifices the idle mode.
2. The 188 is the 8-bit external-data-bus version of the 186. All devices in the family are available with either an 8- or a 16-bit external data bus. The 188 has all other 186 features except for the numerics interface.

From Intel: PCE186 in-circuit emulator ($10,618) supports 80186 to 10 MHz. ICE186 in-circuit emulator ($15,995) supports 80186/80C186 to 16 MHz. PICE186 ($8495) and ICE 188 ($9995) support 8-bit bus versions of the 80186 (80186/80C188).

From others: The family is widely supported by third-party universal development systems. Evaluation Board: An evaluation board ($400) is also available from Intel.

From Intel: Macroassembler, including linker, locator, mapper, and librarians and high-level-language compilers, including PL/M, C, Fortran, and Pascal. The Zcon code converter is a stand-alone program that converts 280 source code to 8086 source code.

From others: Because of a range of 8086- and 8088-based systems, in particular the IBM PC, there is third-party software of all sorts, enough to fill catalogs. Check with Intel and various trade journals.
80286

AVAILABILITY: Now for all devices to 25 MHz.

COST: $10 (1000) for 8-MHz device; $13.50 (1000) for 12.5-MHz device. $30 (1000) for 12.5-MHz 80C286. Siemens charges $8, $12, and $21 (1000) for 8-, 12.5-, and 16-MHz devices, respectively.

SECOND SOURCE: AMD and Siemens. Harris for CMOS 80C286.

Description: The 80286 is upward compatible with the 8086 and 80188 and includes on-chip memory management and hardware support for multitasking systems. A 4-level protection model provides task/ task and user/operating-system protection. The 8-MHz 80286 is 6 times faster than the 5-MHz 8086 due to its pipelined architecture, 8-Mbyte/sec bus and 3.5-ns interrupt time. Used in the IBM PC/AT and its clones.

HARDWARE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Hardware notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Support chips for 80286: 82C284 clock, 82288 bus controller, 80287 floating-point numeric processor ($187.15) for 10-MHz version, and 82285 advanced DMA coprocessor.</td>
</tr>
<tr>
<td>2. High-integration chip sets for the IBM PC/AT are being offered by Chips and Technologies (San Jose, CA), Zymos (Sunnyvale, CA), VLSI Technology (Phoenix, AZ), Hudson & Supinger (Santa Clara, CA), Capital Equipment Corp (Burlington, MA), and Via Technologies Inc (Sunnyvale, CA), as well as by Intel. These chips consolidate devices used around compute engines for the 80286.</td>
</tr>
</tbody>
</table>

16-BIT NMOS AND CMOS

16-BIT NMOS AND CMOS

| Intel Corp |
| Phone (408) 987-8080 |
| For more information, Circle No. 375 |

Status: Intel has deemphasized the 80286 in favor of its 32-bit siblings, the 80386SX, 80386, and 80486. However, in spite of very low growth, the 80286 still has the highest volume in the 8086 family. Its popularity has been based on the IBM PC/AT. Unfortunately for the second sources, the 80286's big sisters, the 80386SX, 80386, and 80486, are taking over many of its applications.

DATA-MANIPULATION INSTRUCTIONS

- 8- and 16-bit signed and unsigned arithmetic in binary or decimal, including multiply and divide.
- Logical operations on bytes, words, and blocks.

MOVEMENT INSTRUCTIONS

- Addressing modes include literal, relative (to register and to segment), register, base plus index, base relative indexed, and register indirect.
- Programmers can manipulate 16,383 segments in memory by means of memory-base descriptor tables and 4-segment registers. These segments can be between 1 and 64 kbytes in length.

PROGRAM-MANIPULATION INSTR

- 8085 flags (carry, auxiliary carry, parity, zero, and sign) plus overflow, interrupt enable, direction (strings), trap (single-step), I/O privilege level, and nested task. Flag register is software accessible.

Specification summary: 16-bit CPU with 1-Gbyte virtual-address space per user, mapped onto 16-Mbyte physical-address space. Bus cycles execute in 250 nsec at 8-MHz clock frequency (200 nsec at 10 MHz), requiring 0.25 µsec for register-to-register moves at 8-MHz clock frequency, with 8-Mbyte/sec bus bandwidth. HMOS ion-implanted, silicon-gate circuitry in a large chip (335 x 339 mils, approximately 134,000 transistors). Requires 5V at 600 mA. Has 2 operating modes: Real-address mode emulates 8086; protected virtual-address mode native to 80286. Housed in a 68-pin Jedec type-A LCC, PLCC, and PGA.

Software notes:

1. Has high-level-language support instructions.
2. Virtual-address translation, memory management, and protection performed by CPU for faster execution.
3. Trusted instructions can only be executed at highest protection levels.

SUPPORT

From Intel: Macromassembler (ASM 286), which includes systems builder, binder, mapper, and librarian. Compilers for C, Pascal, PL/M, and Fortran. For applications running in virtual 8086 mode, any of Intel's 8086 software tools can be used. Hosts include PC-DOS and VAX/VMS. $750 for DOS version. Real-time operating systems (Intel's IRMX 286) available.

From others: Other operating systems and compilers being developed by third-party software houses include MP/M-286 (Digital Research), Xenix-286 (Microsoft), Coherent 286 (Mark Williams), Concurrent DOS (Digital Research), Unix System V (Digital Research), and OS/2 by Microsoft (Redmond, WA).
Hard Copy Was Never Easier.

Here's how B-G Instruments' OEM printer family can simplify production of high-quality data printout.

Simple from the start. Our unique DataPlot software cuts development time and effort to a minimum. Just 14 commands let you create printouts with multiple columns, orientations, fonts and graphics. And if you'd prefer, we'll write a custom program for you.

Multiple choices. Hardware options include print mechanisms like those listed here — plus a powerful array of control boards and accessories. So custom systems can be configured quickly and easily to meet your precise needs.

DataPlot Thermal Print Mechanisms

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Paper Width</th>
<th>Columns Across<sup>2</sup></th>
<th>Dots / Inch</th>
<th>Dots / Line</th>
<th>OEM Price<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM1224</td>
<td>2.6 inches</td>
<td>18 to 37</td>
<td>100</td>
<td>224</td>
<td>$311</td>
</tr>
<tr>
<td>PM1320</td>
<td>2.6 inches</td>
<td>23 to 53</td>
<td>150</td>
<td>320</td>
<td>$296</td>
</tr>
<tr>
<td>PM1416</td>
<td>4.5 inches</td>
<td>29 to 69</td>
<td>100</td>
<td>416</td>
<td>$443</td>
</tr>
</tbody>
</table>

1. This is the 300-piece OEM price. It is subject to change without notice.
2. The maximum number of columns depends on the font and size selected.

The higher number is for 5 x 7 characters, approximately 16 characters/in.

Instantly apparent quality. Features like thick-film printheads, high-torque stepper motors and heavy-gauge construction provide long life. While permanently lubricated gear trains and gold-plated connectors ensure reliable operation. And special touches such as automatic paper loading simplify operation.

Smart solutions. The power of our software and microprocessor control electronics have helped many customers use our printers to create smart instrument systems. So the same basic tools can serve a variety of different applications.

Get the details. For brochures, sample printouts and an OEM price list, or to arrange for a demonstration at your facility, call or write: B-G Instruments, P.O. Box 1867, Vashon, WA 98070.

Phone 206-567-5000. FAX 206-567-5010.

^{INSTRUMENTS}

CIRCLE NO. 84
The new XGA standard has opened up an era of higher performance for PC graphics. And when IBM licensed their technology to INMOS, a division of SGS-THOMSON Microelectronics, as manufacturer and sole supplier of the IBM XGA chipset, they did it to ensure that the XGA parts got to the market quickly and reliably, setting the stage for XGA to become the next volume standard in PC graphics. Specifically designed for PCs, XGA is already available to support the MicroChannel Architecture bus, and an AT bus-compatible version is under way. The new XGA standard offers significant enhancements over VGA with:

- higher speed
- higher resolution (up to 1024 x 768)
- more colors (256 up to 64K) giving photo-realistic multimedia-style images
- optimized graphics interface for better windowing
- optimization for use with latest generation processors

Fully VGA compatible, XGA performance specs offer a package that is way ahead:

- 132 column text mode
- extended graphics function mode, including hardware sprite and coprocessor hardware drawing assist
- 90% faster than IBM VGA under DOS, 55% faster under OS/2
- 67% faster running Microsoft Windows applications

TWO CHIPS THAT SET THE STANDARD
The IBM compatible XGA chipset consists of two advanced VLSI chips, the INMOS IMS G190 XGA Serializer Palette DAC in a 144 pin CQFP and the INMOS IMS G200 XGA Display Controller in a 184 pin PQFP. A major advantage of the IMS G200 is its on-chip coprocessor which offloads tasks from the host processor and allows it to support:

United States Tel. + 1 602 867 6259 Fax. + 1 602 867 6290
Asia/Pacific Tel. + 65 482 1411 Fax. + 65 482 0240

IBM, AT, OS/2, and MicroChannel are all registered trademarks of the International Business Machines Corporation — XGA is a trademark of IBM Corp. — Microsoft Windows is a registered trademark of Microsoft Corp.
IBM ARCHITECTURE IN SILICON EXCLUSIVELY FROM SGS-THOMSON

- 1, 2, 4, and 8 bit pixel and bit block transfers
- line draw
- area fill
- logical and arithmetic pixel mixing
- map masking
- scissoring
- X, Y axes addressing

FULL SOFTWARE SUPPORT is offered for the IBM compatible XGA chipset with the following drivers available:

- DOS Application Interface (DOS AI)
- OS/2 Presentation Manager (OS/2 PM)
- Windows 3.0
- Double Byte character set

Plus a programmer's guide so you can develop your own BIOS software.

AVAILABLE NOW
Yes, the standard IBM MicroChannel Architecture-compatible XGA chipset is available right now. Just call or fax one of the SGS-THOMSON locations listed below and get details on delivery and price.

Europe Tel. +33 1 4740 7506 Fax. +33 1 4740 7910
Japan Tel. +81 3 280 4125 Fax. +81 3 280 4131

SGS-THOMSON MICROELECTRONICS
access to technology

CIRCLE NO. 85
Why Settle for 1/2 an '040 Board?

You've chosen the '040 because you need maximum performance in your VME system. But look carefully, because other Single Board Computers may only give you only half of what you expected from the '040.

Compare Synergy's SV430 performance to any other SBC. Compare bus speed, MIPs, support, flexibility, documentation, reliability, I/O intelligence or any spec you can think of. We think you'll find the same thing we did—the SV430 outperforms every other SBC on the market by as much as 150%.

Surprisingly, this kind of quality won't cost you any extra, because Synergy products lead in another important area—value. At Synergy, you don't have to pay a premium price for premium performance.

Let us show you just how far ahead your system can be with a Synergy processor board. Call us today, and get the whole '040 story.

Compare our specs. Synergy is superior across the board!

<table>
<thead>
<tr>
<th>VME Transfers</th>
<th>DRAM Burst Rates</th>
<th>DRAM Random Accesses</th>
<th>'020/'030 Compatibility</th>
<th>Product Warranty</th>
</tr>
</thead>
<tbody>
<tr>
<td>66 MB/s</td>
<td>50 MB/s</td>
<td>50 MB/s</td>
<td>32 MB/s</td>
<td>Synergy backs the reliability of its SBCs with a two year standard warranty. Force and Motorola only offer you one.</td>
</tr>
<tr>
<td>15 MB/s</td>
<td>50 MB/s</td>
<td>50 MB/s</td>
<td>32 MB/s</td>
<td></td>
</tr>
<tr>
<td>5 MB/s</td>
<td>50 MB/s</td>
<td>50 MB/s</td>
<td>32 MB/s</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

Even normal 32-bit transfers race at 33 MB/s. That's 200% faster than Force or Motorola.

I/O Modules

Synergy's EZ-Bus modules are compatible with our entire line of SBCs. This means Synergy's current line of 12 intelligent I/O modules are immediately available for the SV430 — today. No other vendor comes close for selection, functionality or availability.

Data from Motorola MVME165 data sheet dated 2/90. and Force CPU-40 data sheet A1 Rev. 1. DRAM measurements shown are with parity. VMEbus transfers are to a 68010 slave.

VME64 is a trademark of Performance Technologies, Inc.

Synergy Microsystems, Inc., 179 Calle Magdalena, Encinitas, CA 92024 (619) 753-2191 FAX: 619-753-0903

CIRCLE NO. 86

EDN November 21, 1991
MCS-96 FAMILY

AVAILABILITY: Now for all devices.
COST: $5 to $25.
SECOND SOURCE: None.

Description: Highly integrated, high-performance CMOS 16-bit microcontroller combining 16-bit CPU with extensive I/O handling. On-chip memory includes as much as 16 kbytes of ROM/one-time programmable EPROM, 488 bytes of register RAM, and 256 bytes of code RAM. I/O capabilities include as much as 10 channels of high-speed I/O, ten 8-bit A/D converters, seven 8-bit I/O ports, and a watchdog timer. The KC and KR families also include a high-speed peripheral transaction server (PTS).

HARDWARE -- CHARACTERISTICS -- SOFTWARE

I—DATA-MANIPULATION INSTRUCTIONS
8- and 16-bit signed and unsigned arithmetic in binary, including multiply and divide.
Logicals.

II—DATA-MOVEMENT INSTRUCTIONS
Addressing modes include direct, immediate, indexed, indirect, and indirect with autoincrement.
Load and store, push and pop.

III—PROGRAM-MANIPULATION INSTRUCTIONS
Has calls, jumps, and returns.
Conditional jumps upon Boolean functions of flags within ±128 bytes of instruction.
Iteration control of loops.

IV—PROGRAM-STATUS-MANIPULATION INSTRUCTIONS
Zero, sign, overflow, carry, overflow trap, interrupt enable, and sticky bit (records previous value of carry during right shifts).
Can set and clear some bits.

Specification summary: 16-bit μC with split-memory architecture; 8-kbyte ROM or EPROM and 232 bytes of register-file RAM on 8096BH, 8097BH, and 8098; the 8097JF adds another 8 kbytes of ROM or EPROM and 255 bytes of RAM. External memory expandable to 64 kbytes with data-bus dynamically programmable as 8 or 16 bits. Register-to-register architecture with ALU operating directly on register file. Has 8-channel, 10-bit A/D converter; four 16-bit software timers; PWM output; five 8-bit I/O ports; full-duplex serial port; and high-speed pulse I/O ports. 16 x 16-bit multiply as fast as 1.75 11-sec and 32/16-bit divide as fast as 3 11-sec.

Average instruction executes in 500 to 1000 nsec.

HARDWARE -- SUPPORT -- SOFTWARE

ICE-196HX ($13,250) and ICE-196MX ($10,250) advanced emulators, as well as ICE-196PC/KB ($3500) PC-based emulator. Programming support for EPROM versions supplied through Intel's line of universal PROM programmers as well as third-party programs from companies such as Data I/O, Stag, and Elan.
Evaluation Boards: Intel offers boards for many of the devices.
From Intel: Macroassembler (ASM-96), PL/M-96, and C-96 compilers. PL/M and C compilers supply hardware-control features such as interrupts. Each software package includes relocation/linkage utility (RL-96); library-management utility (LIB-96); object-to-hex conversion utility (OH-96); and FPAL-96, a 32-bit floating-point utility. Software packages run on IBM PCs and compatible computers. $750 for a single-user license. Intel offers PC-based ACE196 expert system software (free), an interactive learning tool for the architecture. The company also offers 8051 assembly-language translators for free.

From Archimedes (San Francisco, CA): ANSI C-8096 compiler with additional features, such as control of interrupt. Hosted on IBM PC ($895), MicroVAX ($3995), and VAX ($5995).
From Cybemetic Micro Systems (San Gregorio, CA): Graphics programming and simulation aids, which run on IBM PCs ($295 and $995, respectively).
HARDWARE

- **RESET**
- **CLOCK GEN**
- **IDLE MODE**
- **WATCHDOG LOGIC**
- **CAPTURE REG (T)**
- **TIMERS (T)**
- **UART**
- **MICROWIRE PLUS**
- **INTERRUPT**
- **PORT 1**
- **PORT A**
- **PORT B**
- **PORT P**
- **PORT D**

- **16-BIT ALU**
- **4K ROM**
- **256 RAM**
- **16-BIT ADC**
- **8-CHANNEL ADC**

CHARACTERISTICS

- **Instruction Set**
- **Arithmetic**
- **Bit Manipulation**
- **Addressing Modes**
- **Data Movement**
- **Program Manipulation**

SOFTWARE

- **CROSS-ASSEMBLER**
- **C COMPILER**
- **GENERAL MATH PACKAGES**
- **COMMUNICATIONS SUPPORT**
- **APPLICATION SUPPORT**
- **COPIES**

HARDWARE SUPPORT

A designer's kit is available for less than $500. Supplier's HPC development system costs approximately $7000 for the HPC family. A high-end development system will be available from Hewlett-Packard as part of the HPC64700 in 1990. Both development systems can be used in conjunction with various hosts like IBM PC/ATs or HP9000 Series 300s.

SOFTWARE SUPPORT

Cross-assembler and C compiler to run on IBM PC. VAX (Unix/VMS) support is available, as is a symbolic debugger. Floating-point math and general math packages are currently available. Extensive application software is available for ISDN and SCSI.
WE'RE BREAKING NEW GROUND
BY MAKING IT EASY TO PUT
SCSI ON THE MOTHERBOARD.

Introducing Adaptec's new AIC-6260.

You're already a big believer in the performance and
connectibility of SCSI. But you're also digging around
for an uncomplicated way to design-in SCSI to your
AT motherboard. Well... Eureka! Now with Adaptec's
new AIC-6260, you've just hit pay dirt.

After all, it makes a lot of sense that a single-chip
solution is easier to design-in than multiple chip pack­
ages. They're also more reliable. And take up less real
estate. Plus, since we've built the AT bus in, designing
SCSI in is as easy as connecting signal lines dot-to-dot.

What's more, we get you to market in the fastest
possible time. That's because industry-standard,
Adaptec-developed SCSI software drivers and BIOS
are ready and available. For all major peripherals—
under all major operating systems. All this, and a
complete design-in package, too. Which means, you
can now afford to design the performance and connec­
tivity of SCSI in your system as a standard feature.

So step on it. And call us at 1-800-227-1817, ext. 52
today. We think you're going to really dig it.

© 1991 Adaptec, Inc.
Intel has given designers another exciting product breakthrough. This time it's Intel's i960™ SA/SB 32-bit embedded processors -- the products that let you design-in high performance in cost-sensitive applications.

With a full 32-bit internal architecture and a 16-bit data bus, the i960 SA/SB processors provide more performance than any other 16-bit embedded processor. And they're part of the complete i960 family, which spans 5 to 66 MIPS while preserving software compatibility.

Hamilton/Avnet has the i960 SA/SB processors and evaluation boards in stock, and the development tools to start your design now! From compilers and simulators, to debuggers and emulators, we offer the development tools you need to take full advantage of your design, while reducing time to market.

So get high performance, at a cost you'll be thrilled about with Intel's i960 SA/SB and development tools. For the Hamilton/Avnet branch nearest you or further information, call toll free, 1 (800) 442-6458.

Experience 32-bit RISC Performance in Your 16-bit System at a Cost That'll Thrill You
Availability: Now.
Cost: $25 (10,000)
Second source: SGS-Thomson.

Description: The 80C166/83C166 is a 16-bit microcontroller for real-time applications. It uses a pipelined architecture and performs 8-, 16-, and 32-bit arithmetic and bit, byte, and word manipulations. You can freely allocate, within the internal RAM, any number of register banks with as many as 16 general-purpose registers. An interrupt controller with a peripheral-event controller provides fast response to external events.

Siemens Components Inc
Integrated Circuits Div
Phone (408) 980-4516
For more information, Circle No. 378

Status: Siemens claims its 16-bit modular design works well in automotive, industrial-control, and data-communications applications. The 80C166 uses the vendor’s experience with highly integrated derivatives of the 8051. Changing peripheral modules and on-chip RAM and ROM sizes to suit particular applications will help the family grow.

Hardware notes:
1. The peripheral event controller services peripherals independent from the CPU. This controller module acts as an interrupt-driven DMA function between the CPU and peripherals.
2. The 80C166 is a task-oriented machine. The programmable interrupt priorities, a number of hardware and software traps, fast interrupt response time, and programmable register-bank allocation allow fast-task switches.

Hardware support:
Siemens supplies an 80C166 evaluation board with monitor and an emulator based on a bond-out chip. The board uses the IBM PC as a host. From others: Kontron supplies a full-featured emulator using the bond-out chip. Ertec supplies an EPROM emulator and an evaluation board. Several other third-party vendors support the family with hardware products.

Software:
From Siemens: A development package that includes a macro assembler, linker, locator, and library. A C compiler for ANSI standard-compatible C with additional support for 80C166-specific features. A software simulator that can simulate on-chip peripherals and an interrupt system allows debugging and software development. All software tools are IBM PC-based and are currently available.

From others: Several companies supply tools such as assemblers, compilers, and real-time operating systems. Contact the chip vendor for more information.

Hardware characteristics:

Software

I—Data-manipulation instructions
- 8-, 16-, and 32-bit signed and unsigned arithmetic instructions including fast multiply and divide. Multiple-bit shift and rotate in one machine cycle. Direct bit-to-bit manipulation in internal RAM. Various loop-control instructions.

II—Data-movement instructions
- Move instructions of byte or word in direct, immediate, indexed, and indirect with autoincrement or -decrement addressing modes. Flexible byte-to-word movements, system-stack and user-stack instructions.

III—Program-manipulation instr
- Intersegment and intrasegment calls and jumps. Conditional jumps on 16 different conditions (including semaphore support). Software traps.

IV—Program-status-manip instr
- You can change the current CPU priority to mask reactions on interrupts of lower priority. Hardware traps are issued on detected errors. A system-configuration register allows adjustment of the µP to various system requirements.

