Manufacturers serve up a variety of surface-mount connectors
PMI PREMIERES:
A QUARTET OF QUADS

Precision Quad

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| OP-400 | $V_{OS} = 150\mu V\ Max$
| | $I_B = 3nA\ Max$
| | $A_{VO} = 5000V/mV\ Min$
| | $I_{SY} = 2.9mA\ Max$
| | Starting from 5.35 |

Low Noise Quad

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| OP-470 | $e_n = 5nV/\sqrt{Hz}\ @\ 1kHz\ Max$
| | $A_{VO} = 1000V/mV\ Min$
| | $SR = 2V/\mu s\ Typ$
| | $I_{SY} = 11mA\ Max$
| | Starting from 5.50 |

High Speed Quad

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| OP-471 | $BW = 6.5MHz\ Typ$
| | $SR = 8V/\mu s\ Typ$
| | $A_{VO} = 500V/mV\ Min$
| | $I_{SY} = 11mA\ Max$
| | Starting from 5.50 |

Micropower Quad

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| OP-490 | $I_{SY} = 80\mu A\ Max$
| | $V_S = +1.6V$ to $+36V$
| | $\pm0.8V$ to $\pm18V$
| | Single Supply Operation; V_{IN}, V_O include ground
| | Starting from 3.30 |

Available now. For more information on PMI's next generation quad op amps, circle the inquiry number or call us at 1-800-843-1515.
Prefer duals? Contact us!

Precision Monolithics Inc.
A Bourns Company
Santa Clara, California, USA
408-727-9222
The Industrial Strength Computer Family

STD DOS is Ziatech's implementation of IBM PC DOS on the rugged, low-cost STD Bus, giving industrial control applications access to the huge library of IBM PC software. In other words, a PC tough enough for industrial applications. Ziatech offers a complete family of STD DOS target systems and development tools designed to meet your application's specific requirements.

Single Board IBM AT Performance

The STD DOS V50 system delivers IBM AT performance and software compatibility on a single board STD Bus computer. Its unique surface mount design packages the functionality of many boards into one including: on-board 16-bit data bus, 832K memory capacity, real-time battery-backed clock, AC/DC power-fail protection, interrupt controller, DMA, two serial channels and three counter/timers.

...Get the Book On STD DOS Free.

Our 24-page STD DOS Technical Brochure shows how our STD DOS systems can begin answering your application's needs. Call or write for a free copy today.

Ziatech's STD DOS V50 delivers IBM AT performance and software compatibility.

Low Cost DOS, Under $600

STD Mini-DOS runs PC DOS on a single 8088-based STD Bus computer for applications with physical size constraints requiring less than 62K application program memory, instruments, data-collection terminals, and machine control applications can be equipped for under $600 in single quantities.

The Original STD DOS with More Memory

Ziatech's original two-board set includes an 8088-based single board computer and a DRAM memory board for applications with large memory needs. Both Mini-DOS and the original STD DOS feature two parallel ports, five counter/timers, a serial port, interrupt controller and provisions to add an Intel 8087 math co-processor.

Video Options, New Driver Support, and More

System developers wanting to see more of the STD DOS family can choose from a growing list of options, including an EGA video/keyboard controller, disk subsystems, multiprocessing, solid-state disks, a device driver library called STD DDP, and a soon-to-be-released CMOS STD DOS system.

ZIATECH CORPORATION
3433 Roberto Court
San Luis Obispo, CA 93401
805/541-0488
ITT Telex: 4992316
Fax: 805/541-5088
IBM, PC DOS, and IBM Personal Computer AT are trademarks of International Business Machines Corporation.

CIRCLE NO 79
NOW, MORE PRECISION IN 6GHz LINEAR.

HERE’S OUR LATEST SOLUTION FOR YOUR HIGH-PERFORMANCE ANALOG SYSTEM.

Introducing the VA701/VA711 Low-Noise, Precision Op Amps ... the newest members of our highly successful VA700 Op Amp Family. These op amps have DC performance parameters similar to the industry-standard OP-27, but with extended AC performance, optimized for ±5V power supplies.

- Introducing the VA701; VA111 Low-Noise, Precision Op Amps, the newest members of our highly successful VA700 Op Amp Family.
- The se op amps have DC performance parameters similar to the industry-standard OP-27, but with extended AC performance, optimized for ±5V power supplies.
- Output voltage swing is typically ±4V, with input common mode range ±3.5V. The VA700 Family is just part of VTC’s broad line of Linear Signal Processing (LSP) ICs. This line gives you a whole range of analog solutions, for signal conditioning, data acquisition/conversion, signal transmission, and special functions. Our LSP line includes Op Amps to 500 MHz bandwidth ... precision, high-speed, and fast setting, plus duals and quads ... with no sacrifice in performance.

VTC Incorporated
Performance, Pure & Simple™

CALL 1-800-VTC-VLSI
Now that Wavetek has built a new home for test instruments, look who’s dropping in.

Imagine a full-size rack loaded with the highest performance instruments available.

Now picture all that performance in a much smaller space—inside the chassis of the new Wavetek Model 680, an open-architecture system of instruments on cards. Select from instruments made by Wavetek and other top manufacturers like Racal-Dana and Datron.

Model 680 is just 7" high, yet it holds up to eight instruments. Think how that can save room in your ATE bay. And think of the flexibility. Buy the modules you need today. Then, as your needs change, plug in more.

Modules now available include a 20 MHz Arbitrary Waveform Generator, 100 MHz Pulse Generator, 6½ digit .002%-accuracy DVM and a Counter that measures intervals down to one nanosecond. You can even design your own modules.

Besides saving space, Model 680 can save money over stand-alone instruments.

Then there are the performance benefits. A 32-bit high-speed VME bus provides timing and synchronization signals, and an analog summing bus can be used to create complex signals. There is also built-in testing, calibration and reference, and a powerful processor.

How will the Wavetek Model 680 fit into your present systems? Quickly and easily, because we have included interfaces for GPIB and MATE-CIL.

Best of all, the Model 680 is available now. For details, call or write us today. Wavetek San Diego, Inc., 9045 Balboa Ave., San Diego, CA 92123; Telephone 619/279-2200.
THIS PC/XT-COMPATIBLE INDUSTRIAL COMPUTER MAY HAVE ONE FAILING...EVERY 7 YEARS.

That's the Pro-Log System 2 Mean Time Between Failures (MTBF) at 55°C. When you need reliability, that's it. An industrial computer that works and keeps on working for the life of your application. And it's covered by a 5-year limited warranty.

A HUGE SOFTWARE POOL
System 2 comes with Microsoft's MS-DOS 3.2 operating system and runs Lotus 1-2-3 and Flight Simulator. So it's PC/XT-compatible, right down to the chip level. Which is important for running industrial software, where real time response is needed.

Data acquisition, process monitoring and control, and multitasking software, plus a wide selection of editors, debuggers, and high-level languages are available. Many of them from Pro-Log.

HARD-WEARING HARDWARE
System 2 is based on the industry-standard STD BUS. So a wealth of industrial quality add-on products is available from over 100 STD BUS manufacturers.

PLUS ROOM TO EXPAND
You expand System 2 by simply plugging in additional STD BUS cards. Up to 23 expansion slots are available and many options, such as 640K bytes of memory, EGA/Keyboard interface, and printer interface, can be factory installed.

A DISK DRIVE FOR EVERY APPLICATION
System 2 can be configured with IBM-compatible 3½-inch or 5¼-inch floppy disk drives and a 20M-byte hard disk.* For minimum power, maximum reliability and temperature range, select semiconductor (ROM and RAM) disk drives.

Take care of your next 7 years TODAY. Call toll-free (800) 538-9570 or write Pro-Log Corporation 2560 Garden Road, Monterey, CA 93940

*Thermal and mechanical specifications are reduced by the use of mechanical disk drives.

MS-DOS 3.2 and Flight Simulator are registered trademarks of Microsoft Corp. Lotus 1-2-3 is a registered trademark of Lotus Development Corp. IBM is a registered trademark of International Business Machines Corp.

Circle 82 for literature only

Circle 121 for direct factory contact
DESIGN FEATURES

Special Report: Surface-mount connectors

SMT connectors can present you with a number of design considerations and tradeoffs that don’t occur in through-hole designs. By understanding the different solder techniques and physical configurations of SMT connectors, you can choose the right SMT connectors to maximize the connections’ reliability yet minimize space on your board. — J D Mosley, Regional Editor

Use of graphs eases transformer selection for linear supplies

Engineers generally use simple rules of thumb when selecting transformers for linear power supplies. These rules of thumb aren’t universally applicable, however, and blindly using them may cause you to select a less-than-optimal transformer—and thus a less-than-optimal supply. — Thomas G Lock, Case Western Reserve University

Array-processing languages now suit personal-computer users

Array-processing languages have made many programming or calculating jobs easier on mainframes. The streamlined approach of these languages is now an option for PC users as well. And though some limitations exist, you’ll find they can operate in general on a par with their mainframe cousins. — Avram Tetensky, Charles Stark Draper Lab Inc

Digital potentiometer brings μP-based control to audio systems

From rotary volume and tone controls to the sliders on an equalizer, the control of most audio systems is still primarily mechanical. But this situation is changing as μP-based systems employing digitally controlled potentiometers find increasing use in audio designs. — Jeff Randall, Xicor Inc

Continued on page 7
Good as Gold

The 70 Series Multimeters: the shining standard by which others are measured.

These multimeters are produced through advanced technology that assures you a wealth of product features. Giving you solid value for your money.

Security of a 3-year warranty.

A 3-year warranty reduces your cost of ownership. So you don’t have to pay the price over and over for lesser-quality multimeters.

More features for your money.

Choose from either the basic 73 or the feature-rich 75 and 77. You’ll find the features you need at the price you can afford. Touch Hold™ for capturing and holding readings. Audible tones to signal you for continuity. Autoranging for simple operation. And a sleep mode for extending battery life up to 2000 hours.

Made in the U.S.A.

Like other Fluke products these multimeters offer you uncompromised quality at competitive prices. So get your hands on a 70 Series Multimeter at leading electronics distributors nationwide. Or, call toll free 1-800-227-3800, ext. 229 for a free brochure.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 73, 75, 77

$79 $109 $145

0.7%, 0.5%, and 0.3% basic dc accuracy

Audible continuity (75 & 77)

Analog/digital display

Range hold (75 & 77)

Volts, ohms, 10A, diode test

Multipurpose holder (77)

Autorange

Touch Hold function (77)

2000+ hour battery life
TECHNOLOGY UPDATE

Smart cards yield high memory capacities for mass-storage and data-security uses

Thanks to advances in IC fabrication and packaging technologies, you can now obtain high-capacity memories or complete µP-driven systems in credit-card-sized packages.—Chris Terry, Associate Editor

Good engineering decisions are key to improving US's competitive stance

Some US electronics companies are overcoming obstacles to remaining competitive by tapping the US’s great reservoirs of technical strength.—Margery S Conner, Regional Editor

Industrial Electronics Product Showcase

Putting together an industrial-grade system for a process-control, machine-control, or high-volume incoming-inspection applications can be a complex task. But you have a wide choice of products to help ease your task; descriptions begin on pg 89.—EDN Staff

PRODUCT UPDATE

Flat-panel display driver 125
640×200-pixel EL display 126
VME Bus LAN controller 128
PC/AT bus adapter 130

DESIGN IDEAS

Synchronous divider replaces 1x clock line 187
Fortran program calculates op-amp noise 188
V/I converter has zero Ii error 194
Circuit monitors system’s power supply 196
Low-power circuit splits supply voltage 198

Continued on page 9
Desoldering can be destructive. Applying heat and tearing out components can ruin an expensive printed circuit board.

Fortunately, Mill-Max® "multi-finger" receptacles can put an end to these costly "break-ups." Mill-Max receptacles form the perfect "open" marriage, taking components to have and to hold, yet disengaging them without damage.

Inside every Mill-Max receptacle is a "multi-finger" contact that mates perfectly with any shape component lead — round, square or rectangular. Our funnel shaped contact design offers wide compliance to a broad range of pin sizes, making it ideal for plugging (and unplugging) anywhere from one lead up to hundreds.

Looking to avoid messy divorces? Then specify Mill-Max "multi-finger" receptacles. Hundreds of them are in our free catalog, along with PCB pins, wrapost receptacles and terminals, solder terminals and ATE fixture pins. For your copy, write Mill-Max, 190 Pine Hollow Road, Oyster Bay, NY 11771. Or call 516-922-6000.
Continued from page 7

VP/Publisher
F Warren Dickson
VP/Associate Publisher/Editorial Director
Roy Forsberg
Editor
Jonathan Titus
Managing Editor
Rick Nelson
Assistant Managing Editor
Joan Morrow
Special Projects
Gary Legg

Home Office Editorial Staff
275 Washington St, Newton, MA 02158
(617) 964-3030
Tom Ormond, Senior Editor
Deborah Asbrand, Associate Editor
Joanne Clay, Associate Editor
Tarlton Fleming, Associate Editor
John A Gallant, Associate Editor
Clare Mansfield, Associate Editor
Dave Puce, Associate Editor
Cynthia B Reig, Associate Editor
Charles Small, Associate Editor
Dan Strassberg, Associate Editor
Chris Terry, Associate Editor
Jim Wiegand, Associate Editor
Ron Gilbert, Staff Editor
Valerie Lauzon, Staff Editor
Helen McElwee, Staff Editor
Steven Paul, Senior Production Editor

Editorial Field Offices
Margery S Conner, Regional Editor
Los Osos, CA: (805) 528-0865
Doug Conner, Regional Editor
Los Osos, CA: (805) 528-0833
Bob Cushman, Special Features Editor
Port Washington, NY: (516) 944-6524
Steven H Leibson, Regional Editor
Boulder, CO: (303) 494-2233

Contributing Editors
Eva Freeman, Robert Pease, Bob Peterson, Don Powers, Bill Travis

Editorial Services
Kathy Leonard, Office Manager
Loretta Curcio, Nancy Weiland, Sharon Gideau

Art Staff
Kathleen Ruhl, Art Director
Ken Racioc, Assistant Art Director
Chin-Soo Chung, Graphic Designer
Deborah Queally, Graphic Designer

Production/Manufacturing Staff
William Tomaselli, Production Supervisor
Donna Pono, Production Manager
Janice Dow, Production Assistant
Andrew A Jantz, Production Assistant
Diane Malone, Composition

Graphics Director
Norman Graf

VP/Production/Manufacturing
Wayne Hulitzky

Director of Production/Manufacturing
John R Sanders

Director of Research
Deborah Virtue

Marketing Communications
Janice Molinari, Manager
Jennifer Ware, Communications Manager
Corey Rend, Promotion Coordinator
Anne Foley, Promotion Assistant

EDN October 1, 1987

EDITORIAL

Technology alone won't give you a competitive edge.

NEW PRODUCTS

Components & Power Supplies ... 202
Integrated Circuits ... 208
Computers & Peripherals .. 216
Test & Measurement Instruments 226
CAE & Software Development Tools 232

PROFESSIONAL ISSUES

The frustrating and fine art of independent consulting.—Deborah Asbrand, Associate Editor

LOOKING AHEAD

VLSI ATE becomes a critical issue ... Signal-generator market to top $775M by 1993.

DEPARTMENTS

News Breaks ... 21
News Breaks International .. 24
Signals & Noise .. 31
Calendar .. 46
Readers' Choice ... 134
Leadtime Index ... 138
Literature ... 241
Career Opportunities .. 248
Business/Corporate Staff ... 253
Advertisers Index ... 254
Only Mentor Graphics maps symbols to silicon.

The bigger the IC design, the bigger the problem: you're trying to locate a discrepancy between the schematic and your IC layout, but all you have is an ASCII error report. It's like driving all over a strange city to find an address — without a map.

That's why Mentor Graphics created REMEDI, a graphical interface that helps debug complex layouts. REMEDI works with Dracula II, taking the leading layout verification package's layout-versus-schematic checks a step further. IVS errors detected with Dracula II can be quickly pinpointed on both the layout and schematic using REMEDI's interactive graphical correlation capabilities.

And, because REMEDI is part of ChipGraph, the powerful Mentor Graphics full custom IC layout editor, as soon as you find an error you can fix it. There's no need to move back and forth between the layout editor and the debugging tool to correct the design database.

Today's complex VLSI designs demand a layout tool that lets you create and navigate efficiently through a maze of mask data. So ChipGraph provides flexible geometry editing and fast cell-based layout tools. Beyond this,
Structured Chip Design (SCD), a hierarchical approach to physical layout, removes much of the unnecessary and confusing mask data, while retaining correct functionality and interfaces.

With SCD, you can work with a simplified representation of the cell when making higher level decisions. And you can easily move between SCD and more familiar tools, with no loss of productivity. The result? The tightest possible layout, created quickly and accurately.

ChipGraph also lets you partition a large design over any number of workstations while maintaining version control, through a network-wide shared database.

And there’s no need to worry about losing old data when switching to a new tool. ChipGraph offers full data compatibility with your existing design files.

Best of all, ChipGraph is not just an idea—it’s a working reality. Designers are already using ChipGraph to lay out 32-bit micro-processors and multi-megabit RAMS.

It’s all part of a vision unique to Mentor Graphics, the leader in electronic design automation. Let us show you where this vision can take you.

Call us toll-free for an overview brochure and the number of your nearest sales office.

Phone 1-800-547-7390
(in Oregon call 284-7357).
Starting with ISDN is one thing. Finishing is something else.

It's possible to put together your own ISDN chip set. Subscriber controller here, power supply there, line card device from somewhere else. But why? Advanced Micro Devices can deliver the whole connection.

The ISDN chip set that's made for each other.

With AMD's five chip set, everything is included. All designed to work together. And to conform to the CCITT recommendations.

Am79C401 Integrated Data Protocol Controller.

Software made for our chip set.

Once you've got hardware, you'll probably be needing some software. That's easy. AMD has everything from low level device drivers to AmLINK, our LAPD software.

AmLINK implements software interfaces defined in the CCITT Q.921/931 recommendations. AmLINK is modular and it's independent of the operating system, giving you added flexibility. And, because you need it, source code is available.

We also provide well documented development boards that come complete with demonstration software. Understanding the capabilities, flexibility and functionality of complex ISDN chips has never been easier.

Field trial proven.

There's one more good reason why you should pick AMD. Our ISDN chips are in field trials with Illinois Bell, Mountain Bell, the Deutsche Bundespost and others. The chips were certified in field trial test beds. And they're still in use today.

Get in touch with AMD for more information. Then get your product off to a great start. And finish.
The development system you need won’t exist until we create it for you.

Applied Microsystems lets you link the powerful tools you need with ease and precision.

Unless your system has off-the-shelf bugs, you can’t solve your problems with off-the-shelf development tools. But if you try to pull all the pieces together yourself, you’ll spend long frustrating hours and still wind up with a development system that falls short of your needs.

Now Applied Microsystems offers help: a new method of linking development tools that can be adapted to your specific needs. We offer you a seamless, painless interface along with the ability to match your host, language, operating system and software requirements to your engineering methods and target design, be it Intel, Motorola or Zilog.

Debug tools for your integrated development environment.

Whether you’re working on an 8-bit, 16-bit or even 32-bit microprocessor design, Applied Microsystems lets you tailor the emulation and debug tools you need. Everything from symbolic and source-level debuggers to assemblers, cross-compilers and utilities. The chart shown above gives some idea of the power and convenience we can offer you, but it can only hint at the benefits you will enjoy.

Validate™ links emulation with symbolic and source-level debugging.

When your software engineers only speak C and your emulator only speaks assembler, your development tools are worse than worthless. If your function is in assembler and your debugger speaks only C, you’ve got the same problem. The power of the Validate environment is that it works equally in high level languages and in assembler. You don’t sacrifice any power or any comfort.

Call toll-free and ask for the proof.

Discover why our integrated development systems are the fastest and easiest ways to start and finish a design project. For technical and application details call 1-800-426-3925. In Washington, call (206) 882-2000. Or write Applied Microsystems Corporation, P.O. Box 97002, Redmond, WA 98073-9702.

In Europe, contact Applied Microsystems Corporation Ltd., Chiltern Court, High Street, Wendover, Aylesbury, Bucks. HP22 6EP, United Kingdom. Call 44-(0)-296-625462.

UNIX is a registered trademark of AT&T.

Applied Microsystems Corporation

```
<table>
<thead>
<tr>
<th>HOSTS</th>
<th>OPERATING SYSTEMS</th>
<th>TARGETS</th>
<th>LANGUAGES</th>
<th>TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAX</td>
<td>VMS</td>
<td>8051,</td>
<td>C</td>
<td>Assemblers</td>
</tr>
<tr>
<td>MicroVAX</td>
<td>ULTRIX</td>
<td>8048 family,</td>
<td>Pascal</td>
<td>Linkers</td>
</tr>
<tr>
<td>UNIX®</td>
<td>UNIX</td>
<td>8080, 8085,</td>
<td>FORTRAN</td>
<td>Locators</td>
</tr>
<tr>
<td>workstations</td>
<td>XENIX</td>
<td>8086/88,</td>
<td>PL/M</td>
<td>Compilers</td>
</tr>
<tr>
<td>· Apollo</td>
<td>MS-DOS</td>
<td>80186/188 and 80286</td>
<td>Assembler</td>
<td>Symbolic</td>
</tr>
<tr>
<td>· Sun</td>
<td></td>
<td></td>
<td></td>
<td>debuggers</td>
</tr>
<tr>
<td>· IBM AT</td>
<td></td>
<td>68HC11,</td>
<td>Jovial</td>
<td>Source level</td>
</tr>
<tr>
<td>· MS-DOS</td>
<td></td>
<td>6800/2/8,</td>
<td></td>
<td>debuggers</td>
</tr>
<tr>
<td>workstations</td>
<td></td>
<td>6809/9E,</td>
<td></td>
<td>Emulators</td>
</tr>
<tr>
<td>· PC</td>
<td></td>
<td>68000/8/10 and 68020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· PC XT</td>
<td></td>
<td>Z80, MK3880/4 and Z8001/2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· PC AT</td>
<td></td>
<td>NSC-800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Compatibles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A stand-alone or host-control system of fully integrated debug tools built on high performance emulation.
```
What has the gate array density you've been waiting for—without the waiting?
Easy answer: the Logic Cell™ Array (LCA). A new, field-programmable CMOS gate array that has a flexible, wide-open architecture. Along with true VLSI-level density.

LCAs are built around logic and I/O blocks which you define and interconnect to build larger-scale, multi-level logic functions. Since you never alter their structure, you can reprogram them as often as you like. And avoid any NRE.

With LCAs, you get an honest-to-goodness 1800 usable gates (and as many as 8000 gates in the near future). So just one part can replace up to 50 SSI/MSI devices. Or up to 10 PLDs.

You also get a choice of surface mount, pin-grid or DIP packages. In speeds up to 70MHz.

New developments weekly.

With our easy-to-use XACT™ software, you simply draw the design and let your IBM® PC XT/AT computer convert it to code. You can use our library of over a hundred macros or define your own. Let the software perform the interconnections automatically (unless you specify something unique). And generate documentation at the touch of a button.

The whole process is so fast, you’ll be testing prototypes in a matter of days. And shipping finished products while your competitors wait for their prototype chips to come in.

Look who’s behind you.

When it comes to field programmable logic, there’s no substitute for experience. Which is what you get plenty of when you deal with the company that invented the PAL® device and made it the industry standard.

Because we’ve got a complete staff of systems-experienced FAEs, there’s no waiting to talk to an expert who knows how Logic Cell Arrays can work for you. And, you can get comprehensive assistance at MMI distributors worldwide.

If you’d like to talk to one of those experts about your application, or for a free LCA Demo Disk, call our Applications Hotline at (800) 222-9323.

Or write to Monolithic Memories, 2175 Mission College Blvd., Santa Clara, CA 95054.

Because there’s nothing else like having the right part from the right company.

Logic Cell and XACT are trademarks of XILINX Inc. IBM is a registered trademark of International Business Machines Corp. PAL is a registered trademark of Monolithic Memories, Inc.

© 1987, Monolithic Memories, Inc.
With 242 passengers on final approach into O'Hare, the last thing they’re thinking about is your voltage regulator.

For devices with a critical performance envelope — devices that have to deliver, especially in harsh environments or hazardous conditions — you never compromise reliability.

And neither do we.

RELIABILITY FOR FOUR GENERATIONS

National has set the standard for reliability in IC voltage regulators since we introduced the world’s first 3-terminal fixed regulator in 1970.

And we’ve maintained that standard into our fourth generation, in the world’s first — and largest — family of low dropout (LDO) voltage regulators.

Fabricated in a deep-base PNP process, our LDO regulators give you low quiescent current (0.75 mA typ), low dropout voltage (input-output differentials of 0.6 V typ), tight line-to-load regulation (0.05% typ), low output noise (150 µVRMS typ), and high ripple rejection (60 dB typ).

Which not only means you can design-in the highest levels of reliability, but means you can design smaller, cooler, quieter systems that operate with lower input voltages. And that means you can boost system efficiency by 30-50% while cutting system cost substantially.

RELIABILITY FOR EVERY APPLICATION

National LDO regulators give you a choice of single-output, dual-output, and three-output configurations.

All with 60-volt load-dump and reverse-transient protection. And all with "drop-in" design ease, regardless of your applications:

- Avionics
- Marine electronics
- Cellular telephones
- Computer power supplies
- Medical instrumentation
- Automotive systems
- Battery-powered systems
- CMOS-based systems
- Solar-powered systems

And you can choose from a variety of packages, including TO-220, TO-92, 8-pin miniDIP, and small outline (SO) surface mount. And soon, mil-spec TO-3 steel cans.

And, in addition to our LDO family, National has 478 other voltage regulators—positive and negative, fixed and adjustable, switching and tracking—to match your exact design needs.

RELIABILITY FOR NO EXTRA COST

At National, we subject all our LDO regulators to the most rigorous reliability screening flow in the industry.

Our unique P+ Thermal Limit Burn-in program is an abnormal test for devices that have to perform in potentially abnormal conditions.

Going beyond even A+ screening, P+ involves a dynamic self-heating accelerated burn-in that tests a device at thermal shutdown. This approach has been proven more effective than standard 125°C burn-in as an early screen for infant mortality defects in power devices, such as regulators.

The result of P+? Zero defects.

The cost of P+? Zero price adder.

Which means you get the highest reliability available in the industry, while sharply cutting the cost of your own incoming testing program, and without having to pay a price premium for ours.

For more information on P+, ask your National sales engineer or distributor for a free copy of "The Secret Behind the Most Reliable Voltage Regulators in the World." And see for yourself how this unique screening program gives you devices you can depend on — for the people depending on you.

National's Low Dropout Regulator Family

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2925</td>
<td>Low dropout, 5 V, 750 mA with delayed reset</td>
</tr>
<tr>
<td>LM2930</td>
<td>Low dropout, 3-terminal, 5 V or 8 V, 150 mA</td>
</tr>
<tr>
<td>LM2931</td>
<td>Low dropout, low quiescent current, 5 V or adjustable, 100 mA</td>
</tr>
<tr>
<td>LM2935</td>
<td>Low dropout, dual 5 V for memory keep-alive, 750 mA or 10 mA</td>
</tr>
<tr>
<td>LM2940C</td>
<td>Low dropout, 5 V, 12 V, or 15 V, 1 A</td>
</tr>
<tr>
<td>LP2950/2951</td>
<td>Low dropout, micropower, 5 V or adjustable, 100 mA</td>
</tr>
<tr>
<td>LM2984</td>
<td>Low dropout, 5 tracking 5 V outputs with watchdog</td>
</tr>
</tbody>
</table>

© 1987 National Semiconductor Corporation

National Semiconductor
Linear Solutions
P.O. Box 58090
Santa Clara, CA 95052-8090
When choosing between the two leading microcontrollers, don't let emulator support slow you down. NWIS is the exclusive U.S. source of Microtek 8051 and 68HC11 circuit emulators for both. And for all the popular microprocessors as well, including the 32-bit 68020 and 80386. As well as 68010, 68000, 80286, 80186, 8086, plus many others.*

In fact, Microtek emulators have a long track record of being first to market with quality support for every major microprocessor. Which gives you shorter time-to-market and an assured expansion path for product upgrades.

Every Microtek emulator can be used as a stand-alone device, or as part of an integrated system. All use simple command structures and include a symbolic debugger for rapid insight into your software's real-time behavior. And each communicates with the IBM PC/XT/AT, VAX, MicroVAX, Apollo and Sun computers.

Microtek emulators are just one part of NWIS's complete line of embedded microprocessor software development tools.

Our Software Analysis Workstation (SAW) brings you hardware-based, real-time software analysis in a source code environment. Including performance analysis, time-aligned dual processor trace, code coverage analysis, and Context Trace, which lets you trace high-level events and related assembly-level code at the same time.

And for source code development, our Microtec Research products provide you with C and Pascal cross-compilers, cross-assemblers and debuggers for the same wide range of popular processors.

Best of all, NWIS backs all these products with solid applications support, both at the local and factory level. So let us become your single source for emulators and other microprocessor Computer-Aided Software Engineering (CASE) tools.

1-800-547-4445. Microtek emulators are just one part of NWIS's complete line of embedded microprocessor software development tools.

Circle 120 for demonstration

Circle 81 for literature

*Processors supported by Microtek: 8088, 80286, 80188, 80386, 68020, 68000, 68000, 68010, 68000, 6809, 6809E, 6502, Z80, NSC800, 8085, 8032, 8001, 8344, 6848, 8049, 8050, ZB, SUPERB, 68HC11, 68400, 68015.
NEWS BREAKS
EDITED BY JOAN MORROW

80286-COMPATIBLE \(\mu\)P CHIP OFFERS LOW-POWER OPERATION

The first CMOS \(\mu\)P chip that is directly compatible with the 80286 chip is available from Harris Semiconductor (Melbourne, FL, (305) 724-7418). The CMOS 80C286 chip operates with a speed-power factor of 20 mA/MHz, which translates to about 40% of the power needed to run an NMOS 80286 chip at 12.5 MHz. Although the static 80C286 chip's clock rate can be as fast as 12.5 MHz, low-cost 10-MHz versions of the chip are also available. The manufacturer expects to offer a 16-MHz version of the chip late this year. Samples of the 80C286, which operate in the commercial temperature range (0 to 70°C), are available now in 68-pin PGA packages; PLCC packages should be available in early 1988. Prices range from $125 (100) for the 10-MHz version (CG80C286-10) to $170 (100) for the 12.5-MHz version (CG80C286-12). Military- and industrial-temperature-range chips are scheduled for introduction by the middle of 1988.—Jon Titus

BOARD ADAPTS PERSONAL SYSTEM/2 TO SCSI

Future Domain Corp (Tustin, CA, (714) 259-0400) offers a SCSI (Small Computer System Interface) host adapter for the IBM PS/2 Series computers. The MCS-350 host adapter operates with the PS/2 Models 50, 60, and 80, and provides compatibility with the IBM Microchannel: The board comes with an IBM-assigned ID number. The board transfers data at 1.67M bytes/sec and will operate in multitasking software environments such as Xenix and OS/2. Evaluation units of the $390 board will be available in this month; you can expect production quantities to be available by the end of the year. The company also offers software support and a software tool kit to OEMs.—Maury Wright

FET POWER DEVICES HAVE AVALANCHE-MODE ENERGY ABSORPTION

E-FET power MOSFETs from Motorola Inc (Phoenix, AZ, (602) 244-4911) feature an enhanced and specified ability to absorb energy while in the avalanche mode. The vendor achieved this enhancement through a new manufacturing process called TMOS IV that features improved geometries and diffusion techniques. The family includes 12 device types covering a 50 to 100V range with current capacities to 50A. Each device's data sheet includes unclamped inductive switching ratings for multiple conditions and specifies the device's commutating safe operating area. Prices range from $0.54 (100) for the MTP15N05E, rated at 50V and 15A, to $2.80 (100) for the MTP50N05E, rated at 50V and 50A.

Specifications for the E-FETs as well as for more than 1600 of the vendor's power MOS and bipolar devices appear on a data disk available from Motorola's sales offices or for $2 from the company's literature distribution center (Box 20924, Phoenix, AZ 85063). The disk, which is formatted for IBM PCs, includes an embedded database manager that provides answers to component queries in seconds.—Steven H Leibson

RELATIONAL DATABASE AVAILABLE FOR LANs AND PS/2

Version 2.01 of a relational database software package called Paradox provides an Expanded Memory Specifications (EMS) module that lets you access as much as 8M bytes of system memory in your IBM PS/2 Model 50 and 60 computers. The LAN version of this package permits as many as six users to access and update a single database simultaneously. Manufactured by Ansa Software (Belmont, CA, (415) 595-4469), Paradox is not copy protected, comes with extensive documentation, and includes telephone customer support. The LAN version costs $995; the single-user version is $725. If you already have version 2.0, the upgrade is free.—J D Mosley
FDDI CHIP SET EASES DESIGN OF 100M-BPS LANs

A 5-chip set from Advanced Micro Devices (Sunnyvale, CA) allows local-area networks to achieve 100M-bps operation via fiber-optic links. The Supernet family consists of the Am7984 receiver, the Am7985 transmitter, the Am79C83 ring media access controller, the Am79C82 data path controller, and the Am79C81 RAM buffer controller. The chip set complies with the proposed ANSI X3T9.5 standard commonly referred to as the Fiber Distributed Data Interface (FDDI). Samples are available now; the 5-chip set costs $625 (100).—David Shear

PC BOARD SET SIMULATES NAVY TACTICAL DATA SYSTEM INTERFACE

An ANEW/NTDS board set for PC/XTs, ATs, and compatibles from Sabtech Industries (Anaheim, CA, (714) 630-9335) simulates the Navy Tactical Data System (NTDS)/NATO software and hardware parallel data interface. (This interface is used in most shipboard data-distribution networks.) The single-slot board set, comprising an adapter board and a daughter board, lets you inexpensively create the Navy's AN/UYK computer environment. You can program the board set for full-duplex 8-, 16-, 24-, or 32-bit-wide parallel word transfers, as well as select DMA or programmed I/O. The ANW1632/NT1632FS board set includes software and its source code, interface ribbon cables, and a loopback test adapter board for $3250.—Margery S Conner

ARCNET CARD GIVES YOU SWITCHABLE PERFORMANCE OPTIONS

The TC6042 Arc-Card CE (Compatible/Enhanced) from Thomas-Conrad Corp (Austin, TX, (512) 836-1935) is a half-size card that plugs into your IBM PC or compatible computer to provide either standard or enhanced Arcnet performance at the flip of a switch. When run in its standard (compatible) mode, the TC6042 is a drop-in replacement for other Arcnet network interface cards, such as Novell's RX-Net and SMC's PC100/110. In its enhanced mode, the TC-6042 operates in all 8088-, 80286-, and 80386-based PCs with bus speeds as fast as 20 MHz. This $495 card works with a variety of PC add-in boards, such as EGA, EMS, and emulation adapters; the card includes software drivers to accommodate as many as five dedicated interrupt request (IRQ) lines. A $40 optional autoboot PROM lets you access your LAN via a diskless PC.—J D Mosley

TV/VIDEO SYNC POD LOCKS SIGNALS ONTO DIGITAL-SCOPE SCREENS

Hewlett-Packard's (Palo Alto, CA) HP1133A TV/video sync pod helps digital oscilloscopes make timing and amplitude measurements on composite video signals by generating synchronization pulses from the composite signal and providing dc restoration. The $275 instrument provides clamped and unclamped versions of the test signal and contains a variable-gain amplifier to aid small-signal measurement. When coupled with the stability of a digital oscilloscope's timebase, the pod allows you to easily inspect video frames, fields, horizontal and vertical intervals, and vertical-interval test signals.—Steven H Leibson
You can have the best of both worlds from just one source. Data acquisition and DSP are just down the hall from each other at TRW LSI. That's good, because these functions must perform in close harmony in your system. We can relate. No one understands your total system needs better than we do.

And, no one offers a broader range of cost-effective, high-performance analog and digital circuits. Converters up to 200 MHz. DSP building blocks up to 20 MHz. And that's just for openers.

Data acquisition and DSP are on a converging course at TRW LSI. Not far beyond these doors lies a whole new world of data conversion, floating point, image processing and graphics DSP chips. If that sounds like opportunity knocking, you're right.

Our doors are always open. Our technical staff is waiting to help you. Let us help bring your high-performance data acquisition and DSP requirements together. Contact us at 619.457.1000 and ask for one of our applications engineers. We'll help make a world of difference in your system performance.
POWER DARLINGTON HAS SAFE-OPERATING-AREA PROTECTION

For applications that require a self-protected 400V power Darlington, you can use the VBO10 from SGS Microelettronica SpA (Agrate, Italy, TLX 330131). The device has a maximum output current of 8A and protects itself from damage caused by output short circuits or operation outside its safe operating area (SOA). In addition, it incorporates thermal shutdown circuitry to prevent excessive power dissipation.

In the event of short circuits, SOA violations, or thermal shutdown, the Darlington output stage is turned off, and the device activates a fault-diagnosis logic output. The VBO10's control input is TTL/CMOS compatible, and you can program the base current to the Darlington by adding an external resistor in the device's control logic supply. Samples of the VBO10 will be available in the first quarter of 1988. Production parts will cost approximately $3.50 (100,000).—Peter Harold

SINGLE EUROCARDS PUT IBM PC-COMPATIBLE COMPUTER ON STE BUS

A set of four single-Eurocard boards from Arcom Control Systems Ltd (Cambridge, UK, TLX 94016424) allows you to install IBM PC compatibility into an STE bus computer system. You can use the system for program development, and you can extend it with a wide range of STE bus I/O boards to implement target systems. The CPU card has an 8088 microprocessor, an 8087 math coprocessor, 256k bytes of RAM, and sockets for firmware EPROMs. It is accompanied by a floppy-disk-controller board, a CGA/EGA graphics board, and a serial/parallel interface board. The CPU card is supplied with a legal BIOS that makes it 100% IBM PC compatible—for example, the system runs Microsoft's Flight Simulator. The 4-board set sells for around £1000.

—Peter Harold

16K ECL RAM BOASTS AN ADDRESS ACCESS TIME OF 8 nSEC

Fujitsu Ltd (Tokyo) has introduced a 16K ECL RAM with an address access time of 8 nsec max. You have a choice of two versions: the MBM10484A.8 (10K), which has a supply voltage of -5.2V, and the MBM100484A.8 (100K), with a supply voltage of 4.5V. Samples are available for ¥12,000 ($80). In the US, contact Fujitsu Microelectronics (Santa Clara, CA, (408) 562-1382; TWX 910-338-0190).—Clare Mansfield

DATACOMM ANALYZER SAMPLES AT 72k BPS MAX

The AE-5105 data-communications analyzer from Ando Electric Co Ltd (Tokyo, phone (03) 733-1151, TLX 2466425; in the US, Rockville, MD, (301) 294-3365) features a data-sampling rate of 72k bps max to test on-line networks. The device analyzes X.25-frame, X.25-packet, SDLC, and BSC protocols; optionally, it can analyze ISDN LAP-D, X.75, and SNA/SDLC protocols.

A 3½-in. floppy-disk drive with 640k bytes of memory stores setup conditions and test programs. The AE-5105 can also store a simulation program with up to 1000 steps and 39 commands, allowing it to simulate system components. The 14.5-lb (6.5-kg) unit costs approximately $6000.—Joan Morrow
Stimulate experiments with real-time analog waveforms reproduced from your actual captured data!

Connected via the GPIB interface, the Nicolet Model 4094 digital oscilloscope teamed up with the Nicolet Model 42 arbitrary function generator provides instantaneous waveform storage and generation.

800/356-3090 or 608/273-5008

Nicolet Digital Oscilloscopes

Incoming signals digitized by Nicolet’s high accuracy 12-bit, 10 MHz digitizers or high speed 8-bit digitizers allow you to see things you’ve never seen before. Zoom expansion to X256 allows you to see the details in waveforms composed of up to 16k points. Cursor readout of measurement values, continuously variable pretrigger positioning, and built-in disk drives all contribute to Nicolet’s tradition of measurement power and ease of use.

Nicolet Programmable Function Generators

Outgoing signals are accurately generated from the 12-bit by 2k arbitrary waveform memory in the Model 42. Real-time duplication of the captured signal can be produced at speeds up to 1 μSec per data point.

Continuous, triggered, gated, and burst output modes are possible. A unique feature, arbitrary sweep, allows you to accurately program the output frequency. Standard waveforms (sine, triangle, square, sawtooth, pulse), 10 mV_{pp} to 20V_{pp} amplitudes, are all available at speeds up to 4 MHz.
rugged plug-in amplifiers

0.5 to 1000MHz from $13.95 (5 to 24 qty)

Tough enough to meet full MIL-specs, capable of operating over a wide -55° to +100°C temperature range, in a rugged package… that's Mini-Circuits' new MAN-amplifier series. The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in.) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to 500MHz and 0.5 to 1000MHz, and NF as low as 2.8dB.

