Special Report:
DSP coprocessor boards share the workload with CPUs pg 108
HMIs Performance Analysis Card (PAC) provides real-time software performance analysis and real-time software test coverage for all HMI-200 series in-circuit emulators. This option operates completely transparent to the system under test and collects its data in real-time to establish a true profile of the software execution.

Features:
- Hardware implemented
- Up to eight modules can be defined
- Histograms for each module are displayed
- Minimum, Maximum and Average time duration for each module displayed
- Coverage mode displays which pieces of the code did and did not execute
- Trace data has a time stamp

Benefits:
- More efficient code produces higher performance products for your company
- Better tested code eliminates bugs generated from untested code and creates higher quality software for your company
- The Emulator and Performance Analysis together shorten the design cycle time allowing your company to have its window of opportunity in the marketplace

Available Emulators:
- 68000
- 68030
- 68340
- 68HC11 Family
- 8085
- 68008
- 68302
- 6809/6809E
- includes DI & F3
- 64180/Z180
- 68010
- 68331
- 68HC001
- D85000
- Z80
- 68020
- 68352
- 8051 Family
- 8096/80196 Family
- CIRCLE NO. 201
The phone book is full of magnetics suppliers. But one call — to Dale® Electronics — can add more than just a supplier to your next project. We have the breadth of line, the staff and the facilities to deliver the exact part you need, exactly on time. We can document this in many ways — including a customer list full of firms who’ve proven it’s more efficient to turn in-house magnetics production over to us. So tell us your needs: A molded, shielded inductor, a MIL-C-15305 model, a high-volume, roll-coated choke, a custom switch model design. Off-the-shelf or one of a kind, Dale can be the partner you need to provide time-saving, cost-efficient magnetic components.

Call today or write for a copy of our expanded Magnetic Components Catalog.
Dale Electronics, Inc.,
East Highway 60, P.O. Box 180,
Yankton, South Dakota 57078-0180.
Phone: 605-665-9301.

14 turns of wire and a bath in epoxy can’t speed up your production cycle.

Dale® Can.
MEASURE LEADTIMES IN HOURS, NOT DAYS!

At Digi-Key, more than 99 percent of all orders are shipped within 24 hours!

For all your electronic component needs and free catalog, call toll free: 1-800-344-4539
SPDT switches with built-in driver
absorptive or reflective dc to 5GHz

Truly incredible...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $19.95. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components? Check the outstanding performance of these units...high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55°C to +100°C span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Insertion loss, typ (dB)</th>
<th>Isolation, typ (dB)</th>
<th>1 dB compression, typ (dBm @ in port)</th>
<th>RF input, max dBm (no damage)</th>
<th>VSWR (on), typ</th>
<th>Video breakthrough to RF, typ (mV p-p)</th>
<th>Switching speed, typ (nsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reflective</td>
<td>Absorptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.9</td>
<td>1.4</td>
<td>1.25</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>100</td>
<td>1.1</td>
<td>1.4</td>
<td>1.25</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>500</td>
<td>1.3</td>
<td>1.4</td>
<td>1.25</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>2000</td>
<td>1.4</td>
<td>1.4</td>
<td>1.25</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>5000</td>
<td>1.4</td>
<td>1.4</td>
<td>1.25</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

RF input, max dBm (no damage): 20 dBm (port), 24 dBm (total)

Price (1-9 qty): YSW-2-50DR (pin) $19.95, YSWA-2-50DR (pin) $23.95, YSW-500R (connector) $39.95, YSWA-500R (connector) $69.95.

Mini-Circuits
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6852844 or 620156

CIRCLE NO. 7
Our tough SBL-mixers just got tougher, by including Mini-Circuits’ exclusive Ultra-Rel diodes that can endure 160 hours of test at a scorching 300°C. Rugged, more reliable mixers in your systems lower production and test costs and increase systems reliability.

Over the past fifteen years, millions of SBL-units were installed in formidable industrial and commercial applications. Under severe operating conditions, they have earned the reputation as the world’s most widely accepted mixers, based on quality, consistent performance in the field, and lowest cost.

In addition to the Ultra-Rel diodes, each SBL contains components that can withstand the strenuous shock and vibration requirements of MIL-STD-28837 along with more than 200 cycles of thermal shock extending from -55 to +100°C. Every Ultra-Rel™ SBL-mixer carries a five-year guarantee.

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered last year.

Tougher SBL-mixers, spanning 25KHz to 2000MHz, with +7dBm, +10dBm, and +13dBm LO models, priced from $4.50 (10 qty) are available only from Mini-Circuits. Don’t settle for a substitute or equivalent… insist on Ultra-Rel™ SBLs.

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency (MHz)</th>
<th>Conv. Loss (dB)</th>
<th>Isolation (dB)</th>
<th>LO Level (dBm)</th>
<th>Price, $ ea. (10 qty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBL-1</td>
<td>1-500</td>
<td>5.5</td>
<td>45</td>
<td>+7</td>
<td>4.50</td>
</tr>
<tr>
<td>SBL-1X</td>
<td>10-1000</td>
<td>6.0</td>
<td>40</td>
<td>+7</td>
<td>6.25</td>
</tr>
<tr>
<td>SBL-1Z</td>
<td>10-1000</td>
<td>6.5</td>
<td>35</td>
<td>+7</td>
<td>7.25</td>
</tr>
<tr>
<td>SBL-1-1</td>
<td>0.1-400</td>
<td>5.5</td>
<td>35</td>
<td>+7</td>
<td>7.25</td>
</tr>
<tr>
<td>SBL-3</td>
<td>0.025-200</td>
<td>5.5</td>
<td>45</td>
<td>+7</td>
<td>7.75</td>
</tr>
<tr>
<td>SBL-11</td>
<td>5-3000</td>
<td>7.0</td>
<td>35</td>
<td>+7</td>
<td>18.75</td>
</tr>
<tr>
<td>SBL-1LH</td>
<td>2-500</td>
<td>5.8</td>
<td>68</td>
<td>+10</td>
<td>5.50</td>
</tr>
<tr>
<td>SBL-1-1LH</td>
<td>0.2-400</td>
<td>5.2</td>
<td>64</td>
<td>+10</td>
<td>8.25</td>
</tr>
<tr>
<td>SBL-10LH</td>
<td>10-1000</td>
<td>6.0</td>
<td>40</td>
<td>+10</td>
<td>8.25</td>
</tr>
<tr>
<td>SBL-3LH</td>
<td>5-1000</td>
<td>5.9</td>
<td>61</td>
<td>+10</td>
<td>8.25</td>
</tr>
<tr>
<td>SBL-3L</td>
<td>0.07-250</td>
<td>4.8</td>
<td>60</td>
<td>+10</td>
<td>10.85</td>
</tr>
<tr>
<td>SBL-11LH</td>
<td>5-3000</td>
<td>7.0</td>
<td>45</td>
<td>+10</td>
<td>19.75</td>
</tr>
<tr>
<td>SBL-11MH</td>
<td>1-500</td>
<td>5.5</td>
<td>45</td>
<td>+13</td>
<td>9.80</td>
</tr>
<tr>
<td>SBL-1ZMH</td>
<td>2-1100</td>
<td>6.5</td>
<td>40</td>
<td>+13</td>
<td>11.70</td>
</tr>
</tbody>
</table>

ULTRA-REL™ MIXERS 5 yr. Warranty

with extra long life due to unique HP monolithic diode construction, 300°C high temp. storage, 1000 cycles thermal shock, vibration, acceleration, and mechanical shock exceeding MIL requirements.
SPECIAL REPORTS

DSP coprocessor boards 108

The technology in these number crunchers is developing so fast that about the only things moving faster are the instructions and data they handle. Besides faster µPs, architectural innovations—especially parallel and pipelined processors—are adding to the boards' speed. But as is so often the case, software is struggling to keep pace.—Dan Strassberg, Associate Editor

Windows-based engineering software 130

The PC is the most popular computer for engineering development work, but lack of graphics-display and printing standards has blocked developing appropriate workstation-class engineering software. Windows 3.0 opens the flood gates.

—Steven H Leibson, Executive Editor

DESIGN FEATURES

Techniques let you write general-purpose Spice models 149

By incorporating flexibility into your Spice models, you'll develop a library of accurate models that you can adapt for many applications, rather than reinventing the wheel every time. An example of such a model is a universal power converter.—David Caldwell, Consultant

Phase compensation extends op amp stability and speed 181

Because most op amps lack provision for altering internal phase compensation, circuit designers often add external compensation to counter the effects of capacitance loading and parasitic capacitance and inductance.—Jerald Graeme, Burr-Brown Corp

Continued on page 7
Our Westcor division’s family of configurable AC or DC input fan cooled StakPAC switchers reveals a new world of power density and output flexibility to the system designer...whatever your power needs. Each StakPAC is built with field proven robotically manufactured Vicor VI-200 Series power components providing you the flexibility of a customized supply combined with the off-the-shelf availability of standard catalog products...“first article” StakPACs are typically delivered in 2 weeks.

Compact, up to 6W/in³, low profile StakPACs set the standard for “box” or open frame switchers. Besides meeting conducted EMI standards, custom configured StakPACs are pre-approved to UL, CSA, TÜV and VDE safety standards (DC Mini- in process).

Whether your application is OFF-LINE or DC INPUT, chances are we have a solution for you...we are designed into computer, telecom, and test measurement systems worldwide. Please call us to discuss your needs, then relax...bulky standards and risky long lead-time custom supplies belong to the past. Discover the new world of configurable supplies: StakPAC, MiniStakPAC and DC Mini.

Call VICOR EXPRESS for information and be sure to ask for a StakPAC or DC Mini Handbook: (800) 735-6200 or (508) 470-2900 at ext. 265. Or call Westcor (west coast) at (408) 395-7050.

Component Solutions For Your Power System
TECHNOLOGY UPDATES

European EMC regulations: Europe lays down EMC Law 57

A law regulating the electromagnetic compatibility of many products takes effect in Europe on January 1, 1992. Deciding how to make the products conform will be up to the design engineer.
—Brian Kerridge, European Editor

High-density PLD architectures: Family tree sorts out high-density PLDs 75

Bringing order to the welter of high-density programmable logic devices is no easy task. After conferring with experts, EDN bravely offers this hopefully comprehensive and extensible overview.—Charles H Small, Senior Editor

EDITORS’ CHOICES

CMOS monolithic 5-tap, delay-line IC 93
Surface-micromachined acceleration sensor 95

PRODUCT UPDATE

Low-power, 1.8-in. hard-disk drive 99

NEW PRODUCTS

Integrated Circuits .. 215
CAE & Software Development Tools 223
Test & Measurement Instruments 233
Computers & Peripherals 247
Components & Power Supplies 251

DEPARTMENTS

News Breaks .. 17
Signals & Noise .. 29
Ask EDN ... 39
Calendar ... 40
Editorial ... 49
Design Ideas .. 199
Literature .. 257
Professional Issues ... 261
Career Opportunities 273
Business/Corporate Staff 278
EDN’s International Advertisers Index 280
At $60,000 each, only two of t

Option A Available from most EDA suppliers
The Conventional Workstation Package
There used to be only limited choices. For $60,000 or so, you could get overpriced EDA software and a single PCB design environment. It also came with free, virtually endless levels of frustration, because these systems are hard to use and even more difficult to learn. Which made productivity look something like an inverted bell curve.

Option B Available only from OrCAD
The OrCAD Sun Productivity Package
Now, OrCAD brings you better options — OrCAD EDA tools and a high-performance UNIX® environment on the Sun SPARCstation™. Put OrCAD tools in the hands of an entire PCB design team for the same $60,000 or so. Get four times as many workstations. And with OrCAD’s intuitive, easy-to-learn tools, your designers will set a new precedent for productivity.
These EDA options make sense

Option C Available only from OrCAD
The OrCAD Sun Vacation Package

Or with the same budget, you can set up one PCB designer with a truly inspiring, high-performance environment, including a hot car, a fast boat, and a view! With OrCAD EDA tools and a Sun SPARCstation, you'll have enough cash left over to requisition these extras. It's outrageous. But it is a feasible solution to creating exceptionally happy, motivated design engineers.

To find out how OrCAD can solve your PCB design challenges, call us today at (503) 690-9881 for the sales office nearest you.

More Designs From More Designers Than Anyone in the World

EDN September 16, 1991
Some might call it sleeping on the job. We call it true static operation—and that’s how the low power Am386 microprocessors use a full 35% less power than the other so-called low power 386 at any sustained clock speed.

They’re not only the most efficient 386s on the planet, they’re also the fastest. Our Am386SXL-25 CPU clocks in at 25MHz.

25% faster than the i386SX-20, while our Am386DXL-40 CPU boasts a 40MHz clock speed.

Because Am386 microprocessors are truly static, you can configure your system to literally stop the clock and save power when the processor is idle. Even between keystrokes.

Which means you get maximum battery life, with no performance compromise. Up to 2
hours and 45 minutes (100%) longer battery life than the i386SX-20. Or 2 hours (57%) longer than the i386SL-20.

The Am386SX-25 and Am386DX-33 microprocessors are available now in PQFP packages for the most compact notebook and palmtop designs ever. Our Am386DX-40 CPU is available in standard PGA. Better still, they're now shipping in quantity.

So if you want longer battery life from your next design, it's time to retire that old 386.

Call **1-800-222-9323**. And rest easy with a low power Am386 microprocessor.
You've heard the old saying, "we'll cross that bridge when we come to it." Well, we have.

Cost crossover today makes 4-meg DRAMs more economical per bit than 1-meg DRAMs. And given all the benefits in reliability and board real estate, that's good news.

People are lining up to take advantage of it.

One specific advantage is in memory modules. Samsung 4-meg-based modules are actually more cost-effective today than their 1-meg-based counterparts.

All the modules listed here have reliability specs based on 600 temperature cycles (0-125°C) and 500 hours (85°C, 85% RH). Available features include 70, 80, and 100 ns access
times, fast page mode, low-power versions, gold lead finish, and customer-specific labeling.

SAMSUNG MEMORY MODULES BASED ON 4-MEG DRAMs

<table>
<thead>
<tr>
<th>Megabytes</th>
<th>Part Number</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KMM581000AN</td>
<td>1M x 8</td>
</tr>
<tr>
<td>1</td>
<td>KMM591000AN</td>
<td>1M x 9</td>
</tr>
<tr>
<td>4</td>
<td>KMM584000A</td>
<td>4M x 8</td>
</tr>
<tr>
<td>4</td>
<td>KMM594000A</td>
<td>4M x 9</td>
</tr>
<tr>
<td>4</td>
<td>KMM5321000A</td>
<td>1M x 32</td>
</tr>
<tr>
<td>4</td>
<td>KMM5331000A</td>
<td>1M x 33</td>
</tr>
<tr>
<td>4</td>
<td>KMM5361000A</td>
<td>1M x 36</td>
</tr>
<tr>
<td>8</td>
<td>KMM5322000A</td>
<td>2M x 32</td>
</tr>
<tr>
<td>8</td>
<td>KMM5332000A</td>
<td>2M x 33</td>
</tr>
<tr>
<td>8</td>
<td>KMM5362000A</td>
<td>2M x 36</td>
</tr>
</tbody>
</table>

Samsung is one of the world’s leading manufacturers of both DRAMs and memory modules. Our outstanding quality, reliability, and availability have helped us gain this leading position.

For data sheets on our 4-meg DRAMs and 4-meg-based modules, call 1-800-423-7364 or (408) 954-7229 today. Or write to Memory Module Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134.
WE DESIGNED THE BEST A/D CONVERTER IN NO TIME AT ALL. BUT THEN, WE HAD A 30-YEAR HEAD START.
8-bit resolution. 40 Msps. Two-step architecture and CMOS technology that reduces power dissipation to less than 180mW.

All with a significant cost advantage. And all from a single + 5 Volt power supply.

That is the TMC1175, developed in only months by TRW LSI Products Inc. But then, that's what you can expect from the industry leader in high-performance A/D converters.

Our years of setting standards have given us the ability to respond quickly to changing needs in the industry, continually improving our line of products in terms of performance and cost. The same dedication to perfection that earned us an Emmy award in 1989 for video technology.

With the TMC1175, video driving amplifiers can be eliminated. The Track-and-Hold circuit is built-in; so is the voltage reference. All digital inputs and three-state outputs are TTL-compatible. And all performance specifications are guaranteed over the -20°C to 75°C temperature range.

All of which makes the TMC1175 excellent for Digital Television designs. Video Digitizing. Image Scanners. Multimedia. And low cost, high speed Data Conversion. It can even be used in PC video board designs.

The TMC1175 is available in 24-pin plastic skinny DIP, 28-lead PLCC and 24-lead plastic SOIC (small outline) suitable for surface mount applications.

And of course, TRW LSI backs you with all the support you need. With field and in-house application engineers. Application notes. And a full line VLSI Data Book.

All with the full spec performance that is synonymous with TRW standards.

Ask for the Data Sheet, applications and other information on the TMC1175 today. You'll agree, it's an A/D converter that meets your standards. From the company that has been setting them for years.

Call or write: TRW LSI Products Inc., P.O. Box 2472, La Jolla, CA 92038 (619) 457-1000, FAX (619) 455-6314 (800) TRW-LSIP (800) 879-5747

TRW LSI Products Inc.

STANDARDS SET. STANDARDS TO BE MET.
Want some great news about GaAs? Check into HP. As a leader at the forefront of GaAs technology, we've got a full line of high-performance products to choose from.

Consider our GaAs MMIC attenuator, the only device in the world operating from DC-50GHz. Its wide attenuation range, exceptional bandwidth, and fast switching speed make it ideal for automatic gain control, amplitude, and pulse switching.

Our line of GaAs Schottky diodes is optimized for 26-60GHz. But its low series resistance and low capacitance ensures a high cut-off frequency, giving you solid performance from 5GHz to 100GHz.

If you're looking for the right general purpose switch, switch to HP. Our new broadband GaAs MMIC SPDT devices offer low insertion loss and high isolation for improved system performance from DC-6GHz.

HP's great GaAs news also includes a family of high-gain, high-power MMIC traveling wave amplifiers. Each is designed to operate from 2-26.5GHz, and 100% RF tested to provide guaranteed spec performance.

No wonder HP sets the standard for quality, reliability, and innovation. If you'd like more information about HP's broad line of high-performance GaAs products and a listing of your nearest HP Components distributors, call 1-800-752-0900, ext. 2396. And step on the GaAs.

There is a better way.
VARIABLE-GAIN AMPLIFIER KEEPS BANDWIDTH CONSTANT

You can vary the gain of Analog Devices' AD600 and AD602 dual amplifiers from 0 to 40 dB and −10 to 30 dB, respectively, without affecting the 35-MHz, 3-dB bandwidth of the device. The amplifiers comprise a fixed-gain amplifier preceded by a variable attenuator. The attenuator is made up of a 7-section R-2R ladder network, which continuously interpolates between the tap points. The result is very accurate gain; the gain error is ±0.5 dB max at the extremes of the voltage-control range and ±0.2 dB max in the center. The attenuator also prevents large input voltages from reaching the fixed-gain stage, letting its design be optimized for low noise. This fact combined with the linearity of both the attenuator and fixed-gain stages leads to low noise and THD specifications of 1.4 nV/√Hz and −60 dBc, for ±1V outputs, respectively.

The amplifiers implement, in terms of dB, a linear gain law. For example, applying a gain-control voltage of −0.625 to +0.625V, the gain of the AD600 increases linearly from 0 to 40 dB. Group delay is stable and typically ±2 nsec. The amplifiers are optimized for driving flash ADCs in ultrasound applications, but also apply to those circuits that require a combination of precise gain, low noise and distortion, and wide bandwidth. Each amplifier dissipates a maximum of 125 mW. The $15 (100) amplifiers are available in either 16-pin DIPs or SOICs, and operate over a 0 to 70°C temperature range. Analog Devices Inc, Wilmington, MA, (617) 937-1428, FAX (617) 831-4273.—Anne Watson Swager

COMBINATION OPTICAL DRIVE FITS 3½-IN. FORM FACTOR

The 3½-in. OD-3000 multifunction optical drive stores 128M bytes using MO (magneto-optical) technology and can read optical ROM (0-ROM) disks. The MO media can withstand 10 million write cycles and still record data reliably, where other rewritable optical technologies typically limit media to 10,000 write cycles. The drive features a 3000-rpm rotational speed that results in an average rotational-latency spec of 10 msec. The drive requires an average of 42 msecs to seek to data. Other key specs include 11W power dissipation during read/write operations and 2.6W when the drive is inactive. The drive can read data continuously from disk at 640k bytes/sec and write data continuously at 203k bytes/sec. The drive costs $1050 (1000) and the rewritable media costs $60 per disk. Teac America Inc, Montebello, CA, (213) 726-0303, FAX, (213) 727-7621.—Maury Wright

SCSI BUS MONITOR PROVIDES MENU-DRIVEN DEBUGGING

For $895, you can buy Workstation Products Inc's Pathfinder 1000 SCSI bus monitor, which analyzes the activity on your bus- or debug-driver software. Plug this device between your SCSI bus and an ASCII terminal to achieve nonintrusive synchronous or asynchronous monitoring. The device does not use an address on the SCSI bus. In its run mode, the monitor captures commands and data until its event buffers are full. In continuous mode, the monitor continues to capture data until you stop it. In trigger mode, you can specify the condition under which the device begins or stops capturing data. The monitor comes with 2 kbytes of memory, a power supply, manual, and a 6-in. SCSI cable with a 50-pin connector. A monitor with 8 kbytes of memory costs $995. Workstation Products Inc, Richardson, TX, (314) 669-9687.—J D Mosley
NEWS BREAKS

LOGIC-ANALYZER FAMILY BETTERS PRICE/PERFORMANCE RATIO
The TA4000 series of logic analyzers from Thurlby-Thandar embodies a range of advanced features at a bundled price substantially below competitor's products. Three models offer a choice of 32, 48, or 80 channels. Asynchronous sampling is at 100 MHz max across all channels, or at 400 MHz max across 8 or 16 channels. Memory depth at 100- and 400-MHz sampling is 2 and 8 kwords, respectively. A 5-nsec glitch capture operates on eight channels without loss of memory depth. Synchronous sampling is at 50 MHz max across all channels, and includes an 8-level branching-trigger facility that steps at up to 20 nsec. Optional disassemblers cover a range of 8-, 16-, and 32-bit µPs. In addition to internal nonvolatile memory, you can store 512 kbytes of data on a front-panel plug-in memory card. Included as standard in the price are interfaces for IEEE-488, Centronics, RS-232C, and composite video. The 32-, 48-, and 80-channel logic analyzers cost £2495, £2995, and £3995, respectively. Disassemblers cost £195. Thurlby-Thandar Ltd, Huntingdon, UK, (480) 412451, FAX (480) 450409.—Brian Kerridge

ENGINEERING SPREADSHEET WORKS WITH PICTURES
If you've adapted Lotus 1-2-3 to help you analyze data and complex functions, you've sacrificed the visual impact of looking at plots, graphs, and curves. DSP Development Corp's Dadisp (Data analysis and display) provides the spreadsheet's utility while maintaining the visual effect of your data. The data analysis software, which runs on PCs and under the X-Window system on most common workstations, accepts data from numerous sources, including ASCII and binary file formats and many data-measurement and -acquisition devices. Additionally, you can manually enter data sets into a spreadsheet-like table. Once entered, you view and manipulate the data either graphically or in tables. The software includes a range of mathematical, statistical, and engineering functions and lets you create and add custom functions as needed. Special functions include contour plotting, density plots, spectral 3-D plots, and 4-D plots. The user interface provides as many as 100 windows that operate as cells in the X-Y dimension of a 3-D spreadsheet; changing data in the Z-dimension of a cell causes the software to recalculate all dependent data in other cells. You can overlay data and zoom in and out of windows as needed. The software starts at $895. The PC version costs $1695. DSP Development Corp, Cambridge, MA, (617) 577-1133, FAX (617) 577-8211.—Michael C Markowitz

DRIVERS LET YOU COMPARE DRAWINGS IN AUTOCAD
Nth Graphics's Nth Drive display-list processing software and Nth Engine display-controller drivers now include a drawing management and viewing module called Nth View/AC, which lets you open an unlimited number of AutoCAD .DWG files for viewing and plotting without leaving your active drawing. This module produces display-list zooms and real-time pans. An icon-based interface and a command window called the Top N provide pop-up control of your screen. Each drawing you add to the screen appears in a window that you can size, move, and overlap onto other windows. In addition, a garbage-collection scheme works continuously in the background to purge the display list of each vector you erase or move during an edit session. The display controller with a suite of drivers starts at $995. The processing software sells for $695. Both products include the drawing management module. Nth Graphics Ltd, Austin, TX, (800) 624-7552 or (512) 832-1944, FAX (512) 832-5954.—J D Mosley
A REVOLUTIONARY ADVANCE IN SPARC MULTIPROCESSING.

The industry's first integrated SPARC® multiprocessing solution — the CY7C605 Multiprocessing Cache Controller/MMU.

High-performance systems designers have migrated to RISC in a race for performance. Just as rapidly, there is a movement to multiprocessing, which represents the most cost-effective way to load more power into a single system.

Multiprocessing RISC design is not simple. There are substantial technological challenges, particularly in the area of multi-level memory systems.

Now we offer a breakthrough to help you implement multiprocessing systems rapidly.

Cache coherency without stealing processor cycles — a leap in performance.

Maintaining cache coherency is one of the biggest problems to solve in shared memory multiprocessing systems.

This approach solves it.

SPARC multiprocessing is now enabled. Now you can design-in multiple high-performance SPARC chipsets. Our revolutionary Multiprocessing Cache Controller and Memory Management Unit (CMU-MP/CY7C605) provides memory management facilities and a unique cache architecture for higher performance. Our complete SPARC chipset solution shortens your time to market.

It is the only VLSI solution that performs concurrent bus snooping and processor execution.

Our unique dual cache tag directories provide for simultaneous bus snooping and processor access to cache. No other cache management unit provides dual tags on-chip.

As a result, your system maintains cache coherency without stealing execution cycles from the microprocessor.

You get multiprocessing with the most efficient cache coherency protocol available, allowing data to pass from CPU to CPU in a single clock cycle. That translates directly to higher performance systems.

MBus compliant.

MBus compliance means you have a SPARC-standard, plug-and-play route to even more powerful, higher revving systems.

An integrated part of the industry's highest performance SPARC chipset.

Our chipset approach simplifies the complexities of multiple CPUs working together in a shared memory system.

This VLSI solution means you don't have to design and pay for boards full of logic to accomplish fast multiprocessing.

It is all available now.

For more information on the industry's most complete multiprocessing solution, please call for our literature package today.

Multiprocessing Information Hotline:
1-800-952-6300.
Ask for Dept. C4V.
DESIGN SERVICE VALIDATES HIGH-SPEED INTERCONNECTS

AMP is now offering design analysis and support through AMP Interconnection Systems to provide performance prediction and validation of critical high-speed digital and analog systems. This service can benefit any design that includes fast-edge-rate logic requiring transmission-line performance through the interconnects. The analysis capabilities include critical net simulation, crosstalk and noise margin prediction, timing verification, and EMI/EMC, thermal, and power-distribution analysis. Services include connector and subassembly characterization and active-device modeling; connector, cable, net-topography, system-impedance, and layout-rules recommendations; waveform analysis; components placement optimization; and backplane and board layout design. Price for the service varies with customer requirements. AMP, Harrisburg, PA, (800) 522-6752, FAX (717) 986-7575.

—Anne Watson Swager

RASTER-IMAGE ACCELERATOR IC RENDERS FONTS IN REAL TIME

The D7001 IC renders outline fonts on the fly in graphics-display and page-printer applications. The IC can render outline fonts scaled to any size fast enough for laser printers to print at full engine speeds of 17 pages per minute and slower. A single IC can also be used in mother-board graphics applications to directly drive WYSIWYG (what you see is what you get) display and printer engines. You can use the IC in applications with fonts based on Bezier curves, B-spline curves, and vectors. The chip includes multiple filling algorithms to handle both Roman characters and Kanji glyphs. For 12-point type at 300-dpi-resolution fonts, the IC can render more than 7500 cps. Available now for $35 samples, the IC comes in a 144-pin quad flatpack. Destiny Technology Corp, Milpitas, CA, (408) 262-9400, FAX (408) 262-0221.

—Maury Wright

GATE-ARRAY FAMILY OFFERS HIGH I/O-TO-GATE RATIO

The HG62S gate-array family from Hitachi offers as many as two I/O pins for each 100 used gates. Family members come in sizes from 14,451 to 34,797 raw gates, with 160 to 240 I/O pads. The array uses 0.8-µm, 2-layer metal CMOS technology, has input buffers with 0.8-nsec propagation delay and output buffers with 1.8-nsec delay and 24-mA drive. Internal gate delays are 0.3 nsec for a 2-input power NAND with a fanout of two. The devices are available in EIAJ plastic quad flatpacks in 64- to 208-pin sizes at a cost of $0.07 to $0.10 per pin (10,000). Hitachi America Ltd, Brisbane, CA (415) 589-8500, FAX (415) 583-4207.—Richard A Quinnell

DEVICE CONVERTS CMOS SRAM INTO NONVOLATILE MEMORY

More than just a power source for static RAMs (SRAMs), the bq2502 Integrated Backup Unit from Benchmark provides power monitoring and switching for one or two banks of RAM. This encapsulated DIP module contains a nonvolatile-SRAM controller chip and a 3V lithium battery. To avoid accidental discharge and simplify handling procedures, the manufacturer ships each module with its battery-output pin electrically isolated. After installation, the module monitors V_{cc} to detect an out-of-tolerance power supply, switches to the internal battery supply if V_{cc} decays, write-protects the memory during power failures and during system power-up, then switches back to the V_{cc} supply when reliable operation resumes. Priced at $6 (1000), these modules come in 12-pin DIPs that are less than 0.375-in. tall. Benchmark Microelectronics, Carrollton, TX, (214) 407-0011, FAX (214) 407-9845, contact John Landau.—J D Mosley
Why Settle for 1/2 an '040 Board?

You've chosen the '040 because you need maximum performance in your VME system. But look carefully, because other Single Board Computers may only give you only half of what you expected from the '040.

Compare Synergy’s SV430 performance to any other SBC. Compare bus speed, MIPS, support, flexibility, documentation, reliability, I/O intelligence or any spec you can think of. We think you’ll find the same thing we did—the SV430 outperforms every other SBC on the market by as much as 150%.

Surprisingly, this kind of quality won’t cost you any extra, because Synergy products lead in another important area—value. At Synergy, you don’t have to pay a premium price for premium performance.

Let us show you just how far ahead your system can be with a Synergy processor board. Call us today, and get the whole '040 story.

Compare our specs. Synergy is superior across the board!

VME Transfers
VME64 doubles bus performance to 66 MB/s—and the SV430 is the only '040 board that has it. But we don't need VME64 to win this comparison.

Even normal 32-bit transfers race at 33 MB/s. That's 200% faster than Force or Motorola.

DRAM Burst Rates
A 25 MHz '040 is capable of accessing memory at 80 MB/s. The closer you are to this maximum, the more '040 performance you're gaining. SV430 bursts are 26% faster than Force and Motorola.

'020/'030 Compatibility
Software compatibility between Synergy SBCs means users have simple upgrades to the SV430 from our '020 and '030 SBCs. Force offers compatibility only from the '030 level, and Motorola offers "upward migration"—a polite phrase that means rewriting your code.

I/O Modules
Synergy's EZ-Bus modules are compatible with our entire line of SBCs. This means Synergy's current line of 12 intelligent I/O modules are immediately available for the SV430—today. No other vendor comes close for selection, functionality or availability.
dc to 3GHz

lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss • greater than 40dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models • BNC, Type N; SMA available
- surface-mount • over 100 off-the-shelf models • immediate delivery

Bandpass, Narrowband IF

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>CENTER FREQ, MHz</th>
<th>F0</th>
<th>F1-F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7-F8</th>
<th>PRICE $</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBP-10.7</td>
<td>10.7</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4.95</td>
</tr>
<tr>
<td>PBP-21.4</td>
<td>21.4</td>
<td>12</td>
<td>6</td>
<td>11</td>
<td>16</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>4.95</td>
</tr>
<tr>
<td>PBP-30</td>
<td>30</td>
<td>15</td>
<td>9</td>
<td>14</td>
<td>20</td>
<td>14</td>
<td>10</td>
<td>1</td>
<td>4.95</td>
</tr>
<tr>
<td>PBP-40</td>
<td>40</td>
<td>18</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>17</td>
<td>13</td>
<td>1</td>
<td>4.95</td>
</tr>
<tr>
<td>PBP-50</td>
<td>50</td>
<td>21</td>
<td>15</td>
<td>20</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>1</td>
<td>4.95</td>
</tr>
<tr>
<td>PBP-60</td>
<td>60</td>
<td>24</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>23</td>
<td>19</td>
<td>1</td>
<td>4.95</td>
</tr>
<tr>
<td>PBP-70</td>
<td>70</td>
<td>27</td>
<td>21</td>
<td>26</td>
<td>32</td>
<td>26</td>
<td>22</td>
<td>1</td>
<td>4.95</td>
</tr>
</tbody>
</table>

P.O. BOX 350166, Brooklyn, New York 11235-0003 (718) 934-4500 FAX (718) 332-4661 TELEX 685284 or 620156
Presenting the biggest little innovation in software history.
Ask any computer maker; our little memory cards are big news. And the software media of choice for the next generation of portable systems.

The little, palm-sized systems driving tomorrow's market won't have room for heavy floppy drives and hard disks. They'll take their software "to go." In the form of 68-pin memory cards from Fujitsu Microelectronics.

As the leading maker of 68-pin memory cards, Fujitsu did more than pioneer a new technology. We took a leading role in making it the international standard. Which means that the software you put on our memory cards will run on a whole new generation of portable computers.

It also means that we have a head start in producing an entire family of 68-pin memory card products, including Flash EPROM, EPROM, SRAM, OTPROM, and Mask ROM cards. With up to 16 Mbyte of storage currently available on a single card. And higher densities on the way.

Changing media is a big move. Fortunately, Fujitsu can help you with the transition every step of the way. Our support services cover everything you need — from application design to programming hardware to PC card drives and interface chips — to shorten your design cycle. So why not call Fujitsu Microelectronics today, at 1-800-642-7616, and start making a little history of your own?

*PCMCIA (Personal Computer Memory Card International Association) and JEIDA (Japan Electronic Industry Development Association).
Oki's Advanced ASIC Tools
Reduce Your Risk.

As an ASIC designer for high-performance systems, you know the sinking feeling of working for weeks on a high-density design—only to have it crash. You know the risks involved in designing with tools that offer no assurances—will path delays meet spec? Will routed signals violate timing? Will power problems cause unexpected voltage drops?

Oki's advanced tools provide the lift you need to dive comfortably into the highest levels of ASIC design:

Timing-driven layout - enables control of critical net and path delays, better ensuring a design-to-silicon match.

Clock tree structures - automatically route logic signals where you want them and when you want them, optimizing clock distribution.

Power calculator - locates and corrects power distribution and dissipation problems, increasing overall system reliability.

Coupled with our 0.8µm leading-edge sea-of-gate technology and our high-level support—such as Verilog, Synopsys, and IKOS—these Oki software tools not only optimize ASIC performance but also optimize design time.

So go ahead and take the plunge. Call 1-800-OKI-6388, Dept. 050, for Oki's ASIC capabilities brochure. See how risk-free ASIC design can be.

Oki ASIC Design Tool Support for 0.8µm, 1.0µm, and 1.2µm

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Platform</th>
<th>Operating System/Rev</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadence</td>
<td>Sun/SPARC, Solbourne</td>
<td>Sun OS 4.1.1, Verilog 1.5C</td>
<td>Simulation, Fault grading, Design verification</td>
</tr>
<tr>
<td>Krios</td>
<td>4.0 up</td>
<td>Sun OS 4.1.1, Verilog 1.5C</td>
<td>Simulation, Fault grading</td>
</tr>
<tr>
<td>Mentor</td>
<td>HP/Apollo, DNx Series, HP9000, Sun/SPARC</td>
<td>Digital application 6.1, Digital application 6.3, Digital application 8.0 (in qualification)</td>
<td>Capture, Simulation, Design check</td>
</tr>
<tr>
<td>Mentor Graphics</td>
<td>HP9000, Sun/SPARC, Parade</td>
<td>Sun OS 4.1.1, Verilog 1.5C</td>
<td>Capture, Simulation, Design check</td>
</tr>
<tr>
<td>Synopsys</td>
<td>Sun/SPARC, Interface to Mentor, Solbourne</td>
<td>Sun OS 4.1.1, Verilog 1.5C</td>
<td>Design synthesis, Test synthesis</td>
</tr>
<tr>
<td>Valid</td>
<td>Sun/SPARC, Sun-3, DECTation 3100, IBM RS6000</td>
<td>Sun OS 4.1.1, GED, ValidSIM, RapidSIM</td>
<td>Design capture, Simulation, Design check</td>
</tr>
<tr>
<td>Viewlogic</td>
<td>Sun/SPARC, IBM RS6000</td>
<td>Sun OS 4.1.1, Workview 4.0</td>
<td>Design capture, Simulation</td>
</tr>
<tr>
<td></td>
<td>PC386</td>
<td>DOS 3.3, Workview 4.0</td>
<td>Design capture, Simulation</td>
</tr>
</tbody>
</table>

Product and company names are trademarks and registered trademarks of their respective companies.
WHEN YOU PLUNGE INTO ASIC DESIGN, YOU WANT SUPPORT TOOLS THAT WORK.

OKI Semiconductor

785 North Mary Avenue
Sunnyvale, CA 94086-2909
1-800-OKI-6388, Dept. 050

CIRCLE NO. 18
Introducing the New Generation
574 A/D

A New Classic
We designed our new 12-bit CMOS A/D converter with you in mind...by adding several innovative features to the standard ADC574 pinout. ADS574 and ADS774 drop into most applications without any system modifications, use minimal power, and operate from a single +5V supply. Complete with on-chip sample/hold, clock, reference, µP interface, three-state outputs, and internal scaling resistors, ADS574 and ADS774 set a new standard for your design.

A New Standard in Savings
Replace your old standard with our new classic and save...design time, power, board space and money. Designed to operate from a single power supply while still supporting all of the ADC574 input ranges, ADS574 and ADS774 use only one-fourth the power of that old standard. On-chip sampling combined with our new skinny-DIP package (0.3" wide) or SOIC gives you a lot more board space. And, our pricing sets a new standard—starting at $14.15*

Innovative Features
- Throughput time (acquire & convert)
 25µs max......ADS574
 8.5µs max......ADS774
- Power consumption
 100mW max...ADS574
 120mW max...ADS774
- Single +5V supply
- Guaranteed AC, DC performance
- Industry standard input ranges
- Industry standard digital interface
- Compact 0.3" or 0.6" wide 28-pin plastic or ceramic DIP, 28-pin SOIC, die
- From $14.15*

Try it
We’re so convinced that our new parts are the next industry standard—we’ll give you the first one free! Just call 1-800-548-6132 for samples and detailed data sheets or contact your local Burr-Brown sales office for assistance.

Burr-Brown Corp.
P.O. Box 11400
Tucson, AZ 85734

* U.S. OEM prices, in 100s.
Questionable values appear in table

In J D Mosley's article, "Improvements unleash new application areas" (EDN, October 11, 1990, pg 97), there is a mistake in Table 1. The data corresponding to Optical Output Power are in fact the data corresponding to Total Power Dissipation. Values of about 100 mW of optical output power for the IREDs (infrared emitters) are far off the values of commercial products.

I have verified the values of the Motorola IREDs in the manufacturers' data book:

MLED71
- Total power dissipation . . . 90 mW
- Power output 5 mW

MLED930
- Total power dissipation . . 250 mW
- Power output 4 mW

It’s impossible to check the other IREDs, but I think they are also wrong.

One of the most important applications for these devices is in optical communications; for a good comparison, an additional column should indicate the speed, such as rise and fall times.

Francisco J Gabiola Ondarra
Profesor Titular de EU
Dpto-Ingenieria Electronica
ETSI Telecommunication
Ciudad Universitaria S/N
Madrid, Spain

(Ed Note: In Table 1, I used the Motorola Semiconductor values listed in the Motorola data book.)

How discontinued parts affect engineering design

We have had the experience of designing a part (Allegro Microsystems UCN5825B) into a product, and then, just as we introduced the product, found out that the company was discontinuing the part. The part is advertised in the 1991 IC Master, and our distributor [at the time of this writing] had not been informed that the part was discontinued. We found out by accident when calling an applications engineer at the company about another problem.

This part is a BiMOS combination of a shift-register and high-voltage driver. It has four outputs, each of which can handle a 2A drive. Not only is there not a second source for the part, no other part even comes close—at least none that we can find. We not only have to redesign the board, but we also have to either change specifications or squeeze in two packages where one served before.

Perhaps we were foolish in using a single-sourced part, even if it has been available for several years, but most of the company's parts in this category are single sourced. Why would anyone ever use any of them if he or she seriously suspected that the parts would be abruptly discontinued?

I understand that the company has been purchased by a foreign company. Do the new owners think that this method of operation is going to protect their investment?

Norman L Rogers
President
Z-World Engineering
Davis, CA

HAVE YOUR SAY

EDN's Signals & Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. Send your letters to Signals & Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158, or leave a note via MCI mail at EDNBOS. Or use EDN's bulletin-board system at (617) 558-4241: From the Main System Menu, enter SS/SOAPBOX, then W to write us a letter. You'll need a 2400-bps or less modem and a communications program set for 8,N,1.
People say boundary in low cost, high quality
Now you can test that

Increasing device complexity. Rising pattern development costs. High density packaging. Disappearing nodal access. These are the board test problems boundary scan was created to solve. Which is fine in theory. Only problem is there hasn't been any way to put boundary scan to the test. Until now.

VICTORY—the first software to automate boundary-scan testing.

Introducing VICTORY™ from Teradyne: the only software toolset ready to help you turn boundary-scan theory into a practical advantage. From the moment your first boundary-scan device is designed in, VICTORY starts to simplify the testing of complex digital boards. And the more boundary-scan parts you have, the more time and money you save.

Delivers high fault-coverage.

Whether you're testing one boundary-scan part or boundary-scan networks, VICTORY software automatically gives you 100% pin-level fault coverage. Using the IEEE 1149.1 and BSDL standards, it takes VICTORY only a minute or two to generate test patterns. It would take a programmer days, even weeks to deliver the same fault coverage for conventional designs.

Now you can find stuck-at faults, broken wire bonds, wrong or missing components—even open input pins—all without manual diagnostic probing. VICTORY's fault diagnostics clearly spell out both fault type and fault location. And that's just the manufacturing process
scan is a breakthrough board testing.
theory.

feedback you need to eliminate defects where it's most cost-effective—at the source.

Helps solve the test access problem.

With boundary-scan design and VICTORY software, you won't need bed-of-nails access on nodes where boundary-scan parts are interconnected. That means fewer test pads. Fewer test probes.

That's a compelling advantage to board designers. Which is why VICTORY's Access Analyzer was developed. With this concurrent engineering tool, designers get testability information early in the design process. They can easily see where test points are required for visibility and where they can be dropped, for optimized board layout without lowering fault coverage.

Good for the bottom line.

Shorter test programming time. Higher fault coverage. Lower PC board and test fixture costs. The bottom line on VICTORY is how positively it will affect your bottom line. And because VICTORY works with all Teradyne board testers, you're free to tailor a test process that's cost-effective for both your boundary-scan and non-scan boards. No matter what your test objectives. For example, with our new Z1800VP-series testers, a complete solution for in-circuit and boundary-scan testing starts at well under $100,000.

Make the next logical move. Call today.

Boundary scan is the design-for-test breakthrough that promises lower cost, higher quality board testing. But don't take our word for it. Call Daryl Layzer at (800) 225-2699, ext. 3808. We'll show you how, with VICTORY software and Teradyne board testers, you can test this theory for yourself.

TERADYNE
Over 50 off-the-shelf models...

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specific frequency range? . . . Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000M ohms insulation resistance and up to 1000V dielectric voltage. For wide dynamic range applications involving up to 100 mA DC primary current, use the T-H series. Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard; request other types. Available for immediate delivery with one-year guarantee.

Call or write for 68-page catalog or see our catalog in EEM, or Microwaves Product Data Directory.

T.TH, TTH, bent lead version style X65

case styles
T, TH, case W 38, X 65 bent lead version, KX81 bent lead version
TMO, case A 11, T case B 13, FT, FTB, case H 16

NEW TC SURFACE MOUNT MODELS from 1MHz to 1500 MHz

MCL NO. NSN
FTB1-1-79 5995-01-132-8034
FTB1-6 5995-01-225-8773
T1-1 5995-10-128-3745
T1-1T 5995-01-153-0668
T2-1 5995-01-106-1218
T3-1T 5995-01-153-0298
T4-1 5995-01-024-7626
T9-1 5995-01-165-8153
T16-1 5995-01-984-7439
TMO1-1 5995-01-178-2612

MCL NO. NSN
TM01-1 5995-01-183-6414
TM02-1 5995-01-215-4038
TM02-5-6 5995-01-215-4038
TM02-5-6T 5995-01-215-8697
TM03-1T 5995-01-169-7512
TM03-4 5995-01-067-1012
TM04-2 5995-01-091-3553
TM04-6 5995-01-132-8102
TM05-1T 5995-01-183-0779
TM09-1 5995-01-141-0174
TM016-1 5995-01-138-4593
FORMERS

3KHz-800MHz from $3.25

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>Ω RATIO</th>
<th>FREQUENCY MHz</th>
<th>INSERTION LOSS</th>
<th>PRICE $</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-1T</td>
<td>1</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>T1-6T</td>
<td>1</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>T2-7T</td>
<td>2</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>T3-6T</td>
<td>25</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>T3-1T</td>
<td>3</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>T4-6T</td>
<td>4</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>T5-1T</td>
<td>5</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>T6-1T</td>
<td>8</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>T6-16T</td>
<td>16</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TH4-1T</td>
<td>4</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TH4-6T</td>
<td>4</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM01-1T</td>
<td>1</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM02-2T</td>
<td>2</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM03-3T</td>
<td>3</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM04-4T</td>
<td>4</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM05-5T</td>
<td>5</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM06-6T</td>
<td>6</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM07-7T</td>
<td>7</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM08-8T</td>
<td>8</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM09-9T</td>
<td>9</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM10-10T</td>
<td>10</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM11-11T</td>
<td>11</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM12-12T</td>
<td>12</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
<tr>
<td>TM13-13T</td>
<td>13</td>
<td>0.03-300</td>
<td>1.0 - 2.000</td>
<td>6.95</td>
</tr>
</tbody>
</table>

CASE STYLE NUMBER

- For A and B configurations
- Maximum amplitude unbalance: 0.1 dB over 1 dB frequency range
- 0.5 dB over entire frequency range

CIRCLE NO. 23

*Denotes 75 ohm models

FOR A AND B CONFIGURATIONS

Maximum Amplitude Unbalance:
- 0.1 dB over 1 dB frequency range
- 0.5 dB over entire frequency range

Maximum Phase Unbalance:
- 1° over 1 dB frequency range
- 5° over entire frequency range

C72-2 REV. B
You have to build a
to build just

The new Tek TDS Series

More than a million Tektronix oscilloscopes have all been leading up to this: the most powerful, versatile, and intuitive instruments ever developed for the mainstream of test and measurement.

The new TDS 500 Series is the culmination of everything Tek has learned in the design, manufacture and use of digitizing oscilloscopes. It's an achievement made possible only by the unique integration of acquisition functions and combinational trigger logic onto a single board.

Only by the development of a milestone multiprocessor architecture.

Only by the addition of Tek's TriStar™ Digital Signal Processor (DSP).

Only by Tek's capacity for taking the hard work out of high performance.

The TDS Series performs, live, updates and measurements that inhibit most other digitizing scopes. Its real-time DSP lets you perform single-shot averaging and extend resolution to 12 bits. The TDS Series arms you with up to four full-featured channels, 500 MHz bandwidth. Up to 1 GS/s sampling and 4 ns peak detect. Up to 50K record lengths. Time interval, 2 ns glitch, runt, pattern and state triggers. With acquisition sensitivity and fast overdrive recovery bringing greater waveform detail within your grasp.

And if you think oscilloscopes aren't as easy to use and comprehend as they
million oscilloscopes
one like this.

could be, you owe yourself a demo of
the TDS. Its simplified front panel,
VGA-quality display resolution, on-line
help text, innovative icons that instantly
differentiate menu functions — all add up
to a scope that makes the user's manual
more a formality than a necessity.

The TDS Series signals the start of a
new generation of friendlier, more
powerful instruments from the
world's leading supplier of digitizing
and analog oscilloscopes. To get a first-
hand feel for why performance like this
only comes along about once in a million
scopes, contact your Tek sales engineer
or call 1-800-426-2200.

One company measures up.

EDN September 16, 1991

CIRCLE NO. 24
Introducing Fluke's 70 Series II, next-generation multimeters that meet the increasing demands of your job and your budget.

Consider. At the top of the line, the new Fluke 79 and 29 deliver more high-performance features - capacitance, frequency, a fast 63-segment bar graph, Lo-Ohms range, Smoothing™, faster ranges - than DMMs costing much more.

At the entry level, the new model 70, Fluke's lowest-priced DMM ever, delivers unparalleled Fluke quality at a price comparable to "disposable" meters.

And in between are all the models that have made the 70 Series the most popular DMM family in the world - updated, refined and delivering even more value than ever.

"BASICS" REDEFINED
No matter which 70 Series II you choose, you get simple, one-handed operation. High resolution. And built-in, go anywhere reliability.

Automatic Touch Hold™ - standard on every model - locks the reading on the display and signals you with a beep, automatically updating for each new measurement without a reset. Leaving you free to concentrate on your work, not on your meter.

YOUR BEST CHOICE
Best of all, every 70 Series II is a Fluke, backed by a worldwide service network and an industry-leading 3 year warranty.

So the next time you're in the market for a new meter, ask for the one that guarantees old-fashioned value. Fluke 70 Series II. For more information call 1-800-6789-LIT. Or call 1-800-44-FLUKE, ext 33 for the name of your nearest Fluke distributor.
Reader wants to send real-time video via phone lines

I am looking for videophone boards or modules that will accept/deliver NTSC video and that will send "still" or maybe even near-real-time video signals over standard phone lines.

Tom Hill
Sammons Communications
Duncanville, TX

Unfortunately, off-the-shelf technology hasn't yet advanced to the stage where you can plug a television broadcasting station into your PC. However, sending individual video images via modem is a piece of cake—your computer for hours and running broadcasting station into your PC. as long as you don't mind tying up

The principal stumbling block is your requirement for using "standard phone lines," which seems to indicate that you also want to use a standard 2400-bps phone-line modem. You can do that. You can even use your favorite communications package—just have your communications software send the image as a binary file, rather than ASCII.

However, you have to consider the practical aspects of the task. It isn't unusual for a full-color computer image to encompass half a megabyte of data. To pump this much data through a 2400-bps modem would theoretically take about 56 minutes per image—and that doesn't include pauses for hand-shaking or error correction. Even if you beefed up your equipment to include a 9600-bps modem, each image would require 14 minutes for transmission. Such requirements preclude the 30-frame/sec display rate required for real-time video.

One alternative, suggested by Videotex Systems (Dallas, TX), is to equip both the sending and receiving computers with image-compression boards. Although such boards can reduce your transmission time, they also degrade the image: The greater the compression, the greater the degradation. But even if you bought boards that could provide 100× compression, you still wouldn't reach real-time video rates. And even if you could transmit 15M bytes every second, where would you store all that data?

Our advice is to videotape whatever it is you want to record in "real time" and let an overnight delivery service hand the tape to the person you're trying to reach. You'll both save a lot of time, money, and hassle. And if the objective is to have the recipient alter your images in some way, this delivery method lets that person use the video-input port of a video graphics card to download your recorded images into his or her computer for subsequent manipulation.

Wants to access EDN BBS

I am interested in obtaining a program from your bulletin board system (BBS). I do not have a modem attached to my computer, but the computer is linked to the Janet network, which can access the American Internet system. I am writing to inquire if your bulletin board has an Internet address and if so the method of accessing the program from this connection.

Paul Drummond
The New Medical School
Newcastle-upon-Tyne, UK

The United States National Science Foundation runs Internet, which is a noncommercial service, so we can't get an address on it. EDN has investigated links to commercial services and X.25 networks, but we found that the fees were too high for us to continue to offer a free BBS. However, we're getting some high-speed modems soon and are considering putting another EDN BBS computer in the United Kingdom. This computer would be updated every week via streaming tape.

EDN

Ask EDN solves nagging design problems and answers difficult questions. Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; MCI: EDNBOS. Or send us a letter on EDN's bulletin-board system at (617) 558-4241; leave a letter in the ask_edn Special Interest Group.
NEW PRODUCTS – NICOLET’S PRO OSCILLOSCOPES

“Measurement Experts” get more choices from Nicolet

Nicolet Pro Oscilloscopes offer advanced trigger options in a waveform-analyzer-class scope

Nicolet invented the first digital oscilloscope to help engineers make better measurements. And for almost twenty years, they continued to focus on producing and improving top-end instruments for their “measurement expert” customers. Nicolet’s new line of “Pro” digital oscilloscopes offers advanced trigger, display and programming features, while maintaining Nicolet’s insistence on the highest standards of data integrity.

Nicolet Pro Oscilloscopes

The seven Nicolet Pro Oscilloscopes range from 8-bit units running at 200 Megasamples per second to differential-input 12-bit high-accuracy models. The Nicolet Pro 90 is a unique configuration of both, with independent timebases for simultaneous recordings at different accuracy levels and speeds.

Advanced Triggering in an Analog World

But the real innovation is that Nicolet has found a way to apply logic-analyzer style “advanced” triggering to the analog world. Many scopes have logic-analyzer style trigger modes. But logic-analyzer implementations of glitch and dropout triggers assume the input signals are square-waves. With most scope applications, baseline noise and variations of input slew rate can mimic the intended trigger events. The results are false triggers, spurious “jitter” on repetitive signals, and incorrect timing on single-shot events – in short, false data.

Nicolet’s new scopes are different, with a unique variable-sensitivity control to prevent false triggers. Only Nicolet Pro Oscilloscopes arm or trigger when the input passes sequentially through two operator-selected voltages, eliminating triggers due to noise or baseline instability. And using the advanced modes is easier than you’d think – Nicolet displays the trigger level and sensitivity right on the waveform, and provides an on-screen icon of the chosen trigger type, source and key parameters.

Quality Measurement for Electronics

Of course, every Nicolet Pro model offers the familiar “quality measurement” features characteristic of Nicolet products, including ultra-long 256K memory, built-in MS-DOS floppy plus optional hard drive, and Nicolet’s on-board programming language, TACT, for custom solutions to most measurement problems without an external PC. And even with four records of 256K each on the screen, Nicolet’s crisp vector display instantly shows you a one-in-a-million transient.

Call Nicolet Test Instruments

(800) 356-8088

Nicolet Pro Digital Oscilloscopes offer advanced triggering with sensitivity control for the analog world of noisy signals.

CALENDAR

Failure Mode and Effect Analysis (seminar), Boston, MA. Quality Alert Institute, 1475 S Colorado Blvd, Suite 206, Denver, CO 80222. (800) 221-2114; in CO, (212) 353-4420. FAX (800) 473-8348. September 27.

Electronic Imaging East, Boston, MA. Miller Freeman Expositions, 1050 Commonwealth Ave, Boston, MA 02215. (800) 223-7126; in MA, (617) 232-3976. FAX (617) 232-0854. September 30 to October 3.

Telecom ‘91: World Telecommunications Exhibition, Geneva, Switzerland. International Telecom-

40 CIRCLE NO. 26

EDN September 16, 1991
Seagate's Gigabyte Solutions

If your computer application has an insatiable appetite for disc storage, Seagate's got you covered.

Seagate produces more than twenty models of our Wren, Elite and Sabre disc drives with capacities greater than a gigabyte. Ranging in size from 1.1 to 3.2 GB, Seagate offers the industry's broadest range of high-capacity solutions for anything from a desktop PC to a world class supercomputer.

These 5.25" Wren and Elite drives and 8" Sabre drives feature data rates as high as 27 MB/second, average seek times as low as 11.5 msec and latency as low as 5.56 msec. With a choice of high performance interfaces including SCSI, SCSI-2, IPI and SMD, you can easily configure the ideal storage solution for your requirement.

Because these drives utilize Seagate's own thin-film heads, thin-film discs, voice-coil motors and printed circuit boards, you can be assured you're getting the highest quality disc drive available. In fact, our MTBF specification is as high as 250,000 hours in a Class A computer room environment.

Seagate's array of gigabyte-plus solutions can turn your computer application into a work of art. For complete Wren, Elite and Sabre specifications, contact your authorized Seagate distributor. Or call Seagate directly at 800-468-DISC, or 408-438-6550.

Seagate Wren, Elite, Sabre, Seagate and the Seagate logo are registered trademarks of Seagate Technology, Inc.

© 1991 Seagate Technology, Inc.

Painted Bamboo and Wire by Nance O'Banner
Oakland, California

CIRCLE NO. 27
The PQFP Test Clip Solution...
...for hands-free testing of SMT PQFP packages.

- Clips directly onto your soldered-on PQFP device.
- Support for testing, logic analysis, and emulation.
- Converts JEDEC and EIAJ PQFP package footprints to standard test points .1” apart.
- Available in package sizes 80 pin–160 pin.
- Custom sizes also available!

Call for FREE Catalog and Quotation:

Emulation Technology Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0664

Call your Emulation Technology Distributor:

- AUSTRIA 222-903-1953
- AUSTRALIA 61-744-5199
- BELGIUM 15-313223
- CANADA 613-75-2177
- DENMARK 44-532244
- ENGLAND 234-266455
- FINLAND 5-193133
- FRANCE 611-941-2901
- GERMANY 89-4602071
- HONG KONG 5-409065
- HUNGARY 361-116-2287
- KOREA 2-516-1144
- INDIA 11-6421114
- ISRAEL 3-260-148
- ITALY 2-353-8041
- JAPAN 33-988-7534
- JERSEY 16-450-1444
- NORWAY 2-900900
- SINGAPORE 281-7244
- SOUTH AFRICA 11-789-1743
- SPAIN 5-535-8112
- SWEDEN 4-744-0300
- SWITZERLAND 45-48-52-00
- TAIWAN 2-721-9533

You Guessed It!

IEEE GaAs IC Symposium ‘91, Monterey, CA. Jo Ann McDonald, The Legacy Co, Box 151, King City, CA 93930. (408) 385-5321. Registration: (202) 347-5900. FAX (202) 347-6109. October 20 to 23.

Object-Oriented Analysis and Design Seminar, Washington, DC. Technology Transfer Institute, 741 10th St, Santa Monica, CA 90402. (213) 394-8306. FAX (213) 451-2104. October 21 to 23.

munication Union, Place des Nations, CH-1211 Genève 20, Switzerland. (22) 730-5236. (22) 733-7256. October 7 to 15.

Modern Electronic Packaging Seminar, Burlington, MA. Technology Seminars Inc, Box 487, Lutherville, MD 21093. (301) 252-3425. FAX (301) 761-7942. October 9 to 11.

Symposium on High Density Integration in Communications and Computer Systems, Waltham, MA. Harry Lockwood, GTE Laboratories Inc, 40 Sylvan Rd, Waltham, MA 02254. (617) 466-2786. FAX (617) 890-8320. October 17 to 18.

Introducing a revolutionary new idea in a 1000-watt, “shoe box” power supply.

It's TODD SUPERMAX 1000, an extraordinary OEM power supply of revolutionary proportions. And those proportions are small. Smaller than anything in its class. At just 3.38"H x 8"W x 12"L, its compact size allows for great flexibility in a system's mechanical design. In fact, three SUPERMAX 1000 units can be mounted where two standard shoe box units fit before.

SUPERMAX 1000 is the 1000-watt power supply designed right from scratch with Power Factor Correction built in for maximum performance and economy.

Long recognized as the leading innovator in the power supply industry, TODD now brings its advanced open frame switching power supply technology to the high-power shoe box world. SUPERMAX 1000 requires fewer components, so reliability, efficiency—even “no-fan” cooling—are greatly enhanced.

For a smaller, more reliable, lower cost 1000-watt power supply that meets every US and international requirement, evaluate the TODD SUPERMAX 1000. When it comes to quality and innovation, no one can fill our shoes.

To receive a catalog showing our broad line of switching power supplies, for an evaluation unit, or to speak with an engineer who can supply immediate response and immediate solutions to your power supply problems, call the TODD Power-Phone:

800 223-TODD
THE 911 OF THE POWER SUPPLY INDUSTRY.
100 CHANNELS. 100 MHz. 1 CARD.
YOU EITHER HAVE IT

OR YOU DON'T.

See for yourself why competition to the Tek Centurion hasn't materialized.

No other logic analyzer, rumored or real, can keep up with the single-card, 100 MHz sync/400 MHz async Tek Centurion, the comprehensive solution for RISC and high-speed CISC.

Compare its accuracy against multi-card 100-channel solutions. Discover its vast expandability for multi-microprocessor debugging. See the advantage of Tek analysis tools, backed by up to 128K/channel memory.

Disassembly support? Only Tek gives you the 80386, 80486, 80960CA, i860, 88100, 68020, 68030, 68040, R3000, R3000A, and AMD 29000. Not soon, someday, or maybe, but shipping now.

Don't buy less without seeing Centurion first! See your Tek sales engineer for a demo, or call 1-800-426-2200 to get the facts.

Copyright © 1991 Tektronix, Inc. All rights reserved. DAS-088
NOW YOU CAN COACH YOUR NSP PLAYERS RIGHT FROM HOME PLATE WITH THIS "WHOLE NEW BALLGAME" TEST KIT.