Specification summary: Single-chip microcontroller with external bus interface, as much as 32 kbytes of ROM or flash EPROM, and 1 kbyte of RAM. Selectable 8- or 16-bit external data bus with programmable wait states or ready function. Chip uses 40-MHz crystal to run at 20 MHz. Most instructions execute in one machine cycle (100 nsec). Interrupt response takes 3 to 5 cycles. You can allocate 32 interrupt sources to 16 priority levels. The peripheral-event controller steals cycles to implement fast, asynchronous data transmissions. The capture/compare unit consists of two 16-bit timers with 400-nsec resolution. A general-purpose timer unit contains three 16-bit up/down timer/counters with 400-nsec resolution. Another general-purpose timer unit offers two 16-bit up/down timer/counters with 200-nsec resolution. The 80C166 provides 76 I/O lines in four 16-bit bidirectional ports, one 2-bit bidirectional port, and a 10-bit input port. Two USART channels provide 625k-baud serial communication. An on-board ADC provides 10-bit resolution and 9.7-µsec conversion time.
HARDWARE

1750A

AVAILABILITY: Now from Allied-Signal Microelectronics Center, GEC-Plessey Semiconductors, LSI Logic, and United Technologies Microelectronics Center (UTMC).

COST: See Table

SECOND SOURCE: None. Each vendor sells its own implementation. Core: LSI Logic offers its 64500 as a hard macro

Description: MIL-STD-1750A defines instruction-set architecture for airborne computers. The standard leaves implementation to discretion of chip vendors. Allows use and reuse of available software—though obviously hardware support is implementation dependent. Radiation-hardened and 883C class-S versions of many 1750A implementations are available. Core: LSI Logic offers its 64500 as a hard macro

SECOND SOURCE: None. Each vendor sells its own implementation. Core: LSI Logic offers its 64500 as a hard macro

Status: Allied-Signal is in production with its 1750A-1 and -3 devices. Both are available to a total dose rate of 100,000 Rads (Si) and single-event upset of less than 4E-5 upsets/device-day in geosynchronous orbit. GEC-Plessey offers a 3-chip version available to Class S and 883C, a 1-chip implementation is sampling now. UTMC’s single-chip implementation is available in either 100,000 and 1,000,000 Rads (Si) total dose. All vendors offer a memory-management unit that expands the available address space from the specified 64 kbytes to 1 Mbyte.

HARDWARE CHARACTERISTICS

SOFTWARE

I—DATA-MANIPULATION INSTRUCTIONS

Add, subtract, multiply, divide, and compare. Logicals and shifts. The instructions also provide bit-manipulation capabilities such as set, reset, and test. Single- and double-precision fixed-floating-point and extended floating-point formats

II—DATA-MOVEMENT INSTRUCTIONS

Instructions let you move data from register to memory, memory to register, between registers, and to the stack. Loads and stores in all formats plus test and set-bit operations.

III—PROGRAM-MANIPULATION INSTR

Conditional and unconditional jumps and branches. Calls are also supported. Stack management instructions suitable for high-level languages. Handles 16 levels of prioritized interrupts.

IV—PROGRAM-STATUS-MANIP INSTR

Emulation-mode status register accessible through I/O instructions. Instructions for accessing status, interrupt-mask, and fault registers.

Specification summary: The Allied-Signal version is a single-chip implementation that includes timers, counters, a hardware multiply, and a floating-point unit. The LSI Logic L64500 1750A implementation has a 16-bit CPU, expandable to 32 bits depending on the operation. The L64550 includes MMU with memory expansion to 1M words, block-protect unit, memory-fault status register, bus-arbitration unit with 6 bus masters, start-up ROM interface, I/O port, trigger-go counter, and other options. GEC-Plessey’s MAS281 is a radiation-hardened 3-chip silicon-on-sapphire (SOS) module. The MAS31750 is a single-chip SOS version.

Hardware notes: 1. Diagram is for the UTMC 1750AR. Functions as a stand-alone RISC processor providing 8 MIPS at 16 MHz. In the 1750A operation mode, a throughput of 750 kIPS at 16 MHz is achieved using the DAIS mix. 2. GEC-Plessey’s implementations are radiation hardened and offer full performance over the military temperature range. The MAS281 3-chip version achieves 700 kIPS DAIS throughput at 20 MHz where the MAS1750 1-chip version reaches 3 MIPS DAIS at 22 MHz.

Representative 1750A microprocessors

<table>
<thead>
<tr>
<th>Part number</th>
<th>Vendor Technology (883C) Price (993C)</th>
<th>Vendor Technology (883C) Price (993C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BX1750A</td>
<td>Allied Signal Microelectronics CMOS</td>
<td>$750 (100)</td>
</tr>
<tr>
<td></td>
<td>LSI Logic CMOS</td>
<td>$1334 (1000) $4406 (1000)</td>
</tr>
<tr>
<td>L64550</td>
<td>Marconi CMOS/SOS</td>
<td>$1400 (1000) $8000 (20)</td>
</tr>
<tr>
<td>MAS281</td>
<td>Marconi CMOS/SOS</td>
<td>$2000 (1000) $10000 (20)</td>
</tr>
<tr>
<td>MAS31750</td>
<td>United Technologies Microelectronics</td>
<td>$565 (1000)</td>
</tr>
<tr>
<td>1750AR</td>
<td>CMOS on EPI</td>
<td>$1976 (100)</td>
</tr>
</tbody>
</table>

SUPPORT

Representative 1750A microprocessors

Assemblers and compilers in C and Ada are available from several outside sources. Mikros Systems offers high-level debug software for its single-board computer/IBM PC system.

UTMC offers a software package to aid in the development and debugging of system software and hardware. The software tool kit consists of a RISC or 1750 monitor, along with an interactive RISC simulator.

For More Information on Lambda Electronics Circle #112
Who's Behind The Simulation Acceleration Movement?

MENTOR GRAPHICS
SYNOPSYS
DAZIX, AN INTERGRAPH COMPANY
VALID
VANTAGE
GENRAD

LSI LOGIC
VLSI TECHNOLOGY
COMPASS
NEC
SEATTLE SILICON
EXPERTEST

And Who's Leading It?

Zycad

EDN November 21, 1991
CIRCLE NO. 92
147
HIGH PERFORMANCE TECHNOLOGY

THAT SHEDS A NEW LIGHT.

In-depth VLSI experience and process technology enable MHS to offer 0.7 µ CMOS/BiCMOS devices TODAY! This is the driving force behind our balanced product offering.

The MHS OPEN ASIC concept, supported by market leading CAD tools, offers smart solutions for system integration: composite/gate arrays, sea-of-gates, PLD replacement, standard cells and full custom devices.

Our range of application-specific DATACOM products includes voice combos, network protocol controllers and compressed imaging.

And when it comes to fast and/or very low power SRAMs, FIFOs or Dual Port RAMs, we can provide versions down to 8ns access time or down to 1µA stand-by.

We have chosen the RISC 32 bit SPARC architecture to produce chip sets and embedded solutions, in addition to 8 bit microcontrollers built around an 80C51 core.

MHS HIGH RELIABILITY products and services are an integral part of today's most sophisticated programs in Aerospace, Defense and Avionics, based on RAQ1/AQAP1, 883C, CECC, ISO 9001 and SCC certifications or standards.

Want more information about our service-oriented organization and highly skilled teams?

Call us today, we'll send you our brochure.

Tel. : 800 554 44 50
TRANSPUTER FAMILY

AVAILABILITY: Now for all devices except the T9000, which should ship in the first quarter of 1992.

COST: In 1000 qty PGAs: T222, $32; T22, $31; T400, $50; T425, $93; T801, $248; T805, $150.

SECOND SOURCE: None.

Description: The Transputer family is a range of software-compatible 16- and 32-bit µPs. T2, T4, and T8 Transputers have a CPU, on-chip SRAM (2 or 4 kbits), timers, external memory interface, and 2 or 4 serial links. The links are 20-Mbps DMA channels into the Transputer memory system and allow software processes running on independent Transputers to communicate directly. T8xx devices have an on-chip 64-bit FPU. The T9 has a 32-bit CPU, a 64-bit FPU, 16 kbytes of cache memory, a communications processor, and four 100-Mbps serial links.

HARDWARE CHARACTERISTICS

SOFTWARE

1 -- **DATA-MANIPULATION INSTRUCTIONS**

Integer arithmetic, including multiply and divide. Logicals, shifts, and comparisons. T8 has on-chip IEEE floating-point add and subtract, multiply and divide, and square root, both 32 and 64 bits.

2 -- **DATA-MOVEMENT INSTRUCTIONS**

2-level priority and time-sliced scheduling with message passing and time events using built-in hardware. One level of interrupt.

3 -- **PROGRAM-MANIPULATION INSTR**

4 -- **PROGRAM-STATUS-MANIP INSTR**

Error flag detects overflow. Test, set, clear, stop-on-error instructions. One error flag per task priority level. Instructions for checking array bounds.

Specification summary: Family of 16- and 32-bit µPs designed for multiprocessor communication links as well as to frequently used data.

Software notes:

1. Frugal 4-bit operation code allows only 16 basic instructions. Most of these are movement types (category II) involving one workspace-pointer relative 4-bit address and used to push and pop data on and off evaluation stack.

2. Two priority-ordered process queues are each supported by front and back registers, indicating a linked list of processes ready to run. Event-based multitasking is fully supported by a real-time kernel in microcode.

HARDWARE SUPPORT

Inmos supplies compilers for hosts such as IBM and NEC PCs, PS/2, VAX (VMS), and Sun systems. ANSI C, C++, Fortran, Ada, and Occam are the languages that Inmos supports. Available software-debugging tools include network debugger, breakpoint, and trace facilities. Third-party vendors support operating systems such as Chorus, Helios, Linda, and Transdhis and real-time kernels VRTX and C-Executive.
Z8000/Z16C00

AVAILABILITY: Now for 6- and 10-MHz NMOS Z8000 and for 10- and 16-MHz CMOS Z16C00.

COST: $4.20 (10k) for Z8000 in PLCC package.

CORE: Zilog has both Z8000 and Z16C00 as cores in its in-house ASIC library and plans to use Zbus for its systems on silicon. The company says that 160 x 160-mil Z8000 core is small enough to leave room for other functions on practical 400 x 400-mil ASIC.

Description: One of the first µ.Ps to have architectural features of a modern minicomputer. Original 16-bit Z8000 comes in 40-pin package for addressing 64-kbyte memory or in 48-pin package for addressing 8-Mbyte memory. Said by many industry observers to be architecturally more powerful than 8086 but less powerful than 68000. Supplier says military has found it to be highest performance 16-bit µ.P. offering best CPU speed, interrupt handling, character-string search, and block moves.

Hardware notes: Supplier has companion peripherals suitable for both processors: For Z8000, a range of DMA, FIFO, data ciphering (NBS), communications, and counter/timer parts.

For Z16C00, a system general-logic unit—16C20—contains memory support, DMA interrupts, and I/O. For 16C01, a CMOS dual MMU90210 addresses 128 segments compatible with the 8010 NMOS MMU.

16/32-BIT NMOS AND CMOS

Zilog Inc
Phone (408) 370-8000
For more information, Circle No. 384

Status: The Z8000 has found most acceptance in real-time control applications, particularly military, according to Zilog. The company has added the Z16C00 16-bit CMOS microcomputer to the family for real-time embedded control applications. The company is licensing its 16-bit core for customer applications.

Hardware notes: Supplier has companion peripherals suitable for both processors: For Z8000, a range of DMA, FIFO, data ciphering (NBS), communications, and counter/timer parts.

For Z16C00, a system general-logic unit—16C20—contains memory support, DMA interrupts, and I/O. For 16C01, a CMOS dual MMU90210 addresses 128 segments compatible with the 8010 NMOS MMU.

From Zilog: Real-time application software (IBM PC based). C compilers and cross-assemblers. Contact supplier for names and addresses of software-support vendors.
Find DSP bugs faster and easier with a Deemax emulator.

If it's your job to debug TI's TMS320C2x* Digital Signal Processors, here is a way to make it easier, faster, and more affordable: get yourself the compact, stand-alone Deemax P-ICE DSP320C25 in-circuit emulator.

High speed, high productivity.

You'll get up to 50 MHz real time emulation with zero wait state — speed others can't match — and productivity features that make Deemax your best value in in-circuit emulators.

There are three possible user interfaces — a Basic-like command line structure, pull-down menus or mouse. From the command line, emulation control, file management and windows commands are all possible; loop and conditional control, expressions, line edit, etc. are all supported. The occasional user will appreciate the on-screen HELP and clear pull-down menus.

And everyone will approve of automatic command line input prompts which highlight the next required input — with real time syntax verification — as you type.

We do windows. And More.

The DSP320C25 lets you open as many as eight scrollable windows at a time, overlap them, size them and put them where you want them. And to make it easy to manipulate all those windows, to pull menus, and for quick setting of breakpoints — we support both Microsoft and Mouse System mouse modes.

Among other standard features you wouldn't expect on such an affordable emulator: 128K word emulation memory, a 4K real time trace buffer, five hardware breakpoints, eight hardware levels for a sequence trigger, a Deemax cross assembler and an exceptional software interface.

Free demo disk.

To get the full story on the DSP320C25 as well as our in-circuit emulator for the 8051 family — plus a free demo disk — call, write, fax or circle the reader service number.

If it's your job to find hard-to-find bugs, find Deemax.

DSP bugs can't hide from Deemax.

Deemax Technology, Inc.
12611 Hiddencreek Way, Suite G
Cerritos, CA 90701 U.S.A.
(213) 921-8224 FAX (213) 921-9315

A high-level language debugger for C will be available during the first quarter of 1992.
FOR EMULATING THE MOTOROLA 68302, 68332*, AND 68HC16 ... IT'S THE ADVENTURES OF

Pentica

In the complex world of microcontrollers, a lot of companies make a lot of claims. It can be confusing. How do you avoid a poisoned apple? Pentica suggests that you ask a few basic questions. The following seven might appear gigantic to some, but we can help you cut them (and your development problems) down to size.

1. Setting a true execution breakpoint on the 68302 is difficult but necessary. Is the emulator precise enough to break only on execution of instruction rather than when it's fetched from the program?

2. Especially if you're using a high-level debugger, will the execution breakpoint you set occur before or after an instruction? And is the number of breakpoints unlimited?

3. With the bewildering situations presented by multi-use pins, the 68332 and 68HC16 challenge an emulator to be nearly clairvoyant. For instance, when using port E as I/O instead of bus control, how much emulator function is retained?

4. Can the trace buffer start and stop...then start again? Can you qualify the trace to critical functions to ensure maximum use of the trace buffer?

5. Is the emulator's event system independent of the breakpoints? Or do you have to reconfigure each situation, losing flexibility?

6. How flexible is the sequential and combinational logic of the emulator's event system? Can one event sequence re-arm another? This capability is critical when attempting to isolate spurious fault conditions.

7. We'd be happy to give you our answers to these and any other questions you might have. Give us a call. We're here to help!

PENTICA
IN-CIRCUIT EMULATORS
We love to solve puzzles!

Pentica Systems, Inc.
One Kendall Square
Building 200
Cambridge, MA 02139 USA
(617) 577-1101
Fax: (617) 494-9162

Pentica Systems, Ltd.
Oaklands Park
Wokingham, Berkshire
RG11 2FE UK
(0734) 792101
Fax: (0734) 774081

*Support for the 68332 will be available Q2 1992.
HARDWARE --CHARACTERISTICS-- SOFTWARE------

Cost: The 34010 costs $23 (10k), the 34020 costs $89 (10k), and the 34082 floating-point unit costs $125 for 32-MHz parts and $350 for 40-MHz samples.

Second source: Under active consideration.

Description: This 32-bit CMOS µP family is optimized for graphics-display systems. Features built-in instruction cache and ability to simultaneously access memory and registers. In addition to regular µP instructions, it has specialized instructions for pixel manipulation. 1-Gbyte address space is bit addressable on bit boundaries using variable-width data fields (1 to 32 bits). The 34010 has a multiplexed, external 16-bit address/data bus; the 34020 is a full 32-bit machine. The 34020 is upwardly object-code compatible with the 34010 and features additional graphics-specific instructions. The 34082 is a graphics floating-point coprocessor for the 34020.

HARDWARE ------SUPPORT---- SOFTWARE-------

Status: Despite this µP family’s specialized slant toward CRT graphics, it does have a general-purpose Von Neumann architecture and instruction set. Also, some of its attributes can be equally applied to other, nongraphics applications. In particular, the µP can do rapid bit manipulation of a large local-address field. A number of IBM PC-based board-level products incorporate this part. X-Window terminals are an example of an application in which this family’s graphics and general-purpose capabilities are utilized. One nongraphic area users are exploring is industrial control. In this area, the 340X0’s bit manipulation and low cost relative to other 32-bit µPs are attractive, according to TI (even for consumer-oriented uses such as arcade games).

Hardware notes:
1. Diagram represents 34010.
2. Added graphics features are embodied in the second 16 x 32-bit register file and among 28 16-bit I/O control registers. They allow programmable pixel and pixel-array processing for both monochrome and color systems of variable pixel sizes. Hardware incorporates 2-operand raster operations with Boolean and arithmetic operations, x-y addressing, window clipping, window pick operations, 1- to n-bit/pixel transforms, transparency, and plane masking.

Hardware notes:
1. Diagram represents 34010.
2. Added graphics features are embodied in the second 16 x 32-bit register file and among 28 16-bit I/O control registers. They allow programmable pixel and pixel-array processing for both monochrome and color systems of variable pixel sizes. Hardware incorporates 2-operand raster operations with Boolean and arithmetic operations, x-y addressing, window clipping, window pick operations, 1- to n-bit/pixel transforms, transparency, and plane masking.

Software notes:
1. Diagram represents 34010.
2. Added graphics features are embodied in the second 16 x 32-bit register file and among 28 16-bit I/O control registers. They allow programmable pixel and pixel-array processing for both monochrome and color systems of variable pixel sizes. Hardware incorporates 2-operand raster operations with Boolean and arithmetic operations, x-y addressing, window clipping, window pick operations, 1- to n-bit/pixel transforms, transparency, and plane masking.
68000 FAMILY

8/32-BIT, 16/32-BIT, 32/32-BIT NMOS AND CMOS

AVAILABILITY: Now for 68EC000 at 8 MHz, 68EC020 to 25 MHz, 68EC030 to 40 MHz, 68000 at 12 MHz, 68HC000 to 16 MHz, 68HC001 to 16 MHz, 68020 to 33 MHz, 68030 to 50 MHz, and 68040 at 25 MHz. The 20- and 25-MHz 68EC040 is currently sampling and should go into production by early 92.

COST: In 10,000 qty, prices for 68EC0XO devices range from $2.95 for 8-MHz 68EC000 to $140 for 20-MHz 68EC040. The 68000 family, in similar quantities range from $4.10 for an 8-MHz 68000 to $495 for a 25-MHz 68040. Also in 10,000 qty, the 68300 family ranges from about $17 to $30 for 16.7-MHz parts.

SECOND SOURCE: Hitachi, SGS-Thomson, and Signetics/Phillips all licensed with mask interchange for 16-bit parts. No second sources for 68020, 68030, or 68040 or any of the derivative families (68300 or 68ECOXO).

CORE: Motorola is using core with a mix of peripheral functions and glue logic in its 68300 family for embedded control. Signetics/Philips has the core in its ASIC library.

Description: 68000 architecture combines flexible 32-bit register set and large linear address space with powerful instruction set and flexible addressing modes. The 68040 is a full 68000-compatible µP containing an integer unit, floating-point unit (FPU), MMU, and instruction and data caches. The 680x0 family will get a boost from its 68300 derivatives in embedded control. 68300 family based on 68000 core and is software compatible. The 68ECOXO family includes lower-cost versions of the 680x0 designs aimed at maintaining Motorola's strength in embedded control in the face of increased competition from RISC-based alternatives.

Motorola Microprocessor Products Group
Phone (512) 891-2000
For more information, Circle No. 386

Status: The success of the 68000 family is largely due to the Apple Macintosh II and the family's popularity in Unix-based workstations. Additionally, the family has enjoyed great success in midrange embedded control applications, which are typically higher volume but lower visibility than workstations. As workstations shift toward RISC-based CPUs, Motorola has adapted well by strengthening the family's focus in embedded control. Both the 68300 family and the 68ECOX0 family result from this focus.

HARDWARE

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I—DATA-MANIPULATION INSTRUCTIONS</td>
</tr>
<tr>
<td>Arithmetic, including multiply and divide (signed and unsigned).</td>
</tr>
<tr>
<td>Logicals, rotates, and shifts.</td>
</tr>
<tr>
<td>Can handle bits, BCD nibbles, bytes, short (16 bits) and long (32 bits) words.</td>
</tr>
<tr>
<td>Floating-point coprocessors 68881/2 available.</td>
</tr>
<tr>
<td>II—DATA-MOVEMENT INSTRUCTIONS</td>
</tr>
<tr>
<td>Five basic address modes are register direct, register indirect, immediate, absolute, and program-counter relative. Postincrementing, predecrementing, offsetting, and indexing can be added to these models.</td>
</tr>
<tr>
<td>Can use eight 32-bit address registers as indexes or stack pointers. The eight 32-bit data registers can also serve as indexes.</td>
</tr>
<tr>
<td>III—PROGRAM-MANIPULATION INSTR</td>
</tr>
<tr>
<td>Branch and jump to subroutine. Branch conditionally.</td>
</tr>
<tr>
<td>IV—PROGRAM-STATUS-MANIP INSTR</td>
</tr>
<tr>
<td>16-bit status register is software accessible.</td>
</tr>
<tr>
<td>Sophisticated trap operations help user debug programs.</td>
</tr>
<tr>
<td>Trace mode.</td>
</tr>
<tr>
<td>V—SYSTEM-CONTROL INSTRUCTIONS</td>
</tr>
<tr>
<td>Privileged instructions for operating systems and multiprocessor communication.</td>
</tr>
</tbody>
</table>

SOFTWARE

<table>
<thead>
<tr>
<th>SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VersaDOS real-time operating system, system V/68 OS, CP/M-68K OS, concurrent DOS-68K OS, and VRTX real-time OS ($6775 from Hunter Systems). Unix support from Motorola includes direct ports of Unix System V. X compiler and VME/10, X-C compiler VME/10, and Exomax for VAX/780 available.</td>
</tr>
<tr>
<td>New type of support software lets you run MS-DOS (8086) programs using emulation from Phoenix (Norwood, MA) and Insignia (London, UK) or by using binary translation from Hunter Systems (Palo Alto, CA).</td>
</tr>
</tbody>
</table>

Specification summary: 68040 is the highest-performance 68000 family member. This device is a 32-bit CMOS virtual-memory processor with multiple concurrent execution units. You can access the 4-way set-associative 4-byte instruction and data caches simultaneously. The caches are organized in 64 sets of four 16-byte lines. The autonomous nature of the caches allows instruction-stream fetches, data-stream access, and third external access to occur during instruction execution. The 68040's parallelism allows multiple instructions that don't require external access to execute concurrently while the processor executes an external access for a previous instruction. The 68040 provides multithreaded support and multiprocessor support. Additionally, the processor can snoop the external bus during accesses by other bus masters to maintain coherency between the 68040 caches and external memory systems.