Prices start at only $13.95, including screening, thermal shock -55°C to +100°C, fine and gross leak, and burn-in for 96 hours at 100°C under normal operating voltage and current.

Internally the MAN amplifiers consist of two stages, including coupling capacitors. A designer's delight, with all components self-contained. Just connect to a dc supply voltage and get up to 28dB gain with +9dBm output.

The new MAN-amplifier series... another Mini-Circuits' price/performance breakthrough.

<table>
<thead>
<tr>
<th>MODELS</th>
<th>FREQ RANGE (MHz)</th>
<th>GAIN dB</th>
<th>MAX OUT/PWR dBm</th>
<th>NF dB</th>
<th>DC PWR 12V mA</th>
<th>PRICE $ ea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN-1</td>
<td>0.5-500</td>
<td>28 10</td>
<td>8</td>
<td>4.5</td>
<td>60</td>
<td>13.95</td>
</tr>
<tr>
<td>MAN-2</td>
<td>0.5-1000</td>
<td>19 15</td>
<td>7</td>
<td>6.0</td>
<td>85</td>
<td>15.95</td>
</tr>
<tr>
<td>MAN-1LN</td>
<td>0.5-500</td>
<td>28 10</td>
<td>8</td>
<td>2.8</td>
<td>60</td>
<td>15.95</td>
</tr>
</tbody>
</table>

† Midband 10f to 500 ± 0.5dB † dB Gain Compression
Max input power (no damage)+15dBm: VSWR in/out 1:8.1 max.

Mini-Circuits
A Division of Scientific Components Corporation
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500
Fax (718) 332-4661 Domestic and International Telexes: 6852644 or 620156

CIRCLE NO 114
tough attenuators

one-piece design defies rough handling

from $11.95
(1-49)

- Each unit undergoes high-impact shock test
- Unexcelled temperature stability, .002 dB/°C
- 2W max. input power (SMA is 0.5W)
- BNC, SMA, N and TNC models
- Immediate delivery, one-year guarantee

50 ohms, dB values,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, and 40

75 ohms dB values,
3, 6, 10, 15, 20 BNC only

Price (1-49 qty.)
CAT (BNC) $11.95 SAT (SMA) $14.95
TAT (TNC) $12.95 NAT (N) $15.95

Precision 50 ohm terminations only $6.95 (1-24)
DC to 2 GHz, 0.25W power rating, VSWR less than 1.1
BNC (model BTRM-50), TNC (model TTRM-50)
SMA (model STRM-50), N (model NTRM-50)

Specifications

<table>
<thead>
<tr>
<th>Freq. Range</th>
<th>Attenu. Tolerance</th>
<th>Attenu. Change, (Typ.)</th>
<th>VSWR (Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-1000 MHz</td>
<td>±0.3</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>DC-1500 MHz</td>
<td>±0.3</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>DC-500 MHz</td>
<td>±0.3</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Model Availability
SAT (SMA) CAT (BNC) NAT (N) TAT (TNC)
Model no. = a series suffix and dash number of attenuation.
Example: CAT-3 is CAT series, 3 dB attenuation.
Customers tell us... Samtec really is a different breed of cat!"

Sam Shine, Proprietor

These Samtec folks make sure you get SUDDEN SERVICE

Samtec people believe that our customers deserve the finest products and services. Whatever you need—catalogs, samples, cross-reference guides, quotations, shipment dates—you'll get SUDDEN SERVICE that other vendors can't (or won't) match. Give us a try. You won't be disappointed.

Bobbi Smith
Sales

Brian Thurston
Engineering
Samtec's **SUDDEN SERVICE** gets the highest customer approval for product quality, on-time delivery.

Everybody claims superior products and service. We'll simply summarize and document* some of the reports we continually receive from Samtec customers who *demand* the best from their suppliers. Large companies, medium-size companies, small firms—they have all come to rely upon Samtec SUDDEN SERVICE. They have given us the highest possible quality rating for zero defect parts, on-time delivery and prompt, reliable service.

Large orders or small, they all receive the same "as promised" service that makes Samtec "a different breed of cat". Try us. You'll be pleasantly surprised.

Contact Samtec for all of your board-to-board and on-board interconnect needs. You'll find the industry's largest selection of instant break-away socket and terminal strips as well as low profile and hi-temp DIP sockets and surface mount products.

CUSTOMER EVALUATION SCORECARD

<table>
<thead>
<tr>
<th>Customer</th>
<th>Product</th>
<th>Quality Rating for Samtec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company “A”</td>
<td>Computers</td>
<td>100%</td>
</tr>
<tr>
<td>Company “B”</td>
<td>Industrial Controls</td>
<td>100%</td>
</tr>
<tr>
<td>Company “C”</td>
<td>Test Instrumentation</td>
<td>100%</td>
</tr>
<tr>
<td>Company “D”</td>
<td>Cellular Radios (Telecom)</td>
<td>100%</td>
</tr>
<tr>
<td>Company “E”</td>
<td>Medical Instrumentation</td>
<td>100%</td>
</tr>
<tr>
<td>Company “F”</td>
<td>Computers</td>
<td>Zero Defects</td>
</tr>
<tr>
<td>Company “G”</td>
<td>Telecommunications</td>
<td>100%</td>
</tr>
<tr>
<td>Company “H”</td>
<td>Industrial Motors</td>
<td>100%</td>
</tr>
<tr>
<td>Company “I”</td>
<td>Telecommunications</td>
<td>100%</td>
</tr>
<tr>
<td>Company “J”</td>
<td>Medical Instrumentation</td>
<td>100%</td>
</tr>
<tr>
<td>Company “K”</td>
<td>Heart Pacemakers</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

*Your Samtec salesman or distributor can show you documentation and names. They are highly respected, quality-oriented OEM's of all sizes that you'll recognize immediately.

EUROPEAN SAMTEC
SAMTEC, Ltd. 35 Deedykes View, Westfield, Cumbernauld, Scotland G68 9HN
Phone: 02367 39292 FAX: 2367 27113 TLX: 776158

SUDDEN SERVICE

WORLDWIDE HEADQUARTERS:
SAMTEC, Inc. P.O. Box 1147, 810 Progress Blvd., New Albany, IN 47150 USA
Phone: (812) 944-6733 TWX: 810-540-4095 TLX: 333-918

WRITE TODAY for our new 72-page full line catalog. It has been revised and enlarged to include many new products. And it contains complete specification data for fast, easy ordering. Get yours today.

CIRCLE NO 116
In Surface Mountable Components, TDK Quality Is More Than Skin Deep.

As boards are getting thinner, TDK is helping that diet succeed by providing a variety of extra-slim surface mountable components. Nourished by TDK’s expertise in ferrite and ceramic materials, these miniaturized components feed on TDK-developed multi-layerization and multi-functionalism. How do we know the exact needs of high-quality automated board production? Well, a fair share of the world’s automatic mounting equipment—the Avimount series—comes from TDK.

<table>
<thead>
<tr>
<th>Multilayer Ceramic Chip Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1608 (C2000/E)</td>
</tr>
<tr>
<td>C: 0.5 - 22.000pF</td>
</tr>
<tr>
<td>C2012 (C2005/E)</td>
</tr>
<tr>
<td>C: 0.5 - 100.000pF</td>
</tr>
<tr>
<td>C3216 (C1206)</td>
</tr>
<tr>
<td>C: 0.5 - 20.000pF</td>
</tr>
<tr>
<td>C3225 (C1210)</td>
</tr>
<tr>
<td>C: 750 - 470.000pF</td>
</tr>
<tr>
<td>C4532 (C1812)</td>
</tr>
<tr>
<td>C: 2.04000 - 1.0uf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multilayer Ceramic Chip Capacitor (High Frequency, Low Loss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC1414</td>
</tr>
<tr>
<td>C: 0.5 - 3.300pF</td>
</tr>
<tr>
<td>FC2828</td>
</tr>
<tr>
<td>C: 0.5 - 27.000pF</td>
</tr>
<tr>
<td>FR1414</td>
</tr>
<tr>
<td>C: 0.5 - 3.300pF</td>
</tr>
<tr>
<td>FR2828</td>
</tr>
<tr>
<td>C: 0.5 - 27.000pF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leadless Inductor (Wound Chip Inductor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL322522</td>
</tr>
<tr>
<td>L: 0.01 - 220µH</td>
</tr>
<tr>
<td>NL453232</td>
</tr>
<tr>
<td>L: 0.01 - 1.000µH</td>
</tr>
<tr>
<td>NL565050</td>
</tr>
<tr>
<td>L: 1.00 - 10.000µH</td>
</tr>
<tr>
<td>NLF4532322</td>
</tr>
<tr>
<td>L: 1.00 - 1.000µH (Shielded Inductor)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multilayer Chip Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTT4532</td>
</tr>
<tr>
<td>L: 10 - 200µH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multilayer Chip LC Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MXF4532H</td>
</tr>
<tr>
<td>HF (hf)</td>
</tr>
<tr>
<td>MXF4532B</td>
</tr>
<tr>
<td>BPF (FM radio)</td>
</tr>
<tr>
<td>MXB5050B</td>
</tr>
<tr>
<td>BPF (VCR)</td>
</tr>
<tr>
<td>MXB5050L</td>
</tr>
<tr>
<td>LPF (VCR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multilayer Chip IFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIA4532</td>
</tr>
<tr>
<td>F: 455, 459, 464kHz</td>
</tr>
<tr>
<td>MIF4532</td>
</tr>
<tr>
<td>F: 10.7MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multilayer Chip Capacitor Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCN7575</td>
</tr>
<tr>
<td>Tl: 1 - 100pF (10 capacitors)</td>
</tr>
<tr>
<td>S1: 10 - 1.000µF (10 capacitors)</td>
</tr>
<tr>
<td>Class II: 100 - 470.000µF (10 capacitors)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SM Active Delay Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDL</td>
</tr>
<tr>
<td>Delay time: 20 - 75 nsec.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SM Transformer/Inductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE5</td>
</tr>
<tr>
<td>ER9.5</td>
</tr>
<tr>
<td>ER11</td>
</tr>
<tr>
<td>T2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multilayer Chip LC Trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MXT4532</td>
</tr>
<tr>
<td>F: 10 x 2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ferrite Chip Beads</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB201209</td>
</tr>
<tr>
<td>Zn: 10, 11µ</td>
</tr>
<tr>
<td>CB321611</td>
</tr>
<tr>
<td>Zn: 10, 25, 31µ</td>
</tr>
<tr>
<td>CB322513</td>
</tr>
<tr>
<td>Zn: 31, 52, 65µ</td>
</tr>
<tr>
<td>CB453215</td>
</tr>
<tr>
<td>Zn: 10, 125, 125µ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SM Step-up Inductor (Piezoelectric Buzzer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL3.3 x 1.6</td>
</tr>
<tr>
<td>OL3.3 x 2.1</td>
</tr>
</tbody>
</table>

TDK CORPORATION OF AMERICA HEAD OFFICE 4711 West Golf Road, Skokie, IL 60076, U.S.A. Phone (312) 679-8200 CHICAGO REGIONAL OFFICE Phone: (312) 679-8200 INDIANAPOLIS REGIONAL OFFICE Phone: (317) 872-0370 NEW YORK REGIONAL OFFICE Phone: (516) 625-0100 LOS ANGELES REGIONAL OFFICE Phone: (213) 539-6631 DETROIT DISTRICT OFFICE Phone: (313) 353-9939 NEW JERSEY DISTRICT OFFICE Phone: (201) 736-0023 HUNTSVILLE DISTRICT OFFICE Phone: (205) 539-4551 GREENSBoro DISTRICT OFFICE Phone: (919) 292-0012 DALLAS DISTRICT OFFICE Phone: (214) 506-9800 SAN FRANCISCO DISTRICT OFFICE Phone: (408) 435-8565 TDK CORPORATION, TOKYO, JAPAN.
High-tech weapons prevail over low-tech ones

Jon Titus’s editorial “Score: Low Tech 1, High Tech 0,” (EDN, July 9, pg 53) indicates that he has little or no appreciation for the technology of weaponry. His invoking George Santayana’s famous line is hilarious, at least insofar as the examples he chose. History, if it does anything, teaches us that he is dead wrong.

The laughter around our office area at the description of the Exocet as a low-tech, inexpensive weapon was deafening. The Exocet is a very high-speed, wave-skimming missile with a sophisticated terminal seeker. It is considerably more sophisticated than the Styx used in 1967 against the Elat.

The low-tech General Belgrano, originally the USS Phoenix, was launched on March 12, 1938, according to Weyer’s Warships of the World. That would make it pre-World War II technology, and, from the logic of Mr Titus’s argument, invulnerable to the much newer technology incorporated in the British nuclear submarine that sank it. It would have been difficult for the British to have deployed a conventionally powered submarine 8000 miles from home to fire any type of torpedo. The British success in fighting off the brilliant Argentinian air strikes was due in large measure to the high-tech Harrier aircraft firing sidewinder missiles.

The two Exocet missiles that did not sink the USS Stark did not so much penetrate US naval defenses as catch them in the “low-tech,” off position. The automatic defenses, including Phalanx, are potentially so deadly that Captain Brendel put them on manual for fear of shooting down a friendly party. The Stark was defeated by a very high-tech weapon that was too much for the Mark I, Model 0 human to handle without high-tech assistance.

The reference to Israeli reliance on low-tech weapons is also funny. In almost every case where they have used American weaponry, the Israelis employed them in very dramatic, and sometimes extremely innovative, ways. Tow, Hawk, Sparrow, and Sidewinder missiles, for instance, are not your basic low-tech weapons. In the same way that Shrike and Harm missiles are “old,” I’ll concede, the Mach 2 F-4 and Mirage aircraft, with their radar and fire-control systems, are low-tech extensions of WWII technology.

In Vietnam, the USAF used up the WWII and Korean War iron bombs to hit hard targets such as bridges. The result was that many more raids and many more planes

The 60A is more than a logic programmer.

At $2495*, the 60A Logic Programmer is a very affordable way to get into logic. This high-quality programmer supports nearly 300 of the most popular PLDs. And its flexible architecture lets you buy only what you need today and upgrade tomorrow.

Now the 60A is more than a dedicated logic programmer. With support for 120 popular EPROMs, it is the most versatile programmer in its price range. To switch from PLDs to EPROMs, simply change adapters. With the 60A, your PC, and Data I/O’s family of compatible software tools, you can build a complete logic development system right at your desk. ABEL®, the industry-standard logic design software, lets you describe your circuits using any combination of boolean equations, truth tables, or state diagrams. Then add PROMlink®, interface and file management software, to control programming from your PC.

For just $2495, the 60A gives you logic programming and a lot more.

1-800-247-5700
Dept. 550

*U.S. price list only.

CIRCLE NO 1
SIGNS & NOISE

were required, and there were more casualties and POWs. When "smart" weapons were finally used, we came to appreciate the high price we paid for the use of low-tech, inexpensive weapons.

Just as the B-17 with the Norden bombsight was criticized as being too sophisticated, and just as the WWII-type torpedoes that Mr Titus lauds were called too complex, today's state-of-the-art weapons are scourged by the shortsighted, shallow thinkers of our time. History has shown us that if new systems are properly developed and adequately tested, and if they are refined based on combat experience, the more capable weapons prevail.

Certainly, we must resist using high tech for its own sake. However, when you can expect to be outnumbered significantly on the battlefield, and when your enemy always has the advantage of choosing when and where the first engagement will occur, it is stupid to advocate yielding to him the high ground of technology also.

Ted Bluestein
Tucson, AZ

DSP chip runs efficiently from looped code

The ADSP-2100 DSP processor from Analog Devices is seriously misdescribed in the article "Digital signal processing enters the mainstream," (EDN, August 6, pg 111). The ADSP-2100 was designed to operate with off-chip memory while maintaining single-cycle access. This scheme lets the ADSP-2100 efficiently implement very complex algorithms, algorithms that won't fit into DSP processors with on-chip memory. For these other chips, the benefits of on-chip memory evaporate when off-chip program accesses are required, because these accesses typically require multiple cycles.

Jim Wiegand, the author, misunderstood the role of the ADSP-2100's on-chip, 16-word instruction cache. Its purpose is to allow the execution of loops entirely from the instruction cache, thereby freeing the instruction bus for a second, parallel data transfer. As a result, the ADSP-2100, unlike other processors, runs more efficiently from looped code than from straight-line code. This on-chip cache is a key reason that the ADSP-2100 can accomplish a 1024-point FFT in 4.6 msec at an 8-MHz clock rate. (Faster versions will be available soon.) The instruction cache has nothing directly to do with the ADSP-2100's memory architecture except that, because the optimized, looped code is typically very compact in comparison with straight-line code, very
High-capacity removable storage with the added reliability of the Kodak name.

Here's the level of reliability you want for data storage... including all the confidence associated with the Kodak name.

Kodak 6.6 MB flexible disk drives and Verbatim-brand media combine high capacity with the benefits of removable floppies: transportability, data security, and unlimited storage capacity. Proven servo-embedded technology eliminates read-write problems when disks are moved from drive to drive—problems common with other high-density storage systems.

Designed for the IBM PC/XT/AT and compatibles, this half-height drive reads disks created at 48, 96, 192, and 384 tpi.

And, of course, with Kodak as your vendor, you're assured of consistent quality and a long-term commitment to supply and support.

For more information, write or call today, Eastman Kodak Company, Mass Memory Division, 343 State Street, Rochester, NY 14650, 1-800-44KODAK, ext. 991.
Sure, EG&G Reticon’s D Series linear photodiodes provide designers with the important imaging capabilities needed to engineer advanced, high-performance vision products.

Key features that many other CCD arrays don’t offer, for example:

* Speeds up to 20 MHz
* Strong resistance to blooming
* Smooth, broad spectral response
* Wide dynamic range (1600:1)
* Diode reset feature
* Low power requirement
* Low noise

But these capabilities are only part of the D Series’ total price/performance effectiveness to users. Designers also count on Reticon’s valuable factory support, including technical assistance, advice on product application, and troubleshooting.

Reticon’s D Series photodiode arrays are utilized in a wide variety of applications requiring high speed linear array functions, such as optical character recognition, document-scanning, pattern recognition, and non-contact measurement.

Despite its high performance CCD-capabilities, the D Series is very competitively priced. In volumes of 100, the D Series per unit price is: for 256 elements - $72; 512 elements - $112; 1024 elements - $218; and 2048 elements - $380.

To learn more how Reticon can meet your vision product component needs, call the Reticon sales office near you.

Contact: Western U.S. (408) 738-4266; Eastern U.S. (617) 745-7400; Japan 03-343-4411; England (0734) 788666; West Germany (089) 92692-666.

Company offers 16-bit emulator

Our client, Arium Corp, is at a loss to understand why it was omitted from EDN’s July 23rd article on 16- and 32-bit emulators (“In-circuit emulators keep pace with 16- and 32-bit µPs,” pg 252). All of the company’s competitors were represented.

Arium offers one of the most sophisticated, powerful development systems on the market. The system is a widely recognized product, and we feel it deserves the same coverage that the competing products receive in articles of this nature.

Ernest H Rankin
The Rankin Group
Fountain Valley, CA

(Ed Note: Arium makes a 16-bit emulator for the 68000/68010 µP. The product runs at 16 MHz and works with the company’s Echo µP-development system. For more information, Circle No 618)
Hewlett-Packard's new logic analyzer family offers you something not found in other logic analyzers...
HP's new logic analyzer family gives you more of what you want in logic analyzers. For less.

So now measurements are easier to make. And high-quality HP logic analyzers are easier to buy!

You get the performance that best suits you: from 32 to 400 channels of 100 MHz transitional timing/25 MHz state, and up to 80 channels of 1 GHz timing analysis.

Our new family also offers you easy operation, powerful triggering, a CAE link, an oscilloscope, pattern generation, portability, built-in mass storage, simple probing, optional 3-year protection, and much more.

The small secret behind the big value.

To give you more for your money, HP developed a Logic-Analyzer-on-a-Chip containing a complete state analyzer, timing analyzer, and acquisition memory. This proprietary HP IC makes exceptional value possible...80 channels of 100 MHz transitional timing for only $7,800*.

You can assign state or timing in 16-channel increments. Get fully independent state, timing, state/timing, or state/state setups. Even time-correlate measurements on complex multiprocessor systems.

Operational simplicity runs in the family.

We've made our controls even easier than before, without sacrificing performance.

You can make timing or state measurements using just three menus, so you never get lost. Triggering setups, from the simple to the complex, are a snap. And autoscale gives you one-button setup for timing analysis.

You even get a color touchscreen and knob, or optional mouse with the new HP 16500A. Color lets you quickly distinguish between menu choices, measurements, and results...and find glitches more easily.

Probing made easy.

HP's new passive probes are lightweight and flexible...specially designed to grip easily and securely to your device under test. Plus, our preprocessors give you quick setups with most popular 8, 16, and 32-bit µPs, including the Motorola 68020 and Intel 80386. And if you've already invested in HP preprocessors, we offer you an easy upgrade path.

HP 1651A: full-featured logic analyzer for only $3,900.*

With 32 channels of 100 MHz transitional timing for just $3,900*, the HP 1651A gives the hardware engineer a highly economical, yet powerful debugging tool.

It's a full-featured logic analyzer with no compromises in state and timing capabilities (25 MHz state/100 MHz transitional timing on all channels), memory depth, triggering, or I/O features. It supports most popular 8-bit µPs with full inverse assembly. Plus it's compact, weighs just 22 lbs., and has an optional carrying case for easy transport.

HP 1650A: the new standard in general-purpose logic analysis for just $7,800.*

The HP 1650A features time-correlated state/state or timing/state operation on 80 channels. Plus eight sequence levels to meet your toughest triggering tasks. Yet it's priced below $8,000!

You get 25 MHz state/100 MHz transitional timing on all 80 channels, and preprocessor support for 8, 16, and 32-bit µPs. And, the
More value.

HP 1650A is portable, lightweight, and small enough to fit comfortably on a crowded workbench. It's also programmable, has a built-in disc drive for storing measurements, and provides hardcopy documentation.

through your choice of performance modules. You can have up to 400 channels of 25 MHz state/100 MHz transitional timing. 8 channels of full-featured, simultaneous scope analysis. 80 channels of 1 GHz timing. Or 204 channels of 50 Mbit/sec stimulus.

Just $12,400* buys you a

Now, bring real-world measurements into the CAE environment.

The HP 16500A is part of HP DesignCenter...a product development environment that unites engineers from IC design/verification to PCB design and test. By linking the HP 16500A with HP CAE, you can compare measurement results and simulated data on your workstation, and use measurement results as your simulator patterns.

HP 16500A: modular system solution, priced your way.

The HP 16500A is modular, with the flexibility to meet your debug, characterization, or pass/fail test application needs today and tomorrow. You get a combination of state, timing, oscilloscope, and stimulus-response capabilities basic configuration with 80 channels of 25 MHz state/100 MHz transitional timing.

You can trigger one module with another. Time-correlate measurements between modules. 400 Ms/sec scope and 1 GHz timing, for example. Even view state, timing, and analog on the same screen! Fully programmable, the HP 16500A eliminates the need for separate data storage and printer control. HP-IB and RS-232 are standard.

Mail the card today!

For more information, fill out and mail the postage-paid reply card today. Call us direct at 1-800-752-0900. Or contact your local HP sales office listed in the telephone directory white pages. Ask for the electronic instruments department.

HEWLETT PACKARD
Excellent reliability, service, and support.

When you purchase a logic analyzer from HP, you get high reliability. The support you need to be productive with your instrument quickly. And a worldwide sales and service network to ensure your continuing satisfaction for years to come.

HP 1651A $3,900*

The HP 1651A is a general-purpose, low-cost 32 channel logic analyzer with many features normally found on more expensive analyzers.

- 100 MHz transitional timing on all 32 channels.
- 25 MHz state on all channels.
- Support for most popular 8-bit µPs.
- Fully programmable, with built-in disc drive and hardcopy output.
- Portable and compact — weighs just 22 lbs.
- Optional 3-year protection.

HP 16500A

The HP 16500A is a modular, configurable system solution that can meet a wide variety of logic analysis, oscilloscope, and stimulus-response measurement requirements.

- Configurable through your choice of performance modules:
 - 25 MHz state/100 MHz transitional timing (80 channels per module) $5,200*
 - 400 Ms/sec 100 MHz bandwidth digitizing oscilloscope (2 channels per module) $5,500*
 - 1 GHz timing (16 channel master) $7,800*
 - 50 Mbits/sec pattern generation (12/48 channels per module) $3,700/$4,000*
 - Mainframe $7,200*
- Color touchscreen and knob, with optional mouse.
- Intermodule triggering.
- Eight sequence levels with storage qualification, pattern and range recognizers.
- Glitch capture on all channels.
- Optional 3-year protection.

HP 1650A $7,800*

The HP 1650A is a general-purpose logic analyzer with a range of features to satisfy many requirements in design and test.

- 100 MHz transitional timing/25 MHz state on all 80 channels.
- Support for most popular 8, 16, and 32-bit µPs.
- Configurable as 2 totally independent analyzers.
- Fully programmable, with built-in disc drive and hardcopy output.
- Eight sequence levels with storage qualification, pattern and range recognizers.
- Glitch capture on all channels.
- Optional 3-year protection.

*U.S. list price.

Motorola 68020 is a trademark of the Motorola Corporation.
Intel 80386 is a trademark of the Intel Corporation.
New 56-page 1987 catalog

Acopian single, dual and triple output power supplies featured in our new catalog for 1987 are shipped in three days. Included are PC-board-mounting and chassis-mounting mini modules. DC-DC converters. General-purpose modular supplies with outputs to 200 Vdc and current ratings to 32A. Narrow-profile supplies a mere 1.68" thin. Plug-in supplies. MIL-tested supplies. Unregulated supplies for economically driving relays and displays. Voltage programmable supplies. Our rack-mounting power supplies and systems, and redundant output systems are shipped in nine days. The catalog contains complete specs and pricing information. Call or write for your copy.

P.O. Box 638, Easton, PA 18044
Call toll free (800) 523-9478

P.O. Box 2109, Melbourne, FL 32902
Call toll free (800) 327-6817

DC POWER SUPPLIES SHIPPED IN 3 DAYS
Motorola announces one of the smallest advances in the history of VME.
Motorola puts awesome multiprocessing performance on two new single-board computers.

As computer applications get more complex, OEMs are turning more to multiprocessing designs. To handle things like CAD/CAM, robotics, signal processing, simulation and large-scale data acquisition, a single processor simply can't keep up.

Adding several CPUs to a system off-loads the main processor, but what happens to the system bus? It frequently reaches saturation, slowing down the entire system.

Motorola introduces a single chip solution to this problem. The VME Subsystem Bus, a fast, 32-bit secondary bus, has been implemented on a gate array at Motorola.

The end of the multiprocessor traffic jams.

The VSB sub-bus removes traffic from the VMEbus, increasing total system throughput. And by saving space on the VSB—and other components—Motorola has been able to pack an impressive array of multiprocessor functions onto two standard VME boards: the MVME135 and MVME136. These highly integrated microcomputers include all the functions usually required for high-performance multiprocessing. In addition to the VSB, they feature the MC68020 with floating-point coprocessor, both running at either 16.67 or 20.0MHz.

For virtual memory environments, a demand-paged memory management unit can also be added. Plus 1 Megabyte of shared local dynamic RAM is included—with optional parity—designed to operate with zero wait states.

Included in the 135/136 modules are many special hardware features that facilitate multiprocessing. Things like MP control and status registers. An expanded interrupt-handling mechanism. And master/slave control bit settings.

Hardware alone is hardly enough.

Complete multiprocessing hardware on a single board saves you design time and system space. But to get your application up and running on a tight schedule, it takes software and support tools too. Like those available from Motorola.

If you're building a multi-user/multi-tasking system, you can use our version of AT&T's UNIX® System V Release 3, with Remote File Sharing. For real-time tasks, there's our full-featured VERSAdos™ operating system, as well as debugging firmware with on-board diagnostics. Then too, you have access to third-party software such as OS-9™, MTOS™, PDOS™, pSOS™, RTUX™, and VRTX™.

Add to that Motorola's in-depth technical support. We have more experience in building reliable, high-performance VME system components than any other vendor. Plus a specialized systems and support staff available at over 100 field offices worldwide.

To see how good multiprocessors can come in small packages, call us toll-free today: 1-800-556-1234 Ext. 230 (in California, 1-800-441-2345 Ext. 230). Or write; Motorola Microcomputer Division, 2900 South Diablo Way, Tempe, AZ 85282.

MVME135/136 Highlights

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVME135</td>
<td>VMEbus 32-bit SBC; 16.67-MHz MC68020 CPU; MC68881 FPU; 1Mb on-board DRAM; up to 512 Kb EPROM; two RS-232-C serial ports; two 16-bit timers; master/slave interface; MP control and status registers; system controller</td>
</tr>
<tr>
<td>MVME135-1</td>
<td>Same as MVME 135, but with 20-MHz MC68020 CPU</td>
</tr>
<tr>
<td>MVME136</td>
<td>Same as MVME 135, but with MC68851 PMMU</td>
</tr>
</tbody>
</table>

OS-9 is a trademark of Microware Systems Corporation. MTOS is a trademark of Industrial Programming Inc. PDOS is a trademark of Eyring Research Institute, Inc. pSOS is a trademark of Software Components Group. RTUX is a trademark of Emerge Systems. VRTX is a registered trademark of READY SYSTEMS. VERSAdos is a registered trademark of Motorola, Inc. UNIX is a registered trademark of AT&T.
If you're not finding Gate Array, Advanced Schottky, and SMT faults, maybe the fault lies with your tester.

Introducing Teradyne's L210i.
The only true VLSI in-circuit tester.

There are a lot of other in-circuit testers out there. But on VLSI boards, all they test is your patience.

Now there's the L210i VLSI In-Circuit Tester from Teradyne. It has over 3,000 bidirectional test pins. With digital, analog, and memory testing on every pin. And 10 MHz pattern rates.

Most importantly, the L210i delivers 95% or greater fault coverage on VLSI boards, in just 1–2 months. Because it's the first and only in-circuit tester that handles the three biggest problems in in-circuit testing today.

Test ASIC's ASAP.

One of the biggest problems for in-circuit testers today is ASICs. If they detect ASIC faults at all, it's only because you've spent weeks and weeks programming them.

Not so with the L210i. It has a unique VLSI device tester architecture. So you can use patterns from device design and test databases. The L210i's translators convert patterns quickly.

Plus, the L210i stores and processes lengthy test data efficiently. So you save valuable time in testing gate arrays and other semi-custom devices.

You won't find that in any other in-circuit tester.

With the L210i, you won't be plagued by unreliable tests of your high performance logic. False clocking. Or shifting signal timing.

Because the L210i features short, low inductance fixture wiring. Superb driver electronics. And powerful debug tools. So everything you test gets tested repeatedly. Including high speed ECL and FAST.* Even Advanced Schottky and CMOS, with their tricky overdrive impedances.

The L210i fears no logic.

The only in-circuit tester with an escape hatch.

The L210i is the only in-circuit tester that's flexible enough to test today's SMT clusters. Memory arrays. Or hard-to-isolate devices.

With its MultiMode capability, you can easily partition the board into functional clusters, making the most of the L210i's functional test and diagnostic techniques.

That means you'll never be trapped by in-circuit testability problems again.

No-fault insurance.

Teradyne's L200 family has set the standard for VLSI board testing in this decade, driving test quality up to bring costs down.

Now the L210i offers the first practical VLSI in-circuit test solution. It's the system you need to boost board yields at system test. And make your in-circuit test strategy successful.

If you can't afford a tester that misses VLSI faults, you'd better find out more about the L210i. Write Teradyne, 321 Harrison Avenue, Boston, MA 02118. Or call Daryl Layzer, L200 Product Group, 617/482-2700, ext. 2808.

*Trademark of Fairchild Semiconductor Corp.
ULTRA QUIET...AND...
LARGE AIR FLOW
BRUSHLESS DC FAN MOTORS

FEATURES
• extremely low noise
• large air flow
• long-life, brushless
• low power consumption
• 12 and 24Vdc models
• -10° to +70°C operation
• 24 models available

APPLICATIONS
• personal computers
• printers
• numerical control machines
• medical apparatus
• power supplies
• test equipment

<table>
<thead>
<tr>
<th>Series</th>
<th>Rated V</th>
<th>Max. Air Flow CFM/min.</th>
<th>Noise Level dB</th>
<th>Rated Current mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF60-T</td>
<td>12</td>
<td>14-22</td>
<td>26-37.5</td>
<td>100-220</td>
</tr>
<tr>
<td>CF60-H</td>
<td>24</td>
<td>14-22</td>
<td>26-37.5</td>
<td>60-120</td>
</tr>
<tr>
<td>CF80-T</td>
<td>12</td>
<td>32-46</td>
<td>27-37</td>
<td>90-190</td>
</tr>
<tr>
<td>CF80-H</td>
<td>24</td>
<td>32-46</td>
<td>27-37</td>
<td>65-140</td>
</tr>
<tr>
<td>CF92-T</td>
<td>12</td>
<td>30-48</td>
<td>28-34</td>
<td>50-100</td>
</tr>
<tr>
<td>CF92-H</td>
<td>24</td>
<td>30-48</td>
<td>28-34</td>
<td>50-100</td>
</tr>
<tr>
<td>CF120-T</td>
<td>12</td>
<td>49-78</td>
<td>32-40</td>
<td>80-200</td>
</tr>
<tr>
<td>CF120-H</td>
<td>24</td>
<td>49-78</td>
<td>32-40</td>
<td>80-200</td>
</tr>
</tbody>
</table>

For more information call, write or circle reader response number.

CANON USA, INC. COMPONENTS DIVISION
New York Office/Headquarters One Canon Plaza, Lake Success, NY 11042 • 516/488-6700 • FAX 516/354-1114
Santa Clara Office 4000 Burton Dr., Santa Clara, CA 95054 • 408/989-4780 • FAX 408/989-0230
Dallas Office 3200 Regent Blvd., Irving, TX 75063 • 214/830-9600 • FAX 214/830-9603

CIRCLE NO 4

DID YOU KNOW?
EDN is distributed at every major electronics/computer show in the U.S., France, and Germany.

EDN

Expo SMT, Las Vegas, NV. Expo SMT, Box 1869, Los Gatos, CA 95031. (408) 354-0700. October 26 to 29.

Government Microcircuits Applications Conference (GOMAC '87), Orlando, FL. Palisades Institute for Research Services, 201 Varick St, New York, NY 10014. (212) 620-3371. October 27 to 29.

Troubleshooting Microprocessor-Based Equipment and Digital Devices, Cincinnati, OH. Micro Systems Institute, 73 Institute Rd,

EDN October 1, 1987
Magnesys
Solid-state
Memory
Subsystems: Reliable storage for sweltering plants, vibrating factories, critical test labs, dusty quarries, bumpy roads, tossing ships, remote outposts...

Conventional disk drives work fine in most offices. But they can't take the kinds of abuse found in other environments.

Magnesys solid-state memory subsystems can. These bubble memories stand up to shock, vibration, dust and high and low temperatures because they're non-mechanical and non-volatile. And they don't need batteries.

For design flexibility, the memory subsystems work with a variety of bus structures. Plug-and-play host adapters are available for the PC bus, STD-bus, Multibus* and VMEbus*.

Each subsystem has a 360K or 720K byte data cartridge. And a 3½" or 5¼" half-height electronic drive with embedded SCSI.

Until Magnesys, there were only two ways to get reliable bubble memory subsystems: Build one yourself from a kit and a 290-page instruction manual. Or pay the high price to have a middleman do it for you.

We fabricate our own bubble memories and subsystems right here in America. For a price roughly half what you'd pay for any comparable system.

For reliable data storage at an affordable price, there's nothing like Magnesys solid-state memory subsystems.

Find out for yourself by giving us a call. (408) 988-1881.

Or write us at Magnesys, 1605 Wyatt Drive, Santa Clara, CA 95054.

Multibus is a registered trademark of Intel Corp. VMEbus is a trademark of Motorola, Inc.

Magnesys
Reliable storage for an unreliable world.
Optical encoders are an available option for every Pittman® motor and gearmotor. Brush-commutated motors with continuous duty torques from 1.2 oz.-in. to 32 oz.-in. High performance ELCOM® brushless servo motors with continuous duty torques from 6.4 oz.-in. to 52 oz.-in. Spur gearheads to 500 oz.-in. - Planetary gearheads to 125 lb.-in. Make any of these motor-encoder assemblies to your choice of a modern digital motion controller and get precision shaft positioning with programmable acceleration and slew rates without lengthy and complex servo loop development.

Call (215) 256-8601 today.

The Versatility of Flight

From its precision American engineering and cost efficient manufacturing, Comair Rotron's Flight Series offers one inch fans for the most sensitive equipment.

The low cost fan is available in four sizes: 60, 80, 90 and 120 mm providing airflow from 8-95 CFM, with 12&24 VDC for power flexibility. The brushless dc motor, with stainless steel ball-bearings insure a continuous life of 60,000 hours. Flight Series joins the world-standard Muffin, Whisper & Sprite in our quality tested line of commercial armowers.

Comair Rotron... the first name in forced convection cooling technology.

CALENDAR

Advanced SMT Design Techniques (short course), San Jose, CA. Surface Mount Technology Plus, 1786 Technology Dr, San Jose, CA 95110. (408) 943-0196. November 16 to 17.

OPENASIC

We have been in the ASICs market for over three years, and during that time we have completed over 400 specific designs for the space and military, industrial, telecommunications, and data processing markets.

Open ASIC is our working philosophy, which is applied to every aspect of your applications.

MHS milestones in Europe

1981: first to adopt CMOS technology.
1983: first with 16K CMOS SRAM.
1985: first with CMOS 2 microns 2 metal layers gate arrays.
1986: • first with CMOS 80C51/80C52 8 bits microcontrollers.
• one of the first VLSI design and production centres to be AQAP 1* approved in Europe.
1987: first with 64K CMOS SRAM 1.2 microns and soon first with a CMOS process at 0.8 micron.

(*) ADAP: allied quality assurance publication level 1.

We are the leading CMOS specialist in Europe, with advanced CMOS processes in 1.6, 1.2 and 0.8 microns and with VLSI production experience in fast SRAM, microcontrollers and telecommunication circuits.

The high performance of our ASIC CMOS technology, the dedicated support of our engineering and design teams in our international centres, the capability of our 5 inch manufacturing centre and our AQAP 1* qualification, all demonstrate that we have the IC product expertise to match the demands of your own application.

MHS

Our heart is in Europe. Our target is the world.

MHS-BP 309
78054 St-Quentin-en-Yvelines Cedex
France
Tel.: 30.60.70.00

Matra Design Semiconductor
2840-100 San Tomas Expressway
Santa Clara CA 95051
USA
Tel.: 408/966-8000

CIRCLE NO 44

Ita. Milano 2.4984586 • Sweden, Stockholm 08-7348390 • UK, London 344-485757 • Germany, München 89-31900550 • Far East, Hong Kong 5-8327993.
Get GE, RCA and Intersil world-class CMOS chips in your choice of surface mounted packages.

For increased board density, lower lead inductances (for increased speed) or lower manufacturing costs, consider surface mounting. We offer a broad range of CMOS ASICs and standard ICs in three different families of surface-mount packages.

Small-outline (SO) packages.
Except for the "gull-wings" that make it surface-mountable, the SO package is like a miniature DIP. A major advantage of the SO package is its small footprint (50-mil lead centers vs. the 100-mil lead centers of a DIP).

We offer two SO body widths: 150-mil for 8, 14 or 16 leads; and 300-mil for 16, 20, 24 or 28 leads. Both meet JEDEC standards.

Plastic chip-carriers (PCC).
For well-protected leads and a minimum-sized package, we offer the square PCC with "J-bend" leads on all four sides. Initial PCC's offer lead counts of 28, 44, 68 and 84. Our PCC package dimensions conform to JEDEC standards.

Ceramic leadless-chip-carriers.
For applications requiring the highest reliability, these packages are screened to MIL-STD-883, Method 5004 Classes S and B format.

Our leadless-chip carriers are hermetically sealed, square, three-layer ceramic. They're available with terminals spaced on 40-mil centers (24, 32 or 64 Terminals) or 50-mil centers (20, 28 or 44 terminals).

Start saving with surface mount.
For more information, call toll-free 800-443-7364, ext. 13. Or contact your local GE Solid State sales office or distributor.

In Europe, call: Brussels, (2) 246-21-11; Paris, (1) 39-46-57-99; London, 0276-685911; Milano, (2) 82-291; Munich, (89) 63813-0.
If you do business in the complex world of electronics manufacturing, NEPCON means business for you!