For months we've been saying that our nine new Nonvolatile Serially Programmable (NSP) devices are a "whole new ballgame" when it comes to designing electronic systems and hybrid circuits.

Now to help speed your evaluation, the Semiconductor Products Center of Hughes Aircraft Company is offering a special evaluation kit to assist in the development phase of your design. All you need is an IBM™ compatible PC. You can read and program any of the NSP devices, including future NSP devices, right from your keyboard.

The kit contains all the necessary hardware and software. You can be up and running in just minutes. Included is a custom interface circuit, cable to connect to the parallel port of your PC, sample devices, data sheets, complete documentation, and "quick start" instructions.

The Evaluation Kit allows you to program and test a single NSP device or to access a ring of up to 15 devices. Moreover, three operating modes provide real flexibility for setting the state of the NSP devices. All can be programmed directly from the keyboard.

Send for your kit today at our special introductory price of $50.00. To help expedite your orders, we have arranged through our distributor to accept major credit cards for your added convenience. Phone or fax your request to: Zeus Components, call (714) 921-9000 or FAX (714) 921-2715. Or call our plant at (714) 759-6589 or FAX (714) 759-2913.
WITH OVER 70 VARIETIES OF 68HC05s, THE IDEAL MCU IS YOURS FOR THE PICKING.

Motorola's 68HC05 MCUs. Eight-bit microcontrollers by any other name are simply not as affordable. Accessible. Or abundant.

We expanded this remarkably diverse, low-cost family by nearly two dozen new MCU devices in the past few months alone.

And the number is growing daily.

BRANCH OUT WITH THE WORLD'S MOST POPULAR 8-BIT MICROCONTROLLER.

Motorola's economical 68HC05 MCU Family features an incredibly varied selection of memory options, timers, A/D, serial ports, LCD drivers, and other tried and true subsystems. We've developed this unparalleled array of devices into a series of MCUs to fit the 8-bit needs of virtually every segment of the electronics industry. From cameras and cars to phones and VCRs.

With our huge portfolio of existing devices, chances are we already have the MCU that's right for you. Or, with our Customer Specified Integrated Circuit (CSIC) design methodology, we may be able to develop a new MCU for your application's requirements.

GREAT IDEAS ARE GROWING AT MOTOROLA.

When you pick the world's largest 8-bit supplier, it's only natural you get a lot to choose from. Including new MCUs just released today! Check with Motorola for our very latest 68HC05 developments. If you don't find the MCU you need, you may want to contribute your own CSIC product requirements to Motorola through FREEWARE, our 24-hour electronic bulletin board, by calling (512) 891-FREE.

Before you make your next 8-bit decision, stop and smell the roses at Motorola. Where new varieties are blooming everyday.

THE PATHWAY TO PERFORMANCE.
Now catch the bugs that defy logic.

The HP16500A logic analysis system shows what's bothering your designs.

Power up a new design and you're in for a battle. That's when you need the HP 16500A logic analysis system. With one modular system, you can focus measurement power on those pressing problems. Before things get out of hand.

Choose from a wide range of modules. The state/timing module provides advanced capabilities, including 100 MHz state speed for debugging RISC and high-end CISC processors. There's a 1 GSa/s scope for single-shot troubleshooting. A 1 GHz timing module for precision time-interval measurements. And pattern generation for functional testing.

And you get the industry's broadest microprocessor and bus support...more than 100 solutions to speed and simplify debugging of virtually any microprocessor based design. Plus an intuitive full-color, touch-screen interface to make setup and operation easier too.

So take control of the debugging process. Call 1-800-452-4844. Ask for Ext.2604 and we'll send a brochure on the analysis system that can catch the toughest bugs before they start bothering you.

There is a better way.

*In Canada call 1-800-387-3867, Dept. 429.

©1991 Hewlett Packard Co. TM/OL/16/EDN
In June, I received an announcement from the IEEE (Institute of Electrical and Electronics Engineers) that the group was presenting an award to Apple Computer Inc for creating the personal computer. The award singles out Apple "for the creation and establishment of the broadly successful personal computer." The Apple II computer was very successful and it—along with the Visicalc spreadsheet program—pushed desktop computers into commercial use. However, Apple neither created nor established the personal computer.

The award committee's chairman told me that the IEEE chose its words carefully so that it would not appear that Apple had invented the first personal computer. However, my thesaurus says that both create and establish can also mean originate and start.

The chairman also told me that the committee used only published resources and that it didn't interview people who developed small computers in the 70s. By not talking with those people, the IEEE was led astray. If nothing else, I'm disappointed in the IEEE for its misinformed role in helping to further solidify myth into historical fact. There are many people and many computers that deserve recognition for their roles in advancing us toward today, when PCs are a part of daily life for almost everyone.

History proves that Apple was not the first to create a PC. Back in the late 60s and early 70s Digital Equipment Corporation shrunk its 12-bit PDP-8 into a desktop computer, the PDP-8/L, which became popular in controller applications. A group calling itself the Amateur Computer Society was founded by hard-core hackers in 1970, and many members spent considerable time and money trying to clone DEC's PDP-8/L. As I recall, coming up with the proper core memory was a nightmare.

Once Intel's 8-bit 8008 microprocessor arrived in 1973, designing your own computer became easier. Hobbyist computers such as the Mark-8 and Seebel-8 became available. Intel's more sophisticated 8080 made possible computers such as the MITS Altair and the IMSAI. Later processors from Zilog and MOS Technology formed the heart of the Apple II, Radio Shack's TRS-80, and Commodore's PET. Let's not forget IBM's 5100, a portable computer from 1975 that you could program in APL. Other mid-70s computer developments from the Digital Group, Southwest Technical Products, Processor Technology, Sphere, and others are just too numerous to relate.

In the early days of the microprocessor revolution, there were many parallel and sequential efforts—often somewhat blurred even in the minds of those of us who were present. Apple came in on the tail end of that first burst of innovation. One thing is for sure; Apple neither created nor established the personal computer. The IEEE should withdraw its award as graciously and as quickly as possible.

Jon Titus
Editor

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241, 300/1200/2400, 8, N, 1.
You Design Actel FP
You Do A PLD. But Th

Use PLD Tools.
You design Actel FPGAs using the same tools as you would a PLD:
ABEL™, CUPL™, LOG/iC™ and PGADesigner™. But that's where the similarity ends.

Our FPGAs are real speed demons. Whatever application you may be working on, our parts will give you the kind of performance you're looking for.

100% Automatic Place And Route.
Coupled with your PLD tools, Actel's Action Logic™ System (ALS) software lets you create your own FPGAs — using a 386 PC or workstation — right at your own desk. With Auto Place and Route that's proven in thousands of applications.

Announcing A Simple Way To Get
From PLDs to FPGAs.

If you're a PLD designer with an interest in fast, flexible FPGAs, but you think you don't have time to learn new design techniques, we'd like to change your mind.

Actel's ALES™ 1 program translates the output of PLD tools like CUPL™ and LOG/iC™ into logic optimized for our ACT™ devices. Entire FPGA designs can be developed with PGA Designer™ 4.0 includes optimization for Actel devices. You don't have to give up your existing PLD design tools or Boolean equations.

Actel devices offer everything you want in an FPGA. Like high I/O and flip-flop counts. And 100% automatic place and route gets you to market fast.

Once your FPGA is designed, our Action Logic™ System (ALS) converts the captured design into a completed device in minutes. To give you true, high-density, desktop-configurable, channeled gate arrays.

Other FPGA manufacturers fall short on design verification. Our exclusive ActionProbe™ diagnostic tools, give you 100% observability of internal logic signals. So you don't have to give up testability for convenience.

It's never been easier to make your innovative designs a reality. We offer you a complete family of powerful FPGAs, like the A1010 and A1020, available in 44, 68 and 84 pin PLCC versions and implementing up to 273 flip-flops or up to 546
GAs The Same Way e Similarity Ends There.

More Flexibility And Capacity.
Designing with Actel FPGAs gives you more freedom than you ever imagined. More gates. More flip-flops. More I/O. In fact, our new A1280 is the largest FPGA in the world.

Small Footprint.
Actel FPGAs give you far more gates per square inch. As much as ten times as many as the densest PLDs. That can save a lot of real estate.

More Fun.
Designing Actel FPGAs is so simple that you’ll have more time to do the things that make you want to become an engineer in the first place. Or just relaxing. You’ve earned it.

latches. And the first member of our ACT 2 family, the powerful A1280, with 8,000 gates, up to 998 flip-flops, and 140 I/O pins, it’s the highest capacity FPGA today. And our A1240-1 is the fastest. In the A1240-1, 16-bit counters run at 75 MHz, 16-bit accumulators at 33 MHz. Enough capacity and speed to handle almost any application.

The superior speed, capacity, and automatic place and route capabilities of our FPGAs are made possible by Actel’s revolutionary PLICE™ antifuse programming element. The advanced technology that makes our family of FPGAs an ideal way to unleash your engineering creativity.

Call 1-800-228-3532 for more information on Actel FPGAs.
We've all seen the light regarding Ethernet on twisted-pair. Now we'd like to show you the full spectrum in 10BASE-T — with the most complete selection of silicon for both ends of the LAN.

At the terminal end, the TPEX™ (twisted-pair Ethernet transceiver) provides the physical layer connection for add-in cards, motherboards and stand-alone MAUs. At the hub end, the IMR™ (Integrated Multiport Repeater) integrates eight transceivers and an expansion port on one chip, and replaces over a dozen ICs. And that brings down your per-port cost.

So you can quickly design and assemble everything from compact Velcro® hubs that hang virtually anywhere, to larger intelligent hubs using multiple IMRs.

And you won't find the design
ething Great
AMD's 10BASE-T.

risks you normally face. We'll lead you to market faster, supplying you with complete board level solutions. And we're behind you all the way with 10 years experience in Ethernet, including strategic partnerships with SynOptics and HP — co-developers of our TPEX and IMR, respectively.

And of course, all our 10BASE-T products comply with current IEEE specs.

So call AMD today at 1-800-222-9323 for a free information package. And give your next 10BASE-T design a truly brilliant ending.

Advanced Micro Devices
© 1991 Advanced Micro Devices, Inc. 901 Thompson Place, PO Box 3453, Sunnyvale, CA 94088. TPEX and IMR are trademarks of Advanced Micro Devices, Inc. Velcro is a registered trademark of Velcro Industries B.V. (Netherlands Corporation) Amsterdam, Netherlands.
Our pulse generators will test what you have.

High Speed Bi-polar

BICMOS

ECL

ECLips

GaAs

That's a big statement. But these are powerful programmable pulse generators. Combined, they deliver top speed, high resolution and pulse-parameter flexibility. So you get accurate testing of your present and future high-speed designs, whether they’re ICs, PCBs, or components.

Put the 500 MHz HP 8131A to work on your hottest new devices. With a transition time of <200 ps, plus pulse widths down to 500 ps with 10 ps timing resolution, you get the stimulus you’ve needed for accurate testing of your fastest designs.

For the most complete testing of your high-speed devices, choose the HP 8130A. It has
And what you have in mind.

the features you've wanted in a 300 MHz pulse generator, including variable transition times down to 1 ns, and 10 ps timing resolution. Which means you not only have the flexibility for high-speed parametric testing of digital devices, but for analog device testing as well.

So call 1-800-452-4844 today. Ask for Ext. 2631 to get data sheets and application information. Then get the programmable pulse generators you need for the fast devices you have in hand and mind.

There is a better way.

HEWLETT PACKARD

© 1991 Hewlett-Packard Co. TMBID957B/EDN
The right tools make all the difference...

Introducing jOMEGA!

Tired of Using RF Design Tools That Don't Measure Up to the Task?
EEsof introduces jOMEGA, the first design automation software developed expressly for RF engineers. jOMEGA has the features you need for fast, manufacturing-oriented design at frequencies below 3,000 MHz: easy-to-use schematic entry, fast linear and nonlinear circuit simulation, an RF-oriented model set including large-signal BJT transistor library, and built-in documentation capability.

jOMEGA Has the Edge You Need to Create Better RF Designs in Less Time:
jOMEGA's harmonic-balance simulator gives you fast optimization of linear and nonlinear circuits with simultaneous access to circuit response in both time- and frequency-domains. And jOMEGA has advanced features, like manufacturing yield optimization and optional board layout, that let you make manufacturing tradeoffs during engineering design.

Breaking the Barriers...

Call Us Today, Let Us Show You How jOMEGA Can Make the Difference on Your Next RF Design!
We'd like to send you an informative product brochure which describes the many features of jOMEGA. Call us at (800) 624-8999, ext. 155. Or if you prefer, contact us by FAX at (818) 889-4159. In Europe, call (49) 8105-24005 or FAX (49) 8105-24000.

CIRCLE NO. 36
A law regulating the electromagnetic compatibility of many products takes effect in Europe on January 1, 1992. Deciding how to make the products conform will be up to the design engineer. Some specifications have yet to appear, but enough technical information is available to make a start.

Brian Kerridge, European Editor

Ohm's Law, Kirchoff's Laws, and now Europe's EMC Law. All electronic circuits produce electromagnetic emissions (EMI) at some level. Equally, all circuits become susceptible to EMI at some level. Europe's Electromagnetic Compatibility (EMC) Law sets out exactly what levels are acceptable in both cases for your product. In the future, when designing products for Europe, you will have to consider the EMC Law alongside other circuit constraints.

As part of Europe's move toward a single market structure, politicians and technocrats decided to formalize and harmonize EMC regulations. The result is European Directive 89/336/EEC (European Economic Community), entitled Approximation of the Laws of the Member States relating to Electromagnetic Compatibility issued by the Council of European Communities. Products will require a "CE" mark, as well as other documentary evidence, as proof of conformance.

In principle, as from January 1, 1992, it becomes a criminal offense to contravene the regulations. In practice, you still have a breathing space of two or three years in which to prepare.

If you declare compliance and your product fails to conform, ultimately it must be removed from sale and your stock impounded. If you fabricate documentation in order to imply compliance, then your company will face legal action against its European signatory.

The range of products affected by the new ruling is vast. According to an interpretation of the Directive by Chris Grimes, Chief Consultant on EMC with Siemens Plessey Assessment Services, "If an electron flows in your product, then the Directive is applicable to it."

The EMC Directive encompasses regulations on emissions and immunity for conducted and radiated electromagnetic sources, line distortion, and electrostatic discharge (ESD). CENELEC (European Committee for Electrotechnical Standardization) is the European authority producing the new series of technical documents (distinguished by...
Arrays

• Highest volumetric efficiency for capacitive filtering in connectors by restricting high frequency current at the interface, sharply reducing EMI emissions.
• Gold plated terminations provide superior solderability and leach resistance.
• MLC capacitor arrays deliver cost-effective filtering, increased yields and an unlimited range of cap values.

CIRCLE NO. 37
TransGuard™

• Low voltage transient suppressors (5.6v to 60 vdc).
• Miniature SMT case sizes 0805, 1005, 1206, 1210.
• High peak current capability 40 to 300 Amps.
• Sub-nanosecond response time.
• High reliability avionic and commercial versions available.

CIRCLE NO. 38
Switch Mode Power Supply Capacitors SupraCap™

• Lowest ESR and ESL available.
• Highest current carrying capability.
• Supplied with lead frames for through-hole or surface mount assembly.
• Can be built in any shape or form factor.
• For high frequency power applications—SupraCap™ MLCs have less than 20 pico Henries Inductance.

CIRCLE NO. 39
EMI/RFI Filters

• All filters constructed with rugged MLC discoidal capacitors.
• Smallest available hermetically-sealed filters.
• Custom designed multicircuits, filter brackets and cylindrical filters meet mil spec MIL-F-28661 or MIL STD-461, NASA SSQ drawing and other EMI specifications.

CIRCLE NO. 40

With their solid construction and ability to silence EMI/RFI, these Advanced Products are quietly becoming the number one choice of design engineers.

Their variety of sizes and configurations allow easy implementation at the critical design stage—whatever your application. They’re proven effective in helping design engineers meet the FCC’s EMI/RFI standards. And as with all our products, they come backed with the worldwide service and reliability that can only come from AVX.

From capacitors and resistors to resonators and piezo devices, AVX offers the broadest line of passive components in the world.

So, the next time your design demands a product to reduce EMI/RFI, call on one of these Advanced Products. And enjoy the silence.

For more information, contact AVX Corporation at (803) 448-9411, or fax us at (803) 448-1943. Write to AVX Corporation, 17th Avenue South, P.O. Box 867, Myrtle Beach, SC 29577.
European EMC regulations

European Standard prefix “EN” (from its title in German). Generally, the new documents specify harmonizations of existing specifications from CISPR (International Special Committee on Radio Interference), or the national standards of the European countries. Table 1 identifies the EN documents produced so far and the provisional EN documents (prENs) under development, cross-referenced to established specifications. When deciding which specifications apply to your product, look for product-specific versions first, such as in the case of information technology equipment. If more than one specification applies, adopt the toughest. In the case where no specification exists for your product, the Directive still requires your product to conform to the EMC law. (How to deal with that situation appears later.)

Transition period eases pain

But don't think all issues are cut and dried. Although legislation will be in place from day one, some of the technical specifications will come later. Partly because of this delay, a transition period will enable a smoother switch from National to harmonized European specifications. The end date of the transition period is under consideration, but may extend to 1995. In the transition period, you can either wait, or attain compliance from day one using a mixture of whatever new specifications exist together with prevailing national specifications. Naturally, there is some confusion, and even experts in the same European countries cannot entirely agree on what you need to do to conform. Differences also exist between the EEC's member states over what technical specifications should apply. Even wording of the Directive itself proves troublesome. The Council intends to publish a further document by the end of this year to clarify some issues, such as what “taken into service” and “placed on the market” mean.

Make no mistake, though—despite these discordant notes, the EMC Directive exists and will soon apply throughout the EEC's 12 member states and the four EFTA (European Free Trade Association) countries. By the end of the transition period at the latest, all electronic products must conform, and only harmonized EN specifications will count. Compliance will be mandatory for products in current production, regardless of country of origin.

When politicians, specmakers, and marketeers have had their say, it will be up to you, the design engineer, to decide how to make the product conform.

That your product must ultimately conform is certain. How you reach conformance is less certain. The issues are complex, and subject to various interpretations. At the very least, your company will need to assign one person the responsibility of studying, interpreting, and tracking the developing situation.

Fig 1 shows EDN’s interpretation of the various routes to compliance. Several organizations are already offering specialist help and advice. (See box, “Who can help?”)

Three ways lead to compliance

In overall terms, the route to placing a compliant product on the European market is straightforward. First, you adopt one of three possible methods to convince yourself that the product conforms technically. Then, you apply a “CE” mark to the product and ship it with a declaration-of-compliance certificate.

The certificate must name a com-

Table 1—European standards relating to EMC

<table>
<thead>
<tr>
<th>Emission</th>
<th>European standard</th>
<th>Subject</th>
<th>Equivalent standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>prEN 50081-1</td>
<td>Generic domestic, commercial, and light industrial equipment</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>prEN 50081-2</td>
<td>Generic industrial equipment</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>EN 55011</td>
<td>Industrial, scientific, and medical equipment</td>
<td>CISPR 11</td>
<td></td>
</tr>
<tr>
<td>EN 55013</td>
<td>Radio and TV receivers</td>
<td>CISPR 13</td>
<td></td>
</tr>
<tr>
<td>EN 55014</td>
<td>Household appliances</td>
<td>CISPR 14</td>
<td></td>
</tr>
<tr>
<td>EN 55015</td>
<td>Lighting equipment</td>
<td>CISPR 15</td>
<td></td>
</tr>
<tr>
<td>EN 55022</td>
<td>Information technology equipment</td>
<td>CISPR 22</td>
<td></td>
</tr>
<tr>
<td>EN 60555</td>
<td>Line disturbances</td>
<td>IEC 555</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immunity</th>
<th>European standard</th>
<th>Subject</th>
<th>Equivalent standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>prEN 50082-1</td>
<td>Generic domestic, commercial, and light industrial equipment</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>prEN 50082-2</td>
<td>Generic industrial equipment</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>EN 55020</td>
<td>Radio and TV receivers</td>
<td>CISPR 20</td>
<td></td>
</tr>
<tr>
<td>prEN 55101-2</td>
<td>Information technology equipment—ESD</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>prEN 55101-3</td>
<td>Information technology equipment—RF radiation</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>prEN 55101-4</td>
<td>Information technology equipment—RF disturbances</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HD 481</td>
<td>Industrial process, measurement and control equipment</td>
<td>IEC 801</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. European standard designation is EN; provisional status is prEN.
2. No EN number yet, still at harmonization status.

EDN September 16, 1991
European EMC regulations

company signatory. Ideally, that person should be a resident European native. In the case of manufacturers outside the EEC, that person would normally be in the employ of your representative or distributor.

The three methods of reaching a level of confidence that your product complies are:

- self-certification
- third-party certification
- technical-construction file.

Self-certification appears to be the most direct route, as it is informal and involves minimal interactions outside your company. As the Directive stands, this route allows you freedom to do whatever convinces you that your product complies. When you feel certain of compliance, then your path is clear to apply the CE mark and get on with the selling.

The danger with this route is if someone officially challenges your product’s conformance. How able will you be to support your belief that the product does indeed conform? If you are unable to convince the EEC trade authorities, then your product must be withdrawn and your company stands the risk of being blacklist. In extreme cases, your European signatory could end up explaining things in court.

Nonetheless, companies outside Europe will favor this route, especially where the convenience of local EMC test facilities exist. In the case of a challenge, when test results from a reputable source are available, the danger of a product ban diminishes.

Third-party certification is the route that offers optimal assurance that your product conforms. Essentially, you subcontract the work to an accredited laboratory. The laboratory tests, reports, and certifies product compliance. A third-party test house must be accredited, otherwise the laboratory is not authorized to issue certificates. In the UK, NAMAS, a department of NPL, accredits such laboratories. DAE is the accrediting authority in Germany.

At present, accredited labs exist only in Europe. By the end of 1991, NAMAS expects there will be around 30 accredited labs for EMC testing in the UK. Germany will have around 15. Ideas to allow third-party testing in laboratories outside Europe are in the early stages. In the case of self-certification, it is not essential for your laboratory to be accredited.

Paperwork proves powerless

The technical-construction-file route is the most uncertain way to have your product declared compliant. In the first place, there is no clear idea yet of what should be in a technical-construction file. The attraction of this route is that the need for testing is not mandatory. The general intention is that the file

Fig 1—EDN’s guide to compliance with Europe’s EMC Directive.

NOTES:
2. European Committee for Electrotechnical Standardization.
3. For example, in the UK the National Physical Laboratory (NPL) is the National Standards Authority and the National Measurement Accreditation Service (NAMAS) is the department within the NPL to handle the accreditation.
When Every Nanosecond Counts
Squeeze critical nanoseconds from your high-speed logic interface with the fastest FCT logic available. IDT’s FCT-CT family offers speeds that are 50% faster than standard FCT or FAST logic families—as fast as 3.4ns (typical)!

The Perfect System Solution
As a system designer, you need the perfect combination of:
1. Fastest speed
2. Low ground bounce
3. Low power consumption

FCT-CT logic has true TTL compatibility for ease of design. The reduced output swings and controlled output edge rate circuitry ensure low system noise generation. No other technology offers higher speeds or lower power consumption.

The FCT-CT family is completely pin- and function-compatible with FCT logic, and is available today in all standard packaging.

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>PROPAGATION DELAY (Max)</th>
<th>OUTPUT ENABLE (Max)</th>
<th>OUTPUT DISABLE (Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffers</td>
<td>4.1ns</td>
<td>5.8ns</td>
<td>5.2ns</td>
</tr>
<tr>
<td>Transceivers</td>
<td>4.1ns</td>
<td>5.8ns</td>
<td>4.8ns</td>
</tr>
<tr>
<td>Registers</td>
<td>5.2ns</td>
<td>5.5ns</td>
<td>5.0ns</td>
</tr>
<tr>
<td>Latches</td>
<td>4.2ns</td>
<td>5.5ns</td>
<td></td>
</tr>
</tbody>
</table>

Free Logic Design Kit
Call our toll-free hotline today and ask for Kit Code 3061 to get a 1991 High-Speed CMOS Logic Design Guide and free FCT-CT logic samples.

(800) 345-7015 • FAX: 408-492-8454

The IDT logo, CEMOS, BICEMOS, and R3051 are trademarks of Integrated Device Technology, Inc.
European EMC regulations

contains sufficient information to convince a “competent body” that your product complies. A competent body is another independent agency, authorized by governments to vet technical-construction files and issue approval certificates. By the end of 1991, each EEC member state’s trade department will issue a list of accredited test houses and competent bodies.

Geoff Orford, at NAMAS, believes the technical-construction-file route, as the directive has outlined it, has little merit. He says that most EMC Standards are simply recipes for testing, and therefore you cannot hope to demonstrate compliance without some tests.

Grimes says the value of the technical-construction-file route shows up when manufacturers have a range of similar products. He recommends manufacturers to third-party test the worst-case product in the range, and then seek compliance for the rest of the range with technical-construction files. The technical-construction-file route also theoretically allows early compliance with the directive in the case of temporary absence of standards. Although, on what basis a competent body will make a judgment remains uncertain.

Grimes says he expects a technical file to include a technical report, a detailed block diagram, photographs, a wealth of EMC test data, and the test equipment’s history.

A CE mark signifies that your product complies with all applicable EEC Directives. Some toys, for example, have to comply with three earlier Directives, and are among

Who can help?

For more information on Europe’s EMC Law, circle the appropriate numbers on the Information Retrieval Service card or use EDN’s Express Request service. When you contact any of the following companies or organizations directly, please let them know you read about them in EDN. When you contact them directly from outside Europe, faxing is the best option. For example, the UK Government’s Department of Trade and Industry EMC office operates a system of taking phone calls by answering machine. The office answers routine overseas queries by fax.

For a copy of Directive 89/336/EEC: Alan Armstrong Ltd
2 Artwirght Rd
Reading RG2 0SQ, UK
(734) 751771
FAX (734) 755164
Circle No. 719

For European Norm documents: BSI Sales
Linford Wood
Milton Keynes MK14 6LE, UK
(908) 221166
FAX (908) 222484
Circle No. 720

For general information on the EMC Directive: Bundesamt für Post und Telekom Herrera Lehning, Referat 124 Postfach 8001 Tempelstrasse 2-4 W-6560 Mainz 1, Germany (011) 18 1200 FAX (011) 18 5600 Circle No. 721

Department of Trade and Industry Tony Bond Manufacturing Technology Div 4E 151 Buckingham Palace Rd London SW1W 8SS, UK (711 215) 1498 FAX (71 215) 1529 Circle No. 722

For accreditation information: Deutsche Akkreditierungsstelle Elektrotechnik Herr Dr Facklam, Geschäftsstelle Stresmannalle 19 W-6000 Frankfurt, Germany (06) 6302 280 FAX (06) 6302 317 Circle No. 723

NAMAS Executive Geoff Orford National Physical Laboratory Teddington TW11 0LW, UK (011) 942 7140 FAX (011) 943 7134 Circle No. 724

International EMC Standards and Test house facilities:

ERA Technology Ltd
Gordon Jackson
EMC Dept
Cleeve Rd
Leatherhead KT22 7SA, UK
(032) 374151
FAX (032) 374496 Circle No. 725

Siemens Plessey Assessment Services Ltd
Chris Grimes
Segensworth Road
Titchfield, Fareham PO15 5RH, UK
(032) 844449
FAX (032) 853354 Circle No. 726

TRL Technology Ltd
Mark Heaven
Alexandra Way
Ashdown, Tewkabury GL20 8NB, UK
(684) 850438
FAX (684) 850406 Circle No. 727

EMC Products:
Schaffner EMC Ltd
Headley Park Area 10
Headley Rd E
Woodley, Reading RG6 4SW, UK
(734) 697179
FAX (734) 696846 Circle No. 728

Siemens Matsushita Components GmbH Product Marketing EMC Components Balanstrasse 73 W-8000 Munchen 80, Germany
(89) 4144 4209
FAX (89) 4144 2575 Circle No. 729

VOTE...

Please also use the Information Retrieval Service card to rate this article (circle one):

High Interest 515
Medium Interest 516
Low Interest 517
Our present line of multichannel Synchro- or Resolver-to-Digital converters has been expanded to include additional features such as 16 bit resolution. Assigned model numbers SDC-14575, SDC-14605, and SDC-14615 series, these products offer the smallest size, and lowest cost per channel of any hybrid product available.

The SDC-14575 is a single-channel device featuring a small size 1.0 x 0.8 inch (0.8in²) package. The series is available in either Synchro or Resolver format, 2 volt, 11.8 volt, or 90 volt line-to-line, 47-1000Hz. Based on a high-reliability single-chip monolithic, the device features velocity output to eliminate a tachometer and an operating temperature range of -55°C to +125°C. Also featured is a BIT output, which is a digital output to flag excessive error or fault condition, (LOS) Loss-Of-Signal or (LOR) Loss-Of-Reference, and a "no 180° hangup" feature.

The SDC-14575 series can be programmed for either 14 bit (0.022 degrees per bit) or 16 bit (0.11 degrees per bit) resolution. Resolution control is accomplished by a digital line (logic "0" = 14 bits, logic "1" = 16 bits). Resolution control can also be used to influence tracking rate and settling time.

The SDC-14605 and SDC-14615 series, are two- and three-channel versions of the SDC-14575. All channels are independent, except for the reference inputs and digital output pins, which are shared. Output angle data is enabled onto the tri-state data bus in two or three bytes. Enable MSB (EM) is used for the most significant 8 bits and Enable LSB (EL) is used for the least significant 8 bits.

With both the 2- and 3-channel units, resolution is fixed at 16 bits. The 2-channel will occupy 0.6 in² per channel and the 3-channel 0.5 in² per channel. Cost per channel is reduced significantly due to the sharing of costs as such as the package and substrate.

All units in the series lend themselves to applications where multiple channels must be converted and space is at a premium. It will prove to be cost effective even in those applications where a low-cost, multiplexed scheme is being considered. Converters can be mixed together, such as a 5-channel application that could use one 2-channel and one 3-channel. All converters are available with military screening.

For additional information please contact Bill Cullum at (516) 567-5600, extension 389.
European EMC regulations

the first products already displaying CE marks. The first CE marks showing adherence to the EMC Directive should appear by the end of 1991, according to Tony Bond, head of the EMC office of the UK’s Department of Trade and Industry. He believes manufacturers will want to demonstrate compliance sooner rather than later in order to beat competitors.

As the transition period passes, Bond expects purchasing managers to show increasing preference to CE-labeled goods. By the end of the transition period, only goods with the CE mark will be acceptable. Bond warns against procrastinating in complying with the Directive. He points out that it’s more expensive to massage a finished product through to compliance than it is to design in EMC features from the outset.

He also thinks manufacturers in the UK will provide a natural watchdog service over other suppliers. He says the system will be “complaints driven”—competitors will step forward to expose one another.

In Germany, the Ministry of Telecoms has 50 offices spread throughout the country to police contraventions of EMC and other Directives. These offices routinely purchase and test products. If your product is found lacking, you will have to pay heavily for the test work, and be given a fixed period in which to conform. You may also be punished for importing the goods in the first place. Essentially, if you get to this stage in Germany, you’re in big trouble.

All routes demand heavy toll

Attaining compliance will be expensive. Even discounting your additional design effort and manufacturing costs, the extra work in assembling documentation, and the likely need for third-party testing, will cost at least $2500 per design. Naturally, companies flinch at this level of penalty, especially coming at a time when business is not exactly booming. The authorities, recognizing this situation, claim the transition period introduces a degree of flexibility into the approval procedure. But still there is not really a low-cost route.

At a recent forum of EMC-Directive experts in the UK, a delegate from a small company producing custom designs asked how he could afford to meet the Directive and survive. The experts had no satisfactory answer. The only advice from the panel (a test house representative), was to discuss the problem with a test house. It seems that companies in this predicament have a difficult decision to make: They can either dodge the directive and risk getting caught, or go out of business.

If you consider self-certification using your own set-up, the cost is exorbitant. Tom Leahy, technical manager with Schaffner EMC Ltd, estimates a minimum of £280,000 is necessary in order to do emission and immunity testing. Of that figure, £100,000 buys you an electromagnetically shielded and damped room of around 25m², which he says is essential to obtain repeatable test results. Leahy sees that the main problem with setting up your own facility is in locating experienced engineers to make the measurements. He reports mainly multinationals following this route, and only a few of the smaller companies.

For third-party EMC testing, TRL Ltd charges a daily rate of £750, which is typical for the industry. Mark Heaven, EMC consultant with TRL, estimates that compliance tests on the average product will take about two or three days. This period assumes the work goes smoothly, and the product passes. Before you submit a product to TRL, the company likes to consult with you on critical aspects of the design. These consultations minimize the chance of failure in the test house, and therefore limits your expense. According to Heaven, 80% of all EMC failures result from cables. Offending cables include line cords, data-links (such as RS-232C and IEEE-488), and signal leads. Apertures in the product’s enclosure have the second largest effect on a product’s failure.

Heaven says fixing EMC problems in a finished product is often a losing battle, and costly. Unless you carry out substantial redesign, involving changes to the pc-board layout, all you can do is install more shielding or filtering. The best way is to be conscious of EMC requirements throughout the design process. In that way, you can minimize, or even eliminate, additional product and manufacturing cost. Also, you optimize your chance of passing the test routine the first time. Some products cannot avoid cost penalties, however—notably, enclosures for information-technology products. Additional shielding using electroless plating on plastic surrounds increases component cost as much as three to ten times.

Wolfgang Sammet, EMC specialist with Siemens, also emphasizes
Maxim Offers All New Analog Applications Seminar

Maxim's top engineering staff will present half-day seminars covering a variety of innovative circuit solutions, featuring 60+ products introduced in the past year, and previewing products soon to be announced. For reservations, call us at (408) 737-7600, or FAX (408) 737-7194.

SEMINAR HIGHLIGHTS:
- RS-232 Interface Circuits
- Power Supply Circuits
- Data Acquisition: A/D, D/A
- Analog Switches and Multiplexers
- Active Filters
- Op Amps
- High Speed Comparators, Video Products
- Microprocessor Supervisory Circuits

ATTENDEES RECEIVE:
- 1/10th the Power!

-48V to +5V Output Switching DC-DC Converter

The MAX252 provides a complete isolated interface in one +5V-powered standard 40-pin DIP package by delivering voltage isolation up to UL levels (1500V for 1 sec).

-5V AT 250mA

The MAX250 contains all control functions and a 140V, 250mA PNP transistor, reducing external components. The converter has a selectable soft-start function, a shutdown pin for output on-off control, and peak-current limiting on the PNP output.

Evaluation Kit for Simple +3V to +5V Step-Up Converter

The MAX655 Evaluation Kit includes everything needed to build and test a circuit that converts 2AA cells to +5V. The kit includes an evaluation board with low-noise layout, a MAX655, and all components necessary for prototyping with the MAX655.

The MAX220 dual +5V transceiver is designed specifically for low-power operation. Quiescent operating supply current is a mere 500µA unloaded. And, the MAX220 is guaranteed to operate at data rates up to 20kb/s.

SEMINAR SCHEDULE:

<table>
<thead>
<tr>
<th>City/Locations</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL, Huntsville</td>
<td>Sept. 19</td>
</tr>
<tr>
<td>AZ, Phoenix</td>
<td>Oct. 15</td>
</tr>
<tr>
<td>CA, Tucson</td>
<td>Oct. 16</td>
</tr>
<tr>
<td>CA, Culver City</td>
<td>Nov. 12</td>
</tr>
<tr>
<td>CA, Irvine</td>
<td>Oct. 8</td>
</tr>
<tr>
<td>CA, San Diego</td>
<td>Nov. 13</td>
</tr>
<tr>
<td>CA, Santa Clara</td>
<td>Oct. 17</td>
</tr>
<tr>
<td>CA, Novi</td>
<td>Oct. 16</td>
</tr>
<tr>
<td>CA, Van Nuys</td>
<td>Oct. 10</td>
</tr>
<tr>
<td>CA, Fort Worth</td>
<td>Nov. 13</td>
</tr>
<tr>
<td>CA, Milwaukee</td>
<td>Sept. 4</td>
</tr>
<tr>
<td>CA, Novi</td>
<td>Sep. 5</td>
</tr>
<tr>
<td>CA, Minneapolis</td>
<td>Oct. 16</td>
</tr>
<tr>
<td>CA, Kansas City</td>
<td>Oct. 17</td>
</tr>
<tr>
<td>MO, Maryland Heights</td>
<td>Sep. 18</td>
</tr>
<tr>
<td>MO, Maryland Heights</td>
<td>Oct. 18</td>
</tr>
<tr>
<td>NC, Raleigh</td>
<td>Oct. 9</td>
</tr>
<tr>
<td>NC, Washington</td>
<td>Sept. 1</td>
</tr>
<tr>
<td>NC, Auckland</td>
<td>Oct. 17</td>
</tr>
<tr>
<td>NY, New York</td>
<td>Dec. 10</td>
</tr>
<tr>
<td>NY, Hamilton</td>
<td>Sept. 1</td>
</tr>
<tr>
<td>NY, Austin</td>
<td>Oct. 13</td>
</tr>
<tr>
<td>NY, Buffalo</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>NY, Rochester</td>
<td>Sept. 30</td>
</tr>
<tr>
<td>OH, Columbus</td>
<td>Nov. 11</td>
</tr>
<tr>
<td>OH, Dayton</td>
<td>Nov. 20</td>
</tr>
<tr>
<td>OH, Independence</td>
<td>Nov. 19</td>
</tr>
<tr>
<td>OH, Sharonville</td>
<td>Nov. 21</td>
</tr>
<tr>
<td>OK, Tulsa</td>
<td>Sept. 13</td>
</tr>
<tr>
<td>OR, Beaverton</td>
<td>Sept. 10</td>
</tr>
<tr>
<td>OR, Lake Oswego</td>
<td>Sept. 11</td>
</tr>
<tr>
<td>TN, Knoxville</td>
<td>Sept. 20</td>
</tr>
<tr>
<td>TX, Austin</td>
<td>Dec. 14</td>
</tr>
<tr>
<td>TX, Grapevine</td>
<td>Sept. 11</td>
</tr>
<tr>
<td>TX, Houston</td>
<td>Sept. 10</td>
</tr>
<tr>
<td>TX, Richardson</td>
<td>Sept. 21</td>
</tr>
<tr>
<td>UT, Murray</td>
<td>Sept. 6</td>
</tr>
<tr>
<td>UT, Ogden</td>
<td>Sept. 6</td>
</tr>
<tr>
<td>WA, Bothell</td>
<td>Nov. 11</td>
</tr>
<tr>
<td>WI, Brookfield</td>
<td>Nov. 6</td>
</tr>
<tr>
<td>WI, Madison</td>
<td>Nov. 7</td>
</tr>
<tr>
<td>CA, Van Nuys</td>
<td>Oct. 24</td>
</tr>
</tbody>
</table>

New +5V RS-232 Transceiver Doubles Speed of Existing +5V RS-232 Devices!

The MAX232A +5V dual RS-232 transceiver is specifically designed for low-power operation. Quiescent operating supply current is a mere 500µA unloaded. And, the MAX232A is guaranteed to operate at data rates up to 20kb/s.

RS-232 Transceivers at 1/10th the Power!

The MAX220 dual +5V transceiver is designed specifically for low-power operation. Quiescent operating supply current is a mere 500µA unloaded. And, the MAX220 is guaranteed to operate at data rates up to 20kb/s.

+5V Linear Voltage Regulator Has 150mV Dropout at 200mA

The MAX667 is the only CMOS linear voltage regulator that has both low dropout and ultra-low, 25µA, no-load quiescent current. Ideal for battery-powered applications. Also features 1µA shutdown mode.

Maxim Integrated Products, Inc., 120 San Gabriel Drive, Sunnyvale, CA 94086. Tel. 408/737-7600. FAX 408/737-7194

CIRCLE NO. 43
the importance of good design practice from the beginning. He says particular attention to grounding and short signal paths on your pc-board layout pays dividends. He also meets many problems at a system level. It is quite common for a collection of modules that pass an EMC test as individual units to fail when connected together. This situation highlights the problem of "configuration control," which Sammet sees as the major obstacle in the future. Several EMC specialists suggest Henry W. Ott's Noise Reduction Techniques in Electronic Systems (Wiley-Interscience, 1988) as a comprehensive and readable text to help you design around EMC problems.

Germany leads Europe on the EMC specification front. German National Standards Institution (VDE) specifications for commercial equipment have been around for decades. Siemens's commitment to the EMC business is exceptional. The company has extensive test facilities in Munich and markets a variety of EMC components for products and installations. Siemens has run EMC training seminars for design engineers for the last 20 years. Currently, the program takes place six times a year at international venues. Despite these advances, it is Sammet's view that a lot more needs to be done. In particular, he thinks electricians and technicians, as well as design engineers, need to be aware of, and understand how their work affects EMC.

The impact and complexity of the new EMC legislation is likely to influence all involved to move cautiously through the early months of 1992. Nobody knows exactly what to expect.

So far, every sign from the authorities suggests a common-sense approach, particularly in the UK. The objective of the EMC Law is to be protective more than pernicious. If you can demonstrate that you've taken a responsible attitude, then your problems should be few. The authorities anticipate that most companies will respond in this way, just as they have with safety regulations.

Some anomalous and difficult areas persist, however. It's not likely that they will disappear until the new regulations have passed a burn-in period.

Lack of commonality throughout the EEC is one such problem. In the transition period, for example, it will be possible for different specifications to apply in different countries, but all these specifications will lead to qualifying for the same CE mark. For example, as German VDE specifications are the toughest, it will be attractive to qualify elsewhere. Even after the transition period, it's likely that there won't be common rules for authorizing competent bodies or accrediting test houses. At present, NAMAS in the UK has mutual agreements with France and the Netherlands. The Western European Laboratory Accreditation Cooperation is engaged in providing common rules, but progress is at snail's pace.

Looking further afield, there is

What does it all mean?
The following list of acronyms are in common usage in the Standards and EMC world:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>BS1</td>
<td>British Standards Institution</td>
</tr>
<tr>
<td>CE</td>
<td>European Community, used for CE mark of compliance (from its title in French)</td>
</tr>
<tr>
<td>CENELEC</td>
<td>European Committee for Electrotechnical Standardization (from its title in French)</td>
</tr>
<tr>
<td>CISPR</td>
<td>International Special Committee on Radio Interference (from its title in French)</td>
</tr>
<tr>
<td>DAE</td>
<td>German Laboratory Accreditation Service (from its title in German)</td>
</tr>
<tr>
<td>EEC</td>
<td>European Economic Community (Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands, Portugal, Spain, and the United Kingdom)</td>
</tr>
<tr>
<td>EFT A</td>
<td>European Free Trade Association (Austria, Finland, Sweden, and Switzerland)</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>EN</td>
<td>European Standard (from its title in German)</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecoms Standards Institute</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>ILAC</td>
<td>International Laboratory Accreditation Cooperation</td>
</tr>
<tr>
<td>NAMAS</td>
<td>National Measurement Accreditation Service (Department of NPL)</td>
</tr>
<tr>
<td>NPL</td>
<td>National Physical Laboratory (in UK)</td>
</tr>
<tr>
<td>prEN</td>
<td>Provisional EN, not fully ratified</td>
</tr>
<tr>
<td>RFI</td>
<td>Radio Frequency Interference</td>
</tr>
<tr>
<td>VDE</td>
<td>German National Standards Institution (from its title in German)</td>
</tr>
<tr>
<td>WELAC</td>
<td>Western European Laboratory Accreditation Cooperation</td>
</tr>
</tbody>
</table>
15-BIT ADC USES ONLY 10 µA SUPPLY CURRENT!

Simple 8-bit µP Interface for $8.00*!

Maxim's new MAX135, low-noise, ±5V-powered, multi-slope integrating ADC, provides ±0.005% accuracy at 16 conversions per second, while requiring only 125µA of supply current over temperature. The MAX135 extends resolution to 18 bits with 3 internal Super LSBs—sub-LSB bits for data averaging. 8-bit data bus and 3 logic control lines simplify µP interfacing. All this comes packaged in space-saving 28-pin DIP and SO packages!

- ±0.005% Accuracy & 15µV Resolution at 16 Conv/sec
- 28-Pin SOIC Replaces 40-Pin DIP
- Supply Current Over Temp: 125µA max (Normal Mode) 10µA max (Sleep Mode)
- 18-Bit Resolution and Improved Accuracy with Data Averaging
- ±10pA Input Current

3-Wire Serial µP Interface Available Soon

Soon, Maxim will introduce the MAX132, a 3-Wire serial-interface version of the MAX135, packaged in a space-saving 24-pin DIP and SO.

FREE Analog A/D Design Guide

Including: Application Notes ♦ Data Sheets ♦ Cards For Free Samples

To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

EDN September 16, 1991
CIRCLE NO. 44
LOW DROPOUT REGULATORS

TK114xx
2.0V 2.5V 3.0V 3.25V 3.5V 3.75V 4.0V 4.5V 4.75V 5.0V 5.5V 6.0V 8.0V
- 200 mW Power Rating
- ON/OFF Switch
- Internal Protection Features

TK115xx
2.0V 2.5V 3.0V 3.25V 3.5V 4.0V 4.5V 4.75V 5.0V 5.5V 8.0V
- 600 mW Power Rating
- Low Noise
- Internal Protection Features
- Active HIGH and Active LOW Control
- External Boost Transistor Connectable

TK116xx
2.0V 2.5V 3.0V 3.25V 3.5V 4.0V 4.5V 5.0V 5.5V 8.0V 9.0V
- 500 mW Power Rating
- Internal Protection Features

Call Your TOKO Representative For Data Sheets and Additional Information

TOKO AMERICA, INC.
1250 Feehanville Drive
Mount Prospect, IL 60056

CIRCLE NO. 45

books that work the way you work

Analog Circuit Design:
Art, Science, Personalities
Jim Williams, Linear Technology Corp., Editor

Troubleshooting
Analog Circuits
Robert A. Pease, National Semiconductor

24 masters of analog circuit design share their experience in this comprehensive and useful guide to analog theory and applications. June 1991 352pp. cloth 0 7506 9166 2 $44.95

The best of EDN
Electronic Circuits, Systems & Standards
Edited by Ian Hickman
Ian Hickman has collected and filed EDN articles from the last 15 years, selected his favorites, and cross-referenced and indexed them. April 1991 250pp. cloth 200 illus. 0 7506 0068 3 $32.95
to order call 1-800-366-2665
M-F 8:30-4:30 E.T.
BUTTERWORTH-HEinemann
80 Montvale Ave. Stoneham MA 02180

The EDN Series
for Design Engineers

UPDATE

European EMC regulations

a strong case for establishing equivalent competent bodies and accredited test houses outside Europe. This move would make it much more straightforward for international manufacturers to use the third-party test route to comply. However, the likelihood of this happening in the next five years seems remote. Yet another organization, the International Laboratory Accreditation Cooperation, supports the idea, but implementing any program is way off.

The most persistent headaches will result from difficulties of configuration control. For example, if a PC plug-in card complies in PC type A, but fails in PC type B, you will have to decide how many other PC types you should try it in. If you are a systems integrator, your headaches multiply. All your systems may have a different configuration, and the system may pass at one site, but fail at another. If you're a small company making custom designs, it's unlikely you can pass the cost of testing to your customer for every single product.

Europe's EMC Law is here to stay and is certain to disturb the tranquility of your R&D lab. In design-cycle terms, the 1995 drop-dead date is not so far away. Tune in to Europe's EMC emissions, before Europe designs in immunity to your products.

Article Interest Quotient
(Circle One)
High 515 Medium 516 Low 517
FASTEST, +5V-SUPPLY
12-BIT ADC-ONLY $10*

FREE Precision Laser-Trimmed Reference Included On-Chip

Maxim now offers a 7.5µs analog-to-digital converter (ADC) with internal voltage reference, clock, and track/hold that typically consumes less than 3mA (15mW). The MAX190 saves additional power with an on-command power-down that extends battery life in portable applications. And, the new ADC simplifies external circuitry with high-impedance differential inputs and rail-to-rail signal range for both unipolar and bipolar conversions.

✦ Single +5V Supply
✦ 12-Bit Resolution, 1/2LSB Linearity
✦ Internal or External Reference
✦ 7.5µs Conversion Time
✦ Low Power: 15mW typ.
✦ 150µW Power-Down with 35µs Start-Up
✦ Internal Clock and Track/Hold
✦ High Immunity to Latch-Up

On battery power, the MAX190 converts rail-to-rail signals to either serial or parallel data in 7.5µs.

Choose Your Interface: 3-Wire Serial or 8-Bit Parallel

The MAX190 features a 3-wire serial and two 8-bit parallel interface modes for easy µP connection. The MAX190 comes in both plastic and ceramic DIP and SO packages with less than 1/2LSB linearity over temperature.

FREE A/D Converter Design Guide

Includes: Application Notes ♦ Data Sheets ♦ Cards For Free Samples

To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.
Reduce Your Risc
New PACEMIPS™ Components - Less Space, Lower Cost

Now design your single-board RISC computer with three NEW Performance components: CPU/FPA R3400, PACEWRAP, and BiCameral SCRAM.

PACEMIPS R3400
- CPU/FPA in a CPU Socket
- 25/33 MHz Operation
- Only 1.2 Clock Cycles/Instruction
- Up to 28 Mips and 9.7 MFLOPS
- 172 Lead Flat Pack/144 Pin PGA
- Full R3000/R3010 Functionality

PACEWRAP R3100
- Replaces four R3020s and up to 24 other chips.
- Eight-word-deep Write Buffer - with readback.
- Programmable Read Buffer - to 32 words and matches refill.
- Parity generation - allows use of main memory without parity.
- Bus snooping support.

BiCameral SCRAM Cache ZIP Module
- Dual 8Kx60 High-Speed SCRAM
- 32K Byte I and D caches from a single module including address latches.
- Available for up to 33 MHz CPU with minimum board space required.
- Space saving 6.350 x 0.815-inch 124-pin ZIP module

16Kx60 Cache SCRAM ZIP Module
- Two modules implement 64K Byte I & D caches including address latches.
- Available for up to 33 MHz CPU with minimum board space required.

For information or to order write or call
Performance Semiconductor Corporation
610 E. Weddell Drive, Sunnyvale, California 94089
Telephone: (408) 734-9000

CIRCLE NO. 48
QUAD VOLTAGE-OUTPUT 12-BIT DACS REPLACE 4 OP AMPS AND 4 DACS!

Save Valuable Board Space With 24-Pin SO Package

Maxim's new MAX526 quad voltage-output A/D converter replaces 4 digital-to-analog converters (DACs) and 4 op-amps with a single CMOS monolithic IC! The new DAC delivers performance you'd expect from hybrid and module quad DACs. Maxim guarantees monotonic 12-bit performance with 1/2 LSB relative accuracy over temperature for all 4 outputs, and 1 LSB total unadjusted error with no zero- or full-scale adjustments. And, 10V outputs settle to 1/2 LSB in 5µs.

- Four 12-Bit DACs in One Package
- Buffered Voltage Output
- 1 LSB Total Unadjusted Error
- Double-Buffered Logic Inputs
- 24-pin DIP and SO Packages
- Parallel µP Interface

Input Double Buffering & Output Amplifiers Simplify Design

The MAX526's double-buffered 8-bit parallel interface simplifies digital connections by eliminating "glue" logic. The analog interface is also simplified by built-in output amplifiers, eliminating external op-amps and providing the speed and drive needed for most applications.

FREE Analog D/A Design Guide

Including: Application Notes ♦ Data Sheets ♦ Cards For Free Samples

To receive your free design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.
To put VGA graphics on your motherboard, you need a cost-efficient, highly integrated, powerful solution that uses minimal board space. You need the new CL-GD5320 Enhanced VGA-Compatible Graphics Chip from Cirrus Logic.

Use it to incorporate full 16-bit or 8-bit VGA into low-cost personal computers. You only need two industry standard 256K x 4 DRAMs and as few as five other ICs. Whatever memory speed you select — 80ns, 100ns, or 120ns — you’ll get a complete VGA display system with greater performance than systems using a more expensive solution with 64K x 4 DRAMs.

You don’t sacrifice features. You get 16-bit and 8-bit support for the VGA graphics standard, and full, register-level backwards compatibility. For maximum performance, it has an 8/16-bit CPU interface, independent video and DRAM clocks, internal FIFOs, and page mode DRAM access. And it will interface to both analog (PS/2 and multisync) and TTL monitors.

You can also pick a ready-to-use solution that’s right for you. Anything from a chip with full BIOS, drivers, utilities, user’s manual, and documentation — to a complete manufacturing kit including everything you need to quickly move into high-volume production.

Make your PC more competitive and save time, space, power, and expense. You still get all the speed, features and flexibility you’re looking for.

Get on board. Call today for more information on our motherboard VGA solutions.

Maxim now offers you a selection of the fastest low-power single, dual and quad TTL comparators. For example, the new MAX903 can deliver an 8ns response time, while drawing only 3.6mA (18mW) per comparator from a +5V supply (enabling signals in excess of 100MHz to be processed). Although other comparators may operate from a single supply, the MAX900 series are the only high-speed comparators with an input voltage range that extends down to ground. In many applications this eliminates the negative supply, saving board space, power consumption and cost.

Separate Analog and Digital Supplies Allow:
- Single +5V to +10V Analog Supply
- Split ±5V for Bipolar Operation

Input Range Includes Ground and Eliminates Need for Negative Supply

Select A High Speed Comparator For Your Low Power Application

<table>
<thead>
<tr>
<th>Device</th>
<th># Comps</th>
<th>Prop Delay (ns)</th>
<th>Power Consumption (mW)</th>
<th>Single +5V Operation</th>
<th>Input Voltage (Single +5V Supply)</th>
<th>TTL Outputs</th>
<th>Price†</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX900</td>
<td>4</td>
<td>4 8 10</td>
<td>70</td>
<td>YES</td>
<td>-100mV to +2.5V</td>
<td>Single Ended</td>
<td>$7.01</td>
</tr>
<tr>
<td>MAX901</td>
<td>4</td>
<td>4 8 10</td>
<td>70</td>
<td>YES</td>
<td>-100mV to +2.5V</td>
<td>Single Ended</td>
<td>$5.98</td>
</tr>
<tr>
<td>MAX902</td>
<td>2</td>
<td>8 10</td>
<td>35</td>
<td>YES</td>
<td>-100mV to +2.5V</td>
<td>Single Ended</td>
<td>$4.01</td>
</tr>
<tr>
<td>MAX903</td>
<td>1</td>
<td>8 10</td>
<td>18</td>
<td>YES</td>
<td>-100mV to +2.5V</td>
<td>Single Ended</td>
<td>$3.15</td>
</tr>
<tr>
<td>MAX912</td>
<td>2</td>
<td>8 10</td>
<td>40</td>
<td>YES</td>
<td>-100mV to +2.5V</td>
<td>Complementary</td>
<td>$4.00</td>
</tr>
<tr>
<td>MAX913</td>
<td>1</td>
<td>8 10</td>
<td>25</td>
<td>YES</td>
<td>-100mV to +2.5V</td>
<td>Complementary</td>
<td>$3.13</td>
</tr>
<tr>
<td>LT1016</td>
<td>1</td>
<td>10 14</td>
<td>125</td>
<td>YES</td>
<td>+1.25V to +3.5V</td>
<td>Complementary</td>
<td>$3.13</td>
</tr>
</tbody>
</table>

FREE High Speed Comparator Design Guide

Includes: Application Notes • Data Sheets • Cards For Free Samples

To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.
Siemens provides computer and peripheral manufacturers with a worldwide connection for state-of-the-art integrated circuits.

Siemens is building on a tradition of innovation with state-of-the-art technology in the workplace. And we back it with worldwide service and support, providing a global partner for all your system designs.

For applications such as laptop PCs, printers and disk drives, which require lower power consumption, we offer CMOS 8-bit microcontrollers based on the 8051 architecture. Like the SAB80C537, with advanced features such as 16-bit hardware multiply/divide, and 8 data pointers.

We’re also the only European DRAM manufacturer, providing high-quality 1-Mb and 4-Mb DRAMs. In fact, we’re one of the world’s leading suppliers, with DRAMs available worldwide, in volumes which have doubled since 1989. And we’re continuing to advance this technology with our 16-Mb and 64-Mb DRAM programs.

Siemens has a wide range of ICs for PCs. Our powerful 80286 microprocessors include a super-fast 16 MHz design. And we provide the 82C206 and the NEAT™ chipset for optimized, low-cost solutions.

Plus, Siemens offers an extensive line of CMOS ASIC devices.

For innovative solutions for computer and peripheral manufacturers, Siemens is the best connection you can make.

For details, call (800) 456-9229, or write:

Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514

Ask for literature package M14A013.
Bringing order to the welter of high-density programmable-logic devices is no easy task. After conferring with numerous experts, EDN bravely offers this hopefully comprehensive and extensible overview.

Charles H Small, Senior Editor

HIGH-DENSITY PLD ARCHITECTURES

Family tree sorts out high-density PLDs

A mind-numbing variety of high-density PLDs (those having more than 2000 “equivalent gates”) is already available. And hardly a month passes without yet another new or enhanced high-density PLD or two becoming available. Further, unconfirmed sightings of “stealth chips” (publicized, but not announced) suggest that soon even more devices may appear.

EDN interviewed experienced users and high-density-PLD makers, asking each to take a stab at categorizing these devices. No two replies were even remotely similar. However, we synthesized some very general categories, and we submit the family-tree chart in Fig 1 and a supplementary chart (Table 1) for your approval. Though comprehensive, the charts need to be extensible, because when the stealth chips bolt from their secret black projects into the market, they will have to fit in somewhere.

The companies listed offer PLDs having significantly higher capacity than standard PLDs such as the 22V10. Yet notice that neither chart mentions just how much larger. The only metric available for comparing high-density PLDs’ capacities is “equivalent gates.” However, the high-density-PLD industry has not converged on a unified method of calculating equivalent gates. The industry is even further away from coming up with a metric that designers will accept and can use.

This lack of a useful capacity specification for high-density PLDs is unfortunate.

Fig 1—This family tree attempts to break down available high-density PLDs down into useful categories. Hopefully, as new devices appear, they will hang from branches that fit organically into this tree.
The Most Diverse Family In Memory.

Designs That Endure High Temperatures
Consistant Performance At Low Powers
Massive And Reliable Memory
Perfectly Suited For Cold Climates
High Speed Processing Performance

A Complete Line Of 1-Meg SRAMs.
Call Sony first. The largest selection of 1-Meg SRAM assures you can find the high performance, highly reliable memory you're looking for with just one call, so why go on a safari?

Fast or slow. Hot or cold. Even your massive memory requirements are right here.

And we can ship the package styles most in demand for your new designs today - and tomorrow. Our new production facility in San Antonio, TX will build on the reputation for timely delivery that has made us a breed apart.

The Best Selection Of New SRAMS.
-40° to +85°c, 3 volts and X9.20 nsec

If your current designs incorporate the latest technology, call us. Virtually every new idea in SRAM will be here at Sony first. And our U.S. design team (with their 0.8 & 0.5-micron CMOS technology) stands ready to get you the right product for your design; whether it's for a laptop or workstation.

Call Sony First.
We've got the product, backed by the Sony commitment to quality and service. And at competitive prices that make us the King of the SRAM Jungle.

Call today 714.229.4190 or 416.499.1414 in Canada. Or fax us your current requirements for a quick response from our technical staff 714.229.4285 (fax) or 416.497.1774 (fax/Canada).

<table>
<thead>
<tr>
<th>1-Meg SRAM</th>
<th>Speed</th>
<th>Packaging</th>
<th>Data Retention</th>
<th>Special Features</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>128Kx8</td>
<td>100/120</td>
<td>DIP 600mil</td>
<td>L/LL</td>
<td>B/X</td>
<td>Now</td>
</tr>
<tr>
<td>256Kx4</td>
<td>17/30/35</td>
<td>SOJ 400mil</td>
<td>Sync ASM</td>
<td></td>
<td>3/Q '91</td>
</tr>
</tbody>
</table>

L = Low LL = Low.Low B = 3 Volt X = Extended Temperature
High-density PLD architectures

Experienced users agree that the three most important specs for a high-density PLD are capacity, speed, and price. Incidentally, users are not thrilled with the specs for speed either, finding that using such specs requires careful study of the fine print and considerable experimentation. And while they can get firm specs for price, most think the prices are too high.

Returning to Fig 1, the first and most definite cut of the analytical scalpel divides field-programmable gate arrays (FPGAs) from devices that realize canonical, sum-of-products, Boolean equations. FPGAs have largely uncommitted interconnections. That is, both ends of each possible internal connection are user programmable; the connections between logic elements on-chip are not deterministic. FPGAs compose the logic-based-cell branch of the tree.

The sum-of-products devices, in a fashion very similar to their PAL-device and PLA-device forbears, have at least one end of every internal connection fixed, leaving only one end for you to connect. Their internal connections are deterministic. Sum-of-products devices compose the logic-gate-based branch.

A couple of comments are in order. First, you must realize that FPGA is a misnomer. FPGAs do not resemble conventional mask-programmed gate arrays at all. Unfortunately, the much more apt term “logic-cell array,” LCA, is a trademark of Xilinx. If you could see the die of an FPGA, you would find a rectangular array of logic cells surrounded by a phalanx of I/O cells. Running between (and, in some cases, over) the cells are uncommitted connecting lines of different length and current-carrying capacity. The logic cells of the various FPGAs contain different amounts of logic, and you can program each device’s logic cell into a unique—and sometimes quirky—set of Boolean functions.

The fewer logic elements in an FPGA’s logic cell, the more fine is its “granularity”; conversely, the more logic elements in an FPGA’s logic cell, the more coarse is its granularity. The divisions between fine, medium, and coarse granularity in Table 1 are rough estimations made only for comparison.