HARDWARE

<table>
<thead>
<tr>
<th>SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD300 hardware/software development station ($15,000 to $20,000) provides real-time emulation of 68000-family µPs with bus-state-analyzer support and source-level debugging. MEX886EC8 educational computer board is based on 68000. VM04 is a 68020-based 32-bit Versamodule interconnected within a target system using the 32-bit, asynchronous, Versabus interconnect standard. VME130 is a 68020-based, 32-bit VMEbus module using Eurocard mechanical format.</td>
</tr>
<tr>
<td>From third parties: Family widely supported by makers of universal µP development systems. Also, VMBus system architecture is used in a range of applications with more than 150 independent suppliers of compatible products.</td>
</tr>
</tbody>
</table>

Hardware notes: 1. Diagram of basic 16-bit 68000. Family offers growth path from 5- to 16- to 32-bit µPs. Performance results from multiple ALUs, 32-bit internal operation, and nonmultiplexed address and data buses.
2. Because the EC000 and EC020 removed some signals, these devices are not pin compatible with the 68000 and 68020. The low-end EC µPs use a 2-wire bus arbitration scheme rather than the 3-wire scheme of their predecessors. The EC000 also eliminates the synchronous 68000-style interface signals, but adds four supply pins for greater noise immunity. The EC020 reduced the address width to 24 bits (and eliminated 4 control signals (ECS, OCS, DBEN, and IPEND).
3. Both the EC030 and EC040 are pin compatible with the 030 and 040. Although the EC040 will not contain either the memory management unit (MMU) or the floating point unit (FPU) of the 040, the 68EC030 is simply a 68030 with a disabled MMU. Presumably, Motorola will redesign the EC030 and remove the MMU in the future.
4. Signetics/Philips 68070 includes 68000 CPU, two DMA channels, counter/timers, and an IC bus interface.

Text continued on pg 159
FOUR MODERN 19" RACK SOLUTIONS FROM THE PROFESSIONALS

One solution in detail:

Packaging for your electronics in a refined design. The solution: Doubleprorack, 19", 12 U".

Supply schedule in detail:
- Robust frame unit with distortion-resistant aluminium cross supports.
- Integrated hand rails along the sides (secure transportation even where installed loads are not uniformly distributed).
- 2 Covers with side vent slots and 1 rear panel (with cable cutout) in sheet steel (all parts removable using standard tools to provide efficient installation and servicing).
- All-glass door comprising single security-glass panel, with cylinder lock, prouding (visual inspection and a dust-protected installation).
- 19" Extrusions with T-slot for adjustable assembly with uniques spring nut.
- Levelling feet to ensure a stable base on uneven surfaces.
- 2 Pairs of chassis runners to support heavy chassis or mounting panels, adjustable height.

Dimensions (in mm)

<table>
<thead>
<tr>
<th></th>
<th>W x H x D</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>554.4 x 577.9 x 500</td>
</tr>
<tr>
<td>Internal</td>
<td>450 x 532.6 x 385</td>
</tr>
</tbody>
</table>

Order number: 1.244.541.3

How supplied: fully assembled

We are at your service, wherever you wish to purchase your enclosure. World-wide!

bfr 15.350,-
Knürr IV
Tel. 03-336.02.90
Fax 03-325.55.43

ff 2.560,-
Knürr s.r.l.
Tel. (1) 4377.85.85
Fax (1) 4339.02.10

£ 266,-
Knürr (UK) Ltd.
Tel. 0480-4961.25
Fax 0480-4963.73

SFR 2.998,-
Knürr Norge A/S
Tel. 02-19.89.00
Fax 02-19.89.66

SFR 660,-
Knürr AG
Tel. 01-825.07.07
Fax 01-825.08.03

US$ 480.20
Knürr USA Inc.
Tel. (800) 526-77.33
Fax (805) 5.64-83.71

DM 689,-
Knürr AG
Tel. (809) 420.04-0
Fax (809) 420.04-118

All prices exclusive of VAT, packing and carriage.
Toshiba Micros. Accelerate Time
Pull into Toshiba for unmatched product selection, service and support. After you’ve conceptualized your latest design and you’re ready to begin the long trip to market, be sure to fuel your silicon needs with Toshiba’s line of 298 varieties of 4-, 8- and 16-bit microprocessors, microcontrollers, as well as development tools.

Toshiba has over 100 4-bit microcontrollers to drive hundreds of consumer and industrial applications with high speed CMOS performance and on-chip ROM/RAM capability. We’re your second source for Zilog Z80 and Intel 8048/8085, as well as Motorola 68HC000, 68HC11 and 68HC05. And our advanced technology lets us offer you Z80- and 68HC000-based ASSPs, too.

Since Toshiba is one of the world’s largest CMOS micro manufacturers, you can count on our production and delivery to make your design/production cycle run smoothly. Our 20 years of experience in fueling fast production starts yields to none. We’re capitalizing on our landmark semiconductor process to propel our diverse 4-bit, 8-bit, 16-bit and future 32-bit micros.

Whenever you’re driving a new design, you can expect a smooth ride on the CMOST Expressway.

Call Toshiba today.

For technical literature, call 1-800-321-1718.

In Touch with Tomorrow

TOSHIBA

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

© 1991 Toshiba America Electronic Components, Inc. Product names and company names mentioned herein may be trademarks or registered trademarks of their respective companies.

CIRCLE NO. 95
NEC chip tantalum capacitors make it easy.

NEC chip tantalum capacitors deliver big three-way savings. Our surface-mount packages save precious board real estate. Standard 8 or 12mm tape supply formats, designed for automatic placement, minimize assembly time. And NEC caps are 100% burn-in for optimum reliability and greater MTBF.

NEC has 149 different types available for immediate shipment. Capacitance values range from 0.047 to 100µF and working voltages from 2.5 to 50VDC.

Contact your local NEC representative today and discover 149 ways to save space, time and trouble with surface-mount tantalum capacitors.

For fast answers, call us at:
UK Tel:0800-651933. Telex:826791. Ireland Tel:01-6794200. Fax:01-6794081. Hong Kong Tel:755-9008. Telex:54561. Taiwan Tel:02-719-2377. Telex:22372.
Korea Tel:02-551-0450. Fax:02-551-0451. Singapore Tel:02-253-8311. Fax:02-250-3583. Australia Tel:03-267-6355. Telex:38343.

CIRCLE NO. 96

EDN November 21, 1991
HARDWARE

2 kBYTES
STANDBY
RAM

TIME-
PROCESSOR
UNIT

CHIP
SELECTS

INTERMODULE
BUS

EXTERNAL
BUS
INTERFACE

COP

TEST

CLOCK

2 kBYTES
TIME-
PROCESSOR
UNIT

CHIP
SELECTS

INTERMODULE
BUS

EXTERNAL
BUS
INTERFACE

COP

TEST

CLOCK

Hardware notes:
1. Diagram reflects 68332, which uses 24 bits of address and 16 bits of data.
2. Among the peripheral functions offered with the family are a clock-generator module; twelve independent programmable chip selects that let you adjust block size, wait states, and autovectored to interrupt-service routines; and a time processor module that provides 16 orthogonal timer channels, which you can mix and match to build timers of many lengths; a queued serial module that provides both a full-duplex asynchronous serial-communications interface and a synchronous serial-peripheral interface transfers as much as 16 words without CPU intervention.

Softwar Notes:
1. CPU 32 is object-code compatible with the 68000 CPU. This processor also includes many of the features of the 68010 and 68020 processors.

Software Note:
1. CPU 32 is object-code compatible with the 68000 CPU. This processor also includes many of the features of the 68010 and 68020 processors.

From Motorola: Assembler, C-compiler, and SDL for PC and Macintosh hosts.

From others: Intral (Milwaukee, WI) offers cross-assemblers, C cross-compilers, and Modula-2 compiler for a variety of hosts including VAX/VMS, Unix, Apollo, Sun, HP, Mac, and PCs. Intermetrics (Cambridge, MA) also supports cross development on PCs, and VAX/VMS/Unix systems. Ready Systems (Dallas, TX) and SCG (San Jose, CA) offer real-time OSs. Microware (Des Moines, IA) offers OS9.
SERIES 32000

AVAILABILITY: Now.

COST: $11.50 to $600 (1000) (see table).

SECOND SOURCE: None.

CORE: National Semiconductor is using the 32000 as the basis for its application-specific embedded processors.

Description: A 32-bit µP family in which various models feature different-sized address and data buses. The 32-bit core processor is highly symmetric; that is, its instructions and addressing apply regularly to all registers, which vendor claims makes high-level-language compilers easier to write. It also has reputation for needing less memory space for programs. Some models offer instructions to support graphics and DSP. A slave processor interface lets you expand the CPU's capabilities.

HARDWARE CHARACTERISTICS SOFTWARE

<table>
<thead>
<tr>
<th>Device</th>
<th>DSP features</th>
<th>Bitstream support</th>
<th>On-chip peripherals</th>
<th>Buses</th>
<th>Cache</th>
<th>MMU</th>
<th>Clock rates</th>
<th>Price (1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32FX16</td>
<td>DSP accelerator</td>
<td>Microcode</td>
<td>DMA</td>
<td>24 address 16 data</td>
<td>None</td>
<td>No</td>
<td>15</td>
<td>$23.20</td>
</tr>
<tr>
<td>32CG168</td>
<td>Multiplier</td>
<td>Microcode and hardware</td>
<td>DMA interrupts</td>
<td>24 address 16 data</td>
<td>Multiplexed</td>
<td>No</td>
<td>15</td>
<td>$38.80</td>
</tr>
<tr>
<td>32GX320</td>
<td>Multiplier</td>
<td>None</td>
<td>DMA</td>
<td>32 address 32 data</td>
<td>Instruction and data</td>
<td>No</td>
<td>20</td>
<td>$83</td>
</tr>
<tr>
<td>32G032</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>32 address 32 data</td>
<td>Instruction and data</td>
<td>No</td>
<td>20</td>
<td>$58</td>
</tr>
<tr>
<td>32CG16</td>
<td>None</td>
<td>Microcode</td>
<td>DMA</td>
<td>24 address 16 data</td>
<td>Multiplexed</td>
<td>No</td>
<td>10</td>
<td>$11.50</td>
</tr>
<tr>
<td>32SF41</td>
<td>Multiplier</td>
<td>None</td>
<td>DMA interrupt</td>
<td>32 address 64 data</td>
<td>Instruction and data</td>
<td>No</td>
<td>25</td>
<td>$500</td>
</tr>
</tbody>
</table>

HARDWARE SUPPORT SOFTWARE

From National: SYS32/20 converts IBM PC/AT into a Series 32000/EP development tool (from $7000). Development/evaluation boards are also available for each of the processors. Tools run on both Sun-4 and HP9000 workstations.

From others: ISE support for all the Series 32000/EP processors is available from Hewlett-Packard. Various vendors also offer turn-key solutions and/or design support for National Semiconductor's processors. Contact Series 32000/EP Marketing for details.

Evaluations Boards: $1190 for the NS32FX16 and NSV-FX-CG-EDB; $1495 for the NS32CG160 and NSV-CG160-EDB; $2995 for the NS32GX320 and NSV-GX320-EDB; and $10,000 for the NS32SF41 and NSV-SF41EDB.

National Semiconductor Corp
Phone (408) 721-5000
For more information, Circle No. 388

Status: The vendor recently added the high-end Swordfish, which features DSP functions. Hardware and software integration techniques suit the family's processors for embedded applications such as page printers, facsimile machines, and multifunction office peripherals.

Series 32000/EP family chips

<table>
<thead>
<tr>
<th>Device</th>
<th>DSP features</th>
<th>Bitstream support</th>
<th>On-chip peripherals</th>
<th>Buses</th>
<th>Cache</th>
<th>MMU</th>
<th>Clock rates</th>
<th>Price (1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32FX16</td>
<td>DSP accelerator</td>
<td>Microcode</td>
<td>DMA</td>
<td>24 address 16 data</td>
<td>None</td>
<td>No</td>
<td>15</td>
<td>$23.20</td>
</tr>
<tr>
<td>32CG168</td>
<td>Multiplier</td>
<td>Microcode and hardware</td>
<td>DMA interrupts</td>
<td>24 address 16 data</td>
<td>Multiplexed</td>
<td>No</td>
<td>15</td>
<td>$38.80</td>
</tr>
<tr>
<td>32GX320</td>
<td>Multiplier</td>
<td>None</td>
<td>DMA</td>
<td>32 address 32 data</td>
<td>Instruction and data</td>
<td>No</td>
<td>20</td>
<td>$83</td>
</tr>
<tr>
<td>32G032</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>32 address 32 data</td>
<td>Instruction and data</td>
<td>No</td>
<td>20</td>
<td>$58</td>
</tr>
<tr>
<td>32CG16</td>
<td>None</td>
<td>Microcode</td>
<td>DMA</td>
<td>24 address 16 data</td>
<td>Multiplexed</td>
<td>No</td>
<td>10</td>
<td>$11.50</td>
</tr>
<tr>
<td>32SF41</td>
<td>Multiplier</td>
<td>None</td>
<td>DMA interrupt</td>
<td>32 address 64 data</td>
<td>Instruction and data</td>
<td>No</td>
<td>25</td>
<td>$500</td>
</tr>
</tbody>
</table>

From National: GNX (Genix Native and Cross) development-tool software includes assembler package and choice of C, Pascal, or Fortran compilers available for native Sys32/50 Sun-4 environments. Software that enables the 32FX16 and 32GX320 to operate as either a FAX modem, data modem, and voice processor is also available.

From others: Various Postscript and Postscript-compatible language interpreters, as well as related software support (fonts, PCL, etc) are available for laser-printer-controller designs.

Text continued on pg 185
When it comes to memory, single-chip microcontroller designs have always been compromises. Use RAM, and you’d lose data on power down. Use ROM, and you couldn’t alter your program. Now Xicor is introducing an uncompromising E²PROM microperipheral, the X88C64.

This powerful new CMOS device gives you 8K bytes of program and/or data memory for today’s popular 8-bit microcontrollers—such as the 68HC11, 80C31 and Z8. It interfaces directly to the microcontroller through a multiplexed address and data bus. So you don’t have to add latches or other decoding logic.

The X88C64 solves an application problem you’ve been puzzling over for years. Now you can write to E² memory while simultaneously reading from it, thanks to a new dual-plane architecture. The X88C64 allows you to individually write-protect eight 1K blocks, providing added security. That makes it easy to protect some programs and data, while others are constantly changing in real time.

For reprogrammable microcontroller designs—such as automotive engine controllers, digital televisions and cellular telephones—the X88C64 offers an exceptionally cost-effective solution. And it’s available in popular through-the-hole and surface-mount packages. Call or write today for details. Xicor Inc., 851 Buckeye Court, Milpitas, CA 95035. Phone (408) 432-8888.

X88C64: The Complete E² Microcontroller Solution.
Move into our i960™ CA processor and get our 32-bit architecture in its most sophisticated form.

Welcome to life in the fast lane. We hope you can handle the pace, because there is no stopping the i960™ CA RISC microprocessor.

It not only delivers the highest level of system throughput, but it's also the only superscalar processor that delivers high power for embedded applications.

Of course, just because the i960 CA processor is sophisticated doesn't mean it's hard to use. Quite the contrary. Its highly integrated design with Bus, Interrupt and DMA controllers all on-chip makes it easier to design with and increases its cost-effectiveness.

And while the i960 CA processor may be
your dream architecture, its design gives you plenty of room for upward growth. Add to that the comprehensive array of development tools, and your high-end imaging, communication and distributed I/O products will be set for life.

So if your design calls for something sophisticated, call 800-548-4725 for the Intel Family Welcome Guide (ask for literature packet A9A22). And make your move into a neighborhood with real power.

intel

The Computer Inside.™
How Many Times Do You Build Your Product?

Now EEsol Has the Answer to Faster Time-to-Market for Microwave and RF Product Design...

THE SOLUTION? EEsol SOFTWARE!

With today's emphasis on commercial applications, faster time-to-market is critical to insure profit. But the cut 'n try design of microwave and RF circuits can wipe out those profits before manufacturing begins. And component tolerance and aging, process variation, and temperature effects can kill a product after it's gone to manufacturing. Not much to keep the boss happy...

EEsof's Design-for-Manufacturing software brings advanced CAE/CAD technology to high-frequency analog engineers and lets you optimize designs under realistic manufacturing conditions. Even difficult nonlinear designs—amplifiers, mixers, and oscillators—become straightforward. EEsof's system and circuit simulation programs, including Touchstone, OmniSys®, jOMEGA,® and Libra,® let you simulate and optimize manufacturing yield while accounting for component statistical variations.

Send today for your free copy of EEsof's "Solutions in Design for Manufacturing," and let us show you how to eliminate prototype rework and get your product through manufacturing faster. Call us at (800) 624-8999, ext. 155. Or if you prefer, contact us by FAX at (818) 889-4159. In Europe, call (49) 8105-24005 or FAX (49) 8105-24000.

Breaking the Barriers...
VY86Cxxx ARM

HARDWARE CHARACTERISTICS

SOFTWARE

AVAILABILITY: Now for 86C010 and 86C020. 86C060 and 86C600 samples available late 1991.

COST: In 1000 qty, $25 for 86C010; $72 for 86C020; $35 for 86C060; $125 for 86C600.

SECOND SOURCE: Sanyo Semiconductor Ltd sources the 86C010.

CORE: Part of VLSI's cell library. All variations are available as functional blocks for ASICs.

Description: ARM stands for Acorn-RISC machine. The 86C010 has found application in home computers and drawing accelerators. Upgrade features of the -020 include a 4-kbyte unified cache. The -060 increases the address range to 4 Gbytes. Stepping up to the -600 adds a 4-kbyte cache, an 8-byte-deep write buffer, and memory management to the -060. Support chips include a memory/DMA controller, a video control/sound output chip, and an I/O controller.

Hardware notes:
1. In addition to the 86C010 µP, VLSI has an associated set of chips for memory (86C110), video (86C310), and I/O (86V410). For floating-point math, VLSI suggests one of the commercially available coprocessors.
2. Note the 27 registers. This number is less than on some RISC machines, but the registers do overlap, as is common in RISC, to speed interrupt service (overlapping yields automatic saving of data). Thus, a programmer sees 16 registers at most, and of these, 15 are general purpose.
3. Some provisions for memory management, including cache and virtual memory through abort-signal, mode-control bits.

Software notes:
1. Only 44 instructions, supporting the literal RISC concept.
2. Simple RISC instructions ease the task of writing efficient high-level language compilers.
3. User and supervisory modes; supervisory mode entered by software interrupt.

Software:

VLSI Technology Inc
San Jose, CA 95131
Phone (408) 434-3000
FAX (408) 434-7926

For more information, Circle No. 389

Status: The company supplies evaluation boards, assemblers, and C compilers directly. The architecture of the chip is targeted at the embedded-controller market and provides performance similar to most competing RISC processors at lower cost. Cost is kept low because of small die size (approximately 280 mils square in a 1.0-µm process) and 160-pin plastic quad flatpack packaging. A dedicated coprocessor bus necessitates the high pin count. The 86C020 has found application in laser printers, network controllers, disk controllers, and graphics subsystems.

EXECUTION

DECODE & EXECUTION PIPELINE

INSTRUCTIONS

DATA-MANIPULATION INSTRUCTIONS

DATA-MOVEMENT INSTRUCTIONS

DATA-TRANSPORT INSTRUCTIONS

PROGRAM-MANIPULATION INSTR

PROGRAM-STATUS-MANIP INSTR

IV-PROGRAM-STATUS-MANIP INSTR

Specification summary: 32-bit data and 26- or 32-bit address CMOS Von Neumann (common memory) µP with RISC-style architecture. Uses a 2-level pipeline with interlocks. Supports large linear memory addressing with optional memory management (86C600). I/O is memory mapped. Instruction set is expandable using internal or external coprocessors. Has simple ALU with associated barrel shifter and Reg14 (link) and Reg13 (stack pointer), and fast-interrupt mode adds unique R12 through R8 to improve interrupt response without user-register stacking. As with all simple RISC processors, performance in the -010, -020, and -060 is limited by memory-access bandwidth. Surrounding the processor with faster SRAM enables faster operation.

Hardware:

Assembler and C compilers on PC, Sun, and Macintosh computers and workstations. A real-time operating-system kernel should be available early in 1992.
80376 and 80286 families. Included are address-translation registers and a 32-bit address bus for as many as 4 Gbytes of physical memory and 64 Mbytes of virtual memory (the SX and 376 processors have only a 24-bit address bus). Runs DOS, Windows, OS/2, Unix, IRMX, and IRMX. The 386SX permits manufacturing of less expensive systems with full 386 software capability. The 386SL integrates a fully static CPU core with cache and main memory controllers, bus and coprocessor interface logic, and power-conservation and extended-memory mapping logic. AMD's low-power versions also utilize a fully-static CPU. C&T's 38605s include a feature the company calls Superstate that operates as a supervisory layer between the system hardware and BIOS.

Hardware notes:
1. No on-chip bus, but the 33-MHz 82385 cache controller ($80 (1000)) and the 82395DX cache controller ($78 (1000)) provide external cache implementation.
2. On-chip MMU chip allows memory management with no penalty in bus bandwidth (if off chip, supplier says, an extra cycle would be needed). Allows choices of segmentation or paging singly or in combination for multilayer protection and for virtual memory.
3. Along with the 80387 math coprocessor ($299) and 82385, the 386's specifications incorporate a 5-stage pipeline to improve instruction throughput.
4. The 386SX comes in 132-pin PQFPs, and the DX comes in 144-pin CPGAs.
5. The 386SL offers four power-management modes. An RSM instruction allows the system to transparently return from suspend mode to the interrupted program.