For further information contact: Cahners Exposition Group, Cahners Plaza, 1350 East Touhy Avenue, P.O. Box 5060, Des Plaines, IL 60017-5060, Telephone: (312) 299-9311, U.S. Telex: 256148 CEGCGO DSP, Int'l Telex: 82882 CEG CHGO

CIRCLE NO 45
Save space with Mini/Bus® Bars
- Improve power distribution
- Reduce required board layers
- Eliminate up to half the decoupling capacitors
- Fit between or beneath IC's
- Also available in surface mount

Send for Rogers Mini/Bus® Bars Application Bulletin.

CIRCLE NO 46

Save more space with Q/PAC® components
- Achieve efficient power distribution
- Provide built-in capacitance
- Eliminate decoupling capacitance
- Gain 4-layer board quietness with 2-layer economy
- Vertical or horizontal mounts for denser IC mounting
- 2 or 3 conductors

Send for Rogers Q/PAC® Application Bulletin.

CIRCLE NO 47

Stop noise with Shielding Strips
- Create shielding enclosures from standard conductor strips
- Assure noise-free, reliable operation
- Prevent shorting of board components

Send for Rogers Shielding Strips Application Bulletin.

CIRCLE NO 48

End warpage with Board Stiffeners
- Rigidize boards during and after assembly
- Prevent vibration and shock damage
- Save custom tooling, high installation costs
- One-step installation requires no hardware
- Use as a ground, or to carry up to 64 amps

Send for Rogers Board Stiffeners Application Bulletin.

CIRCLE NO 49

Keep high current on-board
- Rogers High Current PCB Bars bus up to 64 amps
- Efficient operation on back planes, motherboards
- Save space in power supplies or power conditioning equipment

Send for Rogers On-Board Application Bulletin.

CIRCLE NO 50
SGS, of course. In fact, the L9801 High Side Driver is an impressive example of what SGS Multipower-BCD™ (Bipolar, CMOS, DMOS) can do in automotive lamp, solenoid and motor driver applications.

Thanks to this unique power technology, SGS can combine high output power capacity with on-chip protection logic and sophisticated diagnostics—all for less than $3 each in volume.

High power output capacity. The new L9801 utilizes 60V technology and operates on a 6 to 16V supply to deliver a continuous 6A DC output current (25A peak) with a typical Ron of less than 1 ohm.

Grounded package. SGS Multipower-BCD technology also makes it possible to integrate completely isolated, high efficiency output stages. That means you can have a smart, high current high side driver in a grounded SGS industry standard Pentawatt® package that bolts directly to the chassis.

Brighter smart power. The L9801’s input control and logic level diagnostic output are TTL/CMOS compatible. On-chip diagnostic functions include load status (open and short), plus thermal and overvoltage shutdown conditions. All this combined with a special inrush current limiter for lamp driving, on-chip thermal protection and output short-circuit protection makes SGS Multipower-BCD technology the brighter smart power. Just check our specs:

<table>
<thead>
<tr>
<th>ELECTRICAL CHARACTERISTICS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>6-16V</td>
</tr>
<tr>
<td>Operating Current</td>
<td>6A</td>
</tr>
<tr>
<td>Peak Current (Worst Case)</td>
<td>25A</td>
</tr>
<tr>
<td>Ron (−40°C to +150°C)</td>
<td>0.15 ohms</td>
</tr>
<tr>
<td>Package</td>
<td>Pentawatt (5 pin TO-220)</td>
</tr>
</tbody>
</table>

SGS Semiconductor Corporation
1000 E. Bell Road, Phoenix, Arizona 85022 • 602/867-6259
© 1987 All rights reserved. SGS and Pentawatt are registered trademarks of the SGS Group. BCD and The Brighter Power are trademarks of SGS.
SGS' exclusive Multipower-BCD technology—that's integrated Bipolar CMOS, DMOS—has a lot more to offer. What other smart power IC technology isolates the DMOS output power transistors to let you connect as many as you need on a chip in anyway you like? None.

That's just one example of how smart SGS power really is. And the L9801 is just one of many SGS smart power products.

Why not get the full story on SGS Multipower-BCD technology plus full data on the L9801. Call 602/867-6259 now. After all, the brighter your smart power source, the brighter your design's future.
A few more fast, fast reasons to call for our new databook:

1. New 64K SRAM, 25ns. Seven configurations—including bit-wide, nibble-wide, byte-wide, separate I/O, and all with low, low, power. As low as 50 mA active at 45ns.
2. New 128K Reprogrammable PROM. 45 ns. 100 mA active, 30 mA standby.
3. New 64 x 9 and 64 x 8 FIFOs. 35 MHz. Virtually no bubble through. Cascadeable.
4. Fastest 22V10 Reprogrammable PLD. 25ns. 55 mA. And we have the board to turn your PC into a PLD/PROM programmer, too!
5. High speed CMOS SRAM.
6. High speed CMOS PROM.
7. High speed CMOS PLD.
8. High speed CMOS LOGIC.

This databook, packed with high speed, low power parts, is yours for a phone call.

DATABOOK HOTLINE:
1-800-952-6300, Ask for Dept. C46
1-800-423-4440 (In CA), Ask for Dept. C46
(32) 2-672-2220 (In Europe)
(416) 475-3922 (In Canada)
Competition involves everyone

Regional Editor Margery Conner takes a different approach to engineering through an article in this issue about competition. Specifically, she focuses on three companies and how they develop competitive products. Because you are an engineer or an engineering manager, Margery concentrates on the engineering aspects of these companies' efforts. Other Cahners publications are simultaneously exploring competitive issues that affect their readers, and you'll read more about competitiveness in EDN in the months ahead. Although competition often brings to mind large waves of imported goods flooding domestic markets, competition goes beyond products. Competition is a philosophy that must permeate every corner of a company and every aspect of its business.

Often, a sense of mission can increase a company's competitiveness. For example, several years ago an insurance company faced great difficulty in getting clerks to finish depositing receipts in the company's bank accounts by day's end. Managers tried many motivation techniques without success. Finally, someone said to the staff: "Look, if you don't make the deposits by the end of the business day, the company stands to lose millions of dollars. That money comes from the interest that other companies pay us for loaning them money overnight. The interest is part of the company's profit." Once the staff members knew how important their job was, they were pleased to comply. After all, they weren't just keeping records, they were contributing to the company's profit.

General Motors' president, Robert Stempel, spoke about something similar in a recent commencement address. He said that in today's business world, the product often takes a back seat to other considerations. Too many executives concentrate on management and financial details, and fail to understand their product and how it is designed or produced.

Likewise, you cannot regain or maintain a competitive lead in today's markets by simply developing a product or incorporating new technology in it. Redesigning a product so that it uses no screws, incorporates surface-mount technology, or provides built-in test routines is no panacea. A competitive philosophy must extend beyond the engineering department to the entire company, from the mailroom to the president's office. As Stempel also said, "Competitiveness is a responsibility for everyone. It's a cause to which we must all be passionately dedicated."
An Edsel state machine with D flip-flops! A Rube Goldberg system with 8-input OR gates!

Are you tired of devices and software that limit your creativity? It's one thing to get wrapped up in your designs—it's quite another to be wrapped up by them!

More design flexibility. Signetics PLDs offer more design flexibility—and a complete migration path to the highest levels of design integration. From PAL® devices and PLAs to PLSs (Programmable Logic Sequencers) and PML (Programmable Macro Logic).

Signetics PLAs and PLSs feature two programmable arrays so you get more out of your silicon. JK flip-flops for higher performance. Plus a transition term complement array for optimal state machine design. And when your system requires an "instant gate array" with no "gate-a-risk"—the unique architecture of PML provides the ultimate solution.

The key to fully utilizing these flexible devices is AMAZE—the most powerful design software yet.

More powerful software. AMAZE—is just that. Automatic Map and Zap Equations. Powerful and easy to use. It exploits the sophisticated PLD architectures you need for complex designs by simplifying logic entry, simulation and...
device programming. To save time, intricate test vectors are created automatically. Entry is easy — no more restrictive equation structures or esoteric backwards syntax. And it even has device specific logic minimization.

More service and support.
For those who expect unsurpassed service and support — you won't be disappointed when you join the AMAZE Users Group. Members receive a copy of AMAZE 1.6 — plus free updates, a quarterly newsletter, free samples of new PLDs, design contest eligibility and a toll-free number for immediate applications assistance.

For those who go by the book — we have a surprise for you. A comprehensive manual that's easy to read and understand.

And for those who want to be amazed — call us. (800) 227-1817 ext. 972 D. Or mail us the coupon. We'll send you more information on Signetics PLDs. And how you can join the AMAZE Users Group. Remember, in the world of ones and zeros the logical choice is Signetics — the one company where the standard is zero defects.
IF YOU BUY A HARRIS HI-508A MUX, IT'S YOUR FAULT.

Get ±35V fault protection with the MAX358.

Maxim's MAX358/359 are 8-channel/dual 4-channel analog multiplexers fully compatible with the HI-508A/509A. Yet they offer vastly improved fault protection.

For instance, the MAX358 allows less than 1nA of input leakage current under power-down fault conditions rather than the many mA allowed by the HI-508A (see graph).

Moreover, the MAX358 can withstand a continuous ±35V overvoltage, on all pins simultaneously. While the original can withstand only ±20V on one pin. And even less on all pins without exceeding power ratings.

Consequently, the MAX358 prevents overvoltage damage to the circuits it drives as well as those that drive it.

An improved 2nd source that doesn't require D.I. processing.

Better yet, the MAX358 gives you great fault protection without the HI-508A's costly dielectric isolation processing.

What's more, the MAX358 is more reliable. Because (like every other Maxim part) it's burned in at 150°C for 24 hours. Absolutely free.

We also make a plain spec-compatible HI-508A or HI-509A, if that's all you need.

So for datasheets and samples, call your Maxim representative or distributor today.

Maxim Integrated Products, 510 N. Pastoria Avenue, Sunnyvale, CA 94086, (408) 737-7600.

United Kingdom, Maxim UK Ltd., 0735-75255, Dialogue Distribution Ltd., 0276 682001, Thame Components, Ltd., 084-421-4561, STC Electronic Services, 02-792-6777. Maxim is a registered trademark of Maxim Integrated Products. © 1987 Maxim Integrated Products.

CIRCLE NO 51

EDN October 1, 1987
Smart cards yield high memory capacities for mass-storage and data-security uses

Chris Terry, Associate Editor

Thanks to advances in IC fabrication and packaging technologies, you can now obtain high-capacity memories or complete µP-driven systems in credit-card-sized packages. These memory cassettes, or so-called smart cards (they really don't have any intelligence), suit an extremely wide variety of applications, ranging from the customization of terminals and other peripherals, to data logging, and to mass storage for computers that must run in hostile environments. The cards also have varying memory capacities: They can store as little as 2k bytes to as much as 512k bytes of battery-backed static RAM, as much as 1M bytes of EPROM, or as much as 2M bytes of masked ROM.

Physical considerations

The VSOP (very-small-outline package) is primarily responsible for the smart cards' introduction and availability. A VSOP is 2½ times thinner than standard surface-mount-device packages and spaces the external leads on 50-mil centers. Although vendors have standardized the memory cards' length (3% in. or 85 mm) and width (2½ in. or 54 mm), the thicknesses vary from 0.76 mm to as much as 3.6 mm (about five times the thickness of a credit card), depending on the application.

Most of the cards use 34- or 60-pin connectors guaranteed for 10,000 or more insertion cycles. Mitsubishi's and Du Pont's static-RAM cards each have a replaceable lithium battery that maintains data integrity for a minimum of 2½ years; the vendors believe that the cards' actual life may be as long as 10 years, but tests haven't been performed long enough to substantiate the higher figure.

Interfacing the memory cassettes to the host is generally simple, and vendors claim that, with the aid of the accompanying interface documentation, you should be able to get a prototype system operating in approximately four hours. Dallas Semiconductor's cards have 30-pin connectors, which are arranged so that you can connect to the host with a flat cable and header that matches a standard 28-pin memory socket. (The 30-pin limit doesn't place any constraint on the addressing scheme because internal paging logic lets you access the full memory space.)

The smaller memory cards, with less than 1M-bit capacity, are suitable for use as personality modules for customizing terminals, printers, and other peripheral equipment, and in autos, meteorological instruments, and other software-driven instrumentation. Moreover, they can considerably reduce the cost of configuring and upgrading peripherals.

If your product has many custom-
P-CAD'S NEW VERSION 2.0

Face it. Nobody routes as well as Mother Nature. But if you want something that comes close, you want the power and performance of P-CAD's Version 2.0 PCB Design System.

Simply put, P-CAD now packs the functionality to handle bigger, more complex printed circuit board (PCB) designs. Version 2.0 takes you from schematic capture through PCB manufacturing faster and more cost effectively than before.

Consider even better placement with automatic gate and component swapping. And better routing capabilities made possible by new routing algorithms; beveling for 45°; and control of routing density across layered pairs.

Naturally, there's more to our story, such as support of surface mount devices. Including components on both sides of the board and buried vias.

And there's still more big news. Like the performance to handle PCB designs of higher densities and non-standard sizes.

P-CAD's big capabilities also include improved graphics, drawing speed and text editing—all in a new system environment that's so easy to use even Mother Nature could appreciate it.

Which is why it's no surprise we're the market leader in PC-based PCB CAD. Nobody gives you this kind of performance at our prices!

So call (408) 971-1300 ext 7048 for information on the P-CAD dealers nearest you. Once you install Version 2.0, the most complex PCB designs become second nature.

P-CAD and Personal CAD Systems are registered trademarks of Personal CAD Systems, Inc.
er-selectable options, one of your greatest expenses is probably the configuration cost: Burning and inserting the configuration PROMs is time-consuming, and you have to retest each deliverable item to ensure that it is properly configured to the customer's specification. If your customer later wants to upgrade the equipment, you may have to send a field engineer to change the configuration PROM.

With the help of the highly reliable memory card, you can do the programming and verifying from a personal computer in less time than it takes to burn-in a PROM. You can then plug the card into the equipment without opening the case—saving yourself even more time. If your customer later wants to upgrade the equipment, you can mail out an upgrade card containing the new configuration; you don't need to send a field engineer to the site because the customer simply has to remove the old card and insert the new one.

For applications that involve equipment for collecting large amounts of data, either automatically at a remote site or by means of a handheld-entry device, a memory cassette can help to reduce both the weight and the power consumption of the collector device. At the end of a collection run, you can remove the cassette from the collection device and insert it into a slot on a host computer, which can read all of the data and transfer it to disk in a few milliseconds. Alternatively, a remote device can upload the data to the host over a telephone line, clear the cassette, and be ready for another collection run. Du Pont offers a 128k-byte, 250-nsec static-RAM card for $120 (100) that is well suited to such an application.

Card can replace floppy disk

Another typical application for a smart card is as a mass-storage device for a computer that must operate in a harsh environment. Most small process-control computers in the PC/AT class are disk-based, and the steam, dust, and oil that circulate in the air around an assembly line mean sudden death to floppy disks—and may even penetrate an imperfectly sealed hard disk.

Some vendors have suggested bubble memory as a substitute for disks, but bubble memory is expensive and slower than the slowest floppy disks. Memory cassettes offer a smaller, faster, and less-expensive alternative.

Dallas Semiconductor offers memory cassettes that emulate floppy-disk drives for programming purposes. You can combine as many as eight of these cassettes in a removable assembly (cartridge clip) that yields 4M bytes of read/write storage with an access time of 250 nsec. You can, of course, preload the assemblies with programs that the computer can download to its main memory for execution; the computer can use the remainder of the capacity for data storage. In OEM quantities, each of these 512k-byte cassettes costs $605.

For applications that demand high capacity but don't need read/write capability, you can use a card containing either a one-time, field-programmable ROM, or a masked ROM that is programmed during manufacture. An example of such an application is an embedded computer that executes very large programs, which are rarely modified. EPROM or masked-ROM cassettes are also useful for storing very large data tables or translation tables that seldom change.

Mitsubishi Electronics' Melcards are suitable for such applications and come in three configurations: battery-backed, 200-nsec static RAM with capacities from 32k to 512k bytes; 250-nsec EPROMs with 64k- to 1M-byte capacities; and a 250-nsec masked ROM with 128k- to 2M-byte capacities. A 256k-byte static-RAM card costs $125 (10,000).

Some provide data security

Telecommunications is yet another promising application area for smart cards. If your end-product is related to data or site security, for example, Multimil's Memocard provides electronic security features that include a nonaccessible password, a user-modifiable personal identification number (PIN), and
New hermetically sealed surface mount thermistor!

The all new SMS™ (surface mount sensor) series thermistors offer fast response, high interchangeability and long term stability, making them ideal for both temperature sensing and compensation. Hermetic design makes the SMS™ series more durable and resistant to cleaning materials. The availability of a wide range of resistance values and slopes allows more flexibility in designing with surface mount applications.

Phone or write for your free design data.

MIDWEST COMPONENTS INC.
P.O. Box 787
1981 Port City Boulevard
Muskegon, MI 49443
(616) 777-2602
TWX: 510-394-4130

TECHNOLOGY UPDATE

You can put as many as eight memory cartridges into this cartridge clip from Dallas Semiconductor. The assembly fits into the space of a half-height, 3½-in. disk drive and yields a storage capacity of 1M bytes of RAM. The access time is 250 nsec.

single- or dual-key encryption. Optionally, the card can include a standard magnetic stripe, a photo ID, and a bar code.

The Memocard contains either 2k or 8k bytes of EEPROM, an 8-bit µP that has its own PROM (not accessible to the user), RAM workspace, and I/O facilities. You can program the card with a short card that plugs into an IBM PC or with an interface unit that can connect to any host computer via an RS-232C link.

You can assign an authorization level to each card and define the maximum number of incorrect access attempts. In addition, the vendor offers a $500 telephone that accepts a Memocard and allows an authorized user to display the stored customer data and dial any of the stored numbers. An 8k-byte Memocard costs $62.55 (10,000); the Smart Card Development Kit for programming the card costs $489. If you don’t want to program the Memocard yourself, you can have the manufacturer do it for you.

Although all of the smart-card vendors agree on the length and width of the cards and their application potential, they are divided on the issue of EMI suppression. All of the cards do have some form of built-in protection against electrostatic discharge, however.

Mitsubishi encloses both sides of the card’s substrate with metal to protect the circuitry against electrostatic charges and suppress the radiation caused by operating a memory at high clock speeds. In addition, the company supplies a version of the card equipped with a zero-insertion-force (ZIF) connector behind a shutter that is operated by insertion or removal and that provides extra shielding and protection.

The Du Pont cards have a metal cover attached to the substrate, primarily as protection against ESD. The vendor takes the view that the radiation from low-power CMOS is negligible, particularly if the card is housed inside a shielded enclosure.

Another issue on which the manufacturers are divided is whether the

For more information...

For more information on the smart cards discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or contact the manufacturers directly.

Dallas Semiconductor Corp
4350 Beltwood Parkway
Dallas, TX 75244
(214) 450-0400
Circle No 719

Mitsubishi Electronics
America Inc
1650 E Arques Ave
Sunnyvale, CA 94086
(408) 730-5900
Circle No 721

Multimil Inc
770 International Parkway
Suite 190
Richardson, TX 75081
(214) 644-7724
Circle No 722

Du Pont Connector Systems
515 Fishing Creek Rd
New Cumberland, PA 17070
(717) 968-7589
Circle No 720

EDN October 1, 1987
INTERPHASE
Changing The Face Of SCSI

SCSI never looked so good. Always a beautiful vision, early SCSI was not always a pretty sight. It was incompatible, incomplete and slow.

Interphase is changing the face of SCSI by applying more than a decade of high-performance peripheral controller leadership to a range of new Ultra-Fast and full-functioned SCSI VMEbus host adapters.

• V/SCSI 4210 JAGUAR is an Ultra-Performance caching host adapter with two independent and simultaneous SCSI ports and Command Queuing. It offers true Multi-Threaded control of any mix of up to 14 Synchronous and Asynchronous SCSI devices. Advanced systems concepts like disk striping and segregating high-end devices from slow or unbuffered ones become real. And Interphase’s 30 MByte/s BUSpacket Interface provides the industry’s fastest VMEbus speed.

• V/ESDI 4201 PANTHER combines the performance advantages of a host resident caching ESDI disk drive controller with the flexibility of a full function SCSI port for backup, all in a single VME slot.

• VMIX 3210 is the unique combination of a SCSI host adapter, Centronics printer port, and Versatec or Benson plotter port. All three become high-speed DMA devices, and at a price you'd expect for any one function alone.

FACE FACTS
Interphase SCSI solutions achieve true VME system-level performance with existing SCSI devices and let you take advantage of the new generation of full-function SCSI devices as they are available. Don’t let a “dumb” host adapter make you look bad. See the changing face of SCSI Call Interphase today.

(214) 350-9000

INTERPHASE
2925 Merrell Road • Dallas, Texas 75229 • Telex: 9109976245 NASDAQ-NMS:INPH
Interphase International
93a New Street, Aylesbury, Bucks. HP20 2NY, England (0296) 435661 Telex: 826715 AERO G
Interphase is a registered trademark of Interphase Corporation. BUSpacket Interface is a service mark of Interphase Corporation.

See us at BUSCON EAST, Booths 403 and 405

CIRCLE NO 53
SURFACE MOUNT ADHESIVES

Anatomy of a dot.

EXCELLENT THIXOTROPIC QUALITIES
higher dot aspect ratio with no sacrifice in flow or reproducibility.

WIDE PROCESS FLEXIBILITY
variable cure cycles to meet your production speed.

OPTIONAL CURES
heat and/or ultraviolet cure systems to meet your manufacturing demands.

HIGH STRENGTH
superior chip shear strength after cure ensures reliability and reduces rework.

VOID FREE
smooth, uniform, void free dots that won't trap process chemicals.

EXCELLENT GREEN STRENGTH
assures component retention with no skewing prior to cure.

CONVENIENT PACKAGING
syringes, cartridges and jars for pneumatic dispensing, pin transfer or screen printing.

We pack a lot of features and versatility into a little dot. Plus a lot of know-how. We were the first to pioneer and develop surface mount adhesives (SMA™). As the world's leading manufacturer supplying the largest companies, we have the products, application knowledge and technology to meet your dot demands.

No matter what industry you're in, our high-contrast, fluorescent SMA's are ready for your pneumatic dispensing, pin transfer or screen printing operations. And we're ready to provide the dot you want.

Find out more. Call or write us on your letterhead for a free sample. Just give us your basic application specs and we'll send you a special Dot Decision Kit. It's packed with information and a free sample of material.

Call or write:
Emerson & Cuming, Inc.
Dot Decision Kit
77 Dragon Court
Woburn, MA 01888
617-935-7574

Send for information and a free sample.
memory cards should include microprocessors. Multimil advocates a µP-driven card for applications where data security or physical-access security is important. In France, for instance, the banking system has adopted a µP-driven smart card, and in this country Visa is conducting a test of a similar card in Florida and other states.

One of the arguments for including microprocessors is that, even though the extra logic may reduce capacity and increase cost, distributing the security algorithms allows a wide variety of devices at many different sites to accept the cards and thus provides better security.

Vendors of the high-capacity memory cards, however, disagree. They believe that a small amount of logic on the card provides a certain amount of security by preventing access to the data until the user has provided an access code (which may have as many as 64 bits). They also feel that encryption of the data stored in the card is more effectively performed by the host computer.

Moreover, they argue that the inclusion of additional logic or µPs that have built-in, preprogrammed masked ROM not only reduces the room available for memory, but also makes the cards less flexible—and all the memory-card vendors feel that flexibility is the key to wide acceptance.

Dallas Semiconductor, for example, weighed the drawbacks of the cards used in the French system, as well as the advantages, and concluded that a memory card with minimal built-in access security would best satisfy current customer requirements, while leaving the card adaptable to improvements, upgrades, and new applications.

As for future developments and potential, Mitsubishi foresees some reduction in access time, perhaps down to 120 nsec. The organization of future cards will also depend on developments in microprocessor architectures. Although most memory cards follow the JEDEC standard of 8-bit words, it’s possible to special order cards with 16-bit words. Even 32-bit memories aren’t inconceivable—as long as paging, or a departure from the de facto 60-pin connectors, is acceptable to accommodate the extra data and address lines that would be necessary. EDN

Micro Crystal miniature quartz crystals are used worldwide

- 10 kHz to 2.5 MHz and 8 MHz to 24 MHz
- Hermetically sealed metal cans or ceramic packages
- Highly shock and vibration resistant
- Full military testing available, MIL specs C-3098 G
- Standard frequencies available off-the-shelf
- Available in 16 mm tape, double pitch, on standard 7" reel (up to 1 k pieces per reel)
- For infrared solder reflow, vapor phase or wave soldering up to 260°C for 20 sec.

Article Interest Quotient
(Circle One)
High 500 Medium 501 Low 502
TO THE MILLIONS OF WORDS THAT HAVE BEEN WRITTEN ABOUT ISDN, WE'D LIKE TO ADD A NEW ONE.

COMPLETE.

For years, you've read about the incredible new products you can design when ISDN becomes a reality. And now, you can stop waiting and finally get started. Because our 29C53 ISDN Kit delivers what most people have only been writing about. A complete ISDN solution.

There's our 29C53 "S" Transceiver, which transmits and receives data at the ISDN basic rate of 192 kbps. And fully implements Open Systems Interconnection (OSI) Layer 1.

There's our programmable 29C48 Voice Conversion Chip. And our 80188 CPU, which performs protocol processing.

But that's just the beginning. What really puts you ahead is our ISP188 software, which completes OSI layers 2 and 3.
Co-developed with DGM&S, ISP188 is made up of literally thousands of lines of code. And it’s ready to run today. As a result, you save man-years in development time and get to market quicker.

When you use this complete package, it will take care of the most common design issues associated with ISDN protocols and standards. So you can focus your resources on making your product the best of its kind. No matter what you’re designing, from a low end terminal adaptor, to PCs, to PBXs. Or even the first products of an entirely new kind.

What about industry standards? We’re working on compatibility issues with the world’s largest telecommunications equipment suppliers. In fact, we’ve recently concluded an agreement with AT&T that ensures interoperability between our devices and theirs.

As a result, you can begin to design with this kit right away. And be certain of compatibility with ISDN systems today and tomorrow.

And now that standards are set, the opportunities are wide open. To help you make the most of them, we also offer a full range of development tools, such as our Terminal Evaluation Kit, and our Line Card Evaluation Kit.

So if you’ve been waiting for ISDN, the wait is over. We have samples and software available now. Call (800) 548-4725 and ask for Literature Department W-369 for more information. And we’ll show you the one word about ISDN that’s worth a million.

Complete.

©1987 Intel Corporation.
New input pattern accepts mate & lock connectors, spade terminals or threaded studs.

Schottky diodes added to on-board terminations.

Patented tracking pattern lowers noise.

Re-routed BBSY+ line for less noise.

New multilayer terminator boards take up less space.

1. BG & IACK jumpering between connector positions...accessible from front or rear.

2. Position for optional header to pick-up ACFAIL, SYSFAIL, SYSRESET.

3. New input pattern accepts mate & lock connectors, spade terminals or threaded studs.

4. Schottky diodes added to on-board terminations.

5. Patented tracking pattern lowers noise.

6. Re-routed BBSY+ line for less noise.

7. New multilayer terminator boards take up less space.

7 REASONS WHY...

BICC-VERO MAKES THE BEST VME BACKPLANEs

You’ve already invested quality time and budget in building the very best VME computer system for your application.

Now, interconnect your components with the very best backplane. Select from the full range of sizes and configurations offered by BICC-VERO.

BICC-VERO supports their VME Backplanes with a full line of card frames, enclosures, and connectors. Ask for the details.

Call us or your BICC-VERO Distributor for complete information.

VERO

BICC-VERO ELECTRONICS, INC.
1000 Sherman Avenue
Hamden, CT 06514
(203) 288-8001 TWX: 510-227-8890
Who manages the power in General Dynamics' IATE test stations for the B-1B?

KEPCO POWER MANAGERS™

As its part in the B-1 Bomber program, General Dynamics built seven pre-production and 48 production Intermediate Automatic Test Equipment Stations. Providing programmed power to the avionics unit under test in all the IATE stations are seven Kepco Series ATE Power Managers, (linear programmable power supplies), visible in the two bracketed racks on the left. These racks form one half of the Digital Test Station, which is the simplest of the four IATE configurations, and the common core for the other three.

The configuration shown here, the Radar/Electronic Warfare Station, consists of the core plus all the equipment needed to fully test the electronic warfare systems of the airplane.

The Kepco Power Managers were chosen for the IATE stations because, like all our Power Managers, they are fully programmable for both voltage and current through their entire rated range; because they can deliver maximum rated voltage and current at the same time; because they respond to programming step inputs in microseconds; and because, once programmed, they'll stabilize voltage to 0.001% and current to 0.005%.

Kepco Power Managers, in short, are widely used in critical automatic test applications because they offer the most precise, the most flexible control of power available.

To learn more, call or write Dept. KCF-12.
When it comes to depth, diversity, and a proven winning record, no other line of circuit breakers can compare with ours. The Airpax team is your source for fast response and reliable performance in your choice of more styles, configurations and ratings to meet your specific needs.

We've been tackling the toughest applications for more than thirty years. Chalking up milestone victories such as twenty years of uninterrupted MIL-C-39019 approval in Type AP electromagnetic circuit breakers. Blitzing international markets with the VDE-approved and rail-mount magnetic circuit breakers. Continually striving through innovation to keep you, the Airpax customer, at the forefront of circuit breaker technology.

Draft the best defensive players into your design. Contact Airpax Corporation, Cambridge Division, Woods Road, Cambridge, MD 21613. (301) 228-4600. Telex: 6849138, Fax: (301) 228-8910. A North American Philips Company.
Good engineering decisions are key to improving US's competitive stance

"Are the good times really over for good?"
—Merle Haggard

Margery S Conner, Regional Editor

It's been hard recently to pick up a business magazine without seeing an article paraphrasing Mr Haggard's song title. The business community is asking: Can the United States remain competitive in the world market, or are we doomed to slide further into manufacturing mediocrity?

From a nontechnical, businessman's point of view, the chances of successfully regaining our competitive stature may appear slim: The obstacles—such as the problem of obtaining capital, interest rates, high labor costs, and foreign trade restrictions—are imposing. Yet some US electronics companies are overcoming these obstacles by tapping the United States' great reservoirs of technical strength. As three US companies are proving, the practices that can halt our slide into mediocrity lie not in the domain of the nontechnical manager, but in that of the design engineer.

These strategies include designing products for fast, cost-effective manufacturing; developing in-house expertise in new technologies rather than purchasing outside advice or designs; and designing products that are responsive to customers' needs. The three companies—Tektronix, Western Digital Corp, and Paradise Systems—are putting these practices to work, and are consequently competing very well.
Tektronix (Beaverton, OR), for example, solved the problem of remaining competitive in an increasingly tough oscilloscope market by designing products for fast, efficient manufacture. A couple of years ago, the company faced serious competition from other scope makers, especially foreign ones. Although the foreign scope makers didn't challenge Tektronix's scopes in complexity, they did condition customers to expect more and more capabilities and enhancements. For the price of a Tektronix plug-in, for instance, customers could buy a whole scope from a Japanese company.

Tektronix found itself facing a dilemma. To compete with other manufacturers, the company had to produce scopes of increasingly greater complexity, but lower their prices. Yet the production costs for Tek's complex scopes were high. If the relationship between the scopes' complexity and their production costs remained the same, Tektronix would soon have to give up making scopes—a fate as unthinkable as Levi's not making jeans.

Clearly, the company needed to reduce the cost of designing and manufacturing its future scope products. Researching the problem, Tektronix's engineers found that one of the company's largest manufacturing costs came from testing the scopes. The company had been following the same test procedures used by virtually all manufacturers of medium- to large-volume board assemblies: It tested all the board components, assembled the boards, tested the boards on an in-circuit tester, then plugged the boards into the system and hoped they would work. Finally, it used custom-designed functional testers to troubleshoot any systems that failed.

This approach is as accepted in the electronics industry as buying IBM equipment: No one ever got fired for recommending it. For testing Tektronix's late-model, complex scopes, however, the approach was very expensive. Because of the increasing complexity of the chips and boards inside the scopes, the in-circuit testers were taking longer to program. "Keep in mind that the least expensive part of an in-circuit testing system is probably the equipment itself," says Doug Rowe, a Tektronix hardware/software engineer. "Maintenance, particularly of the test software, is the major cost."

Another problem was that the company's technicians found it difficult to recreate the in-circuit test conditions for a board that passed an in-circuit test yet failed a system test. In-circuit testers were too expensive for repair technicians to use in troubleshooting boards.

The road less traveled

The design team for the Tektronix 11400 Series oscilloscopes came up with a solution: They incorporated built-in test (BIT) capabilities in the scopes at both the board level and the chip level. The BIT approach greatly reduced manufacturing costs for the 11400 scopes. Giving each board its own self-test capabilities allowed Tektronix to dispense with the expensive and time-consuming in-circuit test procedures it had used for earlier scopes.

The company found that the BIT capabilities not only reduced the scopes' assembly time, but also facilitated calibration and field-service procedures. As an added benefit, the approach was attractive to customers, who appreciated the scopes' ability to test themselves and perform much of their own calibration.

The usefulness of BIT in manufacture as well as throughout the life of a scope made the added cost of the BIT circuits and pc-board area economical. Tom Dye, who designed many of the 11400 systems' BIT programs, estimates that BIT can require anywhere from 5 to 20% of pc-board or chip area. Although such an investment may be impractical for a less-complex product with a short lifetime, it can reduce the lifetime cost of a more elaborate system such as a 11400 Series oscilloscope.

Design for testability

To incorporate BIT in each board of the 11400 Series scopes, Dye and the design team used a test approach called functional parti-
Acceleration Switches: Cantilever beams of silicon dioxide overhang shallow wells in silicon. Beams flex under acceleration, making electro-mechanical contact.

Micro beams, channels, nozzles, flow restrictors, and valves—all sculpted from silicon and glass. These leading-edge silicon chip techniques have created accelerometers, sensors, actuators, and microflow controllers for automotive, biomedical, aerospace, and industrial process control applications.

MICROSTRUCTURES
Silicon-based micromechanical structures are smaller, more reliable, and often less expensive than traditional electromechanical sensors and actuators. And since these silicon devices are semiconductors, they interface easily with complex electronic systems.

DESIGN AND MASS PRODUCTION
Here’s something new that you should know about IC Sensors: Transsensory Devices, the company that pioneered advanced micromachined silicon structures, is now part of IC Sensors.

Through this new partnership, we have successfully combined microstructure design automation and mass production techniques. We are equipped to take an application-specific approach to your design problem, come up with the right microstructure for your application, and produce it in large—or small—quantities.

Propel your product into the future—with a silicon microstructure. All it takes is a phone call to IC Sensors.
tioning, which is simpler than other techniques, such as scan-path testing and the use of random-pattern generators.

Functional partitioning refers to the partitioning of a circuit (an IC or a pc board) in order to isolate and observe sections of the circuit that support a single function. If necessary, designers may add hardware, particularly when they must break a feedback path; however, the extra hardware mustn't decrease the circuit's performance.

As Dye points out, developing test vectors or sequences to perform self-tests isn't as easy at the board level as it can be at the chip-design level. You can obtain CAE simulation packages that generate test vectors to simulate a chip's response, and you can find packages that generate test vectors for use with ASIC testers, but the memory requirements for such tests are very large. These test vectors are virtually truth-table tests; it may take a million vectors to thoroughly verify that a chip works. Few boards can incorporate enough extra memory for so many vectors.

Functional partitioning, however, lets you stimulate circuits by function, using parts of the circuit to test the circuit itself. This approach can reduce the number of test vectors by several orders of magnitude, making BIT practical for use on boards.

Scope tests itself

For Tektronix, putting BIT on board greatly reduced the production and manufacturing time that went into the 11400 Series scopes. Because the scopes contain all the software and hardware needed for self-test, every scope has the potential to be a production tester. The firm's assembly-line workers test each board simply by plugging it into a known-good scope and seeing if it works. The scope can diagnose any problem and identify the area of the board on which it resides. Boards that fail go to a repair technician, who can recreate any failure condition and troubleshoot the board on his own test scope.

The new approach necessitated some changes in Tektronix's production line. Rather than trying to fill all its production jobs with nontechnical people, the company now employs some workers who are technically familiar with the product. Because the scopes can identify the board area—and sometimes even the chip—on which a fault resides, these technicians can troubleshoot certain board or system problems very efficiently. The nontechnical people who perform the bulk of the assembly and test rotate jobs to stay interested in their work.

When design on the 11400 Series scopes began two years ago, Tektronix's management viewed self-test merely as an interesting engineering experiment. Now self-test is a company policy: Tektronix has made the commitment to standardize a built-in test procedure for all its scopes. The commitment has paid off for the 11400 line: The new scopes are actually less expensive to produce than many of the older, less-complex models still being manufactured on the company's conventional lines. For example, although the company still needs nine hours to test and calibrate a 7854 scope, it can perform those procedures for a 11400 oscilloscope in 45 minutes.

A 70s identity crisis

Western Digital Corp (Irvine, CA) has also used engineering solutions to compete successfully in a tough market. The company, which now sells 40% of its products overseas, got its start in the 70s by making chips primarily for handheld calculators. It also developed a successful floppy-disk-controller chip.

The company ran into trouble with competition fairly suddenly in the mid to late 70s, when the calculator market became one of the early electronics markets to succumb to foreign domination. Japanese companies were making the majority of calculators, and Western Digital was left with no strong market for its chips. In 1977, it was forced to reorganize under the protection of Chapter 11 bankruptcy.

Western Digital discovered that its troubles stemmed from its corporate self-image. The firm had considered itself only an LSI IC designer and manufacturer; it sold its ICs to...
Sometimes, one good idea leads to another.

The company that pioneered in-house press fit manufacturing for the backplane and connector industry now offers another unique choice in high density connectors.

A new Six Row High Density Double-Din™ developed by Elfab for backpanel applications is now an Augat connector. With 60 contacts per linear inch, this new connector offers design opportunities unheard of until now.

With traditional design ingenuity, our new surface mount box connector straddles the board, occupying half the real estate of conventional connectors. And providing shorter signal paths for better performance under high speed circuit conditions.

Best of all, conductor path distance is consistent between all six rows, insuring a uniform impedance control between the connector and the printed circuit board.

The same innovation and quality also is available immediately in two and four row connectors, and soon, five and seven row configurations.

But if your application requires something even more unusual, Elfab can custom build to your specifications. After all, that's what you'd expect from the Augat family, where innovation has always been a tradition.
OEMs and ignored the system-level products those manufacturers made from its chips. It also ignored the needs of the end users of those products.

To change its fortunes, Western Digital changed its self-image. It eliminated all its divisions except those supporting a single market focus: technology for personal-computer peripherals. The company now saw itself in a much broader sense. It was no longer merely an LSI chip maker—it now served the PC peripheral market, which meant making boards as well as chips. Serving the PC peripheral market also meant making small boards. This requirement led Joe Baia, an engineer who is one of the company’s founders, to investigate surface-mount technology (SMT).

Many board companies still regard SMT with apprehension. Compared with through-hole-board technology, SMT tolerances are much tighter, and an SMT production line requires a greater capital investment. Yet Western Digital made the commitment to develop an SMT-board line over two years ago, when all work in SMT was at the pioneering level.

The person ultimately responsible for this decision was Roger Johnson, president and CEO of Western Digital. When asked how, without a technical background, he was able to make the seemingly tough decision to gamble on SMT, Johnson looked mildly surprised at the question. "It was actually a very easy decision, for two reasons: smaller package size and improved product quality. Smaller package size is a strong competitive advantage in the peripheral-controller market, because the control electronics have to shrink along with the drives. We get higher quality because the automated assembly process leaves very little room for human error."

Although many board companies have found SMT difficult to handle, Western Digital, the IC manufacturer, did not. Says Randy Ring, the firm’s director of SMT manufacturing: “After holding LSI process tolerances, SMT was easy.”

Ring does’t mean to imply that developing the SMT line was easy, however. “We initially tried, with no luck, to find consultants in setting up an SMT line. When we finally did find some, they were worse than none at all. So we decided to develop the line ourselves.”

Far from regretting that no experts were available, Ring is convinced that his company’s lack of board-manufacturing experience was not a weakness but a major advantage. Instead of viewing SMT as another way to make boards, the company viewed it as a process, just as LSI IC fabrication is a process. The company exploited its thorough familiarity with process design and control to learn the new techniques of SMT design. This strategy has had a good deal of success: Western Digital has replicated its initial SMT production line in three other plants.