An FPGA’s granularity is a compromise between complexity and fan-in. If the granularity is fine, then the FPGA’s simple logic cells will each need few inputs. Hence, fan-in will not be a problem. However, the device will obviously need many logic cells to perform a given function. If, on the other hand, an FPGA’s granularity is coarse, then its more-complex logic cells will be relatively powerful, and you will need fewer of them for a given task. But a complex logic cell will, perforce, need more inputs than a simple cell would, perhaps leading to fan-in problems that may strain the internal-connection resources of the device.

GEC Plessey’s logic cell is little more than a simple gate. Toshiba’s cell is similar because both FPGAs stem from Pilkington designs. The logic cells in initial offerings of Actel’s Act devices were simple combinatorial-logic blocks; the company’s second-generation devices have combinatorial cells and cells containing registers. Compared to Plessey’s Era logic cell, Xilinx’s LCA logic cell is complex, containing both combinatorial logic and registers.

Quicklogic’s devices defy classification. Conceptually, they are AND/OR SOP devices. Physically, they resemble logic-cell arrays, having core macro-cells surrounded by interconnection channels. Algotronix’s logic-cell devices easily connect into rectangular arrays so that you can assemble large blocks of tiled, programmable logic. At press time, information on the Fujitsu devices was sketchy.

Designing with these logic-cell-based devices hearkens back to the days when engineers used discrete logic or small-scale integration (SSI). Breaking up a logic design into bits that will fit into individual cells and then connecting those cells is usually too complex a task to be done manually. Hence, designers rely on software for these tasks. The software they use has much in common with place-and-route software for printed-circuit boards.

Boolean equation realized

The logic-gate devices on the left of Fig 1 have the same theoretical underpinning as earlier PAL devices and PLA devices: the fundamental theorem that says you can realize any logic function with a sum-of-products Boolean equation. You can sum ORed, NANDed, or NORed products leading to AND-OR, NAND-NAND, or NOR-NOR sum-of-products equations. The elegance and simplicity of these equa-
High-density PLD architectures

tions translates into a simple, regular structure for a programmable-logic device.
Their simplicity and regularity also beget simpler and faster-compiling software than the software for FPGAs. Designing with the logic-gate-based devices has much in common with designing for PAL devices. However, their prewired structure suffers from the same bugaboo that haunts PAL devices: low gate-utilization rates.
The designers of logic-gate-based, high-density PLDs have enhanced earlier PAL-device and PLA-device architectures in several ingenious ways, striving to make their devices' layouts more flexible. Altera, for example, hard wires only three AND terms to each OR gate in its Max devices. To set up product terms having more than three ANDed inputs, you wire in some floating, uncommitted AND gates. Thus, the device does not have the rigid 8-AND-gates/OR-gate structure of many PAL devices. Note that this flexibility costs you some extra delay when you wire in floating gates.

Similarly, Advanced Micro Devices' Mach devices allow you to assign blocks of ANDed terms, in groups of four, among OR gates. Actel's Act devices also share product terms. Lattice's pLSI devices permit you to allocate groups' connections at several levels. National's MAPL devices contain "pages" of PLAs. Just like the MAPL devices' PLA-device ancestors, the connections between ANDed terms and OR gates are completely programmable.

Signetics' and Exel's novel devices actually come closest to meeting the literal definition of an...
The mil-spec solderless switch for land, sea or air.

Our QUIK-CONNECT™ module is physically separate from the switch. It can be pre-wired without solder and pre-checked for correct continuity. The QUIK-CONNECT™ module can then simply be pressed into place in the Vivisun Series 95 switch. It’s also compatible with NVIS night vision goggles per MIL-STD-6562A. A unique optics system eliminates the glare. When voltages are trimmed, the switch is easily readable with the unaided eye. It’s also readable in direct sunlight and deadface when not energized.

Compact and light. No other Mil-Spec switch can match it. Options: High-Impact Shock • Dustproof/Dripproof/Watertight/Splashproof • Split Ground • Standard Solder Terminations • EMI

Contact us today.

AEROSPACE OPTICS INC.
3201 Sandy Lane, Fort Worth, Texas 76112
(817) 451-1141 • Telex 75-8461 • Fax (817) 654-3405

Vivisun Series 95, the advanced QUIK-CONNECT™ solderless pushbutton switch.

VIVISUN 95™

CIRCLE NO. 53
MIL-S-22885/108
True 16-Bit
1 MHz sampling rate
from baseband to
SUPER Nyquist

The ADC4344 A/D converter achieves true 16-bit performance up to Nyquist. Plus, unlike other converters, it features an unprecedented -84 dB peak distortion from Nyquist to the sample rate. For stringent multiplexed applications, the ADC4344 (with a step input) will settle to 1 LSB in less than 800 ns.

- Low noise: 55 µV RMS Max.
- Peak distortion at 1 MHz:
 --99 dB at 100 kHz input
 --84 dB at 980 kHz input
- Signal to noise ratio:
 91 dB at 300 kHz input
- Compact size: 2 1/2" x 3 1/2"

Applications include:
- Sampling oscilloscopes
- Medical instrumentation
- Vibration analysis instrumentation
- Test equipment
- CCD detectors

All specifications tested and guaranteed over full temperature range.

CALL NOW!
(508) 977-3000 X2170

TECHNOLOGY UPDATE

High-density PLD architectures

FPGA. These devices are indeed arrays of a single type of gate—NAND gates and NOR gates, respectively. However, these arrays of gates still do not even remotely resemble a conventional mask-programmed gate array. In Signetics’ and Exel’s devices, a programmable crosspoint matrix potentially connects any gate’s output to any gate’s input. Thus, these devices’ so-called “folded” architecture permits chaining NAND or NOR gates to realize the sum-of-products form.

But these are no ordinary gates. Even the most brilliant logic designer will have to spend some time thinking through the possibilities inherent in, for example, Signetics’ array of 256-input NAND gates. Obviously, fan-in will never be a problem.

Future high-density PLDs will add more leaves and branches to the family tree in Fig 1. Fig 2 provides a conceptual model for other areas high-density PLDs may move into. This figure ranges digital devices along three axes. Note that, except for finite-state-machine sequencers, programmable logic falls on the control-logic axis. Future high-density PLDs could move in new directions, combining control logic with data storage or data handling.

WHAT’S COMING IN EDN
The Magazine Edition’s October 1, 1991, issue will include EDN’s DSP-chip directory. This annual feature updates the latest developments in the rapidly evolving technology of digital signal processing (DSP). In addition to updating the chips’ many parts and features, this year’s directory addresses how the choices of operating systems and interfaces to host operating systems are making DSP available to more applications.

Also coming in EDN in October and November is more from the mind of Jim Williams. We’ll devote 50 pages to his study of high-speed analog design.
Introducing fast, high resolution A/D-DSP Coprocessor boards for VME and PC/AT - DVME-630 Series, PC-430 Series

DATEL's new A/D-DSP coprocessor boards include a very high performance analog front end which is efficiently integrated with an advanced floating point Digital Signal Processor. This perfect blend of fast A/D with DSP delivers continuous, non-stop A/D streaming plus concurrent DSP math blocks with no lost samples. Use them for fast FFT or filter graphics, signal compression onto disk or LAN, system simulation or communications testing. A half-megabyte, dual-ported RAM window enables simultaneous block transfers, disk I/O and screen refresh needed for engine testing, vibration and resonance studies and phased sensor arrays.

- 12 or 14-bit A/D resolution with excellent input bandwidth and low noise
- 4 to 16S/8D analog input channels
- A/D sample rates: 1-4 MHz (12 bits), 500 KHz (14 bits)
- 4-channel simultaneous sampling
- Simple, fast "no programming" command
- Executive and comprehensive DSP math library with FFT's, filters, etc.
- 32 MHz 320C30 DSP, 512 Kb Dual Port RAM

DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048 (508)339-3000 FAX (508)339-6356

For FREE catalog call 800-233-2765
To design the perfect features into your application, choose the industry's most complete and feature-rich family of 8-bit 80C51 and 84CXX microcontrollers.

Available in OTP and EPROM versions, you're assured of faster time to market and cost-efficient low-volume runs. And for designs demanding individual program code, our OTP devices offer you the ultimate flexibility.

At the center of our family is a unique cell methodology. Through it you can select devices with a broad range of features. Like versions with an I²C or CAN serial bus, Plus models with low voltage/low power, A/D, EEPROM, small packaging, PWM and more. Plus, each device is available as a standard derivative and as a core for customized ASIC designs.

You'll also find that we offer a wide variety of embedded memory, ranging from 2K to 32K bytes of program memory (ROM, EPROM or OTP). And up to 512 bytes of embedded data memory (RAM). With speeds of up to 30 MHz.

Plus we're applying the same strategy to 16-bit 68000-based and 32-bit SPARC®-based microcontrollers. So as needs change, you'll have the building blocks to tailor designs.

You'll always have complete development support, too. Because you can choose from a growing list of emulators, programmers and software tools from Philips and third-party vendors including Ashling, Ceibo, Data I/O, Logical Systems, MetaLink, Needham's, Nohau, Tasking and many more.

Today our microcontrollers are the driving force behind thousands of products. For applications ranging from consumer and automotive to communications, aerospace and defense, and computer peripheral products.

For more information, contact your local Philips Components-Signetics sales office. Or call today for your Microcontroller Derivative Brochure and Data Book: (800) 227-1817, ext. 716D.

SPARC is a registered trademark of SPARC International, Inc., based on technology developed by Sun Microsystems, Inc.

A Sampling Of Our More Than 40 Leading 80C51 Derivatives

<table>
<thead>
<tr>
<th>Product</th>
<th>OTP</th>
<th>'IC</th>
<th>ROM</th>
<th>RAM</th>
<th>NO SIMILAR PRODUCT OFFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8XC751</td>
<td>✓</td>
<td>✓</td>
<td>2K</td>
<td>64</td>
<td>24-pin skinny DIP</td>
</tr>
<tr>
<td>8XCL410</td>
<td>✓</td>
<td>✓</td>
<td>4K</td>
<td>128</td>
<td>Operation at down to 1.5 volts</td>
</tr>
<tr>
<td>8XC851</td>
<td>✓</td>
<td>✓</td>
<td>4K</td>
<td>128</td>
<td>256 bytes EEPROM</td>
</tr>
<tr>
<td>8XC552</td>
<td>✓</td>
<td>✓</td>
<td>8K</td>
<td>256</td>
<td>10-bit A/D converter</td>
</tr>
<tr>
<td>8XC528</td>
<td>✓</td>
<td>✓</td>
<td>32K</td>
<td>512</td>
<td>512 bytes RAM</td>
</tr>
</tbody>
</table>

Signetics

EXTENDING THE DIMENSIONS OF PERFORMANCE

PHILIPS
Master Designer 5.0, the shortest distance from concept to reality.

Master Designer™ 5.0 is the shortest distance from PCB design concept to reality. And the fastest, most productive and reliable way to get your designs to market using an IBM® or compatible PC.

And now Master Designer 5.0 has been enhanced with more than 100 new features, requested by PCB master design engineers like you.

New features, more productivity.

Master Designer 5.0 shortens the entire design cycle with new features like extended memory for 4-times larger designs. Automatic real-time on-line design rule checking. User configurable menus. And automatic periodic file save with user-definable time increments.

First with 19,000 PCB designers.

You can rely on Master Designer 5.0 for the quality and dependability that has made it the choice of more than 19,000 PCB designers worldwide.

Master Designer 5.0 gives you the interactive support of Master Layout™ to handle surface mount, analog, and digital technology. The flexibility of Master Schematic™, fully automated optional Rip-n-Route, and our optional Master Placer™. Not to mention the plus of a consistent menu-driven interface.

With Master Designer 5.0 you’re backed by CADAM, the world’s leading CAD/CAM/CAE software supplier, and the international network of expert P-CAD Value Added Resellers.

Your finished designs are a lot closer than you think and so is your free P-CAD Demo Disk.

Here’s how to get all the details on Master Designer 5.0, and shorten the distance between your next great concept and reality. Just call P-CAD toll-free today and we’ll send your free Master Designer 5.0 Demo Disk absolutely free.

1-800-255-5710

World Class PCB CAD Productivity

PRODUCTS FROM CADAM, AN IBM COMPANY

IBM is a registered trademark of International Business Machines Corp. P-CAD is a registered trademark and Master Designer, Master Layout, Master Schematic, and Master Placer are trademarks of Personal CAD Systems, Inc.

P-CAD/CADAM, 1935 N. Buena Vista St., Burbank, CA 91504 © 1991 CADAM INC.
LabVIEW® 2
Where The Only Barrier Is Your Imagination

By now, you are probably familiar with LabVIEW 2, the most celebrated application software for data acquisition and instrument control on the Macintosh. It recently won the 1990 MacUser Magazine Editors' Choice Award. Five years ago, LabVIEW introduced the combination of front panel interfaces and graphical programming. Today, engineers and scientists around the world are using LabVIEW 2 in a broad spectrum of applications.

Unlike other graphical packages, LabVIEW 2 does not sacrifice power and flexibility for ease of use. With LabVIEW 2, you quickly build block diagram programs and add your own blocks to expand upon our libraries. You also create front panel user interfaces and import pictures to customize the panels. Yet LabVIEW 2 virtual instruments run as quickly as compiled C programs.

If you thought LabVIEW 2 was just for test and measurement, call us to find out what LabVIEW 2 is really about.

For a free LabVIEW 2 Demo disk call:
(512) 794-0100 or
(800) 258-7014
(U.S. and Canada)
The Elegance Inside The HP LaserJet III Si™ Printer:
The 29K™ RISC Microprocessor Family.

HP's customers were on the prowl. And Hewlett-Packard knew exactly what they were hunting for—a faster, PCL5 and PostScript® compatible, affordable desktop laser printer. So they built the HP LaserJet III Si printer. And naturally, they built it around the most versatile, high performance embedded RISC processor ever.

The 29K™ 32-bit microprocessor from AMD. Only the 29K Family gives you the widest range of performance—thanks to its innovative register file and high-velocity memory interface. That's how HP achieves its blistering 17 page-per-minute throughput, even with complex PCL5 and PostScript documents.

Only the 29K Family keeps your system costs...
low, while keeping performance high. Features like AMD's unique on-chip caches and burst mode give you maximum performance from less expensive memory.

Only the 29K Family helps bring your product to market so fast. You'll breeze through development with AMD's own tools, or the hardware and software tools provided by over 50 Fusion29K Partners. And the 29K Family continues to grow with new members offering even higher performance and integration.

So make sure your customers are happy puppies, and start designing with the 29K Family from AMD. Call 1-800-292-9263 Ext. 3 for more information.

Advanced Micro Devices
901 Thompson Place, PO Box 1413, Sunnyvale, CA 94088 © 1991 Advanced Micro Devices, Inc.

29K is a trademark and Fusion29K is a service mark of Advanced Micro Devices. LaserJet is a trademark of Hewlett-Packard Co. PostScript is a registered trademark of Adobe Systems, Inc. All other brand or product names are trademarks or registered trademarks of their respective holders.
ANY WAY YOU SLICE IT,
GENERATION COVERS EVERY

The squeeze is on. Today the PC market is rapidly concentrating into three segments: Notebooks, Desktops and Workstations. And once again, Conner has anticipated these changes.

Which is why we're introducing our newest wave of high-performance 2.5-inch and 3.5-inch drives to meet the needs of each of these evolving market segments.

For the notebook market, take our newest Pancho drive.

With 85 Mbytes, it offers the highest capacity available in a light weight, patented 2.5-inch form factor. Low power consumption, rugged packaging and a compact form factor make it the ultimate choice for 386SX and 486SX-based notebook computers.

Then there’s our new Jaguar Series for the desktop market—3.5-inch drives offering 85 and 170 Mbytes. A 17 msec. average seek time and a light weight, patented 1-inch
Conner’s newest segment of the market.

High form factor make them ideal for a full range of desktop computers.

For workstations, we’re introducing two new 3.5-inch drives—the 210 Mbyte Cougar and 540 Mbyte Summit. Cougar is the highest performance low-profile drive on the market today. While Summit delivers the greatest capacity and performance of any 3.5-inch drive. Both provide a fast average seek time of 12 msec., a 2.5 Mbyte per second sustained transfer rate and a SCSI-2 interface.

It’s all a part of our innovative sell-design-build business philosophy. To identify our customer’s needs sooner. Then fill them faster with the most advanced products. In fact, we’re the technological leader with nine patents issued and 27 pending. Which is why more and more PC users are asking for systems with Conner drives.

So if the changing market segments are putting the squeeze on your systems, call us today. We’ll guarantee you the most refreshing results.

Conner
Delivering A Generation Ahead

— London: (44) 071-409-0090 • Munich: (49) 89-129-4061 • Paris: (33) 1-47-47-61-08 • Austin (39) 81-80200 • U.S. — Boston: (617) 449-9150 • Dallas: (214) 680-7933 • Irvine: (714) 777-2467 • Minneapolis: (612) 449-5186 • San Jose: (408) 417-4150.
Getting To The Core Of Interference Problems.

TDK Ferrite Cores Offer Superior EMI/RFI Suppression.

What if you could effectively eliminate noise from your circuit designs simply by inserting a small plate over IC pins? It's that simple when you use TDK Multi-hole Ferrite Plates MH series to deal with EMI/RFI.

TDK pioneered the development of ferrite, a key weapon in the battle against interference, over 50 years ago.

The company has applied its expertise by offering a full range of the most advanced highly efficient ferrite cores on the market today.

These cores come in all shapes and sizes and are made of materials ranging from μ_{ac} 45—1,500. Our large selection allows you to simply select the optimum frequency-impedance characteristics for your application.

CEL, TDK's Component Engineering Laboratory in Torrance, CA, is at your service.

Phone: 213-530-9397

TDK CORPORATION OF AMERICA 1600 Feehanville Drive, Mount Prospect, IL 60056, USA Phone: 708-803-6100 INDIANAPOLIS Phone: 317-872-0370 NEW YORK Phone: 908-494-0100 SAN FRANCISCO Phone: 415-437-9585 LOS ANGELES Phone: 213-539-6631 DETROIT Phone: 313-462-1210 BOSTON Phone: 508-624-4262 HUNTSVILLE Phone: 205-464-0222 GREENSBORO Phone: 919-292-0012 DALLAS Phone: 214-506-9800

GERMANY • FRANCE • ITALY • U.K. • KOREA • TAIWAN • HONG KONG • SINGAPORE • THAILAND • P.R. OF CHINA • BRAZIL TDK CORPORATION Tokyo, Japan

CIRCLE NO. 62
CMOS monolithic 5-tap, delay-line IC features variable 25- to 400-nsec range

A variable range and a 50-MHz bandwidth make the Bt630 5-tap delay line ideal for applications such as CPU-clock, memory, and bus-interface timing. The IC can provide full-scale delay ranging from 25 to 400 nsec. Furthermore, the monolithic CMOS 14-pin-DIP IC dissipates only 50 mW of power typically.

The IC has a number of advantages compared with delay lines built with hybrid circuits. For example, the 50-mW power dissipation is substantially better than the 300-mW power dissipation typical of hybrid circuits. And although specs can’t quantify the reliability of hybrid or IC delay lines, ICs are generally considered more reliable than hybrid circuits.

You can use the delay-line IC in applications that require input-pulse widths as narrow as 15 nsec. The IC offers an output-delay accuracy spec of the greater of ±5% of delay setting or ±2 nsec. Furthermore, the accuracy spec applies to both the leading and trailing edge of a signal pulse. Many other delay lines only specify the accuracy relative to the leading edge. The IC’s five buffered taps output signals at 20, 40, 60, 80, and 100% of full-scale delay.

Fig 1 depicts the IC and a simple control circuit. The D₀ and D₁ digital inputs select a delay range from a choice of four for operation. The ranges are 25 to 50, 50 to 100, 100 to 200, and 200 to 400 nsec. You set the exact delay using the RC input. The frequency-based range control eliminates drift problems common to CMOS circuits.

The variable delay lets OEMs stock a single part for a variety of applications requiring delay lines. You can also use the variable delay in applications such as PCs with optional CPU upgrades to solve problems of mismatch between CPU and system-clock speed. The circuit shown uses a simple capacitor and potentiometer circuit to control delay setting. You can substitute programmable control in applications such as PCs that you can upgrade.

The company also offers a demonstration board that you can use to test and evaluate the IC’s performance. The demo board includes circuitry that can generate a TTL input signal, of which you can vary the period and pulse width. The board includes DIP switches to set the delay range and potentiometers for fine adjustments. The $39 demo boards and samples of the $11.10 (100) IC are available now.

—Maury Wright
Brooktree Corp, 9950 Barnes Canyon Rd, San Diego, CA 92121. (800) 843-3642; (619) 452-7580. FAX (619) 452-1249. Deborah Hancko.

Circle No. 731
No need to worry if modem communication is the last thing you consider in your new product design. There's always room for our K224L Low Power Modem IC.

Called “The Communicator,” the single-chip, K224L measures out to just under 1/2 square inch, thus requiring less than one-quarter of the design space needed for current generation V.22bis data pumps.

The K224L is now available in a wide range of packaging options, designed for worldwide application and provides you both synchronous and asynchronous communications.

The 5v only “Communicator” understands the constraints of your power budget, too. And seamlessly connects you to any Silicon Systems K-series modem chip. In other words, it’s the perfect fit for wherever you need to apply full-duplex, 2400 bit/s data communications.

For the second half of the story, call us for a K224L Sample Kit and literature package CPD-9. We'll give you the name of your nearest Silicon Systems representative and update you on our latest developments.

1-800-624-8999, ext. 151.

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680
Ph (714) 731-7110 Fax (714) 731-6925
European Hdq. U.K. Ph (44) 79-881-2331 Fax (44) 79-881-2117
Surface-micromachined acceleration sensor includes on-chip signal conditioning

The ADXL-50, a surface-micromachined acceleration sensor and signal conditioner is targeted for multiple automotive applications, such as air-bag devices and antiskid braking systems.

Although the science-fiction concept of a micromachined motor of pin-head size has yet to materialize, this accelerometer actually improves upon today’s state-of-the-art silicon-processing capabilities. The device uses current technology in a unique way: Although accelerometers using bulk-micromachining methods to fabricate a silicon membrane have existed for several years, the ADXL-50 uses surface micromachining, a more difficult and sophisticated method.

Bulk-micromachined accelerometers combine a silicon membrane—formed by chemical etching—with thin-film piezo resistors connected in a bridge circuit. In operation, acceleration exerted on the device deforms the membrane, resulting in a change in the resistance of the piezo resistors and producing a small output from the bridge circuit. But bulk-micromachined accelerometers are usually sensitive to temperature variations—not a desirable attribute in automotive applications—and require complex external signal-conditioning circuitry to amplify and linearize the output signal. The size of bulk-micromachined devices also makes them relatively expensive.

By contrast, surface-micromachined devices are typically only 10 to 20% as large as bulk-type devices, thereby providing more efficient use of silicon real-estate. Of even greater importance, surface micromachining uses conventional IC fabrication techniques, which allow the manufacturer to include the signal-processing circuitry on the same chip as the micromachined structure. The specific nature of its surface-micromachined structure and signal-processing circuitry distinguishes this accelerometer.

The structure forms a capacitive sensor that, when viewed from above, looks like a letter H. The long, thin arms of the “H” act as tethers to secure the floating micromachined element to the substrate. The thicker central mass is free to move in a plane perpendicular to the tethers. Projecting from the central mass is a series of filaments that look like the fingers of a comb. Each of these filaments is one plate of a series of parallel-plate variable capacitors; the other plates are secured to the substrate and interleave with the moving-mass plates. Acceleration or deceleration in the axis of sensitivity exerts a force on the central mass that displaces the interdigitized capacitor plates, causing a fractional change in capacitance.

The device operates within a force/balance electronic control loop. Basically, this circuitry splits a carrier signal into two phases, 180° apart. These signals then are transferred to electrodes on opposite sides of the movable center member. There is no signal on the center member if the structure is perfectly centered. Under acceleration, one capacitor increases in value while the other one decreases, causing the phase of the carrier on the higher side to appear on the center member. Other circuitry then amplifies, demodulates, and filters this signal to produce a 0.25 to 4.74V output that is proportional to acceleration.

Compared with a membrane and piezo-resistor sensor, the capacitive sensing used in the accelerometer...
100% STD-AT™
Compatible Computer

- 100% IBM-AT Compatible STD Bus Industrial Computer
- Fast 10, 12, 16 or 20 MHz 80286 CPU
- Phoenix Bios
- 20, 40, 100 Mbyte 27 ms Hard Disk
- VGA, EGA, CGA, MDA Color Graphics
- Industry Standard IEEE 961 STD Bus
- Compact, Rugged, Industrial Packaging

The STD-AT™ is the first 80286 IBM-AT compatible STD Bus computer offering over 18 times the performance over a standard XT. The compact 4.5" x 6.5" STD Bus card size makes it ideal for mounting in disguised and embedded controllers in a wide variety of industrial and commercial applications. The STD-AT is the blending of proven hardware and software standards to provide the most rugged, compatible, cost effective industrial solutions.

WRITE OR CALL FOR A FREE STD-AT BROCHURE
P.O. Box 121361, Arlington, TX 76012 Phone (817) 274-7553 Fax (817) 548-1358

WinSystems®
"THE STANDARD BUS AUTHORITY"™

CIRCLE NO. 64

BINARY CODED MINIATURE ROTARY SWITCHES
LET YOU INTERFACE
WITH MICROPROCESSOR-
CONTROLLED EQUIPMENT.

ESTABLISH DATA RATE
SELECT ADDRESS
REPLACE THUMBWHEELS
• Only half-an-inch in diameter!
• Choice of 16 or 8 positions maximum
• Adjustable stops permit limited rotation
• Shaft and panel seal
• Shorting contacts
• Very affordably priced
• Off-the-shelf availability through your local Grayhill distributor

Ask for Bulletin Number 438 with code and truth table and detailed specs.

CIRCLE NO. 101

EDN EDITORS' CHOICE

is essentially immune to temperature variations. Capacitive sensing also allows operation over a frequency range from dc to 1 kHz. In addition, the monolithic device has a guaranteed accuracy of 5% over its full ±50g range. Of particular importance in automotive air-bag applications is the device's self-test feature that assures the user that the accelerometer is functional. Present systems use multiple switch modules that either work when needed or they don't; you can't test them beforehand. And, at about $15 each, these modules are expensive.

The ADXL-50, which operates over the −55°C to +125°C temperature range, comes in a 10-pin, TO-100 metal can. The device costs $23 (100); in automotive OEM quantities, it costs $5.—Dave Pryce
Analog Devices, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428.

Circle No. 732

EDN’s Editors’ Choice

On occasion, a new product will show a great deal of innovation and thus appear as an EDN Editors’ Choice selection. To qualify for special coverage by our editors, an innovative product must:
• Offer significantly higher levels of performance in ways not previously available
• Solve a continuing problem much more effectively than its predecessor
• Exhibit a marked degree of cleverness, which differentiates it from earlier products
• Embody new technology that advances the state of the art or use older technology in a unique and innovative way.
Portable data products from Datakey are meeting the needs of electronic OEM design engineers in a wide range of commercial and military applications. They can help you:

- Save valuable system space
- Reduce system power requirements
- Cut the cost of memory/feature expansion
- Improve system and facility security
- Speed data transfer, make data handling more convenient
- Make ROM upgrades quicker, easier
- Simplify system design and manufacturability
- Ruggedize your system or I/O device
- Reduce repetitive data input
- Differentiate your product in the marketplace

These versatile devices withstand rough handling and retain your data even when exposed to dust, dirt, moisture, magnetic fields, and other environmental hazards.

We’ve developed a whole array of solutions for tough portable data applications — including the access device for the U.S. government’s secure phone system. Hundreds of thousands of these devices are in use today.

Choose from our standard products, including Serial Memory Keys (1K, 2K, or 4Kbit capacity), Parallel Memory Keys (64K to 512Kbit capacity), Memory Cards (chip-on-card or edge-connect with embedded memory), Low-Cost Personal ID and Memory Tokens, Mechanical/Electronic Keys, and more.

We also design and manufacture custom portable data devices.

So, call today for our free booklet. It just may help you solve some of the toughest design problems around. Yours.

Call 1-800-328-8828
Need it fast? We’ll fax it.
Tek’s complete digital characterization system.
Because a mask is a terrible thing to waste.

Even the smallest timing errors can trash today’s high-speed designs. But for the cost of a single turn, you can beat the odds and reduce your time to market with the world’s best AC characterization system.

On the stimulus side, Tek’s new HFS pulse generators feature a revolutionary digital architecture with up to 18 channels and full functionality to 630 MHz. You can stress timing margins by adjusting each channel’s edge placement with 10 ps resolution at all frequencies.

In acquisition, Tek’s 11801A with modular sampling heads measures crosstalk, metastability, setup and hold times, and characterizes controlled impedances using TDR — with 1 ps measurement resolution, up to 136 channels, and high-impedance probing to 2.5 Ghz and .25 pF.

Push the limits without pushing your luck: let your Tek sales engineer show you the characterization system that easily pays for itself. Or call 1-800-426-2200 for assistance.
Low-power, 1.8-in. hard-disk drive holds 21.4 Mbytes, withstands 200g shocks

Discard your notions of the appropriate applications for hard-disk drives. The 1.8-in. Model 1820 drive stores 21.4M bytes in a head-disk assembly measuring 0.394 × 2.01 × 2.76 in. The drive employs a separate controller card measuring 0.276 × 2.01 × 3.03 in. Together, the two components weigh 95 g. You can mount the drive and controller card independently or piggyback the controller on the head-disk assembly. The controller card has an IDE (integrated drive electronics) interface, which is the interface PCs commonly use. Engineering samples of the product cost $485.

The disk drive runs on 5V and can run from batteries. It draws 2W while reading or writing information, 1W when idle, 35 mW in standby mode, and 15 mW in sleep mode. The drive spins up in 1.5 sec typ, so you can keep it in the sleep mode most of the time for many applications. Its automatic power management lets you realize large power savings using the drive's sleep mode while still servicing data-transfer requests.

During the first second of activation after receiving a data-transfer request, the drive consumes 3.5W. In the next second, the drive consumes 2W while performing the requested data transfer. For the next five seconds, the drive is in its 1W idle mode. While in the idle mode, the drive keeps the platter spinning in case another data-transfer request appears. If no requests are made during the 5-sec idle time, the drive drops into its 35-mW standby mode. After another five seconds of inactivity, the drive goes into its 15-mW sleep mode. The company claims the hard-disk drive consumes much less power than competing products because of this power-management scheme.

The 1.8-in. hard drive employs a loading ramp that keeps the heads off the disks while the drive is switched off. The loading ramp gives the drive its 200g shock immunity. The ramp also pushes the number of start/stop cycles the drive can endure to 1,000,000 because the heads never touch the storage media. Because no reliability penalty is incurred for stopping the platter's rotation, the 1.8-in. hard drive can save power by frequently entering its idle and sleep modes. Consequently, the automatic time delays for activating these modes are much shorter than for disk drives that land their heads on the media when the platters stop rotating.

The drive's electronics are on a separate controller card, so you can fit the device into thin spaces. The controller and head-disk assembly communicate via a flat cable. The controller circuitry includes a 32-kbyte data buffer, and the IDE disk interface can transfer data in bursts at 4 Mbytes/sec. The drive's average seek time is 20 msec, and the heads can move from track to track in 8 msec. A 40-Mbyte version will be available in the second quarter of 1992.

—Steven H Leibson

Circle No. 730
The basic idea behind our new

Updating your system code, to say the least, has been a pain. Well, erase those painful memories.

Introducing Intel Boot Block Flash Memory. The first blocked flash memory architecture that includes four separately erasable blocks with one "lockable" block for critical boot code. A remarkable design that allows one 1Mb Boot Block Flash Memory chip to eliminate up to three memory chips.

It also allows you to reconfigure your system quickly and easily so you don’t lose precious time getting to market. Also, future updates—whether it’s for hardware or software—are easy. For instance, updating a PC BIOS is as easy and cheap as sending your customers a floppy disk. And all

Intel386 and Intel486 are trademarks of Intel Corporation. Pink Pearl® is a registered trademark of Eberhard Faber Inc. © 1991 Intel Corporation.
you need to change your embedded program code is a serial link. Life should be so simple.

Intel Boot Block Flash Memory has two configurations compatible with microprocessors and microcontrollers that boot from either high or low memory. Such as the i960™ microprocessor or the industry-standard Intel386™ and Intel486™ microprocessor families.

Now that you have the basic idea, we'd like you to know more. So call (800)548-4725 and ask for Literature Packet #A6A38. And be the first on your block to make updating easy with Intel's new Boot Block Flash Memory.

you to know more. So call (800) 548-4725 and ask for Literature Packet #A6A38. And be the first on your block to make updating easy with Intel's new Boot Block Flash Memory.

Intel

The Computer Inside.
At last, an entirely new approach to clock speed

Get five times faster throughput from NEC K-Series™ microcomputers.

As a developer of real-time control systems, you know that designing in a faster CPU is not enough. You also need intelligent I/O management for the best possible system throughput.

NEC’s K-Series™ microcomputers are perfect for real-time control designs requiring multi-tasking, such as automotive control, ISDN and computer peripheral controllers.

Peripheral Management Unit™

The K-Series’ unique architecture includes a revolutionary Peripheral Management Unit™ macro service for nonstop instruction execution while processing up to 16 I/O requests at the same time. By designing in the K-Series microcomputer, you can improve your system throughput by as much as 5X.

The K-Series 8-bit and 16-bit microcomputers give you a real-time output port; an advanced counter/timer system; a high-speed, high-resolution A/D converter; and many other on-chip intelligent peripherals.

Not since the invention of the hourglass has anyone come up with a more ingenious way to speed up silicon.

The K-Series provides you a worry-free upgrade path from the 8-bit K2 microcontroller family to the 16-bit K3 devices. And your future designs will exploit the power of the lightning-fast 125-ns K6, with real-time operating system in microcode, and complete K3 software compatibility.

To learn more about the K-Series microcomputers with up to 1K bytes of on-board RAM, 32K bytes of ROM/EPROM, and Peripheral Management Unit coprocessoring power, call now.

For fast answers, call us at:

Australia Tel: 03-267-6555. Telex: 38353.
France Tel: 1-367-5900. Telex: 899499.
Germany Tel: 0211-650302. Telex: 9899960.
Hong Kong Tel: 755-9098. Telex: 54591.
Ireland Tel: 1-6794200. Telex: 90847.
Italy Tel: 02-6709108. Telex: 315355.
Korea Tel: 02-551-0450. Fax: 02-551-0451.
The Netherlands Tel: 040-445-845. Telex: 51923.
Singapore Tel: 4619881. Telex: 59726.
Spain Tel: 419-4150. Telex: 41318.
Sweden Tel: 08-753-6020. Telex: 13839.
Taiwan Tel: 02-719-2377. Telex: 22372.
UK Tel: 0908-891133. Telex: 326781.
USA Tel: 1-800-632-3951. Fax: 1-800-726-9288.

©1990 NEC Electronics Inc. K-Series and Peripheral Management Unit are trademarks of NEC Electronics Inc.
A PERSPECTIVE ON DESIGN ISSUES:

Breaking the analog barriers to optimum system design

IN THE ERA OF

MegaChip
TECHNOLOGIES
Advanced Linear extends the boundaries of system performance.

Innovative analog circuits from Texas Instruments add a new edge to Digital Equipment's proven market winners. They can do the same for you.

The goal Digital Equipment Corporation set was clear: Strengthen its position as the leading supplier of Ethernet-based local area network products. Achieving the goal has been spurred by the use of Advanced Linear circuits from Texas Instruments.

These leadership ICs meet growing industry demand for linear circuits that can improve overall system performance and reliability, reduce costs and speed design cycles.

These were precisely the advantages Digital's designers needed.

Expertise and teamwork carry the day

For many years, Digital has used a wide variety of TI linear circuits — from op amps to mixed-signal devices — and values our analog viewpoint toward system design.

As Digital defined the requirements to meet its market goal, the decades-long relationship entered a new era of even more intense cooperation. With Digital handling system-level design and TI applying its linear expertise, the two teams fully utilized our LinASIC™ design methodology to create a series of mixed-signal Ethercell™ functions. They are the basis for the advanced linear devices Digital requires.

The design flow was aided by our Boston-area Regional Technology Center that provides access to LinASIC development tools and by the extensive use of EDIF to exchange information.

Enhancing Digital's competitive edge

To date, close teamwork has produced components that can enhance Digital's ability to respond quickly to market demands for feature-rich but lower cost Ethernet and communications products:

- A dual driver and dual receiver IC that minimizes the number of components required for the Attachment Unit Interface (AUI) function in an Ethernet network.
"Utilizing TI's LinASIC mixed-signal design methodology allows us to design cost-effective solutions with aggressive time-to-market goals."

— Nick Ilyadis, Product Engineer
Telecommunications and Networks Group
Digital Equipment Corporation

- An octal receiver created to solve system-level cross-talk noise problems in RS-232, -485 and -423 applications. This full-custom device, fabricated in TI's Advanced LinCMOS™ process, is designed to meet EIA and CCITT specs.

- A device that will be a complete AUI multiport concentrator on a chip. Fabricated in our LinBiCMOS™ process, it will replace a 6-inch by 12-inch circuit board that incorporates nine discrete ports, logic devices and analog circuitry. The new device will tie any combination of as many as eight units into Ethernet.

- A single-channel 10BASE-T twisted pair interface chip that includes internal precompensation and full duplex operation. Also fabricated in our LinBiCMOS process, this IC cuts component count and improves data transmission.

The Ethercell devices developed by Digital and TI will be incorporated into our existing LinASIC cell library.

Extensive mixed-signal capabilities

As Digital recognizes, few in the industry can match our experience in analog design and digital design. This expertise enables us to effectively combine high-performance analog functions with leadership digital functions. The resulting mixed-signal devices typify our capabilities to design and develop the Advanced Linear circuits our customers need.

Let us help you meet your challenge

We are ready to provide information and assistance, as well as access to the hardware and software development tools you need, to help extend the boundaries of your system performance.

Our service circles the globe, and our worldwide manufacturing capability can support your production schedules wherever you are.
TI's analog viewpoint: From process technologies come Advanced Linear ICs.

TI's LinASIC mixed-signal methodology —
A cell-based design methodology allowing the combination of high-performance analog and digital functions on the same chip. This mixed-signal capability is used for many of our catalog products and for custom/semicustom solutions. It is supported by large cell libraries, design-automation tools and these TI Advanced Linear wafer process technologies:

LinBiCMOS — Combines Advanced LinCMOS, digital ASIC CMOS and up to 30-V bipolar technologies to allow the integration of digital and analog standard cells and handcrafted analog components on a monolithic chip.

LinEPIC™ — One-micron CMOS double-level metal, double-level polysilicon technology that adds highly integrated, high-speed analog to the high-performance digital EPIC™ process.

Advanced LinCMOS — An N-well, silicon-gate, double-level polysilicon process featuring improved resistor and capacitor structures and having three-micron minimum feature sizes.

Power BIDFET™ — Merges standard linear bipolar, CMOS and DMOS processes and allows integration of digital control circuitry and high-power outputs on one chip. Primarily used for circuits handling more than 100 V at currents up to 10 A.

Multi-EPI Bipolar — A very cost-effective technology that utilizes multiple epitaxial layers instead of multiple diffusion steps to reduce mask steps by more than 30%. Used to produce intelligent power devices that can handle loads as high as 20 A and voltages in excess of 100 V.

Excalibur — A true, single-level poly, single-level metal, junction-isolated, complementary bipolar process developed for high-speed, high-precision analog circuits providing stable op amp performance.

For more information on our Advanced Linear process technologies and the products they are producing, call 1-800-336-5236, ext. 3425.

TI's LinASIC methodology and Advanced Linear process technologies are enhancing these product families

Data Transmission — This family meets the needs of most industry-standard interfaces (EIA, IEEE, ANSI) and ranges from drivers/receivers/transceivers to fully integrated controller/transceivers.

Data Acquisition — The family ranges from stand-alone A/Ds and D/As to complete data conversion subsystems on a chip; from general-purpose functions to highly integrated digital signal processor and graphics signal processor analog interface circuits. Other specialized family members include telecom and speech synthesis functions.

Intelligent Power — These devices combine high-voltage and/or high-current switches with the analog and digital circuitry required to perform interface, control, protection and diagnostic functions in microcontroller-based systems.

Operational Amplifiers — A family of op amps and comparators ranging from standard bipolar to leadership high-performance CMOS and Excalibur complementary-bipolar devices, meeting needs ranging from low power and/or low noise to high speed and/or high precision.

Custom/semicustom Functions — In modifying existing products to fit your needs or in defining your own unique functions, our LinASIC methodology allows access to existing analog cells used in the development of our catalog products and compatibility with our digital cell libraries.
Announcing a night to recognize greatness

EDN's Innovation and Innovator of the Year Awards Ceremony

On the night of November 19 during Wescon, EDN will present the 1991 Innovation and Innovator of the Year awards at the Mark Hopkins Hotel in San Francisco. You are invited to show the finalists that you support greatness in innovation by attending the awards ceremony that is the culmination of their hard work. Through its Innovation Crusade, EDN hopes to inspire engineering professionals within the electronics field to reach for higher plateaus of inspiration and creativity.

The dedication and involvement of EDN readers, like yourself, have made the Innovation Crusade and awards ceremony a reality. By taking the time to nominate your peers and, in fact, select the winners, you show commitment to quality and creativity in electronics and are driving this crusade. But don't stop there ... order your ticket to the industry event of the year and show these innovators that greatness does not go unrecognized. All proceeds of the dinner will be donated to the EDN Scholarship Fund.

To receive a reservation order form to the EDN 1991 Innovation Dinner and Awards Ceremony, fax Pam Winch at (617) 558-4470.

To receive an Innovation Ceremony Reservation form, please Circle no. 59.
The technology in these number crunchers is developing so fast that about the only things moving faster are the instructions and data they handle. Besides faster µ.Ps, architectural innovations—especially parallel and pipelined processors—are adding to the boards’ speed. But as is so often the case, software is struggling to keep pace.

Dan Strassberg, Associate Editor

Digital signal processing (DSP) is one of the most rapidly evolving areas of electronics. And within the DSP field, coprocessor boards are quite possibly the fastest-changing product category. Most of these boards plug into a computer's I/O bus and increase the computer's speed by performing DSP functions while the main processor handles housekeeping chores and other low-speed tasks. In April 1990, when EDN last took a comprehensive look at these boards (Ref 1), they were just beginning to employ parallel and pipelined processors. Today, the use of multiple DSP chips is rapidly becoming commonplace. However, system developers who use the boards have few software options to simplify allocating tasks among the multiple µ.Ps.

Table 1 (pg112) lists 38 DSP coprocessor boards from 26 firms. We selected these products from a field of more than 70 boards, most of which had not yet been introduced at the time of our April 1990 story. In choosing units for the table, we picked products that, by and large, did not appear in our earlier listing and which, in our opinion, indicate trends. As noted above, one trend is the use of multiple processors. Twenty of the boards in the table contain more than one µ.P. And the product information that vendors sent us covered even more multiprocessor boards. Another clear trend is the use of floating-point DSP chips. Two dozen of the boards in the table include them.

Despite its throughput limitations, the ISA bus—represented by 20 boards—remains the most popular bus for DSP coprocessor boards. All but one of the ISA bus boards are for the 16-bit, IBM PC/AT version. The VMEbus is well represented too; 11 DSP coprocessor boards incorporate multiple µ.Ps, high-speed I/O, and extensive memory capacity to broaden the field of applications within your computer’s grasp. (Photo courtesy AT&T Microelectronics and Heurikon Corp)
Processors from Texas Instruments, Motorola, and AT&T are the most prevalent, with a smattering of boards using parts from other semiconductor companies.

boards plug into the VMEbus. The table also shows three NuBus boards for Apple Computer's Macintosh II family, one Micro Channel Architecture board for IBM's PS/2 series, one board for the STD Bus, and one board in the diminutive Sbus format of Sun Microsystems' SPARCstations. Bear in mind that, despite its length, the table lists no more than half of the boards introduced in the past 18 months. For example, although the only Sbus board shown comes from Sonitech International, at least one other firm, Ariel Corp, makes Sbus DSP boards. Moreover, nearly all of the boards in EDN's April 1990 listing are still available.

As you might expect, processors from Texas Instruments, Motorola, and AT&T are the most prevalent, with a smattering of boards using parts from other semiconductor companies. Intel's i860 makes an appearance on a VMEbus board from CSPI. CSPI chose the Intel RISC chip because of the µP's extremely powerful floating-point processor. CSPI's competitors don't question the chip's floating-point capability; they do ask whether the i860's performance justifies its price. Some doubt whether the i860, which has the I/O structure of a general-purpose processor, can keep pace with the I/O data rates DSP chips must usually handle. CSPI is not alone in liking the i860 for DSP, though; you should look for the IC in board-level DSP products scheduled to appear within the next six months from at least one other manufacturer.

The i860 is not the only unusual DSP µP to appear on a DSP board. Array Microsystems' boards use the firm's own frequency-domain processor and controller chips. Array's literature boasts that its boards let you "plug in the world's fastest DSP." Impact Technologies' Viper 8704/30-30 sports four vector processors from Zoran Corp. Multisignal Technology's MTAP-90 also uses four processors, three of which come from United Technologies. Two of the listed boards use processors from Analog Devices Inc. One comes from the transoceanic partnership of Spectrum Signal Processing in British Columbia, Canada and Loughborough Sound Images in England. The other is the lowest-priced board in the table, Street Electronics' $175 Echo DSP, scheduled for introduction next month. Analog indicates that several other firms offer coprocessor boards based on its DSP chips, but these board vendors failed to respond to our information requests.

Most DSP operations are I/O intensive. Consequently, many DSP boards have extensive I/O capabilities. As standard features, at least six of the listed boards provide analog I/O facilities (A/D and D/A converters). Many other boards have high-speed parallel or serial digital I/O ports. Some of the parallel ports, especially the wide ones, are extraordinarily fast. Two vendors specify their boards' parallel-port transfer rates at 20M bytes/sec. One claims its port operates at 40M bytes/sec, and another says its port runs...
at 64M bytes/sec. (That's more than 0.5G bits/sec!) Despite many engineers' perceptions that DSP techniques are mainly for speech and audio work, the use of DSP has expanded into motion control and many other fields. As DSP applications diversify, users' I/O requirements are changing. Board vendors are responding to the changing requirements in several ways. One way is the inclusion of mezzanine buses. Mezzanine buses turn plug-in boards into small systems. A mezzanine bus is a connector with defined pinout and timing standards that accepts daughter cards. The daughter cards usually perform I/O functions, but some provide other facilities. For example, they can add extra memory for a processor, and sometimes they contain additional (parallel) processors.

Mezzanine-bus daughter cards often fit within the confines of the board they plug into, but not always. Sometimes, the daughter cards occupy additional slots in the bus that accept the main board. In such cases, the daughter cards may connect with the main bus only to receive power and ground. Daughter cards that occupy main-bus slots receive mezzanine-bus signals from the main board via a short cable or "frontplane." A frontplane is a printed board or semirigid set of conductors that plugs onto a connector at the edge of a board opposite its main-bus connector.

A mezzanine bus by another name ...

Apparently, some vendors use definitions of a mezzanine bus that are broader than the one given above, whereas other firms use more restrictive definitions. For example, Datel Inc sells its DSP boards only with plug-on daughter cards that perform I/O. Even though Datel has a family of pin-compatible daughter cards, the company refuses to categorize these cards' interface as a mezzanine bus. When you review the table, be mindful that different vendors have different understandings of the meaning of a mezzanine bus.

Although bus-board manufacturers have defined several mezzanine buses, each of which is vying for acceptance as a de facto industry standard, only a few of these buses appear on the listed boards. One mezzanine bus that is compatible with products from at least three DSP-board vendors is Data Translation's DT-Connect. The table shows a large number of proprietary buses. In general, if you select a board that uses a widely supported mezzanine bus, you will have a greater choice of compatible devices than if you select a board whose mezzanine bus is proprietary.

Not only is DSP I/O intensive, it is memory intensive. Some of the listed boards have provisions for accommodating prodigious amounts of memory. DSP µPs need fast memory, and the boards almost always implement their fastest memory with static random-access memory (SRAM) chips. Often, the boards configure the SRAM as cache, but the maximum size of the cache is frequently larger than the tens of kilobytes common with most CISC (complex-instruction-set-computer) µPs.

For economy (and to hold pc-board area within practical limits), when DSP boards accommodate many megabytes of memory, most of the memory usually consists of dynamic RAM (DRAM). DRAM, though slower than SRAM, is less costly and more dense. Approximately one-third of the listed boards accommodate 8M bytes or more of DRAM without need of mezzanine-bus memory cards. The table lists six DSP boards that accommodate 64M bytes of DRAM. The six boards come from three vendors. Note that 64M bytes is more storage than you'll find on the much slower but nonvolatile hard disks of most personal computers in use today!

DSP work demands EEs' skills

As has happened time and again during the last decade, hardware developments have outpaced software advances. Many of the key players in DSP applications development have had no formal training in software engineering. Instead they are EEs who have acquired software skills on the job. But DSP work cries out for

Packing DSP onto the tiny format of Sun Microsystems' Sbus presents a difficult challenge to board designers. But several firms have met the challenge. One of them is Sonitech International.
Table 1—Representative DSP coprocessor boards

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model; when introduced; price</th>
<th>Processor/clock speed (MHz)/ number of processors</th>
<th>Memory (bytes) for 1/0 functions</th>
<th>Bus/DMAs?/ mapping</th>
<th>Mezzanine bus/width (bits)/speed (bytes per sec)</th>
<th>Memory (bytes) for program and data</th>
<th>I/O functions</th>
<th>On base board</th>
<th>With mezzanine card(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analogic/CDA</td>
<td>MSP-8C30; $981; $7090 to $18,500</td>
<td>TMS320C30/30/32</td>
<td>ISA-16/yes/ NS</td>
<td>SCSI/8/1.5M; Pixel/16/NS</td>
<td>0-D 64k-S</td>
<td>32M-D</td>
<td>SCSI, $500 Pixel bus connects to separate VCA card.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Array Microsystems</td>
<td>a66550; NS; $11,900</td>
<td>a6611/25/1</td>
<td>ISA-16/no memory</td>
<td>NA</td>
<td>768K</td>
<td>768K</td>
<td>I/O port—15-MHz burst-rate I/O; magnitude and phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ariel Corp</td>
<td>DSP-C40; $91; $4995</td>
<td>TMS320C40/NS/1</td>
<td>ISA-16/yes/ I/O and memory</td>
<td>DT-Connect/ 16/20M 32-bit/40M</td>
<td>Proprietary/ 1M-D 32k-S</td>
<td>64M-D 6M-S</td>
<td>2-channel, 16-bit oversampling ADC and DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP3210; $91/</td>
<td>DSP3210/33/2</td>
<td>ISA-16/yes/ I/O and memory</td>
<td>DT-Connect/ 16/20M 32-bit/40M</td>
<td>Proprietary/ 1M-D 16k-S</td>
<td>64M-D 2M-S</td>
<td>See unit above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM-96</td>
<td>DSP96002/33/1 or 2</td>
<td>ISA-16/yes/ I/O and memory</td>
<td>DT-Connect/ 16/20M 32-bit/30M</td>
<td>Proprietary/ 1M-D 192k-S</td>
<td>64M-D 768k-S</td>
<td>All I/O functions are on external cards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad-processor; 11/91; $9995 to $13,995</td>
<td>DSP56001/NS/2 or 4</td>
<td>VME 6U/ yes/NS</td>
<td>Proprietary/ 24/NS</td>
<td>144k-S</td>
<td>576k-S</td>
<td>Next computer DSP port</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlanta Signal Processors Inc</td>
<td>Vortex; 5/91; $4995 to $13,995</td>
<td>TMS320C40/30/30/1</td>
<td>ISA-16/yes/ I/O and memory</td>
<td>'C31/12/22.2M Memory/ 32/22.3M</td>
<td>2M-D 256k-S</td>
<td>64M-D 2M-S</td>
<td>68-bit, 20M-byte per sec communication ports; 2-way, 16-bit ports; 1 serial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banshee</td>
<td>VMD; 1/91; $4995 to $14,295</td>
<td>TMS320C30/33/1</td>
<td>VME 6U depends on host/memory and I/O</td>
<td>'C30/32/22.2M</td>
<td>256k-S</td>
<td>16M-D 2M-S</td>
<td>1 TTL serial; 2 RS-422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheetah</td>
<td>$9995 to $12,795</td>
<td>DSP96002/33/1</td>
<td>ISA-16/yes/ I/O and memory</td>
<td>96002 I/O/ Memory/ 32/22.2M</td>
<td>64k-S</td>
<td>64M-D 2M-S</td>
<td>2 25M bit per sec serial; 20M byte per sec parallel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT&T Microelectronics</td>
<td>WE-DSP32C-BV-MVE; Q4/90; $9995</td>
<td>DSP32C-SE/5/2/4</td>
<td>VME 6U/ yes (serial and parallel ports)/ memory</td>
<td>Serial bus/ 2 wire/100k (Phillips ICbus)</td>
<td>1M-D 512k-S</td>
<td>4M-D 512k-S</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burr-Brown</td>
<td>ZPB3400; 6/91; $4495</td>
<td>DSP32C/50/1 or 2</td>
<td>VME 6U/ yes/ memory</td>
<td>Proprietary/ 18/20M</td>
<td>1M-D 256k-S</td>
<td>4M-D 512k-S</td>
<td>NA Several analog I/O cards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications Automation and Control Inc</td>
<td>XCC-A0; 3/91; $995 to $1295</td>
<td>DSP-32C/40/1</td>
<td>ISA-8/no/ I/O</td>
<td>NA</td>
<td>64k</td>
<td>256k</td>
<td>Serial communication with ADCs, DACs, DSP boards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC5-CO; 6/91; $1495 to $3495</td>
<td>DSP-32C/50/1</td>
<td>Micro-channel/ NSNS</td>
<td>Proprietary/ serial/16M bps</td>
<td>256k</td>
<td>1M</td>
<td>Serial communication with DSP boards</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. NS=Not specified.
2. "D" after number of bytes denotes dynamic random-access memory (DRAM).
3. "S" after number of bytes denotes static random-access memory (SRAM).
4. NA=Not applicable.
5. VGA=IBM Video Graphics Array display standard.
6. Also performs block floating-point operations.
7. The DT-Connect standard originated with Data Translation Inc.
8. "OS"—operating system.
9. The so-called "6U" VME board is the most common VMEbus board size.
10. Although the boards are available only with daughter cards, the vendor does not describe the interface between the main card and the daughter cards as a mezzanine bus.
11. I/O daughter cards mount to Tiger 40 board but cause the board to use two bus slots.
12. "E" after number of bytes denotes electrically programmable read-only memory (EPROM).
13. In the $5995 version, the UT68S32 operates at 15 MHz and performs 75M floating-point operations per sec (FLOPS).
14. MOPS=millions of operations per sec.
15. SRAM is divided equally between processors. Each processor's memory is half local and half global.
16. "N" after number of bytes denotes nonvolatile memory.
17. "R" after number of bytes denotes read-only memory.
Supporting software (and price, if not included with board)

<table>
<thead>
<tr>
<th>Supporting software (and price, if not included with board)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drivers for Interactive Unix; image libraries; MSPrtx OS*</td>
<td>Dual-banked memory lets both processors access 32M bytes of RAM simultaneously with no wait states.</td>
</tr>
<tr>
<td>IBM PC- and VAX-based system simulators</td>
<td>Vendor says board does FFT-based frequency-domain functions faster than any competitor. (Vendor also sells VME boards using same µPs.)</td>
</tr>
<tr>
<td>Assembler/linker, optimizing C compiler, C drivers, DT-Connect drivers applications libraries</td>
<td>Has oversampling inputs and outputs with tracking filters.</td>
</tr>
<tr>
<td>C compiler/assembler; C drivers; DT-Connect drivers; VCOS OS; applications libraries</td>
<td>Same as unit above. In addition, dual processors perform 50M FLOPS peak.</td>
</tr>
<tr>
<td>Optimizing C compiler and OS, $2425; C and hardware drivers; monitor; applications libraries</td>
<td>Proprietary Hyperbus has two ports per board, allowing delay chains of indefinite length. Dual processors perform 100M FLOPS peak.</td>
</tr>
<tr>
<td>C drivers; Assembler/linker, $495; Symbolic debugger, $495</td>
<td>Operates at 54 MIPS. Lower indicated price includes two processors; higher price includes four.</td>
</tr>
<tr>
<td>Assembler/linker/C compiler; source debugger; Spox OS; signal generation and analysis, $3000</td>
<td>The 'C31 can process I/O for the 'C40 or can function independently. Uses dual-port memory for communicating with host PC. The Ashell program provides an integrated development interface.</td>
</tr>
<tr>
<td>Assembler/linker/optimizing C compiler/source debugger, $1595</td>
<td>Listed software tools run on IBM PCs. Data communication uses true dual-ported memory.</td>
</tr>
<tr>
<td>See Vortex board</td>
<td>Works with same Ashell program as Vortex board. 56001 processors can control I/O or function independently.</td>
</tr>
<tr>
<td>C compiler assembler, simulator, applications library, $3800</td>
<td>175M floating-point operations per sec; 75M instructions per sec. All three I/O ports (2 serial; 1 parallel) have DMA.</td>
</tr>
<tr>
<td>Driver, monitor; applications developer (DisplayXL), $1495</td>
<td>A similar board for the 16-bit ISA bus (Model AC5-40) costs $200 more and has a 50-MHz DSP32C. This board also has the serial mezzanine bus of the board below.</td>
</tr>
<tr>
<td>Assembler/linker/simulator, $495; C compiler, $1000; application library, $95; debugger, $395</td>
<td>See board above; also spectral display/digital scope (no charge)</td>
</tr>
</tbody>
</table>

Table continued

DSP coprocessor boards

EEs' background in the underlying theory relating the time- and frequency-domain descriptions of signals; the work does not place a premium on the discipline that a software-engineering curriculum instills. DSP work also demands the resourcefulness that many EEs have developed through working on projects without having sufficient tools.

EEs are pragmatic as well as resourceful, though. When they have the option of creating their own tools (because few exist) or taking advantage of existing ones, they will usually try to use what's available. For example, EEs no longer write much DSP code in assembly language. The advent of complex floating-point DSP chips with rich instruction sets and tools such as high-level-language compilers and source-level debuggers has made coding DSP routines in assembly language unattractive in comparison with writing high-level code. Of the high-level languages, C is by far the most popular. Assembly still often gets the nod for fixed-point DSP chips and for coding routines whose operating speed is critical. Usually though, system software developers don't write such routines themselves; they take the routines from libraries developed by others.

Multiprocessing has added a new dimension to developing DSP applications software. The most straightforward multiprocessing case occurs in a real-time system that has many similar input channels, each of which produces data requiring identical or nearly identical processing. If a single DSP µP can't handle all the processing chores quickly enough, several processors can. You can assign groups of channels to each µP, but you have to make sure not to assign more tasks to a processor than it can complete before it must work on the next set of data.