Available: 16-, 20-, 25-, and 33-MHz versions in production from Intel. Intel is shipping its 40-MHz version. Chips and Technologies will be production shipping its µPs early in 1992; all are sampling now.

Cost: In 1000 qty, Intel's prices are $58 to $98 for the 386SX; $161 to $202 for the 386DX. The 20-MHz Intel 386SL costs $135. AMD charges $196 for 40-MHz standard and low-power 386DX. C&T prices are $70 to $110 for its SX versions and $150 to $215 for its DX versions.

Second source: None licensed. AMO is the first of several vendors to develop clean-room versions of the family. Barring legal complications, Chips and Technologies will offer two versions.

Description: The 32-bit 386 family of µPs is compatible with the 8086 and 80286 families. Included are address-translation registers and a 32-bit address bus for as many as 4 Gbytes of physical memory and 64 Mbytes of virtual memory (the SX and 376 processors have only a 24-bit address bus). Runs DOS, Windows, OS/2, Unix, IRMX, and IRMX. The 386SX permits manufacturing of less expensive systems with full 386 software capability. The 386SL integrates a fully static CPU core with cache and main memory controllers, bus and coprocessor interface logic, and power-conservation and extended-memory mapping logic. AMD's low-power versions also utilize a fully-static CPU. C&T's 38605s include a feature the company calls Superstate that operates as a supervisory layer between the system hardware and BIOS.

Hardware notes:
1. No on-chip bus, but the 33-MHz 82385 cache controller ($80 (1000)) and the 82395DX cache controller ($78 (1000)) provide external cache implementation.
2. On-chip MMU chip allows memory management with no penalty in bus bandwidth (if off chip, supplier says, an extra cycle would be needed). Allows choices of segmentation or paging singly or in combination for multilayer protection and for virtual memory.
3. Along with the 80387 math coprocessor ($299) and 82385, the 386's specifications incorporate a 5-stage pipeline to improve instruction throughput.
4. The 386SX comes in 132-pin PQFPs, and the DX comes in 144-pin CPGAs.
5. The 386SL offers four power-management modes. An RSM instruction allows the system to transparently return from suspend mode to the interrupted program.
Our tough SBL-mixers just got tougher, by including Mini-Circuits' exclusive Ultra-Rel diodes that can endure 160 hours of test at a scorching 300°C. Rugged, more reliable mixers in your systems lower production and test costs and increase systems reliability.

Over the past fifteen years, millions of SBL-units were installed in formidable industrial and commercial applications. Under severe operating conditions, they have earned the reputation as the world's most widely accepted mixers, based on quality, consistent performance in the field, and lowest cost.

In addition to the Ultra-Rel diodes, each SBL contains components that can withstand the strenuous shock and vibration requirements of MIL-STD-28837 along with more than 200 cycles of thermal shock extending from -55 to +100°C. Every Ultra-Rel™ SBL-mixer carries a five-year guarantee.

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered last year.

Tougher SBL-mixers, spanning 25KHz to 2000MHz, with +7dBm, +10dBm, and +13dBm LO models, priced from $4.50 (10 qty) are available only from Mini-Circuits. Don't settle for a substitute or equivalent... insist on Ultra-Rel™ SBLs.

SBL SPECIFICATIONS (typ).

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency (MHz)</th>
<th>Conv. Loss (dB)</th>
<th>Isolation (dB)</th>
<th>LO Level (dBm)</th>
<th>Price, $ ea. (10 qty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBL-1</td>
<td>1-500</td>
<td>5.5</td>
<td>45</td>
<td>+7</td>
<td>4.50</td>
</tr>
<tr>
<td>SBL-1X</td>
<td>10-1000</td>
<td>6.0</td>
<td>40</td>
<td>+7</td>
<td>6.25</td>
</tr>
<tr>
<td>SBL-1Z</td>
<td>10-1000</td>
<td>6.5</td>
<td>35</td>
<td>+7</td>
<td>7.25</td>
</tr>
<tr>
<td>SBL-1-1</td>
<td>0.1-400</td>
<td>5.5</td>
<td>35</td>
<td>+7</td>
<td>7.25</td>
</tr>
<tr>
<td>SBL-3</td>
<td>0.025-200</td>
<td>5.5</td>
<td>45</td>
<td>+7</td>
<td>7.25</td>
</tr>
<tr>
<td>SBL-11</td>
<td>5-2000</td>
<td>7.0</td>
<td>35</td>
<td>+7</td>
<td>16.75</td>
</tr>
<tr>
<td>SBL-1LH</td>
<td>2-500</td>
<td>5.8</td>
<td>68</td>
<td>+10</td>
<td>5.50</td>
</tr>
<tr>
<td>SBL-1-LH</td>
<td>0.2-400</td>
<td>5.2</td>
<td>64</td>
<td>+10</td>
<td>6.25</td>
</tr>
<tr>
<td>SBL-1XLH</td>
<td>10-1000</td>
<td>6.0</td>
<td>40</td>
<td>+10</td>
<td>7.25</td>
</tr>
<tr>
<td>SBL-1-1LH</td>
<td>5-2000</td>
<td>7.0</td>
<td>45</td>
<td>+10</td>
<td>13.75</td>
</tr>
<tr>
<td>SBL-11LH</td>
<td>1-500</td>
<td>5.5</td>
<td>45</td>
<td>+13</td>
<td>9.80</td>
</tr>
<tr>
<td>SBL-12MH</td>
<td>2-1100</td>
<td>6.5</td>
<td>40</td>
<td>+13</td>
<td>11.70</td>
</tr>
</tbody>
</table>

* ULTRA-REL™ MIXERS 5 yr. GUARANTEE

with extra long life due to unique HP monolithic diode construction, 300°C high temp. storage, 1000 cycles thermal shock, vibration, acceleration, and mechanical shock exceeding MIL requirements.

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4681 Telexes: 6852844 or 620156
CIRCLE NO. 100
Until Now, Density A Pretty Awkward
AMD Presents The MACH™ Family Of High Speed, High Density PLDs.

Nothing can squash an elegant, high density design faster than a slow, unpredictable and expensive PLD. That’s why we’ve developed the MACH PLD family—for both density and speed.

The MACH family gives you everything you need in a PLD on state-of-the-art CMOS: Densities up to 128 macrocells or 3600 equivalent gates. Clock speeds up to 66.7 MHz. And absolutely predictable, worst-case delays as low as 12ns per 16 product term macrocell.

And they work for peanuts. The MACH family can bring your costs down as low as a penny per gate—up to 40% less than other high density PLDs.

With the MACH family you’ll get to market faster, too. Because it’s supported by most popular design tools: Including ABEL™, CUPL™, LOG/iC™, MINC, OrCad™ and AMD’s own PALASM™ software. There’s also hardware and software support from over 20 additional FusionPLD partners.

Every MACH part migrates easily to a pin-compatible hard-wired MASC™ counterpart—for high volume orders with no redesign, no NRE, no performance glitches, no problems.

So don’t horse around with slow, unpredictable, high density PLDs—start designing with the MACH family from AMD. Call 1-800-222-9323 for more information.
Power supply problems had this design engineer climbing the walls.

Then he teamed up with Computer Products.

Now, he’s climbing walls of a different nature.

That’s Power.

The power to perform at a level above all others; to pursue your vision with strength and confidence.

Computer Products can make it yours.

We’re your source for custom power solutions, providing everything from expert design to world-class manufacturing. This full scale approach culminates in products of unmatched quality and performance.

We’re also the people to see for standard products. We offer more than 300 power supplies direct from stock, and we’ve built one of the largest, and best, distributor networks in the industry — capable of delivering any of our products to any of your locations, at any time.

In other words, we give you the power to do what you do best. Whatever in the world that happens to be.

For more information, call 1-800-624-8999 extension 123 today for details of our custom capabilities. Or ask for your free copy of PowerPath, the electronic power supply directory.

COMPUTER PRODUCTS

The Power To Win!
486 FAMILY

AVAILABILITY: 25-, 33-, and 50-MHz 486 and 20-MHz 486SX are now in production.
COST: In 1000 qty, the 486SX, $247 (20 MHz) in PGA; for the 486, $445 (25 MHz and 33 MHz) and $665 (50 MHz).
SECOND SOURCE: None.

Description: The 486 CPU comprises an enhanced 386 CPU, an enhanced 80387 math coprocessor (though still fabricated in the silicon, the coprocessor in the 486SX is disabled), an 82385 cache controller, an 8-byte combined code and data cache, and a paging and memory-management unit. The 486 is binary compatible with 386/387 processor software but is 2 to 4 x faster because of enhanced execution piping and higher integration. The 486 CPU adds several new instructions that support caches and multiprocessor operating systems. A byte-swap instruction allows the 486 CPU to read data in either big- or little-endian format. A burst bus allows the 486 to fill the on-chip cache with 16 bytes of data in five clock cycles.

HARDWARE

1. 8-kbyte unified instruction and data cache is located on chip. The cache lets the CPU read 16 bytes of code into the prefetch queue in one clock. A cache hit rate of better than 90%, for most applications, greatly reduces memory bus utilization for memory reads and improves system performance.
2. The 82496DX/82496DX cache subsystem provides a complete second-level cache for the 50-MHz CPU. You can configure the subsystem as a 128-, 256-, or 512-kbyte 2-way, set-associative, write-back cache. The system can run this cache synchronous, divided synchronous, or asynchronous to the memory bus.
3. The TurboCache486 module ($299 for 64-kbyte version and $399 for 128-kbyte version at 33 MHz or 1000 qty; 25 MHz also available) is a complete second-level write-through cache controller and SRAM. The module contains the 82448S cache controller ($89 (25 MHz) and $99 (33 MHz) in 1000 qty). The module’s look-aside design lets you add the module as an option much as the 387 was an option to 386 systems.

SOFTWARE

I—DATA-MANIPULATION INSTRUCTIONS
Byte swap for converting between little- and big-endian data. Compare and exchange instruction. Exchange and add instruction. Floating-point instruction set from 387 math coprocessor added to 486 CPU.

II—DATA-MOVEMENT INSTRUCTIONS
Information not provided by manufacturer.

III—PROGRAM-MANIPULATION INSTR
Information not provided by manufacturer.

IV—PROGRAM-STATUS-MANIP INSTR
Information not provided by manufacturer.

V—HLL AND OS INSTRUCTIONS
Instructions for flushing and invalidating the caches.

Specification summary: A standard 32-bit architecture containing the same register set as its predecessor, the 386DX CPU. The 486 adds a small cache and floating-point processor as well as the instructions and control bits to support these features. The 50-MHz part is fabricated using a 0.8-μm process and consumes less than 1000 mA. The µP is packaged in a 168-pin ceramic PGA.

ICE48633D in-circuit emulator ($38,000) supports the 486 µP to 33 MHz with real-time execution control over prototype 486-based systems. ICD48633D in-circuit debugger ($11,500) is a hardware-assisted real-time debug monitor supporting 486 µP to 25 MHz. ICD486250 supports execution breakpoints, including cached breaks, control of 486 µP execution, and access to registers and system memory. A standard logic-analyzer interface supports cross triggering between ICD486 and a high-speed logic analyzer. The ICD48625D in-circuit debugger is hosted on DOS PC and PS/2 systems. Host software uses the common Intel windowed interface model with drop-down menus and source-code display.

From Intel: Intel’s 486 assembler, compilers, system utilities, and software debuggers are intended for computer-system software development requiring access to the full native-mode architecture models of the 486 µP. ASM macroassembler ($800); RLL binder and system-software-building utilities ($600); and C, Fortran, and PL/M compilers (each $900) support 486-family protected-mode software cross development by generating 486 instructions in code developed on DOS hosts. Language kits ($4500) including ASM, RLL, a compiler of choice, and the DB debugger are also available. VAX/VMS kit support including ASM, RLL, and a compiler of choice is available on MicroVAX ($8,000) and VAX ($13,000) systems for cross development.

Intel Corp
Santa Clara, CA 95051
Phone (408) 987-8080
For more information, Circle No. 393

Status: Intel introduced the 50-MHz version in June of this year in both component and CPU-cache modules. The 33-MHz version has been in production since May 1990. Other family members include the 486SX, which features a disabled math coprocessor, allowing fewer pinouts and cheaper packaging. The 487 "coprocessor" is a repackaged, healthy 486 that, when properly designed into systems, completely disables the already crippled 486.

EDN November 21, 1991 171
CLIPPER

AVAILABILITY: Now for 40- and 50-MHz C300 chips and modules, and the C311 CPU/FPU. Now for the 40- and 50-MHz C4 CPU and FPU chip set.

COST: All 1000 qty: At 40 MHz, the C311 CPU/FPU costs $160, the C300 chip set costs $336, and the module costs $536. At 50 MHz, the C311 CPU/FPU costs $191, the C300 chip set costs $495, and the C300 module costs $695. The 40-MHz C4 CPU and FPU chip set costs $735, and the 50-MHz chip set costs $895.

Description: The CMOS RISC-based C411 CPU uses superscalar instruction issue and superpipelining to speed execution. Binary compatibility exists between the C400 and the C300. The C421 is the floating-point coprocessor for the C411 CPU.

INTERGRAPH CORP
Advanced Processor Div
Phone (415) 494-6800
For more information, Circle No. 394

Status: The company claims to have shipped over 70,000 modules through July 1991, giving Clipper a large, but narrow, installed base—Intergraph accounts for most of the Clipper sales.

HARDWARE -- CHARACTERISTICS -- SOFTWARE ---

I—DATA-MANIPULATION INSTRUCTIONS
Add, subtract, multiply, divide (32- and 64-bit IEEE floating-point operations done in floating-point coprocessor), floating-point converts, negate, compare, logicals (including AND, OR, EXOR, and NOT), 32- and 64-bit shifts and rotates, including floating point.

II—DATA-MOVEMENT INSTRUCTIONS
Architecture favors register-to-register operations and avoids operations on memory other than register-to-memory movements. Nine addressing modes, including absolute, relative (with and without displacements), relative indexed, and PC (program-counter) indexed.

III—PROGRAM-MANIPULATION INSTR
Push, pop, supervisor, and user stacks (any register can be used as pointer).

IV—PROGRAM-STATUS-MANIP INSTR
Push, pop, and user stacks (any register can be used as pointer).

V—SPECIAL INSTRUCTIONS
Supervisory mode commands. Hardware supports 256 vectored interrupts with 16 priority levels, 57 traps, and 128 supervisory calls. Software semaphores are supported for multitasking.

Hardware notes:
1. The C411 CPU features separate ALU, barrel shifter, and multiplier operating in parallel.
2. The C411 has two high-speed buses: a 64-bit, 800-Mbyte/sec input bus and a 32-bit multiplexed address/data bus that uses differential drivers for fast, low-voltage swings.
3. Improved input bus architecture alternates data fetch with instruction fetch on every half-clock cycle.

Software notes:
1. Despite the vendor’s insistence on calling the processor a RISC machine, the C300’s 164 instructions include both single-cycle (RISC-like) and multicycle (CISC-like) commands. Hardwired architecture in the C400 allows most instructions to execute in one clock cycle. C400 superscalar operations can issue multiple instructions on each clock cycle.
2. The C411 CPU and C421 FPU instructions are compatible with the C300.
3. The C421 is compatible with the IEEE-754 floating-point standard. For optimum performance, the C411 utilizes a large external cache to supply instructions and data on every clock cycle of 50 MHz. The processor uses separate 64-bit input and 32-bit output buses to support the CPU’s data and instruction bandwidth requirements. Fast IEEE-754 floating-point operations are executed by the C421 coprocessor also running at 50 MHz. The C411 CPU can be purchased individually or as a pair with the C421 FPU. Both are available in 299-pin PGA packages. Future versions of the C400 family are planned to operate at speeds in excess of 50 MHz.

The C300 Clipper Module integrates three Clipper chips into a functioning CPU. Intergraph offers Clipper development systems that provide 8 Mbytes of RAM, 156 Mbytes of hard-disk storage, and an Ethernet interface. Software includes CLIX (based on Unix System V), a C compiler, a loader/debugger, and utilities.

Intergaph offers a set of optimizing compilers for C and Fortran and a performance-tuned operating-system kernel for the C411/421. More than 750 third-party packages are available, including compilers for Lisp, Ada, and other languages; tools and utilities; and end-user application packages.

EDN November 21, 1991
HYPERSTONE

availability: Now for 25-, 33-, and 40-MHz parts in 144-pin plastic PGA and 25-MHz devices in 132-pin QFP.
cost: $77 (1000) for the 25-MHz part.
second source: Zilog.
core: Zilog will use the Hyperstone µP as a 32-bit core in its library of µP cores.
description: Hyperstone combines features of both RISC and CISC architectures. Although most instructions are 16 bits wide, some are 32 or 48 bits wide. Almost all instructions execute in a single cycle. The vendor claims that Hyperstone program code will be more compact than many CISC-architecture programs. The microprocessor uses a combination of pipelined load instructions, an internal decode/execute pipeline of two stages, and a proprietary look-ahead instruction cache to achieve high performance. In addition, on-chip DRAM and bus control simplify the interface between the µP, memory, and peripherals.

32-BIT CMOS

Hyperstone Electronics GmbH
Phone (011) 49 075 316-7789
FAX (011) 49 075 315-1725
For more information, Circle No. 395

status: The Hyperstone suits embedded-systems applications. Zilog has announced its intention to use the Hyperstone in its library of µP cores. These cores form the base for microcontrollers for data communications, intelligent peripheral-control, and disk-control applications.

Hardware --- Characteristics --- Software

I—DATA-MANIPULATION INSTRUCTIONS
All instructions operate on 32- or 64-bit data. Most instructions are single cycle, but multiply and divide are multicycle. A barrel shifter provides left/right and signed/unsigned shifts. Two sets of arithmetic instructions are available: One set traps on overflow; the other only flags overflow. Logic instructions are AND, AND NOT, OR, XOR, and NOT. More powerful instructions include scaled index move, bound check, and scan leading zeros. IEEE-floating-point instructions execute by emulation.

II—DATA-MOVEMENT INSTRUCTIONS
Pipelined load/store architecture. Data types are byte and halfword (both signed and unsigned), 32-bit words, and 64-bit double words. Hyperstone contains single- and double-word move instructions.

III—PROGRAM-MANIPULATION INSTRUCTIONS
One unconditional and 12 conditional branch instructions provide program-counter relative delayed/undelayed branches. The µP executes dynamic branches via move or add instructions to the program counter. A call instruction creates a new variable-length stack frame in the register stack. A frame instruction restructures the stack frame for parameter passing. A return instruction returns control and restores the old stack frame. The µP handles overflow or underflow automatically.

IV—PROGRAM-STATUS-MANIP INSTRUCTIONS
One unconditional and 11 conditional trap instructions trap to supervisor state via a 64-entry table.

V—SYSTEM-LEVEL INSTRUCTIONS
Moves to special registers and setting the interrupt mask bit are only possible in supervisor mode.

specification summary: The Hyperstone µP has a balanced set of instructions that make it useful as a universal processor. Since virtual memory is rarely used in embedded systems, Hyperstone doesn’t include on-chip memory management. Demand paging via an off-chip memory-management unit is assisted. The architecture supports seven types of addressing, including post-increment and post-increment with variable increment.

Hardware notes:
1. The µP has separate 32-bit address and data buses. The µP’s 64 local registers are arranged in a register stack that contains stack frames of variable length—2 to 16 registers. Overlapping stack frames (windows) allow parameter passing. Because of the code compaction of mostly 16-bit instructions, the 128-byte instruction cache achieves hit rates comparable to larger caches on other devices.
2. The µP contains all the logic to directly control DRAMs, SRAMs, ROMs, and other peripherals. The Hyperstone also performs parity generation and parity check.
3. The processor also contains a 32-bit timer.

In-circuit emulator via an add-on board to the IBM PC. Add-on boards to the IBM PC and evaluation boards via an RS-232C port.
Evaluation Boards: You can connect the hyEVAT 25 software-development board to a personal computer host for processor evaluation and software development.

Hardware --- Support --- Software

Hyperstone Electronics supplies pc-based macroassembler, C compiler, and source-level debugger. A real-time kernel, hyRTK, is also available. The source-level debugger includes real-time debugging facilities. Zilog is developing a behavioral model.

Text continued on pg 176.
Power tool
Field-proven in a broad spectrum of applications and certified by the world's safety agencies, here are versatile, rugged power tools for your design needs. Choose voltages up to 48V dc; power up to 3000W; ac or dc input. Features include active soft-start, remote voltage control, overvoltage protection, current limiting and built-in EMI filtering. The 600W and 1500W models provide for current-share paralleling. Kepco’s switchers are also available in low-cost open frame and pc-card styles for OEM applications.

Power tools

SEE US AT WESCON/91
KEPCO BOOTH 2135, 2137

SEE OUR PAGES IN VOLUME D of ee Times

<table>
<thead>
<tr>
<th>Instrumentation and Bench</th>
<th>Switching A-c to D-c and D-c to D-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>146-1716</td>
<td>146-1704</td>
</tr>
<tr>
<td></td>
<td>146-1739</td>
</tr>
</tbody>
</table>

Call/fax/write to Dept. MDT-12 for any of our three catalogs.