Success in the graphics market

One of the most keenly competitive markets for electronics products is the market for graphics products. The personal-computer–graphics sector is particularly volatile. Paradise Systems (South San Francisco, CA) has been competing successfully in this market for three years.

Tom Van Overbeek, Paradise’s president, claims the company’s self-image is crucial in allowing it to move with and anticipate the market. The company got its start three years ago, when it began manufacturing video controller boards for the PC. From the beginning, the company identified itself not just as a maker of generic pc-board add-ins, but as a video-controller manufacturer. Paradise’s clear focus also simplified its decisions about what technologies to invest in: The company realized that the future of video controllers lay in custom ICs.

Because it understood the competitive graphics market, Paradise also realized that it needed to produce these ICs in volume, and quickly: A typical graphics product has a life of about six months before an upgrade is introduced. Emphasizing design speed left the company no room for error, either in the initial chip design or in its manufacture.

To support its philosophy of fast, right-the-
80186 BASED OEM INDUSTRIAL CONTROLLER

$590

TWO SERIAL PORTS
FOUR PARALLEL PORTS

BATTERY-BACKED CLOCK
64K BATTERY-BACKED RAM
128K EPROM
DEBUG FIRMWARE LINKS TO PC

8/16-BIT STD BUS

CuBIT DIVISION OF PROTEUS INDUSTRIES
190 South Whisman Road
Mountain View, CA 94041-1577
Telephone: (415) 962-8237
CIRCLE NO 136
first-time designs, Paradise invested heavily in CAE hardware and software for ASIC design and simulation. What was apparently a hard purchasing decision was made easy by the company's commitment to support its market focus in any way necessary.

Like Western Digital, which took the chance of investing in SMT, Paradise gambled by investing a large portion of its yearly revenues in CAE. Both companies were willing to support their marketing focuses with engineering decisions that at the time seemed risky.

Tektronix, Western Digital, and Paradise are just three US companies that have developed or regained a competitive lead in their respective markets; there are many others. It's true that when you talk with people at these companies, you'll hear a certain amount of complaining: They still face some serious economic and business problems that cannot be solved merely by a change in engineering direction. But the companies' complaining is like farmers' complaining about the weather—yes, they are vitally affected by it, but they can't do much about it, so they just get on with the aspects they can control.

As these companies are proving, US firms can compete both at home and abroad by clearly defining the market they design for and their customer's needs, and by being willing to support their products with engineering solutions.

ON-BOARD RELIABILITY BEGINS WITH OUR SURFACE MOUNTABLE COMPONENTS

The ultimate performance of any board design is a direct reflection of the reliability of each individual component. Over the years, manufacturers of quality military and commercial electronic products have learned to insist upon Delevan inductive components to insure the ultimate in performance of their products.

The ceramic capacitor products of our Delcap Division reflect the same concern for reliability which has established Delevan products as the standard of quality for the industry. When you specify any of our Electronic Components Group products, you build-in these same high standards of dependability and performance in your finished product.

DELEVAN DECAP
DIVISION COILS & CHIP DIVISION MULTILAYER CERAMIC
INDUCTORS CHIP CAPACITORS

On the East Coast Call (716) 652-3600
On the West Coast Call (714) 768-5522

MADE IN AMERICA BY AMERICAN CRAFTSMEN TO AMERICAN STANDARDS OF EXCELLENCE.
To prove its repeatability, we subjected our fiber optic switch to a hundred million operations in laboratory tests. And true to form, it maintained 0.1 dB repeatability at a typical insertion loss of 0.7 dB. And not just any switch can do that.

But our switches pass tough environmental tests such as vibration, shock and temperature extremes. They offer high switching rates. And they’re so flexible they can be used in 850 nm or 1300 nm wavelength systems. They’re also available in all popular fiber sizes. And they come in a compact, lightweight package.

We offer this kind of performance and practicality in all our electro-optic products including our high speed data links, clock recovery modules, clock oscillators, parallel/serial converters and fiber optic modems (RS232, RS422 and TTL).

To find out all the reasons you should be using Siecor components, get in touch with us soon. And we’ll give you about a hundred million of them. Write Siecor Corporation, Electro-Optic Products, P.O. Box 13625, Research Triangle Park, North Carolina 27709-3625. Or call 919 549-6571.
Hardware... software... beachware!
Nothing wears better in your islands of automation than our 80C86 circuits.

"What's he doing with those Harris ICS?"
"Going head-first into factory automation."
Their reliable operation turns every island into paradise.

It's a simple fact: to do more in factory automation, give your local islands of automation the ability to do more...with Harris industrial-grade 80C86 microprocessors and peripherals.

The Harris 80C86 family is designed and built for industrial, full temperature range operation (−40°C to +85°C)—not cherry-picked from commercial product. They thrive in the toughest conditions—shock, heat, vibration, contaminants and more. Their high performance under these adverse conditions increases system reliability, factory throughput and your competitiveness.

Our proven static circuits give you the flexibility to design the lowest-power systems possible by running the system at the speed you need and only when you need it...from the maximum operating frequency to a complete stop.

And low power means low system operating temperatures, no fans, smaller power supplies and sealed enclosures, preparing your system to meet the rigors of the factory floor. For space-critical applications, choose plastic leaded chip carriers (PLCCs) to reduce board and system size even more. For package count reduction, use our semicustom cell library to combine 80C86-family peripheral circuits with glue logic on a single chip.

Harris low-power static 16-bit and 8-bit CMOS CPUs and peripheral circuits will transport your system to new levels of function and flexibility, whether you’re building robots, data acquisition systems, process and numerical controllers or advanced instrumentation.

Harris 80C86 and 80C88 CMOS µPs and support circuits: the smart choice for improving performance and reliability in intelligent factory automation.

Contact your Harris Semiconductor travel agent and get started on your trip to paradise. In U.S. phone 1-800-4-HARRIS, Ext. 1275. In Canada: 1-800-344-2444, Ext. 1275.
THE ADVANCED FAMILY WITH A 54/74 AHCT
Samsung's 54/74 AHCT advanced CMOS logic family is available in production quantities now. And you can get samples, free. This means you can design our logic into your product, now. And move into production, now. No waiting.

Design in the Performance You Need

Our 54/74 AHCT advanced high-speed CMOS logic family gives you speeds and drives equivalent to, or better than, ALS, and can be used as direct plug-in replacements for ALS and FAST™. In fact, 24mA drive is guaranteed for bus drivers.

54/74 AHCT achieves advanced bipolar performance with wider supply and temperature ranges. In addition, it offers the superior noise immunity, rail-to-rail output voltage swings and the low input currents of CMOS.

Pin For Pin Replacement

Samsung's AHCT CMOS logic family, with 157 part types, has the most comprehensive selection of standard logic functions, so you can replace your ALS or FAST with our much lower-power CMOS part, right away.

And our 54/74 AHCT does not have a premium price tag. In fact, it costs the same as ALS. Which means you'll actually save money in your system cost because of lower power requirements and improved reliability.

CMOS LOGIC KS74AHCT Part Types

<table>
<thead>
<tr>
<th>Gates and Inverters</th>
<th>Flip-Flops</th>
<th>Transceivers/Registered</th>
<th>Multiplacers</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>20</td>
<td>73</td>
<td>399</td>
</tr>
<tr>
<td>01</td>
<td>21</td>
<td>74</td>
<td>394</td>
</tr>
<tr>
<td>02</td>
<td>22</td>
<td>76</td>
<td>396</td>
</tr>
<tr>
<td>03</td>
<td>23</td>
<td>78</td>
<td>397</td>
</tr>
<tr>
<td>04</td>
<td>30</td>
<td>107</td>
<td>670</td>
</tr>
<tr>
<td>05</td>
<td>32</td>
<td>109</td>
<td>794</td>
</tr>
<tr>
<td>06</td>
<td>51</td>
<td>112</td>
<td>821</td>
</tr>
<tr>
<td>09</td>
<td>58</td>
<td>173</td>
<td>822</td>
</tr>
<tr>
<td>10</td>
<td>96</td>
<td>174</td>
<td>823</td>
</tr>
<tr>
<td>11</td>
<td>132</td>
<td>175</td>
<td>824</td>
</tr>
<tr>
<td>12</td>
<td>132</td>
<td>213</td>
<td>825</td>
</tr>
<tr>
<td>14</td>
<td>256</td>
<td>374</td>
<td>826</td>
</tr>
</tbody>
</table>

Part Types Available in Q4 — All Other Part Types Available Now.

So call Samsung today. Or send us the convenient coupon below. We'll send you free samples, our data book and reliability report. You'll find out 54/74 AHCT is real. Samsung says so.

CIRCLE NO 94

Putting together an industrial-grade system for a process-control, machine-control, or high-volume incoming-inspection application can be a complex task: The factory floor is a hazardous place, and you must take into account possible temperature extremes, airborne particles, and vibration and noise. Those considerations notwithstanding, staying competitive in today's industrial market clearly requires increasing automation and ease of assembly.

EDN's Industrial Electronics Product Showcase focuses on system-level industrial products and on components specifically designed for use in systems intended for harsh industrial environments. You'll note that many of the system-level products covered in the showcase are based on the IBM PC; these computer-controlled systems can facilitate the manufacturing process.

The 4000AT, for example, an IBM PC-compatible computer system from Adac, consists of a signal-conditioning front end and an 8-slot XT/AT backplane in a rugged enclosure with a shock-mounted Winchester disk drive. The system is intended for PC-based data acquisition and control in a plant environment.

Xycom's PC/AT-compatible 4150, on the other hand, has a 5-slot backplane and a front panel that's sealed to NEMA standards. And, because its mother board isn't preconfigured, you can match its µP to your application. Another computer system, Pro-Log's PC/XT-compatible System 2 Model 10, has optional driver routines for 22 STD Bus cards.

You'll also have the chance to evaluate various system enclosures. Mupac Corp manufactures a series of lightweight enclosures to accommodate bus-specific (VME Bus, Multibus, or Multibus II) backplanes, which the company also produces. Sigma Information Systems' SA-H155 enclosure incorporates a 14-slot Q Bus backplane that is compatible with LSI-11 and MicroVAX systems. Constructed of 14-gauge steel and standing
environment
ease of assembly

12¾ in. high, the enclosure has room for three 5½-in. drives.

You can also choose from numerous controller boards and control systems. The Expert Controller from Ume-corp is a dedicated, programmable expert system with a host-independent, asynchronous-processing μC and proprietary software. Its natural-language interface alleviates the need for the user to learn programming languages before creating a knowledge base.

In contrast, the CDI-Ladder control system from Computer Dynamics combines STD Bus hardware with a standard relay ladder-logic language. Nontechnical workers can easily program and maintain this type of control system with an IBM PC. As you can see from the products in this year's Industrial Electronics Products Showcase, the IBM PC is proving to be an important tool for streamlining the manufacturing process.
At Holmberg, we’re not handing you the same old lines.

What we are handing you is an outstanding line of high-quality connectors:

D-Subminiature
- All plastic and metal shell
- .590 and .318 footprints
- Crimp-snap
- Surface mount
- Press fit

Printed Circuit Card Edge
- Low cost cantilever contacts
- Modified bellows wire wrap
- C8 press fit

Pin Headers
- Unshrouded, straight and right angles

DIN
- Standard and reverse

Our design innovations can provide you with substantial cost savings plus the greatest variety of mounting options available. At Holmberg, we’ll do whatever it takes to make your job successful.

HOLMBERG ELECTRONICS
The Innovation Connection
P.O. Box 37, Inman, SC 29349 • 803/472-4141 • Telex 810/690-2302 • Fax No. 803/472-8568

CIRCLE NO 95
Industrial Product Showcase

Computer system brings IBM compatibility into industrial applications

The System 2 is rugged enough to operate on the factory floor and in other industrial applications. It is fully compatible with the IBM PC/XT—both at the DOS level and at the BIOS and hardware/chip levels.

You can expand System 2 with memory, mass-storage, and interface options using STD Bus cards. Two versions are available—one with semiconductor-based mass storage (Model 10), and the other with floppy- and hard-disk storage (Model 20).

Model 10, with 128k bytes of CMOS static RAM (expandable to 640k bytes) and two semiconductor disk drives, is designed to be embedded in systems where temperature extremes, vibration, moisture, and airborne particles pose potential hazards. Model 20 has 128k bytes of CMOS static RAM (expandable to 640k bytes) and one 3½-in. floppy-disk drive; a second floppy-disk drive and a 3½-in., 20M-baud hard disk are optional.

Both models contain a serial port, time-of-day clock, and from seven to 20 expansion slots. They also include the MS-DOS 3.2 operating system and full documentation. Both can operate after power-up with no operator supervision, and they can connect to any RS-232C device. Options include driver routines for 22 STD Bus cards and a software library that provides initialization. Model 10 (RAM-disk version), $1195; Model 20 (floppy-disk version), $1595.

Pro-Log Corp, 2560 Garden Rd, Monterey, CA 93940. Phone (800) 538-9570; in CA, (408) 372-4593. TWX 910-360-7082.

Rugged XT/AT-compatible system features an 8-slot PC configuration

Model 4000AT combines an 8-slot signal-conditioning front end with an 8-slot XT/AT-compatible backplane in a single rugged enclosure for practical PC-based data acquisition and control in the plant environment. The dual backplanes assure the user of full I/O and full PC-slot availability in completely independent card cages.

The system enclosure includes a shock-mounted Winchester disk. You have a choice of more than 35 plug-in signal-conditioning modules. Front-panel wire termination for as many as eight plug-in modules lets you interface to hundreds of I/O points without using additional enclosures. You can change the I/O modules without disturbing any field wiring.

The PC/XT- and PC/AT-compatible backplane accepts four full and four half-size PC-compatible cards for a full range of CPU and housekeeping functions. The 4000AT provides automatic interface between the I/O and PC backplanes and offers full field signal isolation from the CPU and PC function cards. A choice of PC/XT or PC/AT CPU's is available.

The 4000AT features an all CMOS design to minimize power consumption and keep operating temperature low. The convection-cooled enclosure needs no fan. An icon-based, programmable process-control software package featuring icon-driven system configuration and full-color graphics is available as an option. From $1700 (without mass storage).

ADAC Corp, 70 Tower Office Park, Woburn, MA 01801. Phone (617) 935-6668. TLX 951802.

Circle No 641

EDN October 1, 1987
Industrial Product Showcase

Precision process monitor solves temperature-monitoring problems

The PM-5060 accepts low-level analog signals from RTDs (resistance temperature detectors) and a variety of thermistors. The monitor filters an input signal, amplifies it, and then converts it to digital data using voltage-to-frequency conversion techniques.

The monitor's onboard µP linearizes and calculates the temperature and feeds data to the vacuum-fluorescent display. It measures temperature in degrees C or F at a resolution of 0.1 or 1 degree. The 5060 has a 5-digit display. You can configure it for 2-, 3-, or 4-wire RTD inputs. Input type and configuration are selectable either by the front-panel keypad or an RS-232C port. You type in all monitor functions; the alphanumeric display is completely menu-driven.

The PM-5060 supports more than 50 simple ASCII commands to exercise RTD/thermistor data-acquisition functions. It is equipped with four optoisolated setpoint outputs that respond to a preset temperature. The display indicates the setpoint status. The solid-state MOSFET relay outputs can drive 100 mA/300V loads and are individually programmable for high- or low-going, absolute or relative temperatures with user-selectable hysteresis. The monitor is available in models that accommodate American, European, and Japanese power systems. $395.

Datel, 11 Cabot Blvd, Mansfield, MA 02048. Phone (617) 339-9341. TWX 710-346-1953. TLX 951340. Circle No 640

98% efficient servoamplifier mounts on a pc board

Measuring only 6×4×0.8 in., the Model 218 PWM servoamplifier readily mounts on a pc board or in a small NEMA enclosure. It has a 98% efficiency and provides 1500W (±150V at ±10A) continuous output; it can thus power dc servomotors with ratings to 2 hp. It can also provide 3000W for short periods to give higher torque for motor acceleration and reversal.

The amplifier features a 22-kHz switching frequency that provides a 1-kHz bandwidth and eliminates hum well above the range of the human ear. A built-in dc/dc converter develops a variety of voltages for powering internal circuits, allowing the amplifier to operate from a single supply voltage in the 25 to 155V range. A MOSFET bridge output circuit develops the output from the supply voltage.

The amplifier is protected against short-circuit, overvoltage, and undervoltage conditions, and excessive temperature. It also responds to end-of-travel, beginning-of-travel, and emergency-stop inputs. The 22-kHz switching frequency allows the Model 218 to drive servomotors with internal inductance as low as 250 µH without the need for a series smoothing inductor. $516. Delivery, four to six weeks ARO.

Copley Controls Corp, 375 Eliot St, Newton, MA 02164. Phone (617) 965-2410. Circle No 645

EDN October 1, 1987
SAMPLE 2 CHANNELS SIMULTANEOUSLY
AT 20MHZ WITH NEW
PC-BASED DIGITAL OSCILLOSCOPE!

64K DATA BUFFERS, 2 CHANNEL OSCILLOSCOPE: $3495.

The R2000 PC-based digital oscilloscope features 2 input channels, each with its own 20MHz A/D converter and 65,535 8-bit byte data buffer. No other turn-key integrated instrument offers a higher sample rate or deeper buffer size for the price: only $3495.

Highest Sample Rate Per Channel For The Price.
The R2000 allows a sample rate for each channel to be as high as 20MHz. Most other instruments divide the sample rate among the number of channels, reducing the sampling rate substantially.

Advanced Instrumentation Features Few Other Scopes Offer.
☐ The R2000 is an outboard peripheral with a full EMI-protected metal case for signal integrity.
☐ Full analog and 100% digital triggering
☐ Trigger adjust potentiometer

Standard Oscilloscope Features You Might Only Expect In A Standalone Instrument.
☐ 1 Meg ohm input impedance
☐ BNC input connectors
☐ AC or DC coupling of the signal
☐ Self-contained power supply. You don’t depend on your computer’s supply.
☐ Input protection to +/− 250 volts
☐ Software-selectable gain ranges allow resolution of 1mv to 250 volts

For your free copy of the Rapid Systems PC-based instrumentation catalog, to order, or for further information, call or write Rapid Systems, 433 N. 34th St., Seattle, WA 98103. (206) 547-8311. Telex: 265017UR.
Industrial Product Showcase

Multiport drive test system can test 128 units simultaneously

The 7000 test system is designed for use on the production floor and for high-volume incoming inspection. It can perform complete digital and analog tests on any mixture of 5¼- and 3½-in. full- or half-height Winchester disk drives. The system analyzes drives that have a variety of interfaces, including ST506/ST4412, SCSI, and ESDI.

A host PC/AT-type computer controls each of the system's 128 test ports independently. You can thus test a number of drives simultaneously, sending any desired combination of company-standard or user-programmed tests to each unit. A full 128-port system occupies as little as 36 ft².

Two system configurations are available. The 7002 is a completely self-contained, rack-mountable chassis that contains two independently powered test ports. You can expand this version by adding extra racks. The second configurations (7016 or 7032) are made up of multiple rack-mounted test ports stacked side-by-side and one above the other.

The system produces an individual report for every unit tested. The computer can also generate archival reports for off-line trend analyses or on-line failure analyses. $70,000 for a 16-port system.

Wilson Laboratories Inc, 2237 N Batavia St, Orange, CA 92665. Phone (714) 998-1980.

Vacuum-fluorescent display with CMOS RAM features canned messages, battery backup

The Model 3601-35-240, an addition to the Flip family, is a 6-line×40-character vacuum-fluorescent (V-F) display that can store and retrieve user-programmed canned messages. The module's 8k-byte CMOS RAM stores as many as 127 messages, which an onboard battery-backup retains.

The display also incorporates a self-diagnostic test program that checks all display functions. This program checks and displays user settings for data configuration and rate, the condition of the battery-backup circuit, the line drivers and receivers, and the RAM available for canned messages. At the conclusion of the test, the module displays its repertoire of 96 ASCII characters.

In addition to the standard ASCII set, the module can display alternate character sets (for example, scientific, Scandinavian, and German). You can also define your own character patterns and download them into any or all of the 96 ASCII locations.

The 3601-35-240 operates from one 5V supply. An onboard µP controls all display functions as well as the serial data interface with the host system. This interface can conform to either RS-232C or RS-422 standards and can accept data at 1200 or 9600 baud. Each of the display's 240 5×7-dot matrix characters is 5 mm high. $538 (100). Delivery, four to six weeks ARO.

IEE Inc, Industrial Products Div, 7740 Lemona Ave, Van Nuys, CA 91409. Phone (818) 787-0311. TLX 4720556.

Circle No 644
How to uncover PWB defects with Augat's VIP sockets and this amazing inspection instrument.

Wouldn't it be more efficient if you could spot PWB surface defects before the boards went to testing? Well, Augat has introduced a removable carrier for DIP, pin grid and custom footprints that makes it possible.

Visual Inspection Package Sockets. They work without an insulator. So you can tell by visual inspection—or in plain English, just by looking—whether or not you've left any soldering voids where the contacts join the plated through holes. During manufacturing. Before testing.

Also, without an insulator, the airflow that keeps your device cool is improved. And repairs are easier because each contact can be repaired individually.

Plus, the VIP family of sockets can be made to any custom footprint easily and quickly to eliminate loose loading terminals. Find out how else they can improve your designs and increase your success rate. Send in the coupon for some eye-opening data sheets and a demonstrator.

The VIP family of sockets. More innovation that works from the people who listen to what you need.

Augat. A company worth keeping an eye on.

Seeing is believing. Send me your VIP socket family data sheets and demonstrator showing how to help me cut down on defects.

Name:
Title:
Company:
Street Address:
City __________ State ________
Zip __________ Telephone __________

Mail to: Augat, Inc. Interconnection Components Division, 33 Perry Avenue, Attleboro, MA 02703 (617) 222-2202.
FAX: 617 222 0693

U.S. and International Patents Issued.

EDN October 1, 1987

CIRCLE NO 100
Ruggedized industrial enclosure holds three disk drives

The SA-H155 is a 12½-in.-high ruggedized system enclosure for three pluggable 5¾-in. drives that you remove individually via a door in the front of the chassis. The enclosure is for environments where the entire computer system is subjected to shock, vibration, dust, dirt, and high ambient temperatures.

Constructed of 14-gauge steel, the SA-H155 includes a 480W switching power supply. The disk drives are located at the right of the unit; the front control panel includes switches and indicators for system control.

The SA-H155 incorporates a 14-slot Q bus backplane for use with either LSI-11 Series or MicroVAX systems. Five fans help secure a good wash of air over the backplane, power supply, and drives. Two of the fans are located at the left of the chassis to move air from the rack to pressurize the unit. Three other fans are located at the rear of the chassis to exhaust the system through the backplane and power supply at the rear.

The SA-H155 operates over 0 to 50°C and in noncondensing humidity as high as 95%. The unit will withstand 15g shock levels. $4500.
Sigma Information Systems, 3401 E La Palma Ave, Anaheim, CA 92806. Phone (714) 630-6553. TLX298607.

Circle No 642

μC-based real-time system controller suits factory-floor and other applications

The Expert Controller—a dedicated, programmable expert system—consists of a host-independent, asynchronous processing μC and proprietary software. A natural-language interface allows users to create a knowledge base without having to learn programming languages.

You can configure the controller as a stand-alone system or, for larger-scale AI applications, combine several units in a rack. It features environmentally resistant industrial packaging and comes with battery-backed static RAM or EPROM for knowledge bases. The power supply is built in.

The Expert Controller uses proprietary AI algorithms and a multiprocessing architecture that interprets knowledge bases containing as many as 10,000 rules. The system uses a combination of rule-based, frame-based, and object-oriented approaches to represent machine-control knowledge.

A dedicated inference engine uses high-speed logical search mechanisms to interpret knowledge bases developed by users. Search techniques include goal-driven backward chaining and event-driven forward chaining. The system can process more than 100,000 logical inferences/sec with a real-time throughput of as much as 8000 complex rules/sec. From $5500.

Circle No 639
ONLY ONE OPTOCOUPLER ELIMINATES LOGIC INTERFACE PROBLEMS.

Logic interface causing confusion?
Pull yourself together. Use General Instrument’s Optologic™ Optocoupler.

The First Logic Look-Alike.
Our Optologic™ is the first optocoupler that looks exactly like a common 74-series logic gate at both input and output. For both CMOS and TTL. So it’s easy to design in and specify. Without all that trial and error.
It reduces parts count and board space, too. Because our convenient, 6-pin package has everything.

Protects You From Noise.
With Optologic™ you get 15 kV/µs common mode transient immunity. 2500 VAC RMS isolation. Propagation delay of 60 ns. And datacom support to typically 15 Mbaud. That adds up to excellent noise rejection, insulation, and high data speeds.
Plus consistent performance over time and temperatures.

Call And Face The Facts.
Don’t waste time with anything else. Optologic™ is faster to design in. Contact your distributor for data and samples. If you prefer, call or write General Instrument, Optoelectronics Division, 3400 Hillview Avenue, Palo Alto, CA 94304.
(415) 493-0400.
And never face interface problems again.

GENERAL INSTRUMENT
Optoelectronics Division

In Canada: Arrow, Cardinal Industrial, Future, ITT Multicomponents-RAE.

CIRCLE NO 101

EDN October 1, 1987
Industrial Product Showcase

Smart data-acquisition system interfaces analog sensors to computers

The Series D2000 smart data-acquisition and control modules let you interface nonstandard analog sensors to any computers with a serial port. The modules let you download as many as 25 breakpoints through the port; you can use these breakpoints to program virtually any transfer function into a module. Software takes care of all scaling, linearization, and calibration tasks, so potentiometers, switches, or adjustment hardware are unnecessary.

The 24 modules in the series communicate in ASCII over an RS-232C or RS-485 link. Voltage, current, bridge, frequency, and pulse types of modules are available. Each module has digital I/O lines for on/off control using solid-state relays or TTL signals.

The input is protected against burnout to 250V ac. Measurement resolution is 1 part in 50,000. The accuracy rate for voltage and current units is within ±0.02%; for bridge units, ±0.05%; for frequency units, ±0.1%; and for pulse units, ±0.01%+5 µsec.

Communication features include channel address, a baud rate of 300 to 38.4k, parity, line feed, byte time delays, echo, and check sum. Rated performance is specified from 0 to 70°C, but the modules can operate from -25 to +85°C. $275 to $350.

DGH Corp, Box 5638, Manchester, NH 03108. Phone (603) 622-0452. TWX 510-601-6112.

Circle No 648

Modular industrial processor has extra processing power for expansion

Using integrated hardware and software modules, the µMAC-6000 combines computer circuitry, analog signal-conditioning modules, and direct sensor connections on a single board. The signal-conditioning modules address a single channel each, which lets you customize your I/O configuration. The system is built so that processing power increases as I/O point count increases, allowing it to maintain high performance in large applications. You can install the modules or reconfigure them without disturbing field wiring. Each socket can be either an input or output channel.

The system uses an 80188 µP and features 12- or 14-bit data conversion. It has 64k bits of PROM and a 256k-bit battery-backed user RAM for stand-alone applications. An EEPROM is provided for user storage of calibration constants and correction coefficients.

In addition to its 24 analog I/Os, the µMAC-6000 supports as many as 256 digital I/O points. It also provides 16 low-speed counters, two high-speed counters, six frequency inputs, two pulse outputs, and a watchdog timer. The communication ports include an RS-422 port, two RS-232C ports, and one IEEE-488 port. For distributed applications, the µMAC-6000E intelligent expansion unit offloads the CPU and A/D converter of the main unit. In multiple configurations, each host computer can interact with 10 other 6000s, each of which may have three 6000E slaves.

The system requires one 5V supply and operates over 0 to 60°C. The $3395 system includes the backplane and the CPU enclosure with µMacBasic software already in PROM. Analog or digital signal-conditioning modules cost $150 and $50 per channel, respectively. The µMAC-6000E costs $2295.

Analog Devices Inc, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 461-3712. TWX 710-394-6577. TLX 174059.

Circle No 643
Bubble memories as a technology seem to be bursting all over the place. Which is one sound reason why—if you use bubbles for non-volatile memory—you may want to replace them with high-density EEPROMs from SEEQ. Because let's face it, bubbles just don't stack up against SEEQ E's.

Compare speed, for example. Since bubble memories access data serially—like tape drives—they're slower than molasses in January. A typical bubble read cycle will get you about 17-18.5K bytes per second. In that same time, a SEEQ E2 gives you 5 Megabytes. Write times for E2's are also faster by an order of magnitude.

SEEQ E2's not only work faster, they work harder in harsh environments. They operate over extended and full military temperature ranges, with greater inherent reliability than any electromagnetic bubble. Or any other E2.

SEEQ E2's aren't a lot of toil and trouble for designers, either. For one thing, with all their coils and support circuits, bubbles can be real current hogs. But not E2's. A 256K part from SEEQ draws just 60 mA in active mode, 150 µA in standby. And by including many peripheral functions on board, SEEQ E2's make it easy to build hardware and software interfaces to popular microprocessors. Plus E2's fit comfortably on most system boards, using surface mount packages.

At SEEQ, we can help you with virtually any non-volatile memory application—from high-density E2's to micro-computers with E2 on board. For information on bubble memory replacement, call us today for our Application Note #24. SEEQ Technology, Inc., 1849 Fortune Drive, San Jose, CA 95131. (408) 432-9550.

SEEQ
E2 IS OUR MIDDLE NAME.

CIRCLE NO 143
Industrial Product Showcase

Bus-specific lightweight enclosures provide cooling and power-supply options

Designed for VME Bus, Multibus, and Multibus II systems, the Series 508 lightweight packaging enclosures feature a number of cooling and power-supply options that let you customize the product to your specific application. The enclosures are currently available in 3.5-, 5.25-, 7-, and 8.75-in. heights and include 4- to 10-slot card racks.

All 508 Series units feature pressurized and filtered plenum air cooling for even cooling of both the power supply and card rack. Four supply options are available—5V, 12V, -12V, and -5V. By removing two screws, you can access the fans.

Because of the airflow design, you can slide-mount the enclosures without degrading cooling performance.

The enclosures are constructed of rugged, lightweight aluminum with brushed or polyurethane textured finish. Configurations include a desktop model, a model dedicated to 19-in. rack mounting, and a desktop model with EIA mounting flanges so you can remove the front panel when the enclosure is loaded in a 19-in. rack.

The enclosures are available with front, rear, or top access. Each model will accommodate any of the company’s bus-specific backplanes. From $1400.

Mupac Corp, 10 Mupac Dr, Brockton, MA 02401. Phone (800) 225-0398; in MA, (617) 588-6110. TWX 710-345-8458.

Circle No 646

68020-based manufacturing workstation integrates CAE/CAD with CAM

The 32-bit CDX-6000S manufacturing workstation features 8M bytes of RAM (expandable to 12M bytes) and 160M bytes of hard-disk storage. It includes a panel editor, postprocessor, and a database query language (DQL) facility. The database accepts pc-board design input from a variety of sources and generates data for equipment from all phases of manufacturing.

The panel editor lets you construct a multiple-image tooling area for the manufacture and assembly of a pc-board design. Multilayer board images are easily analyzed and modified using the editor’s 24 trace layers and 24 drafting layers. Another 12 layers are dedicated to silk-screen process; assembly; title; board and package outlines; and pad and via manipulations.

The workstation offers a selection of postprocessor interfaces to most commonly used manufacturing equipment. Using the information in the database, you can configure and prepare fabrication and assembly data for photoplotters, N/C drillers, profile routers, autoinsertion tools, pick and place tools, punch and reinstall tools, board handlers, and axial sequencers. The database also contains data that drives an assortment of automatic test equipment.

The DQL facilitates access to specific design details that are frequently needed during the manufacturing process. It permits you to directly select and tailor data for manufacturing and test equipment. The results are formatted in ASCII and can be edited to suit each tool. The five groups of data available for extraction are drill information, shape and pad information, via and pad information, insertion and test information, and pad coordinate information. DQL uses the same command syntax as IBM’s structured query language. $119,900.

Cadnetix Corp, 5757 Central Ave, Boulder, CO 80301. Phone (303) 444-8075.

Circle No 647

EDN October 1, 1987
Reducing Thermal Stress in MLC Chips

Surface mount manufacturing processes directly expose components to soldering temperatures which can cause reliability problems when the rate of rise in temperature is too rapid. Multilayer ceramic capacitors (MLCs) like many components are sensitive to this thermal shock. This sensitivity is not only due to their material properties but also their construction, design, manufacturing and assembly techniques. Toward decreasing this thermal stress, AVX has been studying the effects of ceramic formulations, electrode configurations, chip dimensions, end terminations, mechanical flaws, and soldering parameters.

Thermal Stress

When ceramics are subjected to a rapid change in temperature (such as plunging MLCs into a solder bath) stresses result because the surface reaches the new temperature almost instantly while the interior remains at some lower temperature causing a temperature gradient, \(\Delta T \).

As shown in Equation 1, thermal stress is the function of the square of the chip thickness. Therefore, this parameter is very important in chip design and subsequent thermal shock behavior.

\[
\sigma = \frac{E \alpha (1-\mu) S \phi t^2}{(k/\epsilon C_p)}
\]

\(E \) : ELASTIC MODULUS (DIFFICULT TO CHANGE)
\(\alpha \) : COEFFICIENT OF THERMAL EXPANSION
\(\phi \) : RATE OF CHANGE OF TEMPERATURE (CAN BE CONTROLLED)
\(t \) : HALF THICKNESS FOR A PLATE (CAN BE EASILY CHANGED)
\(\mu \) : POISSON'S RATIO (CHARACTERISTIC OF THE SYSTEM)
\(S \) : SHAPE FACTOR (CHARACTERISTIC OF THE SYSTEM)
\(k/\epsilon C_p \) : THERMAL DIFFUSIVITY (CAN BE CHANGED BY ADJUSTING METAL TO CERAMIC RATIO)

Test Results

Solder tests were run by directly dipping various chip thicknesses into molten solder at 260°C with no preheat. Chip formulation and terminations known to have cracking problems under these conditions were chosen for the test. The chips were then visually inspected for any cracking. The results are plotted in Figure 1. They confirm that as the thickness increased the number of visual cracks increased. It should also be noted that as the part size increased for a constant chip thickness the visual cracks increased. This would be expected since the larger the geometries the greater the internal thermal mismatch.

Discussion

This information along with data on other parameters is being utilized by AVX to design MLC chips for minimum thermal stress in soldering operations. For a technical paper discussing these parameters, complete and return the coupon below.

Please send me the AVX Technical Paper "Factors Responsible for Thermal Shock Behavior of Chip Capacitors."

Please send me literature describing AVX MLCs.

NAME _______________________
TITLE _______________________
COMPANY _______________________
ADDRESS _______________________
CITY _______________________
STATE ___________ ZIP _______
PHONE _______________________

Send to: AVX Corporation
P.O. Box 867
Myrtle Beach, SC 29577

EDN100187

AVX Technology For The Times

EDN October 1, 1987
Driving to work in an ordinary car isn’t so bad if there’s a Formula 1 waiting for you at the office.

Power up an Apollo Series 4000 and you’ll think you’re sitting in a cockpit rather than at a keyboard. For it won’t take more than a moment to realize you’re in control of more horsepower than has ever been packed into a machine in this price range.

You’ll feel the muscle of a 25 MHz 68020 central processor that performs at 7100 Dhrystones. That’s enough energy for engineering applications as demanding as electronic design simulation and finite element analysis.

You’ll experience the authority of a 25 MHz 68881 floating point chip. A processor whose performance exceeds that of systems costing twice as much in both single and double precision Whetstones.

And you’ll enjoy an impressive abundance of storage. Including 32 MB of main memory, a full gigabyte of virtual address space, and up to 348 MB of ESDI disk. Enough to satisfy the hungriest of artificial intelligence applications.

Finally (as if all the above isn’t enough in a $14,000 workstation), you’ll witness high resolution monochrome and color graphics so brilliant they’ll leave those working on competitive machines green with envy.

The Series 4000 workstations. Starting at under $14,000 for monochrome, and under $19,000 for color. Either way, it’s the fastest you can go while sitting still.
DISPLAY MODULE
The 4283-01 vacuum-fluorescent display module integrates a 6-line x 40-character display with an infrared touchscreen. The module uses no overlays, features 969 active switch locations, and is immune to false triggering by light as strong as direct sunlight. Each of the display's two hundred forty 5x7 dot-matrix characters is 5 mm high. The blue-green color provides comfortable viewing, and three software-controlled brightness levels are available (ranging to 185 fL max). Colored filters are available to fit different applications.

The module has the ability to store and retrieve user-programmable canned messages; 8k bytes of CMOS RAM can store 127 canned messages. An onboard battery retains the messages even after power is lost. The module operates from a 5V supply. An onboard µP controls display and touch-input operations, a self-diagnostic test program, and the serial data interface to the host computer. From $478 (100).

Circle No 550

MOTOR DRIVE
The CMD-110 step-motor driver offers the translating and driver stages needed to control virtually any hybrid step motor rated to 7A. It uses MOSFET amplifiers, a 20-kHz chopping frequency, and H-bridge technology.

The unit can operate in full- and half-step modes. The logic inputs are optically isolated—user control lines must be able to sink 15 mA. In many applications, all you'll need to operate the CMD-1109 is a supply voltage (24 to 60V dc unregulated), a step signal, and a direction signal. The pulse and direction inputs employ Schmitt triggering. Users can also choose between circulating- and noncirculating-current control modes. The driver includes low-power (70% current reduction) and no-power modes for emergency shutdown situations. Its operating range spans -40 to +85°C. $350.

American Precision Industries, 3229 Roymar Rd, Oceanside, CA 92054. Phone (619) 439-7500.

Circle No 551

CONTROL SYSTEM
The ATCOM-64 control system is designed for machine- and process-control applications with moderate I/O requirements that nevertheless need control features not currently available in small programmable controllers. It stores and displays user-defined messages, and includes an RS-232C port as a standard feature.

The system offers timing and counting capabilities plus mathematical operations. An inexpensive console functions as a programmer, diagnostic tool, and operator interface for interactive operation.

You can program the system by using an English-based language called Snap. The main chassis provides as many as 32 inputs/outputs; an optional expansion chassis provides 32 more. A system that includes the main chassis, the console, and a 24V power module costs $700; the expansion chassis is $165.

Automatic Timing and Controls Co, 201 S Gulph Rd, King of Prussia, PA 19406. Phone (215) 337-5500. TLX 846437.

Circle No 552

MOTION ANALYZER
The HSV motion analyzer captures (on videotape) high-speed events occurring in areas such as automated manufacturing, product development, product testing, and other areas where high-speed video is required to produce slow-motion playback and analysis. It consists of three subsystems: a shuttered video camera that operates at 400 fields/sec and delivers 400 lines of resolution, a high-speed videotape recorder, and a high-intensity strobe light.

The camera's ability to capture a different picture every 2.5 msec provides the slow-motion capability. The camera's shutter speed—1/2500 to 1/10,000 of a second—provides stop-action capability, which produces blur-free pictures. You can get faster exposure times by using a 1/50,000-sec strobe light. System options include an X-Y
coordinator with a digitizing tablet for data reduction and motion studies, parallel or serial interfaces for networking with PCs and peripherals, and a wave inserter for superimposing an analog signal directly on the video image. $44,950.

Instrument Marketing Corp, 820 S Mariposa, Burbank, CA 91506. Phone (213) 849-6251. TLX 673205. Circle No 554

FIBER TESTER
Designed expressly for manufacturers of single-mode fibers and cables, the Model 2200 measures the three characteristics monitored in statistical quality-assurance programs for fibers and cables: spectral attenuation, cutoff wavelength, and mode field diameter. In addition, it incorporates a feature that reduces handling time per fiber end to under 30 sec, thereby reducing the time of the overall test to less than 2 minutes.

Designed for production testing, the system provides all-digital signal-processing electronics and a production-oriented clamp and fixture system that prepares fiber ends offline and automatically aligns them for test. A bar-code reader speeds data entry. The system architecture includes a test language and file structures that facilitate database retrieval of test results and interaction with other factory automation equipment. The PC/XT architecture lets you integrate the system in an automated cable- or fiber-production line. $69,200. Delivery, six weeks ARO.

Photon Kinetics Inc, 9350 Southwest Gemini Dr, Beaverton, OR 97005. Phone (503) 644-1960. Circle No 554

FUSE-SWITCH
The PSl combines a fuse and a switch in a single package. The combination requires only one mounting hole instead of two. Also, because there are two less terminals to wire, you save wire and assembly time. And changing fuses will be easier for the end user of your product.

The circuit-protection ratings de-
IRC SURFACE-MOUNT RESISTIVE PRODUCTS
OPEN-UP A NEW WORLD OF APPLICATIONS.