Mezzanine buses make for flexible expansion of a DSP board's I/O, memory, or processing capabilities. Here, Data Translation's DT-Connect bus (on the ribbon cables at the top) links a frame grabber board to the firm's DT2878, which contains a DSP32C.
<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model; when introduced; price</th>
<th>Processor/clock speed (MHz); number of processors</th>
<th>Bus/Domain; mapping</th>
<th>Mezzanine bus/width (bits)/speed (bytes per sec)</th>
<th>Memory (bytes) for program and data</th>
<th>I/O functions</th>
<th>On base board</th>
<th>With mezzanine card(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications Automation and Control Inc</td>
<td>SC5; 12/90; $1495 to $1795</td>
<td>DSP; 32C/50/1</td>
<td>STD (8 or 16 bit)/no/ I/O</td>
<td>Proprietary/ serial/16M bps</td>
<td>64K</td>
<td>256K</td>
<td>See board above</td>
<td>See board above</td>
</tr>
<tr>
<td>CSPI</td>
<td>Supercard SC-2XL; VME; 6/91; From $8500</td>
<td>i860/40/2</td>
<td>VME and VSB/yes/ memory</td>
<td>CSPI (publicly available)/ 64/160</td>
<td>2M</td>
<td>16M</td>
<td>VSB interface is operation</td>
<td>NA</td>
</tr>
<tr>
<td>Dalanco Spry</td>
<td>250; 12/90; $1055 to $1395</td>
<td>TMS320C25 or TMS320E25/40/1</td>
<td>ISA-16/now/ I/O</td>
<td>Proprietary/ 16/20</td>
<td>72K</td>
<td>384K</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Data Translation</td>
<td></td>
<td>DSP32C/50/1</td>
<td>ISA-16/now/ I/O</td>
<td>DT-Connect/ 8 or 16/10 MHz</td>
<td>2M</td>
<td>8M</td>
<td>mezzanine board allows doubling of memory</td>
<td>NS</td>
</tr>
<tr>
<td>Datel Inc</td>
<td>PC-430 Series; 5/91; $3995 to $4595</td>
<td>TMS320C30/32/1</td>
<td>ISA-16/yes/ I/O and memory</td>
<td>NS<sup>10</sup></td>
<td>512k-D</td>
<td>512k-D</td>
<td>32k-S</td>
<td>32k-S</td>
</tr>
<tr>
<td>DSP Research</td>
<td></td>
<td>TMS320C40/50/1</td>
<td>ISA-16/yes/ NS</td>
<td>2 (I/O and memory/32/ 100M)</td>
<td>DT-Connect/ 1540M</td>
<td>64k-S</td>
<td>66M-D</td>
<td>2M-S</td>
</tr>
<tr>
<td>Eighteen Eight Laboratories</td>
<td></td>
<td>DSP32C/50/1</td>
<td>ISA-16/yes/ (3 channel)/ I/O</td>
<td>Span 32/32 (data) 24 (address/20)</td>
<td>256k-E<sup>12</sup></td>
<td>256k-S</td>
<td>4.25M-S</td>
<td>4M on mezzanine board</td>
</tr>
<tr>
<td>Heurikon</td>
<td>Surfboard; 6/91; $8495 to $9995</td>
<td>DSP32C-5E/25/4</td>
<td>VME 8U/ yes (serial and parallel ports)/ memory</td>
<td>Serial bus/2 wire/100k (Philips ICBus)</td>
<td>1M-D</td>
<td>512k-S</td>
<td>4M-D</td>
<td>512k-S</td>
</tr>
<tr>
<td>Impact Technologies</td>
<td>Viper8704/ 30-30; 1990; $15,990 to $33,990</td>
<td>Zoran ZR34161/30/4</td>
<td>This board was described more fully in EDN’s April’90 directory but is included here because of its unusual use of four vector processors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multisignal Technology Corp</td>
<td>MTAP-90; 8/91; $5995 to $6995</td>
<td>One UT69532IQMAC</td>
<td>One UT69538832As</td>
<td>ISA-16/now/ through address and data registers</td>
<td>Proprietary/ 32/80M</td>
<td>768k-S</td>
<td>4M with mezzanine board</td>
<td>Data transfer via 6 local buses</td>
</tr>
<tr>
<td>National Instruments Corp</td>
<td>NB-DSP23201; 5/91; $3495</td>
<td>TMS320C30/27/1</td>
<td>Nibus/yes/ memory</td>
<td>RTS/serial bus/8 33M bits per sec</td>
<td>256k</td>
<td>1.28M</td>
<td>NA</td>
<td>Vendor supplies 9 boards for RTSI bus</td>
</tr>
<tr>
<td>Pacific Cyber/ Metrix Inc</td>
<td>DSP-3A; 6/91; $17,779</td>
<td>TMS320C30/40/3</td>
<td>VME 8U/ yes/ memory</td>
<td>Yes (not named)/32/ 100M</td>
<td>2M</td>
<td>3.5M</td>
<td>7.5M with mezzanine board</td>
<td>VSBuses/ 3 40M-byte per sec parallel ports</td>
</tr>
<tr>
<td>Pentek Inc</td>
<td>4823; 6/90; $6995 to $7995</td>
<td>TMS320C30/32/1</td>
<td>VME 8U/NS/memory and I/O</td>
<td>Intel Mix bus/ 32/10M</td>
<td>128k-E</td>
<td>256k-S</td>
<td>8M-D</td>
<td>2 serial (synchronous); 2 timer/counters; 2 general I/O</td>
</tr>
</tbody>
</table>

Notes:
1. NS = Not specified.
2. *D* after number of bytes denotes dynamic random-access memory (DRAM).
3. *S* after number of bytes denotes static random-access memory (SRAM).
4. NA = Not applicable.
5. VGA = IBM Video Graphics Array display standard.
6. Also performs block floating-point operations.
7. The DT-Connect standard originated with Data Translation Inc.
8. OS = Operating system.
9. The so-called '6U' VME board is the most common VMEBus board size.
10. Although the boards are available only with daughter cards, the vendor does not describe the interface between the main card and the daughter cards as a mezzanine bus.
11. I/O daughter cards mount to Tiger 40 board but cause the board to use two bus slots.
12. 'E' after number of bytes denotes electrically programmable read-only memory (EPROM).
13. In the $5995 version, the UT69532 operates at 15 MHz and performs 75M floating-point operations per sec (FLOPS).
Supporting software (and price, if not included with board)

<table>
<thead>
<tr>
<th>Supporting software</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSOS + Unix-compatible OS, C and Fortran compilers for SPARC CPUs</td>
<td>Includes FIR filter code generator and data-acquisition software. Block move commands transfer data to PC memory at 3M bytes per sec without DMA.</td>
</tr>
<tr>
<td>Assembler, debugger, hardware interface routines, waveform editor, sample code (included)</td>
<td></td>
</tr>
<tr>
<td>C compiler, $1500; support library, $500; advanced image-processing library, $1495</td>
<td>Total harmonic distortion more than 68 dB below full scale to fifth harmonic. Can transfer 4M samples per sec without pauses (1 channel).</td>
</tr>
<tr>
<td>C source debugger, libraries for all on-board devices and communicating to host</td>
<td>Development package with optimizing C compiler, $1495. As many as 16 boards connect together. PC- and workstation-based tools support multiple µPs.</td>
</tr>
<tr>
<td>598 microcoded routines in PROM; support for C, Fortran, and Pascal included</td>
<td>You can call the microcoded routines from high-level programs in languages from seven vendors. Runtime software supports 8 boards simultaneously.</td>
</tr>
<tr>
<td>C compiler, assembler, simulator, applications library, $3800</td>
<td>175M floating-point operations per sec, 75M instructions per sec. All three ports (2 serial, 1 parallel) have DMA.</td>
</tr>
<tr>
<td>Microprogram routines, monitor, debugger included</td>
<td>Meta-assembler, $2000. Sustained operation at 100 MLOPS and 40 MOPS. Slave unit adds 2 ALUs and a floating point unit.</td>
</tr>
<tr>
<td>Analysis library, $695; interface kit, $295; Labview 2, $1995; developer tool kit, $2500</td>
<td>Board has master and slave NuBus interfaces. When board is slave, bus master can write to memory on board. As master, board transfers to host memory.</td>
</tr>
<tr>
<td>Support function library and development utilities included</td>
<td>Performs block DMA at 80M bytes per sec. Cross-complier kit and Spox OS, $5100. FIFO buffers between µPs and to external ports.</td>
</tr>
<tr>
<td>Debugger, Spox OS with ADC and DAC drivers; run on Sun-4 and IBM PC/AT</td>
<td>Board vendor has ported Comdisco Systems Signal-Processing Workstation software to this board.</td>
</tr>
</tbody>
</table>

Using the Macintosh II family to develop and run DSP applications

Another approach—exemplified by boards from AT&T and Heurikon—uses both parallelism and pipelining. In these boards, there are two groups of three pipelined processors. The three processors in each group work in sequence on the same data: The first processor places its output data in a buffer; the second processor takes data from the buffer, processes it further and deposits it into a second buffer; the third processor receives its input from the second buffer and does still more processing. The processors run algorithms that divide the tasks so the buffers don't overflow and the processors don't have to wait for new data. The pipelined processors are fast enough to keep up with new data as it appears in real time.

Designing the algorithms so that the pipelined processors get along harmoniously and keep up with real time is not a trivial job. So far, there doesn't appear to be any commercial software that automatically optimizes the sharing of tasks among the processors. However, Comdisco's (Foster City, CA) Signal-Processing Worksystem (SPW), a $25,000 (approximately) workstation-based development package, optionally includes a graphical tool called Multiprox (MPX) that assists you in dividing the work. Once you've made a cut at assigning the tasks to processors, SPW will generate the code and simulate the results. If you are unsatisfied, you can try dividing the work differently.

As happens early in the life of most technologies that exhibit great potential, DSP is in ferment. The processor chips' capabilities are increasing rapidly. The cost of a given amount of computational power is declin-
<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model; when introduced; price</th>
<th>Processor/clock speed (MHz)/ number of processors</th>
<th>Bus/EMA7/ mapping</th>
<th>Mezzanine bus/width (bits)/speed (bytes per sec)</th>
<th>Memory (bytes) for program and data</th>
<th>On base board</th>
<th>With mezzanine card(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonitech International Inc</td>
<td>5SBus; 5/91; $3995 to $6995</td>
<td>TMS320C30/33/1</td>
<td>SBus (1 slot/NS memory)</td>
<td>Parallel I/O expansion/32 data, 4 address/32M</td>
<td>Min 256k-S Max 2M-S</td>
<td>2 µP serial ports, 1 µP parallel port</td>
<td>NA</td>
</tr>
<tr>
<td>Spectral Innovations</td>
<td>MacDSP II; 4/91; $7995</td>
<td>DSP32C50/2/ 68000/10/1</td>
<td>NuBus/yes/ I/O</td>
<td>NA</td>
<td>2M-D</td>
<td>2M-D</td>
<td>2M-D</td>
</tr>
<tr>
<td>Spectrum Signal Process- ing Inc</td>
<td>VASP; 3-board set; Q0/1; $45,265 to $110,515</td>
<td>DSP96002/27/5</td>
<td>VME/yes/ memory</td>
<td>Signal Bus/64/100M</td>
<td>640k-N* 1.46M-S</td>
<td>160M-D (dual-ported)</td>
<td>NA</td>
</tr>
<tr>
<td>Street Electronics</td>
<td>Echo DSP; 10/91; $175</td>
<td>TMS320C30/32/4</td>
<td>VME 9U by 400 mm/ master/ slave VME interface</td>
<td>NA</td>
<td>1.25M-S</td>
<td>1.5M-S</td>
<td>Synchronous interface 64M bytes per sec</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>TMS320C40 PDDS; 8/91; $15,900</td>
<td>TMS320C40/50/4</td>
<td>Uses ISA-bus half-card controller or SC6 port</td>
<td>Global bus/32/100M 8 communication ports/serial/20M</td>
<td>18k-R 512 (cache)</td>
<td>1.5M with mezzanine board</td>
<td>Global bus and ports described at left at left</td>
</tr>
<tr>
<td>Zola Technologies</td>
<td>Dual DSP Audio Card; Q0/91; $2500 to $5995</td>
<td>DSP56001/32/2</td>
<td>NuBus/NS/ all data memory mapped to bus</td>
<td>NA</td>
<td>120k</td>
<td>120k</td>
<td>NA</td>
</tr>
</tbody>
</table>

Notes:
1. NS=Not specified.
2. '·D' after number of bytes denotes dynamic random-access memory (DRAM).
3. '·S' after number of bytes denotes static random-access memory (SRAM).
4. NA=Not applicable.
5. VGA=IBM Video Graphics Array display standard.
6. Also performs block floating-point operations.
7. The DT-Connect standard originated with Data Translation Inc.
8. 'OS'='operating system.
9. The so-called '6U' VME board is the most common VMEbus board size.
10. Although the boards are available only with daughter cards, the vendor does not describe the interface between the main card and the daughter cards as a mezzanine bus.
11. I/O daughter cards mount to Tiger 40 board but cause the board to use two bus slots.
12. 'E' after number of bytes denotes electrically programmable read-only memory (EPROM).
13. In the $5995 version, the UT6932 operates at 15 MHz and performs 75M floating-point operations per sec (FLOPS).
DSP coprocessor boards

<table>
<thead>
<tr>
<th>Supporting software (and price, if not included with board)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime and DSP libraries included, development systems</td>
<td>Architecture is same as those of vendor’s VME, ISA-16, and Micro-channel boards.</td>
</tr>
<tr>
<td>Same as board above</td>
<td>VMEbus master operation lets board transfer data from frame grabbers without host intervention.</td>
</tr>
<tr>
<td>Runtime library included, development systems</td>
<td>80 M FLOPS. Communication ports, each with its own DMA control, let you set up P arrays of your choice (tree, ring, cube, etc.).</td>
</tr>
<tr>
<td>Signal analysis, $495; array processor library, $495; assembler/simulator, $500; DSP library, $100; C compiler, $1500</td>
<td>Supports Apple Real-time Operating System Executive (AROSE), which provides pre-emptive multitasking and round-robin task scheduling with 110-µsec context switching. DSP µPs communicate via dual-ported SRAM.</td>
</tr>
<tr>
<td>Assembler/linker, C compilers for IBM PCs and Sun stations, $495 to $3900</td>
<td>Three board types: general signal processing, I/O, and 2-port memory. Maximum price includes 5 fully loaded memory boards. Typical configuration processes 2.2G FLOPS peak.</td>
</tr>
<tr>
<td>Symbolic monitor/debugger, assembler/linker, C compiler, simulator, Spox OS</td>
<td>Unit is both a DSP board and a complete i386-based PC system board for passive-backplane systems.</td>
</tr>
<tr>
<td>Monitor/debuggers, high-level language interface library, assembler, $500; C compiler, $2500; simulator, $2000</td>
<td>Board has 55-square-cm prototype area.</td>
</tr>
<tr>
<td>See board above, Spox OS (Price NS)</td>
<td>Has 2 memory expansion connectors. Allows 80 M bytes of program and 24G bytes of data storage.</td>
</tr>
<tr>
<td>Assembler, linker, debugger, signal-processing library, Spox OS</td>
<td></td>
</tr>
<tr>
<td>Low-bit-rate speech coding and music recording/playback software</td>
<td>Very low-cost board with a programmable DSP µP, ADC, and DACs. Development software comes from the chip vendor, Analog Devices. Microphone and speakers included.</td>
</tr>
<tr>
<td>Optimizing ANSI C compiler, assembler, linker, debugger, run-time library, Spox OS drivers, simulator</td>
<td>Parallel debugger uses JTAG scan interface to permit development of software that runs simultaneously on a virtually unlimited number of TMS320C40s.</td>
</tr>
<tr>
<td>Assembler, linker, librarian, $495; algorithm design and modelling package, $995; sound recording, editing playback, $995</td>
<td>Base price is for board alone. Maximum price is for board, external data-acquisition unit and software.</td>
</tr>
</tbody>
</table>

14. MOPS=millions of operations per sec.
15. SRAM is divided equally between processors. Each processor’s memory is half local and half global.
16. ‘-N’ after number of bytes denotes nonvolatile memory.
17. ‘-R’ after number of bytes denotes read-only memory.
Manufacturers of DSP coprocessor boards

For more information on DSP coprocessor boards such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Analogic CDA
8 Centennial Dr
Peabody, MA 01960
(508) 977-3009
FAX (508) 977-9220
TLX 681-7408
Mike Drumm
Circle No. 401

Array Microsystems
1420 Quail Loop Rd
Colorado Springs, CO 80906
(719) 540-7999
FAX (719) 540-7950
Circle No. 402

Ariel Corp
441 River Rd
Highland Park, NJ 08904
(908) 349-2900
FAX (908) 249-2123
TLX 4987279
Tony Agnello, President
Circle No. 403

Atlanta Signal Processors Inc
770 Spring St
Atlanta, GA 30306
(404) 892-7265
FAX (404) 892-2512
William E Jouris
Circle No. 404

AT&T Microelectronics
565 Union Blvd
Allentown, PA 18103
(610) 372-2447
Circle No. 405

Bridgeworth Signal Processing Inc
Box 469
Custer, WA 98240
(604) 335-9003
FAX (604) 335-9073
Circle No. 406

Bruehl and Kjaer
Naerum Hovegarde 18
DK-2850 Naerum Denmark
(206) 828-6560
FAX (206) 827-3721
Circle No. 407

Burr-Brown Corp
Box 11400
Tucson, AZ 85734
(504) 545-6152;
(217) 746-1111
FAX (602) 741-3895
TWX 910-952-1111
Paul Smith
Circle No. 408

Communications Automation & Control
1642 Union Blvd, Suite 200
Allentown, PA 18103
(800) 367-6735;
(215) 770-1232
FAX (215) 770-1232
Circle No. 409

Crystal River Engineering Inc
12236 Walden Ferry Rd
Groveland, CA 95631
(209) 962-4118
FAX (209) 962-4873
Circle No. 410

CSPi
40 Linnell Circle
Billerica, MA 01821
(617) 272-0920
FAX (617) 272-0920
Geoff Cohler
Circle No. 411

Dalcano
88 Westland Ave
Rochester, NY 14618
(716) 473-3610
FAX (716) 473-3610
David Langmann
Circle No. 412

Data Translation Inc
100 Locke Dr
Marlboro, MA 01752
(978) 451-3700
FAX (978) 451-8620
Michael Travis, ext 634
Circle No. 413

Datel Inc
11 Cabot Blvd
Mansfield, MA 02048
(508) 336-3000
FAX (508) 336-6356
John Howley
Circle No. 414

DSP Research
391 Balsam Ave
Sunriver, CA 94080
(486) 773-1042
FAX (486) 736-3451
Bo Sjosten
Circle No. 415

Eighteen Eight Laboratories
1247 Tamarisk Ln
Boulder City, NV 89005
(702) 254-1001
FAX (702) 294-2611
Neil Miller, Product Manager
Circle No. 416

Heurikon Corp
8310 Excelsior Dr
Madison, WI 53717
(608) 336-9032
FAX (608) 721-4249
Abe Hirsch, Dir of Marketing
Circle No. 417

Image and Signal Processing Inc
120 Linden Ave
Long Beach, CA 90802
(213) 595-5555
FAX (213) 495-1258
Michael Miller
Circle No. 418

Impact Technologies Inc
2682-B Walsh Ave
Santa Clara, CA 95050
(408) 988-5049
FAX (408) 988-5049
Allen Heimlich
Circle No. 419

Loral Space & Information Systems
Box 84847, Rbd 111, F268N
Houston, TX 77026
(713) 335-6445
Jim Chester
Circle No. 420

Micro Industries
8999 Green Meadows Dr
Westerville, OH 43081
(614) 446-6762;
(614) 446-7878
Bill Jackson
Circle No. 421

Multisignal Technology Corp
4662 Katella Ave, Suite J
Los Alamitos, CA 90729
(213) 341-2300
FAX (213) 341-2300
Chai Heng
Circle No. 422

National Instruments Corp
6504 Bridge Point Pkwy
Austin, TX 78730
(800) 335-9038;
(512) 794-0100
FAX (512) 794-8411
TLX 760767
David Koening
Circle No. 423

Pacific Cyber/Metric Inc
6855 Sierra Ct
Dublin, CA 94568
(800) 335-9038;
(415) 829-9700
Bob Nelson
Circle No. 424

Pentek Inc
55 Walnut St
Norwood, MA 07648
(303) 767-7100
FAX (303) 767-3944
Mario Schiavone
Circle No. 425

Signalsys Ltd
Backlund, Aylesbury
HP22 5HU, UK
(206) 631-8196
Gene Merrill
Circle No. 426

Sky Computers, Inc
27 Industrial Ave
Chelmsford, MA 01824
(617) 250-1000
FAX (617) 250-0036
TLX 499131
Colin Barton
Circle No. 427

Sonitech International Inc
14 Mica Lane, Suite 208
Wellesley, MA 02181
(617) 335-6824
FAX (617) 335-2331
TLX 650-328-1622
Brewster LaMacchia
Circle No. 428

Spectral Innovations Inc
4633 Old Ironside Dr, Suite 401
San Diego, CA 92104
(619) 727-1314
FAX (619) 727-1423
John Klem, VP Marketing
Circle No. 429

Spectrum Signal Processing Inc
3700 Gilmore Way, Suite 301
Burnaby, BC, Canada V5G 4M1
(604) 435-7829
FAX (604) 438-3046
Circle No. 430

Loughborough Sound Images Ltd
The Technology Centre, Epinal Way
Loughborough, Leicestershire LE11 0QE, UK
(0602) 231343
FAX (0602) 282333
TLX 341409
Circle No. 431

Note: Spectrum Signal Processing distributes Loughborough's products in North America; Loughborough distributes Spectrum's products in Europe.

Star Technologies Inc
545 Shaw Rd
Sterling, VA 22170
(800) 782-7065;
(703) 689-4400
FAX (703) 689-3609
Joe Caso
Circle No. 432

Street Electronics Corp
6420 Via Real
Carpinteria, CA 93013
(800) 686-6036
FAX (805) 684-6628
Bill Adler
Circle No. 433

Symmetric Research
16 Central Way, Suite 9
Kirkland, WA 98033
(206) 828-6560
FAX (206) 827-3721
Circle No. 434

Texas Instruments Inc
Semiconductor Group (SC-9002)
Box 960966
Dallas, TX 75380
(903) 338-2306 ext 760;
(214) 965-6611 ext 760
Circle No. 435

Valley Enterprises Inc
RD #4, Route 309
Tamaqua, PA 18252
(717) 666-3737
FAX (717) 666-2362
Thomas J Martin
Circle No. 436

Zola Technologies, Inc
6195 Heards Creek Dr, NW,
Suite 201
Atlanta, GA 30328
(404) 943-2972
FAX (404) 257-1047
Lester Longley, President
Circle No. 437
DSP coprocessor boards

when the system boards of all PCs and workstations include at least one DSP µP. The firms are hoping that Medialink will establish the standard for communicating with DSP µPs in computers based on 80x86 CPUs.

A move to workstations and to the VMEbus

But DSP-board vendors' interest in the VMEbus—a bus that has long been a mainstay of the workstation world—provides evidence of a different sort of change: The increasing power of DSP chips and the growing popularity of multiprocessor architectures are causing engineers to look closely at developing new DSP products on VMEbus-based workstations rather than on PCs. Not only do workstations perform important development tasks, such as compilation, faster than most PCs do, the VMEbus can accommodate larger boards that use more dc power than those that fit PCs. Also encouraging the use of workstations for DSP development is the growing availability of workstation-based DSP development tools.

But from a DSP-board standpoint, not all is rosy on the workstation front. Although several vendors have introduced boards for the Sbus of Sun Microsystems' SPARCstations, the small board format limits the units' capabilities.

All the evidence points to a continuation—even an acceleration—of the breakneck pace of change in the world of DSP boards. Fueled by increases in the power of DSP chips and reductions in the chips' cost, potential new applications will mushroom. With the explosion in applications will come the need for new and different boards—flexible ones for development work and low-cost ones for use in some of the DSP-based products the development work will produce.

References
2. Leibson, Steven H, "DSP development software," EDN, November 8, 1990, pg 156.

Biomation announces Configurable Logic Analysis System (CLAS) support for Texas Instruments and Motorola Digital Signal Processors (DSPs). The DSP tools include support for the TMS 320C25, TMS 320C30, and DSP 56001. The tool consists of probing hardware, disassembly software, and all setup files. Each DSP support tool for the CLAS range in price from $2950 to $3950.

The CLAS family of logic analyzers provides up to 384 channels configurable as one to four independent analyzers for monitoring multiple processors at speed. The analyzer can capture and correlate all bus cycles at up to 50 MHz on all channels and can provide hardware timing capabilities with 1 nsec resolution. The new CLAS 2000 features an embedded controller with a 13" color monitor. The 96-channel base unit sells for $15,950, including probes.
Development Puzzles
Solved by Pentica
(Part One of a Design Dictionary)

Trace Buffer n. Digital memory part of in-circuit emulator. Used to store a sequence of microprocessor addresses, data and status for post execution analysis.

The Puzzle: You have developed a complex real time system with interrupt driven multi-tasking software. Each of the software tasks has been debugged. No problems show up under simulation. The hardware designer, insisting his part works great, has gone on vacation. However, the complete system crashes after anything between 10 minutes and 3 hours.

The Solution: Use an ICE with a trace buffer large enough to capture the events which lead to the crash. Complex and sequential triggering of the trace may be required to stop tracing events which occur after the crash—an 8k word trace buffer could overflow in under 2ms. Pre-filtering of trace cycles can be used to extend the capture time. The ability to re-trigger the trace allows critical areas to be traced and then disregarded if the crash does not happen. Comprehensive search facilities are needed to analyse large amounts of data.

Pentica's MIME-700 in-circuit emulator offers these features and more, while Pentica prides itself on its superior technical service and support. Write or phone and let's start solving your next development puzzle!

PENTICA
IN-CIRCUIT EMULATORS
We love to solve puzzles!

Pentica Systems, Ltd
Oaklands Park
Wokingham, Berkshire
RG11 2FE
(0734) 792101
Fax: (0734) 774081

Pentica Systems, Inc.
One Kendall Square
Building 200
Cambridge, MA 02139
(617) 577-1101
Fax: (617) 494-9162
PROGRAMMERS

Our Programming line includes:

- CP-1128 Combination EPROM/PROM/PLD Programmer: Supports devices up to 28-pins $1295
- PLD-1128 Logic Programmer: Supports PLDs up to 28-pins $995
- PLD-1100 Logic Programmer: Supports PLDs up to 24-pins $798
- EP-1140 E/EPROM Programmer: Supports E/EPROMs up to 40-pins and Intel Microcontrollers $895
- EP-1132 E/EPROM Programmer: Supports E/EPROMs up to 32-pins $695
- EP-1 EPROM Programmer: Supports E/EPROMs up to 28-pins $349

All of our programmers include: software, editor, interface cable, user's manual, one-year warranty (parts and labor) unlimited toll-free technical support, unconditional thirty-day money-back guarantee, and lifetime free software updates.

BP MICROSYSTEMS

Call today
1-800-225-2102
713/461-9430
FAX 713/461-7413

CIRCLE NO. 46

Synchronize high speed timing circuits to 100pS accuracy

Design-in these new, high performance picosecond delay lines to "fine tune" the clock distribution in high speed computer circuits. Now, you can readily afford to improve overall speed and critical circuit efficiency. Product features include:

- Time delays from 100pS to 1000pS
- Delay-to-rise-time ratio typically 3:1
- Delay tolerance ±50pS
- Meets UL94V-O materials flammability rating
- Effective for skew and timing correction applications
- Transfer molded package style

Contact Pulse Engineering today for a data sheet and product samples. Get in sync now!

Pulse Engineering, Inc.
P.O. Box 12235
San Diego, CA 92112
Telephone (619) 268-2400
FAX (619) 268-2515

CIRCLE NO. 167
The competition will call us ruthless. You can call us at 1-800-234-4VME.

It's enough to make other VME board builders call us names. Or call it quits. A new 23 MIPS VME single board computer based on the 88100 RISC microprocessor. Or a new 20 MIPS VME board based on the 68040 CISC microprocessor.

Both are built by Motorola and offered at $3,995 each. That's just $174/MIPS for the RISC board, which compares nicely with the $1,000/MIPS you've been asked to pay for somebody else's board. And it's just $200/MIPS for the CISC board.

The MVME187 (RISC) and MVME167 (CISC) boards employ VME D64 architecture. And both come with four 32-bit timers.

For a free color brochure, call the 800 number above. And see why the competition undoubtedly wishes we'd call the whole thing off.
Here's how to turn a relay with 2 changeover contacts into one with 4.

The MT4, our new relay with 4 changeover contacts, hardly occupies more board space than the MT2, our relay with 2 changeover contacts.

So if you need 6 twin changeover contacts on your board, simply install an MT2 and an MT4. Two relays of virtually identical size.

And the expensive space you formerly needed for a third MT2 is now free for other important functions.

Plus: less testing, less component cost, less assembly effort, greater reliability.

What more can you want?

(The new MT4: Power consumption at 20°C 300 mW. Temperature range -55°C to 85°C. Space occupied per contact 12 M².)

I'm interested in the new MT4 relay. Please send me your literature.

Company ___________________________

Name ______________________________

Address ____________________________

Telephone __________________________

Alcatel STR AG
CH-8055 Zurich/Switzerland, Friesenbergstrasse 75
Save hours over your current curve fitting methods with the new TableCurve v3.0! TableCurve will fit and rank 3,320 linear and non-linear equations to your dataset in one highly automated processing step! Step through ranked equations, view residuals, statistics and graphs—and output data and graphs easily in a variety of formats! Features include:

- **3,320 Linear and Non-linear equations**
 Includes polynomial, rational, peak (Gaussian, Lorentzian, etc.), transition, waveform and many others. Select only the equation groupings of interest or let TableCurve fit all equations to your data!
- **User defined equations**
 Define your own equations—TableCurve fits and ranks them along with the extensive list of built-in equations.
- **Extensive fitting and ranking choices**
 Choose curve fitting algorithm (Singular Value Decomp., Gauss-Jordan, LU Decomposition), best fit ranking criteria (DOF adj. r², Fit Std Error, F-statistic and Std r²), smoothing functions (polynomial interpolation, FFT and Lowess) and more!
- **High speed processing**
 Automatically fit and rank all 3,304 linear equations to a 50 point dataset in 46 seconds (using 80386SX, 16MHz with math coprocessor). Iteratively fit non-linear equations are also processed in amazing speed!
- **Unique graphical review process**
 Graphically view the fit of each equation to your data by pressing a key. Also obtain a full numerical review of confidence/prediction limits, residuals and other statistics.
- **Flexible data input/output**
 Import a huge dataset from ASCII, Quattro Pro, Lotus, dBase, and other formats. Customize selected graphs and output to a variety of devices including LaserJet® Postscript™ printers, or export directly to SigmaPlot®, Lotus and more!
- **Export programming code for any selected equation**
 Automatic code generation for programming in C, Pascal, FORTRAN, and several BASIC languages.
- **Outstanding ease of use**
 With a superb user interface, full mouse support and extensive online help, TableCurve brings powerful linear and non-linear curve fitting to your PC in an easy-to-use, intuitive format.

TableCurve is reasonably priced, backed by a full money-back guarantee and one of the strongest technical support staffs in the industry. Call Jandel today for more information on TableCurve and other scientific software: 1-800-874-1888 (inside U.S.) or 1-415-924-8640.

Our European office is:
Schimmelbuschstrasse 25
D-4006 Erkrath 2 • FRG
02104/36098
02104/36099

CIRCLE NO. 113

The Best . . . Starting at $75/MFLOP

The Best Price and Performance of Any off-the-shelf DSP/VMEbus in the world!

VALLEY ENTERPRISES, INC. offers you the BEST choice . . . The VE-32C-01V series starting at $75/MFLOP provides an excellent performance to cost ratio for VMEbus-based signal processing applications. This single board can perform up to 100 MFLOPS or 50 MIPS using four AT&T DSP32C digital signal processors. Designers can put up to 16 VE-32C-01V boards in a VMEbus chassis for a total system performance of 1.6 GFLOPS. A 10 MHz FIFO-buffered input data port and a 10 MHz non-buffered output data port allow the board to capture, process, and generate high-speed data streams.

ANNOUNCING COMPLETION OF: Companion A/D Module . . .

A 40 MHz Sample Rate, 10-bit A/D converter on a single-slot 6U x 160mm VMEbus board. This board interfaces directly to the high-speed FIFO port of the VE-32C-xxV family of DSP modules. Can be ganged for multi channel application.

“ . . . 100 MFLOPS” on a single board.
Software support for target systems using VxWorks, OS/9, Motorola V/68 Unix, and SunOS. Call Valley about this unbeatable combination . . .

“ . . . Software development tools and a DSP Library are available for the following host computers: SUN-3 and SUN-4, IBM-PC and compatibles, HP-9000 workstations, and Apple MacIntoshes. Target environments that are supported include VxWorks, OS/9, SunOS, and Motorola V/68 systems . . .”

All trade names are Trademarks of their respective companies.

CIRCLE NO. 114
When great musicians work...they play! And so do great engineers. The right instrument puts the joy back into solving hardware/software integration puzzles.

Not to strain an analogy, but all the embedded systems engineers we know do have a basic love of the work they do. And one thing that will really get them inspired is a truly responsive emulator!

Our MIME-600 (for the 68HC11, 64180, 6301, and others) and our MIME-700 (68000, 68001, 68302, 68332, 68HC16, and others) deserve your attention. Our technical service and support record speaks for itself. All of our customers are references!

It takes more than the space of this ad to describe all of our powerful features. So call or write (note two different addresses below) for all the advantages of having a MIME. And let us help you make your own special kind of music!

Yes, it is a random dot stereogram! To see the number, diverge your eyes, as if looking at a faraway object. The two white dots will fuse, forming a third central dot. Keep gazing until a shape begins to appear floating above a textured background. Some see the image in seconds. Others find it more difficult. If you can't see it, let someone else try. If they succeed, perhaps they can help you. If you want to find out more about random dot stereograms, please write N.E. Thing Enterprises at the US address below, or call 617-621-7174 for more information.

PENTICA IN-CIRCUIT EMULATORS

We love to solve puzzles!

Pentica Systems, Ltd.
Oaklands Park
Wokingham, Berkshire
RG11 2FE, U.K.
(0734) 792101
Fax (0734) 774081

Pentica Systems, Inc.
One Kendall Square
Building 200
Cambridge, MA 02139, USA
(617) 577-1101
Fax (617) 494-9162

Send more information about the MIME family of in-circuit emulators.

Please have a technical representative call me.

Name ____________________________
Company __________________________
Address __________________________
City, State, Zip __________________________
Phone __________________________

We welcome your comments.
Whitesmiths 8051 C Compilers win the race for small, fast code. And with the CXDB Debugger, you can get your product to market ahead of the competition. Call or fax today for more information about our free demo products.

Make Every Bit Count

Call 800-356-3594

<table>
<thead>
<tr>
<th></th>
<th>Whitesmiths</th>
<th>Franklin</th>
<th>Archimedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhrystone</td>
<td>205</td>
<td>203</td>
<td>96</td>
</tr>
<tr>
<td>per sec.</td>
<td>3064</td>
<td>3926</td>
<td>3528</td>
</tr>
<tr>
<td>size (bytes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pointer</td>
<td>280</td>
<td>921</td>
<td>1144</td>
</tr>
<tr>
<td>speed (microsecs)</td>
<td>82/40</td>
<td>233/48</td>
<td>316/52</td>
</tr>
<tr>
<td>code/data (bytes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tint</td>
<td>407</td>
<td>683</td>
<td>1168</td>
</tr>
<tr>
<td>speed (microsecs)</td>
<td>642/84</td>
<td>628/84</td>
<td>630/84</td>
</tr>
<tr>
<td>code/data (bytes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Array</td>
<td>102K</td>
<td>129K</td>
<td>158K</td>
</tr>
<tr>
<td>speed (microsecs)</td>
<td>347/2056</td>
<td>284/2056</td>
<td>325/2056</td>
</tr>
<tr>
<td>code/data (bytes)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

		Partial	Full
		No	
		Partial	

ANSI C

In-Line Assembly

C Source Debugger

Price (PC)

| | $1200 | $1595 | $1295 |

Notes

- Dhrystone v.1.1 from CACM vol. 27. Pointer, Tint, Array from Byte Magazine 8/83. Whitesmiths v.3.32, Franklin v.3.07, Archimedes v.4.05A.

Ohryston e v. 1.1 from CACM vol. 27; Pointer, Tint, Array from Byte Magazine 8/83. Whitesmiths v.3.32, Franklin v.3.07, Archimedes v.4.05A.
It's the fast, efficient, comprehensive way to do technical calculations.

Move those reference texts off your desk. Put that calculator back in your pocket. And save that cryptic spreadsheet for your budgets and bookkeeping. Move those reference texts off your desk. Put that calculator back in your pocket. And save that cryptic spreadsheet for your budgets and bookkeeping.

New Mathcad 3.0, the major new upgrade to the world's best-selling math software.

It's the all-in-one solution with a singular purpose: to put results in your hands as quickly and thoroughly as possible.

New Mathcad is a workhorse that handles everything from simple sums to matrix manipulation. Effortlessly, naturally.

Simply type your calculations into the live document, just like you'd write them on a scratch pad. And let Mathcad do the work for you. It performs the calculations. Graphs in 2-D or 3-D. Automatically updates results each time you change a variable. And prints out presentation-quality documents, complete with equations in real math notation, even scanned-in graphics.

Newly upgraded Mathcad 3.0 now has Electronic Handbooks for instant access to hundreds of standard formulas, useful data, even entire calculations. Just click 'n' paste them from a hypertext window into your documents, ready to use.

When you need to simplify a formula, Mathcad's symbolic calculation capabilities are available with a simple menu pick. There's no arcane programming language to learn, so you can do integrals, Taylor series, infinite sums, and more—all with point 'n' click simplicity. The symbolic answer can be used for both numerical calculations or further symbolic transformation.

You'll also find improved equation editing, enhanced graphing features, and more documentation options. So why waste time working with problems? Join the 120,000 users that get results—with Mathcad.

• New easy to learn and use Microsoft Windows 3.0 interface
• New easy to use symbolic calculations
• New Electronic Handbooks with hundreds of built-in solutions
• Optional Applications Packs with adaptable templates for Electrical, Mechanical, Civil and Chemical Engineering, Statistics, Advanced Math, and Numerical Methods
• Differentials, cubic splines, FFTs, matrices and more
• Enhanced 2-D and 3-D graphics
• Improved presentation-quality documentation
• PC DOS, Macintosh®, and Unix® versions also available

For a FREE Mathcad demo disk, or upgrade information*, call 1-800-MATHCAD (or 617-577-1017, Fax 617-577-8829). Or see your software dealer.

Available for IBM® compatibles, Macintosh computers, and UNIX workstations.

TM and ® signify manufacturer's trademark or registered trademark respectively.

1-800-MATHCAD

*Price upgrades available for those who purchase Mathcad 2.5 for DOS from 5.0.0.1. Call for details.

The answer is Mathcad®
The PC is the most popular computer for engineering development work, but lack of graphics-display and printing standards has blocked developing appropriate workstation-class engineering software. Windows 3.0 opens the flood gates.

Steven H Leibson, Executive Editor

While workstation vendors and users continue their quest for the framework grail, PC software vendors have had most of the major framework components dropped in their laps in one package. This boon, in the form of Microsoft Windows 3.0, promises to unshackle the PC's latent ability to do workstation-level engineering work and costs less than $100 per copy. Many vendors of software packages for applications ranging from engineering design to data acquisition already offer Windows-compatible programs, and many more programs are being developed.

According to the EDN News Edition's 1991 EDA survey, the PC holds a solid lead over all other computers as an engineering development platform (Ref 1). Of the top four computer types used for electronic design automation, 80386-, 80286-, and 80486-based PCs hold positions 1, 2, and 4, respectively. The 80486 μP is relatively new, so you can expect PCs to hold the top three positions next year.

PCs dominate engineering

Taken as a group, PCs dominate engineering work. Even so, several factors prevent engineering-software vendors from fully exploiting the advanced PC hardware available today. One of the chief culprits has been DOS. Even version 5, the latest DOS incarnation, offers little support for graphics and suffers from a relative lack of memory. Programs running under DOS 5 are still limited to 640 kbytes of RAM. Consequently, PCs with many megabytes of RAM and high-performance, high-resolution displays need individual treatment from engineering-software vendors. Each machine is a special case.

DOS program developers either ignore high-performance PCs by writing code for the lowest common denominator or create and support numerous device drivers for the various PC displays, printers, and mice. These hardware-support activities can divert software...
vendors’ resources away from making improvements to the engineering aspects of their products. For example, a vendor of pc-board layout tools may have to choose between adding yet another display driver or improving its automatic router.

Microsoft’s Windows 3.0 solves DOS’s display-driver and memory-scarcity problems, so application developers can work on the application instead of wasting time and effort on the PC’s hardware needs. Windows manages the PC’s display—no matter what display-adapter card you have—and presents a unified display interface to the application software. It does the same for printers and mice. Further, Windows frees application programs from DOS’s 640-kbyte barrier. In fact, engineering-software vendors cite these features as the main reasons for adopting Windows 3.0. Table 1 lists a healthy sample of Windows-based engineering software already on the market. Many more such products are on the way.

Some stalwart holdouts (both users and vendors) have put off the switch to Windows claiming that graphical user interfaces (GUIs) are for sissies and that DOS-based applications run faster. In truth, Windows does ask more from the PC, and lower-performance machines will bog down to the point where they’re unusable. However, PCs based on 80386 and 80486 µPs—the type most often used for scientific and engineering applications—have little trouble running Windows. PC hardware advances, which seem to occur on a daily basis, make Windows’ performance less of a problem as time passes.

In effect, Windows 3.0 uncouples PC hardware and software. If a PC-hardware vendor develops a faster display adapter or builds a higher-resolution display, Windows can adapt without requiring changes in the application software. The only new software you’ll need is a Windows display driver, and the display vendor—the appropriate party—becomes responsible for developing that code. The same fortuitous situation exists for printer manufacturers. Software vendors cite this feature, above all others, as the main reason for switching to writing Windows applications.

The second most popular reason for switching is Windows’ ability to make more than 640 kbytes of memory available to an application program. Some programs, such as Deutsch Research’s Spicewindows Professional, simply cannot run in 640 kbytes. Prior to Windows, the only remedy for this lack of memory was third-party DOS extenders, which have several drawbacks: They’re not standardized, they cost the vendor and the user extra money for each application program, and they can cause compatibility problems for other DOS programs.

Windows lets application programs use more memory than the PC has RAM by implementing a simulated form of virtual memory that spoils parts of programs to disk when the PC runs out of RAM. But unlike true virtual-memory systems such as Unix, Windows requires the software developer’s cooperation to pull this trick off successfully.

Similarly, Windows provides a form of multitasking called “cooperative multitasking” that also works only if the application code cooperates. (For more information about developing Windows-based applications, see box, “Hints from veteran Windows application developers.”)

Even if graphics standards and memory management were all that Windows offered, many engineering-software vendors would still adopt the GUI because...
“Windows has got to be the future of ECAD on the PC.”—Jeff Deutsch, president, Deutsch Research

of its popularity with PC users. However, Windows now has several additional features that make the PC a far better candidate for engineering applications than ever before. One such feature is the built-in, context-sensitive help system. This system is rapidly replacing paper user manuals because it is more convenient to use and serves the user better than a book.

Altera is one vendor that cites this advantage to writing Windows programs. The company’s Max+Plus II PLD development system includes 3 Mbytes of on-line help information. Tim Southgate, software development manager at Altera, says that context-sensitive help isn’t a radical idea for Windows applications, but it is radical for CAD tools. Altera’s help system lets you click on a displayed object and immediately find out what it does and how to use it.

Mathsoft used Windows’ help system in its Mathcad technical computation package and was even able to extend the concept. Using the Windows help system, the company created electronic handbooks that let you cut standard formulas from the handbook and paste them into your Mathcad document. These formulas are not just text representations, they’re “live.” You can feed constants and variables to them, and they’ll compute results.

Mathsoft’s use of the help system demonstrates Windows’ ability to link the operation of different applications. Software developers can use these intertask communications channels to pass information between applications. Programs. In addition to the help system, Windows provides for intertask communications through three other means: the Windows clipboard, a facility called dynamic data exchange (DDE), and shared memory in dynamic link libraries (DLLs).

The Windows clipboard lets you cut an object from one window and paste it into another with blissful disregard of the operation’s machinations. Depending on the application program, you can transfer a bit map, a block of text, a scalable representation called a Windows metafile, or all three representations to the clipboard. Altera’s Max+Plus II, for example, can transfer all three object types.

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product name</th>
<th>Product description or use</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altera Corp</td>
<td>Max+Plus II</td>
<td>PLD development system</td>
<td>$9995</td>
</tr>
<tr>
<td>CAD/CAM Group</td>
<td>Design Capture Tool</td>
<td>Schematic entry</td>
<td>$395 to $2495</td>
</tr>
<tr>
<td></td>
<td>Design Analysis Tool</td>
<td>Design verification</td>
<td>$495 to $995</td>
</tr>
<tr>
<td></td>
<td>Waveform Tool</td>
<td>Simulation interface</td>
<td>$695 to $1995</td>
</tr>
<tr>
<td>Chronology Corp</td>
<td>Timing Designer</td>
<td>Timing-diagram entry</td>
<td>$995</td>
</tr>
<tr>
<td>Data Translation</td>
<td>Global Lab Image</td>
<td>Image analysis</td>
<td>$2495</td>
</tr>
<tr>
<td>Dazix</td>
<td>Ace+ PC Entry</td>
<td>Schematic entry</td>
<td>$3500</td>
</tr>
<tr>
<td>Design Systems sA</td>
<td>DS-Carte</td>
<td>Pc-board layout</td>
<td>Fr 6000</td>
</tr>
<tr>
<td></td>
<td>DS-Logic</td>
<td>Schematic entry</td>
<td>Fr 8000</td>
</tr>
<tr>
<td></td>
<td>Start-CAD</td>
<td>Schematic entry and pc-board layout</td>
<td>Fr 4900</td>
</tr>
<tr>
<td>Deutsch Research</td>
<td>Spicewindows Professional</td>
<td>Analog simulation</td>
<td>$2295</td>
</tr>
<tr>
<td>Dolphin Integration</td>
<td>Smash</td>
<td>Mixed analog and digital simulation</td>
<td>$3950 to $4950</td>
</tr>
<tr>
<td></td>
<td>Interactive Curve Display</td>
<td>Visual analysis of Spice output files</td>
<td>$295</td>
</tr>
<tr>
<td>Foresight Resources Corp</td>
<td>Draf ix Windows CAD</td>
<td>Mechanical CAD</td>
<td>$695</td>
</tr>
<tr>
<td>Geotest Inc</td>
<td>ATEasy</td>
<td>Autoouted testing</td>
<td>$2995</td>
</tr>
<tr>
<td>Hewlett-Packard Co</td>
<td>HP 4990A Proview</td>
<td>LAN-protocol analysis</td>
<td>$5000</td>
</tr>
<tr>
<td>Hyperception Inc</td>
<td>Hypersignal-Windows</td>
<td>DSP design</td>
<td>$795 to $2995</td>
</tr>
<tr>
<td>Laboratory Technologies Corp</td>
<td>Labtech Notebook for Windows</td>
<td>Laboratory data acquisition</td>
<td>$1495</td>
</tr>
<tr>
<td>Mark V Systems Ltd</td>
<td>Objectmaker</td>
<td>CASE for Ada, C, and C++</td>
<td>$8000</td>
</tr>
<tr>
<td>MathSoft Inc</td>
<td>Mathcad</td>
<td>Mathematical analysis</td>
<td>$495</td>
</tr>
<tr>
<td>Microsim Corp</td>
<td>Schematics</td>
<td>Schematic entry</td>
<td>$1250</td>
</tr>
<tr>
<td>Microsoft Corp</td>
<td>Microsoft Project for Windows</td>
<td>Project Management</td>
<td>$695</td>
</tr>
<tr>
<td>Model Technology Inc</td>
<td>V-System/Windows</td>
<td>VHDL development system</td>
<td>$1495</td>
</tr>
<tr>
<td>NCI</td>
<td>PA480485</td>
<td>25/50-MHz, 48-channel logic analyzer</td>
<td>$1200 to $1400</td>
</tr>
<tr>
<td>Popkin Software & Systems Inc</td>
<td>System Architect</td>
<td>CASE</td>
<td>$1395 to $1595</td>
</tr>
<tr>
<td>Quicklogic</td>
<td>pASIC Toolkit</td>
<td>FPGA development system</td>
<td>$3995</td>
</tr>
<tr>
<td>Scientific Software Tools Inc</td>
<td>Driverlinx</td>
<td>Data-acquisition software drivers</td>
<td>$400</td>
</tr>
<tr>
<td>Simucad Inc</td>
<td>Silos III</td>
<td>Logic and fault simulation</td>
<td>$1200</td>
</tr>
<tr>
<td>Symantec Corp</td>
<td>On Target</td>
<td>Project management</td>
<td>$399</td>
</tr>
</tbody>
</table>

Notes:
1. The price of Chronology’s Timing Designer software changes to $1495 on October 1, 1991.
2. The price of Microsim’s Schematics software package changes to $1750 on October 1, 1991.
At times, you may want information to move from one application to another without manual intervention. Hyperception's Hypersignal-Windows package illustrates the advantages of this transfer mode. You can set up a simulated system in the product's block-diagram editor and, through DDE, send signals generated by the simulation to a graphical-analysis package for scrutiny. There are other ways to send data from one program to another, but the DDE facility provides a standardized method for performing this function.

Jim Zachman, Hyperception's president, says that DDE will enable software developers and engineers to solve new types of problems.

Quicklogic also uses DDE to carry information between concurrently running programs in its pASIC Toolkit. The PLD compiler and the schematic editor are independent programs that run concurrently, and the two programs need to communicate. The editor sends netlists to the compiler, and the compiler sends back-annotation information to the editor. If an error occurs during compilation, you can click on the error message in the compilation window, and the offending node will be highlighted in the schematic window. Messages to perform these feats flow through the Windows DDE pipeline.

However, DDE doesn't solve all intertask communications problems. DDE creates a conduit between concurrently running application programs, but it doesn't define the format of the information that flows through that conduit. Application-program developers must agree on the data format before DDE can become useful. For programs written by the same vendor, the data-format problem doesn't present much of an obstacle. But until engineering-software vendors band together to create some DDE communications standards, you should not expect Windows programs "with DDE support" to work together unless the vendors explicitly state that the programs can communicate with each other.

Microsoft set a de facto DDE standard for business software with its $495 Excel spreadsheet. Most business applications that "support DDE" actually conform to the Excel protocol. That standard doesn't serve the engineering community's needs well because it concerns itself with only business-type information. Microsoft is in the early stages of developing a higher-level messaging specification called object linking and embedding (OLE), which may move the industry towards a more comprehensive communications protocol.

Bridging the communications gap

Like DDE, Windows DLLs can also ease the burden of communications between different programs. Quicklogic employs DLLs to translate information passed between the program components of its pASIC Toolkit. Rather than reinvent schematic entry, Quicklogic's tool employs the CAD/CAM Group's Schematic Capture Tool for the graphic design of PLDs. Quicklogic's Toolkit generates a netlist from the completed schematic. CAD/CAM's product didn't use the netlist format Quicklogic wanted to use, so Quicklogic linked a

You can perform data acquisition and analysis simultaneously under Windows. Laboratory Technologies' Labtech Notebook for Windows can capture data while a spreadsheet analyzes and presents results.
Hints from veteran Windows application developers

If you haven't written code for a graphical user interface (GUI) before, Windows will probably throw you a few curves. Unlike conventional programming, in which the computer drives the user, GUls are event driven: The user drives the computer. Consequently, your programming style must change. Instead of writing a monolithic piece of linear code that runs from initialization to completion, you must create numerous program modules that wait for appropriate activating events to transpire before executing. Most first-time Windows programmers interviewed for this story cited the need for this shift in perspective. Once you're over this initial hurdle, most programmers say that writing code for Windows is no different from writing other types of programs.

You will have to learn about Windows' idiosyncrasies, however. For example, C programmers are accustomed to using C's malloc function to allocate memory and to obtain a pointer to that memory from the operating system. They then use free to dispose of that memory. Under Windows, you cannot use malloc and free because Windows simulates a virtual memory system. Thus, Windows doesn't hand out absolute memory addresses unless you really need to use that memory.

Name that memory block

To allocate a block of memory, you must first use a Windows function call to get a memory-block "handle," or name. When you want to use that memory, you use a second call to lock the block of memory and obtain a pointer to the locked memory block. Your program should keep the memory pointer only for as long as it plans to actively use the memory. When the program no longer needs that memory, you should free the memory block for other applications' use.

Alternatives to Windows memory-allocation techniques can make programming a lot easier. Chronology found one way to reduce the complexity of Windows memory allocation. The company developed its Windows product, Timing Designer, using a $400 C++ compiler for Windows from Zortech (Woburn, MA, (617) 937-0696, FAX (617) 937-0793). The C++ compiler's new and delete memory-allocation calls replace C's malloc and free functions and mask the complexities of memory management under Windows. Incidentally, Windows limits the total number of memory allocations to 8000 for all active programs. Windows programmers soon learn to independently suballocate 32-kbyte memory blocks within their programs.

Several veteran developers note that C compilers for Windows have a tough time with large programs. Altera's Tim Southgate and Deutsch Research's Jeff Deutsch both say they used compilers running under OS/2 because Windows compilers simply could not accommodate the multimegabyte size of their programs. Deutsch cites the 32-bit addressing capabilities of OS/2 compilers as a real benefit for developing large Windows applications. As an alternative to running compilers under OS/2, Model Technology employed Oxygen, a $99 package from Rational Systems Inc (Natick, MA, (508) 653-6006, FAX (508) 655-2753). Oxygen lets you run OS/2 compilers under Windows.

The Windows user interface also adds a great deal of complexity to your code. "You may need as many as 300 Windows function calls to open a dialog box," says Bill Falk, Quicklogic's interface specialist. Falk overcame the complexity of the Windows user-interface model by adopting XVT (Extensible Virtual Toolkit), a $795 Windows-development product from XVT Software Inc (Boulder, CO, (303) 443-4223, FAX (303) 443-0969). XVT lets you create a dialog box with one call. The package handles both display and printing functions.

Writing code for XVT instead of Windows not only reduces complexity, it makes your program portable. XVT Software offers compatible versions of the product for the Apple Macintosh operating system, OS/2 on the PC, and Unix systems running the X Window system. In fact, the IEEE's P1201.1 standards committee has selected the XVT product specification as the base document from which it will draft a standard application programming interface for portable GUI applications. (This move neatly sidesteps the Motif-vs-Open Look GUI debate that has been raging in the Unix community for almost two years.) Falk says XVT lets you make 90% of your code portable across the four operating environments. According to Falk's tests, you pay a 2% performance penalty for this flexibility.

Windows' display performance is an issue you must deal with. Chronology experimented with rubber-band animation for waveform editing in Timing Designer but found Windows display performance sluggish in that mode. (Note that even workstations running the X Window system have trouble providing speedy user-interface performance. Fast graphics operation seems to be one of the toughest performance problems for any GUI to crack.) The current version of Timing Designer uses a simpler approach to waveform editing, but the code contains a compile-time switch to restore the rubber-band visual effect when PC display performance improves.

Snappy performance is merely
nice for user responsiveness, but real-time products that run under Windows must execute with dispatch to perform their assignments. Because Windows employs "cooperative multitasking" instead of preemptive multitasking, any Windows application program could easily find itself without enough CPU cycles to complete its tasks. A real-time application can also monopolize the PC. This situation ensures that the real-time program completes its duties, but it diminishes Windows' usefulness.

A real-time crash

Even if an application program does take over the PC, Windows doesn't allow "bare-metal programming." You cannot interact directly with the PC's hardware under Windows without crashing the system. For example, you cannot write directly to the PC's screen, and you cannot manipulate the PC's interrupt controller for your own purposes.

Real-time programs often try such maneuvers to meet hard-deadline requirements. Consequently, real-time Windows application programs may simply not be able to meet hard deadlines. Fred Putnam, president of Laboratory Technologies, notes that the initial version of his company's Labtech Notebook for Windows, a real-time data-acquisition package, can't always meet hard deadlines, although the DOS version can.

Putnam also has direct experience creating international versions of Labtech Notebook for Windows. Microsoft offers international versions of Windows 3.0 with appropriate character sets for various countries. Good Windows programming practice places all program text into resource files instead of embedding the text in the program modules. This technique greatly eases converting programs to other languages, says Putnam, because almost all the internationalization effort focuses on translating text in the resource file.

Even if you plan to offer only English versions of your product, you must work carefully on the program's look and feel when writing Windows application programs. Users expect Windows programs to be consistent from one application to the next. Chronology employed a graphics designer to help create Timing Designer's user interface because, as Chronology's president Lawrence E Lewis says, most engineers and programmers lack training in contemporary visual styles or color matching.

Chronology also put together a Windows style guide for its program developers by combining published style guides for OS/2's Presentation Manager, Windows, and Apple's Macintosh. "Existing business packages set the expected operating style for all Windows programs," says Lewis. "Even if you can think of a better way to do things, you should stick with existing de facto standards because that's what Windows users expect," he adds. Lewis says that Microsoft's Excel spreadsheet for Windows sets a lot of those standards. Chronology wasn't afraid to violate this rule, however. Timing Designer's prototype trials indicated that users prefer text information in the product's tool bar instead of the icons Excel uses. Consequently, Timing Designer's tool bar contains no icons.

For early product trials, you may want to use a software prototyping tool to build a mock-up version of your product. Prototype programs incorporating just the user interface can help developers and users alike get a feel for how your product will work in the early development stages. Simucad used this approach to create a user interface for its Silos III simulator. The company employed the $495 CASE:W package from CASEworks (Atlanta, GA, (404) 399-6236, FAX (404) 399-9516) to create the prototype interface. Simucad selected this package because it generates compilable interface code once you are satisfied with your design. You finish your program by adding the code that does the application's real computational work.

Once your application is up and running under Windows, you'll find debugging the program more difficult than debugging programs under DOS. The event-driven nature of Windows applications splits your code into relatively independent modules that you must test individually. The Windows user interface complicates testing because you can't use simple keyboard-macro programs for regression testing as you can with DOS programs. You need a program that records both mouse movements and keystrokes for Windows. None of the developers interviewed could recommend such a program.

Symantec's Dave Richards says debugging Windows applications is difficult because you can't isolate concurrently running programs. Consequently, a runaway application can kill the Windows kernel or step on some other memory location and crash the operating system. That's a tough debugging environment, indeed. In general, most of the Windows programmers interviewed for this article thought that Windows debugging tools are still somewhat immature. "Event-driven debugging is a nightmare," summarizes Quicklogic's Falk.
Windows-based engineering software

translation DLL it wrote to CAD/CAM's tool. One added line to the schematic-capture tool's initialization file creates this link. The DLL converts netlists in CAD/CAM's format to Quicklogic's format.

Translation is a popular use for Windows DLLs among many application developers. Symantec uses more than 30 DLLs to translate text files among word-processor file formats in its $199 Justwrite word-processing package. The word processor loads only the DLLs it needs to satisfy a user request. Thus, using DLLs minimizes the amount of RAM the translation code consumes while retaining a broad ability to handle many file formats. Conversely, Symantec's On Target project-management package doesn't employ DLLs because Dave Richards, the engineering manager for the product, saw no inherent advantages to using DLLs.

Manufacturers of Windows-based engineering software

For more information on Windows-based engineering software packages such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Altera Corp
2610 Orchard Pkwy
San Jose, CA 95134
(408) 984-2800
FAX (408) 245-6924
Circle No. 650

CAD/CAM Group
20480 B Pacifica Dr
Cupertino, CA 95014
(408) 725-0204
FAX (408) 725-0207
Circle No. 651

Chronology Corp
2849 152nd Ave NE
Redmond, WA 98052
(206) 869-4227
FAX (206) 869-4229
Circle No. 652

Data Translation
100 Locke Dr
Marlboro, MA 01752
(508) 481-3700
FAX (508) 481-8620
Circle No. 653

Dazix
An Intergraph Co
1 Madison Industrial Park
Huntville, AL 35894
(205) 730-2000
FAX (205) 739-8544
Circle No. 654

Design Systems SA
14, rue Menard
78000 Versailles, France
39 50 52 12
FAX 39 53 32 45
TLX 686814
Circle No. 655

Deutsch Research
761 DeSoto Dr
Palo Alto, CA 94303
(415) 327-5877
FAX (415) 327-0225
Circle No. 656

Dolphin Integration
8, chemin des Clos,
ZIRST
BP 65
38240 Meylan, France
(33) 76 41 10 96
FAX (33) 76 90 29 65
TLX 99999
Circle No. 657

Dolphin US
Box N
Santa Clara, CA 95055
(408) 727-4121
FAX (408) 727-5514
Circle No. 658

Foresight Resources Corp
10725 Ambassador Dr
Kansas City, MO 64153
(816) 891-1040
Circle No. 659

Geotest Inc
18207 E McDurmott St,
Suite K
Irvine, CA 92714
(714) 263-1200
FAX (714) 263-1203
Circle No. 660

Hewlett-Packard Co
19310 Pruneridge Ave
Cupertino, CA 95014
(408) 752-0800
Circle No. 661

Hyperception Inc
9550 Skillman LB 125
Dallas, TX 75243
(214) 343-8255
FAX (214) 343-2457
Circle No. 662

Laboratory Technologies Corp
400 Research Dr
Wilmington, DE 19887
(302) 657-5400
FAX (302) 658-9972
Circle No. 663

Mark V Systems Ltd
15400 Ventura Blvd,
Suite 303
Encino, CA 91436
(818) 986-7671
FAX (818) 986-4077
Circle No. 664

Mathsoft Inc
201 Broadway
Cambridge, MA 02139
(617) 577-1017
FAX (617) 577-8829
Circle No. 665

Microsim Corp
20 Fairbanks
Irvine, CA 92718
(714) 775-3022
FAX (714) 455-6554
Circle No. 666

Microsoft Corp
1 Microsoft Way
Redmond, WA 98052
(206) 882-8080
FAX (206) 883-8101
Circle No. 667

NCI
6438 University Dr
Huntsville, AL 35806
(205) 637-5000
FAX (205) 637-5021
Circle No. 668

Popkin Software & Systems Inc
11 Park Pl
New York, NY 10007
(212) 571-3434
FAX (212) 571-3436
Circle No. 669

Quicklogic
2803 Bunker Hill Lane
Santa Clara, CA 95054
(408) 987-2000
FAX (408) 987-2012
Circle No. 670

Symantec Corp
10201 Torre Ave
Cupertino, CA 95014
(408) 253-9600
FAX (408) 253-4092
Circle No. 671

Scientific Software Tools Inc
30 E Swedesford Rd
Malvern, PA 19355
(215) 889-3334
FAX (215) 889-1334
Circle No. 672

Sinumac Inc
32970 Alvarado-Niles Rd
Union City, CA 94587
(415) 487-9700
FAX (415) 487-9721
Circle No. 673

Symantec Corp
10201 Torre Ave
Cupertino, CA 95014
(408) 253-9000
FAX (408) 253-4992
Circle No. 674

VOTE...
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 473 Medium Interest 474 Low Interest 475
The Right Choice Could Save You $25,000.

HTBasic from TransEra will turn your PC into a scientific workstation at a fraction of the cost. A real alternative to a high-priced dedicated workstation, a PC with HTBasic gives you the capabilities you need for complex scientific/engineering applications, while retaining compatibility to run and share data with standard PC software.

The savings don’t end with the workstation itself. With an HTBasic system, you can use industry-standard printers, graphic output devices, and networking systems. You get the flexibility you need to lay out the system you want without being tied to limited offerings from one supplier.

HTBasic is a state-of-the-art language which gives you a number of advanced scientific/engineering features not found in other BASIC packages.

Features such as data acquisition and IEEE-488/RS-232 instrument control syntax, COMPLEX arithmetic, matrix mathematics, complete HP-style graphics, a comprehensive on-line help facility, and many more, add up to increased productivity for all levels of users.

The right choice for your next engineering workstation is a PC with HTBasic. Call or write us today for more information.