KEPCO

ac to dc power
- **Single output 3000W**
 - 5V, 24V, 48V dc output
 - 3 phase ac input
 - Passive power factor correction, PF = 0.92
 - UL/CSA/TÜV
 - FCC Class A EMI filtering

KEPCO Group RAY Power Supplies

ac to dc power
- **Single output 50W, 100W, 175W, 300W, 1500W**
 - 3V-48V dc output
 - Jumper selectable inputs: 85-132 or 170-264V ac, 240-370V dc
 - Fully enclosed
 - UL/CSA/TÜV
 - Tested to MIL STD 810D
 - FCC Class A EMI filtering

KEPCO Group RAX Power Supplies

ac to dc power
- **Single output 600W**
 - 2V-48V dc output
 - Jumper selectable inputs: 85-132 or 170-264V ac, 240-370V dc
 - Fully enclosed
 - UL/CSA
 - Tested to MIL STD 810D

KEPCO Group RBX Power Supplies

dc to dc power
- **Single output 30W, 60W, 150W**
 - 5V-48V dc output
 - 24 and 48V input (60V available on some models)
 - Fully enclosed
 - UL/CSA
 - MIL STD 461B EMI filtering
 - Tested to MIL STD 810D

KEPCO Group ERD Power Supplies

ac to dc power
- **Single output 30W, 60W, 120W, 240W**
 - 5V-24V dc output
 - Jumper selectable inputs: 85-132 or 170-264V ac, 240-370V dc
 - PC card, L-chassis, optional enclosure
 - UL/CSA/TÜV
 - FCC Class B EMI filtering

KEPCO Group ERX Power Supplies

Kepco, Inc., 131-38 Sanford Avenue, Flushing, NY 11352 USA • Tel: (718) 461-7000 • Fax: (718) 767-1102 • Easylink (TWX): 710-582-2631

Eastern Region: 131-38 Sanford Avenue, Flushing, NY 11352 USA • Tel: (718) 461-7000 • Fax: (718) 767-1102 • Easylink (TWX): 710-582-2631

Western Region: 800 West Airport Freeway, Suite 320 LB 6018, Irving, TX 75062 USA • Tel: (214) 579-7746 • Fax: (214) 579-4608

Kepco Europe, Ltd., London, England: Salamander Quay West, Park Lane, Harefield, Middlesex UB9 6NZ • Tel: + 44 895 825046 • Fax: + 44 895 825045

EDN November 21, 1991

CIRCLE NO. 103
SPARC FAMILY

AVAILABILITY: See table.
COST: See table.
SECOND SOURCE: Fujitsu's MB86903 and Weitek's W8701 are pin compatible, as are Fujitsu's 86901 and 86902 and LSI's L64801 PGA and QFP, respectively. LSI Logic makes a version that is pin compatible to the Cypress implementation. All versions must run Sun Microsystems Inc (Mountain View, CA) SPARC software. Fujitsu, Cypress, LSI, and Philips/Signetics also provide SPARC embedded controllers. TI provides a floating-point unit.

CORE: Fujitsu has designed a full-custom modular core for ASIC implementations. LSI Logic also offers RISC elements in its ASIC library.

Description: Sun Microsystems defined SPARC at instruction-set and programmer's model level and then entered into entirely separate joint agreements with silicon vendors with the intent of creating an open architecture.

Status: At least 25 vendors have signed up to produce SPARCstation 1 products—it will be interesting to see how many actually deliver and succeed. Currently, more than 2000 applications run on SPARC hardware, and numerous Sbus plug-in cards are available. SPARC International (Sunnyvale, CA), a consortium of hardware and software vendors, creates and maintains open standards and multi vendor compatibility of both SPARC-based machines and applications. Despite the growth in the workstation market, Bipolar Integrated Technology's (BIT) decision to discontinue its general marketing of its ECL SPARC processor in favor of the MIPS architecture is a blow. BIT will continue to support Floating Point Systems' integration of its ECL SPARC in the latter's supercomputer. BIT does plan to continue to entertain custom business using its SPARC core.

SOFTWARE

Support programs that offer various levels of development support. Evaluation Boards: Available from Cypress and Fujitsu.

HARDWARE

<table>
<thead>
<tr>
<th>HARDWARE SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cypress Semiconductor</td>
</tr>
<tr>
<td>W8701</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cypress Microelectronics Inc</td>
</tr>
<tr>
<td>LSI Logic Corp</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

32-BIT CMOS

<table>
<thead>
<tr>
<th>SOFTWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujitsu Microelectronics Inc</td>
</tr>
<tr>
<td>Phone (800) 523-0034</td>
</tr>
<tr>
<td>FAX (408) 943-9293</td>
</tr>
<tr>
<td>Circle No. 396</td>
</tr>
</tbody>
</table>

Sun workstations are adequate because Sun maintains software compatibility. Definicon (Newbury Park, CA) supplies development boards, Ironics (Ithaca, NY) offers a VMEbus board that supports multiprocessing. Cypress/Ross, Fujitsu, and LSI Logic have hardware-support programs that offer various levels of development support. Evaluation Boards: Available from Cypress and Fujitsu.
MIPS FAMILY

AVAILABILITY: See table.
COST: See table.
CORE: LSI Logic uses an ASIC implementation of the R3000A and offers the core in its standard-cell library. The core is binary-code compatible but adds a trace register and two breakpoint registers to assist software development.

Description: This RISC architecture was initially developed at Stanford University under the auspices of DARPA (Defense Advanced Research Projects Agency). The architecture supports as many as three tightly coupled processors. The R2000, R3000, R4000, and R6000 were developed by systems vendor, Mips Computer Systems. Although Mips doesn’t sell the chips, standard and derivative 11-Ps are available from five semiconductor suppliers.

Status: The R2000, R3000, R3000A, and R4000 are multisourced, specification-compatible RISC µPs. Such workstation companies as Digital Equipment Corp, Silicon Graphics, Sony, Mips, and the Advanced Computing Environment (ACE) have selected the architecture as the one to build their RISC-based hardware on. The R3000 was selected by JIAWG (Joint Internal Avionics Working Group) as a standard for military avionics programs such as the Advanced Tactical Fighter. The R6000 is available from BIT, although NEC and Sony are also R6000 licensees.

HARDWARE CHARACTERISTICS

Hardware notes:
1. Diagram reflects R3000 architecture.
2. LSI Logic’s LR33000 offers two 24-bit down counters that are reloaded and restarted upon reaching zero. Both counters can trigger interrupts. You can enable one counter to count external events. An internal 12-bit counter is useful as a DRAM-refresh counter. The chip also features a write buffer, two chip selects, two programmable wait-state generators, an integrated DRAM controller, byte-gathering logic, and a 1x clock input.
3. The R6000 has a 5-stage, fully interlocked pipeline and supports cache control and memory management on chip. A tightly coupled coprocessor interface supports the R6010/B3110 floating-point coprocessor chip set.

SUPPORT

MIPS Computer Systems offers several machines for system development. The systems are supported by a variety of tools, including logic-analysis tools from Tektronix, Arium, and Gould. IDT offers a line of CPU subsystems. IDT and LSI Logic also offer a range of development systems. For the LR33000, Logic Modeling (Milpitas, CA) offers a hardware model, Embedded Performance (Santa Clara, CA) offers an ICE, and Neocad (Boulder, CO) supplies an AT board. NEC provides CPU module of pc board and TAB-based multichip module.

Evaluation Boards: LSI offers the Pocket Rocket self-contained evaluation board for 25-MHz development. The Speed Racer is an evaluation board that transforms the Pocket Rocket into a graphics terminal.

SOFTWARE

32-BIT CMOS

Bipolar Integrated Technology
Phone (503) 829-5480
Circle No. 400

Integrated Device Technology
Phone (408) 462-4533
Circle No. 401

LSI Logic Corp
Phone (408) 433-8000
(800) 232-8477
FAX (408) 433-7447
Circle No. 402

LSI Logic Components
Phone (408) 980-4500
Circle No. 405

NEC Electronics Inc
Phone (415) 960-6000
(800) 632-3531
FAX (408) 433-7447
Circle No. 403

Performance Semiconductor
Phone (408) 734-8200
Circle No. 404

Siemens Components Inc
Phone (408) 980-4500
Circle No. 405

Specification summary: The R2000/R3000 implements a 5-stage pipeline to achieve a low average-clocks-per-instruction rate. Rich instruction set, sophisticated compilers, and high-frequency operation help the R2000/R3000 family achieve high performance. The IDT 79R3000 features a full cache controller, including on-chip tag comparison and direct control of the cache RAMs. LSI Logic’s LR3000/3000A includes 32 32-bit general-purpose registers, on-chip cache control, on-chip memory management, and coprocessor interfaces for as many as three external coprocessors. LR33000 offers 8-kbyte instruction cache and 1-kbyte data cache.

R2000/R3000 family microprocessors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Vendor</th>
<th>Speed (MHz)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>79R3000</td>
<td>Integrated Device Technology (IDT)</td>
<td>12.5-53</td>
<td>As low as $50</td>
</tr>
<tr>
<td>LR3001</td>
<td>IDT</td>
<td>12.5-53</td>
<td>As low as $50</td>
</tr>
<tr>
<td>LR2000</td>
<td>LSI Logic</td>
<td>12.5-16</td>
<td>$99 (100)</td>
</tr>
<tr>
<td>LR3000</td>
<td>LSI Logic</td>
<td>16-25</td>
<td>$144 (100)</td>
</tr>
<tr>
<td>LR3000A</td>
<td>LSI Logic</td>
<td>33-40</td>
<td>$400 (100)</td>
</tr>
<tr>
<td>VR3000A</td>
<td>NEC</td>
<td>33-40</td>
<td>$350 (1000)</td>
</tr>
<tr>
<td>VR3000A</td>
<td>NEC</td>
<td>33-40</td>
<td>$300 (1000)</td>
</tr>
<tr>
<td>VR3010A</td>
<td>Performance</td>
<td>25-40</td>
<td>$69 (100)</td>
</tr>
<tr>
<td>VR3400</td>
<td>Performance</td>
<td>25-40</td>
<td>$298 (100)</td>
</tr>
<tr>
<td>R3000</td>
<td>Siemens</td>
<td>20-25</td>
<td>$215 (100)</td>
</tr>
<tr>
<td>R3010A</td>
<td>Siemens</td>
<td>20-25</td>
<td>$215 (100)</td>
</tr>
</tbody>
</table>
29000 FAMILY

AVAILABILITY: Now for the 29000, 29050, and 29005. Both the 29030 and 29035 are scheduled for January 1992.

COST: $50 for the 16-MHz 29005, $79 for the 16-MHz 29000, $198 for the 20-MHz 29050, $89 for the 16-MHz 29035, and $130 for the 25-MHz 29030 (1000).

Description: State-of-the-art implementation of RISC µ.P concepts with expected stress on obtaining as close to single-cycle operation as possible (even with branching). The family also emphasizes keeping users' system costs down by using slower bus timing, etc., to lower memory-subsystem cost. Although their names are similar, the 2900 and 29000 building-block families are intended for user-defined (microcoded) complex instruction sets. The 29000 µ.P family has a regular, fixed, and purposely simple instruction set, moreover, the instruction set is decoded by logic. Companion compilers are an essential part of family.

HARDWARE CHARACTERISTICS

The EB29k is a PC plug-in execution board with software-development tools. From others: Embedded Performance Inc, Hewlett-Packard, and Step Engineering all provide real-time in-circuit emulators for the 29000 family. Logic Analyzer interface is available from Biomation or Hewlett-Packard. Various VMEbus board products based on the 29000 are available from Ironics. Behavioral simulation models are available from Logic Automation and Mentor Graphics. Design-verification and test-generation models are available from Teradyne. A list of third-party support products appears in the biannual Fusion29K Catalog published by AMD.

SOFTWARE

Advanced Micro Devices (AMD)
Phone (408) 732-2400
For more information, Circle No. 406

Status: In the 3½ years since its introduction, the 29000 has accumulated over 350 design wins. Areas of particular success for the RISC µ.P are high-end laser printers: X-terminals; graphics, including graphics controller boards, graphics accelerators, real-time image processing, and medical imaging; and network products, including protocol converters, network node controllers, FDDI networks, and ISDN-related systems.

Specification summary: 32-bit CPU fashioned after RISC concepts; performs most frequently used, simple instructions in one cycle. Offered with companion compilers that take advantage of architectural simplicity and produce performance-optimized code. Features that ensure uninterrupted flow in 29000's 4-stage execution pipeline are single-cycle branching with branch delays and a 512-byte branch-target cache (The 29030 uses a more-conventional 8-kbyte instruction cache and the 29035 uses a 4-kbyte instruction cache). Main 192-register file has a 3-port configuration so instruction fields can specify sources for both operands and the destination for the result. 128 of the registers are addressed by a stack pointer that in conjunction with the compiler provides a type of caching that speeds procedure calling. External memory space is reached by 4-Gbyte virtual addressing with demand paging. An on-chip 64-entry MMU performs address translation in a single cycle and is flexible so users can choose memory strategy.

Software notes:
1. Total of 115 (117 in the 29030) instructions. All are not yet implemented in hardware; those that aren't cause traps.
2. Multiply and divide on the 29000 only does one step. The full multiply and divide instruction causes a trap operation at which a compiler can insert a software routine.

Hardware note:
1. Burst-mode addressing allows use of lower-cost video RAMs to replace more-expensive, high-speed, static CMOS RAMs, with only moderate loss in performance (14 MIPS sustained vs 17 MIPS).

HARDWARE SUPPORT

AMO supplies the complete software tool chain. These tools include the ANSI standard HighC29k optimizing compiler with an assembler, linker, and ANSI standard libraries; floating-point-math libraries; and architectural and instruction-set simulators. The Xray29k source-level debugger is also available for the 29000 and the 29030. The Mon29k is a target debug monitor for system developers. All software support tools run on IBM PC/AT's and Sun-3 and Sun-4 workstations. Other C compilers are available from Embedded Performance Inc, MetaWare, Microtec, and Intermetrics. Pascal compilers are available from MetaWare. The GNU tool chain, including the C++ and the debugger are available from Cygnus. Ada is available from Verdi Systems. Fortran is available from Yarc. Ready Systems, JMI, and Telenetworks provide real-time operating systems. A complete guide to third-party software products is published in the biannual AMD Fusion29K catalogue.
The 960 is Intel's 32-bit family of µ.P chips that has been designed specifically for embedded-control applications. There are seven upwardly compatible versions of the RISC-based architecture. The SB and KB versions add on-chip floating-point units to the basic capabilities afforded by the SA and KA. The CA features a software-configurable pipelined bus; 1.5 kbytes of data RAM; a 1-kbyte, 2-way set associative instruction cache; and a 4-channel DMA controller. The MC offers a floating-point unit, a virtual-memory-management unit, Ada tasking and instruction cache; and a 4-channel OMA controller. The ICE960MC ($24,995) supports shared-memory multiprocessing directly.

Hardware notes:
1. The 960 provides only one data bus for instructions and data. The bus multiplexes address and data information. The basic 960 chip includes sixteen 32-bit global registers and sixteen 32-bit local registers. The stack requires one global and three local registers for housekeeping operations.
2. The floating-point unit also includes four 80-bit registers, but can use plus complex addressing modes. The architecture is based on scoreboard -- hardware multiply/divide unit. Extended arithmetic support allows math operations on operands larger than one word. Floating-point operations on single-, double-, and extended-precision operations are supported in hardware on the -KB and -MC versions.

From Intel:
- ASM960 ($900 for the IBM PC/AT) includes an assembler and linker for the 960 family. C tools 9600 ($2000) includes the ASM960.
- Microtec Research provides a complete 960 tool chain -- C compiler through XRay debugger. QTC provides an instruction scheduler/optimizer for the 960CA. The Solutions960 catalog from Intel describes additional 960 tools and applications.

From others:
- Wind River Vxworks provides a full-featured operating environment that includes file-system support and TCP/IP networking. Ready SystemsVRTX32 provides a deterministic real-time kernel for the 960 family.
- Microtec Research provides a complete 960 tool chain -- C compiler through XRay debugger. QTC provides an instruction scheduler/optimizer for the 960CA. The Solutions960 catalog from Intel describes additional 960 tools and applications.

Software:
- Software notes:
 - The 960 architecture is based on a single flat address space with all I/O memory mapped. All 960 processors feature thirty-two 32-bit orthogonal registers and utilize a load-store architecture with 3-operand instructions plus complex addressing modes. The architecture is based on scoreboard -- hardware multiply/divide unit. Extended arithmetic support allows math operations on operands larger than one word. Floating-point operations on single-, double-, and extended-precision operations are supported in hardware on the -KB and -MC versions.

From Intel:
- ASM960 ($900 for the IBM PC/AT) includes an assembler and linker for the 960 family. C tools 960D ($2000) includes the ASM960.
- Hosts include the IBM PC/AT, Sun-3, VAX/VMS VAX/ULTRIX and HP9500. Ada960 (from $28,000) is available for VAX/VMS. DBS960 ($3500) is a real-time kernel for the 960CA/KA/CA.
- From others:
 - Wind River Vxworks provides a full-featured operating environment that includes file-system support and TCP/IP networking. Ready SystemsVRTX32 provides a deterministic real-time kernel for the 960 family.
 - Microtec Research provides a complete 960 tool chain -- C compiler through XRay debugger. QTC provides an instruction scheduler/optimizer for the 960CA. The Solutions960 catalog from Intel describes additional 960 tools and applications.

Status:
Since its introduction, the 960 family has enjoyed widespread acceptance in a broad spectrum of commercial and military designs. The 960 family played a role in legitimizing the 32-bit embedded-control market, finding application in X terminals, laser printers, and communications systems. Selection of the architecture as the 32-bit standard for military avionics has also fueled the family's growth. Intel's approach is family oriented; not only is there a range of 32-bit CPU chips at different price and performance levels, but there are also 960-specific support components such as the 27960 burst EPROM and 85C960 bus control component. Intel claims the total kit approach exists to serve embedded-control customers with an easy-to-design-with set of CPU and peripheral parts.
COST: In 1000 qty, the 16-MHz 88100 costs $49; the 88200 costs $75. The 33-MHz 88100 costs $150 and the 88200 costs $199. The 88204 costs $495.

SECOND SOURCE: None.

CHARACTERISTICS

I—DATA-MANIPULATION INSTRUCTIONS
Integer-math instructions include add, subtract, divide, multiply, and compare. There are equivalent floating-point instructions as well as integer-float conversion, store, exchange, round, and truncate instructions. The instructions also provide logical and bit-field operations.

II—DATA-MOVEMENT INSTRUCTIONS
The basic data-movement instructions let the CPU load registers, addresses, and the control register’s contents. The CPU can also store information and exchange the contents of registers and memory. The instruction set includes operations that move data within the floating-point unit.

III—PROGRAM-MANIPULATION INSTR
These instructions include conditional and unconditional branch, jump, and subroutine-call commands. The 88100 also provides trap instructions that check bit locations, memory boundaries, and interrupt conditions.

IV—PROGRAM-STATUS-MANIP INSTR
The 88100 can process exceptions—those conditions that cause the processor to stop its operation and locate a potential problem. Exceptions include interrupts, memory-access faults, math errors such as divide by zero, and trap instructions.

Specification summary: The 88100 provides register-to-register operations for all data-manipulation instructions. Separate source and destination registers are available. The CPU supports register-to-register and register-plus-immediate-value address modes. Because address calculations are quick, memory-access operations are speedy, in keeping with the RISC philosophy. The CPU employs delayed branching, which reduces pipeline delays caused by a change in program flow. The 88200 incorporates 16 kbytes of cache memory as well as cache-control logic, memory-management logic, and bus-control circuits. Multiple CMMUs can operate in parallel. Both the 88100 and 88200 come packaged in 180-pin PGA packages. The chips operate over the 0 to 70°C temperature range.

SUPPORT

From Motorola: The company has announced a variety of VMEbus-based boards and systems.

From others: Add-in boards are available for the IBM PC/AT from Opus (Cupertino, CA), for the IBM PS/2 from Prometa (Gainesville, FL), for the Apple Macintosh from Tektronix (Beaverton, OR), for the VMEbus from Force (Campbell, CA) and Tadpole (Cambridge, UK), and for the VAX from Avalon (Santa Barbara, CA).

From Motorola: 88000 systems run Motorola’s BCS/OCS Unix System V, Release 3 as well as System V, Release 4, both of which are supported by optimizing C and Fortran compilers and associated development tools for complete software development.

From others: Various compilers and applications are available for the 88000. See the 88open software catalog.
HARDWARE

CHARACTERISTICS

Description:
The i860 CPU is a 64-bit µP designed to provide balanced performance across integer, floating-point, and 3-D graphics operations. The µP incorporates a RISC integer unit, a floating-point adder, a floating-point multiplier, an 8-kbyte data cache, a 4-kbyte instruction cache, paging functions, an MMU, and a 3-D graphics unit. The i860 runs Unix but is not designed to run 386 software. The 82495 XP provides bus snooping hardware and a cache protocol that enables cache consistency between multiple processors, as well as between primary and secondary caches. The 82490 32-kbyte cache RAM integrates write-back and snoop buffers.

SUPPORT

SOFTWARE

From others: Logic Automation (Beaverton, OR) provides a software model, and Logic Modeling (Milpitas, CA) and Racal Redac (Westford, MA) offer hardware models.

From Intel: ASM/Tools, C compiler with vectorizer, PAX C, PAX Fortran, Debugger, IGL Graphics Library. C compiler, assembler, utilities, and retargetable symbolic debugger sell for $4000. Macro assembler with utilities and retargetable symbolic debugger costs $2000.

SPECIFICATION SUMMARY:
The i860 is a superscaler µP that contains three execution units: an integer unit and two floating-point units. The processor features two caches: a 4-kbyte instruction cache and an 8-kbyte data cache on the XR and two 16-kbyte I and D caches on the XP. The XP supports the MESI (modified, exclusive, shared, invalid) protocol for multiprocessor-cache coherency. The family uses an external 64-bit data bus and internal instruction-cache bus and an internal 128-bit data-cache bus. Both processors meet ANSI/IEEE 754-1985 for binary floating-point arithmetic. The XR contains an on-chip debug register. The 860 XP adds a memory-management unit (MMU) that handles 80386-and 80486-compatible 32-bit addressing, a 64-bit external data path, supported by posted writes, a three-stage read pipeline, and a one-clock burst bus. A concurrency control unit permits applications compiled for parallel execution to run on either single or multiple 860-based systems.

SECOND SOURCE:
None.

AVAILABILITY:
The 25-, 33-, and 40-MHz i860 XR versions are available now. The 40- and 50-MHz i860 XP, 82495 cache controller, and 82490 cache RAM will be in production late this year.

COST:
The cost of the i860 XR ranges from $172 for the 25-MHz XR to $495 for the 40-MHz i860 (1000). The i860 XP ranges from $560 to $699 (1000). The 82495 XP costs $176 (1000). The 82490 costs $40 (1000).

SECOND SOURCE:
None.

STATUS:
The i860 has amassed more than 250 design wins to date in supercomputer, minicomputer, 3-D graphics workstation, and application accelerator designs. Unix System V, Release 4.0, as well as hardware and software development tools for the 860 XR CPU are available now and will support 860 XP software development. Unix tools and compilers specifically designed for the 860 XP processor will be available later this year.