Standard and custom devices — one source for all

From one source you can get virtually every type of discrete resistor and resistor network that can be produced in a surface-mount configuration. All fabricated with proven IRC materials and resistor elements — so reliable performance is a sure thing.

IRC was one of the first to offer surface-mount power wirewounds, and our RG Glaze® power chips are the smallest available.

Our TaNFilm® technology produces resistor networks with exceptional stability, tight tolerances, close TCR tracking, and low noise. These networks, and our chip resistors, also meet or exceed military requirements.

If your surface-mount design requires custom-adapted resistors, no problem. And no long wait, either.

We're the one source to know, as you move ahead into the world of surface-mount. For product specs or application assistance, contact us: IRC, Inc., Greenway Road, P.O. Box 1860, Boone, NC 28607. Phone 1-800-255-4-IRC.
(In NC, 704-264-8861.)
Industrial Product Showcase

depend on the fuse you choose: The maximum ratings are 20A at 120V ac, 15A at 250V ac, and 20A at 32V de. The fuse-switch is designed to use standard 0.25×1.25-in. fuses; however, the vendor offers an adapter for international-size (5×20-mm) fuses. $2 (100).

Heinemann Electric Co, Box 6800, Lawrenceville, NJ 08648. Phone (609) 882-4800.

Circle No 556

OPTICAL SENSORS

MQ triple-beam photoelectric sensors are available in three versions that offer sensing capabilities ranging from 1 in. to more than 2 ft. An optical range-measurement principle provides consistent range detection regardless of the color, material, or surface condition of the detected object, according to the manufacturer.

Because the units have a preset sensing region, background movement has no effect on the sensors' operation. This feature makes them useful in material-handling applications that are beyond the capabilities of conventional equipment.

The maximum switching speed of 250 operations/sec makes the sensors compatible with high-speed detection or counting applications. The measurement technique minimizes the effect of soiled lenses because detection is based on light angles rather than on light intensity. $50 to $75 (100).

Aromat Corp, Industrial Products Div, 250 Sheffield St, Mountainside, NJ 07092. Phone (201) 232-4260. TWX 710-997-9536.

Circle No 555

PRESSURE CONTROLLER

The µPC 659 is designed for single-loop pressure-control applications. Its features include two or three programmable alarms, easy-to-read dual LED displays, fully adjustable PID (proportional integral and differential) control, 100-msec max conversion time, and an accuracy of ±0.2%.

The controller's µP allows you to tailor the µPC 659 to the exact requirements of an application. You enter scaling, calibration, alarm-activation, and control parameters via the keyboard. The dual LED display prompts you during programming. You can program the upper display to indicate process condition, deviation from setpoint in engineering units, or percent of manual power output in manual control. A debounced switch, located behind the front door, provides transitions between automatic and manual modes.

Dynisco, 10 Oceana Way, Norwood, MA 02062. Phone (617) 769-6600.

Circle No 559

Pressure sensors provide amplified output

140PC pressure sensors are individually calibrated and temperature compensated, then amplified so they can directly interface to control circuitry or A/D converters. They're ready to use, off-the-shelf.

These sensors provide a higher degree of accuracy than low level output products, and are interchangeable. PCB terminals exit on the opposite side of the ports. Optional 12-inch, 24 guage color-coded leadwires are also available.

For more information or a FREE catalog covering our full line of pressure sensors, write MICRO SWITCH, The Sensor Consultants, Freeport, IL 61032. Or call 815-235-6600.

Up to 500 psi pressure sensor

The 240PC Series offers pressure sensing options ranging from -15 to 500 psi. A rugged aluminum housing makes these sensors suitable for applications where durable packaging is required. Several types of internal O-ring seals are available for wide media compatibility with non-caustic fluids.

Accuracy comes from temperature compensating circuitry, computer-consistent calibration of null and full scale output, plus excellent repeatability. These sensors are amplified and fully signal conditioned.

For more information or a FREE catalog covering our full line of pressure sensors, write MICRO SWITCH, The Sensor Consultants, Freeport, IL 61032. Or call 815-235-6600.
At about $15 a sensor, the 16PC is the lowest cost method of sensing the differential pressure of liquids and high-humidity gases.

And while our new miniature sensor is economical, it's also very reliable. Thanks to the unique new chip mounting technique we use. It seals the sensing element so that moist media can be applied to both sides of the sensor chip.

Temperature compensation and on-chip laser trimming add to reliability as well, ensuring high stability over 0-5, 0-15 and 0-30 pressure sensing ranges.

The 16PC Series is compatible with high volume circuit board assembly processes and is available in differential, gage and modular versions.

Applying technology innovatively is just one of the ways we can help you save money. To find out more, call us at 815-235-6600. Or write MICRO SWITCH, Freeport, IL 61032.

Together, we can find the answers.

MICRO SWITCH
a Honeywell Division
Cracking. In surfacemounted capacitor chips it's a nasty problem, usually caused by mechanical and thermal stress. Corning's MLC capacitor chip is designed specifically to withstand those stresses.

ACE process reduces internal stress
Our ceramic chips are made by the Advanced Corning Electrode (ACE) process. We inject a lead-alloy electrode into a strong ceramic body. Result: far less internal stress and virtually no delamination or cracking.

Corning's patented double barrier-layer terminations also prevent cracking. A compliant lead-alloy layer in the termination helps relieve stresses created by thermal expansion mismatch. And that means no cracking.

Solderability exceeds mil specs
Our rugged terminations also resist leaching in wave reflow and vapor phase soldering systems. So solderability beats mil specs, even after 16 hours of steam aging.

And, because the electrode is a non-noble lead alloy, we eliminate silver migration and resist low-voltage failure.

Chip resistors, too
Come to Corning for reliable resistor chips, too. Our thick-film chip resistors are glass-passivated for electrical stability.

Don't let surface-mount headaches add stress to your life. For full information, circle the reader service number. Or take two aspirin and call us in the morning.

MOTOR CONTROLLER
The MCH05-24 is a 5A, 12 to 24V, open-loop commutation controller for brushless dc motors. The unit can control the direction of rotation and start, stop, and brake functions via manual switching or TTL inputs. You can adjust the speed (over a 4:1 range) by varying the dc-voltage input levels or by using the controller's built-in potentiometers. The unit incorporates an overload-protection circuit to prevent motor and/or controller failure under locked-rotor conditions.

The controller is available on a 4 x 4\-in. board; if you wish, you can integrate the controller in a motor housing to obtain a compact, replaceable motor-control package. $250.

BEI Motion Systems Co, Kimco Die, Box 1626, San Marcos, CA 92069. Phone (619) 744-5671. TWX 910-332-1168.

Circle No 557

DISPLAY
The Model 77/719 LED display accepts analog input, converts it to digital information, scales it in accordance with preset scale-factor switches, and displays the data in 3.3-in. digits. Various standard voltage and current ranges are available; special ranges are also available.

Flashing nines indicate under-
HAND-HELD TERMINALS

FIND OUT ABOUT OYSTER BEFORE YOUR BOSS DOES...

Are you wasting time and money developing and manufacturing a hand-held terminal or controller?

Why, when Oyster can offer you a unit with the exact specification you need?

You concentrate on the core elements of your project, and we’ll supply the terminal – saving you time and resources.

Give us a call, return the coupon, even send us your spec. At least find out the facts... before someone else does.

TAKE YOUR PICK

Display type and size

Keyboard type and layout

Case design

Protocol

Interface

Tell me more... quick.

Name__________________________

Position________________________

Company________________________

Address________________________

Tel No. _______________________

301 Daniel Webster Highway, Merrimack, NH 03054.
Tel: (603) 429-2566.

1640 Fifth Street, Santa Monica, CA 90401.
Tel: (213) 393-4774. Telex: 65-2337. Facsimile: (213) 393-6040.

Oyster terminals

EVERY HAND-HELD TERMINAL YOU CAN THINK OF
You do.
We do.
On one hand, there's your drive to find new applications and new markets. On the other, there's our drive to meet your needs.
And as partners, we both end up in the lead.
You give us the impetus to stay a generation or more ahead of the competition. And we give you the products to do the same.
Like our high-performance, high-capacity Winchester drive families, from 85MB to 760MB. And our first high-capacity optical product, a 5½-inch, 800MB WORM drive.
So keep pushing us.
Because the further you drive Maxtor, the further we'll drive you.
Maxtor Corporation, 211 River Oaks Parkway, San Jose, CA 95134, (408) 432-1700, TELEX 171074.
Sales offices: Austin (512) 345-2742, Boston (617) 872-8556, Orange County (714) 472-2344, New Jersey (201) 747-7337, San Jose (408) 435-7884, Woking, England (44)/4862-29814.
WHERE TO FIND A LEADER.

For more information on high-capacity Maxtor disk drives, contact our distributor in your area.

CALIFORNIA
Anthem/Lionex Electronics, Inc.
(714) 768-4444
(408) 295-4200

FLORIDA
Pioneer Standard Electronics, Inc.
(305) 934-0900

GEORGIA
Pioneer Standard Electronics, Inc.
(404) 448-1711
Quality Components
(404) 449-9508

ILLINOIS
Anthem/Lionex Electronics, Inc.
(312) 640-6066
Pioneer Standard Electronics, Inc.
(312) 437-9680

KANSAS
Pioneer Standard Electronics, Inc.
(913) 492-0500

MARYLAND
Pioneer Technology, Inc.
(301) 921-0660

MASSACHUSETTS
Pioneer Standard Electronics, Inc.
(617) 861-9200
Anthem/Lionex Electronics, Inc.
(617) 657-5170

MINNESOTA
Anthem/Lionex Electronics, Inc.
(612) 944-5454
Pioneer Standard Electronics, Inc.
(612) 935-5444

NEW YORK
Pioneer Standard Electronics, Inc.
(516) 921-8700

OHIO
Pioneer Standard Electronics, Inc.
(216) 587-3600
(513) 236-9900

PENNSYLVANIA
Anthem/Lionex Electronics, Inc.
(215) 443-5150
Pioneer Standard Electronics, Inc.
(215) 674-4000

TEXAS
Quality Components, Inc.
(214) 733-4300
Pioneer Standard Electronics, Inc.
(214) 386-7300

CANADA
Future Electronics
(514) 694-7710

2.5 to 12.5V dc for each pressure range.

The transducer design utilizes an IC pressure-sensor element. The design minimizes oil requirements for optimal performance over temperature, and also provides the ability to handle extreme burst pressures. The transducers' accuracy is guaranteed to be within ±0.5%. Internal voltage regulation allows the units to operate with any supply voltage from 12 to 30V dc. The pressure connector accepts a variety of fittings. In addition, the package provides resistance to shock and vibration, as well as to EMI/RFI problems. $100 (100).

Sensym, 1255 Reamwood Ave, Sunnyvale, CA 94089. Phone (408) 744-1500. TWX 910-339-9625.

Circle No 560

ENCLOSURE

The Flat-Top enclosure is engineered especially for the control-room environment. It features a sturdy 14-gauge steel frame reinforced with four 11-gauge corner gussets, and welded-seam components. A 19° front vertical slope provides the maximum possible depth for slope-mounted equipment.

You can choose from three panel widths, four frame depths, and
NEW
LOW PROFILE, SEALED CONTACT SWITCH
FOR COST EFFECTIVE KEYBOARD ARRAYS
Examine our new T-15 keyboard switch. Sealed contacts for easy wave
soldering and aqueous cleaning. Wide spring-like terminals hold/align
switches securely before and after soldering without a metal subpanel.
Center to center mounting close as 1.27mm. U.S. automated production/
testing result in a quality and low price unmatched by hand assembled
switches.
MEI Stock/Custom Keytops
We offer a wide variety of keytop sizes, shapes and colors with custom
or stock legends. Plus our extensive mold system produces custom
shapes at a fraction of normal costs. Space bars, leveling mechanisms
and LED windows also available.
MEI's years of keyboard construction experience can help resolve your
design problems too — from PCB layout to selection of the best legend
system. Call today for samples & specs. Toll Free: 1-800-782-7177;
In VA: 703-435-9496.

MECHANICAL
ENTERPRISES, INC.
461 Carlisle Dr.
Herndon, VA 22070
Telex 710-832-0942

COMPUTER SYSTEM
The 4150 industrial computer system combines the power and versa-
tility of an IBM PC/AT-compatible computer with a rugged industrial
terminal package. It includes a
5-slot PC/AT passive backplane, an
EGA/CGA color monitor, data-en-
try and function keypads, hard- and
floppy-disk facilities, and a number
of expansion capabilities. The front
panel is sealed to NEMA standards,
and the CRT is protected by an
impact-resistant Lexan shield.
Options include a PC/AT comput-
er CPU board, a 3½-in., 20M-byte
hard-disk drive; a 3½-in., 720k-byte
floppy-disk drive; bubble memory;
an EGA controller; and a full-size
sealed keyboard. You can order the
unit with or without pc boards and
disk drives. Because the computer's
motherboard isn't preconfigured,
you can select a specific µP to suit
your application. From $3600.

Xycom Inc, 750 N Maple Rd,
Saline, MI 48176. Phone (313) 429-
4971. TWX 810-223-8153.
Circle No 562

Showcase

three slope openings. The enclosure
is also available in two versions: The
C (computer) version has decorative
trim; the S (industrial) unit has
square corners and no trim. Various
accessories and sizes are also avail-
able. From $400. Delivery, four to
six weeks ARO.

Cabtron Systems Inc, 200 Anets
Dr, Northbrook, IL 60062. Phone
(312) 498-6090.
Circle No 561

CIRCLE NO 16

Brief
cases.

The series H enclosures are the smallest in the
PacTec line. They are ideal for key pads, programmable controllers, pocket pagers—in
fact, for any hand-held device.
Every enclosure in the extensive PacTec line
can be customized to your specifications.
Variables include color, EMI/RFI shielding,
cutouts, custom trim, handles and other
accessories, even inexpensive custom panels.
Call or write today
for a complete
catalog and
specifications.

Your custom enclosure is in stock. © PacTec Corp.

See us at Wescon, Booths 2310 and 2312
CIRCLE NO 17

EDN October 1, 1987
Sometimes there's more to high technology than just the highs. A good CPU board delivers high quality, high performance, and high speed. A great CPU board can deliver all that with low power consumption and low heat dissipation—all at a low cost. That's why Dynatem's DCPU1 is a great CPU Board—a perfect blend of the highs and lows. The DCPU1 achieves this perfect blend by combining 100% CMOS technology on the VMEbus with a high performance I/O oriented board.

With two serial ports, 40 programmable parallel I/O lines plus three 16-bit timers, and a real-time clock/calendar, the DCPU1 meets the performance challenges of many industrial applications.

Round out the highs and lows with a feature that makes development on the DCPU1 surprisingly easy—you can prepare programming on an IBM (or compatible) PC XT or AT and download to the module—and you've got a great CPU Board.

You've got Dynatem's DCPU1.

100% CMOS VME.
- I/O oriented CPU module with two serial ports, 40 programmable parallel lines, three 16-bit timers and a real-time clock/calendar.
- 100% CMOS VME board with low power, low heat dissipation (CMOS 68000 CPU at 8, 10, 12.5 MHz)
- Programs can be prepared on an IBM or compatible PC and loaded
- Up to 512 Kbytes no-wait, dual ported static RAM, 128 Kbytes PROM
- VME master and slave, receive and generate 7 levels of interrupt
- Low cost
Industrial Product Showcase

CONTROL SYSTEM

The CDI-Ladder industrial-control system combines popular STD Bus computer hardware with a standard relay ladder-logic language. With the STD Bus, the same hardware can be the core of a small or large system.

The standard system includes the RD-1000 software, an 80188 or Z80-based single-board computer (which includes two serial ports and battery-backed RAM), and a 6-slot card cage with a power supply. Because the computer performs all the necessary functions (including 24 parallel I/O lines), five slots are available for analog and digital I/O expansion.

You program the unit with an IBM PC; nonengineering personnel can program and maintain the system. It can accommodate as many as 416 analog and 1152 digital I/O points, and can support 40 PID (proportional integral and differential) loops, 32 stepper drums, and full 4-function math. An 80188-based system costs $1295.

Computer Dynamics, 107 S Main St, Greer, SC 29651. Phone (803) 877-8700.

Circle No 564

CONTROLLERS

The 2800 Series ¼-DIN µP-based digital controllers are programmable via a front-panel keypad. Each features two limits based on time and two limits based on the variable being measured. You can install 1A relays for any or all of these limits.

At keyboard command, the controller displays the total process run-time, rate of change in units per minute, and the high and low peaks of the variable. Options include an analog output and an RS-232C or RS-422 serial port.

Three models are available. Model 2810, a temperature controller, accepts inputs from seven different thermocouple types and features programmable setpoint ramping for precise control. The 2820 process controller offers keypad scaling and offset, as well as a programmable difference limit that
Introducing CHIPLOC Bags from Dow:

CHIPLOC ES Delivers **Up To 80%** More Static Protection Than The Leading Surface Shielding Bag.

Capacitive probe tests show that CHIPLOC® ES static shielding and dissipative packaging from Dow has up to 80% more shielding capability than the leading surface shielding bag on the market.

CHIPLOC ES has a thin, high-quality conductive metallized layer† designed specifically to minimize the penetration of electric fields from highly charged objects. It provides superior Faraday cage protection of the most sensitive electronic devices.

It is reusable, too, because of the exclusive "buried shield" construction used in CHIPLOC ES. Two layers of static dissipative film protect the metallized layer against abrasion, tears and punctures. Such damage, more common in bags with surface metallized layers, can dramatically reduce shielding effectiveness. In fact, tests‡‡ show that after just eight simulated use cycles, competitive exposed-film bags retain only 52% of their shielding ability. CHIPLOC ES retains 92%.

Free Samples

For the complete CHIPLOC story, including free samples and a copy of the brochure "Two New Solutions to ESD Problems," call 1-800/258-2436, Extension 32/CHIPLOC. Or write: The Dow Chemical Company, Packaging and Industrial Foams Dept., 2020 Willard H. Dow Center, Midland, MI 48674.

Advancing The Science of Electronics

†Manufactured of STRUCURE™ static dissipative films.
‡‡Test results available upon request.

Trademark of The Dow Chemical Company
Industrial Product Showcase

makes process batches. The Model 2830 counter, rate, and rpm controller works with square wave, sine wave, or pulse inputs and can control both the value of the input and the rate of change of this value over a programmable number of minutes. $449.

Sycon Corp, Box 491, Marion, OH 43302. Phone (614) 382-5771. TLX 3775688.

Circle No 563

OPTICAL ENCODER
The H20 incremental optical encoder measures only 2 in. in diameter. Designed specifically for the process-control and factory-automation industries, it features an aluminum housing that’s sealed against oil and water splash, and bearings that have the capacity for 80-lb loads.

An unbreakable code disk provides as many as 600 cycles per turn (2400 counts per revolution) on two quadrature channels. A zero-index signal is available. The unit operates with voltages ranging from 5 to 24V and features a single LED source. Options include hollow and through shafts, tethered mounting arrangements, sealed environmental or cable connectors, and a variety of mounting configurations. $100 P.O. Box 130 (OEM qty).

BEI Motion Systems Co, Industrial Encoder Div, 7230 Hollister Ave, Goleta, CA 93117. Phone (805) 968-0782. TLX 888069.

Circle No 565

PRESSURE SENSORS
The NPI Series pressure transducers use a piezoresistive silicon sensor chip housed in a stainless-steel, cylindrical package and isolated from the measured media by a stainless-steel diaphragm. A fluid inside the package transmits the pressure from the membrane to the chip surface, so the units can operate with all fluids and gases that are compatible with stainless steel.

The sensors are available in packages measuring 0.6- and 0.75-in. in diameter. They cover pressure ranges from 0 to 15 to 0 to 10,000 psi in both gauge and absolute versions. They are temperature compensated.

114

CIRCLE NO 19

CY525 3rd generation
STEPPER MOTOR CONTROLLER

most intelligent controller offers linear ramping, 10,000 steps/sec, unlimited stepping, change rate on the fly, read position on the fly, and much more.

CY512
compatible,
40 pin, +5 volt
TTL 8 bit I/O interface
to computer. $195 ea ($80 / 100)
Prototyping board available.

Cybernetic Micro Systems
P.O. Box 3000, San Gregorio, CA 94074
(415) 726-3000 Telex: 171-135 attn: Cybernetic

CIRCLE NO 20

EDN October 1, 1987
Industry's largest surface-mount selection.

Good reasons to switch:
1. Toggles, pushbuttons, slides, DIPs.
2. High-temperature plastic construction.
3. Withstands infrared, vapor phase reflow, wave soldering processes.
4. Competitively priced.
5. Available NOW!

For your free catalog, product samples, applications help, or a quotation, call or write:
ALCOSWITCH, 1551 Osgood St., N. Andover, MA 01845, U.S.A.
Tel: (617)685-4371, Twx: (710)342-0552, Fax: (617)686-9545

See us at Composants, Nov. 16-20 Paris
CIRCLE NO 90
Advanced emission control.
EMC Data Line Filters from Tokin.

Tough world EMI/EMC standards such as FCC, VDE and VCCI (Japan) demand effective countermeasures—for both power and data lines.

And Tokin offers an expanded lineup of data line filters designed to the most rigorous standards ever.

Consider our D-16C DIP noise filter for high impedance over a wide range, or EMC chip filters (M608, 514 and 620)—ideal for absorbing common-mode noise in signal transmission lines. Tokin feed-through filter capacitors (30F102P) suppress high-frequency noise emissions—even microwaves. And our radical lead micro-inductors for normal mode noise absorption come into two series: SNT for high currents and SBT for high frequencies.

But these are just a start. For details, pick up the phone and call us today.

Shapes and Dimensions

<table>
<thead>
<tr>
<th>Component</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNT-520</td>
<td>Width 3.0 x Height 3.0 x Depth 1.5</td>
</tr>
<tr>
<td>SBT-0440T</td>
<td>Width 4.0 x Height 2.2 x Depth 1.5</td>
</tr>
<tr>
<td>D-16C</td>
<td>Width 3.0 x Height 3.0 x Depth 1.5</td>
</tr>
<tr>
<td>M608</td>
<td>Width 3.0 x Height 1.5</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Circuit Diagram</th>
<th>Impedance (kΩ)</th>
<th>Insertion Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBC-Inductor</td>
<td>≥ 0.1</td>
<td>–</td>
</tr>
<tr>
<td>SNT Series</td>
<td>≥ 0.3</td>
<td>–</td>
</tr>
<tr>
<td>SBT Series</td>
<td>≥ 0.4</td>
<td>–</td>
</tr>
<tr>
<td>DIP Noise Filter</td>
<td>≥ 0.3</td>
<td>–</td>
</tr>
<tr>
<td>Feedthrough Filter</td>
<td>≥ 0.3</td>
<td>–</td>
</tr>
</tbody>
</table>

Limits for Radiated Emissions

FCC, CISPR and VCCI

Tokio America’s ETCL provides a full range of EMC technical services including measurement, countermeasures and consulting. Call us for details.

Tokin Corporation
Hazama Bldg., 5-8, Ni-chome, Kita-Aoyama, Minato-ku, Tokyo 107, Japan
Tel: Tokyo (03) 402-6166
Fax: Tokyo (03) 402-2866
Telex: 02422695 TOKIN J

Tokin America Inc.
2661 Fortune Drive, San Jose, California 95131, U.S.A.
Tel: 408-432-8020 Fax: 408-434-0375

Chicago Branch
President Plaza 1, Suite 2009, 8600 W. Bryn Mawr, Chicago, IL 60631
Tel: 312-380-0030 Fax: 312-693-8334

You can reach our agents by phone:
London 01-837-2701; Paris 1-453 475 35; Milan 0312 478-5366; Munich 089 5164-0; Seoul (02) 777-5767; Taipci (02) 7311-245; Hong Kong 3-315769, Singapore 747-8668
Industrial Product Showcase

over 0 to 70°C. Because of the design, you can interchange the units and still retain calibration to within 1%. Other key parameters for the sensors include ±0.1% of full-scale output (FSO) static accuracy (combined linearity, hysteresis, and repeatability), and ±0.5% FSO thermal accuracy over the 0 to 70°C range. $25 (OEM qty). Delivery, eight weeks ARO.

NovaSensor, 1055 Mission Ct, Fremont, CA 94539. Phone (415) 490-9100. TLX 990010.

Circle No 566

PANEL CONTROL

The Series 61 rotary switches, in combination with appropriate software, can replace a dedicated keyboard or a touchscreen in measuring or monitoring applications. The switches provide a choice of quadrature 2-bit code, 2-bit counting code, and 3-bit counting-code outputs. You can actuate a switch to provide data entry when the rotary shaft is pushed.

These devices do not use electromagnetic contacts for switching. Rather, a rotating disk passes or interrupts light to a pair of phototransistors to provide the coded output. The output can sense the direction of rotation as well as the number of steps. You can design the software to translate the code to cursor movement on a screen or to change the value of a system parameter. The Series 61 rotary encoder switch is available with 16 or 24 detent positions. Approximately $20. Delivery, four to six weeks ARO.

Grayhill Inc, 561 Hillsgrove Ave, La Grange, IL 60525. Phone (312) 354-1040. Circle No 568

COMPUTER SYSTEM

The ECX Model 188 processor operates from a single 5V supply and can be programmed to perform machine control, process control, data acquisition, and other fixed-program tasks. The processors have two ranges of processing power, so they can satisfy a broad range of product-automation applications.

Race Card

The HK68/V2F is a high-performance VME microcomputer with race-bred 32-bit power for real-time applications. High engine output and economical, dependable performance are just the start of the HK68/V2F's standard equipment:

- Up to 25MHz Motorola 68020 CPU
- Up to 4MB of on-board DRAM with parity
- 128K EPROM
- Serial Port
- Mailbox interrupt support
- VSB compatible memory expansion bus

Optional racing equipment includes 68881 Floating Point Coprocessor and no wait-state DRAM.

Take Heurikon's HK68/V2F for a test-lap today. Call toll-free: 1-800-356-9602 (ext. 912).

CIRCLE NO 21

3201 Latham Drive • Madison, WI 53713
Ferranti covers the small signal mosfet market from N to P.

Offering one of the most comprehensive ranges of small signal mosfets, Ferranti Semiconductors covers the market with a complementary line of N & P channel devices.

Our advanced production techniques and precise manufacturing process control combine to produce very high yields. This enables us to offer very competitive pricing and shorter lead times while ensuring excellent product quality and reliability.

Product specifications range from breakdown voltages (BVDSS) of 60 to 400 volts and current handling capability (ID) of up to 4.8 amps continuous. Packages include E-Line (TO-92), SOT-23, TO-39 and TO-220.

We'd like to send you our free mosfet package which includes a Product Selection Guide and a full Data Book. Call us at (516) 543-0200 or complete and return the coupon below.

FERRANTI semiconductors

EDN100187

Yes, I'd like to receive your free mosfet package.

Name ____________________________
Title ____________________________
Company _________________________
Address __________________________
City/State/Zip _____________________
Phone ____________________________

Detach and mail to: Ferranti Semiconductors
87 Modular Avenue, Commack, NY 11725

CIRCLE NO 65
Industrial Product Showcase

You can interface an ECX processor to your product's I/O in one of four ways: You can use a set of ECX discrete I/O lines, attach your own I/O circuitry to the ECX expansion channel, use an optional adapter that accommodates a variety of industry-standard I/O boards, or design high-speed circuitry to attach to the ECX expansion channel. Because the ECX processors are compatible with the IBM PC, developing software for them is relatively simple. $600 (50).

Microsys Inc, 1011 Grand Central Ave, Glendale, CA 91201. Phone (818) 244-4600.

Circle No 567

ENCLOSURE

The E Series Eurocard-type electronic enclosures feature a built-in fan tray that holds one to nine fans. A 3M filter material is available in six densities for various applications. These filters snap in, making replacement a simple task.

The enclosures are designed for 3U (E3) and 6U (E6), 19-in. subrack applications. Complete companion subracks and accessories that accommodate VME Bus and Multibus II are available as options. The enclosures are constructed of steel mounting frames, die-cast aluminum extrusions, and sheet metal. If you need slide rails to support a subrack or chassis, you can obtain snap-in inserts to attach such hardware to the side extrusions. Retractable pull-down feet are standard. $270 for the E3; $290 for the E6.

Tracewell Enclosures Inc, 7032 Worthington Galena Rd, Colum-

bus, OH 43085. Phone (800) 848-4525; in OH, (614) 846-6175.

Circle No 570

DIGITAL ENCODER

Model 721 is a digital modular incremental encoder suitable for servosystem, motor-speed-control, plotter, machine-tool, medical, and robotic applications. It features a rugged metal base, self-alignment, automatic gap adjustment, and a snap-on cover for easy installation.

The unit has resolution ratings ranging to 1800 cycles. The quadrature outputs are TTL compatible, and the operating frequency ranges to 100 kHz. Model 721's cover meets UL-94V-0 requirements, and its cable is UL/CSA approved when
shielded. Standard options include a differential line driver for 5V operation. You can also obtain units that can operate at voltages ranging to 24V. $30 (OEM qty).

Litton Systems Inc, Encoder Die, 20745 Nordhoff St, Chatsworth, CA 91311. Phone (818) 341-6161. TWX 910-494-1229.

Circle No 569

MONITOR-CONTROLLER

You can link as many as 32 remote ITG 2600 Control Masters on an RS-485 serial link to provide 64 analog inputs, 128 alarm and/or control outputs, and thirty-two 20-mA analog outputs. Each instrument can have its own address. The controller can automatically upload to the computer—or send on command—scaled input data, process-variable type, and digital output status for every A/D conversion (approximately every 50 msec).

The ITG 2600 combines multiple signal-conditioning functions, dual isolated inputs, a 17-bit A/D converter, four open-collector outputs for alarm or control, and a scalable 20-mA analog output that can drive loads ranging to 1 kΩ. Its accuracy is 0.01% of reading, and the stability specification is 5 ppm/°C typ over 0 to 60°C. Its programmable math package can operate on input and/or output values, and can create user-defined control and linearization algorithms. $425.

Analogic Corp, Industrial Technology Group, 14 Electronics Ave, Danvers, MA 01923. Phone (617) 246-0300.

Circle No 571

OPTICAL LINK

The ODCL1 optical digital-communications link extends the transmission length of an RS-232C, RS-422, RS-485, or TTL data link to 3 km. It consists of two full-duplex electrical-to-optical modems. A D-subminiature connector provides the electrical interface, and the signals are fully compatible with the specified protocol.

The optical interface consists of either SMA or DIN connectors. The modem contains an 850-nm LED transmitter and a PIN photodiode detector. The coupled power into a 100/140-μm fiber is −12.2 dBm typ; and the receiver's sensitivity measures −31.5 dBm.

The modems are available in both data-terminal- and data-communication-equipment versions. You can supply power for the units through the 25-pin connector or through a separate power supply connected to 110V ac. $140 per modem.

Siecor Electro-Optic Products, Box 13625, Research Triangle Park, NC 27709. Phone (919) 549-6571. TLX 216910.

Circle No 573

With a 2.5 ns cycle time, only one memory's faster.

As the fastest static RAM in the world, our 12G014 256 x 4-bit static RAM provides updated information at a 400 MHz rate. With a 2.5 ns cycle time and 3.5 ns access time, it's the key component for real time systems.

Since it writes as fast as it reads, (vs. ECL SRAMs which may have a 5 ns read but an 8 ns write), you can mix your reads and writes and process on the fly at 400 MHz. You'll create a system with a true snapshot memory.

As the first registered, self-timed static RAM available; the fully ECL-compatible 12G014 NanoRam™ latches and pipelines both inputs and outputs, internally generates all needed write cycle timing signals, and is totally controlled by a single clock input. This architecture results in two big benefits:

1. The cycle time of your system is equivalent to the cycle time of the IC itself—2.5 ns.
2. It's easier to use than your present SRAMs.

Whenever you need real time memory—ask for details today on our memory ICs, full family of GaAs standard PicoLogic™ products, or standard cell ASICS.

GigaBit Logic, 1908 Oak Terrace Lane, Newbury Park, California 91320-5524. Call (800) GAAS-ICs. In California, (805) 489-0600.

We read you and will write you. Order our 12G014 today; get delivery from stock tomorrow.
"Ultimate"... simply defined, it means the best! Without equal! And in the case of POWER-ONE's 1500W Power System, we think you'll agree the description fits.

Specify Up To 15 DC Outputs ... From Stock. Fully modular design allows the user to specify a proven multiple output power system from a wide selection of single, dual and triple output power modules. Virtually any combination of output voltage and current ratings, including UPS capabilities, can be delivered from stock. No more time consuming and costly custom designs to contend with.

Industry's Highest Power Density. POWER-ONE's International High Power Series represents the most compact multiple output power systems available today. Up to 1500 watts of multiple output power in an industry standard 5 x 8 x 11 inch fan-cooled package.

On-Board UPS Capability. Only POWER-ONE offers a completely self-contained on-board Uninterruptible Power System module providing unlimited battery back-up of up to 1000 watts of DC output power. Available off-the-shelf, these standard UPS modules mount entirely within the main enclosure of any POWER-ONE International High Power Series model.

A True World Market Power System. The International High Power Series meets the toughest safety requirements of VDE, IEC, UL and CSA, plus the EMI limits of VDE and FCC. Along with worldwide AC input capabilities, it is the clear choice for products marketed not only in the U.S., but internationally as well.
The only VME System Enclosures with EMI/RFI Compliance

With Electronic Solutions VME enclosures you don't have to take any static about FCC compliance. Because your VME system can meet or exceed FCC Class A Part 15 EMI/RFI standards. No other enclosure manufacturer can make that statement.

Here's why: Only Electronic Solutions puts a new face on VME, an outer front panel that—with other design features—keeps your EMI/RFI signals from straying. What's more, it hides those I/O connectors and dangling cables so your system looks a lot cleaner and more attractive.

Electronic Solutions enclosures for VME—and Multibus II—come assembled complete with card cage, backplane, power supply, room for peripherals and more. You can get slim enclosures with 3 slots all the way up to multi-system enclosures with 40—count 'em—40, slots. And you buy them ready for your system at a tiny fraction of what it would cost to develop your own packaging.

In addition, there are a few other agencies besides the FCC that can help multiply your system's success. So Electronic Solutions enclosures pass UL, CSA, and TUV/IEC 380 as well.

Call today for complete details. Because no matter what formula you planned to use for system packaging, putting your system in our enclosures is the one that really adds up.

We'll FAX you the facts.

Want the latest data in a hurry? Nothing is faster than Electronic Solutions' new "FAX the FACTS" program. If you have a FAX machine, just call our "800" number, give us your FAX number and type of FAX machine, and the information you need from us. We'll FAX it to you immediately.

We'll FAX you the facts.

Electronic Solutions
UNIT OF ZERO CORPORATION

CIRCLE NO 162
Flat-panel display driver scans LCDs at multiplex rates as high as 1:256

Providing an interface between industry-standard flat-panel display controllers and liquid-crystal displays, the PCF2201 LCD driver can control as many as 81 row lines or 80 column lines of a dot-matrix LCD. As a result, you need only 21 of the drivers to scan a 640×400-pixel display; typically, the drivers consume only 100 mW. The PCF2201 can drive twisted-nematic LCDs and super-twisted birefringence-effect LCDs at multiplex rates as high as 1:256, which is about 30% higher than the rates other currently available devices offer.

To operate the device as a row driver, you serially clock row-select data through an internal 81-stage shift register. The maximum clock rate for the shift register, and hence the maximum row-scan rate for the display, is 100 kHz. The shift register is bidirectional, allowing you to scan the LCD in either direction. The chip’s control outputs let you cascade drivers to scan displays having more than 81 rows.

When the IC operates in column-driver mode, the shift register functions as a set of static latches that holds parallel output data for 80 of the display’s column lines. A data buffer, provided by 80 more data latches, allows you to assemble more column information while the driver sends the current column information to the LCD. You can enter data in the data buffer either serially or in 4-bit nibbles. The maximum clock frequency for transferring data into the buffer is 4 MHz; in 4-bit nibble mode, therefore, the driver has a maximum data-transfer rate of 16M bps, which is about 20% higher than the rate possible with other currently available LCD drivers. Data is automatically rearranged in the buffer to suit the display-scanning direction you select.

The one remaining shift-register latch, which is not used for column data, provides an additional column output that you can control via a separate single-line input. In certain flat-panel displays, you can use this additional column driver to eliminate the colored border that can occur around the edges of super-twisted birefringence-effect LCDs.

The PCF2201 provides internal level shifters that shift the logic-level row/column data contained in the shift register to the voltage levels required by the LCD. The driver can handle drive voltages as high as 25V, and the level shifters require four bias voltages between 5V and −25V. Depending on the data in the shift register, and on whether you’re operating the device as a row or a column driver, the LCD drive outputs switch between two appropriate voltage levels under the control of an external ac chopping-frequency input.

The display driver draws a typical operating current of 0.4 mA and a standby current of 15 µA, and it provides on-chip overtemperature protection. All of its data and control inputs are 5V CMOS compatible. The driver is supplied on reels in a tape-automated-bonding package with 120 leadouts. It costs around Swiss Fr 8 (10,000).

—Peter Harold
Philips, Elcoma Div, Box 523, 5600 AM Eindhoven, The Netherlands. Phone (040) 757005. TLX 51573.

Circle No 633
Signetics Corp, 811 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 991-4571.

Circle No 634
Bright, 640×200-pixel EL display offers high contrast, long life

Providing brightness and viewing-angle specs comparable to a CRT's, but weighing only 22 oz, the dc-driven EL1C electroluminescent (EL) display panel is the thinnest display available. Including driver electronics, this flat-panel display measures less than 0.575 in.

Unlike capacitive ac EL displays, which require input voltages in the neighborhood of 400V, this resistive dc EL panel operates at voltages from 120 to 180V. As a result, the EL1C avoids the voltage-induced pixel-failure problem (caused by thin-film dielectric breakdown) that plagues ac EL displays. The 640×200-pixel dc EL panel consumes 20W typ.

The EL1C is also an improvement on older dc EL models. Older ones typically could fail from four different causes: load-line flattening, softening, excessive forming, and undesirable lagging of the light-rise time versus applied current. Load-line flattening occurs when temperatures exceeding 120° cause a progressive increase in the resistance of the display's copper-coated back layer. Eventually, the increased resistance limits current, dimming the panel. In the EL1C display, the addition of silver to the copper coating prevents load-line flattening. The silver also inhibits softening, which happens when the display's threshold voltage degrades, resulting in undesirable background light.

Excessive forming is a problem that occurs when the threshold voltage increases until the drive circuits can no longer draw sufficient current to operate the display. In the EL1C, the use of vacuum baking and a current-limited drive solves this problem. The addition of sulfur prevents defects in the phosphor that can cause the light-rise time to lag behind the applied current. As a result of these improvements, the EL1C display spec's a pixel luminance of 25 fL, with a degradation not exceeding 30% in 10,000 hours.

The EL1C provides a flicker-free image and a viewing angle of greater than 120°. It operates over 0 to 55°C. The frame rate is typically 60 Hz, and the unit can withstand a shock as great as 50g.

You can select from two versions of this amber display. The EL1C-G000 has an 8.956×3.898-in. active display window. Including the bezel, the overall package measures 10.74×5.9×0.6 in. The active display in the EL1C-1000 measures 7.7×4.8 in.; the overall package is 10.54×7.8×0.6 in. The -G000 has 0.01×0.0171-in. pixels, and the -1000's pixels measure 0.008×0.02 in.

The technology used to manufacture the EL1C promotes high production yields, because few processing steps are needed and clean-room conditions aren't necessary. The panel has two thin-film layers; pin holes don't impair their functioning. The 25-µm phosphor layer can vary in thickness.

Pricing starts at $800 for a single display, but drops to $385 in 5000-piece quantities and $250 when you order more than 10,000.

—J D Mosley

Cherry Electrical Products, 3600 Sunset Ave, Waukegan, IL 60087.
Phone (312) 360-3500.

Circle No 635
A full range of 883/DESC/JAN qualified products... already proven in over 50 major programs.

Zilog's commitment to the military market has always been strong. Of course, the best proof of our ongoing focus is the performance of our top quality military standard microprocessors and peripherals— and the fact that we're already designed into more than 50 major military programs including F15, F16, PERSHING, HAWK, HARPOON and RAPIER.

Support for professional standards—DESC, ADA software, JAN certification.

Zilog's compact, efficient, multi-processing, real-time ADA support offers the system features you need. We have the only validated compilers used in mission-critical systems, such as for flight control. And we've got full compliance to 883/C and offer plenty of DESC products for critical programs demanding quality and reliability, manufactured on a JAN certified line.

Smooth integration for 8-, 16- and 32-bits.

We protect your investment by offering a well thought-out migration path for our military microprocessor families. CMOS technology is now being introduced for all products, providing high radiation tolerance and the low power you need for assembling highly integrated, surface mounted systems.