TransEra
Engineering Excellence for 15 Years

3707 N. Canyon Road Provo, UT 84604
(801) 224-6550 Fax (801) 224-0355

EDN September 16, 1991
Jeff Deutsch, president of Deutsch Research, points out that DLLs help keep the source code of his company's Spicewindows Professional analog simulation package private. Earlier versions of Spice from a variety of vendors embedded the simulation models in the program code, which made adding models quite difficult. By specifying a DLL-based model interface for its simulator, Deutsch Research permits outside model development while still keeping its proprietary application code secure.

Altera's Tim Southgate also finds DLLs useful. He says they're efficient because different programs can share one image of a DLL loaded into memory. Programs that use C runtime libraries, for example, can use this feature to greatly reduce the memory the programs consume. Also, DLLs make a program modular, which reduces the time required to link a program together during development. (Southgate notes that linking a 1.8-Mbyte program using static linking can take an hour. One-hour cycle times can really impede software development.) Altera's Max+ Plus II uses more than 50 DLLs. Further, DLLs make field upgrades easy. A vendor need send out only the new or revised DLL instead of an entirely new program. This ability can significantly reduce media-distribution costs for large programs.

One aspect of Windows software engineering—software vendors don't often mention—is the wealth of Windows-based business software that can cross over to serve engineers. Word processors, spreadsheets, and data-base managers all work as well in the engineering domain as they do in business. You might be surprised at the engineering abilities of some business packages. For example, Winrix is a $495 image-creation and -editing package from Rix Softworks Inc (Irvine, CA, (714) 476-8266, FAX (714) 476-8486). The product performs several 24-bit color image-enhancement operations such as brightness and contrast control, color correction, and sharpening. It can also import and export a wide variety of PC image file formats.

You can easily move data back and forth between engineering packages and business packages through Windows' various forms of intertask communications. Quicklogic employed this Windows feature to create user manuals for its pASIC Toolkit. Bruce Kleinman, then Quicklogic's CAE tools architect and now the company's manager of customer engineering, used the Windows clipboard to transfer display screens from the company's PLD development tools directly into the document files that became the product's user manuals. Kleinman points out that engineering is far more than just design entry. "Engineers also must write documentation, do analysis, and perform tests," he says. Engineering and business applications for Windows support all these tasks.

Major vendors of PC business software have either introduced Windows versions of their flagship packages or are currently developing such products. Vendors of PC-based engineering software products are following suit. Now that Windows has severed the hobbling linkage between advances in PC hardware and software, developers of both product types can devote their full energy to getting every last bit of application performance from their products. Moreover, they can survey the field and find new application problems to overcome instead of worrying about recently introduced graphics cards that now need device drivers. This turn of events will draw even more software developers into the fray and further solidify the PC's position as the top engineering computer.

References

Article Interest Quotient (Circle One)
High 473 Medium 474 Low 475
Finally, engineering software that clears the way to problem solving without programming.

```c
void service_id(int eid)
{
    int stat, byte;
    /*serial poll insted*/
    byte=hpib_spoll(eid);
    if ((byte<0) || (byte==0))
        printf("SRQ Prob\n");
    return;
}
stat=my_read(eid, DVM_
if (stat>0) {
    buffy[stat] = '\0';
    printf("Data from instrumen"
else printf("I/O read error\n");
    return;
}
main()
{
    int busid, stat, MTA, MLA;
    char command[MAXCHARS];
    busid=open("/dev/hpib7", O_RDWR); /* open raw HP-IB*/
    MTA=hpib_bus_status(busid, CURRENT_BUS_ADDRESS) + 64;
    MLA=hpib_bus_status(busid, CURRENT_BUS_ADDRESS) + 32;
    stat = BUTTON_BIT;
    sprintf(command, "KM%02o", stat); /* 2 octal digits */
}
```

With HP VEE, you simply link the icons.
Computers are great for problem solving, if only programming didn't get in the way and slow you down. And now, it doesn't have to. Because the HP visual engineering environment (HP VEE) lets you solve problems without programming.

With HP VEE, you explore solutions visually by arranging and linking icons on the CRT. Each icon represents and executes a specific function for data collection, analysis—from simple mathematics to complex algorithms—and presentation. You don't have to write a single line of code.

There are two HP VEE software packages for prototyping, experimentation, and problem modeling. HP VEE-Engine, at $995*, is a general-purpose tool for analysis and presentation of existing data. HP VEE-Test includes HP VEE-Engine and adds extensive I/O capability, including soft panels and device I/O objects for $5,000*.

So, if programming is keeping you from solutions, call 1-800-752-0900. Ask for Ext. 2380, and we'll send a brochure on clearing the way with HP VEE.

* U.S. list prices.

There is a better way.

©1991 Hewlett-Packard Co. TMM80318A/EDN

CIRCLE NO. 121
NETWORK MANAGEMENT SYSTEMS ENGINEERS

BS, MS or PhD in EE and CS with 6 or more years in the operation, administration and maintenance of high speed digital transmission facilities and data communications. The individual should have a good understanding of telecommunications systems and processes. Knowledge of object-oriented paradigms are a plus.

SOFTWARE ENGINEERS (MTS, SMTS, MGR)

Several positions exist for individuals with a BS or MS in CS/EE for development of high speed digital cross connection product lines. Positions require a minimum of 3 years of software development in a Unix/C environment and experience in one of the following areas: Real-Time operating systems, relational database management, testing, 68xxx firmware design, software quality assurance, or software metrics. Knowledge of SONET X-25 or ISDN standards desired.

SENIOR PRODUCT PLANNER/MANAGER

As a member of a state-of-the-art telecommunications design team, this senior level position will be responsible for supporting sales and marketing through business plan and competitive analysis and provide high service interface to engineering, manufacturing and sales.

This position requires technical familiarity with current transmission technology for voice and data interfaces, and proven planning/project management success in the public/private network marketplace. You should possess at least 5+ years of telecommunications experience and outstanding oral and written skills. Your educational background should include a business degree coupled with strong current technology skills and computer literacy. A BSEE/CS or equivalent coupled with an MBA would be a plus.

ELECTRONIC TECHNICIANS

We seek team players who can set up electronic and electrical test apparatus, perform minor trouble-shooting and record test data. Will also construct, service, repair and/or make modifications to prototypes.

Positions require an Associates Degree in Electronics or equivalent work experience. An ability to read technical manuals, blueprints and schematics is essential.

We offer opportunities for advancement, a comprehensive salary and benefits package. Send/Fax your resume and salary history to: Human Resources, Department J-31, Tellabs, Inc., 4951 Indiana Avenue, Lisle, IL 60532.

Fax #708-969-7314

UNIX PROGRAMMERS

E-Systems Garland Division, a leading supplier of high technology electronic systems, is seeking experienced UNIX Programmers.

Positions involve software development, software test, tools development and software integration. Qualified applicants must have a four-year technical degree and a minimum of three years of recent programming experience in working with UNIX and "C" on large-scale computer systems. Knowledge of systems and network interface and relational databases desired. Preference given to those with object oriented design or expert systems experience.

E-Systems offers competitive salaries and an outstanding benefits program that includes medical and dental insurance, a 401(k) plan, and a company-paid Employee Stock Ownership Plan. Qualified candidates should send a resume detailing work experience and salary history to: Locke Alderson, Senior Staffing Representative, E-Systems, Inc., Garland Division, Department 31 UX, Post Office Box 6600023, Dallas, Texas 75266-0023.

SUNBELT OPPORTUNITIES

- BSEE Director Linear I C Design to $80K
- BSEE Director Software Test Development to $80K
- BSEE Commercial Switch Mode Power Supply Design to $60K
- BSEE Commercial Switch Mode Power Supply Design to $60K
- BSCS Commercial DSP Software Eng. Ti chip C25 to $55K
- BSCS SW Project Leader X.25 to $55K
- BSCS Software Development Eng. Unix kernal to $55K
- BSCS Software Development Eng. R/T Embedded VAXELIN to $55K
- BSCS Software Test Evaluation Engineer to $50K
- BSEE Director ASIC Marketing to $55K
- BSEE VHDL Modeling Engineer to $55K
- BSME Mechanisms design, gears, motors, plastic housings to $50K

U.S. Citizenship Required. An Equal Opportunity Employer, M/F, V, H.
SOFTWARE ENGINEERS

Real-time Embedded Software Development with Ada!

Bring your top-notch software engineering skills to Wilcox Electric, Inc., a leader in the electronics communication industry for over 50 years. Here, you’ll apply the latest tools and technologies to real-world challenges.

Associate to senior-level positions are available for individuals with a BSEE/CS and two+ years experience with real-time embedded software development using Ada. Experience with structured or object-oriented development methodologies in a DOD-STD-2167A environment is a must: CADRE TEAMWORK and ALSYS ADA experience is a plus.

At Wilcox, we have the resources and opportunity you need for a challenging and rewarding career. Plus, our location in Kansas City offers a great quality of life as well as many recreational and cultural activities.

For immediate consideration, FAX your resume to (816)453-3084 or mail it to: Teresa Griffin, Wilcox Electric, Inc., Dept. EDN-M, 2001 N.E. 46th Street, Kansas City, MO 64116. An equal opportunity employer.

WILCOX

TELECOMMUNICATION TECHNOLOGY DEVELOPMENT

WilTel has become a leader in the fiber-optic telecommunications industry by completing an aggressive network construction and acquisition program that in just five years has spanned the nation with 11,000 miles of fiber. WilTel is now fully focused on developing and marketing new technology and services. WilTel has formed an Advanced Technology and Development Group to implement a broadband network. Located in the Woodlands of South Texas, away from the day-to-day operations at WilTel’s Tulsa-based headquarters, this group is using state-of-the-art tools and techniques to create breakthrough telecommunications technology.

Software Development Engineers

Team leaders and staff engineers with object-oriented design capabilities are needed for work on next generation network management and/or central office switching modules. Experience with real-time switching applications such as call processing, signaling, high-speed packetized data applications, and graphics user interfaces is highly desirable. Must have experience with object-oriented design using SMALLTALK, Object-Oriented C or C++.

Systems Development Engineers

Team leaders and systems engineers are needed for challenging development work including network planning, network management, fault tolerant high speed control, congestion management, bandwidth policing, protocol conversion, interworking units, cell multiplexers, and routers. The initial services include Frame Relay, SMDS and ATM. Experience with ATM, Fast Packet technology, B-ISDN, SONET. DS3. DS1 is applicable.

These exceptional career opportunities require BSCS or BSEE credentials and a high performance track record.

WilTel offers competitive salaries and an excellent benefits package. If you are qualified and have the determination to work for a leader, please submit your resume to: Williams Telecommunications Group, Inc., Human Resources Dept. #JVA, P.O. Box 21348, Tulsa, OK 74121

WITTEL

Equal opportunity employer

ALPHA

PRODUCT PLANNING MANAGER

Provide architecture definition and competitive analysis for advanced general purpose and application specific PLD products. You’ll also develop software interfaces between Altera PLD compilers and workstation schematic capture and simulation tools. Requires a BS/MSEE with 5-10 years’ system/logic design or applications engineering experience. Good communication skills and experience with PLDs are essential.

IC DESIGN ENGINEERS

Design high performance Erasable Programmable Logic Devices. Requires a BSEE and 2 years’ related semiconductor experience, including verification, simulation, product characterization and circuit design. Contributions to several projects, from design start to production release is preferred.

ADDITIOnAL OPPORTUNITIES

• Test Engineer (Q2/62)
• Device Yield Engineer
• Software Engineer
• Layout Design Engineers

Related degrees and experience required.

Please send your resume to: Altera Corporation, Human Resources, 2610 Orchard Parkway, MS-1101, San Jose, CA 95134-2020. Principals only. No phone calls, please. EOE

ALTERA

Product sales and profit have more than doubled at Altera. We are looking for engineers and managers to help us keep Altera’s name at the forefront of technology. We invented high density CMOS Erasable Programmable Logic Devices (EPLDs) and associated computer aided engineering development systems. Now, we have our name on the industry’s broadest line of CMOS Programmable Logic Devices. Your decision to join Altera will be a step into a bright future. We can boast record sales and profitability and a commitment to provide our employees with tools and resources to be the best they can be. Join us now. Our future is you!

Cambridge University Computer Laboratory

Our success is built by people like you. People with the commitment and motivation to help us keep Altera’s name at the forefront of technology. We invented high density CMOS Erasable Programmable Logic Devices (EPLDs) and associated computer aided engineering development systems. Now, we have our name on the industry’s broadest line of CMOS Programmable Logic Devices. Your decision to join Altera will be a step into a bright future. We can boast record sales and profitability and a commitment to provide our employees with tools and resources to be the best they can be. Join us now. Our future is you!
Micron Technology, Inc., a leading semiconductor manufacturer, has the following positions available in Boise, Idaho for:

PROGRAMMER/ SYSTEM ANALYSTS

Qualified applicants should have 1+ years experience in at least two of the following areas:

- FORTRAN, PASCAL, OR COBOL PROGRAMMING
- C++ OR OTHER OOP LANGUAGES
- OBJECT ORIENTED ANALYSIS, DESIGN OR PROGRAMMING
- 4GL EXPERIENCE
- STRUCTURE ANALYSIS AND DESIGN
- RELATIONAL DATABASES - SYBASE
- DEC VAX/VMS OR UNIX® OPERATING SYSTEM
- PROGRAMMING IN A MANUFACTURING SEMICONDUCTOR ENVIRONMENT
- ASYNCHRONOUS EQUIPMENT CONTROL/ ROBOTICS

Accelerate the process to personal and professional success with a principal leader in memory technology. We offer competitive salaries and benefits as well as the beautiful setting of our Boise, Idaho headquarters. Please send your resume to Micron Technology, Inc., 2805 E. Columbia Rd., Boise, Idaho 83706 or fax your resume to (208) 368-4641. We are an equal opportunity employer. U.S. Permanent Residency Required.
Now you can replace a fistful of components, and drive power FETs and IGBTs with one cost-effective part: The IR2110 monolithic dual channel 2A gate driver with floating high side and ground reference low side.

Count your design time in hours instead of days. And cut assembly time to a fraction.

The IR2110 runs as fast as it designs. With operation above 1 MHz. On-chip bootstrap. Plus matched channel delay within 10 ns. That's right. 10 ns.

It takes good care of your circuit too, with gate under-voltage protection.

And latched shutdown makes current mode control both simple and easy.

Is it rugged? 50 V/ns dv/dt at -55 to 150°C in plastic. Versatile? Operates off 12 to 500 V rails with 5 to 20 V input, in any circuit topology. Reliable? The IR2110 meets the same high standards as IR's incomparable HEXFET® power MOSFETs.

Call (800) 245-5549 for more information. We'll get it off the ground and on your desk in no time.
.050 centerline stackers. Close, closer, closest.

THIS IS AMP TODAY.

Surface-mount stack heights: .250"/.320"/.390"

AMP and AMPMODU are trademarks of AMP Incorporated.
AMPMODU 50/50 Grid Connectors give you a choice of parallel pcb stack heights: .390", .320", and a very close .250" (the tightest in the industry). So you can squeeze everything possible out of (or into) your design.

This surface-mount system utilizes a .050" contact grid in double row, polarized shrouded headers and receptacles, and offers our exclusive plated copper alloy holddowns. On standard .062" thick boards, the barbed holddowns do their job without protruding through, allowing surface mounting on both sides. And holddowns are soldered during reflow, providing long-term strain relief.

Dual-beam receptacle contacts and duplex gold plating provide high reliability, in selected sizes from 10 to 100 positions. Dimensional tolerances, reference datums, holddown characteristics, and packaging support robotic application; materials are fully compatible with IR and vapor phase reflow processing.

Read the writing on the wall. You don't want to compromise your image with graphics that don't paint the best picture. With IBM's new line of graphic adapters, you don't have to.

IBM has unveiled new levels of price/performance for fast 2D and 3D solids graphics applications. And the faster you can visualize data, the faster you can get your ideas across. Within the RISC System/6000" family of POWERstations, you can get graphics performance that will really help you make your mark. For instance, the G4x graphics subsystem can draw 800,000 2D and 3D vectors and 80,000 Lighted Gouraud-shaded triangles per second, and gives you up to 16.7 million colors to work with to really showcase projects such as solids designs and scientific visualization.

When you really want to display your vision, there's the POWERgraphics GTO

<table>
<thead>
<tr>
<th>2D Vectors/Second</th>
<th>Gt3</th>
<th>Gt4</th>
<th>G4x</th>
<th>GT0</th>
</tr>
</thead>
<tbody>
<tr>
<td>650K</td>
<td>650K</td>
<td>800K</td>
<td>990K</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3D Vectors/Second</th>
<th>NA</th>
<th>400K</th>
<th>800K</th>
<th>990K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighted 3D Gouraud-shaded triangles/Second</td>
<td>NA</td>
<td>20K</td>
<td>80K</td>
<td>120K</td>
</tr>
</tbody>
</table>
that don't do you justice.

subsystem which produces almost a million 3D vectors and 120,000 Gouraud-shaded triangles per second, for fast, realistic shading effects.

And for those who need 2D graphics, for things like electrical design, there’s the Gt3 that delivers 650,000 2D vectors per second in up to 256 striking colors. Best of all, GTO, Gt4 and Gt4x clearly lead the way on all APIs including X Windows Systems, "GL," graPHIGS* and Motif."

These impressive graphics are all part of the family portrait of RISC System/6000 POWERstations and POWERservers— offering performance ranging from 9 to 25 MFLOPS and from 33 to 72 SPECmarks® and AIX; IBM’s enhanced version of UNIX. The brains behind the beauty.

Don’t accept a primitive picture, when you can have the picture of perfection. So, find out how RISC System/6000 graphics can do your masterpiece justice. Get in touch with your IBM marketing representative or Business Partner. For literature, call 1 800 IBM-6676, ext. 828. And paint your own picture.
The Power in Telecommunications

How component power is contributing to the future of telecom networks

Of all the developments in the 1990's, advances in telecom technology may well have the most profound impact on our daily lives.

The integration of speech/data and video technology, computers and communications systems will bring businesses and individuals closer together.

But as the power of communications increases, so must its reliability. And nowhere is that more important than in the power supplies which power the systems.

Here, Ericsson has been at the forefront of technology for decades, and is ready to provide many more innovative, highly reliable solutions in the years to come.

When the PKA DC/DC converter was launched in 1983 it represented the first real power supply 'component', starting a trend towards distributed power architectures which has gained global acceptance.

In 1988 these 25 - 40 Watt units were complemented by 15 - 18 Watt DC/DC converters in the PKC series. Power components the size of a credit card.

Both series boast a remarkable MTBF of over 200 years.

Ericsson continues to lead the way in smaller, more reliable power supplies for advanced power architectures. They are vital components enabling technologies which shape the telecom networks of the future.

A complete technical information pack is just a 'phone call away. Alternatively, just fax us the coupon.

Please send me your latest information

Name
Company
Job Title
Address
Telephone
Fax

Sweden Ericsson Components AB, Stockholm Tel:(08) 721 62 47 Fax:(08) 721 70 01
France Ericsson Components Europe, Guyancourt Tel:(01) 36 64 85 00 Fax:(01) 36 64 11 46
Germany Ericsson Components Europe GmbH, Neu-Isenburg Tel:(06102) 200 50 Fax:(06102) 20 05 35
Great Britain Ericsson Components Europe, Coventry Tel:(0203) 555 047 Fax:(0203) 225 800
Hong Kong Ericsson Components AB East Asia, Wanchai Tel:575 6500 Fax:575 6500
Italy Ericsson Components Europe, Milano Tel:(02) 5520 035 Fax:(02) 5520 0451
Norway Ericsson Components A/S, Oslo Tel:(2) 650 191 Fax:(02) 644 138
United States Ericsson Components Inc, Richardson, TX Tel:(214) 977 550 Fax:(214) 680 1099

ERICSSON

CIRCLE NO. 126
Techniques let you write general-purpose Spice models

By incorporating flexibility into your Spice models, you'll develop a library of accurate models that you can adapt for many applications, rather than reinventing the wheel every time. An example of such a model is a universal power converter.

David Caldwell, Consultant

Computer simulations can save you valuable time by letting you work out the major bugs in a circuit design before building it in hardware. Unfortunately, if the device models you need aren't readily available, you may not be able to make substantial design improvements before committing to hardware. One way to increase your model library is to build models general enough so you can adapt them to a variety of applications. Such models will save you time in future simulations by eliminating the need to develop new models. Also, over time these reusable models reduce the likelihood of encountering errors.

Creating a universal power-converter model illustrates several techniques for adding flexibility to Spice models. This model simulates the buck, boost, and buck-boost pulse-width-modulated (PWM) topologies; continuous and discontinuous conduction modes; operating-point, large-signal transient, and small-signal frequency-domain analyses; and positive and negative polarities. The model's versatility lets you simulate a wide variety of converters quickly and easily.

You can simulate capabilities with a flexible model that you cannot simulate with specific-case models. For example, the universal power-converter model can simulate multiquadrant converters, such as uninterruptible power supplies and power-factor-correction units. These subsystems require a versatile model because each cycle of processed power (usually 60-Hz line voltage) forces the converters to operate under a variety of conditions. To perform a complete transient simulation, the model must automatically adjust its transfer function to handle all combinations of conduction modes and polarities.

The converter model is a simple power-transfer subcircuit with several enhancements. You can add flexibility to other Spice models by using the same enhancement techniques. These techniques let you transform a specific subcircuit into a versatile analysis tool for a broad spectrum of applications. The techniques include

- Using time averaging to simplify switching networks
- Taking advantage of application similarities

The software listings in this article are available on EDN's computer bulletin board system (BBS). Phone (617) 558-4241 with modem settings 300/1200/2400, B, N, 1. Access freeware SIG and specify DSS/DE/1 followed by (k)eyword search for "MS #215".

EDN September 16, 1991
Writing general-purpose Spice models lets you reuse existing models rather than creating new models for every application.

- Generating external control ports
- Using diode networks to simulate if-then-else conditions
- Performing calculations via dependent sources
- Using internal feedback to realize difficult expressions.

Fig 1 shows a functional power-converter subcircuit. A dc transformer, an ideal device linear down to dc, represents the power transfer between the reference (R) and diode (D) ports and the inductor (L) and diode (D) ports. It transfers energy by translating voltage levels without power losses. By arranging the R, L, and D nodes, you can simulate the various converter topologies, so that the input current satisfies the derived equations.

The transformer has a variable turns ratio, N, which lets the simulator change the transformer's gain as a function of the external voltage at node C1. The simulator adjust the turns ratio through a high-gain feedback network until the resultant current flow from node R to node D is equal to the value the simulator calculates. The simulator performs the math using dependent sources and diode networks.

Spice has difficulty simulating switching networks directly, and calculating transient solutions is time consuming. In power converters, the corner frequency of the LC output filter is much lower than the switching frequency to minimize output-voltage ripple. To observe the response to a sudden load change, you must look at a time frame that is very long compared with the switching period, and Spice's algorithms do not handle the disparity in time constants very well.

You can't perform ac analyses of the subcircuit because Spice generates a linear network based on a single operating point. Switches are either closed or open in the discrete-time model, and neither condition is representative of a switch's average state. You must replace the switching components with a time-averaged model to obtain meaningful results.

The time average is the peak amplitude of the switching waveform multiplied by the duty cycle. Replacing the switching waveform with the time-averaged waveform in Spice costs you the ability to

Glossary of terms

Boost topology—The PWM power-converter topology in which the magnitude of the output voltage is always greater than that of the input, and the polarities of the two are the same.

Buck topology—The PWM power-converter topology in which the magnitude of the output voltage is always less than that of the input, and the polarities of the two are the same.

Buck-boost topology—The PWM power-converter topology in which the magnitude of the output voltage can be greater or less than that of the input, and the polarities of the two are opposite, unless an isolation transformer is used.

Continuous conduction mode—The mode in which the inductor current never reaches zero.

Discontinuous conduction mode—The mode in which the inductor current reaches zero every cycle.

Duty cycle—The ratio of the switch on time to the switching period.

Pulse-width modulation (PWM)—Duty-cycle variation of a fixed-frequency switching waveform.

Switch-mode power converter—A high-efficiency circuit that utilizes pulsating switches and magnetics to transform voltage levels.
see period-to-period transient responses. In return, time-averaging waveforms simplify the circuit, eliminate problems associated with simulating vastly different time constants, and provide accurate results in both the time and frequency domains. Sampling theory states that time averaging waveforms is valid at frequencies as great as half the switching frequency.

To create a time-averaged model in Spice, derive the transfer function for the switching device and generate the Spice-equivalent network to realize the equation. For an explanation of time averaging for the input current of a buck converter in both continuous and discontinuous modes, see box, "Determining the conduction mode."

The dashed box in Fig 1 shows the Spice implementation of a converter power section. The subcircuit is a time-averaged model of a switch-mode power converter. Fig 2 shows models of the three basic PWM power-converter topologies: buck, boost, and buck-boost. Note that all three models contain the same elements but in different configurations. You can derive most power-converter models from this primary set.

All three topologies operate under the same basic

Determining the conduction mode

The time-averaged value of the input current for both the discontinuous and continuous operational modes is a control parameter for the Spice power-converter model. The three topologies use the same model with rearranged nodes, so the buck-converter subcircuit (Fig 2a in the main text) can illustrate the analysis for all three.

In discontinuous-mode operation, the inductor discharges completely during every cycle. During each cycle the inductor current is zero at some point, and neither the switch nor the diode conducts. The switch pulse width causes the magnitude of the average inductor current to vary and is unaffected by previous cycles. You can characterize discontinuous-mode converters as PWM-controlled current sources because their output voltage is load-dependent.

In continuous-mode operation, the inductor discharges partially every cycle, so either the switch or the diode is always conducting. The output voltage must adjust to balance the volt-second product across the inductor at any given duty cycle. The average inductor current will automatically vary over a number of cycles until it satisfies the load at the resultant output voltage. Because the output voltage of continuous-mode converters is not load-dependent, these converters are modeled as PWM-controlled voltage sources.

A converter regulated to a constant output voltage operates in discontinuous mode at light loads and approaches continuous mode as the load draws more output current. If a simulator solves the current equations for both modes of operation, the value of greater magnitude is the correct one. When the calculated discontinuous current is greater than the calculated continuous current, the load is not heavy enough to push the converter to continuous-mode operation. Therefore, the discontinuous-current value is correct, and you can ignore the continuous-current value.

You can confirm the validity of the conduction-mode equations you derive by comparing these equations to the equations in well-established and proven references, such as Refs 1 and 2.
Diode networks can simulate if-then-else conditions.

principles. Closing the switch causes the inductor to charge. When the switch opens, the inductor kicks back and discharges its stored energy through the diode into the capacitor. The charge storage of the capacitor holds the output voltage steady. A simple way of looking at this operation is that the switch and diode generate a PWM waveform that the inductor and capacitor average.

The time-averaged dc transformer subcircuit shown as the Unicon (universal converter) 4-terminal block in Fig 1 replaces the nonlinear switch and diode of Fig 2. Adding the inductor and capacitor gives the converter the proper dynamic response. Rearranging the power nodes of the model lets you simulate any of the three converter types.

You can obtain even greater model versatility by taking a critical parameter of the circuit, such as C2 in Fig 1, and defining it as a variable whose value you set via a control voltage. This control voltage lets you adjust the characteristics of the circuit and permits more types of analysis. C2 lets you examine the transient response to a control-voltage step in the time domain and measure gain and phase as a function of the control voltage in the frequency domain.

The power-converter model has two control nodes. C1 is a user-accessible node that selects the duty cycle of the simulated switch. Internal control node C2 selects the turns ratio of the dc transformer, which simulates the average voltage across the switch and diode. The internal control node is necessary because the selected duty cycle cannot directly set the transformer’s turns ratio. The relationship between the duty cycle and the turns ratio is different for the discontinuous and continuous conduction modes, so the simulator must mathematically manipulate the model to deter-

Spice convergence

The biggest drawback of flexible Spice models is that they tend to be more complicated than single-application models. Therefore, you may encounter more difficulties in the convergence of the computer algorithms. The universal converter model used with Intusoft’s (San Pedro, CA, (213) 833-0710) IsSpice PC simulation package has successfully analyzed many power supplies. But expecting to never encounter convergence problems is unrealistic.

If convergence problems do arise, the .NODESET command lets you estimate any node voltage and allow the Spice algorithm to use that voltage for the first iteration of its computation. Setting the expected output voltage and duty cycle of the power converter increases the probability of convergence if your initial simulations fail to converge.

You can also aid convergence by using the .OPTIONS command to modify parameters. You can instruct the simulator to increase the number of iterations it can take to find a solution by changing the values of ITL1 and ITL2. You can increase the error tolerance of the program by altering RELTOL (relative tolerance) and ABSTOL (absolute tolerance).

A less sophisticated approach to obtaining convergence is to alter the topology of the circuit without changing the circuit’s function. The power-converter subcircuit of Fig 4 and Listing 1 of the main text is the result of some experimentation. There are several other ways to realize the same transfer function, but the one shown has the best convergence.

One alternate way to arrange the circuit is to switch the voltage and current sources of the dc transformer. Another way to realize the circuit is by setting the input current of the converter with a current source and varying the output voltage until the output power is equal to the input power. Because altering the circuit may be time consuming, you should only attempt such modifications after trying the .NODESET and .OPTIONS commands. Ref 3 discusses more methods to aid Spice convergence.
mine the proper turns ratio given the operating conditions of the converter.

In addition to rectifying circuits, diodes are useful for controlling Spice’s mathematical operations. This diode action is similar to the flow of a software program in which an executed expression is a function of the response to an if-then-else statement.

Diode networks in the power-converter subcircuit determine if the model is operating in the discontinuous or continuous conduction mode. If the simulator calculates the current for both modes of operation, the value of greater magnitude is the correct one. The diode network in Fig 3 models this effect. The left half shows the diode ORing scheme for positive polarity currents; the right half shows the scheme for negative currents. Either of the networks would work alone if you knew the polarity of the current, but both networks are necessary to make a flexible model that can handle currents of either polarity.

By taking the voltage across the load resistor in the positive network (node X) and subtracting the load-resistor voltage of the negative network (node Y), you can find the correct magnitude and polarity of the converter’s input current. If the current is positive, the voltage at node X will be the greater of the calculated currents for both conduction modes, and the simulator sets the voltage at node Y to zero, and the voltage at node Y represents the absolute value of the current. The simulator negates the voltage at node Y when it again calculates the difference between the voltages at nodes X and Y.

The diode network determines the greater of the two voltage magnitudes while retaining the original polarity of the signals. This characteristic means that you can change conduction modes or polarities during a simulation, and the model will automatically modify its transfer function to fit the new operating conditions. Thus, you can use the Spice subcircuit to model and simulate multiquadrant converters such as uninterruptible power supplies and power-factor-correction units.

Note that using diodes to select which expression executes is an approximation that includes the error of the forward voltage drop of the diode. Fortunately, you can minimize this error. Multiplying the signals by a scale factor can ensure that the result is very large compared with the diode drop. You might also reduce the forward voltage of the diode by changing its default parameters. Increasing the value of the saturation current or reducing the emission coefficient will also minimize the approximation error.

Fig 1-The complete Spice universal power-converter model contains four subcircuits, which perform lossless energy transfer, generate the duty cycle, and calculate the reference-diode current and the turns ratio.
tive appearance of the polynomial format, it allows Spice to execute many types of expressions. You can even implement division and other desirable functions that don't appear to fit this format. Spice literature, such as Ref 3, provides examples of many of these functions.

Spice calculates the input current to the power-converter model using polynomial-dependent sources. Although the polynomial format is powerful, Spice doesn't perform some computations easily. Carefully selecting parameters may help circuit generation and simulation run more smoothly.

By using dependent sources and the diode network, the op amp forces the input current of the converter model to equal the reference value that the simulator calculates. Fig 1 illustrates this internal feedback. The op amp multiplies the difference between the measured current and the calculated value by 1,000,000. The simulator uses the result to select the dc-transformer turns ratio. An increase in the turns ratio results in a decrease in the input current; thus, this operation is similar to that of a high-gain op amp with negative feedback.

You can use internal feedback when an expression is difficult to derive or realize in Spice. In the converter model, deriving the turns ratio of the dc transformer as a function of the duty cycle for the discontinuous mode is not trivial. Deriving the input current for both conduction modes is easier. You can use high-gain negative feedback to satisfy the derived equations.

Fig 4 is the complete Spice schematic of the universal power-converter model; Listing 1 is its associated netlist. The model limits the duty cycle to between 1 and 99%, which corresponds to voltage values of 0.01 to 0.99V at control node C. The model also limits the turns ratio of the dc transformer to values greater than 1, which is the value that represents the operational limits of the converter topologies. Scaling factors convert the voltage across the sense resisters to current and amplify voltage signals so that the relative voltage drops across the diodes are negligible.

You can further generalize the model to simulate additional converters by altering one value. Inserting the variable T/2L in the discontinuous-current calculation (EDIS in Listing 1 and Fig 4) tells the subcircuit the switching period and the output inductance value of the converter. Substitute T/2L for 0.02273 in the Spice listing as follows:

EDIS 12 0 POLY(2) 1 3 9 0 0 0 0 0 0 0 0 0 0 T/2L

References

Author's biography
David J Caldwell works as a consultant in the field of analog-circuit design and analysis in Hermosa Beach, CA. He has worked on power and control systems and has been responsible for developing custom hardware in a variety of applications. David has a BSEE from the University of Michigan and an MSEE from the University of Southern California and is a member of the IEEE.

Article Interest Quotient (Circle One)
High 497 Medium 498 Low 499
At 1 Meg
There's Simply
No Faster SRAM.

1 Meg. 20ns. Available Now!
Order them in a 256K x 4 or 128K x 8 configuration.
In a high density plastic SOJ package. Part of a full line of fast SRAMs.
For samples, orders or more information, call 1-206-834-8959.

SHARP
FROM SHARP MINDS
COME SHARP PRODUCTS™

SRAMs • MROMs • FIFOs • PSRAMs • Core Micro • Displays • Opto • RF
Sharp Electronics Corporation Microelectronics Group 5700 N.W. Pacific Rim Blvd. Camas, WA 98607 (206)834-2500

EDN September 16, 1991
CIRCLE NO. 127
Mil/Pac™ high-density military power supplies. Now you can order Abbott’s full mil-qualified compact power supplies in both DC and AC input models. Mil/Pacs come in 20W, 35W and 50W configurations, with single (5, 12, 15, 24, or 28V) or dual (±12V; ±15V) outputs. DC-to-DC models accept input from 14V to 32V. AC-to-DC models accept 103.4 to 126.5V rms, 47-440 Hz single phase. All Mil/Pacs operate at temperature extremes from -55°C to +100°C. All are designed with a field-proven topology that has been verified by rigorous environmental stress screening. Mil/Pacs are available with or without MIL-STD-2000. Either way, the specs are worth reading. Just write us at 2727 South La Cienega Bl., Los Angeles, CA 90034. Or call (213) 936-8185.
"We saved over $19,000 at the demo!"

It's easy to find out more about CAPS! For your free information kit, call Jill Adams at 800-245-6696. Do it today!

C A H N E R S
CAPS®
Computer Aided Product Selection

CAHNERS...Computer Aided Product Selection

"CAPS® is a productivity-boosting engineering tool that helps you find, select, and specify ICs and semiconductors faster and easier than ever before."

"The microfilm system we purchased for IC and semiconductor search and selection just wasn't working out. It was hard to use and there weren't enough people using it to justify the cost. So, we decided to evaluate CD-ROM-based systems.

"While all this was happening, our purchasing people found a new IC vendor. They wanted to know if the new vendor made equivalents for some of our most commonly-used components. They thought we could get a better price. It would take us hours to find equivalents on the microfilm system, so we decided to challenge a couple of new CD-ROM-based systems.

"The first demonstration was a flop. Their system didn't even include the new vendor. Needless to say, we weren't impressed.

"Then Cahners came to demonstrate the CAPS system. In less than 20 minutes, CAPS found equivalents for the components we wanted. I figure we saved over $19,000 at the demo!

"Oh yes...we bought the system!"

— Frank Lucas
Test Engineering Manager
Welch Allyn
Data Collection Division

Updated monthly, the CD-ROM (Compact Disc—Read-Only Memory) based CAPS system gives you fast, easy, query-driven access to technical specifications and applications data for over 575,000 ICs and semiconductors made by nearly 500 companies worldwide. Best of all, CAPS provides instant access to hundreds of thousands of pages of complete, unabridged manufacturers' datasheets, so you have everything you need right at your fingertips.
At Zilog we're not afraid to do things a little differently. Has it been worth it? We think the facts speak for themselves.

We've never been much for making grandiose claims about ourselves or our products. The proof is in the performance. For instance, Zilog has put together a continuing streak of month-to-month profitability that started back in February of 1986. Our new product sales have continued to grow steadily, as have our overall sales and net income.

Our achievement is due to the impressive efforts of a very talented and dedicated team of employees, to the fact that we continue to offer some of the industry's most innovative, technologically advanced products and services, and to an insightful management strategy. The bottom line is this: We said we were going to make this company a success, and we did it.

Others may proclaim advances in highly complex devices for workstation and PC environments. With an eye on the real needs of the wider marketplace, we've been steadily developing high integration, value added 8- and 16-bit solutions for the volume consumer, communications, computer peripheral, industrial and military arenas. At the same time, we've continued to develop 32-bit RISC devices, and we are the first in the industry to offer a highly sophisticated microcontroller with an on-board DSP. Our success in the marketplace speaks volumes about the appropriateness of our strategy.

These days everybody's talking about ASSPs. Beginning in 1985, Zilog began to implement its own ASSP strategy which we termed Superintegration™ technology.
At Zilog, we’ve been producing ASSPs and refining Superintegration technology longer and better than anyone else, which is why we provide the largest library of familiar cores and cells in the industry. And that means a significantly quicker migration path to upgrades and higher performance designs. Because we have our own fabrication facilities, we can ensure that every new part we produce will have the same high quality for which Zilog has always been known.

Zilog’s highly regarded Datacommunication, Intelligent Peripheral Controller and Microcontroller families offer consistent performance that speaks for itself. Our name stands solidly for value, quality, reliability and innovation in products and services . . . and in business strategy. Enough said.

To find out more about any of Zilog’s Superintegration product families, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008-6600, (408) 370-8000.

EDN September 16, 1991
Zilog Intelligent Peripherals

Get Smart. Fast.

Zilog's Z80® MPU Family: It's the smartest way to add impressive performance and innovation without having to spend time learning and writing new code.

It's little wonder the Z80 8-bit MPU is the world's most popular 8-bit microprocessor. It's the only CPU with an architecture that makes task switching so fast, simple and accurate. In fact the Z80 outperforms many 16-bit parts. And that makes it especially valuable as the core for the wide range of Superintegration™ devices that make up the industry's leading family of intelligent peripheral controllers.

So if you're looking for a way to upgrade an existing design, or for the extra performance you need for something entirely new, the smart move is to look to the Z80 MPU family. You'll find the combinations of features that will give you just what you need, including the high-performance Z181™ Zilog's Smart Access (SAC™) Controller. And best of all, since you're already familiar with the Z80 code, the migration path couldn't be quicker.

Others may choose to concentrate on highly complex solutions for workstation and PC environments. But we think the wiser strategy is to go on developing high integration, value added 8- and 16-bit solutions for the intelligent peripherals, data communication and consumer microcontrollers markets. At the same time, we're continuing to develop 32-bit RISC and DSP devices and to produce some of the most sophisticated ASSPs in the industry.
It's very clear that ASSPs are the best option for a rapidly growing number of designs. At Zilog we've been producing ASSPs and developing Superintegration design methodology longer and better than anyone, which is why we have the largest library of familiar cores and cells in the industry. You can be sure Zilog will continue to develop new members of the Z80 MPU family. And, because we have our own fabrication facilities, you know that every new part will have the same high standards for quality, cost/performance and reliability for which Zilog has always been known.

The smart thing to do is to find out more about the Z80 family of Intelligent Peripheral Controllers, or any of Zilog's rapidly growing Superintegration product families. Contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008-6600, (408) 370-8000.
Zilog's SCC™ and USC™ datacom controller families give you a tremendous selection and the most flexibility in protocols, system interfaces and data transfer rates in the industry.

At Zilog, we understand our markets. We provide the devices that meet the needs of datacommunication designs right now, yet we always have an eye on the future. We offer serial communications controllers that ensure quick, easy and flexible interconnection of hosts and peripherals into LANs and WANs. And we provide flexibility in protocols allowing designers to build CPU-based boards with custom software, rather than hardware or firmware.

Our SCC and USC families of 8- and 16-bit SCC controllers range from Serial Input/Output controllers (SIO™ controller) and the versatile industry standard SCC controller that's used in all Appletalk® networks... to the Enhanced SCC (ESCC™ controller), which boosts performance up to 10 times. Plus our Integrated USC (IUSC™ controller), which provides sophisticated buffer management capability, is perfect for handling fast, packetized data across networks. And you get simplified, faster system operation with an on-board DMA. Since all these controllers offer code compatibility in their families, you're also assured a quick, easy migration path.

There's no question that ASSPs are the best option for a rapidly growing number of designs. At Zilog we've been producing ASSPs and refining Superintegration™ design methodology longer and better than anyone, which is why we provide the largest library of familiar
cores and cells in the industry. We’re continually developing new members of Zilog’s SCC and USC controller families, and, because we have the manufacturing control that comes from having our own fabrication facilities, you can rest assured that every exciting innovation will reflect the high standards of quality and reliability for which Zilog is known . . . and all the flexibility you need for today’s complex designs.

To find out more about Zilog’s Datacom families, or any of our rapidly growing Superintegration product families, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008-6600, (408) 370-8000.
No Matter What the Application, **SBE Fits.**

Matching your high-speed data communications requirements with a quality supplier has never been easier. Whether you're a manufacturer of mini/superminicomputers, workstations or high-performance data communications products, only SBE provides a perfect fit.

Only SBE offers a complete line of intelligent high-performance communications controllers for all major interface technologies: FDDI, Token Ring, Ethernet and High Speed Serial. Only SBE adds premium features, without a premium cost, for the best price/performance in the industry.

Add integrated hardware/software solutions; availability in VMEbus, Multibus and SBus; plus legendary development assistance and continuing product support.

Discover how SBE's intelligent high-performance controllers can meet your LAN and WAN interface requirements. Turn to SBE today.

For fast action, call: 1-800-347-COMM

Germany: 0130-810588
United Kingdom: 0800-378-234

SBE, Inc., 2400 Bisso Lane, Concord, CA 94520
Phase compensation extends op amp stability and speed

Because most op amps lack provision for altering internal phase compensation, circuit designers often add external compensation to counter the effects of capacitance loading and parasitic capacitance and inductance. External phase compensation also permits the use of lightly compensated, high-speed amplifiers in low-gain circuits.

Jerald Graeme, Burr-Brown Corp

To counter the effects of capacitance loading and parasitic capacitance and inductance, circuit designers can use one of four external phase-compensation methods that suit almost any application. Two of the methods specifically address capacitance loading requirements by controlling the amplifier’s open-loop response. The first method requires empirical component selection, but also offers a unique filtering action. The second method removes much of the empirical selection, but can restrict output voltage range.

The other two methods address any phase compensation requirement by controlling the $1/\beta$ curve of the amplifier feedback. These two methods also offer an opportunity for increased slew rate. The second $1/\beta$ method is especially useful for the voltage-follower configuration. An analysis of differential-input configurations defines which method out of the four is best for your design.

All four methods satisfy the external-phase compensation that a capacitive-load drive commonly requires. As Fig 1 illustrates, capacitive loading degrades frequency stability. Load C_L reacts with the op amp’s open-loop output resistance (R_o) to produce an added pole in the feedback path. This pole transforms the amplifier’s open-loop response as illustrated by the unloaded and loaded curves of the plot. Phase shift from the added pole introduces response ringing and can even cause oscillation.

Adding the inverse feedback-factor curve, $1/\beta$, to the open-loop response quantifies this response degradation. The nature of the intercept of this curve with the amplifier’s open-loop gain predicts stability conditions. The difference in the slopes of the two curves relates to the net phase shift in the feedback loop. At the intercept, internal phase compensation limits this slope difference, or rate-of-closure, to preserve stability (Ref 1). For Fig 1, the $1/\beta$ curve has zero slope, and the loop phase-shift depends only on the slope of the amplifier’s open-loop response. In the unloaded case, this response has a single-pole roll off at the intercept with the rate of closure of 20 dB/decade at the intercept. This rate-of-closure predicts a stable 90° phase shift in the loop.

In the loaded case, a second pole at $f_p = 1/2\pi R_s C_L$ alters the amplifier’s open-loop response. The resulting 2-pole, or 40 dB/decade, response slope signals a phase shift that eventually reaches 180°. If the phase shift reaches 180° at or before the intercept with the $1/\beta$ curve, oscillation results. Even if oscillation does not occur, this second pole increases response overshoot and ringing, gain peaking, and bandwidth limiting. The
When driving a capacitive load, you commonly need to add external phase-compensation to the op amp.

Phase margin (the amount of phase shift <180°) predicts the actual response degradation (Ref 2). Typically, a phase margin between 45 and 60° is desired to limit overshoot to 30% and peaking to 3 dB.

For the capacitive-load case of Fig 1, the net phase shift at the intercept is \(\phi_m = 90° + \tan^{-1}(f/f_p) \). Here, the 90° shift results from the first amplifier pole, and \(f_p \) is the frequency of intercept with the 1/\(\beta \) curve. This intercept frequency is also the bandwidth limit of the circuit. At the intercept, the feedback demand for gain and the available amplifier gain cross. Beyond this frequency, there is insufficient amplifier gain for continuance of the full-circuit response.

Graphical analysis provides insight

You can obtain a design equation for \(f_p \) by a graphical analysis of Fig 1's curves. In the unloaded case, the response has a maximum bandwidth defined by the unity-gain crossover frequency \(f_c \). For gains higher than unity, the \(\beta \) factor reduces the maximum bandwidth to the frequency \(\beta f_c \). With capacitance loading, the intercept retreats along the 1/\(\beta \) curve to an intercept frequency, \(f_p \), as shown. You can define this frequency in terms of \(\beta f_c \) and \(f_p \) through a geometric evaluation of the curves. Note that the dashed line indicating \(f_p \) forms right triangles bounded by the 1/\(\beta \) curve and the two open-loop responses. The hypotenuse of the loaded triangle has a 2-pole slope, or twice the slope of the hypotenuse of the unloaded triangle. Thus, the base of the loaded triangle is one-half the length of the base of the unloaded triangle.

Given the logarithmic nature of the frequency axis, this relationship between triangle bases is expressed as \(\log(f_p) - \log(f) = 0.5 \log(\beta f_c) - \log(f) \). Solving this expression for \(f_p \) defines this new bandwidth limit at the geometric mean of \(f_p \) and \(\beta f_c \). And, for Fig 1,

\[
BW = f_p = \sqrt{f_p \beta f_c}
\]

For the specific components of Fig 1, \(R_s = 30 \Omega \), making \(f_p = 530 \text{ kHz} \). Also, \(f_c = 6 \text{ MHz} \), \(\beta = 0.5 \) and the resulting intercept frequency and bandwidth limit is \(f_p = 1.26 \text{ MHz} \). Then, from before, \(\phi_m = 90° + \tan^{-1}(f/f_p) = 157° \). The resulting phase margin is \(\phi_m = 180° - \phi = 23° \), which predicts marginal stability.

Little can be done to restore bandwidth under capacitive loading, although the technique in Fig 3, described later, offers some improvement. More important is the restoration of stable performance, which requires added phase compensation. The most frequently used external-phase compensation permits stable drive of large capacitive loads through the addition of a decoupling resistor and a feedback capacitor. Fig 2 shows this configuration, with \(R_C \) and \(C_C \) providing the phase compensation. In this circuit, \(R_s \) is part of the total gain-setting network and is also integral to the overall phase compensation. For a voltage-follower circuit, you also need \(R_s \) for phase compensation. The circuit shown is a noninverting amplifier, but you can apply the compensation technique to any configuration.

However, using this technique with differential-input connections degrades common-mode rejection, as discussed later with Fig 6.

The Fig 2 phase compensation provides a bypass-feedback loop that takes control of the op-amp feedback at higher frequencies. With this compensation, the response of the primary feedback loop still develops a 2-pole roll off, but this response does not reflect op-amp-feedback conditions. Instead, the bypass-feedback loop retains stable feedback conditions and the response curve is largely unaffected by the capacitive

Fig 1—Capacitive loading of an op amp's output resistance introduces a second pole in the open-loop gain response for a -40 dB/decade slope at the 1/\(\beta \) intercept.
load. Compensation resistor R_c first isolates the op amp from the effect of C_L and then compensation capacitor C_c bypasses the primary feedback loop.

At first, the addition of R_c would seem to aggravate the problem because it moves the pole created by C_L to an even lower frequency, f_p'. Similarly, the addition of C_c causes the $1/\beta$ curve to drop to the unity-gain axis for the maximum possible demand on stability. As shown, the response curve of the primary loop has a well-developed 2-pole response at this curve's intercept with the $1/\beta$ curve. This action suggests poor frequency stability.

However, this response curve only represents the open-loop gain from the op-amp inputs to the circuit output. This curve does not represent the feedback conditions controlling the amplifier at higher frequencies. With two feedback paths, the op amp is controlled by whichever path supplies the feedback current to resistor R_1. At low frequencies, the impedance of C_c is large, and the feedback path through R_c and R_2 dominates. At high frequencies, C_c prevails and the response curve of the bypass loop is in control at the $1/\beta$ intercept. As a result, the bypass response curve represents the open-loop gain from the op-amp inputs to the op-amp output and not to the overall circuit output.

The amplifier input-to-output response normally provides stable conditions for gain or $1/\beta$ all the way down to unity gain. As shown, the resulting bypass response is almost unaffected by C_1, because of the decoupling provided by R_c. This response intercepts the $1/\beta$ curve before fully developing a 2-pole roll off and predicts good stability characteristics. In practice, Fig 2's OPA2604 drives the 10,000-pF load with only 12% overshoot and 0.3-dB gain peaking. For audio amplifiers like the OPA2604, this phase compensation permits stable drive of the capacitance of long shielded cables.

Component selection remains empirical

The actual choice of R_c and C_c in Fig 2 is complicated by the nature of the op amp's open-loop output impedance. This impedance is not simply resistor R_o as modeled in Fig 2. A typical op amp has an open-loop output resistance in the range of 100Ω to 1 kΩ at dc, but the output impedance drops dramatically to about 10 to 50Ω as frequency increases. At very high frequencies, this impedance may rise again. Also, the output impedance is sensitive to the instantaneous level of the amplifier's output current.

Numerous factors contribute to these effects, making complete modeling of output impedance not generally worthwhile. As a result, circuit analysis only offers a basic guide to selection of R_c and C_c, and the final choice is empirical. Note that circuit simulation with op-amp models is limited by this same constraint. Spice op-amp models typically include high- and low-frequency output impedances that are modeled by resistors.

Despite these limitations, guidelines can expedite the initial selection of R_c and C_c. First, you choose a value for R_c that is in the range of the op amp's high-frequency output resistance, typically 10 to 50Ω. To determine the high-frequency value of R_o, you find frequency f_p from a measured response plot and then $R_c = 1/2\pi f_p C_c$. You should not make R_c arbitrarily large, because the voltage drop across R_c detracts from the output-voltage range. This voltage drop does not introduce a gain error because R_c is enclosed in the primary feedback loop. Larger values of R_c also restrict the bandwidth, which is now limited to $f_p' = 1/2\pi(R_o + R_c)C_c$. Fortunately, even small values of R_c dramatically reduce the phase shift developed across R_o by C_L.

Fig 2—A decoupling resistor, R_c, and bypass capacitor, C_c, isolate an op amp from the effects of the capacitance load, C_L.
Phase-compensation methods involve the control of the amplifier's open-loop response or the control of the 1Ω curve of the amplifier's feedback loop.

Once R_c is selected, bench tests complete the phase compensation with the selection of C_c. A good initial value for C_c is one that causes the bypass path to take effect around the frequency f_{p'}. This choice avoids disturbance to the open-loop gain curve of the bypass loop and places the closed-loop bandwidth limit at f_{p'}. For very large capacitive loads, this initial C_c value is too conservative, but the required bench testing corrects for this. To calculate the initial C_c, you approximate the f_{p'} value by f_{p'} = 1/2π(R₀ + R_c)C_c, where R₀ equals the high-frequency value of the output impedance. Then, the break frequency of C_c with the R_c + R₂ path is set at this f_{p'} value. Assuming R_e = R₀, the initial compensation capacitance for Fig 2 is

\[
C_c = \frac{(R_0 + R_c)}{R_2}C_L, \quad R_e = R_0.
\]

With this capacitor in place, you adjust its value while observing the circuit's square-wave response. This adjustment is made by tests using the full range of C_L and load-resistance values expected in the application. Fortunately, the compensated circuit response has a low sensitivity to the resistance and capacitance values. The circuit retains degraded, but stable, response over a 100:1 range around the design center. Thus, 2:1 variations in R₀ due to manufacturing tolerances, do not greatly affect circuit stability. However, you still need bench testing to define the design center.

Compensation also filters noise

The phase compensation of Fig 2 also provides unique filtering that rejects amplifier noise better than most op-amp filter circuits (Ref 3). The op amp amplifies the input-voltage noise by a gain of 1/β = 1 + (R_e/R₁) in Fig 2 and in the analogous inverting configuration. To filter out high-frequency noise, it's common practice to bypass R₂ with a capacitor. However, this only removes the R_e/R₁ portion of the op amp's noise gain. Without R_c and C_c, the amplifier's high-frequency noise continues to receive a gain of 1/β = 1 up to the open-loop roll-off of the op amp's gain. This same condition is true for almost any op-amp connection, including active filters. For low-frequency applications, the inadvertently included op-amp noise can dominate noise performance.

In the Fig 2 configuration, the filter formed by R_c and C_L interrupts the continuation of a unity noise gain. At higher frequencies, the op amp is still under the control of a unity feedback factor as provided by the C_c feedback. Thus, amplifier input noise continues to receive a corresponding unity gain at high frequencies. However, this unity gain extends only to the op-amp output. Between this output and the actual circuit output is the lowpass filter of R_c and C_L. This filter shunts the high-frequency amplifier noise to ground. For filter applications, C_L is not incidental and you must add it as an element in the circuit design.

Pole and zero compensate for C_L

A second external-phase-compensation method removes most of the empirical component selection. However, this method does reduce the output voltage range when significant output currents are supplied. This second method (Fig 3) introduces a paralleled resistor and capacitor in series with the amplifier output, but inside the feedback loop. The result is a pole and zero compensation of a capacitive-loaded amplifier. As illustrated, the circuit is a voltage follower, but this compensation method applies to all op-amp configurations.

With the circuit in Fig 3's compensation, the capacitive load that creates the problem becomes part of the phase compensation solution. As before, load C_L reacts with the circuit's open-loop output resistance, creating a second response pole. In the uncompensated case, C_L reacts with R_e to produce a pole at f_{p'}, which compromises frequency stability as described with Fig 1. To restore stability, this pole is first moved back to f_{p'} by adding resistor R_c. The resulting response is free to be redirected anywhere within the bounds of the uncompensated response. Bypassing R_c with C_c gradually removes the effect of the lower frequency f_{p'} by restoring a 20-dB/decade response slope. This is the response slope at the new f_{p'} intercept with the 1/β curve, and stability is improved.

To quantify the improvement and select the compensation components, you need to examine the frequencies of the compensated poles and zeros relative to f_{p'}. You can use many pole and zero combinations. Different combinations produce optimum conditions for different op-amp configurations. However, it is desirable to use a systematic approach to select compensating components. Fortunately, circuit stability is rather insensitive to the chosen pole-zero combination, and a single selection method adequately restores phase margin for all configurations.

Phase shift at the compensated intercept is interpreted from the duration of the new 20-dB/decade region. For about 90° of phase margin, you would set this region to span one decade of frequency both before and after f_{p'}. Experience shows that the decade after
f_i' is important because secondary poles in this region add even more phase shift. However, the decade before the intercept is unnecessarily restrictive of bandwidth. In practice, the 20-dB/decade span before intercept is reduced to about one-half of a decade of frequency. Given the logarithmic nature of the frequency axis, the one-half decade equates to about a factor of three in frequency.

Fig 3 shows a compensated response that approximates the above conditions. The compensated intercept frequency is set at $f_i' = 3f_i$, which results in a 20-dB/decade response span up to $3f_i$. Thus, above f_i', the reduced response slope covers a frequency range of 9:1 or almost a decade. Before the intercept, this span continues as set by the choice of f_i. For one-half decade in this region, you should place the compensation zero at $f_z = f_i' / 3$, which is approximately equal to 0.1f_i. The result is a 20-dB/decade span covering a frequency range of about 30:1.

The component selection for the Fig 3 circuit follows from the previously stated conditions and the measurement of f_i. Resistor R_e is chosen first through a relationship between frequencies f_i and f_i'. These two frequencies are also separated by a 30:1 range as seen from the geometry of the responses. The straight-line extensions of the compensated and uncompensated responses form a parallelogram. Thus, the distance between f_i and f_i' equals that between $3f_i$ and $0.1f_i$—a 30:1 span. To make $f_i' = f_i / 30$, the compensation resistor is set at $R_c = 30R_o$. Note that this setting makes $R_c = 3R_o$, and the resulting phase compensation is insensitive to the actual impedance of R_o. Thus, empirical fine tuning of the compensation is no longer necessary.

A drawback of the higher R_c value is reduced output voltage range due to the large voltage drop across this resistor. The high-frequency value of R_o is still approximated by empirical measurement of frequency, f_i'. Op-amp data sheets do not always reflect this R_o value, which is determined from the relationship $R_o = \frac{1}{2\pi f_o C_L}$.

Using the selected value of R_c, capacitor C_c is defined by the response conditions established for Fig 3. For $f_i' = 0.1f_i = 1/2\pi R_o C_c$, the compensation capacitance is defined by $C_c = 5/\pi R_o f_i$. Frequency f_i is known from the previous expression of $f_i' = f_i / \beta R_c$, where $f_i' = 1/2\pi R_c C_c$, and f_i is the unity-gain crossover frequency of the op amp. For Fig 3 with $R_c = 30R_o$,

$$C_c = \sqrt{0.018C_L / R_o \beta f_i}.$$

With the resulting phase compensation, the OPA2604 again drives a 10,000-pF load. The resulting overshoot is 18% and gain peaking is 1.3 dB. As with Fig 2, Fig 3's phase compensation retains a degraded but stable response for a 10:1 increase or decrease in the value of the load capacitance, C_L. Bandwidth is again set by the intercept of the open-loop gain and the $1/\beta$ curve. As described, this intercept is set at $f_i' = f_i / 3$. As with Fig 1, $f_i = \sqrt{f_i f_i'}$, where $f_i = 1/2\pi R_o C_L$, and the Fig 3 bandwidth is

$$BW = \sqrt{0.18f_i f_i' C_L}.$$

With the specific components shown, the capacitance loading reduces bandwidth to 600 kHz from the 6 MHz of the unloaded case.

For the voltage-follower example, $1/\beta$ follows the 0 dB or unity-gain axis in Fig 3, but this axis does not generally define the critical intercept. In other op-amp configurations, the $1/\beta$ curve is shifted upward and the
Depending on the circuit, you can use either empirical or analytical component-selection methods.

intercept with this curve defines f_i for the component selection. The β factor in the previous equation for C_c automatically adjusts the component selection for this difference in intercept. A second caution with Fig 3 is that the pole-zero compensation results in poor settling time (Ref 4). Where settling time is important, you should use the circuit of Fig 4 or Fig 5 without capacitor C_c.

Compensation tailors $1/\beta$

In the previous two circuits, phase compensation is directed toward control of the amplifier’s open-loop response at the $1/\beta$ intercept. The circuits that follow control the $1/\beta$ response itself. Instead of reshaping the open-loop response, these circuits tailor the $1/\beta$ curve to intercept the open-loop response at the point where this response offers good stability, which is accomplished with either negative or positive feedback. The $1/\beta$ phase compensation permits the same capacitive load drive as the previous circuits. In addition, the $1/\beta$ method offers an opportunity for a higher slew rate.

The circuit in Fig 4 alters the feedback factor using negative feedback provided by R_e and C_c. This method, shown in Fig 4 as a noninverting-amplifier configuration, also applies to all other op-amp configurations. For the voltage-follower case, resistor R_2 is again added as part of the phase compensation. In addition, the Fig 4 phase compensation applies to a 2-pole amplifier response of any origin. The second pole can be the result of capacitive loading, a lightly phase-compensated amplifier, or parasitic effects in a high-frequency amplifier. This versatility is not available for the circuits in Figs 2 and 3. Fig 2 depends on a unity-gain-stable op amp, and Fig 3 requires the load capacitance as part of the phase compensation.

Fig 4's circuit connects the phase-compensation elements between the op-amp inputs to alter the feedback factor without altering the circuit’s closed-loop gain. Elements R_e and C_c are bootstrapped on the input signal e_i, and they produce no feedback current in direct response to e_i. This signal is impressed only upon R_1, where the signal creates a feedback current to produce a corresponding voltage on R_2. Thus, R_1 and R_2 continue to control the closed-loop gain experienced by e_i.

The circuit does, however, impress the feedback error signal between the op-amp inputs to alter the feedback factor. Elements R_e and C_c are bootstrapped on the input signal e_i, and they produce no feedback current in direct response to e_i. This signal is impressed only upon R_1, where the signal creates a feedback current to produce a corresponding voltage on R_2. Thus, R_1 and R_2 continue to control the closed-loop gain experienced by e_i.

To phase compensate the circuit in Fig 4 for capaci-
tive loading, you first approximate A_{min} from the specified amplifier output resistance. Resistance R_0 forms a pole with C_L at $1/(2\pi R_0 C_L)$, and you choose the compensation to align the $1/\beta$ curve with this pole. The pole nearly always occurs in a region of the amplifier response where the amplifier gain (A) is approximately equal to f_c/f. Here, f_c is the unity-gain crossover frequency of the op amp. At the intercept frequency $f = f_i$, making $A_{\text{min}} = f/f_i = 2\pi R_0 C_L f_i$.