HARDWARE

64/32-BIT CMOS

Intel Corp
Supercomputing Components Operation
Phone (408) 987-8080
For more information, Circle No. 409

SUPPORT

SOFTWARE

From others: C compilers are available from Metaware (Santa Cruz, CA), Microway (Kingston, MA), and ATT PCC (Warren, NJ). Lahey, Microway, PGI, Green Hills, Compass, and Hipersoft supply Fortran compilers. Microway also offers Pascal and C++ compilers. An Ada compiler is available from Verdict. Magnus, K&A, and ATC Grafpak supply numerical libraries.
WITH TRW’s VIDEO ENCODER, ANYONE CAN PRODUCE PROFESSIONAL VIDEOS WITHOUT HOLLYWOOD BUDGETS.

Island Travel Promo

The monolithic Video Encoder is here. Created by TRW, the film and production industry's leading supplier of high-performance ICs. And the only company ever to be awarded an Emmy for its video IC technology.

Now, TRW brings you the first in its new line of affordable multimedia ICs for desktop video: The TMC22090.

And that means converting RGB, YUV or color-indexed computer images and graphics into studio-quality NTSC, PAL or S-Video signals can now be done with a single, low-cost chip. One fabricated in TRW's Omicron-C™ 1 µ CMOS process. Packaged in an 84 lead PLCC. And, of course, designed with the full-spec performance that is synonymous with TRW standards.

The TMC22090 boasts a 256x8x3 color lookup table, a pixel mask register and compatibility with 171 and 176 RAMDACs. All of which means transparent interface with existing device drivers.

Better still, the high performance Hollywood has come to rely on is provided by 4:4:4 digital encoding, oversampled 10-bit outputs, and built-in test signals. The TMC22090 even gives you a JTAG interface for low cost production testing. So for everything from simply providing an affordable video output for computer display boards, to developing complex desktop video workstations, you can design in confidence. With the video encoder from the leader in video ICs: TRW.

And you can count on TRW to keep you at the forefront of multimedia, too. This Video Encoder, after all, is just our debut. We've got some great sequels in development.

For data sheets, applications and other information on TRW's TMC22090 Video Encoder, as well as to be first in line for coming attractions, call or write today:

TRW LSI Products Inc., P.O. Box 2472, La Jolla, CA 92038 (619) 457-1000, FAX (619) 455-6314 (800) TRW-LSIP (800) 879-5747

TRW LSI Products Inc.

STANDARDS SET. STANDARDS TO BE MET.
NEW PRODUCTS

INTEGRATED CIRCUITS

Video Compression Chip
• Microcode programmable
• Handles JPEG, MPEG, and CCITT standards

Featuring a microcode-programmable architecture, the Vision Processor (VP) can execute a variety of still-frame and motion-compensated compression and decompression standards. The VP handles standards such as JPEG (Joint Photographic Experts Group) for still images, MPEG (Motion Picture Experts Group) for high-quality full-motion video, and CCITT Px64 for video communications. The chip is optimized to perform the discrete cosine transform (DCT) and motion compensation. It executes all forward and inverse stages of the algorithms including DCT, quantization, zig-zag scanning, run/ amplitude coding, motion estimation and compensation, and image filtering. The company provides the microcode to support JPEG, MPEG, and Px64 standards. In communications applications such as video conferencing, the processor can perform real-time encode/decode using the Px64 standard for 2000:1 compression ratios of full-motion video at 30 frames/sec. The VP is available in 144-pin pin-grid arrays and plastic quad flatpacks (PQFP) and 84-pin PQFPs. VP for JPEG-only operation, $60; for JPEG, MPEG, and Px64 support, $150.

Integrated Information Technology, 2445 Mission College Blvd, Santa Clara, CA 95054. Phone (408) 727-1885. Circle No. 422

Low-Power Static RAMs
• 1-µA standby current
• 0.6-µA data-retention current

The LH5168 8k x 8-bit and LH51256 32k x 8-bit low-power static RAMs (SRAMs) feature a maximum standby current of 1 µA and a data-retention current of less than 0.6 µA. When used in battery-back-up applications, the SRAMs can provide standby storage for 10 years or more from a single button-cell lithium battery. Both chips have an access time of 100 nsec. The LH5168 is available in 300- and 600-mil DIPs and 450-mil SO packages. The LH51256 is available in a 600-mil

We supply our clients with a wide array of connector parts, even if they go to parts unknown.

Lyn Bresnen
Multi-National Account Executive
DIP and 450-mil SO packages. LH5168, $2.54; LH51256, $14.46 (1000).

Sharp Electronics Corp, 5700 Pacific Rim Blvd, Suite 20, Camas, WA 98607. Phone (206) 834-8909.

CIRCLE NO. 423

UHF Power Module
- **Power output is 2.3W**
- **Needs only 2 mW of drive**

Designed for use in portable cellular radios such as the C-NETZ cellular system in Europe, the MHW703 UHF power module operates from a 7.5V supply. The module is also applicable to other communications systems that require power amplification at 450 to 460 MHz. It features an output power of 2.3W and needs only 2 mW of input drive.

Samples and small quantities of the module are available from stock; production quantities have a 12-week lead time. $43.90 (25).

Motorola Inc, E-114, 5005 E McDowell Rd, Phoenix, AZ 85008. Phone (602) 244-3818. FAX (602) 244-4597.

CIRCLE NO. 424

Monolithic Diode Array
- **Provides 8-kV ESD protection**
- **Replaces RC/diode networks**

Packaged in a 16-pin DIP, the SP270 provides 8-kV ESD and overvoltage protection for as many as 14 inputs. Conventional RC/diode networks, which provide only 2-kV protection, typically require 28 discrete diodes, 14 resistors, and 28 capacitors. The diodes have SCRs that activate in an electrostatic discharge event and dissipate very little energy. In addition, the SCRs speed up the response of the protection diodes, which exhibit a typical rise time of 6 nsec. The diodes provide protection by clamping the inputs to 1\(V_{BE}\) above the supply voltage for positive overvoltage, or 1\(V_{BE}\) below ground for negative overvoltage. The monolithic array of 14 diode pairs features a 1A current rating and a 5 to 28V supply-voltage range. $1.10 (1000).

Harris Semiconductor, Box 883, Melbourne, FL 32901. Phone (800) 442-7747, ext 1250; (407) 724-3704.

CIRCLE NO. 425

Some of the biggest names in electronics are making big plans for global expansion. But even the international date line can’t stop people like Antonia and Dennis when it comes to on-time delivery and zero defects. Amphenol has new facilities in Scotland, Mexico, Spain, and soon in Korea, Thailand and Australia. We’ll be right next door to major customers. So no matter how far away you go, people like Efrain and Normand aren’t far away. That’s what makes us a world class connector manufacturer, and second to none for customer service.

Amphenol

We’re all connected.

N. American & World Hqrs. (203) 265-8900 Canada (416) 291-4400 RF/Microwave (800) 627-7100 Spectra Strm/TTD (800) 846-6400 APCI (607) 754-4444 Bendi (607) 753-5011 Fiber Optics (708) 815-9800

EDN November 21, 1991
Killer Specs.

Panther® SCSI

Stalking system performance is your goal. That's why Maxtor's 1.2GB SCSI Panther was designed to perform a data seek in just 13ms. No other drive in its class features such lightning speed.

Panther's hunting prowess of 2ms track-to-track seek time stands out compared to Seagate's Wren 7 seek time of 2.5ms. And Panther outruns the competition with a 30Mb/sec. internal transfer rate.

Experience counts. Panther uses the reliable head disk assembly used in the Maxtor XT-8000, which boasts more than 300,000 units in the field. Panther shreds the competition with the widest range of available controllers, an MTBF of 150,000 hours, Novell certification and a highly competitive price.

Call about the full line of Panther drives that range from 1.2GB to more than 1.7GB capacity. If you're stalking performance, check out Panther's killer specs. Call your nearest Authorized Maxtor Distributor.

<table>
<thead>
<tr>
<th>1GB-plus Disk Drive Comparison Criteria</th>
<th>Maxtor Panther P0-12S</th>
<th>Seagate Wren 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (unformatted)</td>
<td>1.2GB</td>
<td>1.2GB</td>
</tr>
<tr>
<td>Seek Time</td>
<td>13ms</td>
<td>15ms</td>
</tr>
<tr>
<td>Track-to-Track</td>
<td>2ms</td>
<td>2.5ms</td>
</tr>
<tr>
<td>Internal Transfer</td>
<td>17.4 to 29.7Mb/s</td>
<td>15-23Mb/s</td>
</tr>
<tr>
<td>Maximum Seek</td>
<td>26ms</td>
<td>34ms</td>
</tr>
</tbody>
</table>

© 1991 Maxtor Corporation
© Panther is a registered trademark of Maxtor Corp.

CIRCLE NO. 105
Futurebus + Backplane
- Conforms to the Profile F, IEEE P896.2 specification
- Supports 128-bit data transfers

The Futurebus+ backplane conforms to the Profile F, IEEE P896.2 specification. The 16-layer backplane has 18 slots on a 30-mm pitch and supports 128-bit data transfers and central arbitration. The board arranges surface-mount, 330 resistors and high-speed capacitors to compensate for varying ground bounces. The backplane supports central arbitration by interconnecting the lower pins of connector E and all the pins through connector X of slot 1 to the respective pins on all the other slots. The board conforms to the mechanical specifications of IEEE 1301.1 and accepts hard-metric Futurebus+ cards measuring 265 x 288 mm.

$2000

Bicc-Vero Electronics Inc, 1000 Sherman Ave, Hamden, CT 06114. Phone (203) 288-8001. FAX (203) 287-0062. Circle No. 426

STD 32 Bus System
- Has multiple DOS SBCs sharing a single backplane
- Virtual Video gives user access to several CPUs

The STD 32 Star System allows multiple DOS-based single-board computers (SBCs) to share periph-

Real Time Devices
"Accessing the Analog World"

Quality U.S.-manufactured PC Bus cards and software for single user, OEM, or embedded applications.

AD3700 - $395

200 kHz THROUGHPUT
- 8 S.E. analog inputs, 12-bit 5 usec A/D
- FIFO interface & DMA transfer
- Trigger-in and trigger-out; pacer clock
- 4 Conversion modes & channel scan
- 4 Independent timers/counters
- 16 TTL/CMOS digital I/O lines
- Assembler, BASIC, Pascal & C source code

DataModule PRODUCTS
Plug-compatible with Ampyro CoreModule
DM402 12-bit 100 kHz analog I/O board with trigger, T/C, DMA & 16 DIO lines $395
DM602 12-bit 4-channel D/A; voltage range select; current loop & DIO control $289
DM802 24-line optic 22 compatible 8255 PPI-based DIO interface $149

POPULAR XT/AT PRODUCTS
AD1000 8 S.E. 12-bit A/D inputs; 25 kHz throughput; three 8-MHz timer/counters; 24 PPI-based digital I/O lines $725
ADA1100 AD1000 with 38 kHz throughput, 2 D/A outputs, and configurable gain $365
ADA2000 8 Diff./16 S.E. analog inputs; 12-bit 20 µs A/D; 12 or 8 µs A/D optional; two 12-bit D/A outputs; programmable gain; 3 T/Cs; 40 DIO lines from 82C55 PPI $489
ADA3100 8 Diff./5.E. 12-bit analog inputs; 200 kHz throughput; gain select; FIFO interface & DMA transfer; pacer clock; external trigger; 4 conversion modes, multi-channel scan & channel burst; 4T/Cs; 16 DIO lines; two fast-settling analog outputs $659
AD510 8 S.E. inputs; 12-bit integrating A/D with programmable gain $259
ADA900 4 Diff./5.E. inputs; 12-bit V/F type A/D; variable resolution & conversion speed; 16-bit @ 16 Hz; 12-bit D/A, T/C & 16 DIO lines $410
DA660/D700 Fast-settling 2/4/68-channel 12-bit D/A; double buffered $192/359
DG24/48/7290 Digital I/O lines; 82C55 based; optional buffers & line resistors $110/256
TC24 Am9513A System Timing & 82C55 Digital I/O control card $218
MX32 External analog multiplexer $198
ATLANTIS/PEGASUS/PEGASUS Acquire Menu-driven, real-time monitoring, control, data acquisition and analysis turn-key soft­ware packages $150/290

Call for your Free Catalog!

RTO tients, "Accessing the Analog World," and DataModule are trademarks of Real Time Devices, Inc. Ampyro and CoreModule are registered trademarks of Ampyro Computers, Inc. opto-22 is a registered trademark of Opto-22, Inc.

Custom/OEM designs on request!

Real Time Devices, Inc.
State College, PA USA
Tel.: 814/234-8087
FAX: 814/234-5218
CIRCLE NO. 41
Audio Transformers ranging in size from 3/4" x 3/4" to 3/4" x 1/4". 20 Hz to 250 KHz. Up to 3 watts.

Pulse Transformers .05µ.SEC to 100µ.SEC miniaturized construction.

Ultra-miniature DC-DC Converter Transformers. 40 watts

Miniaturized Switchmode Inverter Transformers. 60 watts.

400 Hz Power Transformers. Primary voltages of 115V or 26V. Plug-in construction. Ultra-miniature

Microphone/Transducer Audio Input.

MIL-STD-1553 Interface Multiplex Data BUS Pulse Transformers.

Package consists of load boards and slot-bypass cards

Vary the current in each voltage line from 0.5 to 2A.

A family of load boards and slot-bypass cards are available for testing a VMEbus system. The load boards can vary the current on each VMEbus voltage line from 0.5 to 2A. The front panel has LEDs and test points for each voltage line. Programmable drivers on the
boards send arbitrary signal waveforms over the backplane. An active version can switch the system-clock frequency to 8, 16, 32, or 64 MHz via front-panel control. You can direct the clock frequency to any line on the backplane. The slot-bypass cards are available in 3U, 6U, and 9U sizes and have E-Z-Ject handles for quick ejection. The cards provide a bypass of the Bus Grant signal and interrupt jumpers for any unoccupied VMEbus slot. The cards have an RFI shield on both sides, and an Air Dam restricts air flow through the empty slot. Load boards, from $249; slot-bypass cards, from $39.

Electronic Solutions, 6790 Flanders Dr, San Diego, CA 92121. Phone (800) 854-7086; (619) 452-9333. Circle No. 428

SPARC Processor Board

- **Provides 2-D and 3-D color graphics**
- **Contains 40-MHz SPARC µP and 16 Mbytes of RAM**

The SPARCengine IPX SPARC processor board contains a 40-MHz SPARC µP, network functions, and a graphics accelerator. It delivers 28.5 MIPS and 4.2 Mflops, which are equal to 24.2 SPECmarks. The company integrated its GX accelerated graphics hardware in an ASIC to provide 2-D and 3-D color graphics in embedded and real-time applications. The board contains a cache memory, two SBus expansion slots, a SCSI port, an audio port, two RS-232C ports, a floppy-disk-drive port, and an Ethernet port. The 9 x 9.7-in. CPU board comes with 16 Mbytes of RAM, which is expandable to 64 Mbytes. The board runs the Solaris operating system, the company’s ONC networking software, and Openwindows software. $9000.

Sun Microsystems Inc, 2550 Garcia Ave, Mountain View, CA 94043. Phone (800) 821-4643; (415) 960-1300. Circle No. 429
NEW PRODUCTS

CAE & SOFTWARE DEVELOPMENT TOOLS

Interactive Transmission-Line Simulator
- Analyzes critical traces before layout
- Graphical interface

Linesim Pro provides a highly interactive tool for critical path analysis for transmission line effects. Running on a 386/486 PC, the tool provides a pop-up graphical interface to a transmission line simulator. With Linesim Pro's graphical, pop-in schematic, engineers can define their critical nets and then simulate them to predict transmission line behavior. This enables engineers to test their circuits before PCB-board layout and modify the layout design as needed. The interface includes interactive, popup tools for calculating board trace impedances, creating or modifying circuit models, and adding terminators. The tool can handle large clock nets and backplanes, and it models microstrip, stripline, and asymmetric strip-line geometries. For ease of use, the simulation results are displayed in an oscilloscope-like form. It requires 2 Mbytes of extended memory. $995.

HyperLynx, Box 3578, Redmond, WA 98073. Phone (206) 896-2320. Circle No. 419

Visual Programming Kit For Industrial Control
- Graphic, object-oriented control language
- Develops control programs with no coding

The Gello (Graphically Enhanced Ladder Logic) system overcomes traditional programming barriers with a fully graphical, visual programming system. Gello is aimed at industrial control applications and comprises an interactive, graphical programming environment and a run-time execution engine, Gellix. Using predefined function blocks, engineers can define programs as collections of graphic elements; each collection breaks down into sets of linked functional blocks. These blocks are executed by the Gellix engine, which functions much like a compiler to check and verify the program's correctness.

EDN November 21, 1991
You asked for an integrated set of CAE/CAD design tools which could deliver every aspect of your engineering design needs at an affordable price. CAD Software offers the highest performing design system for your PC. Schematic capture, logic simulation, printed circuit board design, auto-routing, thermal analysis, and computer-aided manufacturing are all within the PADS Design system.

Your design begins with PADS-Logic, the only PC-based schematic capture system which has a true multi-sheet database for quick and accurate design capture and data transfer to your PCB design. PADS-Logic has a large circuit capacity of over 1,000 equivalent IC's per design, a Hierarchical design ability with an unlimited number of levels, superb analog design capability, forward and backward annotation, a Part Editor and Graphical Library browsing.

PADS-PCB sets the standard for affordable high performance PCB design. A one mil database, 30 layers, automatic design rules checking, SMD ability, excellent interactive routing, and a set of ECO routines which ensure fast accurate changes, are just some of the features which have made PADS-PCB the #1 selling PC-based PCB design system.

NEW! PADS-UNIX operates on the Sun Sparc Station family and contains all of the advanced features of the widely used PADS 2000 product, including schematic capture, powerful component placement aids, and multiple approaches to track routing. This advanced PCB design system can handle the most complex designs, with auto-routers for digital, analog and high-speed/critical circuitry, an unlimited design capacity, ERC and DRC checking, intelligent copper pour and T-routing, 0.1° parts/pads rotation, and much more!

Call CAD Software today for your local Authorized Reseller, or for a no-cost Evaluation Package, and experience the world of electronic engineering design:

CA: Software, Inc.

(800) 255-7814
Inside MA
(508) 486-8929
119 Russell Street, Littleton, MA 01460
like a Forth inner interpreter, linking to the next block to be executed (Gello is compiled). A package named Threads introduces a powerful data flow, concurrent processing design, and execution mechanism. With Threads, designers can detail multiple execution paths that execute concurrently. Program blocks are supplied for standard industrial control functions, including data collection, signal analysis, real-time event processing, and device control. Gello introduces an open programming mechanism, where each block has visible, global variables and is limited in size. Users can simulate their programs in Gello, picking up errors before running the program in the Gellix engine. Gello development editor, $6500; Gellix run-time, from $900 (lower in volume); Threads/Gello, $8500.

Event Technologies Inc, 7210 Georgetown Rd, Suite 100, Indianapolis, IN 46268. Phone (317) 291-1110. Circle No. 420

Low and high pass filters for real signals

The SR640, SR645 and SR650 offer unique combinations of filter specifications, preamplifier performance, and programmability at a price far less than other instruments. Featuring two fully independent 5-pole, 6-zero elliptic filters with less than 0.1 dB p-p passband ripple and 115 dB/octave rolloff, these filters are ideal for general purpose signal processing as well as anti-aliasing for digital signal processing systems.

The GPIB and RS232 interfaces allow complete control of all instrument settings via computer. The microprocessor components are optically isolated from the filter sections to provide optimum noise performance.

Whether your needs are for laboratory benchtop filters or signal conditioning filters in data acquisition systems, the SR640, SR645 and SR650 are the natural choices.

SR640, SR645, SR650

- 1 Hz to 100 kHz cutoff frequency
- 3 digit frequency resolution
- 0.1 dB passband ripple
- 115 dB/octave rolloff
- 80 dB stopband attenuation
- 4 nV/√Hz input noise
- ±0.5° phase match at fc
- 60 dB prefiltter gain
- 20 dB postfilter gain
- GPIB, RS232 interfaces

SR640, SR645, SR650

- Programmable, 115 dB/octave rolloff.
- **$2990.**

DSP Development Software

- Superset of Hypersignal DSP development tools
- Macro language automates processing and display functions

Hypersignal-Macro is an enhanced tool set built around the Hypersignal DSP software package. The tool set features a macro language that enables engineers to specify Hypersignal processing functions with a higher-level language that has looping, conditional, and scheduling controls as well as automation variables. Existing Hypersignal functions are enhanced, adding dB calibration, overlaid trace display, imaginary operators for difference equations, and new board drivers for other DSP boards. Signalogic is a spinoff of Hypersignal with a contractual arrangement for shared software marketing. The software supports more than 30 DSP/acquisition boards with real-time data algorithm development, analysis, and measurement functions. Hypersignal-Macro, $989; existing Hypersignal-Workstation upgrade, $495.

Signalogic Inc, 9704 Skillman #111, Dallas, TX 75243. Phone (214) 343-0069. FAX (214) 343-0163. Circle No. 421
The hand-held probe you've always trusted just can't keep pace in today's sub-nanosecond world. Speeds are too fast. Traces are too small. Circuits are just too sensitive.

The new 10X Probe from Cascade Microtech extends the accuracy of your high frequency test equipment right down to the circuit. To help you speed development, reduce design turns, and produce faster, more reliable circuits.

- Measure rise times less than 30 ps
- Access lines as narrow as 2 mils
- Less than .060 pF load through 20 GHz
- Micropositioned for accuracy and device protection

You can accurately access multichip modules, hybrids and high density PWBs with just .060 pF capacitive load. So you can identify timing problems, ground bounce, crosstalk and other high-speed problems more easily, without affecting the characteristics of your circuit.

Discover how easily and economically you can put the Cascade Microtech 10X Probe to work. To request your free copies of our informative new booklets, just write or call Ken Smith at (503) 626-8245.
365 Standard Models
• Single, Dual & Triple Output
• Remote Disable Pin Standard
• Up to 1000V DC Output now Standard
• 500V DC Isolated Input to Output
• All Units Shielded

MIL-STD-883 UPGRADES AVAILABLE
• Expanded operating temp. (-55°C to +85°C)
• No Heat Sink Required
• Stabilization Bake (125°C ambient)
• Temperature Cycle (-55°C to +125°C)
• Hi temp., full power burn in (100% power, 125°C case temp.)