CMOS or NMOS—nobody's better qualified than Zilog.

We offer a full range of military standard microprocessors and peripherals— all off the shelf, and backed by Zilog's proven quality and reliability. Want to know more? Send for our mission-critical systems, Zilog's quarterly magazine. Better yet, contact your local Zilog sales office or your authorized distributor.

Today, Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

The choice is clear.

Right product. Right price. Right away.

EDN October 1, 1987 CIRCLE NO 161
VME Bus LAN controller specs
30M-byte/sec data transfers

The key to maximizing data-transfer rates over any system bus is to eliminate the bottlenecks created by the various processors and peripherals that battle for control of the bus. The V/Ethernet 4207 Eagle, a board intended for Ethernet communications over the VME Bus, is able to perform DMA transfers at rates exceeding 30M bytes/sec by providing a 16-MHz 68020 hardware platform and a 32-bit bus.

The node controller also adds to its data-transfer capability by segregating the flow of data along its local bus from the activity occurring on the processor's bus. Transceivers decouple the 68020 µP and its 32k×32-byte scratchpad RAM from the local data bus that passes data from Ethernet to the VME Bus, thus isolating the processor and maximizing its duty cycle.

Another key design feature that boosts the Eagle's data-transfer speed involves its pipeline registers. The registers prevent the controller's Lance communication processor from locking up the local data bus as it controls the data flowing to and from Ethernet. In addition, a proprietary 1k-byte Buspacket FIFO buffer provides 40-nsec, single-cycle data transfers to the VME Bus from a 512k-byte block of RAM that's located on the local data bus. You can use the Eagle's 64k-byte EPROM to store diagnostics and protocol codes, or you can use the 68020's zero-wait-state scratchpad RAM for protocol storage. The board also provides you with 32 bytes of nonvolatile RAM for boot routines and other critical data.

The Eagle operates in any of three modes: DMA, slave, or mixed. In DMA mode, the host computer acts as the bus master, writing data to the Eagle's 512k-byte I/O RAM. From there, the data shifts to the VME Bus under DMA control. In the slave mode, the I/O RAM has a 300-nsec cycle time. At this speed, the board uses the I/O RAM as fast system memory and allows the Lance to operate without wait states. Under mixed-mode operation, the Eagle examines data-packet headers in slave mode, then passes the rest of the data packet to the VME Bus at DMA rates.

The $3495 (100) Eagle is currently just a hardware platform—you must write your own communications protocol software using the rudimentary drivers that come with the board. Although the manufacturer does plan to offer specific protocols such as TCP/IP (Transmission Control Protocol/Internet Protocol) as soon as various beta sites complete their development tasks, no firm availability dates for such software are forthcoming at this time.

—J D Mosley

Interphase Corp, 2925 Merrell Rd, Dallas, TX 75229. Phone (214) 350-9000.

Circle No 637
OUR LIGHTNING-QUICK FLASH CONVERTER IS SO HOT BECAUSE IT'S SO COOL.

When an 8-bit flash converter operates at a blazing sampling rate of 150 MHz, that's hot. When it does it in a 28-pin DIP that dissipates a mere 750mW, that's cool.

Add to that the AD9002's bandwidth of 115MHz and an ultra-low input capacitance of 17pF that simplify your amplifier and system design.

All you need is a single - 5.2V power supply, which eliminates latch-up problems. Both military and industrial versions are available.

For more information on our new AD9002 flash converter, contact your nearest Analog Devices sales office.

And be cool.
System integrators can now purchase a high-performance SCSI host adapter, the AHA-1540, to connect disks and other peripherals to personal-computer-class machines. The PC/AT bus-compatible board sends bursts of data across the host bus at speeds as high as 10M bytes/sec. Furthermore, it performs 2M-byte/sec asynchronous transfers and 5M-byte/sec synchronous transfers to SCSI bus peripherals.

To meet the needs of high-performance applications, PC/AT-class 80286/386-based computers need faster I/O channels just as much as they need faster processing power and faster memory-access times. Traditional ST-506 disk controllers for the PC/AT bus perform host data transfers at much less than 1M bytes/sec, and the ST-506 interface limits the disk data rate to less than 1M bytes/sec. Even IBM has realized the need for speed improvement and uses an ESDI in its Personal System/2 machines. The AHA-1540 offers system integrators and designers advantages for I/O-subsystem implementation for PC/AT bus-to-SCSI bus applications. The host adapter can act as an interface for various disk, tape, and other peripherals that have embedded-SCSI controllers. Further, the SCSI bus suits multitasking I/O environment, and new PC/AT-class machines operate in Unix, Xenix, and other multiuser, multitasking environments.

The AHA-1540 has a programmable mailbox architecture to implement multitasking in the I/O subsystem. The host CPU communicates with the host adapter through 255 memory-resident mailboxes. The host adapter's local µP continuously scans the mailboxes and accepts or delivers commands and data. Each mailbox represents a task that is currently active in the I/O subsystem. The host adapter only interrupts the host CPU on completion of a task. In MS-DOS applications, the host adapter emulates a standard PC/AT bus disk controller.

The board can also operate as a PC/AT bus master with programmable bus control. In fact, it employs first-party DMA to achieve its 10M-byte/sec transfer rate. The SCSI transfer rate results from the company's recently introduced AIC-6250 SCSI protocol IC, which resides on the board.

The host adapter includes disconnect/reconnect, arbitration, and command-linking and -queuing features. It also automatically recognizes synchronous and asynchronous peripherals concurrently tied to the bus. Samples are available now, and production quantities, which will be available in the fourth quarter, will sell for $285 (100).

—Maury Wright
Adaptec Inc, 580 Cottonwood Dr, Milpitas, CA 95035. Phone (408) 432-8600.

Circle No 636
We help build strong bodies.

No, we don't make cars. But we're part of the process. Because NCR 286 processor boards and backplanes play an integral role in controlling the manufacture of the dies used to stamp body parts. And the next fender we bend could be yours.

You're equally likely to find NCR PC technology in the environmental control system of the building where you live. Or the medical imaging equipment in the hospital where your neighbor works. And dozens of other places.

In short, NCR PC components and technology are right for lots of different applications beyond the world of PCs and data processing.

That's because our PC technology is so versatile. Making the most of split board, surface mount and VLSI technologies. Then bringing them all together in the configurations perfect for your specific needs. Without chewing up the calendar and your R&D budget in the process.

Another way to say it is that we're easy to work with. Because we have the engineering know-how and the manufacturing can-do to deliver the goods. Without hitches, without surprises, without fail.

So, as you look into developing new products, or improving your existing ones, look into NCR. For more details about how NCR PC technology can fit into your plans, call us at (513) 445-0670.

And soon you, too, can have the strength of a body builder.
The most popular communication protocols are available in silicon to simplify your designs.

With protocol controllers from Motorola, designing data communications is easier and their markets are more universal than ever before. Standard protocols are built into silicon so there's no need to burden your host. Built with Motorola's proven HCMOS technology, they offer the reliability you've come to expect and the advanced designs you demand.

Communicate now with our family of protocol controllers.

Our M68000 Family offers three different protocol controllers to handle all your data communication needs; whether it's across the building or around the world there's a Motorola device that will make your job easier. With our M68000 Family you can choose the protocol and system designs that get you on line quickly and economically.

X.25 Protocol Controller

1984 CCITT X.25 LAPB.

The MC68605 Protocol Controller (XPC) implements the 1984 CCITT Recommendation X.25 Link Access Procedure Balanced (LAPB) for U.S. and European T1 applications. By generating link-level commands and responses, the XPC relieves the host processor of communication link managerial tasks. It's also fully DDDN certifiable.

Our XPC features an optional transparent mode which allows the implementation of other HDLC-based protocols, with user generation of all frames. The XPC handles full-duplex synchronous serial data rates up to a maximum 10 Megabits Per Second (Mbps) for high-speed computer links.

Multi-link LAPD Controller

CCITT Q.920/Q.921 LAPD.

The MC68606 Multi-link LAPD (MLAPD) Protocol Controller fully implements CCITT Recommendation Q.920/Q.921 Link Layer Access Procedure (LAPD) protocol for ISDN networks. The MLAPD is designed to handle both signalling and data links in high-performance ISDN primary rate applications.

This VLSI device provides a cost-effective solution to ISDN link-level processing with simultaneous support for up to 8K logical links. The MC68606 is an intelligent communications protocol controller compatible with AT&T specifications for ISDN devices and features low power consumption and high performance, with an aggregate data rate in excess of 2.048 Mbps.

Token Bus Controller

IEEE 802.4 MAC.

The MC68824 Token Bus Controller (TBC) is the only single-chip solution to implement the IEEE 802.4 Media Access Control (MAC), specified by Manufacturing Automation Protocol (MAP). The TBC implements four levels of message priority and the Request With Response (RWR) frame type to meet the real-time needs of factory floor communications and MAP. The TBC conforms to the IEEE 802.4G standard MAC to Physical layer serial interface to support broadband, carrier-band, and fiber optic networks. The TBC's low power consumption coupled with its extended temperature range versions make it ideally suited for factory automation applications.

Token Bus Frame Analyzer Software

The MC68KTBA Token Bus Frame Analyzer Software (TBFA) is a real-time software tool that speeds development of token bus networks. The TBFA keeps track of statistics while monitoring network performance. By using the simple menu-driven interface, the user can define triggers to selectively store and display frames, creating a powerful tool for network analysis.

The TBFA is a set of four EPROMs which runs on a VMEbus VMVME372 Token Bus Controller board and requires a modem, a VT100 terminal, and a power source. The cost-effective TBFA sells for about one-tenth the cost of existing token bus protocol analyzers.

One-on-one design-in help.

Get an engineer-to-engineer update on designing-in Motorola's M68000 Family of protocol controllers.

Contact Information

Call toll-free any weekday, 8:00 a.m. to 4:30 p.m., MST. If the call can't cover your needs, we'll have a local applications engineer contact you.

Token Bus Frame Analyzer

Software speeds development of token bus networks.

The MC68KTBA Token Bus Frame Analyzer Software (TBFA) is a real-time software tool that speeds development of token bus networks. The TBFA keeps track of statistics while monitoring network performance. By using the simple menu-driven interface, the user can define triggers to selectively store and display frames, creating a powerful tool for network analysis.

The TBFA is a set of four EPROMs which runs on a VMEbus VMVME372 Token Bus Controller board and requires a modem, a VT100 terminal, and a power source. The cost-effective TBFA sells for about one-tenth the cost of existing token bus protocol analyzers.

One-on-one design-in help.

Get an engineer-to-engineer update on designing-in Motorola's M68000 Family of protocol controllers.

Contact Information

Call toll-free any weekday, 8:00 a.m. to 4:30 p.m., MST. If the call can't cover your needs, we'll have a local applications engineer contact you.

Token Bus Controller

IEEE 802.4 MAC.

The MC68824 Token Bus Controller (TBC) is the only single-chip solution to implement the IEEE 802.4 Media Access Control (MAC), specified by Manufacturing Automation Protocol (MAP). The TBC implements four levels of message priority and the Request With Response (RWR) frame type to meet the real-time needs of factory floor communications and MAP. The TBC conforms to the IEEE 802.4G standard MAC to Physical layer serial interface to support broadband, carrier-band, and fiber optic networks. The TBC's low power consumption coupled with its extended temperature range versions make it ideally suited for factory automation applications.
Of all the new products covered in EDN's July 23, 1987, issue, the ones reprinted here generated the most reader requests for additional information. If you missed them the first time, find out what makes them special: Just circle the appropriate numbers on the Information Retrieval Service card, or refer to the indicated pages in our July 23, 1987, issue.

2,7 ARLL CONTROLLER BOARDS
The ACB-238X controllers for the IBM PC/AT utilize 2,7 ARLL (advanced run-length-limited) encoding to increase both the data capacity and transfer rate of a drive by 100% (pg 112).
Adaptec Inc.
Circle No 601

HUMIDITY SENSOR
You can use the RH-8 sensor and the SCMC signal-conditioning microcircuits for constructing humidity transmitters (pg 197).
General Eastern Instruments.
Circle No 602

DATA-ACQUISITION SOFTWARE
Measure is a software package for personal computers that lets you acquire data via the Metrabyte DAS-16 and DAS-16F boards and store the values directly in the vendor's 1-2-3 spreadsheet (pg 244).
Lotus Development Corp.
Circle No 603

INSTRUMENTATION BUS
The Model 680 instrument system incorporates a proprietary 32-bit bus based on the VME Bus and called the HMIB (high-speed modular instrument bus) (pg 267).
Wavetek.
Circle No 604
Generation to Generation.

Recyclable engineering materials today promise an even greater legacy than immediate reductions of costs and waste.

Generation and regeneration: from packaging to automotive to construction. The energy isn't lost. Our promise for the future. Advanced technology plastics offering long-term productivity and potential.

Recyclable. Reusable. Responsible.

For an informative outlook on recycling engineering plastics, request our free Recyclability Brochure today:

(800) 845-0600.
Digital has it now.
"Our Dracula™ layout design verification software was developed and based on Digital systems, and for very good reason," states ECAD President Jim Hill. "Our customers in Integrated Circuit design regard Digital's VAX™ systems as the standard. Recognizing that, we've developed a line of software products that have made us the standard of our industry."

According to Mr. Hill, Digital's unmatched software compatibility offers real benefits in creating customer acceptance. "We know that whatever Digital system the customer has purchased, our software will run on it successfully. That kind of confidence is rare in the IC design industry. And Digital's hardware and

"ECAD seized an 80% world market share – the key was writing our design software to the industry standard, Digital."

software consistency helps us deliver a better product, faster and at a lower cost."

"We're aggressively pursuing a worldwide market," Mr. Hill adds. "And Digital has the worldwide presence to help us sell each market with strong local support. Our software and Digital's systems sell each other. ECAD and Digital have evolved a strategic partnership, one that gives us a proven competitive advantage in the marketplace."

To get your competitive advantage now, write to: Digital Equipment Corporation, 200 Baker Avenue, West Concord, MA 01742. Or call your local Digital sales office.
LEADTIME INDEX

Percentage of respondents

<table>
<thead>
<tr>
<th>ITEM</th>
<th>On-the-shelf</th>
<th>1.5 weeks</th>
<th>6-10 weeks</th>
<th>11-20 weeks</th>
<th>20-30 weeks</th>
<th>Over 30 weeks</th>
<th>Average</th>
<th>Average (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFORMERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toroidal</td>
<td>84.6</td>
<td>57.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pot-Core</td>
<td>97.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate (power)</td>
<td>92.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONNECTORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military panel</td>
<td>99.5</td>
<td>53.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat/Cable</td>
<td>50.4</td>
<td>79.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-pin circular</td>
<td>66.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>98.5</td>
<td>58.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbF/Coaxial</td>
<td>56.6</td>
<td>66.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket</td>
<td>41.5</td>
<td>52.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal blocks</td>
<td>43.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge card</td>
<td>70.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Subminiature</td>
<td>64.6</td>
<td>63.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rack & panel</td>
<td>89.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>57.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRINTED CIRCUIT BOARDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-sided</td>
<td>49.5</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-sided</td>
<td>72.0</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-layer</td>
<td>93.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prototype</td>
<td>41.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESISTORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon film</td>
<td>37.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon composition</td>
<td>53.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal film</td>
<td>41.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal oxide</td>
<td>60.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirewound</td>
<td>72.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentiometers</td>
<td>45.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Networks</td>
<td>63.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWITCHES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pushbutton</td>
<td>64.4</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotary</td>
<td>62.7</td>
<td>67.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocker</td>
<td>64.5</td>
<td>40.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thumbwheel</td>
<td>93.6</td>
<td>64.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snap action</td>
<td>70.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momentary</td>
<td>71.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual in-line</td>
<td>69.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIRE AND CABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaxial</td>
<td>43.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat ribbon</td>
<td>51.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiconductor</td>
<td>62.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hookup</td>
<td>28.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire wrap</td>
<td>23.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power cords</td>
<td>60.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switcher</td>
<td>62.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>67.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIRCUIT BREAKERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>67.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAT SINKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General purpose</td>
<td>48.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC board</td>
<td>77.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Reed</td>
<td>80.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>75.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sold state</td>
<td>75.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISCRETE SEMICONDUCTORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td>48.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zener</td>
<td>54.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyristor</td>
<td>80.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small signal transistor</td>
<td>75.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSFET</td>
<td>79.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power bipolar</td>
<td>84.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTEGRATED CIRCUITS, DIGITAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced CMOS</td>
<td>84.1</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS</td>
<td>64.8</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>60.6</td>
<td>65.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td>61.6</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTEGRATED CIRCUITS, LINEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication/Circuit</td>
<td>79.2</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP amplifier</td>
<td>79.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage regulator</td>
<td>58.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMORY CIRCUITS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM 16k</td>
<td>77.7</td>
<td>99.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM 64k</td>
<td>71.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM 256k</td>
<td>87.7</td>
<td>78.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM 1M-bit</td>
<td>10.0</td>
<td>88.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM/PROM</td>
<td>71.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPROM 64k</td>
<td>77.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPROM 256k</td>
<td>88.8</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPROM 1M-bit</td>
<td>83.3</td>
<td>13.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEPROM 16k</td>
<td>85.1</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEPROM 64k</td>
<td>80.0</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISPLAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel meters</td>
<td>89.6</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorescent</td>
<td>12.5</td>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incandescent</td>
<td>86.8</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td>75.6</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid crystal</td>
<td>9.7</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROPROCESSOR ICs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-bit</td>
<td>68.8</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-bit</td>
<td>83.1</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32-bit</td>
<td>86.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUNCTION PACKAGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplifier</td>
<td>9.4</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converter, analog to digital</td>
<td>9.3</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converter, digital to analog</td>
<td>8.6</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE FILTERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>79.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPACITORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic monolithic</td>
<td>4.8</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic disc</td>
<td>4.7</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film</td>
<td>50.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum electrolyc</td>
<td>5.5</td>
<td>8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tantalum</td>
<td>56.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDUCTORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>63.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Electronics Purchasing magazine's survey of buyers

EDN October 1, 1987
Siemens Components invites you to THE ISDN Seminars

ISDN SOLUTIONS TO THE DESIGN CHALLENGE

The age of the Integrated Services Digital Network is here. And Siemens, a world leader in VLSI component technologies for advanced ISDN applications, cordially invites you to attend one of our two-day seminars on the latest ISDN advances.

Each seminar will feature different speakers, and cover a range of topics including:

- Field Trials
- VLSI solutions for ISDN—basic and primary rate access
- Future ISDN ICs
- Design specific presentations
- Applications presentation and demonstrations on new ISDN evaluation boards
- Software-Level 1 front end drivers, Level 2 LAPD, and Level 3 Call Control (both generic and switch specific)
- ISDN testers

Siemens Seminars...
Where and When for ISDN

Boston, MA - October 26 & 27
Los Angeles, CA - November 3 & 4
Chicago, IL - November 10 & 11

For additional information on the seminar of your choice and for hotel details call the number below.

Registration Fee of $125 per person also includes comprehensive literature packet (copies of presentation, technical product information, and more): continental breakfasts, luncheons, and dinner with keynote speaker. Seating is limited, so don’t delay!

Register today for the Siemens ISDN seminar nearest you:
CALL 1-800-227-1817 Ext.96
VACREL® lets you design more electrical

The performance of VACREL gives you the added design freedom you need when using surface-mount technology (SMT), the state of the art in printed wiring board and printed wiring assembly design.

Du Pont VACREL photopolymer film solder masks totally encapsulate fine-line circuits with a tough, uniform, high-resolution photopolymer film that provides excellent dielectric, mechanical, and electrical protection.

Because VACREL is uniformly thick, it consistently covers without skips, pinholes, or voids in a single pass—unlike screened or photoimageable liquid systems.

Tighter designs, better use of real estate.

Tighter designs are possible due to accurate image registration and reproduction with masks of VACREL, even on large panels having two or more circuit lines between pads and as little as 0.13-mm (5-mil) spacing between conductors. VACREL helps lower per-function cost by allowing more functions.
functions into less real estate at less cost.

per board, with high first-pass assembly yields, less solder bridging, fewer retests and rejects, and less potential for field failures. Lower incoming inspection costs are possible, thanks to the accuracy of VACREL.

Accurate component location aids SMT design.

For surface mounting, VACREL goes beyond tighter designs and maximized real-estate utilization. It tents via holes to prevent solder wicking, bridging, and shorting. Components may be placed directly over tented via holes, with virtually no chance of contamination from the other side.

Because VACREL is photoimaged, a precisely shaped "well" for solder paste can be created, even with closely spaced pads, to ensure proper placement and alignment of components. VACREL is compatible with wave, vapor-phase, and infrared soldering systems.

Send for VACREL design and productivity package.

Send today for more information on designing printed wiring boards with VACREL. Write to Du Pont Company, Room G51085, Wilmington, DE 19801.

Or call 800-527-2601, Extension 311

VACREL photopolymer film solder mask is made only by Du Pont.
Surface-mount connectors

SPECIAL REPORT

You can find a variety of surface-mount-technology (SMT) connectors for use in your pc-board designs. Manufacturers offer SMT versions of such parts as D-subminiature pin and socket headers, backplane and I/O connectors, and chip-carrier sockets.

(Photograph courtesy 3M Electronics Products Div)
SMT connectors can present you with a number of design considerations and tradeoffs that don’t occur in through-hole designs. By understanding the different solder techniques and physical configurations of SMT connectors, you can choose the right SMT connectors to maximize the connections’ reliability yet minimize space on your board.

JD Mosley, Regional Editor

Converting your through-hole pc-board designs to surface-mount-technology (SMT) designs can give you a number of advantages. For one thing, it does away with the expense of creating plated through-holes in pc boards. The absence of these holes and the pads that would normally surround them increases the available surface area on both sides of the pc board and permits closer spacing of leads and components. You can often shrink the required board space for an SMT version of a circuit to less than half the area needed for a through-hole version.

Besides being smaller, SMT boards are easier to route, because they don’t require you to dodge plated holes, and they let you wire their internal planes more densely. The increased density can result in fewer wiring layers. Your design may still require vias; however, vias are much smaller than plated through-holes—you can route as many as seven 0.005-in. traces between 0.020-in. vias on 0.100-in. centers.

With the advantages of SMT come a number of tradeoffs, however. For one thing, connectors are the most difficult components to adapt to surface-mount technology. Because they’re deprived of leads that anchor and stabilize, connectors with surface-mount solder joints can withstand only a fraction of the mechanical and thermal stresses that through-hole connectors can tolerate (Table 1). According to one estimate, a through-hole joint provides 15 to 20 times the mechanical strength of an SMT joint (Ref 1). Further, when you convert your designs from through-hole pc boards, which usually have the standard 100-mil spacing, to surface-mount circuits, which often have tighter centers, the SMT boards’ shorter leads and traces may significantly alter impedance and timing specs. To make matters worse, SMT connectors lack standards: Manufacturers offer contact centers on spacings of various sizes, such as 25, 33, 50, and 100 mils.

Furthermore, making the transition from through-hole to SMT connectors includes not only the expense of learning new design techniques, but also the cost of converting from a wave-soldering process to a reflow-soldering process. Although it’s possible to wave-solder an SMT circuit, particularly in circuits that use both through-hole and SMT devices, the selection of SMT components that can withstand exposure to a 260°C wave of molten solder is limited.

Connectors are particularly ill suited for such exposure. Female terminals tend to fill with solder, and many connectors are too tall to pass successfully through the solder wave on the bottom of a pc board. What’s more, solder has a tendency to coat pins, ruining them for mating.

To solve these problems, you can use one of several reflow-soldering techniques. Vapor-phase reflow soldering, for example, limits the maximum solder temperature to 215°C, provides uniform heating, and employs a nonoxidizing atmosphere. However, the technique also exposes the entire component to this temperature for as long as two minutes. Conventional housing materials can’t withstand such heat, so you have to use components made from special materials.
Connectors with surface-mount solder joints can withstand only a fraction of the mechanical and thermal stresses that through-hole connectors can tolerate.

High-temperature plastics, which may exhibit brittleness. Further, vapor-phase equipment and materials are more costly than the equipment and materials used in other soldering processes.

Infrared (IR) reflow is less expensive than vapor-phase reflow, but it can cause uneven heating of the components and the board, both of which can absorb IR energy at varying rates. If you use IR reflow, therefore, you must develop temperature profiles for each device on the board.

The least expensive reflow process is conductive-belt reflow. To use this technique, you place a pc board (with components on only one side) onto a heat-conductive belt that passes over a hot plate. Conductive-belt reflow is slow and is limited to use with lightweight substrates; it’s used primarily with ceramic substrates.

One significant benefit offered by the vapor-phase and IR reflow-solder techniques is that they let you use all six sides of a pc board—an important consideration when you’re positioning connectors. Placing a connector on the edge of the pc board lets you eliminate the solder-joint damage caused by sideways forces against the connector.

The soldering technique is only one of your design considerations. Your connector choice may also depend on the shape of the leads you’re able to use. Generally speaking, you’ll probably choose a J-shaped lead, a butt joint, or a gull- or L-shaped lead. Modified versions of

Table 1—Comparison of Through-Mount and SMT Solder Joints

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Through-Mount Solder Joints</th>
<th>Surface-Mount Solder Joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder Volume</td>
<td>0.00038 in.²</td>
<td>0.00004 in.²</td>
</tr>
<tr>
<td>Solder-Joint Surface</td>
<td>0.040 in.²</td>
<td>0.0071 in.²</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pull Strength</td>
<td>>20 LBS</td>
<td>4 to 8 LBS</td>
</tr>
</tbody>
</table>

(Courtesy Du Pont Connector Systems)

Floating contact legs ensure positive contact of Du Pont’s surface-mounted horizontal card connectors, even when you mount them on an uneven pc board. You can order either single- or double-row configurations and 0.38- or 0.76-μm plating thicknesses.

Two posts act as positive mechanical hold-downs, providing added mechanical stability on these D-subminiature pc-board headers from AMP. The connectors are available as pin or socket headers, and you can use them with automatic-insertion equipment.

Many manufacturers offer leaded-chip-carrier sockets—such as this modular 32-pin socket from Methode Electronics—in both through-hole and surface-mount styles.
these basic shapes abound; manufacturers are testing a variety of shapes for pull strength and pliancy.

Oddly enough, butt joints present greater resistance to pulling force than do J- or L-shaped leads. In tests performed by AMP, a butt joint with two solder fillets withstood more than 5 lbs of pulling force. L-shaped leads withstood just over 4 lbs of vertical force, and J-shaped leads resisted 4 lbs. On the J leads, heel fillets provided virtually all the joint strength measured: With or without a toe fillet, the J-lead pulled free at 4 lbs of force.

Pliancy, however, is often more important than pull strength. Pliant leads ease the stress generated by thermal shock and mechanical forces. As long as a joint is strong enough to withstand the forces associated with mating and unmating (see Table 2), a low-strength joint with a pliant lead can tolerate more vibration and shock than can a higher-strength joint with a rigid lead. Butt joints are inherently less pliant than J- or L-shaped leads. The longer and more flexible the lead, the more pliancy it offers, and the smaller the chance that the solder joint will crack.

Solder-joint cracking is a key concern in SMT-board design. Vibration and thermal cycling can propagate tiny cracks along the lead, resulting in contact failure. One solution to this problem is to use floating terminals. Under circumstances that would normally result in cracking, floating terminals can increase the life of solder joints. For example, if you have to contend with a long connector or a flexible pc board, you can ensure the coplanarity of the leads by using a connector whose contacts float in the housing cavity. Leads with floating contacts maintain contact in spite of vibration, heat expansion, and board flexing; thus, they are preferable for board-to-board connections. Du Pont makes connectors with floating contact legs in single- or double-row configurations and 0.38- or 0.76-μm plating thicknesses.

SMT connectors that sandwich a card edge can provide I/O connections at lead densities reaching 40 leads/in. Teradyne’s VHSICOn line of high-density connectors includes such a model. Offered in configurations having 100 to 400 contacts on centers ranging from 50 to 25 mils, these connectors are suitable for use with flexible circuit modules that are 0.150 to 0.350 in. thick.

By placing connectors on both the front and back of a center plane or by using stacking connectors to stack the board in piggyback fashion, you can shorten com-

TABLE 2—FORCES ACTING ON INDIVIDUAL CONTACTS

<table>
<thead>
<tr>
<th>FORCE</th>
<th>GRAMS</th>
<th>OUNCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERTION FORCE—P IN INTO TYPICAL RECEPTACLE</td>
<td>275 (MAX)</td>
<td>9.625 (MAX)</td>
</tr>
<tr>
<td>WITHDRAWAL FORCE—PIN FROM TYPICAL RECEPTACLE</td>
<td>200 (MAX)</td>
<td>7.000 (MAX)</td>
</tr>
<tr>
<td>FORCE TO PEEL OFF SOLDER TAIL—VERTICAL DIRECTION</td>
<td>900 (MIN)</td>
<td>31.50 (MIN)</td>
</tr>
<tr>
<td>FORCE TO SHEAR OFF CONTACT—HORIZONTAL DIRECTION</td>
<td>1800 (MIN)</td>
<td>63.00 (MIN)</td>
</tr>
</tbody>
</table>

(COURTESY DU PONT CONNECTOR SYSTEMS)

Integrating backplane and I/O connectors, the Consyse interconnect system from Fujitsu consists of a surface-mount socket and a pliant pin header for joining a daughter board with a mother board.
Although it's possible to wave-solder an SMT circuit, the selection of SMT components that can withstand a 260°C wave of molten solder is limited.

Communication paths between boards, increase wiring efficiency, minimize the overall package, and lower costs. Teledyne Kinetics manufactures a line of surface-mount pc-board stacking connectors using what the company calls “pressure contacts,” which deflect slightly, providing concentrated contact force to the pads on the surface of the pc board. These connectors use a screw fastener to hold down the device and secure the parallel boards.

Another way to increase the life of solder joints is to use a hold-down mechanism or strain relief. Such devices protect the solder joints by absorbing the forces associated with connector insertion and withdrawal. Furthermore, hold-downs can allow automatic-placement equipment to position the connector more accurately, and they keep the connector in place during the reflow process. They can also help overcome TCE (thermal coefficient of expansion) mismatch, which can occur in the solder joints of SMT connectors that are wave soldered. You can choose from a variety of devices for anchoring surface-mount connectors to the pc board (Table 3).

Other devices can help connectors that mate two pc boards resist undesirable forces. For example, you can

REPRESENTATIVE SURFACE-MOUNT CONNECTORS

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>CONNECTOR TYPE</th>
<th>NUMBER OF CONTACTS</th>
<th>PWB CONTACT CENTERS (IN.)</th>
<th>CONTACT RESISTANCE (Ω)</th>
<th>INSERTION FORCE</th>
<th>WITHDRAWAL FORCE</th>
<th>CURRENT RATING (A)</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED INTERCONNECTIONS</td>
<td>1566-XX</td>
<td>PLCC ADAPTER</td>
<td>20 TO 124</td>
<td>0.100</td>
<td>0.005</td>
<td>2.5 OZ</td>
<td>1.5 OZ</td>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>AMP</td>
<td>MOD IV</td>
<td>VERTICAL RECEPTACLE</td>
<td>10 TO 64</td>
<td>0.100</td>
<td>0.012</td>
<td>9.0 OZ</td>
<td>1.5 OZ</td>
<td>1.5</td>
<td>$354</td>
</tr>
<tr>
<td></td>
<td>AMPLIMITE</td>
<td>D-SUBMINIATURE PLCC SOCKET</td>
<td>9 TO 37</td>
<td>0.054</td>
<td>0.015</td>
<td>12 OZ (MAX)</td>
<td>0.75 OZ (MIN)</td>
<td>2</td>
<td>$2.24</td>
</tr>
<tr>
<td></td>
<td>HPT</td>
<td>PLCC SOCKET</td>
<td>20 TO 84</td>
<td>0.050</td>
<td>0.025</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>$3.52</td>
</tr>
<tr>
<td></td>
<td>GOLDGOLD</td>
<td>PC BOARD I/O</td>
<td>2 TO 8</td>
<td>0.050</td>
<td>0.020</td>
<td>2 LBS (MAX)</td>
<td>20 LBS (MIN)</td>
<td>1.9</td>
<td>$0.50</td>
</tr>
<tr>
<td></td>
<td>MODULAR JACK</td>
<td>DIP SOCKET</td>
<td>14 TO 40</td>
<td>0.100</td>
<td>0.020</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>$0.17</td>
</tr>
<tr>
<td></td>
<td>DIPLOMATE SL</td>
<td>HEADER</td>
<td>4</td>
<td>0.200</td>
<td>0.025</td>
<td>5 LBS (MAX)</td>
<td>1 LB (MIN)</td>
<td>5</td>
<td>$0.43</td>
</tr>
<tr>
<td>AUGAT/ELFAB</td>
<td>4-ROW BOX</td>
<td>BOARD TO BOARD</td>
<td>200 TO 300</td>
<td>0.050</td>
<td>0.015</td>
<td>1.8 OZ</td>
<td>1.0 OZ</td>
<td>3</td>
<td>$0.09</td>
</tr>
<tr>
<td></td>
<td>DOUBLE-DIN</td>
<td>BOARD TO BOARD</td>
<td>200 TO 300</td>
<td>0.050</td>
<td>0.015</td>
<td>1.8 OZ</td>
<td>1.0 OZ</td>
<td>3</td>
<td>$0.09</td>
</tr>
<tr>
<td>FUJITSU</td>
<td>CONSYSE</td>
<td>BACKPLANE I/O</td>
<td>256</td>
<td>0.100</td>
<td>0.030</td>
<td>10 LBS (MAX)</td>
<td>6.6 LBS (MIN)</td>
<td>1</td>
<td>$0.35/CONTACT</td>
</tr>
<tr>
<td>ITT CANNON</td>
<td>D-SUB</td>
<td>D-SUBMINIATURE DIN</td>
<td>9 TO 25</td>
<td>0.104</td>
<td>0.050</td>
<td>12 OZ</td>
<td>18 OZ</td>
<td>3</td>
<td>$3.70</td>
</tr>
<tr>
<td></td>
<td>G60</td>
<td>EUROCARD PLCC SOCKET</td>
<td>32 TO 96</td>
<td>0.100</td>
<td>0.015</td>
<td>5.5 OZ</td>
<td>2 OZ</td>
<td>3</td>
<td>$4.50</td>
</tr>
<tr>
<td></td>
<td>LCS</td>
<td>44 TO 84</td>
<td>0.100</td>
<td>0.030</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>$4.50</td>
</tr>
<tr>
<td>METHODE</td>
<td>213 SERIES</td>
<td>PLCC SOCKET</td>
<td>28 TO 84</td>
<td>0.050</td>
<td>0.015</td>
<td>8 OZ (MAX)</td>
<td>2 OZ</td>
<td>3</td>
<td>$0.03/CONTACT</td>
</tr>
<tr>
<td></td>
<td>500/501</td>
<td>BOARD TO BOARD</td>
<td>25 TO 50</td>
<td>0.050 OR 0.100</td>
<td>0.005</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>$0.03/CONTACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.03/CONTACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.03/CONTACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.03/CONTACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.03/CONTACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.03/CONTACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.03/CONTACT</td>
</tr>
<tr>
<td>NAPENTHE</td>
<td>IC61</td>
<td>SOCKET</td>
<td>32</td>
<td>0.050</td>
<td>0.030</td>
<td>4 LBS (MAX)</td>
<td>1.5 LBS (MIN)</td>
<td>N/A</td>
<td>$5.88</td>
</tr>
<tr>
<td>TELEDYNE KINETICS</td>
<td>SURFACE STACK</td>
<td>STACKING</td>
<td>10 TO 64</td>
<td>0.050 TO 0.100</td>
<td>0.050</td>
<td>0</td>
<td>0</td>
<td>4 (MAX)</td>
<td>$1.30 TO $34</td>
</tr>
<tr>
<td>TERADYNE</td>
<td>VHSICON</td>
<td>HIGH-DENSITY</td>
<td>100 TO 400</td>
<td>0.050</td>
<td>0.015</td>
<td>2.25 OZ (MAX)</td>
<td>3.5 OZ (MIN)</td>
<td>3</td>
<td>$70 TO $1509</td>
</tr>
<tr>
<td>3M</td>
<td>DHT 3500</td>
<td>LOW-PROFILE PLCC SOCKET</td>
<td>2 TO 72</td>
<td>0.100</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3</td>
<td>$70 TO $1509</td>
</tr>
<tr>
<td></td>
<td>2-0068-05405</td>
<td>PLCC SOCKET</td>
<td>68</td>
<td>0.100</td>
<td>0.010</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTES:
- N/A = NOT AVAILABLE
- PLCC = PLASTIC LEDGED CHIP CARRIER
- PWB = PRINTED WIRING BOARD

EDN October 1, 1987
We admit our engineers don't come up with solutions by themselves.

We wouldn't want them to.

At ITT Cannon, our best solutions come from a strong working relationship with our customers. As your project partner, we customize our interconnect designs to fit your specific needs—unlike some companies who merely modify existing connectors for a quick answer.

When Cannon engineers get involved with your project early on, the collective exchange creates better ideas and in turn, better products.

That's why strategic partnerships are pretty important in our book.

Not only with our customers, but among our own engineers worldwide. In fact, our North American divisions regularly exchange data with our Cannon counterparts in Europe and Asia, creating an international network of information available to all our customers, multinational or local.

Strategic partnerships. Customized solutions. Part of the new story at Cannon.

Talk to us.

Worldwide Headquarters
10350 Talbert Ave.
Fountain Valley, CA 92708
Or call (714) 964-7400

ITT CANNON
We're making progress. Not excuses.

CIRCLE NO 61
Vapor-phase reflow soldering limits the maximum solder temperature to 215°C, provides uniform heating, and employs a nonoxidizing atmosphere.

obtain mechanical ejectors that release connectors with a minimum of force, mechanical card guides that ensure the planarity of boards joined at right angles, and tip-in mechanisms that ensure the accurate location of parallel-board connectors. You can also protect SMT connectors from force by using two connectors, one on each side of a parallel daughter board.

If you have a complex connector problem, you can use computer analysis to perform 2- and 3-dimensional finite-element modeling. Finite-element modeling programs (available from CAD vendors) let you precisely define the solder interconnections that best complement the connector geometries, lead/board interaction, lead platings, housing materials, and environmental factors that will affect your circuit.

Regardless of the soldering process or lead design you select, you must always make provisions for visual inspection of the joint. Although connector housings that rest squarely upon the pc board may greatly stabilize the connector against twisting loads, they may prove to be a disadvantage if they prevent you from easily identifying poor solder joints. L-shaped leads offer the best shape for solder-joint inspection and repair, and they also have greater pull strength. Gull-wing leads add increased pliancy to the benefits of the L shape. J-shaped leads, however, occupy less board space.

References

1. Jellison, Hugh, Design aspects and performance testing of a surface mount connector system, 3M, Electronic Products Div, Austin, TX, 1987.
2. Brearley, David, Jr, Assuring reliability of surface mounted connectors and The connector/PCB interface key to success in surface mounting of connectors, Du Pont Connector Systems, Camp Hill, PA.

Table 3—Various Strain Reliefs for SMT Boards

<table>
<thead>
<tr>
<th>Alignment During Assembly</th>
<th>NUT AND BOLT</th>
<th>RIVET</th>
<th>METAL CLIP</th>
<th>PLASTIC CLIP</th>
<th>PRESS FIT</th>
<th>HEAT STAKE</th>
<th>HEAT-STAKE INSERT</th>
<th>PRESS-FIT INSERT</th>
<th>BOTTOM UP</th>
<th>TWO-PIECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compresses Leads to Board</td>
<td></td>
</tr>
<tr>
<td>Prevents Board Bow</td>
<td></td>
</tr>
<tr>
<td>Prevents Rocking</td>
<td></td>
</tr>
<tr>
<td>Prevents Unmating Stress</td>
<td></td>
</tr>
<tr>
<td>Permits Thermal Expansion</td>
<td></td>
</tr>
<tr>
<td>0.100±0.003-IN. HOLE</td>
<td></td>
</tr>
<tr>
<td>Mounting Ears Required</td>
<td></td>
</tr>
<tr>
<td>Easily Repairable</td>
<td></td>
</tr>
<tr>
<td>Weakened by Heat</td>
<td></td>
</tr>
<tr>
<td>Noninductive</td>
<td></td>
</tr>
<tr>
<td>Suitable for Hand Assembly</td>
<td></td>
</tr>
<tr>
<td>Automation Potential</td>
<td></td>
</tr>
<tr>
<td>Assembly Tooling Needed</td>
<td></td>
</tr>
</tbody>
</table>

Article Interest Quotient (Circle One)
High 497 Medium 498 Low 499

EDN October 1, 1987
Augat offers the answer for putting a square peg into a round hole.