Next, you choose C_C to ensure that f_p and f_z do not disturb the phase conditions at the intercept chosen above. Making $f_p = 0.1f_i$ sufficiently removes f_p and f_z from the intercept. Then, the phase contributions of f_p and f_z are both fully developed and cancel when the intercept is reached. For $f_p = 0.1f_i$, $C_C = 5/\pi R_0 f_i$. In this case, f_i is the frequency of the intercept and also the frequency at which A_{min} occurs. For lightly compensated amplifiers, you can read this frequency from the open-loop response curve of the data sheet. In other cases, you determine the value of f_i by measurement.

Phase compensation has side effects

The phase compensation for Fig 4's circuit offers access to an increased slew rate but reduces input impedance. A higher slew rate results when you use lightly compensated op amps in low gain applications. Several op amps are available with two phase-compensation options to offer higher slew rate and bandwidth to high-gain applications. One option phase-compensates the amplifier for unity-gain stability and serves all applications. The other option uses lighter phase compensation to avoid restriction of slew rate and bandwidth for gains at or above some value of A_{min}. The circuit in Fig 4's external phase compensation bridges the difference. The higher slew rate normally available to higher gain applications becomes available to lower gains as well.

The key to this speed benefit is the altered $1/\beta$ curve. The Fig 4 circuit applies the faster, lightly compensated version of the amplifier to low-gain applications, with frequency stability restored by the external phase compensation. For the OPA37 shown, the compensation extends the slew rate to $12V/\mu\text{sec}$ from the $2V/\mu\text{sec}$ of the unity-gain-stable OPA27 companion product.

Bandwidth, however, does not similarly enjoy this increase because the elevated $1/\beta$ curve moves the f_i intercept back in frequency. As a result, bandwidth is essentially unchanged from that of the unity-gain-stable version. Settling time is improved with this operation because of the increased slew rate. However, this improvement is counteracted by a long settling tail introduced by f_i and f_p. To avoid this tail, caused by the added pole and zero, you can replace C_C by a short circuit. However, removing C_C increases the gain available to the amplifier’s input offset voltage and low-frequency noise.

The circuit's (Fig 4) phase compensation also alters input impedance for noninverting applications. At first, you might expect a very low impedance because the compensation elements connect directly to the circuit input. However, as described earlier, these elements are bootstrapped on the input signal, and no input current flows from them in direct response to e_i. Indirectly, e_i creates a signal on R_e and C_C through the gain-error signal between the op-amp inputs. This signal is $e_i/A = A_{CL} e_i/A$, where A_{CL} is the closed-loop gain of the circuit and A is the open-loop gain of the amplifier. The resulting current supplied to the circuit input defines an input impedance of $Z_i = AZ_{CL}/A_{CL}$, where $Z_C = R_C + (1/C_C s)$. Thus, the bootstrapping of Z_C boosts...
One method of phase compensation adds the benefit of a filtering action that can significantly reduce amplifier noise.

The resulting input impedance by the loop gain A/A_c. For higher-frequency voltage followers, the input capacitance of Fig 4's amplifier degrades the phase compensation. When used in a voltage-follower circuit, this compensation requires the addition of an R_2 resistance in the negative feedback path. This added resistance reacts with the amplifier input capacitance and introduces additional phase shift in the feedback loop. Both the differential and common-mode input capacitances of the amplifier react with this R_2 resistance.

The result is another zero in the $1/\beta$ response, causing this response to rise as shown by a dashed line in the Fig 4 plot (Ref 1). The rise signals increased phase shift in the loop at higher frequencies. For wideband amplifiers, this added phase shift significantly degrades stability. For example, consider the 16-MHz OPA637 connected as a follower using the phase compensation of Fig 4. With $R_2 = 2 \, \text{k}\Omega$ and C_c chosen by the previous equation, the circuit develops 65% overshoot and extensive ringing.

Normally, a follower has no R_2 resistance in the negative feedback path and totally avoids the effect of the input capacitance. This feedback resistance is removed for follower compensation by using positive, rather than negative, feedback to alter the $1/\beta$ curve (Ref 5). The resulting configuration actually benefits from amplifier input capacitance. Moreover, positive feedback is the only external phase-compensation method available to committed, voltage-follower op amps. The positive-feedback method also works for phase compensation of other noninverting configurations. However, these configurations require an R_2 resistance and little advantage remains over Fig 4's method. Also, you should not use the positive feedback approach for differential-input configurations, explained by Fig 6.

The Fig 5 voltage-follower case illustrates positive-feedback phase compensation. In this circuit, compensation elements R_c and C_c again form a feedback voltage divider with R_2. However, R_2 is no longer in the negative feedback path where it could react adversely with amplifier input capacitance. Instead, the circuit adds a positive feedback path to the normal follower connection. With both negative and positive feedback factors, β_- and β_+, the net feedback of an op amp is the difference between the two feedback factors (Ref 6). For Fig 5, $\beta_- = 1$ and $\beta_+ = R_2/(R_2 + Z_c)$, where $Z_c = R_c + (1/C_c s)$. The result is a net feedback factor of

$$\beta = \frac{1 + R_c C_c s}{1 + (R_c + R_2) C_c s}.$$

The resulting $1/\beta$ curve, which is much like that of Fig 4, has a pole and zero to lift the $1/\beta$ curve before the intercept. For Fig 5, the zero occurs at $1/2\pi(R_c + R_2)C_c$ and the pole occurs at $1/2\pi R_c C_c$. The bootstrapped phase-compensation elements limit disturbance to closed-loop gain and input impedance. The compensation elements ride on signal e_i because of bootstrap feedback from the amplifier output. Because e_i does not directly develop a signal on these elements, the circuit remains a voltage follower with $e_0 = e_i$. The only signal on these elements results from the gain-error signal between the op-amp inputs. This signal, $e_j/A = e_j/A$, appears across $Z_c = R_c + (1/C_c s)$, resulting in a circuit input current of $e_j/A Z_c$. Thus, the input impedance of Fig 5 is $Z_i = A Z_c$.

Component selection favors Z_i or noise

The choice of the Fig 5 components follows the Fig 4 approach but with an added degree of freedom. The high-frequency value of $1/\beta$, $1 + (R_2/R_c)$, is again chosen for an intercept at the amplifier's minimum stable gain A_{min}. Typically, A_{min} occurs at the second amplifier re-
We've applied our minds to the needs of home appliance designers and come up with four new microcontrollers specifically for applications such as hot pot, coffee maker and battery charger. Providing all core functions in a 28-pin package, our 17K microcontrollers are more efficient and more economical than standard chips.

17K microcontrollers also require significantly less programming time. Running in the MS-WINDOWS™ V3.0 environment, our exclusive SIMPLEHOST™ debugger offers full screen and source-level debugging. For even greater speed to market, we provide one-time PROM types for all four microcontrollers.

Instead of going out of your way to design around a standard device, use the microcontrollers that go out of their way to suit your system. For information on the 17K Series, contact NEC today.

<table>
<thead>
<tr>
<th>Device</th>
<th>µPD17134A</th>
<th>µPD17135A</th>
<th>µPD17136A</th>
<th>µPD17137A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM (bits)</td>
<td>1024 x 16</td>
<td>2048 x 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM (bits)</td>
<td>112 x 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O port</td>
<td>22 lines (including one input, one sense input and 8 N-ch open-drain lines)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog input</td>
<td>4 channels (usable as port pins)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer</td>
<td>8-bit timer: 2ch Basic interval timer/Watchdog timer: 1ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial interface</td>
<td>1 channel (usable as a port pin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack</td>
<td>5 levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-on reset</td>
<td>Provided</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System clock</td>
<td>RC oscillation</td>
<td>Ceramic oscillation</td>
<td>RC oscillation</td>
<td>Ceramic oscillation</td>
</tr>
<tr>
<td>Instruction execution time</td>
<td>8µs (2MHz)</td>
<td>2µs (8MHz)</td>
<td>8µs (2MHz)</td>
<td>2µs (8MHz)</td>
</tr>
<tr>
<td>Standby function</td>
<td>STOP/HALT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>2.7 to 5.5V (5% ±10% when A/D in use)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>26-pin plastic shrink DIP/28-pin plastic SOP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One-time PROM

µPD17P136A
µPD17P137A
µPD17P136A
µPD17P137A

SIMPLEHOST: Trademark of NEC Corporation. MS-WINDOWS: Trademark of Microsoft, Inc.
Phase compensation often involves tradeoffs in performance parameters such as slew rate, input impedance, and bandwidth.

sponse pole as shown. Again, A_{min} is a specified value for the op amp or often set by capacitance loading at $A_{\text{min}}=2\pi R_2 C_2 f_2$. For Fig 5, $R_2 = R_2/(A_{\text{min}} - 1)$. Next, the pole of the $1/\beta$ response is set a decade below the intercept or $f_\pi = 1/2\pi R_2 C_2 = 0.1 f_\pi$. This setting assures that the f_π and f_θ shown have canceling phase effects when the intercept is reached. Then, $C_2 = 5/\pi R_2 f_\pi$.

The above equations for R_2 and C_2 define the relative values of the compensation elements. However, the absolute values depend upon first choosing a value for R_2. In Fig 4, this resistor is part of the normal feedback network and the resistor value is chosen with other criteria. In Fig 5, however, R_2 only serves as a phase compensation element, and you are free to set its resistance value.

The factors now guiding the R_2 choice are input impedance and noise. With $Z_1 = A Z_C$, input impedance increases with higher values of R_2 and lower values of C_2. The previous equations for R_2 and C_2 show that input impedance increases with increasing R_2 values. However, noise also increases because R_2 generates a voltage noise of $\sqrt{4KTR_2}$ at the amplifier input. Thus, the choice of the R_2 value is a compromise.

With the specific components shown in Fig 5, a compromise $R_2 = 2 \, K\Omega$ results in $R_2 = 500\Omega$ and $C_2 = 200 \, \mu F$. The OPA637 then delivers a slew rate of 135V/μsec, as compared with the 55V/μsec available with the unity-gain-compensated OPA627. Resulting overshoot is 16%, as compared with 65% in an equivalent solution from Fig 4. This latter improvement is the result of the difference in effects of amplifier input capacitance. As described with Fig 4, this input capacitance causes the circuit’s $1/\beta$ curve to rise at high frequencies, which increases the loop phase shift. In Fig 5, the opposite effect occurs, and the $1/\beta$ curve declines as a result of amplifier-input capacitance. The amplifier’s common-mode input capacitance declines R_2, which rolls off the positive feedback and the $1/\beta$ curve. As indicated by a dashed line, this action reduces, rather than increases, the rate-of-closure of the $1/\beta$ and gain curves.

Where noise is more important than input impedance, you choose R_2 so that its noise voltage is only about one-third that of the amplifier input. This one-third factor turns into a one-ninth contribution to overall rms noise. The rms addition of the resistor and amplifier noises first raises each term to the second power. As a result, the resistor noise is essentially negligible. For a resistor noise $\sqrt{4KTR_2}$ equal to one-third the amplifier noise (e_n), R_2 is set to

$$R_2 = e_n/36K,$$

where K is Boltzman’s constant, or 1.38×10^{-23}, and T is the temperature in degrees Kelvin, or °C + 273. Under these conditions, the $e_n = 5 - nV/\sqrt{Hz}$ of the OPA637 calls for $R_2 = 500\Omega$. Then, $R_2 = 125\Omega$ and $C_2 = 820 \, \mu F$.

Differential input connections of op amps impose a special restriction on external phase compensation. The benefit realized with differential inputs is common-mode rejection, and phase compensation added to the circuit can degrade this rejection. To retain high common-mode rejection, you must place any added phase-compensation where there is no common-mode swing across the compensation elements.

Fig 6 illustrates this technique with the differential-amplifier connection. Consider a common-mode signal connected to the e_1 and e_2 inputs. Under balanced conditions, the circuit rejects this signal and produces no signal at the e_0 output terminal. However, a common-
Advanced Pressure Sensors

Sensym's 142/163 Series

Features Include:
- Guaranteed precision over temperature: ±1% Max (-18°C to +63°C)!
- High level calibrated output: 1.0V ±50mV offset 5.0V ±50mV span
- Linearity: <0.75% FSO Max

These precision transducers are priced starting at $40 ea/100's. Stock delivery.

Available parts:
- 163SC01D48 ... -20 to +120cmH2O
- 142SC series ... 0 to 1psi up to 0 to 150 psi

FOR:
MEDICAL
INDUSTRIAL
HVAC

Free Handbook
Sensym's new 1990 Sensor Handbook gives complete product specifications plus over 200 pages of application notes and ideas.

Call or fax us today for your free Sensor Handbook.

CIRCLE NO. 136

1244 Reamwood Avenue • Sunnyvale, CA 94089 • Tel: (408) 744-1500 • Fax: (408) 734-0407
Differential-input connections of op amps impose special restrictions on external phase compensation.

A common-mode signal is present at the op-amp input terminals. The voltage divider formed by R_a and R_b transmits a portion of the e_2 signal to the op amp’s noninverting input. This signal is also developed at the inverting input of the amplifier through the feedback control of this input. For the equal-value resistors shown, one-half of any common-mode signal connected to the e_2 terminal appears at both amplifier inputs.

These input and output signal conditions are representative of all differential-input connections of op amps. A common-mode signal is transmitted to the op-amp inputs but not to the op-amp output. Any phase compensation elements added between these inputs and the output contain a common-mode signal. The resulting signal current degrades common-mode rejection by introducing a signal imbalance.

For example, if you apply the circuit in Fig 5’s compensation to the circuit in Fig 6, R_c and C_c are connected from the op-amp output to the amplifier’s noninverting input. Common-mode swing on these elements then introduces a signal current to the junction of R_3 and R_4. The effect of this current is not balanced by a matching current at the junction of R_1 and R_2, and a common-mode error signal results at the circuit output. A similar error develops with application of Fig 2’s external phase compensation.

For differential-input op-amp connections, any external phase compensation added should be of the type illustrated in Fig 3 or Fig 4. With Fig 3’s method, the compensation elements are in series with the amplifier output and do not support a common-mode swing. With Fig 4’s method, demonstrated by the circuit in Fig 6, the only signal across R_c and C_c is the differential error signal between the op-amp inputs. This error signal contains a component of common-mode error but is small compared to the actual common-mode signal.

The resulting signal current in R_c and C_c degrades common-mode rejection, but far less than the compensation methods in Figs 2 and 5. Selection of the R_c and C_c values in Fig 6 follows directly from the discussion of Fig 4. Fig 6 also includes R_3 and R_4, which are not present in Fig 4, but these resistors do not alter the feedback factor. The phase-compensation effects are the same for the two circuits.

References

Author’s biography
Jerald Graeme is the manager of instrumentation components design at Burr-Brown and has been with the company for 25 years. During that time, he has developed numerous linear circuits, including op amps, instrumentation amplifiers, analog multiplexers, V/F converters, and D/A converters. Jerry has a BSEE from the University of Arizona and a MSEE from Stanford University. Leisure-time activities include scuba diving, photography, and woodworking.
Some see our new integrated processor as the future of full motion video.
Look at it this way.
The first thing you'll see is a flat-out screaming data mover. Namely, Motorola's 68340 Integrated Processor with DMA. The first and only processor with the performance to meet the high speed data handling needs of next generation applications.

Applications like future Compact Disc-Interactive multimedia machines. Or applications like yours. Say, for instance, optical drives, laser printers, hand-held computers, telecommunication switches and line cards, workstation I/O processors, servers, terminals, robotics or that hot new project only you know about.

A closer look at the 68340 will reveal a 32-bit integrated processor built on a 68020 foundation with a host of pertinent peripherals on-chip. Foremost among these is a two channel DMA (direct memory access) controller that delivers a sustained data transfer rate of 33 megabytes per second. Imagine for a moment what you could do with that.

Also on the chip are a pair of serial I/O channels, a couple of timers and a whole bunch of glue logic you won't have to add elsewhere. And, of course, you get all that power in one tidy little package.

Speaking of power, the 68340 doesn't use much at all. In fact, its low power consumption and standby mode make it perfect for a wide variety of battery-powered applications.

But then again, as the highest performance data mover you'll see anywhere, the 68340 is perfect for a whole lot of applications. Including yours. So call Motorola at 1-800-441-2447 for a free sample. Or contact your Motorola Semiconductor Sales Office.

You'll like what you see.
ADDING ENHANCED VISION TO MEDICAL INSTRUMENTATION.

SIGNAL PROCESSING AND
An incredible voyage of discovery and healing begins as doctors peer deep inside the living human body, thanks to signal processing and power control components from Harris Semiconductor. Signal processing and power control involves gathering real-world signals—like magnetic flux, density, and fluorescence—processing them, and driving devices that perform real-world tasks. And Harris is the true specialist in this field, combining the technologies of analog, mixed signal, DSP, and power semiconductors. Today, Harris has the expertise to supply advanced semiconductors for any instrumentation application you can imagine. So how can we help you? Call 1-800-4-HARRIS, Ext. 1121.

POWER CONTROL FROM HARRIS.
Linear introduces the industry's first CMOS/Schottky low power RS485 transceiver—the LTC485. This rugged new part meets the RS485 interface standard and is pin compatible (DIP and SOIC) with the industry standard 75176 bipolar device—but the LTC485 consumes 60 times less power. With an innovative new technology that combines CMOS transistors and Schottky diodes, Linear's new LTC485 withstands drive voltages above and below the power supply rails without latch up. Its supply current is 300 microamperes typical and 500 microamperes maximum. The LTC485 driver output skew is a very low 5nS. During power up and power down, the outputs remain glitch free. The LTC485 is available in 8 lead DIP and SOIC packages. Commercial, industrial and military temperature grades are available. Pricing in 100-up quantity in plastic DIP is $1.35 and samples are available now. For a free sample and a datasheet contact: Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Or call 800-637-5545.
Programmable oscillator runs without μP

Jon Klein
Micro Linear, San Jose, CA

The circuit in Fig 1, using a clever scheme adaptable to other programmable devices, allows you to operate the ML2035 programmable sine-wave generator, IC3, without a controlling μP. IC1, a 74HC4060 counter, provides both the sine-wave generator’s clock as well as a gating pulse to shift register IC2. When IC1’s pin 5, Q5, goes high, IC2 begins shifting eight hard-wired bits into the sine-wave generator to program it. After IC2 shifts the 8 bits, Q5 goes low, enabling normal operation. The circuit can produce both 50- and 60-Hz outputs from a NTSC color-burst crystal (3.579545 MHz). Table 1 lists binary codes for other crystal frequencies. The sine-wave generator’s output exhibits a maximum of 0.5% THD. EDN BBS/DL_SIG #1019

Table 1—Shift register values and frequency errors for standard crystal values

<table>
<thead>
<tr>
<th>fCRYSTAL (MHz)</th>
<th>fOUT</th>
<th>D10</th>
<th>D6</th>
<th>DHEX</th>
<th>74HC165 Code</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00</td>
<td>50</td>
<td>105</td>
<td>69</td>
<td>0110</td>
<td>0.14%</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>60</td>
<td>126</td>
<td>7E</td>
<td>0111</td>
<td>0.14%</td>
<td></td>
</tr>
<tr>
<td>4.194304</td>
<td>50</td>
<td>100</td>
<td>64</td>
<td>1011</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>4.194304</td>
<td>60</td>
<td>120</td>
<td>78</td>
<td>1011</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>50</td>
<td>70</td>
<td>46</td>
<td>1011</td>
<td>0.14%</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>60</td>
<td>84</td>
<td>54</td>
<td>1011</td>
<td>0.14%</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>50</td>
<td>52</td>
<td>34</td>
<td>1100</td>
<td>-0.82%</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>60</td>
<td>63</td>
<td>3F</td>
<td>1100</td>
<td>0.14%</td>
<td></td>
</tr>
</tbody>
</table>

To Vote For This Design, Circle No. 746
Slow peripherals interface to fast 68000s

Don Atkins
Motorola, Austin, TX

If you plan to interface slow peripherals to 68000-family μPs, you may have to lengthen the μP's data-hold time during write operations. At faster frequencies, the M68000 family shortens the Address Strobe-Data Strobe (AS-DS) to data-invalid time (ie, the data-hold time) because the clock cycle is shorter. If data from the μP is buffered and the DS signal qualifies the chip-select signal to the peripheral, then worst-case propagation delays may violate the data-hold-time specification of the peripheral. Even fast peripheral devices may be at risk if the propagation-delay skews through the data buffer and the chip-select qualifier is large enough.

Fig 1 shows a sample circuit where the μP interfaces to a write-only hardware register (IC3), a 74LS273 octal D-type flip-flop. Decoded address lines generate a chip-select (CS) signal for IC3, qualified by both the read/write (R/W) and data strobe (DS) signals.

The AS signal qualifies the I/OSEL signal from the address-decode block, connecting to both the 74F245 (IC1) and the 74F164 (IC2). The 74F245 bidirectional data buffer allows the μP to read and write 8-bit peripheral devices. The 74F164 shift register generate the DSACK0 signal, which terminates the bus cycle.

During write operations, the μP transmits data and clocks them into IC3 on the negative edge of the DS signal. The problem with this circuit is that without the components shown connected by dashed lines (and DS hooked directly to the third 74F32), the design violates IC3's 5-ns data-hold time. Calculations show that the hardware provides 0.9 nsec of data-hold time, whereas the 74LS273 requires 5 nsec. An easy fix to this problem would be to substitute a faster D-type flip-flop that requires 0 nsec of data-hold time. This quick fix only provides 0.9 nsec of safety for data-hold.
dc to 2000 MHz amplifier series

Unbelievable, until now... tiny monolithic wide-band amplifiers for as low as 99 cents. These rugged 0.085 in. diam., plastic-packaged units are 50ohm* input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11dBm output, noise figure as low as 2.8dB, and up to DC-2000MHz bandwidth.

*MAR-8, Input/Output Impedance is not 50ohms, see data sheet.

Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each.†

Table: Amplifier Specifications

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FREQ.</th>
<th>GAIN, dB</th>
<th>MIN. PWR.</th>
<th>NF, dB</th>
<th>PRICE $</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-1</td>
<td>DC-1000</td>
<td>18.5 15.5</td>
<td>13.0</td>
<td>0</td>
<td>5.0 0.99 (100)</td>
</tr>
<tr>
<td>MAR-2</td>
<td>DC-2000</td>
<td>13 12.5 11 8.5</td>
<td>+3</td>
<td>6.5 1.50 (25)</td>
<td></td>
</tr>
<tr>
<td>MAR-3</td>
<td>DC-2000</td>
<td>13 12.5 10.5 8.0</td>
<td>+8</td>
<td>6.0 1.70 (25)</td>
<td></td>
</tr>
<tr>
<td>MAR-4</td>
<td>DC-1000</td>
<td>8.2 8.0</td>
<td>7.0</td>
<td>+11</td>
<td>7.0 1.90 (25)</td>
</tr>
<tr>
<td>MAR-5</td>
<td>DC-2000</td>
<td>20 16 11 9</td>
<td>0</td>
<td>2.8 1.29 (25)</td>
<td></td>
</tr>
<tr>
<td>MAR-6</td>
<td>DC-2000</td>
<td>13.5 12.5 10.5 8.5</td>
<td>+3</td>
<td>5.0 1.90 (25)</td>
<td></td>
</tr>
<tr>
<td>MAR-7</td>
<td>DC-1000</td>
<td>33 23</td>
<td>19</td>
<td>+10</td>
<td>3.5 2.20 (25)</td>
</tr>
</tbody>
</table>

NOTE: Minimum gain at highest frequency point and over full temperature range.

- 1dB Gain Compression
- +4dBm 1 to 2 GHz

Mini-Circuits

A Division of Scientific Components Corporation
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500
Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

EDN September 16, 1991

CIRCLE NO. 140 201
DESIGN IDEAS

time and limits the design to a maximum of 33 MHz.

The components connected by dashed lines generate an early data-strobe signal (EDS) to provide longer data-hold times. The EDS signal asserts when DS asserts. The EDS signal then negates during write cycles when the DSACKX signal asserts. This action creates an extra clock cycle of data-hold time. At 33 MHz, the data-hold time increases to 35 nsec.

If you need longer data-hold times, you can use IC2 to negate the EDS signal sooner. Each successively lower-numbered output pin you choose to connect on IC2 retards the EDS signal and increases the data-hold time by one clock period.

Peripherals like the MC68681 Dual Asynchronous Receiver/Transmitter (DUART) and the MC68901 Multi Function Peripheral generate their own data-acknowledge (DTACK) signal. Fig 2 shows how to interface an MC68681 DUART (IC3) to increase the data-hold time from the µP. In this case, an Early-Address Strobe (EAS) qualifies the memory-mapped chip select (CS) signal through a 74F32 2-input OR gate. The output of the 74F32, DUARTCS, then connects to the CSinput of IC3. Like the EDS signal, the EAS signal asserts with the µP's AS and negates during write cycles based on one of the outputs of the 74F164 shift register (IC2). The AS signal qualifies the memory-mapped IOSEL signal from the address decode block to generate the Buffered-Output Enable (BOE) signal used to enable the 74F245 data transceiver (IC1) and to release IC2.

The final major difference between Fig 1's circuit and Fig 2's is a third memory-mapped signal DTACKEN from the address-decode block. The DTACKEN signal asserts whenever a peripheral that generates its own acknowledge signal is selected. This action prevents IC2 from terminating the access until IC3 asserts the DTACK signal. If the µP selects a peripheral that does not generate its own DTACK signal, then the DTACKEN signal does not assert. This sequence allows IC2 to start shifting data immediately and terminate the access by asserting the DSACK0 signal. EDN BBS/DL_SIG #1021

To Vote For This Design, Circle No. 747

Fig 2—Similarly to Fig 1, this peripheral-interface circuit allows slower peripherals that develop their own acknowledge signal to interface to fast µP's.
WE'RE BREAKING NEW GROUND BY MAKING IT EASY TO PUT SCSI ON THE MOTHERBOARD.

Introducing Adaptec's new AIC-6260.

You're already a big believer in the performance and connectivity of SCSI. But you're also digging around for an uncomplicated way to design-in SCSI to your AT motherboard. Well... Eureka! Now with Adaptec's new AIC-6260, you've just hit pay dirt.

After all, it makes a lot of sense that a single-chip solution is easier to design-in than multiple chip packages. They're also more reliable. And take up less real estate. Plus, since we've built the AT bus in, designing SCSI in is as easy as connecting signal lines dot-to-dot.

What's more, we get you to market in the fastest possible time. That's because industry-standard, Adaptec-developed SCSI software drivers and BIOS are ready and available. For all major peripherals—under all major operating systems. All this, and a complete design-in package, too. Which means, you can now afford to design the performance and connectivity of SCSI in your system as a standard feature.

So step on it. And call us at 1-800-227-1817, ext. 52 today. We think you're going to really dig it.

adaptec
When you're serious about SCSI.

© 1991 Adaptec, Inc.
EDN September 16, 1991

CIRCLE NO. 141
Design Ideas

Relay has electrically resettable fuse

Sam Ochi
IXYS Corp, San Jose, CA

Fig 1 shows an intelligent, fully isolated, solid-state ac relay, having a resettable 10A electronic fuse. The relay can switch 6 kW (600V ac at 10A). A 5V signal from either a system controller or a manual switch applied to V_IN turns the relay on. Within 1 µsec of sensing a short circuit or an overload, the relay will shut itself off, turn on LED D1, and set flag FLT. Under system control, this solid-state relay can complete an on/off cycle in less than 1 µsec at repetition rates as high as 50 kHz. Such cycling proves useful for starting highly inductive loads.

A 5V signal applied to V_IN enables IC1, a PWM single-phase, de-motor controller, to turn on the relay. Pushing switch S1 or energizing the RST line resets the relay. IC1 drives terminals 3 and 4 of the primary of transformer T2, a communications transformer, through C1 and R1. T2's secondary, terminals 5 and 6, energizes motor controller IC2. C2, C3, and R4 serve to filter any high dV/dt common-mode noise present between the ac power line and IC1's ground.

IC2 converts its received differential signal to a full V_{EE}-to-V_{DD} swing (pin 15). The pin-15 signal drives the series-connected NMOS power transistors, Q1 and Q2, via gate resistors R3 and R4. V_{DD}, which is typically 15V with respect to the sources of Q1 and Q2, is more than enough to turn them on. Conversely, V_{EE}, which is typically -5V, provides a noise margin of 5V to hold the power NMOS devices off in very-high-noise environments.

Once Q1 and Q2 are on, IC2 uses R5 and R6 to sense the currents flowing through Q1 and Q2. During the positive half cycle of the input-ac waveform, Q2 acts as the main switching device, and Q1's internal drain-to-
ISA, EISA, or VMEbus, Ariel processor boards unleash all the power of Motorola's DSP96002. Both the MM-96 for ISA/EISA and V-96 for VMEbus combine lightning-quick speed with large memory arrays, versatile I/O with 120 Mbyte/sec. total bandwidth, and the ability to deliver almost unlimited signal-crunching power via Ariel's two exclusive high-speed expansion buses. And Ariel's steadfast commitment to service and support ensures that once you've become an Ariel customer, you'll never work alone.

To find out more about the MM-96 and V-96, or any of Ariel's broad range of DSP products for Motorola, Texas Instruments, and AT&T DSP chips, you can send us a fax, leave us a message on the BBS or E-mail, or just give us a call.

Ariel offers a full line of DSP products for popular platforms.

Ariel
The DSP Authority
433 River Road
Highland Park, NJ 08904
(908) 249-2900
FAX: (908) 249-2123
DSP BBS: (908) 249-2124
Email: ariel@ariel.com

source diode conducts. The voltage across the current-sense resistor (R5) is positive with respect to the floating common ground point, FGND, the intersection of R5 and R6.

When more than 10A flows through Q1 and Q2, a positive 1V or more appears across R6 that will forward bias D2 and drop the remaining voltage across R7 and Rs. About 200 nsec after 300 mV or greater potential appears across Rs, IC2’s output, OUT, will go to VEE from VDD. IC2’s T+ (pin 5) and T- (pin 6) outputs will transmit a fault signal. R9 and C4 communicate the fault signal through T2 to IC1’s R- (pin 6) and R+ (pin 7).

When IC1 receives a fault signal, it sets latch IC3, disabling the relay’s input and lighting LED D1. The circuit’s operation during negative ac-power swings is similar. You can reset the relay manually with switch S1 or via input RST.

Transformer T1 and associated circuitry provide the fully floating VDD power for IC2. IC1’s charge-pump clock drives power-transfer transformer T1. T1 is a ferrite toroid (Fair-rite part #5975000201) transformer that is segment wound using 10 turns of #30 Kynar for the primary and 22 turns of #30 Kynar for the secondary. This transformer has 2500V input-to-output isolation. Also, you can obtain this transformer from PSC Electronics part #PSC-5061.

T2 is two ferrite-bead transformers in one encapsulated 8-pin DIP. One source of this transformer is Delta Electronics part #BD4414/15. Of course, you can purchase the ferrite beads from Fair-rite (Fair-rite part #2664000101) and wind 6 turns of #36 magnet wire for the primary and two turns of #30 wire with Kynar insulation for the secondary.

Temperature sensor produces pulse train

Jhoti Vandana
SEMP, Kalpakkam, India

The circuit in Fig 1a converts the current output of the AD590/592 temperature sensor, IC1, into a pulse train. The sensor measures temperatures from -55°C to +150°C. The width of interval T1 (Fig 1b) varies inversely with temperature. The time constant R1C1 sets interval T2. Because T2 can vary with power-supply fluctuations, make sure your supply is well regulated. Also, you must use low-leakage diodes to preserve IC2’s accuracy.

To Vote For This Design, Circle No. 748
How single-chip fuzzy logic can move your product to the head of its class

Need to make your product more intelligent? Fuzzy Logic is the solution of choice. Need to do it quickly and economically, with maximum flexibility? Then the NeuraLogix NLX230 Fuzzy MicroController™ is in a class by itself!

The NLX230 is a single-chip solution. One 40-pin package delivers Fuzzy Logic mastery to the most complex control problems.

The NLX230 is flexible. It can be easily configured for your specific control problem, usually in a matter of hours.

The NLX230 is fast. Its rule processing time is 30 to 40 times faster than typical software-based or software/hardware hybrid solutions.

The NLX230 is economical. In production quantities, this remarkable Fuzzy MicroController is priced under $4 per unit.

As the first true hardware based Fuzzy Logic controller, the NLX230 makes artificial intelligence available and simple. For most applications it can be an affordable high-performance replacement for 8-bit microprocessors. See how easily it adapts to your requirements; evaluate how the NLX230 can meet your demands with our low-cost Applications Development System.

Move your product to the head of its class with hardware-controlled Fuzzy Logic. Call now for specifications and price quotation on the NLX230 and other fuzzy logic and neural network devices.

NeuraLogix
American NeuraLogix, Inc.
411 Central Park Drive
Sanford, FL 32771
Telephone 407/322-5608
FAX 407/322-5609
Op amp works as clamp

Greg Schaffer
Maxim Integrated Products, Sunnyvale, CA

Forget about amplifying. Instead, think of an op amp as a clamp. The input-protection diodes of a precision op amp can serve as clamping diodes for two independent analog-signal lines (Fig 1). When not clamping, the device’s diodes offer extremely low leakage currents of 50 to 100 fA at 20°C. Maximum clamping current is ±10 mA. **Table 1** lists the clamping diodes’ forward voltage versus forward current.

Clamping voltages \(V_1 \) and \(-V_2 \) connect to the supply terminals of the low-voltage CMOS op amp. You can set these clamping voltages at any level between zero and the op amp’s absolute-maximum supply voltage (12V total), provided \(V_1 \) is more positive than \(-V_2 \). With 10V across the supply pins, the amplifier draws less than 50 µA typ. If pin 3 remains positive with respect to pin 2, the typical supply current is less than 1 µA. Leakage approximately doubles for each 8°C rise in temperature. **EDN BBS/DL_SIG #1017**

To Vote For This Design, Circle No. 750

Table 1—Diode forward voltage vs current

<table>
<thead>
<tr>
<th>Diode current (mA)</th>
<th>Diode voltage (V)</th>
<th>Diode current (mA)</th>
<th>Diode voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.635</td>
<td>-0.01</td>
<td>-0.608</td>
</tr>
<tr>
<td>0.10</td>
<td>0.714</td>
<td>-0.10</td>
<td>-0.670</td>
</tr>
<tr>
<td>1.00</td>
<td>0.822</td>
<td>-1.00</td>
<td>-0.751</td>
</tr>
<tr>
<td>2.00</td>
<td>0.861</td>
<td>-2.00</td>
<td>-0.787</td>
</tr>
<tr>
<td>5.00</td>
<td>0.921</td>
<td>-5.00</td>
<td>-0.850</td>
</tr>
<tr>
<td>10.00</td>
<td>0.980</td>
<td>-10.00</td>
<td>-0.931</td>
</tr>
</tbody>
</table>

Fig 1—This circuit takes advantage of the low-leakage input diodes of a precision CMOS op amp, using them to clamp two analog-signal lines.
Take your best shot. For emulation, analysis or chip support, we’re the pros who’ll improve your score.

We’re American Arium, and we’ve created a winning combination: EZ-PRO® development software and emulators from American Automation and high-performance logic analyzers from Arium.

From the RCA 1802 to the Intel i960, the Motorola 68040 to the MIPS R3000A, we now deliver support for virtually any chip you select.

Our development systems will keep your embedded projects on course with compilers, assemblers, C source level debug, variable tracking, extensive triggering and selective trace.

To give you an easy shot at debugging, our logic analyzers feature solid disassemblers, timestamp, symbolic debug, performance analysis and expanded memory with high-speed timing to 400 MHz.

And to keep you clear of hidden traps, we’ve developed a fully integrated set of relocating linkers, assemblers, language translators, disassemblers and more than 20 different cross compilers.

Make your next project an easy chip shot. Call the pros: American Arium.

14281 Chambers Road, Tustin, CA 92680 Fax: (714) 731-6344
EZ-PRO Division (714) 731-1661 • Arium Division (714) 731-2138

© American Arium 1991
WHY YOU NEED IT TO COMPETE IN THE WORLDWIDE '90s

Bussmann makes more fuses than anyone. But during the 90’s, as your designers face increased worldwide competition, it is our solid-matrix fuses that are growing the fastest because they make your products more competitive. Our advanced PC-Tron radial lead, SMD Tron surface mount and Microtron standard subminiature fuses, all save board space. Both Bussmann high performance PC-Tron and SMD Tron fuses provide current-limiting capability never before available to designers. The solid matrix surrounding the fuse element rapidly extinguishes the arc, when a fault occurs...predictably. So for the first time, both PC board components and equipment are protected. That’s a competitive edge for you. Both Bussmann high performance fuses provide for the economies of automatic insertion and are completely sealed, to withstand rigorous board washing. For designs locked into the conventional subminiature fuse footprint, Bussmann offers Microtron—the reliable standard. Contact your Bussmann distributor or Bussmann directly for samples and literature on solid-matrix fuses; 5x20mm or 1 x 1-1/4 in. glass tube fuses; fuseholders, blocks and accessories.
Astec introduces the new Lightning ALS Series, the smallest medium wattage power supplies in the industry. The ALS Series achieves its small size through unique thermal packaging by integrating an efficient heat sink with the housing. This results in higher density, more efficient performance, and higher reliability through fewer parts.

The ALS Series is available in the wattage range from 300 watts to 550 watts and one to four outputs. The multiple output ALS 304 offers 325 watts in an 8.5" long package, and the single output ALS 301 offers 300 watts in 6.5".

Standard features include universal input, high auxiliary channel peak loading capability, power fail and inhibit signals, and a versatile mounting design.

The ALS lives up to the Astec standard of high reliability, outstanding quality, and leading edge technology. It accommodates an almost endless range of applications, from serving the fundamental needs of computer and peripheral applications to the more complex power requirements of communication and network systems.

To find out how Lightning can strike your application, call the toll-free number below for literature.

For information or literature please call: 1-800-233-9973

CIRCLE NO. 145
Until Now, Density A Pretty Awkwa
AMD Presents The MACH™ Family Of High Speed, High Density PLDs.

Nothing can squash an elegant, high density design faster than a slow, unpredictable and expensive PLD. That's why we've developed the MACH PLD family—for both density and speed.

The MACH family gives you everything you need in a PLD on state-of-the-art CMOS: Densities up to 128 macrocells or 3600 equivalent gates. Clock speeds up to 66.7 MHz. And absolutely predictable, worst-case delays as low as 12ns per 16 product term macrocell.

And they work for peanuts. The MACH family can bring your costs down as low as a penny per gate—up to 40% less than other high density PLDs.

With the MACH family you'll get to market faster, too. Because it's supported by most popular design tools: Including ABEL™, CUPL™, LOG/iC™, MINC, OrCad®, and AMD's own PALASM® software. There's also hardware and software support from over 20 additional FusionPLD partners.

Every MACH part migrates easily to a pin-compatible hard-wired MASC™ counterpart—for high volume orders with no redesign, no NRE, no performance glitches, no problems.

So don't horse around with slow, unpredictable, high density PLDs—start designing with the MACH family from AMD. Call 1-800-222-9323 for more information.
WORLD'S MOST ADVANCED DC-DC CONVERTER

INTRODUCING THE 250 WATT MICRO-VERTER™
NEW HIGH DENSITY PACKAGE WITH A NEW STANDARD OF EXCELLENCE

Up to 58 Watts/in.³ • Miniature size: 0.5" x 2.4" x 3.6" (singles), 0.5" x 2.4" x 4.6" (triples) • Single Outputs: 5V @ 40A, also 12, 15, 24, 28V • Triple Outputs: 5V @ 35A and ±12V or ±15V @ 3A • 28, 48, or 300 VDC input • Constant Frequency Operation • Current Sharing AND True N+1 Redundancy • Paralleling WITH Current Sharing • Hot Plug-in Capability • Output Power Good Signal • Optional Synchronization Pin • Non-Shutdown OVP • Logic on/off • Thermal/input OVP protection • Ruggedized per MIL 810D
(Patent Pending) Manufacturing Licenses Available

From the pioneers of switching power supplies Since 1963

Call or fax today for a free brochure.

RO ASSOCIATES
246 Caspian Dr., P.O. Box 61419, Sunnyvale, CA 94088
Tel: 408/744-1450 800/443-1450 Fax: 408/744-1521

CIRCLE NO. 147
EDN September 16, 1991
NEW PRODUCTS

INTEGRATED CIRCUITS

Multichannel Analog I/O IC For Servo Systems

- Combines A/D and D/A conversion
- Has adjustable operating parameters

The AD7774 multichannel I/O device is specifically designed for closed-loop motion control and servo systems. The device includes a 4-channel, 8-bit A/D converter (sharing two track/hold amplifiers), two 8-bit and one 11-bit D/A converters, analog output amplifiers, an internal reference, and a microprocessor interface. The I/O device allows either independent or simultaneous sampling of inputs. Three key operating parameters are independently adjustable: the mid-point of the ADC's transfer function (bias), the input voltage swing of the ADC (span), and the mid-point output voltage of the DAC (bias). By adjusting these biases and the span, you can optimize the performance of the converters—especially in applications where only a positive supply rail is available—by referencing the input and output voltages to a point other than analog ground. The AD7774 operates from 5 and 12V supplies. In 28-pin DIP and plastic-leaded-chip-carrier packages, from $18 (1000).

Analog Devices, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428. Circle No. 380

Encoder For TV And VCR Computer Graphics

- Accepts seven digital formats
- Generates NTSC or PAL analog signals

The SAA7199 digital video encoder enables high-quality computer graphics and digital video to be displayed on TV monitors or stored on video tape. The encoder allows personal computers and workstations to perform the same display, editing, titling, and special-effects functions that normally require expensive analog editing boards and systems. The encoder accepts seven different digital formats including CCIR601 (a common digital data structure for NTSC, PAL and SECAM) or computer graphics such as 24-bit RGB or 8-bit VGA. The encoder generates analog output signals in both NTSC and PAL formats. Three user-selectable modes are available. In the master mode, the SAA7199 accepts timing information from the graphics system; in the stand-alone mode, it generates graphics timing signals based on a provided video clock; in the genlock mode, it locks to an analog video signal and generates all graphics timing signals. The genlock mode allows graphics overlay on any video source. $47 (100).

Signetics Co, Box 3409, Sunnyvale, CA 94088. Phone (408) 991-4577. Circle No. 381

Floppy-Disk Controller

- Supports 4-Myebyte drives
- Pin-compatible with standard devices

The FDC37C65C+ floppy-disk controller supports all drive formats including 360-kbyte, 1.2-Mbyte, and the new 4-Mbyte format used in "super-floppy" drives. The C+ controller offers the same features as the industry-standard FDC37C65C floppy-disk controller, with additional support for 4-Mbyte floppy disks. The + designation represents the addition of a 16-byte FIFO and a vertical recording format. The pinout remains the same, which significantly reduces development time and expense when replacing the earlier device. The support for vertical-format drives is enabled by addressing the mode-control register. The FDC37C65C+ controller operates from a

EDN September 16, 1991
single 5V supply and is 100% compatible with IBM software. $6.31 (50,000).

Standard Microsystems Corp. Component Products Div, 35 Marcus Blvd., Hauppauge, NY 11788. Phone (516) 273-3100. Circle No. 382

Real-Time Clock
- Includes on-chip static RAM
- Available as a complete module
The MCCS146818B real-time clock includes 128 bytes of low-power static RAM and features a timing system that lets you use the device with either Motorola or Intel microprocessor timing cycles. The CMOS device includes all the common battery-backup functions, such as a complete time-of-day clock with a 12- or 24-hour mode, a daylight-savings-time option, an alarm with a programmable interrupt, and a 100-year calendar with leap-year compensation. The device counts seconds, minutes, hours, days, day of the week, date of the month, and year. A module version, which interfaces with 1-MHz processor buses, includes the CMOS clock, a 32.768-kHz crystal, and a lithium battery. Clock chip, in a 24-pin plastic DIP, $4.65; in a 28-pin plastic leaded chip carrier, $5.03; complete 24-pin module, $8.08.

Motorola Inc, MOS Digital-Analog IC Div, Box 6000, Austin, TX 78762. Phone (800) 521-6274. Circle No. 383

64-Bit Microprocessor
- Operates at 50 MHz
- Features 100-Mflops performance
Designed for use in high-end computing systems, the 64-bit i860-XP microprocessor provides a peak performance rate of 100 Mflops at 50 MHz. Available in both 40- and 50-MHz versions, the CPU maintains full binary compatibility with the first-generation i860-XR. At 50 MHz, the i860-XP offers performance of 20 double-precision Linpack Mflops and can exceed 40 SPECmarks to meet the number-crunching computing needs of scientific and engineering applications. The CPU includes a RISC (reduced-instruction-set computer) integer unit, two pipelined floating-point units, a graphics unit, 16-byte instruction and data caches, and a memory-management unit. An on-chip bus unit supports pipelined

When considering DSP, take
burst transfers of 400 Mbps. Other features include bus-snooping hardware and a cache protocol that maintains cache consistency between multiple XP processors. The i860-XP comes in a 262-pin ceramic pin-grid array. 50- and 40-MHz versions, $699 and $560 (1000), respectively.

Intel Corp, Box 7641, Mount Prospect, IL 60056. Phone (800) 548-4725, or local office. Circle No. 384

12-Bit A/D Converters
- Include S/H circuit
- Have 8.5- and 25-µsec conversion times

Designed to plug into most ADC574 sockets without system modification, the ADS574 and ADS774 are 12-bit successive approximation A/D converters. Both devices feature an internal sample/hold circuit, a 2.5V reference, a clock, a digital interface for microprocessor control, 3-state output drivers, and internal scaling resistors for input ranges of 0 to 10V, 0 to 20V, ±5V, or ±10V. For 12-bit conversion, the ADS574 and ADS774 have a maximum acquisition-and-conversion time of 25 and 8.5 µsec, respectively. Both parts operate from a single 5V supply. Depending on the operating mode, a -12 or -15V supply is optional, but a +12 or +15V supply is not used. Other key specifications are ±1/2-LSB integral nonlinearity, ±3/4-LSB differential nonlinearity, −77-dB THD and 78-dB SFDR (spurious-free dynamic range). The ADS574 and ADS774 are available in 0.3- or 0.6-in.-wide, 28-pin plastic or side-brazed hermetic DIPs, and in 28-pin SOIC packages. From $14.15 (100).

Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 746-1111. FAX (602) 889-1510. TWX 910-952-1111. Circle No. 385

Audio/Video Op Amps
- Have nonsaturating outputs
- Have gain-bandwidth products to 80 MHz

Designed for use in active filters, audio preamplifiers and baseband video applications, TLE2027 and TLE2037 op amps feature an output-saturation recovery circuit. This circuit prevents output saturation, eliminating recovery time and

a look at the full Spectrum.

At Spectrum Signal Processing we’re putting DSP to work with a full range of OEM and development solutions.

We begin by working with you at every step of your design. We utilize the industry’s most complete line of DSPs, buses and interfaces and provide all of the development tools and technical applications support you’ll ever need. Then our Quality Management Program ensures that we build quality in.

What this means is a tailored DSP solution that works immediately and easily – whatever your application. Including telecommunications, military, medical monitoring and diagnostics. Even digital audio, multimedia and array processing.

So call today for your free catalog to see our spectrum of DSP Development Tools and OEM Solutions: 1-800-663-8986 (U.S.) or 604-438-7266 (Canada). And let us help you put DSP to work.

Spectrum

CIRCLE NO. 148 Putting DSP to work 217
allowing the output to respond correctly to the applied input. The TLE2027 has a unity-gain bandwidth of 15 MHz and a typical voltage gain of 45V/µV with a 2000Ω load. The TL2037, which is a faster, decompensated version of the TLE2027, has a gain-bandwidth product of 80 MHz, a 50° phase margin, and is stable at gains of five or greater. Package options include DIP, SO and metal can. In commercial plastic DIPs, $1.19 (1000).

Texas Instruments Inc, Semiconductor Group (SC-91047), Box 809066, Dallas, TX 75280. Phone (800) 336-5236, ext 700; (214) 995-6611, ext 700. Circle No. 386

Power Converter/Regulator
- Generates ± voltages locally
- Operates over a 3.5 to 15V range

For components such as op amps and comparators that need voltages unavailable from the system power supply, you can use the UC1054 to generate the required voltage locally. A charge-pump device, the UC1054 can generate or regulate positive and negative voltages between 3.5 and 15V, using any supply voltage in that range. The chip provides as much as 100 mA of output with a typical voltage loss of 1.1V over the full range. Typical circuit configurations include a voltage inverter, voltage regulator, and negative or positive voltage doubler. You can configure the device as a voltage regulator by placing a voltage divider between the output and the on-chip 2.5V reference pin. An oscillator pin lets you adjust the 25-kHz frequency of the internal oscillator or to synchronize it with another device. A shutdown feature reduces the quiescent supply current to 100 µA. In 8-pin DIP and SOIC packages, from $2.40 (10,000).

Dallas Semiconductor, 4401 S Beltwood Pkwy, Dallas, TX 75244. Phone (214) 450-0448. Circle No. 388

14-Bit A/D Converter
- Includes S/H amplifier
- Converts at rates to 2 MHz

The ADS-942 14-bit A/D converter uses a subranging architecture to provide high speed and precision. The converter, which features a fast S/H amplifier, can digitize sinusoidal signals to 1 MHz at a 2-MHz sampling rate or step inputs at a 1.3-MHz conversion rate. Functionally complete, the ADC contains an internal clock, 3-state outputs, and an internal 10V reference. The reference can supply 5 mA to
INTEGRATED CIRCUITS

external circuitry. Other key specifications include total harmonic distortion of -85 dB and a S/N ratio of -77 dB. A pin-selectable feature provides analog input signals of 0 to 10V or ±5V. The digital inputs and the 3-state outputs are TTL and CMOS compatible. The ADS942, which comes in a small, 32-pin DIP, operates from 5V and ±15V supplies and consumes 2.9W. From $374 (OEM qty).

Datel, 11 Cabot Blvd, Mansfield, MA 02048. Phone (508) 339-3000. FAX (508) 339-6356. TLX 174388. Circle No. 389

Analog Interface Chip
- Has 25-kHz sampling rate
- Extends voice band to 7600 Hz
For processing signals beyond the 300 to 3000-Hz voice band, the TLC32046 features a user-programmable, analog-input bandpass/low-pass filter having a nominal bandwidth of 300 to 7600 Hz. The maximum sampling rate is 25 kHz. The chip is a complete analog-to-digital and digital-to-analog input/output system that interfaces directly with the TMS320 DSP family. The chip integrates several functions, including 14-bit A/D and D/A converters, a bandpass antialiasing filter, a low-pass output-reconstruction filter, signal conditioning, control, and timing. The device offers three operating modes—telephone, word, and byte—and a selectable (sin X)/X correction for D/A conversion. For flexibility, the device offers programmable sampling rates, filter bandwidths, A/D path gain, and multiplexed analog inputs. The analog input can be single-ended or differential. TLC32046, in a 28-pin DIP or 28-pin quad flatpack, $14.63 (1000).

Texas Instruments Inc, Semiconductor Group (SC-91045), Box 809066, Dallas, TX 75380. Phone (800) 336-5236, ext 700; (214) 955-6611, ext 700. Circle No. 390

Start with the blazing speed of our DSP32C-based ZPB34 DSP processor board, then add the versatility of our upgraded DSPlay XL™ code development software. The unique combination forms one of the most powerful integrated DSP platforms available on an IBM® PC or compatible. Simple, painless, and powerful.
The ZPB34 features AT&T’s 50MHz DSP32C floating point processor and is available in four standard memory configurations from 64KB to 576KB. It’s ideal for applications requiring large FFTs, execution of complex real-time algorithms, and image processing. High-speed buffered serial ports are included for interconnections of processing boards or connection to our ever-expanding line of high-performance analog I/O systems.

Add power to speed with our improved DSPlay XL DSP code generation software. It features a menu-driven diagram approach to algorithm development and generates standard executable code for both AT&T’s DSP32 and DSP32C. New version 3.19 includes over 100 DSP functions, an assembler for user-defined blocks, FIR and IIR digital filter design routines, and I/O control.

Put the power of our DSP solutions to work for you. For information on our entire line, call 1-800-548-6132, Fax (602) 741-3895, or write Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734.
Higher integration. Higher speed.
Less power. Less space.
SCSI never had it so good.

Introducing the industry's next-generation quad EIA-485 transceiver.

Today's SCSI designs need faster, more reliable signal transmissions to increase performance. And they require highly integrated transceivers with smaller footprints to save precious board space. They need National's DS36954.

Our newest quad EIA-485 transceiver is small enough to save space in the most compact SCSI designs and fast enough to meet SCSI's need for speed. And that makes the DS36954 the best device for high-speed, parallel, multipoint and computer I/O bus applications.

Four transceivers in one.

By integrating four transceivers in a single 20-pin PLCC or SOIC package, our new quad device lets you reduce part counts and save valuable board space: A single DS36954 in a PLCC takes up 60% less space than four separate transceivers in DIPs and 20% less than four SOICs. And just five DS36954s are needed to complete a SCSI interface, compared to 18 single transceivers with competitive solutions.

More speed on less power.

The DS36954 is fabricated in L-FAST®, an advanced linear bipolar process that allows higher performance with lower power consumption. It operates at 10 Mega-transfers per second, yet it draws under 20mA per transceiver, 60% less than conventional bipolar transceivers. And that combination increases your system's performance and reliability.

The innovator in interface.

The DS36954 joins a long list of National interface breakthroughs, including the industry's first CMOS EIA-232 drivers and receivers, the first CMOS EIA-422 line drivers and receivers, and the first EIA-485 military-grade drivers, receivers and transceivers.

For a datasheet, call us at 1-800-NAT-SEMI, Ext. 137. We'll tell you more about the DS36954, a device that gives you higher integration and speed without sacrificing board space and power consumption. And for SCSI, it doesn't get any better than that.
Basic Math Library
- Compiled subroutines callable from HTBasic
- For statistics, signal processing, and numerical analysis

The HTBasic Advanced Math Library is an addition to HTBasic, a PC-based engineering Basic. The library is a collection of fast, compiled subroutines that are callable from HTBasic and that are useful in statistics, data reduction, signal processing, and numerical analysis. It includes routines for probability density functions, curve fitting, FFTs, digital filtering and windowing, built-in waveforms, root finding, Bessel and related functions, and other higher mathematical functions. HTBasic, compatible with HP 9000 Series 200/300 HP BASIC, offers features such as HP-style IEEE 488.2 commands, data acquisition and RS-232C instrument-control statements, complex arithmetic, HP-style graphics, and SCPI compatibility. The library requires use of the DOS 386 version of HTBasic. Library, $400; DOS 386 HTBasic, $925.

User-Interface Software Package
- Simplifies user-interface development
- For test-and-measurement applications

HP Basic Plus software reduces the number of lines of programming code required to create user interfaces on instrument controllers. The software has 29 commands that create graphical objects needed for user-interface development. The graphical objects are dialogue boxes (for error messages, file information, warnings, and other user messages); data displays (bar display, meters, XY displays, and strip charts); text displays, user-input devices (such as sliders, buttons, and string inputs); pull-down and cascading menus; and displays for HP graphics-language (HP-GL) files. The software, which requires use of HP Basic release 6.2, runs on HP Basic workstations such as the HP 9000 Series 300 controllers. It also runs on PCs with either an HP 82300C or HP 82324A measurement coprocessor. HP Basic Plus, $450; HP Basic 6.2, $1050; upgrade, $250. Delivery, eight weeks ARO.

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Circle No. 361

Process Automation Kit
- Defines and implements automatic process management
- For software-, electronic-, or mechanical-engineering projects

Teamnet is a Unix-based engineering data-management system for tracking product development. It can use any tool that runs on any computer on an NFS-based network without the need to modify or encapsulate the tool. The kit provides the tools necessary to automate the flow of information between work groups, project leaders, and corporate management. Organizations can extend and customize it to meet their needs with reusable process modules. The kit allows automation of processes such as sign-off requests at each release level; it also provides dependency management, tracking components of a product that might be affected by a proposed change. Including 5-day on-site training, $45,000.

Teamone Systems Inc, 710 Lakeway Dr, Sunnyvale, CA 94086. Phone (408) 730-3500. Circle No. 362

TransEra, 3707 N Canyon Rd, Provo, UT 84604. Phone (801) 224-6550 Circle No. 360

Text continued on pg 227
The Magic Module™—DC/DC Converter... the ultimate in proven performance, power capability, size and features...

When designing a DC/DC converter into your system, you want the assurance that a surprise is not going to pop up. With Electronic Measurements' EMQ Series of Magic Modules, you have the assurance of dependable performance, since the design incorporates proven fixed frequency, forward converter technology with current mode control and a nominal frequency of 250 kHz. Another good reason to choose the Magic Module is size. The EMQ Series also offers the highest power rating for any self-contained 5-V output, high density, board mounted unit available.

For example, the EMQ48-05-40, rated at 200 W, occupies a footprint of only 2.4" x 4.6" with a 0.625" profile, and a nominal input of 48 VDC.

For a pleasant surprise, check these MAGIC MODULE features:
- More watts per cubic inch than any other 40 Amp. converter
- Forward converter topology for proven reliability
- Fixed frequency (250 kHz) for EMI reduction and stability
- Soft start
- RMS current reduced to negligible levels in a short circuit mode
- Unit latches off in an overvoltage or over temperature condition
- Operates in the N+1 Mode for system redundancy
- Standard units include outputs from 5 to 48 VDC, inputs from 10 to 300 VDC, 50 to 200 watts power out
- Thermal characteristics allow for PC board mount with only natural convection up to 50 watts

Best of all, you have the assurance that THE MAGIC MODULE comes from Electronic Measurements, a company with over 40 years of power conversion experience.

THE MAGIC MODULE brochure is yours for the asking. If you need information immediately, call TOLL FREE 1-800-631-4298 (In NJ, HI, AL and Canada 908-922-9300).

A PRODUCT OF

ELECTRONIC MEASUREMENTS INC.

405 Essex Road, Neptune, NJ 07753 • CALL TOLL FREE 800-631-4298 • Fax: 908-922-9334
(In NJ, Alaska, Hawaii & Canada Call: 908-922-9300)
Finally, a SPARC chip set that comes equipped with everything you need for the Sun.

Now, from the Advanced Products Division of Fujitsu Microelectronics — something new under the Sun. A SPARC™ chip set that offers the world’s most advanced, cost-effective solutions for Sun-compatible workstation designs and specialized, compute-intensive applications. Including voice response, medical imaging and pattern recognition systems.

Our new SPARC chip set is packed with all of the advanced features you need to differentiate your systems from Sun and yesterday’s Sun clones. Such as higher integration. More system flexibility. Clock speeds of up to 40 MHz. And graphics options. All at a price to help you outshine the competition.

Plus, to get you to market faster, we offer three distinct hardware designs: Busless, Sbus and VME bus. What’s more, from our alliance with INTERACTIVE Systems Corporation — the premier independent UNIX® source — comes the latest SunOS™ 4.1.1 ported to each design. And with comprehensive documentation and training, you’ll find your place in the Sun more quickly.

So equip yourself with everything you need to develop the highest performance SPARC-based systems. Call us at 1-800-523-0034. And discover why our new SPARC chip set is the perfect Sun set.

FUJITSU MICROELEKTRONIK GmbH (Dreieich, Germany): Ph: 06033-6900 Fax: 06033-690122.

SPARC is a registered trademark of SPARC International. UNIX is a registered trademark of UNIX System Laboratories, Inc. SunOS is a trademark of Sun Microsystems, Inc.

EDN September 16, 1991
WHO NEEDS THE SIGNAL PROCESSING WORKSYSTEM?

Anyone involved in DSP and communications design can benefit from the Signal Processing WorkSystem. Because SPW™ is the only complete, integrated CAE software tool for signal processing design, simulation, analysis and implementation.

Satellite communications, Modems, Mobile radios, Cellular phones, Radar, Sonar, Speech encoding, Voice processing, Image processing, Digital audio, Multimedia, Automotive electronics, Robotics, Neural nets and pattern recognition, Data compression, HDTV, Biomedical instrumentation. All these and much more can be designed using SPW on industry-standard platforms from Sun, DEC and HP/Apollo.

That's why over 200 of the world's leading telecommunications, aerospace and electronics companies around the world now use SPW.

With SPW you first create a high-level, hierarchical design using its extensive libraries of DSP and communications function blocks, as well as your own custom blocks. SPW then automatically converts your design into an error-free simulation program that can accept real-world signals and parameters for accurate design analysis.

SPW also provides several optional paths to implementation, including bit-accurate fixed-point simulation, VHDL generation, logic synthesis and other ASIC/PCB support. A code generation system produces generic-C for fast prototyping on any DSP platform, links SPW to DSP chips from AT&T, Motorola and TI, and supports boards from leading vendors.

To preview the Signal Processing WorkSystem, call (415) 574-5800 for a free video demonstration tape. In fifteen minutes, you'll see how SPW can save hundreds of hours and thousands of dollars in DSP design.
Integrated Tool Set For Layout And Analysis

- Provides layout for high-speed, high-density modules
- Includes tools for thermal and transmission-line simulation

The CAD Expert suite of tools, part of the supplier's Visula EDA Expert series, provides rules-driven physical-layout tools for high-speed, high-density modules (including pc boards, hybrids, multiple-chip modules, and high-density interconnects). The layout tools are integrated with physical-analysis tools for thermal and transmission-line simulation. The tools allow users to define engineering and manufacturing rules and parameters in the design process and later use those definitions in processes such as component placement and signal routing. By bringing manufacturing constraints into the design and layout phases, they ensure that designers adhere not only to engineering rules in the design process, but also to manufacturing rules. To guarantee design integrity, signal analysis is possible at any phase of the design cycle. Key features of the tool set are a grid-free system architecture that applies to a mixture of fine-line geometries, an object-oriented structure that represents components and data as objects, and an expandable relational database that holds the design and manufacturing rules. From $32,000.