Three VXIbus-Based PC-Board Test Systems
• Include a mixed-signal tester and a core architecture
• Also include application-specific configurations
Three pc-board test systems use the VXIbus modular-instrumentation standard. The systems are the S760VXI, a core architecture for system integrators and value-added resellers; the S765VXI, available in custom configurations for specific high-volume applications; and the S790VXI, a mixed-signal tester. The S765VXI is based on the S760VXI and adds a test-head interface, a control console, power supplies, IEEE-488 instruments, and custom-designed VXI modules. The S790VXI combines the vendor's universal digital pin electronics with VXI instruments in a synchronized configuration built around a single high-speed backplane. S760VXI, from below $75,000; S765VXI, from $150,000; S790VXI, from $275,000; expected cost of typical configurations, $750,000. Delivery, 60 to 120 days ARO.

Schlumberger Technologies, ATE Div, 1601 Technology Dr, San Jose, CA 95110. Phone (408) 437-5129. FAX (408) 453-0137.

Circle No. 415

VXI C-Size Mainframes
• Have 12-layer segregated backplanes
• All power supplies are current limited
The 120 Series 12350 is a 13-slot C-size VXIbus mainframe. The 12260 is a portable, 6-slot C-size VXIbus mainframe. Both units include power supplies that have current-limited outputs and use 12-layer, segregated backplanes that maintain 50Ω impedance to 100 MHz. The backplanes incorporate jumpers for configuring the bus-grant and acknowledge functions. They incorporate circuits and indicators that monitor the function of each slot. The 13-slot unit measures 15.75 x 19 x 24.24 in. and weighs 48 lb; the 6-slot unit measures 13.5 x 8.6 x 26 in. and weighs 28 lb.

Circle No. 416

660-MHz Digital-IC Tester
• Tests devices with 512 pins
• Has 80-ps skew
The 83000 Model F660 is perhaps the highest speed digital-IC tester that any firm offers as a standard product. You can use the tester for device characterization or for production testing. Its clock rate is as high as 660 MHz, and it works with devices (including GaAs and ECL parts) that have as many as 512 pins. It achieves its speed without multiplexing (a technique that, to improve speed, sacrifices channel capacity). The system—which uses "tester-per-pin" architecture and backs each pin with as much as 4 Mbits of memory—has a pin-to-pin skew of 80 ps. All of the test electronics of the 28 ft² system reside in the test mainframe (the unit to which you attach a device handler). The controlling workstation stores data in compressed form and communicates with the mainframe over a fiber-optic link. Tester for 256 channels, approximately $1,600,000; additional channels, $5500 each.

Hewlett-Packard Co, 19310 Prunerie Ridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 416
World's broadest line of...

Clock and Sinewave Crystal Oscillators
(1 Hz thru 2000 MHz)

INSTRUMENTS

Model 12350, $5500; model, $3400.
Mac Panel Co, Box 7728, High Point, NC 27264. Phone (919) 861-3100.

Circle No. 417

To order, or for complete engineering assistance, call:
(203) 853-4433

VECTRON
The Crystal Oscillator Company

VECTRON LABORATORIES, INC.
166 Glover Avenue, Norwalk, CT 06850.
Phone: (203) 853-4433. FAX: (203) 849-1423.

CIRCLE NO. 47

no noise is good noise!

Advanced EMI and noise filter technology from the NO NOISE experts helps you keep your designs quiet. Just the way you want them!

- NO NOISE EMI FILTERS—Taiyo Yuden’s EMI filters are designed and built to meet your requirements for the ultimate in noise suppression. In advanced applications, at high speeds, with many supply voltages, our filters deliver the performance you need!

- BUILT TOUGH FOR AUTOMATIC ASSEMBLY—Taiyo Yuden filter products are designed and built tough to withstand today’s exacting demands for automated assembly. Consistent performance doesn’t end with the product…. it’s just the beginning.

- SIMPLE, RELIABLE DESIGN—Taiyo Yuden’s line of axial, radial, and surface mount filters are made from the highest quality capacitors, ferrite cores, and MFC varistors. The net result… reduced circuit noise and improved performance!

- QUICK DELIVERY—Our distribution network, coupled with international and domestic inventories help you get your designs to market faster.

AVOID THE NOISE… Find out for yourself how Taiyo Yuden’s ADVANCED EMI FILTER PRODUCTS can help you solve your noise related problems. Our new catalog can show you how...

TAIYO YUDEN (USA), INC.
714 West Algonquin Road, Arlington Heights, IL 60005
Tel 1-800-34-TAIYO (1-800-348-2496)
Fax (1-708) 870-7628

EASTERN REGION: 1-800-36-TAIYO (1-800-368-2496)
WESTERN REGION: 1-800-25-TAIYO (1-800-258-2496)

Power supply needs?... contact Xentek, Inc. (a subsidiary of Taiyo Yuden) at (1-619)727-0940 or ask your Taiyo Yuden representative.

CIRCLE NO. 48
NEW PRODUCTS

COMPONENTS & POWER SUPPLIES

Desktop Supplies
- Output 60W
- Offer three outputs

APS-HES Series desktop power supplies develop output powers ranging from 20 to 60W. They are available in single-, dual-, and triple-output versions, which operate from a universal input of 85 to 265V ac. All units are designed to meet UL 1950, CSA 950, and VDE EN60950 specifications. All supplies come with the IEC input connector as standard and a choice of output cords and output terminations. 40W single-output model, $40 (100). Delivery, six to eight weeks ARO.

Advanced Power Solutions, 5994 W Las Positas Blvd, Suite 211, Pleasanton, CA 94588. Phone (415) 734-3060. FAX (415) 460-5498. Circle No. 411

Pushbutton Switches
- Have a 25-mm-square actuator
- Handle 100 mA at 24V loads

Series 25 lighted pushbutton switches are designed to mount in a 16-mm-diameter panel cutout and feature a 25-mm-square actuator. They’re designed for maximum loads of 100 mA at 24V. The units are available with red, green, blue, yellow, and white interchangeable lenses. Lamp options include a choice of bi-pin TL incandescents or multichip LEDs. Bezels are available in black matte or chrome-plated finishes in three configurations—recessed button, flush button, or long-travel protruding button. The gold-plated silver contacts are rated for 10^6 operations min. Electrical connections are made via a plug-in socket designed for 4-conductor flat cable. The switches are designed to meet IP65 water-tight sealing requirements. $7.80 (100).

Unimax, Box 152, Wallingford, CT 06492. Phone (203) 269-8701. FAX (203) 265-5398. Circle No. 412

MIX & MATCH
ANY SOCKET TYPE COMBINATION

The MULTITRK-4000™'s “mix & match” capability sets a new standard in programming. Using an 8 socket attachable “TRAKCel”, the MULTITRK lets you program unusual device packages in combinations of 8 to 32 devices.

We built the future into our features. Get only the support you need today and as new device technologies come along, easily upgrade the MULTITRK with the switch of a TRAKCel. Program EPROMs, FLASH Devices, Single Chip Micros, CMOS PLDs and many more - all on one site.

Precision Programming with the MULTITRK-4000:

- High Volume - Embedded Controller (8/16/32Bit), EPROMs, PLDs.
- Custom Packages - DIP, PLCC, PQFP, PSOP, TSOP, PGA, etc.
- All Computer Environments - SUN, VAX, HP, APPLE, PCAT/PS2.

- 3.5" Micro Disk Drive to facilitate Device Library Updates.
- RS-232 Serial Port (9-pin) with BAUD rates of 150-57,600.
- Parallel Port with a Data Transfer Rate in excess of 100K Bits/Sec.
- DMA Port with a Transfer Rate of 12 MBit/Sec. (Opt.)

30-day Money Back Guarantee
1-800-523-1565

BYTEK Corporation
543 NW 77th St © Boca Ratón, FL 33487 © (407) 994-3520

SCHURTER AG
Werkhofstr. 8-12, CH-6002 Lucerne
Electronic and Electrical Components
Phone 041 40 31 11
Fax 041 40 33 33

CIRCLE NO. 50

EDN November 21, 1991
DOS IN EPROM

Or any other code, for that matter! PromKit allows you to create Eproms that look like read-only disk drives in your PC-compatible systems. Use PromKit even if you're not a programmer. Just use PromKit to convert any disk into EPROM images for your Prom blaster! Copy system files, batch files, data files, or anything else you want. Use Proms for read-only, SRAMS for read-write! Includes source code in C. Over 180 pages, including disk, only $179. Includes schematics for add-in boards.

FREE We'll include a free copy of the pocket-sized XT-AT Handbook by Choisser and Foster with each PromKit if you mention this ad when you order. Of course, this $9.95 value is also available by itself. Or buy five or more for only $5.00 each.

Annabooks
12145 Alta Carmel Ct., Suite 250
San Diego, CA 92128
FAX 619-592-0061
Money-back guarantee

PCB MANUFACTURING
DESIGN AND ARTWORK!
ALL YOUR CIRCUIT BOARD NEEDS UNDER ONE ROOF

PCB MANUFACTURING
• 2 Day turn on multi-layers
• Prototype and production
• One tooling charge for both
• Turn-key assembled boards

PCB DESIGN
• Backplanes
• Impedance control
• Analog and ECL
• Surface mount

TECHNICAL ASSISTANCE
• PCB design tips
• Mfg cost cutting tips
• Testing guidelines
• We accept gerber data via modem (714) 970-5015

CALL FOR A QUOTE!
A MANUFACTURING, PCB DESIGN AND SUPPORT CENTER

CIRCLE NO. 51
CIRCLE NO. 52

COMING JANUARY 20, 1992

EDN November 21, 1991
COMPONENTS & POWER SUPPLIES

Tubular Solenoids
- Have 0.75-in. diameters
- Handle 60W
L75 Series tubular solenoids measure 0.75 in. in diameter and are available in versions that are 1.5 and 0.75 in. long. Models are offered for both push and pull operation. Both types are available with operating voltages of 6, 12, 24, or 110V dc as standard. Other voltages are available as an option. Standard power ratings range from 4W continuous to 60W pulse duty. The solenoids feature brass guide tubes and a novel soft-stop design, which maximizes operating lifetime—10^7 cycles. $8 (OEM qty). Delivery, six to eight weeks ARO.
Liberty Controls Inc, 500 Brookforest Ave, Shorewood, IL 60435. Phone (815) 725-2241. FAX (815) 725-6571. Circle No. 413

Terminal Strips
- Offer 24-position capability
- Have a 5-mm contact spacing
Series 85K terminal strips are available in versions that have 2 to 24 positions. They have a 0.197-in. contact spacing, and they are available in straight-through, 90°, and 45° styles. The unique shape of their Snap-Loc terminals makes it possible to snap and lock the terminal strips onto the pc board prior to soldering. The terminal-strip footprint is identical to designs that have no Snap-Loc terminals so there's no need to redesign the pc board. All terminal strips have a Snap-Loc terminal on each end. Versions with 12 to 24 positions have an additional Snap-Loc terminal in the center. Strip with straight-through leads, $0.12/circuit (500).
Vernitron Corp, Beau Products Div, Box 10, Laconia, NH 03247. Phone (603) 524-5101. FAX (603) 524-1627. Circle No. 414

Brushless DC motors provide extended life in demanding applications
These compact 12-24 VDC motors are designed for tape cartridge drives, business machines, medical equipment, pumps/compressors and similar applications. Available in 2.0” and 3.2” diameters with stall torque from 10 to 84 oz-in. Custom shaft and housing and configurations to match your requirements. AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3451. Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany. Tel: 611-370031. Fax: 611-370033.
AMETEK LAMB ELECTRIC DIVISION

ANTEX ELECTRONICS

EDN November 21, 1991
This advertising is for new and current products. Please circle Reader Service number for additional information from manufacturers.
A STEP BEYOND.

PROMICE takes ROM emulation a step beyond. It's an affordable, multi-operational development tool with:
- On-board intelligence
- Moduler design
- Source level debugging
- Future expandability

PROMICEX The Firmware Development System of Tomorrow...

High Density - Low Insertion Force 48-490 Position High Rel PC Connectors

KA254 Printed Circuit Board Connectors are available with 4 row models with from 48 to 392 positions, and 5 row models from 300 to 496 positions. These connectors meet D5502 performance requirements. Crimp, flow solder, Wire Wrap and solder cup terminations are available on 100" x 100" grid spacing.

For additional information, contact: HYPERTRONICS CORPORATION
16 Brent Drive, Hudson, MA 01749
(In Mass. & Canada (508) 568-0451)
(800) 225-8228 FAX: (508) 568-0680

Innovative Software Designs offers an unbeatable set of reliability analysis software tools with its Relex product line. The Relex line includes electronic reliability analysis according to MIL-HDBK-217, Solder, and CNET mechanical reliability, and failure modes and effects analysis. Also available are packages for thermal and mechanical analysis.

Rellex products are noted for their outstanding quality, ease-of-use, flexibility, and comprehensive array of features. A wide range of packages are available to meet your price and product requirements. All products are fully guaranteed!

Call today for more information and ask for our long list of satisfied customers!

Innovative Software Designs, Inc.
One Kimball Ridge Court, Baltimore, MD 21228
(301) 747-8543; Fax (301) 747-8599

STAG's ZL30B continues the ZL30 and ZL30A line of logic programmers that have become an industry standard in both engineering and production environments.

Among the ZL30B's many features are:
- Powerful easy to use editing capability
- Super fast programming
- Stand alone or Remote operation
- Comprehensive device library
- Handler interface capability to support DIP or PLCC devices
- UC/ or format includes JEDEC, Signetics and X-Pert

Computerized Software Corporation.

Call today! 519-888-6911

Z28, Z180, Z80 & M80S Full ANSI C Compilers

- Completely automatic MMU support (no programming effort) for UP TO ONE MEGABYTE Z280 programs.
- DC based cross-compilers for ANSI and K&R C code.
- Complete with high-speed assembler, linker, and librarian. Includes macros to interface C and assembly.
- NOT A SMALL C Comp at a small C price.
- All ANSI .H files and applicable functions provided.
- Optimized code generation for all data types. Char types are not promoted to int. Generates inline port 1/0.
- Complete with high-speed assembler, linker, and librarian.
- Fast ANSI IEEE 754 floating point support.
- Includes macros to interface C and assembly.
- Supports C interrupt service routines and pseudo variables to user defined segments.
- ANSI C Compiler, Assembler, Linker - $699 Assembler and Linker Only - $279

Surface Mount Chip Component Prototyping Kits—

Call today! 519-888-6911

Model-INS-410

U.S.A. WATAHAN NOHARA INTERNATIONAL INC.
TTEL (800) 366-3515

Specifications:

- Z280, Z180, Z80 & M80S Full ANSI C Compilers
- Optimizing C compilers
- Built-in cross assembler
- Includes integrated shell
- Expert system optimizations
- Code development system

Call today! 519-888-6911
Instrument Control and Data Acquisition

Free 1992 Catalog of instrumentation products for PCs, workstations, and more. Features IEEE-488.2 interfaces and software, plug-in data acquisition boards, VXIbus controllers, DSP hardware and software, and signal conditioning accessories. Application software for complete acquisition, analysis, and presentation of data, including graphical interfaces. Application tutorials and training classes are detailed. National Instruments.

Contact: Samtec, Inc. P.O. Box 1147 New Albany, IN 47151-1147
Tel: 800-SAMTEC9, or FAX: 812-948-5047.

CIRCLE NO. 340

Best SOLENOID...BEST PRICE

OakGrigsby has the solenoid you need at a price you can afford. Extensive line of rotary and linear solenoids include box frame, flat pack, and rotary selector. All are engineered and manufactured to meet stringent quality standards.

CIRCLE NO. 344

Analog Circuit Simulation

SPICE for the PC

- Schematic Entry
- SPICE Simulation
- Model Libraries
- Waveform Graphics

Intusoft has it all at an Affordable Price!

Call or Write For
Your Free Demo and Information Kit

P.O. Box 710 San Pedro, CA 90733-0710
Tel: 213-833-0710
Fax: 213-833-9658

CIRCLE NO. 346

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
200 MHz Logic Analyzer

- 24 Channels (up to 50 MHz), Timing and State
- 200/100 MHz Max Sampling Rate (6 channel)
- Timing and State Simultaneously on Same Probe
- 16K Samples/Channel (6 channel mode)
- 16 Levels of Sequential Triggering
- Optional Expansion to 72 Channels
- Variable, TTL, or ECL Logic Threshold Levels
- 3 External Clocks and 11 Quality Lines
- FREE Software Updates on 24 Hour BBS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA27100</td>
<td>$1299</td>
</tr>
<tr>
<td>LA27200</td>
<td>$1899</td>
</tr>
<tr>
<td>LA27200</td>
<td>$200 MHz</td>
</tr>
</tbody>
</table>

UNIVERSAL PROGRAMMER

- PAL
- GAL
- EPROM
- EEPROM
- PROM
- 87xxx...
- 22V10

16-bit EPROMs FLASH EPROMs

5ns PALs
4 Meg EPROMs
FREE software updates on BBS

GANG PROGRAMMER

- 4 32-pin Sockets (8 Socket option)
- 2716-27010 EPROMs

$475

CIRCLE NO. 349

RGB Line Driver

- 20 MHz 286 CPU CARD — $595
 - 2 Serial/I Parallel Ports
 - Up to 4 Meg DRAM: 0/1 WS
 - Low Power 6-layer PCB
 - Award BIOS — Norton SI 21.1
 - Optional 287 Co-Processor
 - Small Size (X1-Form Factor)
 - User Replaceable Battery
 - Made in USA
 - $595 qty 10 w/OK

CIRCLE NO. 754

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
SUPERMAX 1000 is an extraordinary 1000-watt "shoe box" switching power supply of revolutionary small proportions. Designed with Power Factor Correction built in. The smallest in its class. Includes Universal AC input; low AC line distortion per IEC 555-2; high MTBF; system air or self-cooling. Part of the MAX Series from 160W.

NYTEL: 516 231-3366, 800 223-TODD - The 911 of power supplies.

For "Shoe Box" Power Supplies, No One Else Can Fill Our Shoes.

Odetics

Precision Time Division
1555 S. Manchester Ave., Anaheim, CA 92802-2907
Phone (714) 758-0400 Fax (714) 758-TIME

"VAX, MV/PSA, and Q-Bus are trademarks of Digital Equip. Corp.; PC (XT/AT) are trademarks of IBM Corp.

An Established Footprint In The Device Programming Arena

U.S. Tel./Fax 1-619-727-4683 / 5322
Europe Tel./Fax 353-1-2892136 / 2892070
Japan Tel./Fax 81-3-3544-2001 / 2007

Daisan Marun Bldg., 6-16-6 Nishi Shinjuku, Shinjuku-ku, Tokyo 160, Japan.

Aval CORPORATION

RELIABILITY AND MAINTAINABILITY PREDICTION AND FMECA ANALYSIS SOFTWARE

Hundreds have used this leading computer-aided engineering software since 1982.

Powertronic Systems offers software to predict Reliability and Maintainability and for Failure Modes Effects and Criticality Analysis. Hundreds of users have selected from PSI's large, versatile and integrated software family for military and industrial equipment and for both electrical and mechanical systems. And, data inputs to these programs may be interactive or batch mode from other CAE or database programs.

Programs implement MIL-STD-1629, MIL-HDBK-217 including E Notice 1, and MIL-HDBK-472.

Powertronic Systems, Inc.
P.O. Box 20193 - New Orleans, LA 70189
(504) 254-0383 FAX (504) 254-0393
CAREER OPPORTUNITIES

If You’re Looking
For a Job,
You’ve Come to
The Right Place.

Call today for information on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

PERSONAL COMPUTER ENGINEERS

Advanced Micro Devices has several challenging positions available within our Explosive PC Products Division. If your background includes experience in Personal Computer Systems Architecture, Design or Product Planning, we would like to discuss with you the many career opportunities at AMD.

Your experience may lead you to a position in Technical Marketing, System Design or Product Planning for two of our most successful product offerings, the 80286 microprocessor group or the Am386™ microprocessor family. To find out more, please mail your resume to: Advanced Micro Devices, MS-556/EDN, 5204 E. Ben White Blvd., Austin, Texas 78741 or you may call Jim Everett at (512) 462-5517 or FAX your resume to (512) 462-5108. An Equal Opportunity Employer.

EMPLOYMENT OPPORTUNITY

Company needs a Senior Research Engineer to do research on Computer Graphics and Artificial Intelligence which involve designing geometric representations of static and dynamic three dimensional objects on the computer screen and printout, and applying Artificial Intelligence technology for selecting optimal parameters of graphics and statistical programs. Applicants must have Ph.D. or equivalent in mathematics and have done research in the areas of Lie Groups and Lie Algebras, and System and Control Theory, and produced at least one published paper in each of these particular areas. 40 hour/week, $38,000/year. Please submit resume and proof of qualifications to J. Gaston, Division of Employment Security, 505 Washington, St. Louis, Missouri 63101, Phone (314) 340-4748, Re: Job #518342.

Get a Job!
They're calling it an alliance of world class design and manufacturing talents. A combination of technology strengths unrivaled in industry today.

We call it teamwork in the truest sense. And the world is watching as Motorola, IBM and Apple come together to propel desktop computing into a new era.

If you have the expertise required to create the next generation of microprocessors, your talents are needed for this innovative team effort. In addition to exciting, ground-floor career opportunities, we offer the attractive location and lifestyle of Austin, Texas.

Openings now exist for individuals with expertise in the following areas. Positions require a BSEE/CS or advanced degree with emphasis on computer engineering. Experience in RISC architecture, microprocessor, and CMOS VLSI design is essential, as well as strong circuit and logic design skills. Proficiency in C and UNIX would be a plus.

LOGIC DESIGNERS

Responsible for definition, logic design and verification of high performance RISC microprocessor. Expertise in specifying, modeling and design is essential.

SYSTEM VERIFICATION ENGINEERS

Develop verification programs/behaviors to verify RISC microprocessor functions and perform failure analysis at system and chip levels. Proficiency in C and UNIX is required.

CIRCUIT DESIGNERS

Design CMOS circuitry for RISC based microprocessor functions. Must be able to design complex CMOS circuits and perform circuit analysis, verification and design for test.