New Densepak™ adaptors bridge the gap between existing technologies and emerging ones.

Augat Densepak adaptors enable you to plug the new, highly advanced, irregular geometry IC components—surface mount, pin grid, fine line chip carrier packaging and many others—into existing circuit boards. For modifying, upgrading or developing new applications.

With Densepak adaptors, you can evaluate circuit performance easily and economically. You can prototype however you like and incorporate the latest, most sophisticated packaging into your designs. Now. Without going to the expense of new multi-layer surface mount or through-hole boards upfront. And still be able to use user-friendly packaging panels for prototyping designs.

All the possibilities are outlined in our new Engineering Databook: the only comprehensive data source available on how to adapt new components to old boards. Free for the asking. Send in the coupon or call our literature department at (617) 222-2202.

Densepak adaptors.

Your bridge to the future, now. From the people who know where you want to go. Augat. Innovation that works.

I'm ready to use tomorrow's technology today. Send me a copy of your new Engineering Databook showing how Densepak adaptors can make it possible.

Name:
Title:
Company:
Street Address:
City State:
Zip Telephone:
Mail to: Augat, Inc. Interconnection Components Division, 33 Perry Avenue, Attleboro, MA 02703 (617) 222-2202.

EDN October 1, 1987

CIRCLE NO 62
Manufacturers of surface-mount connectors

For more information on surface-mount connectors, contact the following manufacturers directly or circle the appropriate numbers on the Information Retrieval Service card.

Advanced Interconnections
5 Energy Way
West Warwick, RI 02893
(401) 253-5200
TWX 910-249-3454
Circle No 650

Airborn Inc
4321 Airborn Dr
Addison, TX 75001
(214) 931-3500
TLX 738290
Circle No 651

Allied Amphenol Products
4300 Commerce Ct.
Lisle, IL 60532
(312) 983-3500
Circle No 652

Alpha Products Inc
5740 Corsa Ave
Westlake Village, CA 91362
(213) 889-9304
Circle No 653

Amlan Inc
97 Thorwood Rd
Stamford, CT 06903
(203) 322-1913
TLX 649367
Circle No 654

AMP Inc
Eisenhower Blvd
Harrisburg, PA 17105
(717) 564-0100
Circle No 655

Aptronics Corp
Box 270
Mentor, OH 44060
(216) 354-9229
TWX 910-997-2743
Circle No 656

Aries Electronics Inc
Box 130
Fremont, NJ 08025
(201) 996-6841
Circle No 657

Augat Inc
Components Div
Box 779
Attleboro, MA 02703
(617) 222-2022
TWX 710-391-0644
Circle No 658

Auto/Swage Prods
725 River Rd
Shelton, CT 06484
(203) 228-1461
Circle No 659

Belden Inc
2000 S Batavia Ave
Geneva, IL 60134
(312) 222-8900
Circle No 660

Bevmar Industries
1 John Clarke Rd
Aquinnook Industrial Park
Middletown, RI 02840
(401) 849-4903
Circle No 661

Birch-Vero Electronics Inc
40 Lindeman Dr
Trumbull, CT 06611
(203) 288-8001
Circle No 662

Burndy Corp
Richards Ave
Norwalk, CT 06852
(203) 838-4444
Circle No 663

Carrot Components Corp
750 W Ventura Blvd
Camarillo, CA 93010
(805) 484-0540
TWX 910-326-1237
Circle No 664

Conductive Rubber Technology
123S Coast Village Rd
Santa Barbara, CA 93108
(805) 969-5505
TLX 636935
Circle No 665

Connector Corp
6625 N Keystone Ave
Chicago, IL 60646
(312) 539-3108
TWX 910-224-0050
Circle No 666

CTS Fabri-Tek Connector Inc
9210 Science Center Dr
New Hope, MN 55428
(612) 535-3553
Circle No 667

Dale Electronics Inc
E. Highway 50
Yankton, SD 57078
(605) 665-9301
Circle No 668

Deutsch Engineered Connecting Devices
Municipal Airport
Banning, CA 92220
(714) 849-7822
Circle No 669

Du Pont Connector Systems
30 Hunter Lane
Camp Hill, PA 17011
(717) 975-2000
Circle No 670

EBM Industries Inc
525 New Britain Ave
Unionville, CT 06086
(203) 674-1515
TWX 710-423-8723
Circle No 671

Edac Inc
20 Kalside Rd
Don Mills, Toronto
M3A 1A4, Canada
(416) 445-2292
TWX 610-492-1288
Circle No 672

Elco Corp
Connector Div
Huntington Industrial Park
Huntington, PA 16622
(614) 643-0700
Circle No 673

Electrovert Inc
465 Main St
New Rochelle, NY 10801
(914) 632-6222
Circle No 674

Elfas Corp
1697 Yates
Lewisville, TX 75067
(214) 221-8770
(800) 527-6753
Circle No 675

Fujitsu Component of America
3230 Scott Blvd
Santa Clara, CA 95054
(408) 562-1000
Circle No 676

General Staple-Autosplice Div
59-12 37th Ave
Woodside, NY 11377
(718) 429-6500
TLX 429902
Circle No 677

GET Products Corp
Connector Products Operation
Box 29
Titsville, PA 16154
(412) 589-7071
Circle No 678

Hughes Aircraft Co
Connecting Devices Div
17100 Von Karman Ave
Irvine, CA 92714
(714) 669-5788
Circle No 679

Hypertronics Corp
16 Brent Dr
Hudson, MA 01749
(617) 568-0451
TLX 951152
Circle No 680

Hytronics Corp
610 Bremer Tower
St Paul, MN 55101
(612) 228-6012
Circle No 681

Interconics
610 Bremer Tower
St Paul, MN 55101
(612) 228-6012
Circle No 682

Interconnection Technology Inc
5042 Buckingham Dr
Huntington Beach, CA 92649
(714) 891-5305
Circle No 683

International Electronic Research Corp
135 W Magnolia Blvd
Burbank, CA 91502
(213) 849-2481
Circle No 684

Interconnect Corp
Box 2904
Fountain Valley, CA 92708
(714) 964-7400
Circle No 685

J S Terminal Corp of America
1386 Brummel Ave
Elk Grove Village, IL 60007
(312) 966-5444
TLX 210015
Circle No 686

Kel-Am Inc
23905 Birch Dr
Suite A
El Toro, CA 92630
(909) 223-2903
Circle No 687

Kyocera International Inc
Industrial Ceramics Div
6111 Balboa Ave
San Diego, CA 92123
(619) 576-2600
Circle No 688

LEMO USA Inc
Box 11006
Santa Rosa, CA 95406
(707) 578-5811
Circle No 689

Masterite Industries
2841 Lomita Blvd
Torrance, CA 90605
(213) 775-3471
Circle No 690

Method Electronics Inc
Connecting Div
7447 W Wilson Ave
Chicago, IL 60656
(312) 887-9600
Circle No 691

Midland-Ross Corp
Electronic Connector Div
1 Alewve Pl
Cambridge, MA 02140
(617) 491-5400
Circle No 692

Milton Ross
511 2nd St Flk
Southampton, PA 18966
(215) 355-0200
Circle No 693

Molex Inc
2222 Wellington Ct
Lisle, IL 60532
(630) 969-6550
Circle No 694

Mouser Electronics
11437 Woodside Ave
Santee, CA 92071
(619) 449-2207
Circle No 695

NEC Electronics Inc
401 Ellis St
Mountain View, CA 94039
(415) 900-6000
Circle No 696

Nepenthe Yamaichi
2741 E Bayshore Blvd
Palo Alto, CA 94303
(415) 856-8322
TWX 910-373-2600
Circle No 697

Continued on pg 152
IF YOU'RE WASTING TIME LOOKING FOR THE BROADEST LINE OF SMD® PASSIVES,

CUT IT OUT!

Mail to: Mepco/Centralab, Inc., Attn: Corp. Advertising
2001 W. Blue Heron Blvd., Riviera Beach, FL 33404.

Mail this coupon today to request your personal copy of the new Mepco / Centralab Surface-Mount Device Catalog, containing important design, performance and specifying data on America's broadest line of SMD® passive components:
- Tantalum and monolithic ceramic chip capacitors
- Aluminum electrolytic capacitors
- Thick-film and precision metal-film resistors
- Power resistors
- High-performance trimmers
Or ask for our valuable data book on leaded resistors and capacitors.

Please send me these specification guides:
☐ 1987 Surface-Mount Device Catalog
☐ Resistor/Capacitor Data Book

Name
Title
Company
Dept. / Div.
Address / MS
City
State / Zip

THE ACTIVE LEADER IN PASSIVE COMPONENTS

*SMD is a service mark of North American Philips Corporation.
Manufacturers of surface-mount connectors (Continued)

Panduit Corp
Electronics Group
15311 Ridgeland Ave
Tinley Park, IL 60477
(312) 522-1800
Circle No 698

PCK Elastomerics Inc
333 Byberry Rd
Hatboro, PA 19040
(215) 672-0787
TWX 510-665-6822
Circle No 699

Precision Connector Designs Inc
5 Lowell Ave
Winchester, MA 01890
(617) 721-1280
Circle No 700

Robinson Nugent Inc
800 E 8th St
New Albany, IN 47150
(812) 945-0211
Circle No 701

Samtec Inc
Box 1147
810 Progress Blvd
New Albany, IN 47150
(812) 944-6731
Circle No 702

Security Plastics Inc
14242 NW 99th Ave
Miami, FL 33184
(305) 821-5440
Circle No 703

Shin-Etsu Polymer America Inc
1181 N Fourth St
San Jose, CA 95112
(408) 947-6311
TLX 408-947-1332
Circle No 704

SiCor Corp
610 Siecor Park
Hickory, NC 28603
(704) 324-0670
Circle No 705

SI Industries, Connector Div
15251 Roosevelt Blvd
Clearwater, FL 33720
(813) 393-5933
Circle No 706

Si-Tac Connectors Inc
Building 209
15251 Roosevelt Blvd
Clearwater, FL 33720
(813) 393-5933
TLX 805730
Circle No 707

Souriau Inc
25158 Avenue Stanford
Valencia, CA 91355
(818) 257-4830
TLX 919-906-1533
Circle No 708

3M Electronics Products Div
Box 2963
Austin, TX 78760
(512) 834-6563
Circle No 709

T&B/Ansley Electronics Div
920 Route 202
Raritan, NJ 08869
(201) 469-4000
Circle No 710

Teledyne Kinetics
410 S Cedros
Solana Beach, CA 92075
(619) 755-3181
TWX 910-322-1135
Circle No 711

Teradyne Connection Systems Inc
44 Simon St
Nashua, NH 03060
(603) 883-5356
TWX 710-228-1431
Circle No 712

Thomas & Betts Corp
920 Rte 202
Raritan, NJ 08869
(201) 469-4000
Circle No 713

Taiwan’s No. 1 in Membrane Switches

Our main product lines are membrane keyboard switches, name plates and flexible PCB board. Consistent quality, punctual delivery and reasonable prices qualify us to be your reliable supplier of these products in Asia.

For full information, contact us today

OEM & Distributors Wanted!

Manufacturer & Exporter
TAI-TRONIC MEMBRANE KEYBOARD SWITCH INC.
No. 2-1, Lane 67, Haishu Rd., Hsin Chuan Taipei Hsien. Taiwan, R.O.C. Tel: (02) 960-0444. 903-6471 Telex: 29768 MARSTWN Attn: TAI-TRONIC Fax: 886-2-9017931

Taiwan Hsien. Taiwan, R.O.C. Tel: (02) 960-0444. 903-6471 Telex: 29768 MARSTWN Attn: TAI-TRONIC Fax: 886-2-9017931
Surface mount technology has assumed a strategic role in electronics.

To survive in the marketplace, more and more products need the cost savings, space efficiency and high performance of the surface mounted designs you’re creating today.

When your circuits call for surface mounted trimming potentiometers and resistor networks, the answer is Bourns. Survival gear.

Customerized Technology: The Bourns Advantage

Bourns—more than any other resistive component manufacturer—has taken surface mount technology and optimized it to your manufacturing processes. We call it “customerized technology” and it means that you can be sure our components will work smoothly with your onsertion equipment; that it will stand up to the new—and hotter—SMD soldering techniques; and, that they will survive vigorous boardwashing. Customerized technology means that before we design our product we even take into consideration how you test the board.

There’s No Equivalent

Today you can select from more than 15 styles from Bourns Trimpot including the new 3304, the first 4mm model that’s both SMD compatible and automation friendly.

Bourns has also developed an extensive line of surface mount resistor networks. Included in the line are both molded PCC, SOIC, and now SOJ styles in standard JEDEC packages. All in all, nobody serves up SMD technology in so many ways.

Bourns always makes the extra effort. There’s no equivalent.

After 40 years, there’s still no equivalent.

COPYRIGHT © 1987, BOURNS, INC. 3/87

CIRCLE NO 83
Now your automated system won't lose its grip when holes go out of style.
We've made our major through-hole connector families available in styles for robotic application. We've given them solid support, with feeder and positioning systems and the appropriate packaging.

And we've designed everything—from the top of the feeders to the positioning data on the connector bodies—so that in almost every case the tooling you need now is the same tooling you'll need for surface-mount work later on.

It's a simple idea, and it makes sense. With the resources and experience of AMP behind it, it makes practical sense.

And it makes robotics practical, right now. Because you can do today's job knowing your tooling will still be in style for tomorrow's. And with AMP you can always count on available products, on-time delivery, and continued full support—from early design to service on the line.

We also offer a vast selection of surface-mount products, when you're ready for them. Plus everything it takes to make surface mounting a practical idea.

The nice part is that most of it will be reassuringly familiar to you.

Call (717) 780-4400 and ask for the Robotics Information Desk. AMP Incorporated, Harrisburg, PA 17105-3608.
Introducing the Weidmuller BLA/SLA Plug and Socket Connector System.

For years Weidmuller terminal blocks and connectors have set standards all over the world in electrical and electronic connection systems. Now our design engineers have come up with another brilliant solution. Our compact new BLA/SLA System for machine and process control circuit boards.

Our new design makes it quick and easy to install and repair wiring at the factory and in the field without expensive tools. Refinements include funnel-shaped wire entries, captive screws, and an improved zinc-plated steel clamping mechanism for a secure connection.

The glass-filled polyester insulating material of BLA/SLA connectors is non-burning (UL94V-0) and heat and humidity resistant to maintain pin-to-pin spacing in adverse operating environments.

Marking surfaces on the sockets are large and angled for
ease of labeling and reading.

The design of BLA/SLA connectors prevents misalignment. And, thanks to our simple new coding system, the BLA/SLA System provides protection against misconnection of plug and socket when you're using more than one connector. All without loss of poles.

Weidmuller BLA/SLA connectors come in 2 to 24-pole modules and in vertical and horizontal configurations. A doubleheader version is available for those applications requiring even greater wiring density.

With so many standard features and options like supplementary mechanical mounting blocks and strain relief covers, we're confident you'll find our new system the best available for connecting wiring to circuit boards. Call or write for more information about the BLA/SLA. A system whose brilliance you'll appreciate even if you're color-blind.

Write Weidmuller, Inc., 821 Southlake Boulevard, Richmond, Virginia 23236. Phone (804) 794-2877. Telex: 828376.
MICRO-LOGIC II.™
The CAE tool with a 10,000-gate digital simulator for your PC.

Spectrum Software's MICRO-LOGIC II® puts you on top of the most complex logic design problems. With a powerful total capacity of 10,000 gates, MICRO-LOGIC II helps engineers tackle tough design and simulation problems right at their PCs.

MICRO-LOGIC II, which is based on our original MICRO-LOGIC software, is a field-proven, second-generation program. It has a high-speed event-driven simulator which is significantly faster than the earlier version.

A 200-type library of standard parts is at your fingertips. And for a new high in flexibility, a built-in shape editor lets you create unique or custom shapes.

MICRO-LOGIC II is available for the IBM® PC. It is CGA, EGA, and Hercules® compatible and costs only $895 complete. An evaluation version is available for $100. Call or write today for our free brochure and demo disk. We'd like to put you in touch with a top digital solution.

1021 S. Wolfe Road, Dept. E
Sunnyvale, CA 94087
(408) 738-4387

CIRCLE NO 104

EDN October 1, 1987
Use of graphs eases transformer selection for linear supplies

Engineers generally use simple rules of thumb when selecting transformers for linear power supplies. These rules of thumb aren’t universally applicable, however, and blindly using them may cause you to select a less-than-optimal transformer—and thus a less-than-optimal supply.

Thomas G Lock, Case Western Reserve University

If you’re designing a linear power supply that will use a transformer operating at full rated load with a load-regulation factor of 0.9, traditional rules of thumb for selecting the transformer will suffice. For other applications, these rules won’t necessarily be sufficient. You can account for varying power-supply operating parameters for all operating conditions by expressing the equations in the box, “Circuit models yield design equations,” in the form of easy-to-use graphs. These equations are derived from simple models of common power-supply topologies (Fig 1).

Modeling power supplies’ behavior involves some simplifying assumptions. The models used to produce the graphs in this article assume that you can ignore the effects of temperature and mains-voltage variations; assume that diodes conduct abruptly, have a constant forward-voltage drop, and have a negligible series resistance; and assume that the filter capacitors have a negligible equivalent series resistance and such a large capacitance that the ripple voltage (the ac voltage

EDN October 1, 1987

159
The transformer makers’ rules don’t state where the numbers come from or whether they are applicable to all operating conditions.

across the capacitor) is also negligible. The models don’t ignore the internal impedance of the transformer, however, because it’s too important.

Although this article uses many first-order approximations to describe power-supply operation, the design rules and graph derivations are accurate models of real power supplies and are much more accurate for a wide range of designs than are the rules of thumb. Table 1 shows the transformer makers’ simple rules of thumb for selecting a transformer for a 1A power supply with capacitive filtering. Depending on whether you’re using a half-wave, full-wave bridge, or full-wave center-tap rectifier, you’ll need a 2.4, 1.8, or 1.2A transformer. Although the numbers are right, the rules don’t state where the numbers come from or whether they are applicable under all operating conditions. In fact, they aren’t.

To understand why, you may at this point want to refer to the equations derived in the box. A transformer’s specified voltage V_s, specified current I_s, and load-regulation factor F_x are all constant characteristics of the transformer. The conduction angle δ, dc output voltage V_0, dc output current I_o, peak diode forward current I_F, rms transformer current I_T, and rms capacitor current I_C are all variables that depend

<table>
<thead>
<tr>
<th>TABLE 1—RULES OF THUMB FOR TRANSFORMER SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFORMER/RECTIFIER FILTER REQUIRED RMS</td>
</tr>
<tr>
<td>TYPE TYPE SECONDARY RATING</td>
</tr>
<tr>
<td>HALF-WAVE FULL-WAVE BRIDGE FULL-WAVE CENTER-TAP</td>
</tr>
<tr>
<td>CAPACITOR 2.4x DC CURRENT</td>
</tr>
<tr>
<td>CAPACITOR 1.8x DC CURRENT</td>
</tr>
<tr>
<td>CAPACITOR 1.2x DC CURRENT</td>
</tr>
</tbody>
</table>

TABLE 2 — RULES OF THUMB VERIFIED

<table>
<thead>
<tr>
<th>TO OBTAIN:</th>
<th>MULTIPLY TRANSFORMER-TYPE FACTOR:</th>
<th>BY:</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_x</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>I_T</td>
<td>2.39</td>
<td>1.81</td>
</tr>
<tr>
<td>V_s</td>
<td>1.24</td>
<td>*</td>
</tr>
<tr>
<td>I_F</td>
<td>7.16</td>
<td>4.12</td>
</tr>
<tr>
<td>I_o</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>I_C</td>
<td>2.17</td>
<td>1.51</td>
</tr>
</tbody>
</table>

$^{*}V_s=(1.32xV_0)-(2xV_F)$

**AFTER MULTIPLICATION, SUBTRACT V_F FOR EXACT RESULT.

Fig 2—This graph of I_F/I_S vs I_o/I_S shows the points where each curve crosses the $1/I_S=1$ line. These points represent the maximum allowable transformer load.

Fig 3—This graph aids in transformer selection. I_s is the transformer maker’s maximum specified transformer current.
on how much power the supply actually delivers.

The maximum allowable power dissipation in the transformer occurs when \(I_r = I_s \) — when the transformer's rms current under load equals the manufacturer's rated maximum current. Plugging this condition into Eqs 2, 4, and 6 in the box generates Table 2's list of relationships for a transformer dissipating its maximum allowable power. (Table 2 expresses current in terms of \(I_0 \) because engineers generally think of a power supply in terms of its output current.)

Rules verified in one instance

These results verify the transformer makers' rules of thumb: A 1A supply using a half-wave rectifier requires a 2.39A transformer; a 1A supply with a full-wave-bridge rectifier requires a 1.81A transformer; and a 1A supply with a full-wave center-tap rectifier requires a 1.19A transformer. As stated earlier, though, these results are only valid for the transformer under full load and with a load-regulation factor of 0.9.

Fig 2 plots \(I_r/I_s \) vs \(I_0/I_s \) for the three topologies; HW stands for half-wave, BR stands for full-wave bridge, and CT stands for full-wave center-tap. The graph shows the points where each curve crosses the \(I_r/I_s = 1 \) line. These points represent the maximum allowable transformer load. The X-axis coordinates of these maximum-load points are simply the reciprocals of the 2.39, 1.81, and 1.19 factors in Table 1. Operating to the right of these points would overload the transformer.

Figs 3 through 6 are similar graphs; they plot \(I_r, V_0, I_F, \) and \(I_L \) with respect to \(I_0/I_s \). All the graphs assume that the transformer's load-regulation factor \(F_X \) is 0.9.

For more precise results, use the exact value of \(F_X \) for the transformer you are using and replot the graphs from the equations in the box.

The graphs may indicate some unexpected results. A simple example will serve as an illustration. For a 1A power supply with a 10A transformer and a half-wave rectifier, \(I_0/I_s = 0.1 \). The graphs indicate that the capacitor rms current will be 2.875A, the transformer rms current will be 3.05A, and the diode peak forward current will be 11.6A. Assuming a diode forward-voltage drop of 1V, a 10V transformer will provide a dc output voltage of 13.5V.

To fully comprehend how to use the graphs, consider a more realistic example: a 3A, 20V power supply suitable for regulation to 15V. First, you have to...
Circuit models yield design equations

To model a real transformer, you can use an ideal voltage source $V_M \sin(t)$ in series with an internal impedance R_x. In the case of a center-tap transformer, half of the voltage and half of the impedance appear on each half of the secondary winding. With the transformer connected to a load, the current flowing through R_x causes a voltage drop across R_x and reduces the transformer's terminal voltage.

Transformer makers specify a transformer's rms voltage (V_s) and rms current (I_s). The ratio of V_s to the open-circuit voltage, typically 0.8 to 0.9, is the transformer's load-regulation factor (F_x).

The transformer equations for F_x, R_x, and P_s (power) are:

$$F_x = \frac{\sqrt{2}V_s}{V_M} = \frac{\text{specified rms voltage}}{\text{open-circuit rms voltage}}$$

$$R_x = \frac{(V_M/\sqrt{2}) - V_s}{I_s} = \left(\frac{1}{F_x} - 1\right)\frac{V_s}{I_s} = (1 - F_x)\frac{V_M/\sqrt{2}}{I_s}$$

$$P_s = I_s^2 R_x = \left(\frac{1}{F_x} - 1\right)X V_s I_s.$$

Equivalent circuits

Now consider the equivalent circuit of a simple half-wave power supply (Fig la in the accompanying article). Engineers often assume that the filter capacitor charges to V_M at the peak of the rectifier output, as Fig Aa purports to show. This assumption is invalid, because current flowing through the transformer produces a voltage drop across R_x, which reduces the transformer's terminal voltage. If the transformer's terminal voltage is reduced, the filter capacitor cannot charge to V_M.

In the alternative model in Fig Ab, current only flows when the transformer's output voltage exceeds the supply's output voltage (plus the forward-voltage drop of the series diode). Nonetheless, assume that the capacitor is so large that the change in voltage across it during this conduction interval is negligible. Because V_0 and V_F are both constants, the transformer's terminal voltage is clamped at $V_0 + V_F$. During the entire time $0 < t < 2\pi$, a constant current $I_0 = V_0/R_1$ flows through the load.

Based on the conduction angle, δ, and the transformer's V_s, I_s, and F_x, you can calculate the following circuit parameters: the dc filter output voltage (V_0), the dc filter output current (I_0), the peak diode forward current (I_F), the rms transformer current (I_p), and the rms filter capacitor current (I_{sc}). You can generally read the peak diode forward voltage V_F from the diode's data sheet if you know I_F.

First, the transformer voltage at which the rectifier begins to conduct is

$$V_M \sin(\delta) = V_0 + V_F.$$

Or, in terms of the dc filter output voltage,

$$V_0 = \frac{\sqrt{2} \sin(\delta)}{F_x} V_s - V_F.$$

The peak diode current occurs when the voltage across the transformer's internal impedance is at its maximum—which equals the maximum sine-wave voltage minus the transformer's terminal voltage:

$$I_F = \frac{V_M - (V_0 + V_F)}{R_x} = \frac{\sqrt{2}[1 - \sin(\delta)]}{1 - F_x} I_s.$$

The instantaneous transformer current, I_x, during conduction is

$$I_x = \frac{V_x}{R_x} = \frac{V_M \sin(t) - (V_0 + V_F)}{R_x}.$$

Integrating the instantaneous current and dividing by the period yields the average transformer current:

$$\text{average current} = \frac{1}{T} \int_0^T I_x \, dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{V_M \sin(t) - (V_0 + V_F)}{R_x} \, dt.$$

Because the average voltage across the capacitor is constant, the average current through the capacitor must be zero. Therefore, the average transformer current must be equal to I_0. Solving for this equation yields

$$I_0 = \frac{2 \cos(\delta) + (2\delta - \pi) \sin(\delta)}{\pi(1 - F_x) \sqrt{2}} \times I_s.$$

Plugging the instantaneous current into the standard rms integral equation gives
rms current = $\sqrt{\frac{1}{T_{q0}}} \int_{0}^{r} I_x^2 \, dt$

= $\sqrt{\frac{1}{2\pi}} \int_{-\delta}^{\pi-\delta} (\frac{V_m \sin(t) - (V_{o} + V_{F})}{R_x})^2 \times dt,$

which yields

$I_T = \frac{1}{1-F_x} \sqrt{\frac{1}{\pi}} [\frac{\pi - 2\delta}{2} + \sin^2(\delta)] - \frac{3}{2}\sin(2\delta)] \times I_w. \quad (2)$

Although the average current through the filter capacitor is zero, the capacitor does charge and discharge. Its rms current is

$I_C = \sqrt{I_T^2 - I_o^2}.$

The equations for full-wave bridge and full-wave center-tap rectifier circuits are simple extensions of the half-wave rectifier equations. Consider the full-wave bridge power-supply equivalent circuit first (Fig 1b in the accompanying article). There are two differences between the full-wave bridge and the half-wave circuits:

1. **CONDUCTION**
2. The full-wave bridge supply can have two diode forward-voltage drops at any time, and the period of the transformer current is π instead of 2π.

These differences result in the following equations for the full-wave bridge rectifier circuit:

- $V_m \sin(\delta) = V_o + 2V_F$
- $V_0 = \frac{\sqrt{2}\sin(\delta)}{F_x} V_s - 2V_F$
- $I_T = \frac{\sqrt{2[1 - \sin(\delta)]}}{F_x} \times I_S \quad (3)$
- $I_0 = \frac{\sqrt{2[2\cos(\delta) + (2\delta - \pi)\sin(\delta)]}}{\pi(1-F_x)} \times I_S$
- $I_F = \frac{1}{1-F_x} \sqrt{\frac{2}{\pi}} [\frac{\pi - 2\delta}{2} + \sin^2(\delta)] - \frac{3}{2}\sin(2\delta)] \times I_S \quad (4)$
- $I_C = \sqrt{I_T^2 - I_0^2}$.

Next, consider the equivalent circuit for a full-wave center-tap power supply (Fig 1c in the accompanying article). There are four differences between the full-wave center-tap and half-wave circuits: The peak transformer voltage is $V_m/2$, the transformer impedance in each leg is $R_x/2$, the period of the current charging the capacitor is π instead of 2π, and I_T is defined as the current flowing through one leg of the transformer, resulting in two paths of current through the rectifier diodes to the filter capacitor.

These differences result in the following equations for the full-wave center-tap rectifier circuit:

- $V_m \sin(\delta)/2 = V_o + V_F$
- $V_0 = \frac{\sin(\delta)}{F_x\sqrt{2}} V_s - V_F$
- $I_T = \frac{\sqrt{2[1 - \sin(\delta)]}}{1-F_x} \times I_S \quad (5)$
- $I_0 = \frac{\sqrt{2[2\cos(\delta) + (2\delta - \pi)\sin(\delta)]}}{\pi(1-F_x)} \times I_S$
- $I_F = \frac{1}{1-F_x} \sqrt{\frac{1}{\pi}} [\frac{\pi - 2\delta}{2} + \sin^2(\delta)] - \frac{3}{2}\sin(2\delta)] \times I_S \quad (6)$
- $I_C = \sqrt{2I_T^2 - I_0^2}.$
which topology to use. Supposing you use a full-wave bridge rectifier, you can see by looking at Fig 3 that you need at least a 5.4A transformer. Fig 4 indicates that the transformer should be rated at about 16.7V (assuming 1V diode forward-voltage drops). If you use a full-wave center-tap rectifier, you need a 3.6A, 33.9V transformer.

In this case, the center-tap rectifier circuit is the topology of choice because of the availability of a stock 4A, 36V transformer (Stancor P-8673). Going back to the graphs armed with this transformer’s parameters, you can see that $I_r/1_s = 0.75$ (indicated by a dotted line in Fig 3). Fig 3 also indicates that the transformer rms current will be 3.7A. Fig 4 predicts a dc output voltage of 21.8V, resulting in the voltage regulator dissipating 20.4W. Fig 5 shows that the diodes must be rated for a repetitive peak forward current of 11.1A, and Fig 6 indicates that the filter capacitor must be able to withstand an rms current of 4.2A.

You should be aware of one other salient parameter when choosing a transformer. When the power supply is first turned on, the voltage across the filter capacitor is zero, momentarily short-circuiting the transformer. This short circuit causes the entire peak voltage of the transformer to be dropped across the transformer’s internal resistance because of the large current flowing through the rectifier into the capacitor’s effective ground. The rectifier diodes must be able to withstand this momentary surge of current (diode manufacturers specify it as I_{rSM}). Using Eqs 1, 3, and 5 from the box, you can calculate I_{rSM} for a half-wave, full-wave bridge, and full-wave center-tap circuit, respectively. For the example in the previous paragraph, $I_{rSM} = 56.6$A.

Author’s biography

Thomas G Lock is an instructor at Case Western Reserve University’s Department of Electrical Engineering and Applied Physics, in Cleveland, OH, where he has taught for nine years. He previously worked for IBM. Tom devotes his spare time to his family and church activities.
Have you ever imagined life without Triad transformers?

Quite simply, life without Triad would be a bit prehistoric. After all, doesn't every new electronic product idea or improvement require a state-of-the-art transformer design? Of course, and specifying anyone other than Triad may set you back.

Triad's optimum transformer designs are ideal for nearly every application you have, providing high quality and delivering superior on-the-job performance. We even offer technical assistance in the form of the best engineers and designers in the electronics industry.

You see, we're your problem-solving partner. You can trust Triad to realize your vision. Use another transformer and you may just be re-inventing the wheel.

Call or write Triad today for our free Transformers, Inductors and Power Supplies Catalog — 305 North Briant Street, Huntington, IN 46750, 219-356-7100, TWX 810-333-1532.

Triad gets wound up in your ideas
SEEKING THE ULTIMATE MICROCODE DEVELOPMENT SYSTEM?

YOUR SEARCH IS OVER!

Speed, support and satisfaction. That's the HILEVEL approach to meeting your microcode development systems needs, without compromise.

Microprogram development and debug is fast and easy, thanks to highly-productive software development tools combined with the most powerful hardware available. We back each system with unmatched service and support, and the longest warranty in the industry.

- Guaranteed Access Time at Target Side of Pod.
- Most Powerful Logic Analyzer, with Exclusive Trace Waveform Display.
- Most Advanced Macro-Meta Assembler in the Industry.
- Toll-Free Applications Assistance.
- Memory Board Exchange Credit.

And, we'll demonstrate an ease-of-use that invites comparison with any other system on the market.

Avoid compromises. Demand the finest. Call today.

DIAL TOLL FREE: 1-800-HILEVEL
In California, call 1-800-752-5215
Array-processing languages now suit personal-computer users

Array-processing languages have made many programming or calculating jobs easier on mainframes. The streamlined approach of these languages is now an option for PC users as well. And though some limitations exist, you'll find they can operate in general on a par with their mainframe cousins.

Avram Tetewsky, Charles Stark Draper Lab Inc

For some time, scientists, engineers, and programmers have enjoyed the simplicity and flexibility of array-processing languages such as Control-C on mainframe computers. For solving statistical, digital-signal-processing, classical-control, state-space-control, and estimation-related problems, these specialized languages are more suitable than the more traditional languages such as C, Pascal, Ada, and Fortran. Array-processing languages are now available for PC users as well. Matlab, from The Mathworks (Sherborn, MA), for example, performs as well as its mainframe equivalents with very few exceptions.

Although traditional languages can be very flexible, they burden users with mundane tasks when handling arrays. You must declare, allocate, and keep track of data pointers for each array used in a program. In addition, you must design DO or FOR loops when manipulating these data structures or when calling complex numerical and graphic subroutines. An array-processing language can relieve you of these tasks because they automatically recognize matrix expressions and let you manipulate matrices without having to write explicit loops.

A language for processing arrays should also allow you to write your own utilities. Some products give you precanned utilities and clever graphics but no means for inserting your own utilities or independently controlling program flow to solve problems. A good array-processing language, like Matlab, integrates general mathematics, special-purpose subroutine libraries, and graphics with the flexibility for writing your own routines. Matlab's array-processing syntax grew out of the public-domain language Moler-MATLAB. This syntax (such as "*, .*, etc. . .") has been expanded to include the extensive Linpack (Linear Algebra) and

The opinions in the article are the author's and don't necessarily reflect the views of Charles Stark Draper Lab Inc.
Although traditional languages are very flexible, the user is burdened with mundane tasks when handling arrays.

Eispack (Eigenvalue) subroutine libraries available to the public domain by the Department of Energy. Control theory, graphics, and I/O formatting packages have also been added. Other application libraries are currently being developed, and user-group libraries are now available. Matlab combines a flexible set of scientific utilities, easy graphics, and good debugging capabilities with a readable syntax for solving complex problems. It is presently available to run on an IBM PC. Even though this computer is limited to 640k bytes of RAM by PC-DOS, the package can solve many nontrivial problems. For problems requiring more memory space, Matlab is now available for Sun and VAX computers and will be available for the Macintosh soon.

No loops needed

APL, Speakeasy, Minitab, IDL, Dataplot, SAS/TML, R/S1, Asyst, MLAB, Gauss, Control-C, and Matlab are all array-processing languages. Basically, these languages can perform mathematical operations on matrices without doing loop-type manipulations. Thus they treat scalars and vectors as 1x1 and Nx1 matrices, respectively.

Consider the simple problem of creating the sum of a 50-Hz and a 120-Hz sine wave. Let the summation occur within a time period from 0.0 to 5.0 sec, with intervals of 0.001 sec. Using a traditional language, you must first calculate the size of the array, (in this case, 1000 storage units are needed per second of simulation). Next, you have to design loops to access this data. Using Fortran 77 as an example:

```
C . . . allocate arrays
REAL X(5000), T(5000), PI
PARAMETER (PI=3.14159)
C . . . set up loops to calculate data
DO 100 I=1,5000
    T(I) = FLOAT(I-1)*0.001
    X(I) = SIN(2.0*PI*50.0*T(I)) +
           SIN(2.0*PI*120.0*T(I))
100 CONTINUE
C . . . call some plot routine and pass in the T and X vectors.
```

The Fortran code creates two arrays (X and T) that you can use in a routine to plot the required summation. The program requires laborious array allocation and dimensioning, along with a DO loop to fill the arrays with data. Although many languages, such as C, Ada, and Pascal, allow dynamic allocation of arrays and pointers, this feature doesn’t relieve the basic tedium at all.

Now consider the same problem using an array-processing language such as Moler-Matlab, a public-domain precursor to Matlab, Gauss, Control-C, Matrix-X, and other commercial packages (Ref 1). The required code for the program is

```
t = 0:0.001:5;  % A vector of the appropriate size is
                % created and initialized from 0 to 5
                % in 0.001 increments.
x = sin(2*pi*50*t) + sin(2*pi*120*t);
                % x will be created as needed. Because
                % it is a vector, x will be a vector and
                % operations are always implied when
                % ever vector or matrices are used.
plot(t,x), title('a quick plot '), xtitle(' time '),
ytitle(' volts ');
% quick and easy graphics.
% Note that Matlab is case-sensitive,
% thus you can have a mix of upper
% and
% lowercase variable names.
```

The first statement creates an array that contains a vector spanning the 5-sec period in 0.001-sec intervals. The next statement uses this array and automatically creates another array containing the summation values at each interval. You then plot one array against the other by typing a simple plot statement.

But array-processing languages go even further. They can do matrix mathematics so that a "*" multiplies matrices and performs dot products. A "/" or a "\" computes the left and right matrix inverses, respectively. That is, you can use a "/" to solve underdetermined interpolation problems where there are more equations than unknowns. Obversely you can use a "\" to solve over-determined smoothing problems (in a least-square sense), where there are fewer equations than unknowns. A "'" performs transpose (or conjugate transpose) operations.

Linear algebra does not, however, define all the types of operation—for example, a spreadsheet operation, where the contents of one column (or vector) are multiplied by another column (element by element) and stored in a third column. The following Fortran program shows how you might use a traditional language to create two vectors of data and perform element-by-
element multiplications, such as those found in the dot product.

REAL DX, MAXX, X1(1000), X2(1000)
REAL Y1, Y2(1000), Y3
INTEGER N

MAXX = 10
DX = 0.1
N = (MAXX/DX) + 1

DO 1000 I = 1, N
X1(I) = FLOAT(-I) * DX
X2(I) = FLOAT(-I) * DX
CONTINUE

DO 2000 I = 1, N
Y2(I) = X1(I) * X2(I)
CONTINUE

DO 3000 I = 1, N
Y1 = Y1 + X1(I) * X2(I)
CONTINUE

Y3 = Y1(4)

In Matlab, the same operation becomes

DX = 0.1;
MAX_X= 10;
X1 = [0:DX:MAX_X];
X2 = [0:DX:MAX_X];
Y1 = X1.*X2;
Y2 = X1.*X2;
Y3 = Y2(4);

In Matlab, the same operation becomes

The element-by-element as well as the matrix and vector capabilities of Matlab let you readily express any problem within the syntax of this array-processing language. Coupled with the technique of operator and function overloading, an array-processing language can make your code simple to create, simple to read, and fast.

Dynamic resizing simplifies processing

Some problems in digital signal processing require data arrays to be expanded or contracted. For example, when working with fast Fourier transforms (FFTs), vectors must be expanded out to be even powers of 2, and, in some cases, include zero padding to suppress time-domain aliasing. With Matlab, the expansion can be automatic, and it is also easy to reshrink the data after all processing is done. For example,

n = length(x); % compute the size of x so that it can
% be restored to its original
% dimension.
x= FFT(x); % the FFT is programmed to
% automatically increases x until it's
% length is a power of 2.

...other processing

x= IFFT(x); % calculate inverse FFT.
% contract x.
x= [x(1:n), []]; % x is replaced by its first n
% elements and a zero length vector.

Matlab and Control-C (for VAX from Systems Control Technology, Palo Alto, CA) are very evenly matched. Table 1 compares the instruction sets of the two programs. One significant difference between Control-C and Matlab is that Control-C can convert continuous functions to discrete data with a delay (c2dt); Matlab can do this but without a delay (c2d). However, Matlab has another conditional operator (elseif) and includes find and search index functions, which Control-C doesn’t.

Although you can write your own subprograms, most users want to build programs using off-the-shelf tools. Therefore, you may want to consider other array-processing languages, such as Gauss (for the PC and available from Aptech Systems Inc, Kent, WA), for your application. If you use complex variables, control theory, and digital signal processing extensively, or if you need to be able to move your program between different computer and operating systems, you might want to choose Matlab. On the other hand, you might choose Gauss if you don’t need extensive, complex

Modern languages, such as Ada, include operator-and-function-overloading options. Overloading allows operators (such as "+", ",", ",", or "/") and subprograms (such as user-created functions or subroutines) to manipulate data differently depending on the number of arguments in the statement. Matlab also includes function- and operator-overloading options. For example,

plot(y) % plot y versus an integer subscript
plot(x,y) % plot y versus x
plot(x1,y1,x2,y2 ...) % plot y1 versus x1, y2 versus x2, etc.