Racal-Redac, 1000 Wyckoff Ave, Mahwah, NJ 07430. Phone (201) 848-8000. FAX (201) 848-8189. Circle No. 363

Reverse-Engineering Tool For Fortran Programs

- Shows structure of existing programs written in Fortran
- Helps create documentation for previously undocumented code

Teamwork/Fortran Rev graphically reveals the structure of existing Fortran programs, helping engineers understand undocumented code and create new documentation. It automatically generates structured-design charts from Fortran source files; Teamwork/SD, another tool in the supplier's line of CASE products, can display the charts. Users can use a mouse to browse or edit the source code underlying displayed modules, and they can suppress the display of individual modules or entire groups of modules. For example, a user can choose to suppress the display of specific subroutine calls or eliminate all common-block data modules. The product works with many dia-

Text continued on pg 230
Conductive Silicone Rubber Keypads from ICHIA TECHNOLOGIES INC.

From complete in-house design and tooling through total process SPC, ICHIA has what it takes to create high performance keypads fast.

- Fastest turnaround times
- Highest quality finished keypad
- Lowest price

Call or FAX your requirements today.

ICHI NORTH AMERICA
2 Essex Road
New Milford, CT 06776
(203)350-1153 FAX:(203)350-1155

Leading in Sub-Miniature Fuses Technology

Advantages of Wickmann Sub-Miniature Fuses:
- taped on reels for automatic insertion
- space saving types
- with international approvals
- universally acceptable
- shock- and vibration proof
- low voltage drop

Wickmann-Werke GmbH
Postbox 2520 · D-5810 Witten 6 · Tel. 02302/6620 · Fax 02302/662219

WSB-100 Waveform Board:

20MHz/32K
$1290

The WSB-100 waveform synthesizer offers speed and memory at a price that's half what you'd expect to pay. With its analog module, the WSB-100 becomes a 12-bit waveform board for the PC-AT and compatibles that can be used in a wide range of testing and control applications. Multiple boards can be connected to store longer waveforms or to run several waveforms simultaneously.

Optional modules enable the WSB-100 to act as a digital pulse generator or a 16-bit word generator.

A 10 MHz/32K configuration is available at an even lower price.

Call for our free Interface Handbook:
1-800-553-1170

NASA's Space Shuttle Program had over 10,000 suppliers. To join their exclusive list of Top Forty Suppliers (0.4% of the total) is quite an honor. MP was included on that list for excellence in both quality and service. If you're looking for circuit protection from a supplier who can meet today's rigorous performance standards, look to MP.

Mechanical Products, Inc.
1824 River Street
P.O. Box 729
Jackson, MI 49204-0729
TEL (517) 782-0391
FAX (517) 762-2810

ZERO-POINT-FOUR-PERCENT

Wickmann Werke GmbH
Postbox 2520 · D-5810 Witten 6 · Tel. 02302/6620 · Fax 02302/662219

PC-AT is a registered trademark of IBM Corp.
FUTABA
Sets the Standards in Custom Vacuum Fluorescent Displays and Vacuum Fluorescent Modules

CUSTOM DESIGN
Futaba is the leading global supplier of vacuum fluorescent displays and modules. We have the capability, technology, and market knowledge to provide you with the most cost effective display system tailored to your specific application.

Futaba's high brightness fluorescent display products range from simple numeric and dot matrix displays to large multi-color graphic panels.

TECHNICAL SUPPORT
Futaba engineers have a broad range of application experience including automotive, point of sale, appliance, medical, and instrumentation products. They are ready to assist you in optimizing your display system design.

U.S. MANUFACTURING
Futaba's state-of-the-art SMD manufacturing facility in Schaumburg, Illinois provides local service, JIT delivery, and reinforces its commitment to supply the North American market.

QUALITY
Futaba's number one commitment is supplying products having the highest level of quality. Quality begins with the initial design and is controlled throughout the manufacturing process by using SPC and having well trained and motivated employees.

Futaba is dedicated to the principal of continuous improvement and always strives to provide the highest level of customer satisfaction.

Pick up the phone - take advantage of our superior technical background and design expertise. Call or write for more information on Futaba custom vacuum fluorescent display modules.

FUTABA
711 E. State Parkway
Schaumburg, IL 60173
708-884-1444
FAX 708-884-1635

Pick up the phone - take advantage of our superior technical background and design expertise. Call or write for more information on Futaba custom vacuum fluorescent display modules.
lects of Fortran, such as ANSI Fortran-77, MIL-STD 1753, and several language extensions. The language extensions that are covered include those used on workstations from Sun, DEC, HP Apollo, and IBM as well as for several IBM and Cray mainframes. The tool also features preprocessing to assist with uncommon dialects, plus an open interface between its Fortran parser and its structure-chart generator for customers who need to reverse-engineer custom or proprietary languages. The product is available on Sun systems now; versions for DEC VAX VMS, DEC Ultrix, HP-UX, Apollo Domain, and IBM AIX will be available in the future. $9700/seat.

Cadre Technologies Inc, 222 Richmond St, Providence, RI 02903. Phone (401) 351-2273, FAX (401) 351-7380. Circle No. 364

DSP Software-Design Tools

- Increase user productivity in programming and debugging
- For fixed- and floating-point DSP families

Two software-design tool sets aid software development and debugging for the supplier's DSP processors. Tool set ADDS-210xx-SW is for floating-point chips, including the recently announced ADSP-21020; tool set ADDS-21xx-SW is for fixed-point devices, including the ADSP-2100A, ADSP-2101, ADSP-2105, ADSP-2111, and ADSP-21msp50. The floating-point set comprises an assembler, linker, assembly library, librarian, simulator, and PROM splitter. The assembler creates object files in industry-standard Common Object File Format (COFF). The simulator, which has context-sensitive help, windowing interface with mouse support, and reconfigurable windows, features full symbol disassembly and multiple breakpoints. The fixed-point tool set includes an assembler, linker, simulators, and PROM splitter; an optional C compiler package (standard in tool set for VAX) includes a runtime library with more than 100 mathematical and DSP functions. (A C compiler and runtime library for the floating-point set are in beta test.) The floating-point set runs on PCs; the fixed-point set is available for PCs, Sun-3 and Sun-4 workstations, and DEC VAX (VMS 5.3-1) systems. Floating-point set, $995; fixed-point set, $795 (PC version); $1295 (Sun version); and $5995 (VAX version); C compiler and runtime library, $1595 (PC); $2995 (Sun).

Analog Devices Inc, Box 9106, Norwood, MA 02062. Phone (617) 461-3911. Circle No. 365
We Support Your HV Power Supply... All The Way!

- From your buy decision with a wide choice of 13 different series and over 200 standard models, from 1 kV to 500 kV DC, 15 W to 15 kW, and anything in between. All with advanced pulse-width modulation... for high efficiency, fast response, and reliability... and air insulation for light weight and serviceability. Competitive pricing always. And the best on-time delivery in the industry.

- To installation with complete documentation, test procedures, and responsive that is only a phone call away.

- Through trouble-free operation that results from a low parts count and carefully derated high voltage components... all backed by a no-nonsense 3-year warranty and factory service available on three continents!

We have a new 16-page short-form catalog crammed with useful information. Ask for a copy today and select Glassman for your next high voltage application. Mr. HV won’t let you down!

Innovations in high voltage power supply technology.

GLASSMAN HIGH VOLTAGE INC.
You Don’t Have To Take Chances With Bugs.

THE LOWEST-COST XDB ROM MONITOR DEBUGGER FOR MOTOROLA 68000, 68020, 68030, 68302, 68332 AND 68340 MICROPROCESSORS.

Every embedded microprocessor application starts off with a few bugs. But you can eliminate them without missing a beat — or a deadline. Because with InterTools XDB ROM Monitor Debuggers, you start and finish debugging sooner in actual prototype environments. XDB’s powerful user-friendly interface and “smart” ROM Monitor make it the most productive debugger available. And, starting at just $2,495, it’s also the lowest priced. Call now for more information, or to order.

With InterTools, you don’t have to take chances with bugs. 1-800-356-3594
617-661-0072.

Intermetrics
Microsystems Software, Inc.
Make Every Bit Count

CIRCLE NO. 161

Price is for IBM PC and compatible version; call for pricing for other platforms.
NEW PRODUCTS
TEST & MEASUREMENT INSTRUMENTS

VMEbus Tracer With
SCSI Port And Deep Memory
- Records 64k or 256k frames of
 bus activity
- Sends records to mass-storage de-
 vice via SCSI port
The XMEM-PB/SCSI board plugs
onto the vendor’s VBT-321B
VMEbus tracer, which is, itself, a
VMEbus board. The daughter card
stores a 64k-frame (optionally 256k-
frame) trace and sends it through
an onboard SCSI port to a mass-
storage device as a Unix-compatible
file. Firmware on the main board
is compatible with Sun Microsystems’ SunOS version of Unix. The
vendor can also furnish a version
of the board that incorporates a 2-
bank interleaved trace memory.
This arrangement allows you to
capture SCSI traces continuously
and to transfer them to mass stor-
age without gaps. From $2850.

IEEE-488 DACs
- Can have two or four 16-bit DACs
- Each DAC is ohmically isolated
 from chassis to 500V
The DAC488/HR2 and DAC488/HR4 D/A converters are 1¾-in.-
high, ac-powered units that you can
mount in an equipment rack. They
connect to the IEEE-488 bus and
contain either two or four plug-in
boards, respectively, which hold a
16-bit DAC. Each DAC is optically
isolated from the chassis and the
bus, and can continuously transfer
data from the bus to its output at
100 kwords/sec. Each DAC includes
an 8-kword buffer. Two options are
available: One option increases a
buffer to 128 kwords; the other op-
tion increases a buffer to 480
kwords. Because the unit is µP con-
trolled, you can increase the size of
any buffer by looping—repeatedly
routings a range of stored val-
ues to a DAC. Linking buffer seg-
ments lets you create still longer
waveforms. To create a function
generator, you can synchronize the
unit to an external clock or use one
of its several built-in clocks and
trigger sources. DAC488/HR2,
$2495; DAC488/HR4, $3495; 128-
kword-buffer option, $195; 400-
kword-buffer option, $395.

2-and 4-Channel,
150-MHz Digital Scopes
- Take 400 Msamples/sec
- Have 16 nonvolatile waveform
 memories
The 4060 family of DSOs includes
the model 4062, a 2-channel unit and
the 4064, a 4-channel unit. Both
DSOs offer 150-MHz bandwidth
and, in single-shot mode, take 400
Msamples/sec on each channel.
Hamilton/Avnet now has, in stock, the industry's first 1 megabyte and 4 megabyte, PCMCIA-compatible flash memory cards to help you achieve higher functionality in portable and dedicated applications. In fact, when it comes to data acquisition and firmware updates, Hamilton/Avnet has the knowledge and expertise to help you design-in flash memory cards...today!

And for applications incorporating DOS, Intel offers a flash system developer's kit that enables you to check out how easy it is to design-in flash memory cards.

To order your flash system developer's kit, a $499.95 value, simply call Hamilton/Avnet. For the branch nearest you, call toll free, 1 (800) 888-9236. Or, for further details, simply send in the coupon below.

☐ I'd like additional information on Intel's Flash Memory Card offering.

Name ____________________________
Title _____________________________
Company __________________________
Address ____________________________
City _____________________________ State ______ Zip ___________
Phone ____________________________
Application __________________________

Hamilton/Avnet, Dept. 175
P.O. Box 9000
San Fernando, CA 91341-9981
THE NEW MICRO-CAP III™
SO YOU CAN TEST-FLY
EVEN MORE MODELS.

It wasn't easy. But we did it. Made the
long-time best-selling IBM® PC-based
interactive CAE tool even better.
Take modeling power. We've significantly
expanded math expression capabilities to
permit comprehensive analog behavioral
modeling. And, beyond Gummel Poon BJT
and Level 3 MOS, you're now ready for
nonlinear magnetics modeling. Even
MESFET modeling.
Analysis and simulation is faster, too.
Because the program's now in "C" and
assembly language. That also means more
capacity — for simulating even larger
circuits.
As always, count on fast circuit creation,
thanks to window-based operation
and a schematic editor. Rapid, right-from-
schematics analysis — AC, DC, Fourier and
transient — via SPICE-like routines. The
ability to combine digital/analog circuit
simulations using integrated switch
models and parameterized macros. And
stepped component values that streamline
multiple-plot generation.
And don't forget MICRO-CAP III's
extended routine list — from impedance,
Nyquist diagrams and BH plots to Monte
Carlo for statistical analysis of production
yield. The algebraic formula parsers for
plotting virtually any function. The support
for Hercules, CGA, MCGA, EGA and VGA
displays. Output for plotters and laser printers.
Cost? Still only $1495. Evaluation versions
still only $150. Brochure and demo
disk still free for the asking. Call or write
for yours today. And see how easily you can
get ideas up and flying.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387
In 1807, Joseph Fourier had a great idea. In 1991, SRS makes it affordable.

Presenting the SR760 FFT Spectrum Analyzer. 16-bit 100kHz performance for only $4350.

SR760
- DC to 100 kHz frequency span
- 90 dB dynamic range
- 16 bit A/D conversion
- Single channel with true differential input
- 50 kHz real-time bandwidth
- Internal or External Trigger
- Limit testing and data tables
- Menu based user interface
- 3.5 inch DOS compatible disk drive
- Direct hardcopy to printers and plotters
- GPIB, RS232, and Printer interfaces

SRS delivers the SR760. The perfect spectrum analyzer for a wide range of applications, including acoustics, vibration, noise analysis, electronic design and testing. Applications that previously meant buying a $15,000 instrument.

The SR760. Power, performance and price. Everything you've been waiting for.

Sunnyvale, CA 94089 TEL (408)744-9040 FAX 4087449049 TLX 706891 SRS UD

STANFORD RESEARCH SYSTEMS

1290 D Reamwood Avenue, Sunnyvale, CA 94089 TEL (408)744-9040 FAX 4087449049 TLX 706891 SRS UD
signal or alert you. An optional, integral plotter can record anything the CRT displays. From $5200.

Gould Inc, 8333 Rockside Rd, Valley View, OH 44125. Phone (216) 328-7000. FAX (216) 328-7400.

Circle No. 354

Benchtop PC-Board Diagnostic Tester

- Tests analog and digital ICs in circuit
- Uses test history to optimize test routines

The Pro-Line PL 5000 pc-board diagnostic system is an in-circuit tester for analog and digital ICs. It can test TTL, CMOS, and ECL devices. The basic unit has 48 channels including six guard lines. You can expand it to 64 channels. Menu-based software helps you create programs for specific boards. You tell the tester the component designations and IC types and indicate their X-Y locations on the board. You then move a test clip from IC to IC, and the unit “learns” the board. During testing, the tester prompts you to enter the board’s serial number and fault symptoms. The tester uses this information to optimize the test routines and to help it determine probable causes of the symptoms. From $14,950.

Maxtec International Corp, 6470 W Cortland St, Chicago, IL 60635. Phone (312) 889-1448.

Circle No. 355

Sbus and VMEbus-Based Timebase Generators

- Synchronize computer systems to an external time code
- Maintain 1-µsec accuracy

The AITG timebase generator boards use an externally supplied time code to synchronize the time kept by Sun Microsystems workstations. The boards also generate time codes for use elsewhere. A board that synchronizes other equipment need not receive a time code from a separate source. The boards accept codes in such formats as Interrange Instrumentation Group (IRIG) -A and -B and Na-

Text continued on pg 241

INNOVATION OF THE YEAR AWARD WINNER

THE SMALLEST, MOST EFFICIENT, EASY-TO-USE 1.5 AMP DC-DC CONVERTER AVAILABLE TODAY!

If you’re designing battery-powered products such as notebook/laptop computers, cellular telephones, or products using distributed power—you need a small, efficient, and easy-to-use power converter. You need Power Trends’ new DC-DC converter—the power supply product that beat out all competition last year for the prestigious EDN Innovation of the Year Award.

Most Efficient

- 0.88 x 0.92” x 0.30”
- 35 to 100 watts/cubic inch
- Surface mount technology

Easy to use

- Self-contained inductor
- No heat sinks
- V0 laser trimmed
- Pin-compatible/78-series linears

FREE SAMPLES TO QUALIFIED USERS.

This tiny innovative product that won over the vote of EDN editors and thousands of readers in 1990 has since proven itself in a diversity of end-product designs. And now this same breakthrough product is available to you at a lower cost-per-watt than conventional DC-DC converter solutions. For more information or a free sample, call Power Trends today or FAX your request with your business card to the number below.
STACKING THE DEC
WITH VAX ON VME

VMIC'S VMIVME-7300, VMIC's VAX on VME, combines the mature software environment of Digital's VAX™ architecture and the industry standard VMEbus for an unparalleled basis for solutions to real-time applications.

The VMIVME-7300, VMIC's VAX on VME, is designed specifically to support the features of VAXELN™, Digital's Real-Time Kernel and development environment. The VAXELN™ system provides for software development on VAX/VMS host, using standard Digital languages (C, FORTRAN, Ada, EPascal).

Applications are combined with the ELN kernel using a user-friendly, menu-driven configuration utility. The resulting image can be loaded to the VMIVME-7300, VMIC's VAX on VME, via Ethernet or burnt into PROM should stand-alone operation be required.

- 20 MHz τVAX 300 with 1 Kbyte CACHE
- Ethernet coprocessor supports full IEEE 8023 frame encapsulation and media access control (MAC)
- VME Interface (Master/Slave): Systems Controller, Interrupter, Interrupt Handler and Broadcast Signal
- Dual Ported On-board Memory with Parity: 1, 2, 4, or 8 Mbytes Memory and Interlocked VAX Transactions
- Time of Year (TOY) Clock with Battery Back-up
- Two 16-bit Timers
- EPROM (128 Kbytes to 2 Mbytes): Boot Diagnostics and Support for PROM Resident Applications
- Automatic/Transparent VAX/VME Byte Ordering Mechanism
- DMA Controller for Interprocessor Message Transfer
- Nonvolatile Memory for Configuration
- Dual Asynchronous Serial Ports

1-800-322-3616

FOR MORE INFORMATION CALL:
VMIC Microsystems International Corp.
12090 South Memorial Parkway
Huntsville, Alabama 35803
(205) 880-0444 - Fax (205) 882-0859

VAX™, VAXELN™, and DEC™ are trademarks of Digital Equipment Corporation.
VMIC products are internationally represented by Distributors throughout the world.

CIRCLE NO. 166
Omnibyte has the most complete line of MIPS R3000 VME hardware, software and systems for your project. In fact you may select from 72 distinct VME configurations.

You can get the fast and powerful Pulsar 3000™, shown above, featuring:
- 25MHz R3000A RISC CPU
- 25MHz R3010A Floating-Point Coprocessor (opt.)
- (4) R3020 Write Buffers
- 128KB (or 32KB) I-cache
- 128KB (or 32KB) D-cache
- 32, 16, 8 or 4MB DRAM
- High speed SCSI port (opt.)
- Ethernet interface (opt.)
- (4) serial ports
- (4) ROM sockets (up to 4MB)
- Real time calendar clock w/battery
- 2KB NV RAM
- VIC068 VME Interface (slot 1) Controller

And the Pulsar is available with the following software:

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP/e</td>
<td>PROM monitor debugger & I/O library</td>
</tr>
<tr>
<td>SPP</td>
<td>SPP/e with architecture & cache simulator</td>
</tr>
<tr>
<td>IDT/c</td>
<td>IBM/SUN X-compiler</td>
</tr>
<tr>
<td>C EXECUTIVE</td>
<td>Real time monitor</td>
</tr>
<tr>
<td>ADA</td>
<td>ADA compiler</td>
</tr>
<tr>
<td>VxWorks</td>
<td>Real time o.s.</td>
</tr>
<tr>
<td>RISC/os</td>
<td>UNIX</td>
</tr>
</tbody>
</table>

In addition to our boards and software, we can also provide you with a complete line of MIPS development systems.

For further information, give Larry Snow a call today at 800-638-5022, (708-231-6880 in IL).

OMNIBYTE CORPORATION
245 W. Roosevelt Rd.
West Chicago IL 60185

Trademarks: 1-MIPS Computer Systems Inc. (available in binary or source), 2-Integrated Device Technology, Inc., 3-JMI Software Consultants Inc., 4-DOO, 5-Wind River Systems (available for MIPS and DEC workstations), 6-AT&T
With the OB68K/VME40™ you no longer have to compromise on performance or price in your VME embedded control application. We start by giving you a very basic board which includes:

- 25-33MHz 68040.
- (8) 28-pin RAM sockets.
- Up to 2.256MB of dual access static RAM (32KB standard).
- (8) 32-pin sockets for up to 8MB of ROM.
- (2) async RS232C serial ports.
- (16) lines of parallel I/O.

You can combine it with just the right amount of RAM and ROM you need. And you do not have to sacrifice features. Our Omnimodule™ modular I/O connector allows you to implement a wide variety of serial, parallel, SCSI, GPIB, analog, digital and other I/O options - all fitting into one slot. Other features include:

- VTC's V1C068 VME interface chip with arbiter, interrupter, mailbox and more.
- Terminal monitor/debugger/diagnostic firmware program included.
- 2 year limited warranty.
- Worldwide availability.

All of this gives you a high performance board at a price you can afford with the features you need.

To learn more about our OB68K/VME40 contact our Marketing Manager, Pete Czuchra at 1-800-638-5022 or (708) 231-6880 in Illinois.
tional Aeronautics and Space Administration (NASA) 36 and 2137. The boards keep time with an accuracy of 1 µsec. The AITG-VME-9U is for Sun workstations that use VMEbus I/O boards in the so-called 9U format. The AITG-S is a single-width Sbus card for Sun's SPARCstations. VME device, $2250. Delivery, 30 to 45 days ARO. Sbus device, $2350. Delivery, November 1991.

Odetics Inc, 1515 S Manchester Ave, Anaheim, CA 92802. Phone (714) 774-5000. Circle No. 356

Network Analyzer
For RF-Component Testing
• Has 300-kHz to 1.3-GHz, 1-Hz resolution synthesized source
• Provides dynamic range of 90 dB
The HP 8711A RF network analyzer helps you characterize circuit components at high frequencies. The instrument contains a 1-Hz resolution, 300-kHz to 1.3-GHz, swept, synthesized signal source that completes a full-band sweep in 50 msec. The analyzer has a 9-in. CRT display and a dynamic range of 90 dB. The unit has a 3½-in. floppy-disk drive. With an optional interpreter but without a host com-

Programmable
Lowpass Filter
• Has 4-pole Butterworth response
• Corner frequency is settable from 170 Hz to 25.6 MHz
The Model 35 is a plug-in board for the vendor's IEEE-488-programmable modular-instrument chassis. The board contains a 4-pole Butterworth active lowpass filter with cutoff frequencies that you can program from 170 Hz to 25.6 MHz with 2½-digit resolution. Below 2.56 MHz, the cutoff frequencies are accurate to ±2%; from 2.56 to 25.6 MHz, accuracy is ±5%. The board offers both dc and ac coupling and has an input amplifier with selectable gains of 1, 10, and 100 ±1%. You can bypass the filter and use the board as an amplifier with 50-MHz bandwidth. The maximum input is ±1.5V pk divided by the gain. $1800. Delivery, six to eight weeks ARO.

Kron-Hite Corp, 255 Bodwell St, Avon, MA 02322. Phone (508) 580-1660. Circle No. 357

Harness the awesome power of TI's TMS320C40 digital signal processor to your AT or compatible computer—the Vortex system board from ASPi is all you need!

The Vortex is particularly well-suited for prototyping and implementing multiprocessor configurations. The six 'C40 communication ports allow direct processor-to-processor communication; almost any number of Vortex Boards can be linked quickly and easily by just plugging them together.

Besides the main TMS320C40 processor, a Vortex Board has a TI TMS320C31 floating-point processor. The 'C31 can be used with the 'C40 for I/O processing or filtering, or for entirely separate functions. This gives the Vortex a total floating-point capacity of 83 MFLOPS.

The Vortex will accommodate up to 2 Mbytes of SRAM, and works with ASPi's daughter boards—including a 64 Mbyte DRAM board, digital audio interface and general A/D/A systems.

Ask today for full details on this remarkable new DSP system.
Our FB Series military solid-state relay features high speed and low off-state leakage.

Here's what you get:
- Availability to pending DESC drawing 89116 with screening to “W” and “Y” levels of MIL-R-28750.
- High-voltage output
- Very-low leakage current (200 nA)
- DC or bi-directional power FET output (see wiring diagrams)
- Ideal for ATE applications
- Optical isolation
- Fast switching speed
- Adjustable turn-on times
- Low profile 6-pin mini-DIP
- Cost efficiency

Review the electrical characteristics below and call us for immediate application assistance:

INPUT ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>FB00CD</th>
<th>FB00FC</th>
<th>FB00KB</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Input Current (I_{IN})</td>
<td>Min</td>
<td>Max</td>
<td>mA_{DC}</td>
<td></td>
</tr>
<tr>
<td>Input Current (Guaranteed On)</td>
<td>10</td>
<td>50</td>
<td>mA_{DC}</td>
<td></td>
</tr>
<tr>
<td>Input Current (Guaranteed Off)</td>
<td>100</td>
<td>500</td>
<td>µA_{DC}</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Drop at (I_{IN}) = 25mA</td>
<td>2.5</td>
<td>V_{DC}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>FB00CD</th>
<th>FB00FC</th>
<th>FB00KB</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidirectional Load Current (I_{LOAD})</td>
<td>Min</td>
<td>Max</td>
<td>mA_{DC}</td>
<td></td>
</tr>
<tr>
<td>DC Load Current (I_{LOAD})</td>
<td>2.0</td>
<td>5.0</td>
<td>mA_{DC}</td>
<td></td>
</tr>
<tr>
<td>Bidirectional Load Voltage (V_{LOAD})</td>
<td>Min</td>
<td>Max</td>
<td>V_{DC}</td>
<td></td>
</tr>
<tr>
<td>DC Load Voltage (V_{LOAD})</td>
<td>80</td>
<td>180</td>
<td>V_{DC}</td>
<td></td>
</tr>
<tr>
<td>ON-Resistance (R_{ON}) at (I_{LOAD})</td>
<td>Min</td>
<td>Max</td>
<td>Ohms</td>
<td></td>
</tr>
<tr>
<td>Turn-On Time (T_{ON})</td>
<td>800</td>
<td>1800</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Turn-Off Time (T_{OFF})</td>
<td>300</td>
<td>600</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. A series resistor is required to limit continuous input current to 50mA (peak current can be higher).
2. Rated input current is 25mA for all tests.
3. Loads may be connected to any output terminal.
4. ON resistance shown is for the bidirectional configuration. The DC ON resistance is 1/4 of these values.

"CREATING THE STANDARD OF THE FUTURE"

*For immediate application assistance call 1-800-284-7007.

Teledyne Solid State, 12525 Daphne Avenue, Hawthorne, California 90250.

CIRCLE NO. 168
There's no question that TOKIN's new chip-type high-capacitance multilayer ceramic capacitors are earning a loyal following. Suddenly, one can find them in the fanciest equipment and devices in town, and with good reason. One explanation is their large permittivity (capacitance). Another is size—only 1/5 that of conventional products.

And to clinch the ideal, they can be had for a very competitive price.

The story doesn't end there, though, because these gourmet capacitors are ideal for surface mounting and offer outstanding reliability.

TOKIN was able to accomplish all this by firing two special materials with different temperature characteristics at a low temperature (less than 1,000°C), thereby increasing capacitance while cutting costs. A dramatic breakthrough in capacitor technology.

What's more, you can put these devices to work in a wide range of application including EMI/EMC filters and bypass capacitors.

Compact and high performance at budget prices, who could refuse?

Call us today.

New Multilayer Ceramic Capacitor

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Code</th>
<th>Capacitance</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW T1 ... 1.75x1.75</td>
<td>25</td>
<td>5.8x5.8x1.75</td>
<td>25</td>
<td>5.8x5.8x1.75</td>
</tr>
<tr>
<td>CERAMIC-TYPE T1 ... 1.55x1.55</td>
<td>15</td>
<td>6.8x6.8x1.5</td>
<td>15</td>
<td>6.8x6.8x1.5</td>
</tr>
</tbody>
</table>

Ceramic Capacitor End Termination

Nickel/Tin Plate Termination** | **Solder On End Termination**

Stability at Low and High Temperatures

- **Frequency Characteristics**
- **Capacitance Change (%)**
- **Temp. Characteristics YSV**
- **Temp. Characteristics Y5V**

Tokin Corporation
Hazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan
Phone: 03-3402-6166 Fax: 03-3497-9756

Tokin America Inc.
155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-452-8020 Fax: 408-434-0375

Chicago Branch
9925 Capitol Drive, Wheeling, Illinois 60090, U.S.A.
Phone: 708-215-8802 Fax: 708-215-8804

Boston Branch
945 Concord Street, Framingham, Massachusetts 01701, U.S.A.
Phone: 508-875-0389 Fax: 508-875-1479

CIRCLE NO. 169
The Superior VMEbus Analyzer

Only VMETRO's VBT-321B and the Modular VMEbus Analyzer System offers a complete system solution to your development needs.

- **100 MHZ TIMING:** Waveforms and State listing shown on time correlated split screen.
- **Integrated VMEbus Anomaly Trigger (VBAT):** Provides on-screen explicit violation messages.
- **Separate analysis of P2-busses:** VSB, SCSI or user-defined P2-bus analyzed simultaneously with VMEbus.
- **256K deep Trace with dump to SCSI disk:** For archival or post-processing. Continuous SCSI download while sampling also possible.
- **VMEbus Master and Slave simultaneously with VMEbus analysis:** Implemented with VIC068 chip to provide real VME cycles. Powerful commands for test pattern generation.

To develop the best products, you need the best tools!

VMETRO A/S
Professor Birkelandsvae 24, P.O. Box 213
Leirdal, 1011 Oslo 10, Norway
Phone: +47 2 322580 Fax: +47 2 322880

VMETRO, INC.
2500 Wilcrest, Suite 550
Houston, Texas 77042
Tel.: (713) 266-6430 Fax: (713) 266-6919

CIRCLE NO. 170

PADS SETS THE STANDARD

for CAE/CAD design on Personal Computers

Complete thru-put logic capture and board design functionality including:

- A true multi-sheet database for Schematic capture with hierarchical design capability
- Design verification for analog and digital designs
- Both automatic and interactive PCB layout tools
- Most complete set of autorouters for Analog, Digital and SMD designs
- Cam outputs including database ASCII In and ASCII Out format
- **NEW!** PADS-2000, board designs with no system limits. 1 micron database, copper pouring, T-routing. Workstation capability at PC prices.
- Easy to learn, easy to use

Call today for a free demonstration package, and for your local Authorized PADS Reseller.

Inside MA: (508) 486-8929
Outside MA: (800) 255-7814
119 Russell Street, Littleton, MA 01460

CIRCLE NO. 171

CUSTOM THICK FILM NETWORKS

Fast turnaround on U.S. made DIPs and coated/molded SIPs. • Unlimited schematics combining resistors, inductors, capacitors and diodes. • Complete capabilities from design through production. • Lead lengths up to 0.290". • Special performance ranges, plus production and testing to M83401 levels.

Call or Fax your requirements to:
DALE ELECTRONICS, INC.
Techno Division
7803 Lemona Avenue
Van Nuys, CA 91405-1139

Phone (818) 781-1642 • FAX (818) 781-8647

CIRCLE NO. 172
LINEAR INTEGRATED CIRCUITS

- Features
- Specifications
- Applications

CIRCLE NO. 173
C&K gives you more solutions and better solutions to your switching problems than any other manufacturer. We listen better. We understand your needs. That's why we offer the broadest line of miniature and sub-miniature electro-mechanical switches in the industry. You get fast delivery from stock to four weeks on literally millions of different switch configurations—surface mount, through-hole and solder types. Over 5,000,000 configurations in our 7000 Series alone. Or we can design and build the application-specific switch that meets your exact requirements. Send for free samples and our latest catalog.

At half the price, our current limiting diodes have few limitations.

Designing in our high reliability current limiting diodes makes a lot of sense. They offer superior circuit performance, superior lot-to-lot consistency, and superior thermal characteristics...in a space-saving, hermetically sealed glass case. Motorola-equivalent leaded or SMD versions are available at about half the price. Special selections also available.

Available Types:
1N5283 THRU 1N5314 (leaded).
CCL0035 THRU CCL5750 (leaded).
CMCL1300 THRU CMCL 1304 (leaded).
CCLM0035 THRU CCLM5750 (SMD).

Pencil in Central. For more information, write or call.

Central Semiconductor Corp.
Central: We make the difference.
145 Adams Avenue, Hauppauge, NY 11788
Phone (516) 435-1110 FAX (516) 435-1824
NEW PRODUCTS

COMPUTERS & PERIPHERALS

40-MHz 386 Computer
• Uses AMD's Am386DX µP and a 64-kbyte cache
• Has 4 Mbytes of dynamic RAM and a 220W power supply
The ME 386-40 ISA bus computer uses AMD's 40-MHz Am386DX µP. The base configuration has a 64-kbyte cache, 4 Mbytes of dynamic RAM, a 1.2-Mbyte, 5½-in. floppy-disk drive, a parallel port, two serial ports, a keyboard, and a 220W power supply. The cache is expandable to 256 kbytes, and you can expand the motherboard's memory to 64 Mbytes. The motherboard has a socket for either an Intel 80387 or a Weitek 3167 coprocessor. The computer delivers 9.71 MIPS. The motherboard has six 16-bit and two 8-bit ISA bus expansion slots. You can opt for a hard-disk drive with capacities ranging as high as 750 Mbytes, and you have a choice of a 101-key keyboard or a keyboard with a trackball mouse. Base configuration, $1949; base configuration with an 80-Mbyte, hard-disk drive, 1.44-Mbyte, 3½-in. floppy-disk drive, super VGA color card and monitor, and either DOS 3.3 or 4.01, $2899.

Facsimile Relay
• Digitizes and compresses Group III fax data
• Connects a PBX trunk to a modem's data input port
The FR-100/EM4W facsimile (fax) relay lets you transmit Group III fax data over a data network. The unit digitizes and compresses the analog output signal from a Group III fax machine and produces 9600- or 4800-bps digital data. The unit connects a fax machine or a PBX trunk to the data port of a modem or a multiplexer. To transfer fax data over a data network, you need a fax relay at each end of the link. The relay supports both DTMF and pulse dialing and handles PBX signals type I through V. The relay operates from 110 to 220V ac and consumes 15W max. The unit measures 5.5 x 9.0 x 8.5 in. and weighs 7 lbs. $3640.

Entropic Speech Inc, 10011 N Foothill Blvd, Cupertino, CA 95014. Phone (408) 973-9800. FAX (408) 973-0336. TLX 1561464. Circle No. 375

Pen Recorders
• Display 24 input signals in four colors
• Sequentially scan each channel for 0.1, 0.2, or 0.5 secs
The HR Series of pen recorders measure and record as many as 24 input signals. The recorders display the data in three modes—analogue trends, analog trend with digital printout, and data logger. The units scan each input channel for 0.1, 0.2, and 0.5 sec/channel. They display analog data in four different colors, permitting six channels/color. You can program the units to record the following parameters using LCD displays—year, month, day, minute, recording mode, chart speed, data size, print interval, type of input signal, and measuring range. The recorders can also print a message of as many as 79 characters/line at any location on the chart. A clock and a timer for starting and stopping measurements are also included. The recorders have IEEE-488 or RS-232C ports for computer communications. From $3495.

Soltec Corp, Sol Vista Park, 12977 Arroyo St, San Fernando, CA 91340. Phone (800) 423-2344; (818) 365-0800. FAX (818) 365-7839. Circle No. 376
Stalking system performance is your goal. That's why Maxtor's 1.2GB SCSI Panther was designed to perform a data seek in just 13ms. No other drive in its class features such lightning speed.

Panther's hunting prowess of 2ms track-to-track seek time stands out compared to Seagate's Wren 7 seek time of 2.5ms. And Panther outruns the competition with a 30Mb/sec. internal transfer rate.

Experience counts. Panther uses the reliable head disk assembly used in the Maxtor XT-8000, which boasts more than 300,000 units in the field. Panther shreds the competition with the widest range of available controllers, an MTBF of 150,000 hours, Novell certification and a highly competitive price.

Call about the full line of Panther drives that range from 1.2GB to more than 1.7GB capacity. If you're stalking performance, check out Panther's killer specs.

Call your nearest Authorized Maxtor Distributor.

<table>
<thead>
<tr>
<th>1GB-plus Disk Drive Comparison Criteria</th>
<th>Maxtor Panther P0-12S</th>
<th>Seagate Wren 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (unformatted)</td>
<td>1.2GB</td>
<td>1.2GB</td>
</tr>
<tr>
<td>Seek Time</td>
<td>13ms</td>
<td>15ms</td>
</tr>
<tr>
<td>Track-to-Track</td>
<td>2ms</td>
<td>2.5ms</td>
</tr>
<tr>
<td>Internal Transfer</td>
<td>17.4 to 29.7Mb/s</td>
<td>15-23Mb/s</td>
</tr>
<tr>
<td>Maximum Seek</td>
<td>26ms</td>
<td>34ms</td>
</tr>
</tbody>
</table>

© 1991 Maxtor Corporation
© Panther is a registered trademark of Maxtor Corp.
Sbus Graphics Board

- Drives 1280 x 1024-pixel displays
- Runs on Sun's Open Windows 2.0 software

The GXTRA 1280 single-slot graphics card works with the Sbus in Sun SPARCstations. It drives 1280 x 1024-pixel displays and has a Sun-4 keyboard and mouse port. The board contains an 8-bit-color frame buffer, and it runs on Sun's OpenWindows 2.0 software. Windows executes partially on the board and partially on the host CPU. You can install multiple Sbus boards to service additional users on a single SPARCstation. The board uses a proprietary gate array, which accelerates low-level graphics primitives such as drawing 2-D vectors, solid and stipple fills, and characters. $2250.

80286 Single-Board Computer

- Contains 4 Mbytes of PROM disk emulation
- ISA bus board contains 4 Mbytes of DRAM and two RS-232C ports

The IND-286 single-board-computer (SBC) works with a passive 8-bit ISA bus. The SBC contains a 16-MHz 80C286 µP and features ROM-DOS, an MS-DOS 3.3-compatible, ROM-based, disk-operating system. The board also includes a battery-backed, 4-Mbyte, PROM disk emulator and a watchdog timer. The emulator boots the system and lets you place application software in EPROM or battery-backed static RAM. The board's flash EPROM programmer permits field upgrades. The SBC features as much as 4 Mbytes of dynamic RAM. It has five kinds of ports: two RS-232C; one parallel printer; one keyboard; one floppy disk; and one IDE hard disk. A clock/calendar and a socket for an optional 80C287 coprocessor also comes with the board. Using an embedded BIOS setup utility, you can configure a system and set the clock/calendar. The board consumes 4W. $795.

Ethernet Board

- Installs in Macintosh II and SE/30 computers
- Comes in coax or 10BaseT twisted-pair versions

The Ether DS Ethernet adapter board installs in the direct slot of a Macintosh II or SE/30 computer. A coax version supports thick or thin Ethernet and a twisted-pair version supports 10BaseT Ethernet networks. The board's drivers for Apple's Ethertalk Phase I and Phase II protocols free you from using high-level protocols. Macintosh computers can communicate via AppleTalk, TCP/IP, DECSnet, or other high-level protocols. Network management software, which comes with each board, provides statistics on Ethernet performance and lets you run loop-back diagnostic tests. $395.

Compatible Systems Corp, Box 17220, Boulder, CO 80308. Phone (800) 356-0283; (303) 444-9532. FAX (303) 444-9595. Circle No. 379

Call Your Authorized Maxtor Distributors

A.D.P.I.
1-800-275-2374
301-258-2744

Anthem Electronics
408-452-2287

Arrow Commercial Systems Group
1-800-323-4373

Arrow/Kierulf
1-800-777-2776

Avnet Computer
1-800-422-7070

B.S.M/Business Solutions in Micro
1-800-888-3475
214-699-8300

Cal Aco
818-704-9100
800-669-2226

Compac Micro Electronics
1-800-426-6722
415-656-2244

Computer Brokers of Canada
416-660-1616
1-800-663-0042
1-800-361-6415

CPC
714-757-0505
800-582-0505

D & H Distributing Co.
717-236-8001

Data Storage Marketing (D.S.M.)
1-800-543-6098
303-442-4747

Firststop Computer
1-800-832-4522

Future Electronics
514-694-7710

Intelect
011-525-255-5325

Marshall Industries
1-800-522-0084

Microwave Distributors
1-800-777-2589
503-646-4492

Mini-Micro Supply Co.
408-456-9500
1-800-628-3656

Pioneer Standard Electronics
1-800-874-6633

Pioneer Technologies
1-800-227-1693

S.E.D.
1-800-444-8962
404-491-8962

Tech Data
1-800-237-8931
813-539-7429

Technology Factory
1-800-848-2073
1-800-227-4712

U.S. Computer
305-477-2288

Wyle Laboratories
1-800-289-9953

EDN September 16, 1991

CIRCLE NO. 178

CIRCLE NO. 249
WHY NOT USE A MEMORY CARD?
WE PROPOSE THE BEST PRODUCT—IT'S A LSI CARD!

LSI CARD is the most reliable memory card applying contactless access system (CCL Technology) and solves all the problems for other memory cards such as water, oil, dust, stain, contact wear, static electricity etc.

LSI CARD provides a variety of memory capacity/technology from 32KByte to 8MByte to meet different applications.

LSI CARD provides a variety of card drive from CPU BUS Direct connection to PC bus drive to complete your system design.

You may call now the following contact for further information.

NIPPON LSI CARD U.S.A. LIAISON OFFICE
c/o ADVANCED TECHNOLOGY DEVELOPMENT, INC.
3301 E1 Camino Real, Atherton, CA 94027
TEL: 415-367-0522/FAX: 415-368-7717

Brushless DC motors provide extended life in demanding applications

These compact 12-24 VDC motors are designed for tape cartridge drives, business machines, medical equipment, pumps/compressors and similar applications. Available in 2.0" and 3.2" diameters with stall torque from 10 to 84 oz-in. Custom shaft and housing and configurations to match your requirements. AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3451; Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany. Tel: 611-370031. Fax: 611-370033.
Pressure Transducers
- Designed to handle rugged environments
- Provide gauge or absolute-pressure measurements

The Model 1230 and 1231 pressure transducers feature all 316L stainless steel construction and employ a proprietary technology that isolates the semiconductor sensor from harsh media and environments. Both are available in gauge and absolute-measurement versions in pressure ranges of 5 to 5000 psi. Static pressure-measurement accuracy for standard B grade units equals 0.25%; 0.125% accuracy is available in A grade units. Respective thermal errors from -25 to +82°C are ±2.5 and ±1.25%. Standard versions are available with a choice of constant current or voltage excitation. Output span is a normalized 100 ±2 mV dc, and long-term measurement repeatability equals ±0.02%. A 4-pin, in-line connector provides electrical connections. Model 1230, $75 to $80; Model 1231, $90 to $115.

Foxboro/ICT Inc, 199 Riveroaks Pkwy, San Jose, CA 95134. Phone (408) 946-1010. Circle No. 391

Current Source
- Develops a 4- to 20-mA output
- Has a ±1% accuracy

Model 930 in combination with the MK298 mounting kit can convert a 0 to 10V input into a 4- to 20-mA output. With a different mounting kit, the unit develops a constant output of 0.5 to 500 mA. Converter accuracy equals ±15 of full scale. The response time to a step change in the load of 10 to 100Ω in 100 μsec is 10 μsec max. Typical frequency response with a 100Ω load equals 10 kHz. The converter operates with any supply voltage in the 12 to 32V range and draws 60 mA max at full load. $108. Delivery, stock to six weeks ARO.

Calex Mfg Co Inc, 3355 Vincent Rd, Pleasant Hill, CA 94523. Phone (800) 542-3355; (415) 932-3911. FAX (415) 932-6017. Circle No. 392

Crystal Oscillator
- Features ±55-ppm/V sensitivity
- Has 25-ppm stability

The Model VC-7025 voltage-controlled crystal oscillator (VCXO) features a specified control sensitivity of ±55 ppm/V. Sensitivity val-
ues as high as ±70 ppm/V are attainable. Housed in a 14-pin DIP measuring only 0.31 x 0.52 x 0.82 in., the oscillator has a 25-ppm frequency stability over a 0 to 70°C range and features 5-nsec rise and fall times. Output frequency range for the oscillator spans 2 to 35 MHz. The unit can drive a 10-gate load (TTL or CMOS) and operates from a single 5V supply. Current drain equals 35 mA. Nominal control-voltage level equals 2.5V dc, and control-voltage range spans 0.5 to 4.5V dc. Deviation sensitivity measures ±50 ppm/V typ, and monotonic linearity equals 20% max. Aging characteristic for the oscillator is specified at ±1 ppm/year. $14.50 (1000). Delivery, 8 to 10 weeks ARO.

Raltron Electronics Corp, 2315 NW 107th Ave, Miami, FL 33182. Phone (305) 593-6033. FAX (305) 594-3973. Circle No. 393

High-Power Resistors
- Handle 250W
- Available in 0.1% tolerances

Designed specifically for snubber protection circuits, REG resistors can handle continuous loads of 250W and withstand 2-kW instantaneous pulses. Resistance values range from 1 to 1500, and resistance tolerances of 0.1 to 5% are available. Over a 20 to 60°C range, temperature coefficient of resistance equals 20 ppm/°C max. Isolation and inductance values equal 5000V ac min and 400 nH max, respectively. Resistor construction provides an efficient thermal interface. The Manganin resistive element mounts on a ceramic plate, which then mounts directly to a large copper baseplate. This construction guarantees an internal heat resistance of 0.1° K/W max. From $150.

Isotek Corp, 566 Wilbur Ave, Swansea, MA 02777. Phone (508) 673-2900. FAX (508) 676-0885. Circle No. 394

Cooling Module
- Controls fans or blowers
- Is RS-232C compatible

The CMM cooling management module is a smart control system that accepts temperature, air flow, or other sensor data as inputs. The unit provides failure prediction and
COMPONENTS & POWER SUPPLIES

The module features an embedded microcontroller with PID (peripheral-integral-differential) loops to control fans or blowers. The unit is RS-232C compatible and allows you to perform system upgrades using software. The modules are available with custom I/Os in 5 to 48V versions, and they can control from 6 to 20 fans or blowers. The module can synchronize all fans to avoid “beat” phenomenon, and it can compensate for filter blockages and other user-defined temperature variations. From $150 (100).

Power MOSFETs
- Feature on-chip current limiting
- Protected from shorted load conditions

The MLP1N06CL and MLA1N06CL TMOS power MOSFETs have integrated on-chip current limiting, gate-to-source voltage clamping, and gate-voltage protection. The voltage-clamping capability protects the device against unclamped inductive switching transients and overvoltage stress conditions. This feature provides high immunity to ESD. The devices also self-protect against shorted load conditions by limiting current flow when the gate is fully enhanced. Both units can be driven directly with CMOS or TTL drivers. MLP1N06CL, in a standard TO-220 package, $1.48; MLA1N06CL, in a fully isolated TO-220 package, $1.73 (1000). Delivery, stock to eight weeks ARO.

Motorola Inc, 5005 E McDowell Rd, Phoenix, AZ 85008. Phone (602) 244-3370. FAX (602) 244-4015. Circle No. 396

Futurebus + Backplane
- Conforms to the hard metric specification
- Features 13 slot positions

This 128-bit Futurebus + backplane conforms fully to the P1301 hard metric specifications as well as the P896.2 specification from revision 5.4. The unit has 13 slots positioned on a 30-mm spacing and accepts

That's AT&T “Customerizing.”

AI&T is your one-stop quality source for everything from cable to splicing and test equipment. Whether it's data cable, composite cable, optical cable or fiber, AT&T has it all. Along with 110 Connecting Blocks, ST Connectors, FDDI Jumpers, and any number of other connecting products. Everything you need in copper and fiber optics for the transmission of voice, data, image, and remote sensing. Everything you need for all your applications, such as LAN and harsh environment, off-the-shelf or custom designed.

Technical support? We’ll work side-by-side with you to design special situation connections. And we’ll provide system as well as component solutions.

You also have AT&T's assurance of product quality and reliability. Backed by the design and technology expertise of AT&T Bell Laboratories. And by a century of AT&T cable and apparatus manufacturing experience.

Giving you everything you need. Exactly the way you need it. That's what we mean by “Customerizing.”

For more information, just give AT&T a call at 1 800 344-0223, ext. 1053.
COMPONENTS & POWER SUPPLIES

12SU daughter boards. Each slot has 80 pins available for user-specified I/O via a rear connector. Arbitration is implemented as an optional 48-pin connector located at the center of each slot of the backplane. Power distribution is implemented via press-fit connectors rated for 45A. Multiple power and ground planes are provided on the 5 and 2.1V lines to alleviate the problem of ground bounce. $1920. Delivery, four to six weeks ARO.

Bice-Vero Inc, 1000 Sherman Ave, Hamden, CT 06514. Phone (203) 288-8001. FAX (203) 287-0062. Circle No. 397

DC/DC Converters

- Only 0.27 in. high
- Operate to 125°C

MSA Series 5W dc/dc converters are only 0.27 in. high and are rated for full-power operation from -55 to +125°C. The units operate over the full MIL-STD-704 input range of 16 to 40V. Single- and dual-output models are available with 5, 12, 15, ±12, and ±15V options. Dual-output models support unbalanced loading with as much as 90% of the total rated load available from either output. The converters are fully isolated and offer typical line and load regulation as low as 15 mV. Typical output-ripple voltage is 50 mV, input-ripple current is 40 mA p-p, audio-rejection specifications are 50 dB. From $225 (100).

Interpoint Corp, Box 97005, Redmond, WA 98073. Phone (206) 882-3100. Circle No. 399

Digital Panel Meter

- Has an LCD readout
- Features 0.1% accuracy

The Model DPM5035L 3½-digit voltmeter features snap-in installation and a built-in bezel. It has a basic measurement range of ±199.9 mV dc with an accuracy of 0.1% ±1 digit. Power consumption is 2 mW at 9V dc and 1 mW max at 5V dc. A 0.5-in.-high LCD provides the readout. The unit operates from a 5 to 15V power supply and has an input impedance of 10¹⁰Ω min. Decimal-point position is user selectable. The meter operates over a 0 to 50°C range, measures 3.1×1.7×0.95 in., and weighs approximately 1.6 oz. $22.55 (100). Delivery, stock to six weeks ARO.

DI International Inc, 95 E Main St, Huntington, NY 11743. Phone (516) 673-6866. Circle No. 398

Optical Switch

- Has no contact mechanism
- Activates with a 15g force

The EE-SA105 optical switch operates without a contact mechanism, using an infrared LED and phototransistor combination to indicate activation. It activates with a 15g operating force and has a 0.050-in. pretravel. The infrared LED accommodates 50-mA forward current levels and has an output of 0.5 mA min at VCE equals 5V. The switch has a high output when in the rest position; fully activated, the switch has a 200-mA-max dark-current output. LED output intensity degrades only 7.5% after 500 hours of continuous operating time. $0.99 (5000).

Omron Electronics Inc, 1 E Commerce Dr, Schaumburg, IL 60173. Phone (708) 843-7900. Circle No. 400
Samtec is the Sudden Solutions specialist.

Take the fast path to interconnect solutions...

Samtec.

Samtec has interconnect solutions for thousands of applications. Our new Solution Guide shows many of them, but if you don’t see exactly the solution you need, we’ll design one to satisfy your most demanding application.

Call 1-800-SAMTEC-9 for your free copy today!

New Albany, Indiana USA • Cumbernauld, Scotland UK • Singapore
SAMTEC, INC. P.O. Box 1147 • New Albany, IN 47151-1147 USA • Phone 812-944-6733 • Fax 812-948-5047 • TWX 810-540-4095 • Telex 333-918

CIRCLE NO. 184
Add up the savings.

NEC chip tantalum capacitors make it easy.

NEC chip tantalum capacitors deliver big three-way savings. Our surface-mount packages save precious board real estate. Standard 8 or 12mm tape supply formats, designed for automatic placement, minimize assembly time. And NEC caps are 100% burned-in for optimum reliability and greater MTBF.

NEC has 149 different types available for immediate shipment. Capacitance values range from 0.047 to 100µF and working voltages from 2.5 to 50VDC.

Contact your local NEC representative today and discover 149 ways to save space, time and trouble with surface-mount tantalum capacitors.

<table>
<thead>
<tr>
<th>µF</th>
<th>VDC</th>
<th>2.5</th>
<th>4</th>
<th>6.3</th>
<th>10</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>35</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0.047</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.068</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.33</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.47</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.68</td>
<td>A2</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>L</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6 (0.063)</td>
<td>3.2 (0.126)</td>
<td>1.2 (0.039)</td>
</tr>
<tr>
<td>1.6 (0.063)</td>
<td>3.2 (0.126)</td>
<td>1.6 (0.063)</td>
</tr>
<tr>
<td>2.8 (0.110)</td>
<td>3.5 (0.136)</td>
<td>1.9 (0.075)</td>
</tr>
<tr>
<td>2.6 (0.102)</td>
<td>4.7 (0.185)</td>
<td>2.1 (0.083)</td>
</tr>
<tr>
<td>3.2 (0.126)</td>
<td>6.0 (0.236)</td>
<td>2.5 (0.088)</td>
</tr>
<tr>
<td>4.3 (0.169)</td>
<td>7.3 (0.287)</td>
<td>2.8 (0.110)</td>
</tr>
<tr>
<td>4.6 (0.181)</td>
<td>5.8 (0.228)</td>
<td>3.2 (0.126)</td>
</tr>
</tbody>
</table>

For fast answers, call us at:
USA Tel: 1-800-632-3531, Fax: 1-800-729-9288, Germany Tel: 0211-650302, Tel: 060-445-845, Telefax: 59122.
Sweden Tel: 08-763-6020, Telex: 13638, France Tel: 1-3067-9800, Telex: 8589968, Spain Tel: 1-419-4150, Telex: 41368, Italy Tel: 02-679388, Telefax: 815555.
UK Tel: 0908-69133, Telex: 826761, Ireland Tel: 01-6794200, Fax: 01-6794081, Hong Kong Tel: 755-9008, Telex: 54560, Taiwan Tel: 02-6793377, Telex: 20372.
Korea Tel: 02-551-0450, Fax: 02-551-0451, Singapore Tel: 253-8311, Fax: 250-3583, Australia Tel: 03-267-6355, Telefax: 38343.
Economic Justification

Justifying Bar-Code Data-Collection Systems

This workbook, Economic Justification, details investing in a bar-code data-collection system, using one of three economic-analysis techniques: payback, present value, or rate of return. The 28-pg booklet also presents examples such as time and attendance, labor tracking, work-in-process tracking, shipping and receiving, and warehouse management. Worksheets and formulas round out the publication.

Burr-Brown Corp, Box 11400, Tucson, AZ 11400.
Circle No. 366

Catalog Documents Add-On Products For CAD/CAM

The 1991 Third Party Catalog features the vendor's software. It discusses approximately 200 hardware and software products that complement or extend the uses of the Personal Designer CAD package and the Personal Machinist CAM package. More than 80 third parties—including hardware and software vendors, CAD/CAM users, and CAD/CAM resellers—developed and now offer the products described in the catalog. Included are Application Software for augmenting the company's two software packages in areas such as solid design, parametrics, sheet-metal folding and unfolding, and kinematics; Symbol Libraries for applications ranging from mold design and steel detailing to tool design and welding; Data Management Software for tracking, revision control, and controlling access to engineering documents; Translators for exchanging the software packages' databases with Chrysler, Ford, GM, and other databases; Networking Products, which links more than one of the two software-package systems; Macros and Utilities for time saving and convenience in areas such as text editing, plot spooling, and redefining keyboard and menu lay-

FLUKE AND PHILIPS - THE GLOBAL ALLIANCE IN TEST & MEASUREMENT

The principle behind the Hydra Series.

No matter what input you're measuring, you always have the right tool with Hydra.

Think of Hydra as an entire test bench in a box. Its unique Universal Input Module lets you directly connect up to 20 different inputs to measure temperature, DC volts, AC volts (true rms), resistance, and frequency. In any combination. All without having to change hardware or use any external signal conditioners.

With Hydra, set up and reconfiguration are a snap. Simply wire all input types directly into the removable Universal Input-Module and plug it into Hydra. Then, just touch a button on the unit's front panel or on your PC to start testing. Scanned readings are automatically time-stamped to aid in your analysis.

Why waste time, effort, and money on an army of instruments when Hydra does it all? For a very economical price. For a free demo disk or more information, give us a call today at 1-800-44-FLUKE. We look forward to your input.

John Fluke Mfg. Co., Inc. P.O. Box 9090, Everett, WA 98206.
U.S.: (206) 356-5400
Canada: (416) 890-7600
Other countries: (206) 356-5500
All rights reserved. Ad No. 00121.
outs; Training Manuals and Teaching Aids to augment the standard documentation and tutorials; and PC Hardware, which provides graphics boards, plotters, digitizers, and other peripherals.

Computervision, 100 Crosby Dr, Bedford, MA 01730. Circle No. 367

Source Book Covers IBM PC-Related Products
Computer Systems Edition II features more than 800 IBM PC-related products. It describes applications in telecommunications, industrial and education laboratories, factory automation, and process measurement and control industries. The 96-pg publication notes the addition of 20-, 15-, and 10-slot rack and benchtop chassis, 8- and 15-slot chassis with electroluminescent displays, 6-, 10-, and 15-slot OEM card cages, industrial portable and transportable computers, and a universal rack-mount kit. Other additions include an 80486 25-MHz, EISA plug-in CPU card, 19-in. rack accessories, A/D and communications cards, and Labtech Notebook with Iconview.

Industrial Computer Source, 4837 Mercury St, San Diego, CA 92111. Circle No. 368

Support Products For Peripherals And Computers
This catalog offers an array of support products for the company's peripherals and computers. Divided into seven sections, the publication covers serial HP-IB (IEEE-488) converters; IBM PC/AT, PS/2, and 386 interfaces; HP 900 file-transfer packages; HP-IB bus extenders; the Macintosh/HP-IB converter; the parallel/HP-IB converter; and cables and accessories. Block diagrams, specifications, and pricing complete the catalog.

IOtech, 25971 Cannon Rd, Cleveland, OH 44146. Circle No. 369

Comprehensive Handbook Covers MIL-STD-1553 ICs
The 608-pg 1553 Product Handbook describes the vendor's line of monolithic MIL-STD-1553 ICs for high-reliability aerospace and defense markets. A tutorial on MIL-STD-1553 explains how to design systems to meet its requirements. The publication covers the monolithic protocol devices and details monolithic transceivers with block diagrams, features, characteristics, and package pinouts for each product. Application notes, discussions of quality and reliability, ordering information, and the complete text of MIL-STD-1553B round out the handbook.

DMA, Data-Acquisition Fundamentals, And Interrupts
Three application notes examine fundamentals of DMA and data ac-
LITERATURE

acquisition, and programming interrupts. Data Acquisition Fundamentals (Part No. 340019-01) explains the use of PCs such as the IBM PC/XT, PC/AT, PS/2, or Macintosh for laboratory research, industrial control, and test and measurement. It illustrates such elements of data acquisition as transducers, signal conditioning, data acquisition, and analysis hardware and software. Programming Interrupts for Data Acquisition on 80x86-Based Computers (Part No. 340022-01) deals with interrupt programming on computers based on the 80x86 family of µPs that are used on IBM PC/XT, PC/AT, PS/2, and EISA computers. DMA Fundamentals on Various PC Platforms (Part No. 340023-01) shows how DMA is implemented in a typical PC architecture and compares several PC DMA applications.

National Instruments, 6504 Bridge Point Pkwy, Austin, TX 78730. Circle No. 371

Hewlett-Packard, Tektronix, and Fluke. It also highlights factory-new test equipment, including Tektronix oscilloscopes and Fluke DMMs.

RAG Electronics Inc, 21418 Parthenia St, Canoga Park, CA 91304. Circle No. 372

Listing Of Nanosecond Waveform Generators

This 113-pg catalog mentions more than 300 models of nanosecond waveform generators, including ultrahigh-speed pulse generators, impulse generators, monocycle generators, samplers, delay generators, and accessories. Approximately 40% of the models presented are new, and the book provides an enlarged applications-information section.

Avtech Electrosystems Ltd, Box 5120, Station F, Ottawa, ON K2C 3H4, Canada. Circle No. 373

Publication Lists New And Used Test Equipment

This catalog of new and used electronic test equipment provides listings of oscilloscopes, spectrum analyzers, DMMs, power supplies, signal sources, and environmental chambers from manufacturers such as

EDN September 16, 1991
ATTENTION ENGINEERING EXECUTIVES, PROJECT MANAGERS AND DESIGN ENGINEERS:

This November there is only one place to evaluate the competitive advantages of programmable logic, ASICs, memories, DSPs, discrete devices, A to D converters, analog and digital ICs and other semiconductor devices from a wide variety of vendors:

The Semiconductor Show at WESCON.

And only one place to evaluate the competitive advantages of PC-based EDA tools from leading manufacturers:

The EDA Show at WESCON.

Don’t miss this once-a-year opportunity to see the latest advances in semiconductors and EDA tools, as well as test and measurement instruments, passive components, production materials and supplies, and engineering services. At the largest event for senior executives, project leaders, and electronics engineers:

Wescon

November 19-21, 1991
Moscone Convention Center
San Francisco, Calif. USA

Those who know, go. For a preview program with a complete exhibitor list, technical conference schedule, short course synopsis, and special event itinerary, call 1-800-877-2668 or complete the coupon below and fax or mail today.