CAE DESIGNERS

Develop an integrated VLSI CAD platform based on vendor tools and design/code. Includes evaluation, design methodology and tool support. Requires experience in workstation tool development and software integration. Knowledge of relational database and graphical user interfaces (X, motif) would be a plus.

PRODUCT ENGINEERS

From wafer probe and assembly through final test, will ensure effective product yield/cost management. Involves customer interface and characterization of products to support design, manufacturing and quality improvements for RISC microprocessors.

SYSTEM ADMINISTRATORS

Administrate a distributed UNIX workstation environment of multivendor platforms. Will also provide network management and system software support to engineering programming departments. Familiarity with installation/maintenance of VLSI CAD tool software preferred.

There’s no company—or opportunity—in the world like this one. Be a part of it. For consideration, send your resume to: Motorola Recruitment, Dept. ATX—9127, 505 Barton Springs Rd., One Texas Center, Suite 400, Austin, TX 78704. (800) 531-5183; (512) 322-8811 FAX. Equal Opportunity/Affirmative Action Employer.

MOTOROLA

Microprocessor and Memory Technologies Group

EDN November 21, 1991
EDN Databank

Professional Profile
Announcing a new placement service for professional engineers!

To help you advance your career, Placement Services, Ltd. has formed the EDN Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutely free. There are no fees or charges.
- The computer never forgets. When your type of job comes up, it remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and its affiliated offices.
- Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objectives will periodically be reviewed with you by a PSL professional placement person.

We hope you're happy in your current position. At the same time, chances are there is an ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Databank. To do so, just mail the completed form below, along with a copy of your resume, to: Placement Services, Ltd., Inc.

IDENTITY

PRESENT OR MOST RECENT EMPLOYER

Name ____________________________

Home Address: _________________________________

City ____________ State: ______ Zip: ______

Home Phone (include area code): ______

Parent Company ____________________________

Your division or subsidiary: ________________________________

Location (City, State): ____________________________

Business Phone if O.K. to use: ______

EDUCATION

Degrees (List)

Major Field ____________________________ GPA: ______

Year Degree Earned: ____________ College or University: ____________________________

POSITION DESIRED

EXPERIENCE

Present or Most Recent Position: ____________________________ From: ______ To: ______ Title: ____________________________

Duties and Accomplishments: ____________________________

Industry of Current Employer: ____________________________

Reason for Change:

PREVIOUS POSITION:

Job Title: ____________________________

Employer: ____________________________ From: ______ To: ______ City: ______ State: ______

Division: ____________________________ Type of Industry: ____________________________ Salary: ______

Duties and Accomplishments: ____________________________

COMPENSATION/PERSONAL INFORMATION

Years Experience: ______

Base Salary: ______

Commission: ______

Bonus: ______

Total Compensation: ______

Asking Compensation: ______

Min. Compensation: ______

Date Available: ______

I Will Travel: ______

Light: ______

Moderate: ______

Heavy: ______

I own my home. How long? ______

I rent my home/apt. ______

□ Employed: ______

□ Self-Employed: ______

□ Unemployed: ______

□ Married: ______

□ Single: ______

Height: ______

Weight: ______

Level of Security Clearance: ______

□ U.S. Citizen: ______

□ Non-U.S. Citizen: ______

My identity may be released to: ______

□ Any employer: ______

□ All but present employer: ______

□ WILL RELOCATE: ______

□ WILL NOT RELOCATE: ______

□ OTHER: ______

EDN November 21, 1991
DELL IS TO COMPUTER DESIGN AS AUSTIN, TEXAS, IS TO LIVING

At Dell, we believe in letting the imagination of our engineers shape the design of our award-winning products.

From the technically advanced Dell System 320N notebook, with state of the art power management, to Dell’s newly announced 486 desktop system with upgradeable processor cards, through Dell’s innovative UNIX V4, Dell is a leading high technology company.

Dell engineers enjoy a technical environment virtually free from the bureaucratic hassles of most large corporations. So you get to focus on the things that really matter - designing better computers.

And beyond our unique work environment, we also offer a truly unique living environment in Austin, Texas. With scenic foothills, crystal lakes, a variety of cultural activities and beautiful neighborhoods, the lifestyle in Austin compliments the work style of Dell.

ENGINEERING

- Personal Computer Motherboard Design
- UNIX Development
- Personal Computer Network Development
- EISA BUS Logic Design
- BIOS Firmware Design
- Systems Integration Expert
- Mechanical Engineer

- Power Supply Engineer
- ASIC Design Engineer
- Sr. Diagnostic Programmer
- Portable Systems Development Engineer
- Component Engineer
- Supplier Quality Engineer
- BIOS Engineer

The biggest challenges in the computer industry are taking shape at Dell in Austin, Texas, where you will find the opportunities are challenging, the cost of living is low, the quality of life is high and the compensation and benefits packages are excellent.

If you have a minimum of two years of computer industry experience and a related degree, please fax or mail your resume with a cover letter to: 512/343-3330, Dell Computer Corporation, Jerry Holt, Professional Employment, Department EDN-9/16/91, 9505 Arboretum Boulevard, Austin, Texas 78759.

Dell is proud to be an equal opportunity employer.
Finally, a SPARC chip set that comes equipped with everything you need for the Sun.

Now, from the Advanced Products Division of Fujitsu Microelectronics—something new under the Sun. A SPARC™ chip set that offers the world’s most advanced, cost-effective solutions for Sun-compatible workstation designs and specialized, compute-intensive applications. Including voice response, medical imaging and pattern recognition systems.

Our new SPARC chip set is packed with all of the advanced features you need to differentiate your systems from Sun and yesterday’s Sun clones. Such as higher integration. More system flexibility. Clock speeds of up to 40 MHz. And graphics options. All at a price to help you outshine the competition.

Plus, to get you to market faster, we offer three distinct hardware designs: Busless, Sbus and VME bus. What’s more, from our alliance with INTERACTIVE Systems Corporation—the premier independent UNIX® source—comes the latest SunOS™ 4.1.1 ported to each design. And with comprehensive documentation and training, you’ll find your place in the Sun more quickly.

So equip yourself with everything you need to develop the highest performance SPARC-based systems. Call us at 1-800-523-0034. And discover why our new SPARC chip set is the perfect Sun set.
EDN’s INTERNATIONAL ADVERTISERS INDEX

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCEL Technologies Inc.</td>
<td>102</td>
</tr>
<tr>
<td>Actel</td>
<td>50-51</td>
</tr>
<tr>
<td>Adaptec Products Co.</td>
<td>137</td>
</tr>
<tr>
<td>Advanced Micro Devices</td>
<td>8-9, 30-31, 168-169</td>
</tr>
<tr>
<td>Aerospace Optics</td>
<td>42</td>
</tr>
<tr>
<td>Aldec</td>
<td>201</td>
</tr>
<tr>
<td>Altera Corp.</td>
<td>95</td>
</tr>
<tr>
<td>American Arium</td>
<td>114</td>
</tr>
<tr>
<td>American Neuralogic</td>
<td>54</td>
</tr>
<tr>
<td>Ametek</td>
<td>198</td>
</tr>
<tr>
<td>AMP</td>
<td>38-39</td>
</tr>
<tr>
<td>Amplifier Research</td>
<td>209</td>
</tr>
<tr>
<td>Analog Devices Inc.</td>
<td>32-33</td>
</tr>
<tr>
<td>Annabooks</td>
<td>197</td>
</tr>
<tr>
<td>Antex Electronics</td>
<td>198</td>
</tr>
<tr>
<td>Argosy Technology Co Ltd</td>
<td>202</td>
</tr>
<tr>
<td>Aval Corp of Ireland</td>
<td>203</td>
</tr>
<tr>
<td>BASF**</td>
<td>36-37</td>
</tr>
<tr>
<td>B-G Instruments Corp</td>
<td>131</td>
</tr>
<tr>
<td>BP Microsystems</td>
<td>201</td>
</tr>
<tr>
<td>Bytecraft</td>
<td>200</td>
</tr>
<tr>
<td>BYTEK Corp.</td>
<td>196</td>
</tr>
<tr>
<td>CAD Automation Inc</td>
<td>191</td>
</tr>
<tr>
<td>Capilano Computer Systems Inc</td>
<td>202</td>
</tr>
<tr>
<td>Capital Equipment Corp</td>
<td>188</td>
</tr>
<tr>
<td>Cascade Microtech</td>
<td>193</td>
</tr>
<tr>
<td>Calinear Corp</td>
<td>6</td>
</tr>
<tr>
<td>Communications Specialties Inc</td>
<td>200</td>
</tr>
<tr>
<td>Communication Specialists</td>
<td>202</td>
</tr>
<tr>
<td>Computer Products Inc</td>
<td>170</td>
</tr>
<tr>
<td>Cybernetic Micro Systems</td>
<td>88</td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
<td>4</td>
</tr>
<tr>
<td>Dale Electronics Inc</td>
<td>27</td>
</tr>
<tr>
<td>Data I/O Corp.</td>
<td>C4</td>
</tr>
<tr>
<td>Deemex Technology</td>
<td>147</td>
</tr>
<tr>
<td>Deltron Inc</td>
<td>74A-D</td>
</tr>
<tr>
<td>Design Computation Inc</td>
<td>203</td>
</tr>
<tr>
<td>Digital Power</td>
<td>201</td>
</tr>
<tr>
<td>Du Pont Co*</td>
<td>178A-H</td>
</tr>
<tr>
<td>EDF</td>
<td>164</td>
</tr>
<tr>
<td>EG&G Wakefield Engineering Inc</td>
<td>190</td>
</tr>
<tr>
<td>Emulation Technology Inc</td>
<td>203</td>
</tr>
<tr>
<td>Enea Data AB**</td>
<td>C2</td>
</tr>
<tr>
<td>Force Computers Inc</td>
<td>40-41</td>
</tr>
<tr>
<td>Fujitsu, APD</td>
<td>208</td>
</tr>
<tr>
<td>Gift-Thomson Inc</td>
<td>189</td>
</tr>
<tr>
<td>Glassman High Voltage Inc</td>
<td>120</td>
</tr>
<tr>
<td>Grammar Engine Inc</td>
<td>200</td>
</tr>
<tr>
<td>Guardian Electric</td>
<td>202</td>
</tr>
<tr>
<td>Hamilton Avnet Electronics</td>
<td>138</td>
</tr>
<tr>
<td>Harris Semiconductor</td>
<td>78-79, 85</td>
</tr>
<tr>
<td>Headland Technology</td>
<td>66</td>
</tr>
<tr>
<td>Hewlett-Packard Co</td>
<td>C2, 96, 109</td>
</tr>
<tr>
<td>Hitachi America Ltd*</td>
<td>18-21</td>
</tr>
<tr>
<td>House</td>
<td>197</td>
</tr>
<tr>
<td>Hypertronics Corp</td>
<td>200</td>
</tr>
<tr>
<td>ILC Data Device Corp</td>
<td>59</td>
</tr>
<tr>
<td>Innovative Software Designs</td>
<td>200</td>
</tr>
<tr>
<td>Intel</td>
<td>80-81, 106, 162-163</td>
</tr>
<tr>
<td>International Rectifier</td>
<td>C3</td>
</tr>
<tr>
<td>Intusoft</td>
<td>201</td>
</tr>
<tr>
<td>Ironwood</td>
<td>201</td>
</tr>
<tr>
<td>ITT Cannon</td>
<td>105</td>
</tr>
<tr>
<td>ITT Pomona Electronics</td>
<td>127</td>
</tr>
<tr>
<td>John Fluke Manufacturing Co Inc*</td>
<td>48-49</td>
</tr>
<tr>
<td>Kepco Inc</td>
<td>174-175</td>
</tr>
<tr>
<td>Knueer AG</td>
<td>155</td>
</tr>
<tr>
<td>Lambda Electronics Inc*</td>
<td>141-146</td>
</tr>
<tr>
<td>Lemo USA Inc</td>
<td>203</td>
</tr>
<tr>
<td>Link Computer Graphics Inc</td>
<td>202</td>
</tr>
<tr>
<td>Matra MHS</td>
<td>148</td>
</tr>
<tr>
<td>Maxim Integrated Products</td>
<td>71, 73</td>
</tr>
<tr>
<td>Maxtor</td>
<td>186-187</td>
</tr>
<tr>
<td>MetaLink Corp.</td>
<td>201</td>
</tr>
<tr>
<td>Micro Link</td>
<td>199</td>
</tr>
<tr>
<td>MicroSim Corp.</td>
<td>25</td>
</tr>
<tr>
<td>Mini-Circuits Laboratories</td>
<td>12-13, 28-29, 110, 123, 167, 210</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>61-63</td>
</tr>
<tr>
<td>Murrietta Circuits</td>
<td>197</td>
</tr>
<tr>
<td>National Instruments</td>
<td>2, 201</td>
</tr>
<tr>
<td>NEC Corp.</td>
<td>16, 124, 158</td>
</tr>
<tr>
<td>NEC Electronics</td>
<td>22</td>
</tr>
<tr>
<td>NCR Corp.</td>
<td>100-101</td>
</tr>
<tr>
<td>Nohau Corp.</td>
<td>199</td>
</tr>
<tr>
<td>Noise Laboratory Co</td>
<td>200</td>
</tr>
<tr>
<td>Oak Grigsby</td>
<td>201, 203</td>
</tr>
<tr>
<td>Odetics</td>
<td>203</td>
</tr>
<tr>
<td>Pentice Systems</td>
<td>152</td>
</tr>
<tr>
<td>Philips T&M*</td>
<td>49</td>
</tr>
<tr>
<td>Phillips Components Inc*</td>
<td>17, 18-21</td>
</tr>
<tr>
<td>Pico</td>
<td>188, 194</td>
</tr>
<tr>
<td>Powertronic</td>
<td>203</td>
</tr>
<tr>
<td>Real Time Devices</td>
<td>187</td>
</tr>
<tr>
<td>Rogers Corp</td>
<td>182-183</td>
</tr>
<tr>
<td>Samsung Semiconductor</td>
<td>118-119</td>
</tr>
<tr>
<td>Samtec</td>
<td>201</td>
</tr>
<tr>
<td>Schurter AG</td>
<td>196</td>
</tr>
<tr>
<td>SGS-Thomson Microelectronics</td>
<td>132-133</td>
</tr>
<tr>
<td>Sharp Microelectronics</td>
<td>34</td>
</tr>
<tr>
<td>Siemens AG*</td>
<td>48</td>
</tr>
<tr>
<td>Siemens Components Inc*</td>
<td>36-37</td>
</tr>
<tr>
<td>Signetics Corp*</td>
<td>16-17</td>
</tr>
<tr>
<td>Signum Systems</td>
<td>113</td>
</tr>
<tr>
<td>Silicon Systems</td>
<td>52</td>
</tr>
<tr>
<td>Softtools</td>
<td>200</td>
</tr>
<tr>
<td>Sony</td>
<td>64-65</td>
</tr>
<tr>
<td>Spectrum Software</td>
<td>128</td>
</tr>
<tr>
<td>Stag Microsystems</td>
<td>200</td>
</tr>
<tr>
<td>Stanford Research Systems Inc</td>
<td>192</td>
</tr>
<tr>
<td>Synergy Microsystems</td>
<td>134</td>
</tr>
<tr>
<td>Taiyo Yuden (USA) Inc</td>
<td>195</td>
</tr>
<tr>
<td>TDK Corp of America</td>
<td>117</td>
</tr>
<tr>
<td>Tektronix</td>
<td>99</td>
</tr>
<tr>
<td>Tempestech Inc</td>
<td>202</td>
</tr>
<tr>
<td>Teradyne Inc</td>
<td>14-15</td>
</tr>
<tr>
<td>Tesof</td>
<td>203</td>
</tr>
<tr>
<td>Test Systems</td>
<td>199</td>
</tr>
<tr>
<td>Texas Instruments Inc</td>
<td>10-11</td>
</tr>
<tr>
<td>Todd Products Corp</td>
<td>203</td>
</tr>
<tr>
<td>Toko America Inc</td>
<td>189</td>
</tr>
<tr>
<td>Toshiba America Inc</td>
<td>156-157</td>
</tr>
<tr>
<td>TRW L51 Products Inc</td>
<td>182-183</td>
</tr>
<tr>
<td>Universal Cross Assemblers</td>
<td>199</td>
</tr>
<tr>
<td>US Software</td>
<td>200</td>
</tr>
<tr>
<td>USA Omni Stars Inc</td>
<td>202</td>
</tr>
<tr>
<td>Vectron Laboratories Inc</td>
<td>195</td>
</tr>
<tr>
<td>Vicor</td>
<td>77</td>
</tr>
<tr>
<td>Vishay Electronics Components</td>
<td>27</td>
</tr>
<tr>
<td>WaveTek</td>
<td>3</td>
</tr>
<tr>
<td>Xicor Inc</td>
<td>161</td>
</tr>
<tr>
<td>Ziatech Corp.</td>
<td>1</td>
</tr>
<tr>
<td>Z-World</td>
<td>199</td>
</tr>
<tr>
<td>Zyad</td>
<td>151</td>
</tr>
</tbody>
</table>

Recruitment Advertising 204-207

Advertiser in International edition

Reliable solid-state power. When we designed our new 300-watt Model 300A100 rf amplifier, we knew it would answer the needs of many kinds of people.

People seeking a stable, economical way to drive an antenna to deliver at least 50 volts per meter for susceptibility testing. People who must trust an amplifier's ability to keep operating into a severe load mismatch—even shorted or open output terminals—without damage, oscillation, or foldback. People who expect the full bandwidth—10 kHz to 100 MHz—to be there instantly for sweep testing, with no need for tuning or bandswitching. People who have to monitor both forward and reflected power. People who want automatic leveling. People who regularly perform both pulsed and cw procedures. People who demand remote-control interfacing.

The 300A100 is the latest all-solid-state member of a family of AR amplifiers covering a power range from one watt up to 10 kilowatts, and the rf range from 10 kHz up to 1 GHz. Their staying power is rated very conservatively—output stated as minimum, not nominal or peak. Chat with one of our applications engineers, who'll pick up the phone himself when you call, toll-free, 1-800-933-8181.
dc to 2000 MHz amplifier series

Unbelievable, until now... tiny monolithic wide-band amplifiers for as low as 99 cents. These rugged 0.085 in diam., plastic-packaged units are 50ohm* input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11dBm output, noise figure as low as 2.8dB, and up to DC-2000MHz bandwidth.

*MIN-S, Input/Output Impedance is not 50ohms, see data sheet. Stable for source/load impedance VSWR less than 3:1

SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FREQ MHz</th>
<th>GAIN dB</th>
<th>MAX NF</th>
<th>PRICE $</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-1</td>
<td>DC-1000</td>
<td>18.5</td>
<td>15.5</td>
<td>-13.0</td>
</tr>
<tr>
<td>MAR-2</td>
<td>DC-2000</td>
<td>13</td>
<td>12.5</td>
<td>11</td>
</tr>
<tr>
<td>MAR-3</td>
<td>DC-2000</td>
<td>13</td>
<td>12.5</td>
<td>10.5</td>
</tr>
<tr>
<td>MAR-4</td>
<td>DC-1000</td>
<td>8.2</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>MAR-6</td>
<td>DC-2000</td>
<td>20</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>MAR-7</td>
<td>DC-2000</td>
<td>13.5</td>
<td>12.5</td>
<td>10.5</td>
</tr>
<tr>
<td>MAR-8</td>
<td>DC-1000</td>
<td>33</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Minimum gain at highest frequency point and over full temperature range.

- *1dB Gain Compression
- +4dBm 1 to 2 GHz
- MAR-6, Input/Output Impedance is not 50ohms, see data sheet. Stable for source/load impedance VSWR less than 3:1

designers amplifier kit, DAK-2

5 of each model, total 35 amplifiers only $59.95

Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each.†

<table>
<thead>
<tr>
<th>Value</th>
<th>Size (mils)</th>
<th>Temperature Characteristic</th>
<th>Tolerance</th>
<th>Temperature Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, 22, 47, 68, 100, 220, 470, 680, 1000 pf</td>
<td>80 x 50</td>
<td>5%</td>
<td>NPO</td>
<td>10%</td>
</tr>
<tr>
<td>2200, 4700, 6800, 10,000 pf</td>
<td>120 x 60</td>
<td>10%</td>
<td>X7R</td>
<td>10%</td>
</tr>
</tbody>
</table>

† Minimum Order 50 per Value

* Designers kit, 1 capacitor per value, only $99.95

color code

Mini-Circuits

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500

Fax (718)332-4661 Domestic and International Telexes: 6852844 or 620156

C113-Rev D

EDN November 21, 1991
Now you can replace a fistful of components, and drive power FETs and IGBTs with one cost-effective part: The IR2110 monolithic dual channel 2A gate driver with floating high side and ground reference low side.

Count your design time in hours instead of days. And cut assembly time to a fraction.

The IR2110 runs as fast as it designs. With operation above 1 MHz. On-chip bootstrap. Plus matched channel delay within 10 ns. That’s right. 10 ns.

It takes good care of your circuit too, with gate under-voltage protection.

And latched shutdown makes current mode control both simple and easy.

Is it rugged? 50 V/ns dv/dt at -55 to 150°C in plastic. Versatile? Operates off 12 to 500 V rails with 5 to 20 V input, in any circuit topology. Reliable? The IR2110 meets the same high standards as IR’s incomparable HEXFET® power MOSFETs.

Call (800) 245-5549 for more information. We’ll get it off the ground and on your desk in no time.
At the speed technology is advancing, you need to be ready for anything. On a limited budget.

The NEW 3900 Programming System keeps up with your most advanced designs while keeping device-programming costs down. It offers leading-edge support for FPGAs, PLDs, memory devices, and microcontrollers up to 88 pins, with future device and package capabilities built in. Yet this support is offered in device libraries so you pay for only what you need, when you need it. And you can get into the 2900/3900 Programming Series for as little as $2995.* Move up to 88-pin support and beyond with a simple upgrade.

Find out how the 3900 can make your future affordable.

Call today for more information and we'll also send you a FREE copy of Data I/O®'s all-new, and expanded 1991 Wall Chart of Programmable Devices (a $24.95 value).

To qualify, just call us with the brand name and serial number of any programmer you are currently using.

1-800-3-DataIO
(1-800-332-8246)

The Personal Silicon Experts

*U.S. list price only.