☐ Send me more information about attending WESCON/91
☐ Send me more information about exhibiting at WESCON/91

Name _______________________ Title __________________ Company __________________

Address __

City __________________ State __________ Zip __________

Fax: 213-641-5117 Mail: WESCON Preview, 8110 Airport Blvd., Los Angeles, CA 90045-3194
Remember when you were in high school and those people came in to talk about careers? You probably saw an airline pilot and a nurse and maybe even an engineer. The engineer spoke briefly about what he did, and you didn't understand very much of it. Then he left, and you never saw him again. Years ago, that was considered volunteering in the schools.

Today volunteer programs are much more sophisticated and much more important. The problems besetting the American educational system are well known—falling test scores, American students ranking far behind foreign students in science and math, and fewer American students going into engineering every year. American schools need to be revitalized, and engineers are being called upon to help.

On February 19th of this year, the two honorary cochairmen of the National Coalition of Engineering Societies for Precollege Mathematics and Science Education met with President George Bush in the Oval Office of the White House. They presented him with a nine-foot scroll that included the signatures of the presidents and executive directors of the 41 national engineering societies that make up the Coalition. At the meeting they announced their goal of recruiting 100,000 volunteer engineers to help in improving math and science education.

No one has attempted a volunteer program on this scale before, and it will require some real effort from the engineers who choose to join it. "We're not interested in having someone come into a school one time and do a Mr. Wizard or a Mr. Math," says Lee DeLorme, the acting executive director of Engineers for Education. "We're asking our volunteers to make a long-term commitment. Commitment is the key to the program."

One of the nagging problems with volunteer programs in the past was that engineers and teachers sometimes didn't coordinate their efforts. The engineers would give demonstrations that had little to do with the course, or, worse yet, try to take on the role of teacher. "I think the focus shouldn't be on teaching," says DeLorme. "Rather, the volunteer should be an added resource for the teacher and the school. The role that the volunteer assumes in the school—tutor or adviser or whatever—should be done, not in a vacuum, but in consultation and agree-
ment with the individual teacher. Once they determine what the school needs and what the engineer can contribute, then they can develop an effective program."

DeLorme says the response to Engineers for Education has been surprisingly quick and very gratifying. During the first three months following the formal announcement of the program at the White House, more than 500 engineers have called the hot line and volunteered.

As Engineers for Education has expanded its working relationship with industry, it has found that many high-tech companies already support various volunteer programs, and many engineers already donate their time to local schools. Hewlett-Packard, for example, is involved in dozens of volunteer programs around the country.

Russ Herrell is an electrical engineer who works in the research and development laboratory at Hewlett-Packard's facility in Fort Collins, CO. He's also the chairman of the steering committee of the Visiting Scientists program, which pairs up a company scientist or engineer with a teacher in one of the local schools. The program was founded in 1983 and has been very popular with both students and teachers.

Herrell says that the program benefits teachers because they see demonstrations that give insights into applications of some of the things they're teaching. "At the high-school level, teachers are aware they're teaching skills—computer skills or engineering skills—but they don't know how they're applied. A little hands-on demonstration of the fruit of the labor usually goes over very well with the students, too. Students are always awed by some of the fancier technologies that we can bring into the classroom to show them," he says.

Engineers who volunteer in schools have an important function that goes beyond giving demonstrations or even teaching. They are also role models for the students. "When I was growing up, an engineer was someone like Steven Douglas on 'My Three Sons.' What did he do? I didn't know," says Herrell. "If you get to a certain age and you don't know anything about a topic, you begin to lose interest in it. You mentally close the door on it. We want to prevent that.

"We actually had one female engineer go into a second-grade class, and a little girl came up to her and said, 'Gee, I don't think I can be an engineer. I'm a girl.' Where did she get that idea? We do a lot of good just by being role models."

Volunteers face problems

There are problems involved in volunteering beyond making sure the engineer is working closely with the teacher and is contributing something meaningful to the class. First among the complaints is that there's never enough time. Business hours aren't the same as school hours, and it's sometimes difficult for engineers to get away in the middle of the day. The situation can be improved if a company has flex time or if it simply gives its engineers the time off they need.

Another problem is the lack of a comprehensive, national plan for improving the schools. Volunteer ing helps bring industry and educat

A student displays a picture he created with a computer after only a few hours of instruction.
and the engineers feel they're getting something out of it, then they must be doing something successfully."

Like Hewlett-Packard, IBM supports many volunteer programs around the country. An unusual one took place at a summer camp in Fairlee, VT, and was funded by the state. Last year three IBM employees taught children eight to thirteen years old how to use a computer. Many of them were the sons and daughters of migrant farm workers and had never seen a computer before. Penny Swank, a systems analyst, was one of the volunteer instructors.

A feeling of accomplishment

"We tried to give the students some confidence with computers," she says. "We provided programs so they could walk out of that room having produced something, whether it was a greeting card or a picture or a banner. The idea was to give them the feeling they could accomplish something using a computer."

The camp took in 80 to 90 children and had a network of 10 computers. Students were given at least one hour of instruction each week, and they could also work with the computers in their spare time. The computer room quickly became one of the most popular places in the camp.

"We had to schedule hours for it to be closed so we wouldn't be totally inundated with kids," says Swank. "There was a lot of work that had to be done to prepare the curriculum from day to day, and we just had to close the room to do that work. In fact, after we put the kids to bed at 10 o'clock, we worked until one or two in the morning getting ready for the next day.

"There's no way to give a child a computer-science education when you only have a few hours. Our goal was to give the children some sort of confidence level with the computer, particularly those who were afraid when they came in. The idea was to give them an opportunity to achieve some sort of success, and I think we did that. It was an excellent program."

Not all stories about volunteer programs have happy endings. Last year the state of Vermont withdrew its funding for the camp. Unless the director can raise money from another source, it will close permanently.

Some professional organizations sponsor volunteer programs. The National Society of Professional Engineers (NSPE), for example, runs MathCounts, a series of competitions between teams of seventh and eighth graders from around the country that culminates in a national championship each May in Washington, DC. The purpose of MathCounts is to build mathematics skills and promote strategic problem solving among students. More than 8000 volunteers from the NSPE donate their time to the program each year as organizers, coaches, and administrators.

The Junior Engineering Technical Society (JETS) sponsors academic competitions among high-school students, engineering design...
Nobody does ferrites like DEXTER. We offer the industry's broadest selection of quality ferrites and associated hardware from world-class manufacturers. SIEMENS, MAGNETICS, FAIR-RITE, HITACHI, MMG/KRYSTINEL. From prototype quantities to production runs. From off-the-shelf to a wide range of value-added services — precision fabrication, E-core and pot-core gapping and testing, sorting and selecting by electrical specs.

Call Toll Free 1-800-345-4082 for Free Catalog and Nearest DEXTER Location

FERRITE CORES:
THE DEXTER DIFFERENCE — One-Stop-Shopping for all your ferrite needs.

MAGNETIC MATERIALS DIVISION
THE DEXTER CORPORATION
ATLANTA • BOSTON • CHICAGO • DALLAS • LOS ANGELES • MINNEAPOLIS/ST. PAUL • NEW YORK • SAN FRANCISCO • TOLEDO / DETROIT • ENGLAND • GERMANY

CIRCLE NO. 190

PCB MANUFACTURING DESIGN AND ARTWORK!
ALL YOUR CIRCUIT BOARD NEEDS UNDER ONE ROOF

PCB MANUFACTURING
- 2 Day turn on multi-layers
- Prototype and production
- One tooling charge for both
- Turn-key assembled boards

PCB DESIGN
- Backplanes
- Impedance control
- Analog and ECL
- Surface mount

TECHNICAL ASSISTANCE
- PCB design tips
- Mfg cost cutting tips
- Testing guidelines
- We accept gerber data via modem (714) 970-5015

CALL FOR A QUOTE!
A MANUFACTURING, PCB DESIGN AND SUPPORT CENTER
MURRETTA CIRCUITS
4761 E. HUNTER AVE. ANAHEIM, CA. 92807
TEL: (714) 970-2430 FAX: (714) 970-2406

CIRCLE NO. 195

Professional Issues

contests, and a national engineering aptitude search. The aptitude search is a guidance test that helps students evaluate their chances of success if they choose to go to engineering school. JETS has been running these programs for 40 years. Other professional organizations also support precollege educational activities (see box, "You can help").

You don’t have to work for a large high tech firm or belong to a professional organization to help improve our schools, however. You can make a contribution by doing something as simple as attending a meeting of your local school board. You understand what kind of preparation a student needs to succeed in engineering school or in a technical profession. Talk to your school administrators and teachers and make sure that your schools are providing sufficient instruction in science and math. You can help, but first you have to become involved.

EDN

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520

ASK EDN

Have you been stumped by a design problem? Are you having trouble locating parts? Finding companies? Can’t interpret a spec sheet? Ask EDN.

The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help.

Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.
This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

FREE 26 Page CATALOG with all styles and designs of matching instrument knobs illustrated.
Fax us your specs—we will Fax you a quote... immediately!

555 Marion Road
Columbus, OH 43207
Fax: 614/445-8224
Phone: 614/445-8433

CIRCLE NO. 325

FREE 130 Page Catalog

"Optics for Industry"

Free 130 page product catalog from Rolyn, world's largest supplier of "Off-the-Shelf" optics. 24-hour delivery of simple or compound lenses, filters, prisms, mirrors, beamsplitters, reticles, objectives, eyepieces plus thousands of other stock items. Rolyn also supplies custom products and coatings in prototypes or production quantities. ROLYN OPTICS Co., 706, Arrowgrand Circle, Covina, CA 91722 2199, (818) 915-5707, FAX (818) 915-1379

CIRCLE NO. 328

Imagine if YOUR product could talk!

To find out how easy it is to add speech output to your own products, call for your free V8600 data book today!

• Converts plain ASCII text into high quality speech
• Requires only a single 5V supply and speaker
• Use in computers, voice-mail, warning systems, etc.

SMC Systems
USA Canada: Phone/Fax: 516-706-0899
Europe: 516-706-0805 Fax: 516-706-810

CIRCLE NO. 329

New SMT transformer™ for Telecommunications

For interconnect voice/data modem terminals
• Meets FCC Part 68 § 047** • For dry circuits
• Coupling and hybrid • Freq. resp: 300-3500 Hz ± 0.5 dB • -45 to +7 dBm rating • Dist. 65% max.
• Return loss 26 dBm • Long. bal. ±60 dB • 1500V RMS input • Qty. price about $100 • Custom designs available. Box 236, Valley Stream, NY 11582-0236. Tel: 516-567-0236 Fax: 516-567-1117.

CIRCLE NO. 330

EDN September 16, 1991
ICCON™

BOARD LEVEL, HIGH-CURRENT CONNECTORS
- High current, low voltage drop
- Power distribution applications
- Board-to-board configurations
- Blind mate capability
- Standard DIP footprint
- Parallel or perpendicular modules

ELCON
P.O. Box 1885, Fremont, CA 94538
Phone: (510) 490-6200 • Fax: (510) 490-3740

CIRCLE NO. 334

RELIABILITY PREDICTION SOFTWARE
ARE YOUR PRODUCTS RELIABLE?
The ReCalc 2 Software Package predicts the reliability of your system using the part stress procedure of MIL-HDBK-217E, and runs on the IBM PC and all compatible computers. It also predicts component failures, and displays various reports to help you optimize your system. Try our Demo Package for $25.

CIRCLE NO. 333

LIF RACK & PANEL CONNECTOR
L11 Series Connectors provide one to six 200 amp contacts in a rugged, Ryton® float mounted assembly. The 200 amp continuous per contact rating in a low weight compact assembly makes it ideal for power disconnects on electric vehicles, aircraft, and other mobile vehicles.

HYPERTRONICS CORPORATION
16 Brent Drive, Hudson, MA 01749
800-225-9228
(916) 753-5141

CIRCLE NO. 337

RELEX RELIABILTY SOFTWARE
Reliability products are noted for their outstanding quality, ease-of-use, flexibility, and comprehensive array of features. A wide range of packages are available to meet your price and product requirements. All products are fully guaranteed.

CIRCLE NO. 333

EDN September 16, 1991
To advertise in Product Mart, call Joanne Dorian, 212/463-6415

508-568-0680
(101) 747-8543 • FAX: (101) 747-8599
IRONWOOD offers a complete line of prototyping adapters for QUAD FLATPAK devices for all sizes of EIAJ and JEDEC QFP's. The line includes surface mount adaptors for highest reliability or socketed adaptors for convenience. Parts sizes go from 60 to 208 pins and include all EIAJ pin spacings. Parts are constructed with gold plated solder tail or wirewrap pins and high quality sockets for highest reliability. Most wirewrap and PGA patterns available.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616
CIRCLE NO. 340

Plug and Play!

PC HOST OR TERMINAL

SCANTEAM® 2380

Welch Allyn’s SCANTEAM family of Instant Interface products plugs your business directly into bar coding:
- For laptops, PCs or terminals
- Bar code scanning and decoding in a compact wand scanner
- No footprint; single cable connection
SCANTEAM 2380 keyboard wedge.
SCANTEAM 6180 for RS-232 compatible output.

Welch Allyn
4619 Jordan Road, P.O. Box 187
Skaneateles Falls, NY 13150-0187
Telephone: 315-685-8945
CIRCLE NO. 343

How To Get More Emulation for Less
ORION 8620 ANALYZER-EMULATOR

- High-Level language/Symbolic debug support
- Over 170 processors supported with the same basic hardware and software environment
- Easy-to-use, powerful triggering
- Extensive MACRO capabilities
- Program Performance Analyzer
- Built-in EPROM programmer
Go ahead and compare. The 8620 Analyzer-Emulator gets your product to market faster and costs less. Base prices start at $5500. Send for more information and free demo disk.

Toll Free 800/729/7700 or 416/327/8800
188 Independence Dr., Menlo Park, CA 94025
CIRCLE NO. 346

Printer Port Motion Control

Indexer LPT™ $249 VISA MC SOFTWARE
- Controls up to six simultaneous stepper motors
- Linear and Circular Interpolation
- Advanced features for machine control
- Easy to use DOS device driver
- CAD/CAM interface available

Ability Systems Corp
1422 Arnold Ave., Roslyn, PA 19001
(215) 657-4338 FAX (215) 657-7815
CIRCLE NO. 347

Instrument Control and Data Acquisition

Free 1992 Catalog of instrumentation products for PCs, workstations, and more. Features IEEE-488.2 interfaces and software, plug-in data acquisition boards, VXIbus controllers, DSP hardware and software, and signal conditioning accessories. Application software for complete acquisition, analysis, and presentation of data, including graphical interfaces. Application tutorials and training classes are detailed. National Instruments. 6504 Bridge Point Parkway, Austin, TX 78730 (512) 794-0100 (800) 433-3488 (U.S. and Canada) FAX: (512) 794-6411
CIRCLE NO. 348
High Performance
Lexan® FR700 Film
For Barrier Insulation
- UL94 V-0 rated at .010" • High heat resistance of 275° F • Excellent dielectric strength • Easy fabrication-sharp folds, intricate die-cut shapes • Competitively priced • Call for free information: (800) 451-3147

GE Plastics
Structured Products

MultiTask! Executives
Accelerate Design

14215 NW Science Park Drive
Portland, OR 97229

CIRCLE NO. 349

Finaly! A High Quality, Low Cost Digital Panel Meter for Under $30! **
ComputidigitaJ Model DPM-2 (Cutout 3.5" x 1.5"")
- High Accuracy - 3 or 1/2 Digit Models
- Fits standard Cutout - Slimline Design
- Easy Calibration from the Front
- Access to Decimal points via Header
- Medium .50" Brightness LED Digits
- 2 for 1 exchange on any factory defective meter
- Direct Replacement for some other brands!

Ask About Our Evaluation Kit • DPM-2 Meter, Cable Harness and Lense with Instructions for $24.95. (One per company please)
ComputidigitaJ 6801 Clear Knit Drive Garve, CA, 90241
Tel: (800) 354-2222 or Fax/ (Office) 761-5551
*Same limitations may apply • Quantity Pricing

CIRCLE NO. 350

PERSONAL EEPROM PROGRAMMERS
with BUILT-IN UV ERASER
Model: 9850
$395.00

• Simple function key operations
• Full LCD display message
• Programs 2716 to 27513 EPROMs and 2804 to 28256 EEPROMs
• Programming algorithms: STANDARD, INTELLIGENT, INTERACTIVE and QUICK PULSE
• Data file formats: INTEL HEX, Motorola S and TEXTPROMX HEX
• Programming functions: READ, PROGRAM, AUTO, BLANK, CHECK, VERIFY
• Built-in UV Eraser (9850 UV)

For more information please call:
AMERICAN RELIANCE INC.
(800) 654-9838 Fax: (618) 575-0801

CIRCLE NO. 751

Consistency is key
to the power of EDN Product Mart

MacABEL
PLD Design on the Apple Macintosh!
Data I/O's industry-standard ABEL PLD design package is now available on the Macintosh, exclusively from Capilano Computing!
- Use Boolean and integer equations, state machines and truth tables to describe your design • Communicates directly with any serial PLD programmer • Best device support in the industry, including ALTERA, AMD, AT&T, CYPRESS, GUILD, HARRIS, IC, INTEL, LATTICE, NEC, RICHD, SAMSUNG, SGS, SIGNETICS, SIS, TI, VTI and others • Interactive "in-circuit" schematic entry and simulation when used with DesignWorks

Call (800) 444-9064 Today for your free Demonstration Kit!
Capilano Computing
FAX: (604) 522-3972
(604) 522-6200

CIRCLE NO. 754

TEST BEYOND.

PROMICE takes ROM emulation a step beyond. It's an affordable, multi-operation development tool with:
• on board intelligence • modular design • source level debugging • future expandability

PROMICE. The Firmware Development System of Tomorrow...

ECA-2

Analog Circuit Simulation
KCA-2 offers • AC, DC, Transient, Fourier, Temperature, MonteCarlo, and/or Worst-Case Analysis • Interactive or batch modes • Full nonlinear simulation • Size, Pulse, P&l, SFP, and Exponential generators • IBM PC/Mac • Multiple plots • On-line real time graphics - 2 to 50 times faster than SPICE • Advanced component parameters • Component optimization sweeping • New detailed 424 page manual

Call for FREE DEMO!

Tatum Labs, Inc.
3917 Research Park Dr. B-1, Ann Arbor, MI 48108
313-663-8810

CIRCLE NO. 756

MacABEL
PLD Design on the Apple Macintosh!
Data I/O's industry-standard ABEL PLD design package is now available on the Macintosh, exclusively from Capilano Computing!
- Use Boolean and integer equations, state machines and truth tables to describe your design • Communicates directly with any serial PLD programmer • Best device support in the industry, including ALTERA, AMD, AT&T, CYPRESS, GUILD, HARRIS, IC, INTEL, LATTICE, NEC, RICHD, SAMSUNG, SGS, SIGNETICS, SIS, TI, VTI and others • Interactive "in-circuit" schematic entry and simulation when used with DesignWorks

Call (800) 444-9064 Today for your free Demonstration Kit!
Capilano Computing
FAX: (604) 522-3972
(604) 522-6200

CIRCLE NO. 757

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN September 16, 1991
Free Catalog

The World's Largest Collection of Adapters & Accessories for VLSI/Surface Mount Devices
- Emulator Pods & Adapters
- Debug tools
- Programming Adapters
- Socket Converters
- Debugging Accessories
- Prototype Adapters

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0664

• Socket Converters
• Programming Adapters • Custom Engineering
• Debug Tools • Prototyping Adapters
• Emulator Pods & Adapters • Debugging Accessories

2344 Walsh Ave. Santa Clara, CA 95051

CIRCLE NO. 758

Contact:
Also available with 80486 or 80286 CPU Cards in
181 Systems Inc., 6842 NW 20 Ave.
FAX: 305-978-9226

• 2 SERIAL, 1 PARALLEL PORT, MS DOS/GWBASIC
• Room to mount three half height drives
• Sony Trinitron Tube, high resolution VGA

STANDARD FEATURES INCLUDE:
KEYBOARD & VGA MONITOR FOR RACK,
FT. LAUDERDALE, FL 33309. 305-978-9225

• 80386 CPU CARD AT 20/25/33 MHZ. UP TO 8MB OF
• 12 SLOT PASSIVE BACK PLANE, 25FNI POWER SUPPLY

Includes manual and MS-DOS assembler disk
Table based absolute macro cross-assembler
Generates listing, symbol table and binary
Canadian residents please add 7% GST

Tango-Schematic, feature-rich and easy to use, is a
completely developed program for schematic capture. Its
affordable price includes great documentation and
technical support and a money-back guarantee.

Tango-Schematic... Corvette power at a Chevette price.

"We tried other popular schematic entry packages but
found that Tango-Schematic ticks in performance and
powerful features right at your fingertips in an easy-to-use
interface. I heartily recommend Tango-Schematic."
Mark Fox, Design Engineer

Tango-Schematic... Corvette power at a Chevette price.

1011 Grand Central Ave., Glendale, CA 91201
(818) 244-4600 FAX (818) 244-4246

CIRCLE NO. 759

CIRCLE NO. 760

CIRCLE NO. 761

CIRCLE NO. 762

CIRCLE NO. 763

CIRCLE NO. 764

CIRCLE NO. 765

CIRCLE NO. 766

EDN September 16, 1991
UNIVERSAL PROGRAMMER, EMULATOR & TESTER
TUP-300
$ 695.00
- Programs virtually any device in the market today
- Programs EPROM, PAL, GAL, PIC, PLD, PSOC, MIX, NMC, I - I
- (EPROM up to 16 Mbit Flash EPROM, Special PROM, MPU, ETTX, ETTX, 68K, ZS PROM, 12, 20, 30, 200, 120, 121, 122)
- Saves power and reduces time
- 1 year warranty
- C.C. Solder cup or crimp contacts are useable in either computer ICs, inc. Hypertronics Corporation
- Military and industrial equipment and for both electrical or database programs.
- Software made easy.
- Professionals, Scientists, Engineers, Technicians.
- M-Code $179.00
- Call or send for data sheet
- Powertronic Systems, Inc.
- PO Box 29109
- New Orleans, LA 70189
- (504) 254-0393
- (504) 254-0393

Tristate Microsystems Inc.
4433 S. Gressmill Blvd. Fremont, CA 94539
Tel: (510) 493-4925
Fax: (510) 493-925

CIRCLE NO. 767

CIRCLE NO. 768

CIRCLE NO. 769

CIRCLE NO. 770

CIRCLE NO. 771

CIRCLE NO. 772

CIRCLE NO. 773

CIRCLE NO. 774

CIRCLE NO. 775

Turbo or Microsoft-C
C thru ROM is the complete full-featured ROM development kit you need to ROM your application. C thru ROM contains a CodeView-like remote debugger and the Turbo Debugger interface for debugging on your target system. It also contains a powerful 80x86 locator, startup code, and a ROMable library in source.

Call 1 (800) 221-6630 Today, and get full details on C thru ROM or ROM-DOS for embedded system.

Data Light
17455 - 68th Avenue N. E. Suite #304
Bothell, WA 98011 USA
Phone (206) 486-8086 Fax: (206) 485-0253

ROM

4MEG VIDEO Model 10
Flexible Image Processor and Application Accelerator For The PC/AT
- 8 to 8000 Pixels per Line
- 2 to 19 MHz sampling/display rate
- 10 MIPs Programmable Accelerator
- 4 Megabytes of Reconfigurable Image Memory
- RS-170, RS-330, and CCR input/output
- Variable timing for nonstandard formats
- Genlock to external timing sources
- Analog or digital inputs
- Software programmable timing/resolution

Call (201) 808-8990
Link Computer Graphics, Inc.
369 Passaic Ave, Suite 100
Fairfield, NJ 07004 FAX: 808-8786

200 MHz Logic Analyzer

- 24 Channels (up to 50 MHz), Timing and State
- 200/100 MHz Max Sampling Rate (6 channel)
- Timing and State Simultaneous on Same Probe
- 16K Samples/Channel (6 channel mode)
- 16 Levels of Sequential Triggering
- Optional Expansion to 72 Channels
- Variable, TTL or ECL Logic Threshold Levels
- 3 External Clocks and 11 Quality Lines
- FREE Software Updates on 24 Hour BBS
- $799 - LA12100 (100 MHz)
- $1299 - LA27200 (100 MHz) Price includes Card, Probe, and Software
- $1899 - LA27220 (200 MHz)

UNIVERSAL PROGRAMMER

- PAL
- GAL
- EPROM
- EEPROM
- PROM

5ns PALs 4 Meg EPROMs
FREE software updates on BBS

GANG PROGRAMMER

- 4 32pin Sockets (8 Socket option)
- 2716-27010 EPROMs

Call (201) 808-8990
Link Computer Graphics, Inc.
369 Passaic Ave, Suite 100
Fairfield, NJ 07004 FAX: 808-8786

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN September 16, 1991
Communicate Weekly
to the electronics
OEM through
EDN's Magazine
and News Editions
Product Mart

You don't need a lot of pull
to get our free catalog.

There's excitement brewing in the power supply industry! Get the details in TODD's free, 32-page full-color catalog. Full specs, performance, mechanical, pinout, mounting and applications information for over 100 outstanding OEM switching power supplies including the revolutionary, ultra-compact SUPERMAX 1000. TODD's outstanding DEM switching power supplies are up for grabs. Visit TODD today!

PLCC LoClip - PLCC Probe

NEW PRODUCT

The PLCC-LoClipXX line from Ironwood is a new product line allowing probing of surface mount PLCC's at a fraction of size of other clips. The U and L ver. have right angle leads (cable connect or probing). Device heights of 0.75", 0.57", and 0.45" for S, U, and L boards respectively enable probing of boards in backpanelers. Interdevice spacing of 0.16" allowed. PLCC's from 24 to 84 pins supported. Kits of 10 with different sizes/carrying cases available at substantial discount.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025

CIRCLE NO. 777

Snap Action Thermostats

Reliable, surface mounted, snap-action thermostats make break current to temperature-critical devices. Some models open on temperature rise, others close, at fixed set points between 35°F and 550°F. Average delta is 10°F. Various mounting and terminal options. Some units feature manual reset. Broad selection from stock. Attractive discounts in OEM quantities. Four-color catalog, free samples, and quotations on request.

CIRCLE NO. 778

New!
icemaster

YOUR WINDOW TO EMULATION PRODUCTIVITY

- Easy to learn & use
- Windows interface -- user configurable
- TASTI Downloadable -- 3 sec. typ. of 115K
- Source Level debug
- A 4K frame trace buffer with advanced searching capabilities.
- Hyperlinked On-line help guides you through the emulation process.
- icemaster connects easily to your PC, requires no disassembly, or expansion
- Works on any PC (OS/2 or MS-DOS), Mac/Amiga or Atari, even laptops!
- Supports more than 50 different 8051 family derivatives. A68HC11 support will be available early in 1991.
- Try icemaster risk free! Satisfaction Guaranteed or return for a full refund!
- RENTALS AVAILABLE! used for consultants and researchers!
- Call today for demos and ask about a free 8051 Macro Assembler (808) 638-2423

NEW PRODUCT

CIRCLE NO. 779

NEW PRODUCT

CIRCLE NO. 780

CIRCLE NO. 781

Surface Mount Chip Component
Prototyping Kits— Only $99.95

Enter USA 1-800-854-0547

COMMUNICATIONS SPECIALISTS, INC.
242 West Taft Ave. - Venice, CA 90292
(213) 991-0321 or (800) 991-0321

Just $495!* ABEL-PLD: Logic design for less.

- 150 PLD architectures supported more than 4000 devices!
- Uses ABEL™ Hardware
- Description Language (ABEL-HDL™)
- Intelligent synthesis and optimization
- Upgradable to full featured ABEL Design Software
- *U.S. list price only.

Save $1000 on our entry-level logic system.

- Includes the 212 Multi Programmer with logic module,
- ABEL-PLD™ and PLOTLink™ Ltd.
- PC Interface Software
- Supports 20- and 24-pin CMOS logic devices
- Full-bus keypad for extensive editing
- Computer based with JDELL standard programming files
- Optional EPROM and microcontroller modules
- Call today to order! No risk, money-back guarantee!
- 1-800-3-DatalO (1-800-332-8246)
- *U.S. list price only.

Now $1495!* ABEL-PLD: Logic design for less.

CIRCLE NO. 782

CIRCLE NO. 783

CIRCLE NO. 784

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

271
New Samtec Interconnect Solutions Guide

Samtec's new 64 page Interconnect Solutions Guide features Board Stacking systems. 0.025" Square Header and Socket systems, Micro and Low Profile Interconnects, Specialty Sockets and Adaptors, Surface Mount Interconnects and Custom Interconnects. The Guide introduces these systems with extensive applications drawings, and follows with complete specifications and ordering information.

For information contact Samtec, Inc., P.O. Box 1147, New Albany, IN 47151-1147. Phone 1-800-SAMTEC9, Fax 812-948-5047.

CIRCLE NO. 785

DC/CAD

High Density Experts!

Integrates Schematic Capture, PCB Layouts & Autorouting

This top rated CAD out-routed the competition in the 1990 CAD Showdown. DC/CAD displayed its power and flexibility when routing a double-sided board while competing routers used four to six layers. This non-copy protected package with surface mount support includes:

- Multi-strategy 1-mil parts autorouter
- '1-mil' autorouting with/growth & retry
- Thorough annotating design rule checker
- Full 2-way GERBER and DIF support
- Optional autoground plane support with cross-hatching
- Optional simulation capability & protected mode for 368 users

LEASE PROGRAM & SITE LICENSE AVAILABLE
30 DAY MONEY BACK GUARANTEE

By J. Simon Square Farmingdale, NJ 07720
(908) 918-0767 • (908) 918-0632 (FAX)
DC/CAD • Innovative, Intelligent & Integrated Software

CIRCLE NO. 786

END WARPAGE WITH BOARD STIFFENERS

Now Doubled in Library Size

Nichicon Electronic Components

Aluminum Electrolytic Capacitors, Plastic Film Capacitors, Positive Thermistors "Posi-R" and Hybrid I.C.'s "Hi-Net", are all listed in Nichicon's latest full line catalog. Over 150 pages complete with operating and test specifications. Chip type, ultra miniature, standard type, high reliability, special type audio, and can type electrolytic capacitors. Also Positive Thermistors for color TV auto degaussing circuits, thermal protection and overcurrent protection. Hybrid I.C.'s include diode arrays, graphic equalizers, custom-made and switching regulator power series.

Nichicon (America) Corporation
927 East State Parkway, Schaumburg, IL 60173
Phone (708) 843-7500 • FAX: (708) 843-2793

CIRCLE NO. 787

Clock Oscillators

1Hz to 500MHz
CMOS, NMOS, TTL, ECL

For more information, call (916) 924-8037
EMPDemo.EXE available BBS (916) 972-8042

NEEDHAM'S ELECTRONICS
4539 Orange Grove Ave. • Sacramento, CA 95841
Mondays - Fridays 9:00 a.m. - 5:00 p.m. PST

CIRCLE NO. 789

EPROM PROGRAMMER

FOR THE PC $139.95

2716 to 4 Meg
- Programs 2764A in 10 seconds
- 16/32 bit split programming
- Menu driven software
- No personality modules required
- Adapter for 8748, 49, 51, 52, 55, TMS742, 27210, 57C1024, and memory cards
- 1 year warranty • 10 day money back guarantee
- Made in the U.S.A.

For more information, call (212) 463-6415
EMPDEMO.EXE available BBS (212) 463-6415

CIRCLE NO. 790

4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

Call Joanne Dorian for more information
(212) 463-6415

EDN September 16, 1991
SINGAPORE
DRAMatic MEGAbit Opportunities

TECH Semiconductor Singapore Pte. Ltd., a newly formed joint venture of Texas Instruments Incorporated, the Singapore Economic Development Board, Canon Inc., and Hewlett-Packard Company, is building a new state-of-the-art wafer fab in Singapore. Located in the Woodlands area in the northern part of the island, this fab will produce 16 Mb DRAMs using 0.5 micron, 8 inch wafer technology supplied by Texas Instruments.

We have exciting opportunities for Sr. Technologists/Managers, Process, Product, Equipment and Manufacturing Engineers who are currently authorized to work in Singapore. You will join our multi-national teams of professionals from around the world including the United States, Japan and Singapore. Opportunities exist for professionals with expertise in the following areas:

- Diffusion/Clean-up
- Plasma Dry Etch
- Thin Film/CVD
- Photolithography
- Facilities (wafer fab)
- Product/Test (IC)

Responsibilities: All positions require a technical degree (with strong preference for advanced degrees), a minimum of 3 years experience for individual contributors and 8 for Sr. Technologists/Managers, as well as strong background and accomplishments in device physics, semiconductor manufacturing and process engineering and current authorization to work in Singapore.

To Apply: Send resume to Roger G. Coker, c/o Texas Instruments, P.O. Box 655303 M.S. 8333, Dept. EDN/SING, Dallas, Texas 75265 or fax 214-997-5536.

Scan the field. And you'll find few opportunities more intriguing.

INTERMEC, the world leader in automated data collection and pioneer of the bar code, has the technology—a future you can count on.

Greater Seattle - One of America's most livable areas!
The greater Seattle area offers unique geography with many recreational and cultural entertainment opportunities. The water, mountains and forests provide a feast of activities for outdoor enthusiasts. If you want to join our team, we are looking for:

Sr. Electrical Engineer/DSP
You will design complex digital embedded systems incorporating DSP and microprocessor elements. Design covers all aspects from overall hardware architecture to detailed schematics. Requires an MSEE degree and a minimum of 7-10 years' related experience. Familiarity with high speed memory, gate array, PAL and programmable logic devices a plus. Xilinx design experience and familiarity with machine vision and pattern recognition would be useful.

You will find an outstanding salary and benefits package, including cash profit sharing and a 401K. Please send your resume to: INTERMEC Corporation, Attn: Human Resources-CD, 6001 36th Avenue West, Everett, WA 98203-9280. Equal Opportunity Employer.
Powerful People. Powerful Products.

Many choose to compromise their lifestyle to achieve success. Intel professionals in the greater Sacramento area don't make concessions. We work with the most advanced design tools and techniques to keep our technology at the leading edge, and leave the others trying to catch up.

POWER MOVE

Successful products require a strong foundation and fresh ideas. Our foundation, your ideas. Make a Power Move and consider the following openings.

We currently have opportunities available within the following dynamic and growing product areas. Our Entry Level Products Group designs microprocessors for the portable, notebook and palm-top computer markets, communication components and Intel network cards. The Integrated Microcomputer Division/Microprocessor Products Group is responsible for high-end microprocessors, bus chip sets, peripherals, and programmable logic component products for desktop computers and workstations of the future.

System Architects

Combine customer needs with emerging technologies to define future system requirements. Interact with Design and Marketing to determine cost/performance trade-offs, and create the optimized component-level partitioning. Define the components and follow-up through implementation. Keep up with market requirements to create derivative products. Specific development areas are high integration desktop, notebook, and palm-top computers, and multiprocessor servers.

Requires a BS/MS in EE/CS, and at least 4 years of system design experience, knowledge of PC hardware, and familiarity with low-level programming in DOS and/or UNIX®.

Component Design Engineers

Join a team designing peripheral devices for a wide range of single or multiprocessor applications on the PC, workstation and high-end system areas. Responsibilities include CMOS, VLSI component design on products such as mp chips, EISA bus chips, DMA controllers, or cache controllers. Requires a BSEE/CE, or equivalent, and a working knowledge of computer architecture and system design concepts preferred.

System Validation Engineer

Support the verification of Intel's newest Notebook PC-based microprocessors. Requires a BSCS/BSEE and at least 3 years' experience with Intel805™ based PC hardware and software. Must have MASM and C programming experience.

Make a Power Move to Intel in the greater Sacramento area and experience all the personal perks of California's recreation capital. Our area happens to be ranked as one of Newsweek's top urban areas with a relatively lower cost of housing, a lower cost of living, and a rush hour that's not so rushed. For immediate consideration, please FAX or send your resume to: Intel Staffing, P.O. Box 1141, Dept. F644, Folsom, CA 95630, FAX (916) 351-5522.

Intel Corporation is an equal opportunity employer and fully supports affirmative action practices. Intel also supports a drug-free workplace and requires that all offers of employment be contingent on satisfactory pre-employment drug test results.

If you're looking for work, just look here.

UNIX is a trademark of UNIX Systems Labs

Knock, Knock.

In EDN's Magazine and News Editions, opportunity knocks all the time.
DELL IS TO COMPUTER DESIGN AS AUSTIN, TEXAS, IS TO LIVING

At Dell, we believe in letting the imagination of our engineers shape the design of our award-winning products.

From the technically advanced Dell System 320N notebook, with state of the art power management, to Dell's newly announced i486 desktop system with upgradeable processor cards, through Dell's innovative UNIX V.4, Dell is a leading high technology company.

Dell engineers enjoy a technical environment virtually free from the bureaucratic hassles of most large corporations. So you get to focus on the things that really matter - designing better computers.

And beyond our unique work environment, we also offer a truly unique living environment in Austin, Texas. With scenic foothills, crystal lakes, a variety of cultural activities and beautiful neighborhoods, the lifestyle in Austin compliments the work style of Dell.

ENGINEERING

- Personal Computer Motherboard Design
- UNIX Development
- Personal Computer Network Development
- EISA BUS Logic Design
- BIOS Firmware Design
- Systems Integration Expert
- Mechanical Engineer
- Power Supply Engineer
- ASIC Design Engineer
- Sr. Diagnostic Programmer
- Portable Systems Development Engineer
- Component Engineer
- Supplier Quality Engineer
- BIOS Engineer

The biggest challenges in the computer industry are taking shape at Dell in Austin, Texas, where you will find the opportunities are challenging, the cost of living is low, the quality of life is high and the compensation and benefits packages are excellent.

If you have a minimum of two years of computer industry experience and a related degree, please fax or mail your resume with a cover letter to: 512/343-3330, Dell Computer Corporation, Jerry Holt, Professional Employment, Department EDN-9/16/91, 9505 Arboretum Boulevard, Austin, Texas 78759.

Dell is proud to be an equal opportunity employer.
To help you advance your career. Placement Services, Ltd. has formed the EDN Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutely free. There are no fees or charges.
- The computer never forgets. When your type of job comes up, it remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and it's affiliated offices.
- Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objectives will periodically be reviewed with you by a PSL professional placement person.

We hope you're happy in your current position. At the same time, chances are there is an ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Databank. To do so, just mail the completed form below, along with a copy of your resume, to: Placement Services, Ltd., Inc.

EDN Databank

Professional Profile

Announcing a new placement service for professional engineers!

IDENTITY

Name __________________________

Home Address: ________________________________

City State Zip: _________________________________

Home Phone (include area code): _________________________________

PRESENT OR MOST RECENT EMPLOYER

Parent Company: ________________________________

Your division or subsidiary: ________________________________

Location (City, State): ________________________________

Business Phone if O.K. to use: ________________________________

EDUCATION

Degrees (List) Major Field GPA Year Degree Earned College or University

- ____________ ____________ ____________
- ____________ ____________ ____________
- ____________ ____________ ____________

POSITION DESIRED

EXPERIENCE

Present or Most Recent Position: ________________________________

From: ____________ To: ____________ Title: ________________________________

Duties and Accomplishments: ________________________________

Industry of Current Employer: ________________________________

Reason for Change: ________________________________

PREVIOUS POSITION:

Job Title: ________________________________

Employer: ________________________________

From: ____________ To: ____________ City: ________________________________

State: ________________________________

Division: ________________________________ Type of Industry: ________________________________

Salary: ________________________________

Duties and Accomplishments: ________________________________

COMPENSATION/PERSO NAL INFORMATION

Years Experience Base Salary Commission Bonus Total Compensation Asking Compensation Min. Compensation

- ____________ ____________ ____________ ____________ ____________
- ____________ ____________ ____________ ____________ ____________
- ____________ ____________ ____________ ____________ ____________

Date Available: ________________________________

□ I Will Travel □ Light □ Moderate □ Heavy □ I own my home. How long? ____________ I rent my home/apartment? □

□ Employed □ Self-Employed □ Unemployed □ Married □ Single Height: ____________ Weight: ____________

Level of Security Clearance: ________________________________

□ U.S. Citizen □ Non-U.S. Citizen My identity may be released to: □ Any employer □ All but present employer

□ WILL RELOCATE □ WILL NOT RELOCATE □ OTHER

276 EDN September 16, 1991
Our New Attitude Is A Winner.
So Is Our Location.

A fresh determination to improve upon our already premier position in the personal computer field. Bold new management. A substantial increase in R&D expenditures. Progressive new work options. Breakthrough award winning products. It's happening today in a location where you can reclaim a more pleasant way of life. Zenith Data Systems has all this and more. Maybe it's time you gave us a new look.

We're now involved in an unprecedented hiring effort for engineers with 3 or more years' related experience. It's your opportunity to join our $1+ billion organization at the R&D center for PCs and laptops with one of the world's top 10 information technology companies.

HARDWARE DESIGN ENGINEERS
We desire a BSEE and Intel Chip Technology 286/386/486 experience.

ASIC Design:
• Gate Equivalent
• Gate Array
• Behavioral Modelling
• Gate Level Simulation
• Fault Coverage
• HDL/VHDL
• IEEE Standard #1076
• Logic Synthesis
• CMOS
• Gate Level Design
• "C" Programming

Board Level Design:
• Logic Design to Gate Level
• Component Level
• PALS/PLD
• FPGA
• State Machines
• RFI
• DOS-UNIX-UNIX
• Performance Techniques
• Bus Design EISA - ISA
• System Design

SYSTEM SOFTWARE ENGINEERS
Requires BSCS or related degree and experience with "C" Assembler and Intel x86 protected mode architecture. Develop and maintain device drivers and system software for:

• Network server operating systems (Netware, LAN Manager, VINES, etc.)
• UNIX Operating System
• OS/2 Operating System
• Software Engineering on DOS Windows

MECHANICAL DESIGN ENGINEERS
Requirements:
• Product design (CRTs, PCs, consumer electronics, etc.)
• Electronic packaging
• Plastic design (molding, blow molding, tooling, etc.)
• BSME

Our location in St. Joseph offers a relaxed lifestyle pace, affordable housing, traditional family values and the pleasures of living on the shores of Lake Michigan just minutes from work yet only 90 minutes from Chicago. Call or send/fax resume with salary history: 1-800-348-934B, Zenith Data Systems, Dept. EDN, Hilltop Rd., St. Joseph, MI 49085. Fax: 616/982-5796. An affirmative action employer.
EDN’s CHARTER

EDN is written for professionals in the worldwide electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, design techniques, and careers.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products:
- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN’s Magazine Edition also provides specific “how to” design information that its readers can use immediately. From time to time, EDN’s technical editors undertake special “hands on” engineering projects that demonstrate EDN’s commitment to readers’ needs for useful design information.

EDN’s News Edition also provides comprehensive analysis and news of technology, products, careers, and distribution.

EDN
275 Washington St
Newton, MA 02158
(617) 964-3030

278

EDN September 16, 1991
Yes we do!

Provide complete services for electronic modules -- from design, to prototyping, through to production for a complete line of SEMs. From the MIB (bare board) to a completed, fully qualified module -- regardless of quantities.

We literally program our total capabilities to meet your specific needs. Provide design to specifications; partial and complete design services; build-to-print production; manufacturing, integration and testing operations.

A self-contained group is devoted exclusively to modules. It draws upon Raytheon's 20 years' experience in the design of more than 600 module types. Their imaginative engineering, combined with cost-cutting design concepts and manufacturing methods, assures you modules cost-effectively made to unsurpassed standards of quality and reliability. All work is done in facilities baseline-certified for MIB's to NWSC (Naval Weapons Support Center) requirements. We're also certified for Formats A, B, D & E.

A phone call will get things moving. OEM's or system integrators should call or write: Marketing Manager, Production Components, Raytheon Company, Submarine Signal Division, 1847 West Main Road, Portsmouth, RI, USA 02871-1087. Phone 401 847-8000, Extension 2054.

Raytheon
<table>
<thead>
<tr>
<th>ADVERTISERS INDEX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability Systems Corp</td>
<td>267</td>
</tr>
<tr>
<td>Abbott Electronics</td>
<td>156</td>
</tr>
<tr>
<td>ACCEL Technologies Inc</td>
<td>269</td>
</tr>
<tr>
<td>Actel</td>
<td>255</td>
</tr>
<tr>
<td>Adaptec Products Co</td>
<td>203</td>
</tr>
<tr>
<td>Advanced Micro Devices</td>
<td>10-11, 52-53, 88-89, 212-213</td>
</tr>
<tr>
<td>Advanced Technology Development Inc</td>
<td>250</td>
</tr>
<tr>
<td>Aerospace Optics</td>
<td>79</td>
</tr>
<tr>
<td>Alcatel</td>
<td>125</td>
</tr>
<tr>
<td>Allen Systems</td>
<td>269</td>
</tr>
<tr>
<td>American Arium</td>
<td>209</td>
</tr>
<tr>
<td>American Neurologix</td>
<td>268</td>
</tr>
<tr>
<td>American Reliance</td>
<td>268</td>
</tr>
<tr>
<td>Ametek</td>
<td>250</td>
</tr>
<tr>
<td>AMP</td>
<td>144-145</td>
</tr>
<tr>
<td>Analogic Corp</td>
<td>80</td>
</tr>
<tr>
<td>Ariens</td>
<td>205</td>
</tr>
<tr>
<td>Asahi Kasei Microsystems**</td>
<td>173</td>
</tr>
<tr>
<td>Astec America</td>
<td>211</td>
</tr>
<tr>
<td>AT&T</td>
<td>252-253</td>
</tr>
<tr>
<td>Atlanta Signal Processors Inc</td>
<td>219</td>
</tr>
<tr>
<td>Avocet Systems Inc</td>
<td>272</td>
</tr>
<tr>
<td>AVX Corp</td>
<td>58</td>
</tr>
<tr>
<td>BASF**</td>
<td>26-27</td>
</tr>
<tr>
<td>Belden Wire & Cable</td>
<td>C4</td>
</tr>
<tr>
<td>Biometron</td>
<td>119</td>
</tr>
<tr>
<td>BP Micro</td>
<td>272</td>
</tr>
<tr>
<td>BP Microsystems</td>
<td>68</td>
</tr>
<tr>
<td>Buckeye Stamping Co</td>
<td>265</td>
</tr>
<tr>
<td>Burr-Brown Corp</td>
<td>28, 219</td>
</tr>
<tr>
<td>Bussmann</td>
<td>210</td>
</tr>
<tr>
<td>CAD Software Inc</td>
<td>244</td>
</tr>
<tr>
<td>Cahners CAPS</td>
<td>173</td>
</tr>
<tr>
<td>Capital Equipment Corp</td>
<td>219</td>
</tr>
<tr>
<td>Capilano Computer Systems Inc</td>
<td>268</td>
</tr>
<tr>
<td>C & K Components Inc</td>
<td>246</td>
</tr>
<tr>
<td>Central Semi</td>
<td>269</td>
</tr>
<tr>
<td>Cermetek</td>
<td>269</td>
</tr>
<tr>
<td>Chronology</td>
<td>217</td>
</tr>
<tr>
<td>Cirrus Logic</td>
<td>72</td>
</tr>
<tr>
<td>Comdisco</td>
<td>226</td>
</tr>
<tr>
<td>Communications Specialties Inc</td>
<td>270</td>
</tr>
<tr>
<td>Communication Specialists</td>
<td>271</td>
</tr>
<tr>
<td>Comput Digital</td>
<td>276</td>
</tr>
<tr>
<td>Conner Peripherals</td>
<td>90-91</td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
<td>268</td>
</tr>
<tr>
<td>Dale Electronics Inc</td>
<td>1, 244</td>
</tr>
<tr>
<td>Data I/O Corp</td>
<td>157-172, 271</td>
</tr>
<tr>
<td>Datekey</td>
<td>97</td>
</tr>
<tr>
<td>Dataight</td>
<td>270</td>
</tr>
<tr>
<td>Datel</td>
<td>107</td>
</tr>
<tr>
<td>Deltron Inc*</td>
<td>256A-D</td>
</tr>
<tr>
<td>Design Computation Inc</td>
<td>272</td>
</tr>
<tr>
<td>Dexter Magnetics</td>
<td>264</td>
</tr>
<tr>
<td>Digi-Key</td>
<td>2</td>
</tr>
<tr>
<td>DOS Systems</td>
<td>270</td>
</tr>
<tr>
<td>ECM</td>
<td>260</td>
</tr>
<tr>
<td>Eclipse Computer</td>
<td>268</td>
</tr>
<tr>
<td>EEsof</td>
<td>56</td>
</tr>
<tr>
<td>Elcon</td>
<td>266</td>
</tr>
<tr>
<td>Electronic Measurements Inc</td>
<td>224</td>
</tr>
<tr>
<td>Emulation Technology Inc</td>
<td>42, 269</td>
</tr>
<tr>
<td>EPIX Inc</td>
<td>270</td>
</tr>
<tr>
<td>Ericsson Components</td>
<td>148</td>
</tr>
<tr>
<td>Fujitsu Inc</td>
<td>225</td>
</tr>
<tr>
<td>Fujitsu Microelectronics Inc</td>
<td>24-25</td>
</tr>
<tr>
<td>Futaba Corp of America</td>
<td>229</td>
</tr>
<tr>
<td>GE Plastics</td>
<td>268</td>
</tr>
<tr>
<td>Glassman High Voltage Inc</td>
<td>231</td>
</tr>
<tr>
<td>Grammar Engine Inc</td>
<td>24</td>
</tr>
<tr>
<td>Grayhill Inc</td>
<td>96</td>
</tr>
<tr>
<td>Hamilton Avnet Electronics</td>
<td>234</td>
</tr>
<tr>
<td>Harris Semiconductor</td>
<td>196-198</td>
</tr>
<tr>
<td>Hewlett-Packard Co</td>
<td>16, 48, 54-55, 139</td>
</tr>
<tr>
<td>Hughes Aircraft Co</td>
<td>45</td>
</tr>
<tr>
<td>Huntsville Microsystems Inc</td>
<td>C2</td>
</tr>
<tr>
<td>Hybrids International</td>
<td>272</td>
</tr>
<tr>
<td>Hypertronics Inc</td>
<td>266, 270</td>
</tr>
<tr>
<td>IBI Systems Inc</td>
<td>269</td>
</tr>
<tr>
<td>IBM Corp</td>
<td>146-147</td>
</tr>
<tr>
<td>ICHIA North America</td>
<td>228</td>
</tr>
<tr>
<td>IDT</td>
<td>61</td>
</tr>
<tr>
<td>ILC Data Device Corp</td>
<td>63</td>
</tr>
<tr>
<td>Incredible Tech</td>
<td>266</td>
</tr>
<tr>
<td>Innovative Software Systems</td>
<td>266</td>
</tr>
<tr>
<td>Intel</td>
<td>100-101</td>
</tr>
<tr>
<td>Intermetrics Inc</td>
<td>128, 232</td>
</tr>
<tr>
<td>International Rectifier</td>
<td>143</td>
</tr>
<tr>
<td>iotech Inc</td>
<td>258</td>
</tr>
<tr>
<td>Ironwood Electronics Inc</td>
<td>267, 271</td>
</tr>
<tr>
<td>Jandel Scientific</td>
<td>126, 265</td>
</tr>
<tr>
<td>John Fluke Manufacturing Co Inc*</td>
<td>38, 257</td>
</tr>
<tr>
<td>Ledronics Inc</td>
<td>267</td>
</tr>
<tr>
<td>Linear Technology Corp</td>
<td>196</td>
</tr>
<tr>
<td>Link Computer Graphics Inc</td>
<td>270</td>
</tr>
<tr>
<td>Loughborough Sound Images Ltd**</td>
<td>107</td>
</tr>
<tr>
<td>MathSoft Inc</td>
<td>128, 259</td>
</tr>
<tr>
<td>Maxim Integrated Products</td>
<td>65, 67, 69, 71, 73</td>
</tr>
<tr>
<td>Maxtor</td>
<td>248-249</td>
</tr>
<tr>
<td>MCSI</td>
<td>267</td>
</tr>
<tr>
<td>Mechanical Products</td>
<td>227</td>
</tr>
<tr>
<td>Meritec</td>
<td>267</td>
</tr>
<tr>
<td>MetaLink Corp</td>
<td>271</td>
</tr>
<tr>
<td>Micro/Sys</td>
<td>269</td>
</tr>
<tr>
<td>Microtran Co Inc</td>
<td>285</td>
</tr>
<tr>
<td>Mini-Circuits Laboratories</td>
<td>3, 4, 22-63</td>
</tr>
<tr>
<td>Mitusumi Electronics</td>
<td>250</td>
</tr>
<tr>
<td>Motorola</td>
<td>122-124</td>
</tr>
<tr>
<td>Motorola Semiconductor</td>
<td>Products Inc</td>
</tr>
<tr>
<td>Murrineta Circuits</td>
<td>264</td>
</tr>
<tr>
<td>National Instruments</td>
<td>94, 267</td>
</tr>
<tr>
<td>National Semiconductor Corp*</td>
<td>220-222</td>
</tr>
<tr>
<td>NEC Corp</td>
<td>102, 189, 256</td>
</tr>
<tr>
<td>Needham Electronics</td>
<td>272</td>
</tr>
<tr>
<td>Nichicon Corp</td>
<td>270</td>
</tr>
<tr>
<td>Nicolet</td>
<td>40</td>
</tr>
<tr>
<td>Nohau Corp</td>
<td>227, 265</td>
</tr>
<tr>
<td>OKI Semiconductor</td>
<td>26-27</td>
</tr>
<tr>
<td>Omnibyte Corp*</td>
<td>239-240</td>
</tr>
<tr>
<td>OrCAD Systems Corp</td>
<td>8-9</td>
</tr>
<tr>
<td>Orion Instruments</td>
<td>267</td>
</tr>
<tr>
<td>Otto Controls</td>
<td>230</td>
</tr>
<tr>
<td>Paradigm</td>
<td>121</td>
</tr>
<tr>
<td>P-Cad</td>
<td>84-86</td>
</tr>
<tr>
<td>Pentac Systems</td>
<td>120, 127</td>
</tr>
<tr>
<td>Performance Semiconductor Corp</td>
<td>70</td>
</tr>
<tr>
<td>Philips Components**</td>
<td>81-83</td>
</tr>
<tr>
<td>Pico</td>
<td>218, 251</td>
</tr>
<tr>
<td>Planar Systems</td>
<td>259</td>
</tr>
<tr>
<td>Power Trends Inc</td>
<td>237</td>
</tr>
<tr>
<td>Powertronic</td>
<td>270</td>
</tr>
<tr>
<td>Pulse Engineering</td>
<td>241</td>
</tr>
<tr>
<td>Qau Tech Inc</td>
<td>228</td>
</tr>
<tr>
<td>Raytheon</td>
<td>279</td>
</tr>
<tr>
<td>RC Systems</td>
<td>266</td>
</tr>
<tr>
<td>Real Time Devices</td>
<td>245</td>
</tr>
<tr>
<td>R O Associates Inc</td>
<td>214</td>
</tr>
<tr>
<td>Rogers Corp</td>
<td>272</td>
</tr>
<tr>
<td>Rolyin</td>
<td>265</td>
</tr>
<tr>
<td>Samsung Semiconductor</td>
<td>12-13</td>
</tr>
<tr>
<td>Samtec Inc</td>
<td>254-255, 272</td>
</tr>
<tr>
<td>SBE</td>
<td>180</td>
</tr>
<tr>
<td>Scientific Software</td>
<td>267</td>
</tr>
<tr>
<td>Seagate Technology</td>
<td>41</td>
</tr>
<tr>
<td>Selco Products Inc</td>
<td>271</td>
</tr>
<tr>
<td>SenSys</td>
<td>191</td>
</tr>
<tr>
<td>Sharp Electronics</td>
<td>155</td>
</tr>
<tr>
<td>Siemens Components Inc</td>
<td>74</td>
</tr>
<tr>
<td>Signetics Corp**</td>
<td>82-83</td>
</tr>
<tr>
<td>Silicon Systems Inc</td>
<td>81</td>
</tr>
<tr>
<td>Softaid Inc</td>
<td>269</td>
</tr>
<tr>
<td>Softools</td>
<td>266</td>
</tr>
<tr>
<td>Sony</td>
<td>76</td>
</tr>
<tr>
<td>Spectrum Signal Processing Inc**</td>
<td>216-217</td>
</tr>
<tr>
<td>Spectrum Software</td>
<td>235</td>
</tr>
<tr>
<td>Sprague Goodman</td>
<td>29</td>
</tr>
<tr>
<td>Stanford Research Systems Inc*</td>
<td>236</td>
</tr>
<tr>
<td>Synergy Microsystems</td>
<td>21</td>
</tr>
<tr>
<td>Taiyo Yuden (USA) Inc</td>
<td>245</td>
</tr>
<tr>
<td>Tatsum Labs</td>
<td>268</td>
</tr>
<tr>
<td>T-Cubed Systems Inc</td>
<td>266</td>
</tr>
<tr>
<td>TOKD Corp of America</td>
<td>92</td>
</tr>
<tr>
<td>TEAC Corp*</td>
<td>277</td>
</tr>
<tr>
<td>Team Visionics</td>
<td>192</td>
</tr>
<tr>
<td>Tektronix Inc</td>
<td>34-37, 44, 98</td>
</tr>
<tr>
<td>Telecom Analysis Systems</td>
<td>42</td>
</tr>
<tr>
<td>Teledyne Solid State</td>
<td>242</td>
</tr>
<tr>
<td>Teradyne Inc</td>
<td>30-31</td>
</tr>
<tr>
<td>Texas Instruments Inc</td>
<td>103-106</td>
</tr>
<tr>
<td>Todd Products Corp</td>
<td>43, 271</td>
</tr>
<tr>
<td>Tokin Corp</td>
<td>243</td>
</tr>
<tr>
<td>Toko America Inc</td>
<td>68</td>
</tr>
<tr>
<td>Transera</td>
<td>137</td>
</tr>
<tr>
<td>Tribal Microsystems</td>
<td>270</td>
</tr>
<tr>
<td>TRW LSI Products Inc</td>
<td>14-15</td>
</tr>
<tr>
<td>Two Technologies</td>
<td>266</td>
</tr>
<tr>
<td>Universal Cross Assemblers</td>
<td>269</td>
</tr>
<tr>
<td>Universal Data Systems</td>
<td>C3</td>
</tr>
<tr>
<td>US Software</td>
<td>268</td>
</tr>
<tr>
<td>Vacuumshmelze**</td>
<td>220</td>
</tr>
<tr>
<td>Valley Enterprises</td>
<td>126</td>
</tr>
<tr>
<td>Wickmann Werke</td>
<td>228</td>
</tr>
<tr>
<td>WinSystems Inc</td>
<td>96</td>
</tr>
<tr>
<td>Zilog Inc</td>
<td>174-175, 176-177, 178-179</td>
</tr>
<tr>
<td>Z-World</td>
<td>266</td>
</tr>
</tbody>
</table>

**Advertiser in International edition

*Advertiser in US edition

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.
To build the fastest gun in the mobile remote data gathering business, UDS has combined a 9600 bps modem with a Motorola Radius crystal controlled radio. The combination, packaged in a single, high-impact polycarbonate case weighs in at 15.5 ounces and is the size of a walkie-talkie.

The result is the DR96, the ideal RF solution for point-to-point or point-to-multipoint data acquisition applications.

The unit’s small size and light weight belie its usefulness, while its 2W transmitter gives it plenty of output muscle. The half-duplex modem communicates at 9600 bps, synchronous or asynchronous. It includes integral self-test capabilities and transmit/receive indicators. Since it has no protocol overhead, the full throughput of the channel is available for data handling. A nine-pin TTL DTE interface is provided, and an optional external interface can convert signals to standard RS-232 levels.

The frequency modulated Motorola radio operates in the 450-470 MHz commercial band. It is “keyed” by the RTS signal. There’s even a belt clip for true portability and hands-free operation.

When you face a datacomm showdown in places where phone lines don’t go, give yourself the edge. For specifications and prices on the DR96, contact UDS at 800/451-2369 (in Alabama, 205/430-8000); FAX 205/430-8926.
Belden brings out the custom in our customers.

Belden is known worldwide as a leading supplier of wire and cable products including fiber optic cables, multi-conductor/multi-paired cables, flat cable and connectors, coaxial cables, lead wire, plenum cables, power supply cords, and molded cable assemblies. What is not so well-known is the fact that every "standard" wire and cable in our Master Catalog started out as a custom design for a specific application.

World's largest wire and cable engineering facility.

In May, 1990, Belden dedicated the most progressive and innovative cable development facility in the world today: the Belden Engineering Center (BEC). Housing over 100 engineers and technicians, this 70,000 square foot facility is committed to keeping our OEM customers on the leading edge of technology with product development samples, process capabilities equipment, compound materials analysis, and testing and evaluation labs.

The BEC is where Belden brings out the custom in our customers with custom design or co-development of new products, custom modification of standard products, and all the technical assistance you need to keep you ahead of your competition.

Quality you can stake your reputation on.

As a leading edge manufacturer, Belden's mission is continuous improvement toward a goal of 6-Sigma quality. Total Quality Control is the central theme in all of our processes, from vendor quality assurance through customer service. That's why original equipment manufacturers (OEMs) like IBM, Black & Decker, Motorola, DEC, Skil, Makita, and Milwaukee Electric Tool rely on Belden for wire, cable, cords, and assemblies they can count on for flawless performance and exceptional reliability.

For more information about how Belden can turn your dreams into reality, call:

1-800-BELDEN-4

Copyright © 1990 Cooper Industries, Inc.