With overloading, you can group functions with a common purpose under one name without having to create many special function names for each case.
Array-processing languages can perform mathematical operations on matrices without loop-type manipulations.

variable operations but do need advanced statistical software; the ability to handle large data sets (with fast I/O); and linkage with some Fortran, C, or assembly object modules. For problems that exceed the 640k-byte memory imposed by PC-DOS, you can buy Sun or VAX versions of Matlab.

If you are doing simulation problems that use ordinary differential equations, you must be able to express these equations in state-space form. Otherwise Matlab, Gauss, and Control-C cannot handle them. Also if you are doing nonlinear or multirate digital simulations, consider a PC or a mainframe version of ACSL (A Computer Simulation Language), Simnon (Simulate Non-Linear Systems), or Matrix-X. The PC and VAX versions of Matlab and Control-C offer links to ACSL.

Author's biography

Avram Teteucksy is a signal analyst at the Charles Stark Draper Lab Inc, where he analyzes detection and estimation systems and digital control systems. He received a BSEE from Renssalaer Polytechnic Institute in 1976, an MSEE from MIT in 1978, and an EESE from MIT in 1980. Avram is a NY State EE Intern and a member of the Computer Society IBM PC Tech Group. He holds an FCC first-class license. In his spare time, he also enjoys swimming, biking, cats, guitar, and piano. He is also a member of the Computer Society IBM PC Tech Group.

Reference

![TABLE 1—MATLAB ON PC VS CONTROL-C ON VAX](image)

TABLE 1—MATLAB ON PC VS CONTROL-C ON VAX

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>MATLAB—PC DESCRIPTION</th>
<th>CONTROL-C—VAX DESCRIPTION</th>
<th>COMPARISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>help</td>
<td>HELP FACILITY</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>casesen</td>
<td>ALLOW FOR VARIABLES</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WITH UPPER AND LOWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASE NAMES BEING UNIQU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>who</td>
<td>LIST ALL VARIABLES IN</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>REPORT BACK THE ROW</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND COLUMN DIMENSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>REPORT BACK THE LENGTH</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OF A VECTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^</td>
<td>LOCAL, ABORT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>clear</td>
<td>CLEAR WORKSPACE</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td>TERMINATE PROGRAM</td>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>MATRIX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATORS:</td>
<td>MATRIX ADD, SUBTRACT,</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MULTIPLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ \</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RIGHT AND LEFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INVERSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>^</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATRIX POWER</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONJUGATE TRANSPOSE</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>ARRAY OPERATORS:</td>
<td>ADD, SUBTRACT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>MATLAB—PC</td>
<td>CONTROL—VAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUNCTION</td>
<td>DESCRIPTION</td>
<td>COMPARISON</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>DECIMAL POINT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>CONTINUE STATEMENT TO NEXT LINE</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>SEPARATE ARGUMENTS</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>SUPPRESS OUTPUT, OR END ROWS</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>COMMENTS //</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>SUBSCRIPING, VECTOR GENERATION</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>EXECUTE AN OPERATING SYSTEM COMMAND</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>MATRIX CONDITIONING:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td>CONDITION NUMBERS</td>
<td>2-NORM</td>
<td>y</td>
</tr>
<tr>
<td>det</td>
<td>DETERMINANT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>norm</td>
<td>[1,2,F AND INF NORMS</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>rcond</td>
<td>CONDITION ESTIMATE</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>DECOMPOSITIONS AND FACTORIZATIONS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eig</td>
<td>GENERALIZED EIGENVALUES AND VECTORS</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>hess</td>
<td>HESSENBERG FORM</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>inv</td>
<td>INVERSE</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>lu</td>
<td>GAUSS FACTORS</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>null</td>
<td>NULL SPACE</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>orth</td>
<td>ORTHOGONALIZATION</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>pinv</td>
<td>PSEUDO INVERSE</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>qr</td>
<td>ORTHOGONAL-TRIANGULAR DECOMPOSITION</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>qz</td>
<td>QZ ALGORITHM</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>rref</td>
<td>REDUCED ROW ECHELON FORM</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>schur</td>
<td>SCHUR DECOMPOSITION</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>svd</td>
<td>SINGULAR VALUE DECOMP</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>MISC MATRIX FUNCTIONS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expm</td>
<td>MATRIX EXPONENTIAL</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>logm</td>
<td>MATRIX LOG</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>sqrtm</td>
<td>MATRIX SQUARE ROOT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>funm</td>
<td>ARBITRARY MATRIX FUNCTIONS</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>poly</td>
<td>CHARACTERISTIC POLYNOMIAL</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>kron</td>
<td>KRUONECKER TENSOR PRODUCT</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>POLYNOMIALS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>roots</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polyval</td>
<td>POLYNOMIAL EVALUATION</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>conv</td>
<td>MULTIPLICATION OF POLY</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATLAB—PC</th>
<th>CONTROL—VAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>.</td>
<td>SIGNAL PROCESSING:</td>
</tr>
<tr>
<td>conv</td>
<td>CONVOLUTION</td>
</tr>
<tr>
<td>cov</td>
<td>COVARIANCE</td>
</tr>
<tr>
<td>dft</td>
<td>DISCRETE FOURIER TRANSFORM</td>
</tr>
<tr>
<td>fft,ifft2</td>
<td>1 AND 2D FFTs</td>
</tr>
<tr>
<td>fdesign</td>
<td>DESIGN FILTER</td>
</tr>
<tr>
<td>filter</td>
<td>DIRECT FILTER IMPLEMENTATION</td>
</tr>
<tr>
<td>freq</td>
<td>FREQUENCY RESPONSE</td>
</tr>
<tr>
<td>xcorr</td>
<td>CROSS CORRELATION FUNCTION</td>
</tr>
<tr>
<td>COLUMN-WISE DATA ANALYSIS:</td>
<td></td>
</tr>
<tr>
<td>max,min</td>
<td>MAX AND MIN OF MATRICES</td>
</tr>
<tr>
<td>mean,std</td>
<td>MEAN AND STANDARD DEVIATION</td>
</tr>
<tr>
<td>sort</td>
<td>y</td>
</tr>
<tr>
<td>sum</td>
<td>y</td>
</tr>
<tr>
<td>prod</td>
<td>y</td>
</tr>
<tr>
<td>cumsum</td>
<td>y</td>
</tr>
<tr>
<td>cumprod</td>
<td>y</td>
</tr>
<tr>
<td>diff</td>
<td>y</td>
</tr>
<tr>
<td>hist</td>
<td>y</td>
</tr>
<tr>
<td>table1</td>
<td>y</td>
</tr>
<tr>
<td>any</td>
<td>n</td>
</tr>
<tr>
<td>all</td>
<td>n</td>
</tr>
<tr>
<td>find</td>
<td>EXTRACT INDEX BASED ON LOGICAL EXPRESSIONS</td>
</tr>
<tr>
<td>SPECIAL VALUES:</td>
<td></td>
</tr>
<tr>
<td>eps</td>
<td>FLOATING POINT PRECISION</td>
</tr>
<tr>
<td>ans</td>
<td>LAST TEMPORARY RESULT</td>
</tr>
<tr>
<td>pi,inf</td>
<td>y</td>
</tr>
<tr>
<td>NaN</td>
<td>NOT A NUMBER</td>
</tr>
<tr>
<td>clock</td>
<td>WALL CLOCK TIME</td>
</tr>
<tr>
<td>nargin, nargout</td>
<td># OF INPUT OUTPUT ARGUMENTS</td>
</tr>
<tr>
<td>I/O:</td>
<td></td>
</tr>
<tr>
<td>format</td>
<td>SET FORMAT PRECISION</td>
</tr>
<tr>
<td>fprintf</td>
<td>C ROUTINE FPRINTF (LIKE A FORTRAN FORMAT)</td>
</tr>
<tr>
<td>sprintf</td>
<td>C ROUTINE NUMBER TO STRING</td>
</tr>
<tr>
<td>input</td>
<td>GET NUMBER FROM KEYBOARD</td>
</tr>
<tr>
<td>keyboard</td>
<td>VERSION OF INPUT FOR SUBPROGRAM</td>
</tr>
</tbody>
</table>

EDN October 1, 1987

Listing continued on pg 172
<table>
<thead>
<tr>
<th>MATLAB—PC</th>
<th>CONTROL—C—VAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>PROGRAMMING:</td>
<td></td>
</tr>
<tr>
<td>.m</td>
<td>FILE EXTENSION FOR USER WRITTEN SUBPROGRAMS.</td>
</tr>
<tr>
<td>global</td>
<td>LIKE FORTRAN COMMON</td>
</tr>
<tr>
<td>exist</td>
<td>CHECK IF VARIABLE EXITS</td>
</tr>
<tr>
<td>eval</td>
<td>ALLOW FUNCTIONS TO BE PASSED AS ARGUMENTS</td>
</tr>
<tr>
<td>GRAPHICS:</td>
<td></td>
</tr>
<tr>
<td>plot</td>
<td>y</td>
</tr>
<tr>
<td>loglog</td>
<td>y</td>
</tr>
<tr>
<td>semilogx, semilogy</td>
<td>y</td>
</tr>
<tr>
<td>polar</td>
<td>y</td>
</tr>
<tr>
<td>mesh</td>
<td>3D SURFACE</td>
</tr>
<tr>
<td>meshdom</td>
<td>CREATE THE XY DOMAIN FOR 3D PLOT</td>
</tr>
<tr>
<td>grid</td>
<td>ADD GRID LINES</td>
</tr>
<tr>
<td>title, xlabel, ylabel</td>
<td>ALLOW AUTO OF FIXED SCALE.</td>
</tr>
<tr>
<td>hold</td>
<td>HOLD SCREEN ON PLOT</td>
</tr>
<tr>
<td>shg</td>
<td>RESHOW GRAPHICS SCREEN</td>
</tr>
<tr>
<td>cla, clg</td>
<td>CLEAR TEXT, CLEAR GRAPHICS</td>
</tr>
<tr>
<td>home</td>
<td>HOME CURSOR</td>
</tr>
<tr>
<td>print</td>
<td>GET HARDCOPY</td>
</tr>
<tr>
<td>gpp</td>
<td>GENERIC PRINT VIA DRIVERS</td>
</tr>
<tr>
<td>misc</td>
<td>GREEK, SYMBOLS, AND LARGE FONTS</td>
</tr>
<tr>
<td>PROGRAM INTERFACE:</td>
<td></td>
</tr>
<tr>
<td>Save, Load</td>
<td>SAVE AND LOAD DATA TO DISK FILES</td>
</tr>
<tr>
<td>diary</td>
<td>DIARY OF SESSION</td>
</tr>
<tr>
<td>edit</td>
<td>INVOKE YOUR FAVORITE EDITOR</td>
</tr>
<tr>
<td>ACLS</td>
<td>LINK TO A COMPUTER SIMULATION LANGUAGE</td>
</tr>
<tr>
<td>ELEMENTARY MATH FUNCTIONS:</td>
<td></td>
</tr>
<tr>
<td>abs</td>
<td>y</td>
</tr>
<tr>
<td>sqrt</td>
<td>y</td>
</tr>
<tr>
<td>real</td>
<td>y</td>
</tr>
<tr>
<td>imag</td>
<td>y</td>
</tr>
<tr>
<td>conj</td>
<td>y</td>
</tr>
<tr>
<td>round</td>
<td>y</td>
</tr>
<tr>
<td>fix</td>
<td>y</td>
</tr>
<tr>
<td>floor</td>
<td>y</td>
</tr>
<tr>
<td>cell</td>
<td>y</td>
</tr>
<tr>
<td>sign</td>
<td>y</td>
</tr>
<tr>
<td>rem</td>
<td>y</td>
</tr>
<tr>
<td>sin, csc, tan</td>
<td>y</td>
</tr>
<tr>
<td>asin, acos, atan, atan2</td>
<td>y</td>
</tr>
<tr>
<td>sinh, cosh, tanh</td>
<td>y</td>
</tr>
<tr>
<td>exp, log, log10</td>
<td>y</td>
</tr>
<tr>
<td>bessel</td>
<td>y</td>
</tr>
<tr>
<td>rat</td>
<td>RATIONAL APPROXIMATION</td>
</tr>
</tbody>
</table>

TABLE 1—MATLAB ON PC VS CONTROL-C ON VAX (Continued)

<table>
<thead>
<tr>
<th>MATLAB—PC</th>
<th>CONTROL—C—VAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>UTILITY MATRICES:</td>
<td></td>
</tr>
<tr>
<td>diag</td>
<td>DIAGONAL MATRICES</td>
</tr>
<tr>
<td>eye</td>
<td>IDENTITY MATRICES</td>
</tr>
<tr>
<td>ones</td>
<td>CONSTANT MATRICES</td>
</tr>
<tr>
<td>rand</td>
<td>RANDOM MATRIX</td>
</tr>
<tr>
<td>logspace</td>
<td>LOG SPACED VECTORS</td>
</tr>
<tr>
<td>magic</td>
<td>MAGIC SQUARE</td>
</tr>
<tr>
<td>triu, triu</td>
<td>LOWER AND UPPER TRIANGULAR PARTITION</td>
</tr>
<tr>
<td>toeplitz</td>
<td>TOEPLITZ MATRIX</td>
</tr>
<tr>
<td>rsf2csf</td>
<td>REAL-SCHUR TO COMPLEX</td>
</tr>
<tr>
<td>CONTROL THEORY:</td>
<td></td>
</tr>
<tr>
<td>ss2tf, tf2ss</td>
<td>STATE-SPACE TO TRANSFER FUNCTION</td>
</tr>
<tr>
<td>ss2zp, stf2zp</td>
<td>STATE-SPACE TO POLES AND ZEROS</td>
</tr>
<tr>
<td>zp2tf, zp2ss</td>
<td>POLE-ZERO TO TRANSFER FUNCTION OR STATE-SPACE</td>
</tr>
<tr>
<td>c2d, d2c</td>
<td>CONVERT BETWEEN CONTINUOUS AND DISCRETE WITH ZERO-ORDER-HOLD</td>
</tr>
<tr>
<td>append, connect, parallel, series</td>
<td>SPlice BLOCK DIAGRAMS</td>
</tr>
<tr>
<td>impulse, setp</td>
<td>IMPULSE AND STEP RESPONSE</td>
</tr>
<tr>
<td>lsim</td>
<td>CONTINUOUS SIMULATION TO ARBITRARY INPUTS</td>
</tr>
<tr>
<td>impulse, dstep</td>
<td>DISCRETE SIMULATIONS</td>
</tr>
<tr>
<td>dlsim</td>
<td>DISCRETE SIMULATIONS</td>
</tr>
<tr>
<td>bode, Nyquist, dbode, freq</td>
<td>LINEAR QUADRATIC GAUSSIAN REGULATORS AND ESTIMATORS</td>
</tr>
<tr>
<td>lqr, lqre</td>
<td>DISCRETE LQR AND LQRE</td>
</tr>
<tr>
<td>place</td>
<td>POLE PLACEMENT</td>
</tr>
<tr>
<td>rlocus</td>
<td>ROOT-LOCUS</td>
</tr>
<tr>
<td>damp</td>
<td>DAMPING FACTORS AND RESONANCE</td>
</tr>
<tr>
<td>margin</td>
<td>GAIN AND PHASE MARGINS</td>
</tr>
<tr>
<td>ctrb, obsv</td>
<td>CONTROL AND OBSERVABILITY</td>
</tr>
<tr>
<td>tzero</td>
<td>TRANSMISSION ZEROS</td>
</tr>
<tr>
<td>fixphase</td>
<td>UNWRAP PHASE FOR BODE PLOTS</td>
</tr>
<tr>
<td>ord2</td>
<td>GENERATE A, B, C, D FOR 2ND ORDER SYSTEM</td>
</tr>
<tr>
<td>ric</td>
<td>CONTINUOUS RICCATI RESIDUALS</td>
</tr>
<tr>
<td>dric</td>
<td>DISCRETE RICATTI RESIDUALS</td>
</tr>
<tr>
<td>abcdcheck</td>
<td>CHECK CONSISTENCY</td>
</tr>
<tr>
<td>nargcheck</td>
<td>CHECK NUMBER OF .m FILE ARGUMENTS</td>
</tr>
</tbody>
</table>
Get on board with AutoCAD® 2.6.

Computer-aided design.

Until recently, it conjured up images of massive, room-sized computers and engineers in white lab coats.

But a few years ago, AutoCAD® changed all that. With a software package that turned the personal computer on your desk into an easy-to-use electronic drawing board.

For everything from PC boards to shopping centers. Tooling to topographical plans. Technical illustrations. Facilities layouts. Even #4-6-4 Hudson model railroad trains.

Now AutoCAD is even better.

Introducing AutoCAD 2.6

Of course, the newest version of AutoCAD still has all the features that made the original the industry standard. Accuracy, Power, and Versatility.

But now, there are improvements all down the line.

- Like AutoCAD 3D Level 2 which allows you to generate lines and faces at any angle on a drawing, not just on or parallel to the X-Y plane.
- Or associative dimensioning which automatically updates dimensions after you’ve stretched, scaled, or rotated an object.
- And transparent PAN, VIEW, and ZOOM, which you can use while another command is in progress.

The result? A powerful electronic drawing tool that lets you concentrate on the drawing, and not on the electronics.

Feel Comfortable at the Controls

Never used a computer before? AutoCAD’s easy-to-use menus guide you from action to action. You can even create your own menus. And use an on-line “HELP” command if you get stuck.

All of which combine to make the new AutoCAD fit more neatly and comfortably than ever into the way you’re used to working.

How to Get on Board

For a demonstration of AutoCAD 2.6, or any of our other products, call or write us for the name of the dealer nearest you.

Call us too if you want the location and telephone number of your nearest Authorized AutoCAD Training Center. We’ll make sure you get headed down the right track.

Drawing Courtesy of Little Engines, Inc.
When Howard Schiffman outgrew his IBM PC AT, he had two alternatives:

- Come up with $6000 for a brand new 386 system.
- Or spend $2000 for an Intel Inboard™ 386 system.

As you might suspect, he chose the Intel Inboard 386. And got the full power of a 386 system.
Without compromising one bit on reliability. And with the extra $4000, he put a mahogany hot tub on his deck.

How can we give you the same for so much less? Simple. If you have an IBM PC AT or compatible, you already own 2/3 of a 386 system. And when you install an Inboard 386, you get the rest of it.

Besides the price, how do they compare? According to a recent InfoWorld product review, "Inboard has the best computing speed of all micro systems we have tested to date," including all other 386 systems.

The reason Inboard is so fast is because of its zero wait state cache and 32 bit memory. To give you even greater performance, there's also a special socket for the 80387-16 math coprocessor.

Software compatibility is unsurpassed as well. According to PC Week, "The Inboard 386 proved perfectly compatible with a standard IBM PC AT and every software product we tested." It's compatible with advanced software, too, including 386 control software for multitasking. And a number of developers are already using Inboard to create OS/2® applications.

Of course, you're probably wondering if a $2000 system can be as reliable as a $6000 one. Absolutely. Because it's built by the same company that designed the 80386 microprocessor. And backed by a five-year warranty.

If you still need more information on which system is best, call us at (800) 538-3373. Or contact your local dealer.

And then take a hot bath. When your workload is too much to handle, it's the best way we know to unwind.
The Siemens family of ADMA co-processors
The economical, intelligent ways to manage your data throughput.

Designers of multi-user systems including LAN, SCSI controllers, graphics and CPU boards can travel into the future of information management...with Siemens intelligent new SAB 82258 co-processor and SAB 82257 low cost version. They provide an uncommon combination of advanced functions:

<table>
<thead>
<tr>
<th>Features</th>
<th>SAB 82257</th>
<th>SAB 82258</th>
<th>SAB 82258A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal channels</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Multiplexer channels</td>
<td>—</td>
<td>YES</td>
<td>32</td>
</tr>
<tr>
<td>"On-the-fly" operation</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Data Transfer Rate (Mbytes/Second)</td>
<td>8</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Automatic chaining of command and data blocks</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Package</td>
<td>PLCC</td>
<td>PLCC</td>
<td>PLCC</td>
</tr>
</tbody>
</table>

- SAB 82258A supports 32-bit data transfers in single-cycle mode
- Directly interface with SAB 8086/8086/80286-based systems...the SAB 82258A is the ideal choice for 80386-based systems
- "On-the-fly" feature includes compare, translate, and verify operation
- Stand alone (remote) mode operation in any system

To solve your data throughput problems, and get your FREE ADMA brochure, call (408) 980-4500 ext. 4347.
Or write: Siemens Components, Inc., IC Standard Products Marketing Dept., 2191 Laurelwood Rd., Santa Clara, CA 95054

Siemens Regional Sales Offices:
Eastern Region
Littleton, MA
(617) 486-0331
Princeton, NJ
(609) 987-0285
Norcross, GA
(404) 443-3981

Central Region
Rosemont, IL
(312) 692-6000
Columbus, OH
(614) 433-7500
Dallas, TX
(214) 620-2294

Western Region
Orange, CA
(714) 385-1274
Cupertino, CA
(408) 725-3586

Siemens National Distributors:
Hall-Mark, Marshall
Siemens Regional Distributors: Advent Electronics, Inc., Amo Electronics, Insight Electronics, Quality Components, Summit and Western Microtechnology.

Siemens...your partner for the future.
Digital potentiometer brings μP-based control to audio systems

From rotary volume and tone controls to the sliders on an equalizer, the control of most audio systems is still primarily mechanical. But this situation is changing as μP-based systems employing digitally controlled potentiometers find increasing use in audio designs.

Jeff Randall, Xicor Inc

Designs incorporating mechanical potentiometers are still found in the majority of audio applications. For example, at the heart of most volume and tone controls on car stereos is a rotary potentiometer. Digitally controlled potentiometers, however, now offer a more reliable alternative together with the option for programming various settings. Although automated control of potentiometers can be a challenge, it's clear that the μP-type control of audio functions is, in many applications, desirable.

Typical volume controls generally contain a simple potentiometer and resistor circuits (Fig 1). In this design, the potentiometer controls the signal to a fixed-gain amplifier section. Because the human ear's sensitivity to changes in volume is logarithmic in nature, a potentiometer used as a volume control is likely to have a logarithmic taper. Tone controls can vary from simple potentiometer and capacitor circuits to complex active filters. The Baxandall filter network has been the workhorse of the audio industry for years. This design (Fig 2) utilizes two linear-taper potentiometers to control the gain of an active filter. The potentiometers replace a portion of the input resistance and the feedback resistance. By moving the position of the wipers, you can vary the amount of boost and cut for both the bass and treble frequencies.

Graphic equalizers, which typically contain a group of seven bandpass filters, are one of the fastest growing modes of audio control. Each filter has a potentiometer that controls the gain to a particular bandpass section. The potentiometers generally appear as sliders on the face of the equalizer. Fig 3 shows a typical graphic-equalizer schematic. Equalizers compensate for the imperfections of a listening environment by boosting or cutting the audio gain at specific frequencies.

Fig 1—Volume controls are usually simple potentiometer and resistor circuits. In this circuit, the potentiometer controls the signal level to a fixed-gain amplifier.
Although a challenge, microprocessor control of audio functions is more desirable in many applications than mechanical potentiometers.

By using a spectrum analyzer and a pink-noise generator, you can customize the response of an audio system for a particular room or concert hall. You do this by feeding a desired response to the system—a pink-noise signal—that is generally flat across the audio band, with some attenuation at higher frequencies. You then adjust the equalizer until the system output closely matches the pink-noise input as displayed on the spectrum analyzer.

This process of matching a system to a room is often referred to as environmental calibration. It requires the listener to read the display of the spectrum analyzer and manually adjust the potentiometers (sliders) of the equalizer.

Primarily used for industrial-control applications, motorized potentiometers offer a relatively straightforward approach to building simple audio control circuits. In these devices, a dc reference voltage or a digital signal, either of which represents the position of the motor, is introduced into a small motor that is linked to a rotary potentiometer. The numerous drawbacks to this type of system include noise caused by the motor assembly and the increased space and power requirements of placing a motor on an audio pc board.

At the cost of greater complexity, you can use D/A converters to control and manipulate analog-circuit functions. These converters are frequently the choice for high-fidelity digital audio controls because of their precision, but for the analog-circuit designer, they can be a little intimidating. One method (Fig 4) uses first an A/D converter to sample the input signal, then a microprocessor to further manipulate the signal, and lastly a D/A converter. Although the results can be good, it's a complex and somewhat unfamiliar approach for the analog designer.

An array of resistors with a wiper tap that is digitally selectable offers many advantages of the microprocessor world without the complexity of D/A conversion. Such circuits are referred to as digitally controlled potentiometers. Logic circuits, counters, and memory circuits are often combined with resistor arrays to accomplish an approximation of potentiometer control. Recently, a few manufacturers have introduced devices that incorporate many of these functions in a single circuit. Some examples are Xicor's X9MME, Toshiba's TC9169AP, and National's LMC385. The Toshiba and National parts incorporate features that lend themselves well to audio designs, but are not specifically intended for general-purpose potentiometer replacement.

Fig 2—The Baxandall filter circuit is commonly found in high-quality audio systems. Potentiometers control the gain of an active filter to boost or cut either bass or treble frequencies.

Fig 3—In a graphic equalizer, each filter has its own potentiometer to control the gain to a particular bandpass section. The potentiometers normally appear as sliders on the face of the equalizer.
Xicor’s X9MME (Fig 5), on the other hand, combines a single 99-position potentiometer with 3-line digital control. In addition to the internal counter circuitry for wiper positioning, the device incorporates nonvolatile memory to retain the wiper position. The X9MME is a digitally controlled replacement for a mechanical potentiometer. Because of its conventional 3-terminal potentiometer design, it integrates easily into existing analog designs.

Circuit illustrates digital control

The Raxandall tone-control circuit commonly used in high-quality audio systems provides a good example of how to use digitally controlled potentiometers. In this circuit, the Xicor X9MME replaces the conventional mechanical potentiometers normally used for adjusting the bass and treble frequencies.

The tone-control circuit, its frequency response, and the equations for gain and filter frequencies are shown in Fig 6. This circuit uses digital potentiometers to control the gain of two active filters. The low-frequency (bass) filter includes resistors R1 and R2 and capacitors C1, C2. The maximum gain of this section is at low frequencies, where the capacitors are essentially open circuits.

Fig 5—Digitally controlled potentiometers, such as the X9MME from Xicor, offer an alternative solution for microprocessor control of signal levels without the need for A/D and D/A converters. The X9MME combines a 99-position potentiometer with internal counter circuitry for wiper position control, and a nonvolatile memory that retains the wiper’s position. It provides a conventional 3-terminal design that easily integrates into conventional designs.
The high-frequency (treble) filter includes resistors R_3 and R_4 and capacitor C_3. The maximum gain of this section is at high frequencies, where the capacitor is essentially a short circuit.

With the addition of another potentiometer at the output of the Baxandall network, the circuit becomes a single channel of an audio preamplifier. It contains three potentiometers that control volume, treble, and bass. These potentiometers might appear on the face of a home or car stereo, for example, as knobs that the operator would adjust by hand to control and shape the sound reaching the amplifier and speakers.

Except for the digital control lines and the 5V power for the X9MME, the complete circuit is shown in Fig 7. X9MMEs replace R_2, R_4, and R_{sc}. Note that this replacement does not alter the analog design considerations. Because R_2 and R_4 are both linear-taper pots, the X9MME, which is also a linear-taper pot, provides a direct replacement. R_{sc} is an audio-taper potentiometer, the type normally used for volume control. By placing a small resistor from the wiper terminal to the low terminal on any linear potentiometer (Fig 8), you can approximate an audio taper. In this case, a resistor of one-tenth the total potentiometer resistance provides a close approximation of an audio potentiometer (Ref 1).

Excluding the power-amplifier stage, this circuit is designed to have a gain of 1 across the entire audio range, with the potential for a boost or cut of 20 dB at the frequencies that you select.

The Fig 7 design is intended for car-stereo applications. It should therefore operate from a single-ended, 12V supply and adapt well to speakers that are commonly used in autos. Considering the limited bass response of most car speakers, the frequency of the bass boost or cut should not be so low that the speakers cannot reproduce the sound. In the design shown here, there's 20 dB of boost or cut at 100 Hz (bass) and 10 kHz (treble). The available resistor values for the X9MME are 10 kΩ (X9103), 50 kΩ (X9503), and 100 kΩ (X9104).

Note that you must alter the design somewhat when you insert the X9MME into the circuit. The X9MME's internal voltage generators, which are used to operate internal switches as well as to store information in the device's nonvolatile memory, produce a high-frequency noise. The principal noise frequencies begin at approximately 150 kHz, and although this noise is beyond the audio range, it can still be a source of problems in the circuit. For this reason, the design incorporates capacitors around the X9MME to filter out any noise that might interfere with the circuit's operation.

The digital control lines of the X9MME are INC (increment), CS (chip select), and U/D (up/down). CS allows you to move the wiper and also to store the wiper position in nonvolatile memory. When you return CS high, a store operation commences. The U/D function determines the direction of the wiper movement, and the INC function initiates the movement on the falling edge of the timing pulse.

When initially designing with the X9MME, it may be helpful to assemble a simple switch system for controlling the devices. In Fig 9's circuit, a 555 timer supplies a slow clock pulse to the increment pin of each X9MME.

Fig 6—The Baxandall tone-control circuit (a), its frequency response (b), and the equations for gain and filter-frequencies are shown above. Maximum gain of the low-frequency section (R_x, R, and C_x) occurs at frequencies where the capacitors are essentially open circuits. Maximum gain of the high-frequency section (R_x, R, and C_x) occurs at frequencies where the capacitor is essentially a short circuit.

The digital control lines of the X9MMEs are INC (increment), CS (chip select), and U/D (up/down). CS allows you to move the wiper and also to store the wiper position in nonvolatile memory. When you return CS high, a store operation commences. The U/D function determines the direction of the wiper movement, and the INC function initiates the movement on the falling edge of the timing pulse.

When initially designing with the X9MME, it may be helpful to assemble a simple switch system for controlling the devices. In Fig 9's circuit, a 555 timer supplies a slow clock pulse to the increment pin of each X9MME.
through a momentary switch. Pull-up resistors connect to each digital line, and grounding switches connect to the U/D and CS pins. To move the wiper up, you set the CS pin to ground, the U/D pin at 5V, and pulse the INC pin with the clock. Each step of the clock produces a 1% change in the wiper position.

This initial procedure lets you separate the analog portion of the design from the digital. Once the circuit is functioning adequately, with the switch network controlling the X9MMEs, the microprocessor interface is relatively simple to implement.

Simplifying the µP interface

With three devices on the board, the system requires nine control lines. To simplify the interface to an 8-bit microprocessor, you should connect the INC lines for all three devices to the same pin. The pin configuration for interface with the 6502 microprocessor system is

<table>
<thead>
<tr>
<th>N/C</th>
<th>INC</th>
<th>CS1</th>
<th>U/D1</th>
<th>CS2</th>
<th>U/D2</th>
<th>CS3</th>
<th>U/D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

To move the wiper of a given potentiometer, you should bring that potentiometer’s CS pin low, force the U/D pin for the appropriate potentiometer either high or low (depending on the direction of wiper movement), and then toggle the INC pin. For example, to increase the volume you should alternate the following two patterns to the port connected to the control lines of the preamplifier circuit:

N/C INC CS1 U/D1 CS2 U/D2 CS3 U/D3
1 0 0 1 1 1 1 1
1 1 0 1 1 1 1 1

Fig 7—In this circuit, X9MMEs replace the conventional potentiometers (R1, R2, and R3) of Fig 6 without any alteration of the analog design considerations. Because R1 and R2 are both linear-taper potentiometers, the X9MME provides a direct replacement. The volume control (R4) requires a 1-kΩ shunt resistor from its wiper to ground to simulate an audio taper.

An array of digitally selectable resistors offers many advantages of the µP world without the complexity of D/A conversion.
A 3-terminal potentiometer that provides 99 positions, 3-line digital control, and an internal counter integrates easily into existing designs.

Note that at this point you have selected CS, set U/D to 1, and toggled INC to increase the volume. You can alter the bass and treble settings in a similar manner.

The microprocessor system used in this design consists of a 6502-based keyboard monitor. The controlling program scans the keyboard for the ASCII character that transfers control to the specified subroutine. For a given input, the subroutine selects the appropriate potentiometer and toggles the INC pin 10 times before returning to the controlling program.

An example program for adjusting the volume, bass, or treble is

```
LDX #00 Load counter with zero
0333 LDA 0006 Load accumulator with first pattern.
STA A000 Output pattern.
JSR ED2C 5mS wait
LDA 0007 Load 2nd Pattern
STA A000
JSR ED2C
INX
CPX 0008 Compare counter to 10
BNE 0333
RTS
```

In addition to the adjustment subroutines, you can also call up an initialization subroutine. This subroutine resets the volume control to zero and the bass and treble controls to the 50% point. You would normally use this routine only during the installation of the system.

The first section of this one-time initialization program sets all the potentiometers to zero.

```
LDX #00 Load counter with zero
0111 LDA 0000 Load accumulator with first pattern (80h)
STA A000 Output pattern.
JSR ED2C 5mS wait
LDA 0001 Load 2nd Pattern (C0h)
STA A000
JSR ED2C
INX
CPX 0008 Compare counter to 100
BNE 0111
```

The next section of the program sets the bass and treble potentiometers to 50% and returns control to the controlling routine.

```
LDX #00 Load counter with zero
012C LDA 0003 Load accumulator with first pattern (B5h)
STA A000
JSR ED2C
LDA 0004 Output pattern.
STA A000
JSR ED2C
INX
CPX 0005 Load 2nd Pattern (F5h)
BNE 0333
```

Compare counter to 50

```
EDN October 1, 1987
```

Fig 8—A shunt-resistor from the wiper of the potentiometer to ground (a) can simulate various logarithmic tapers when used with a linear pot. The graph (b) plots the resulting curves as a function of the resistor ratios.

(A) FULL CCW

(B) FULL CW

NOTE: FOR AUDIO TAPER, USE R2=R1/10

NOTE:

FOR AUDIO TAPER,

USE R2=R1/10
New Precision Pulse Generator

Four Channels, 5 ps Resolution, and GPIB Interface...Price: $2995

TIMING IS EVERYTHING
Your critical timing problems are over. No more worries about drift, jitter, or control. The DG535 Precision Pulse Generator has four delay channels (two pulse outputs), each with a 1000 second range and 5 ps resolution. The four independent delays specify two variable-width pulse outputs. With only 50 ps jitter and accuracy down to 1 ppm (option 03), the instrument can handle the most demanding applications. The internal trigger may be programmed from 0.001 Hz to 1.000 MHz, or operated in single-shot or burst modes. Output levels are continuously adjustable or may be set to TTL, NIM, or ECL levels. High impedance or 50 Ohm loads can be driven with a slew rate of 1 V/ns. Optional rear panel outputs generate pulses to 15 volts.

EASY TO USE
The delay and output levels for each channel may be entered numerically or modified by cursor keys on the backlit LCD display. Delays may be linked together so that as one moves, the other follows. Up to nine instrument settings may be stored in nonvolatile RAM for later recall, and, of course, all of the instrument's functions may be controlled via the GPIB interface.

A GENERATION AHEAD
The DG535's precision, accuracy, range, and versatility make it the solution to all your timing needs, at a price that will meet your budget. Call us today for more information.

FEATURES AND PERFORMANCE
- Four Delay Outputs
- Two Variable-Width Outputs
- Times from 0 to 1000 sec.
- 5 ps Resolution
- 50 ps rms Jitter
- 1 ppm Accuracy (Option 03)
- Internal or External Timebase
- Internal, External, Single-Shot, or Burst Mode Triggers
- Frequency Synthesized Rate Generator
- Variable, TTL, NIM, and ECL Outputs
- Optional ± 40 Volt Outputs
- GPIB Computer Interface
With digitally controlled potentiometers, the gain or frequency response of a circuit is quickly alterable via microprocessor commands.

The Fig 9 circuit using the X9MME digital potentiometers operates much like many sophisticated home stereo systems, except that all controls are digital switches—in this case, a keyboard. The only moving parts are in the switches, and the entire system is relatively free from the problems of vibration or jarring—potential hazards in all mechanical potentiometer systems.

Keys 1 through 6 on the keyboard represent the up/down controls for the circuit. By depressing Key 1, the volume increases by 10 steps. Key 2 decreases the volume in the same manner. Similarly, Key 3 is treble up, Key 4 is treble down, Key 5 is bass up, and Key 6 is bass down. The key for the letter I calls the initialization routine. Keep in mind that beyond allowing control of step size, and the auto-zero or initialize function, this

Fig 9—This breadboard circuit uses a 555 timer to supply a slow clock-pulse to the increment pin of each X9MME through a momentary switch. Pull-up resistors connect to each digital line, and grounding switches connect to the up/down and chip-select pins. Each step of the clock produces a 1% change in the wiper position.
Let us build your first PCB Prototype. FREE.

That's right, and up to five copies. An exclusive offer from the industry leader.

Who qualifies? Anyone. Anyone, that is, who places an order for our PCB WorkSystem, the complete printed circuit board development system that takes you from schematic capture through physical layout. We'll also give you free help from a qualified Tektronix Design Center. It's the kind of support you've come to expect from Tektronix.

It's all part of Tektronix Aided Engineering, an integrated software approach addressing each area of your product development cycle.

So use the handy coupon or call us today at 800-TEK-WIDE, ext. 1594, to get all the details on your free PCB prototype manufactured at our class "A" MRP certified plant in Forest Grove, Oregon. Hurry, this offer can't last forever.

WorkSystem is a trademark of Tektronix, Inc.

*Place an order for our PCB WorkSystem now through December 18, 1987, and we will provide you with facilities, computers and consulting support to help you develop an approved printed circuit board design before you accept delivery of the WorkSystem. Up to 5 copies of your first unstuffed board will be manufactured. Subsequent boards do not have to be manufactured at our PCB facility. All board designs must have prior Tektronix approval and there will be a per day fee for cancelled purchase orders.

Yes. I want a Free PCB Prototype. Send more information.

Name ____________________________
Title ____________________________
Company _________________________
Address __________________________
Phone ____________________________

Tektronix/CAE Systems Division, P.O. Box 4600, MS 94/520, Beaverton, OR 97076. Or call 800/TEK-WIDE ext. 1594.
Nonvolatile memory can be important in once-only-calibration circuits.

The Xicor X9MME is a general-purpose device. Although well suited for audio applications, it may be even better for other analog applications. Its 99-step resolution across its range exceeds any normal requirements in most audio applications. For auto-zero and balancing circuits, however, this resolution is invaluable.

The device's nonvolatile memory, although of limited interest in applications where the user may not want to retain the previous potentiometer settings, could be quite important in a once-only calibration circuit where it is desirable to retain the factory settings. In a TV decoder, for example, mechanical potentiometers abound. In that application, the use of nonvolatile digital potentiometers could eliminate the constant headaches of having to make adjustments because of jarred equipment or tampering.

References

Author's biography
Jeff Randall is a field-applications engineer with Xicor Inc. He is responsible for customer applications support, technical presentations for all Xicor-E products plus additional analog circuit assistance to customers in the central US. Jeff has a BSEE from Washington State University. Prior to joining Xicor, he worked as an instrumentation and controls engineer, at Chevron Engineering. Jeff's hobbies include playing bass and singing in jazz and pop-music bands, radio-control auto racing, and home brewing.

Article Interest Quotient (Circle One)
High 491 Medium 492 Low 493
Synchronous divider replaces 1× clock line

Mike J Shah
Webcrafters Inc, Madison, WI

A serial-transmission data link based on a 1× clock can obviously transmit a higher data rate than one using a 16× clock. Both types of systems, however, must synchronize the clock and data signals, which may require a clock line separate from the data line. The Fig 1 circuit eliminates the clock line and yet provides the USART with a 1× clock signal synchronized to the data stream.

Positive transitions in the 57.6-kHz clock signal (output of IC3b) enable IC1 to sample each data bit at its midpoint. To generate and synchronize this clock signal to the data input, XOR gates IC3a, IC3b, and IC3c form an edge detector that produces a positive pulse following each positive or negative transition of the data signal (waveform A). These pulses repeatedly clear counter IC4a to zero, and the local oscillator (fosc) continually clocks the counter. Because the oscillator frequency (921.6 kHz) is 16× the data’s baud rate, the counter’s 1Q0 output (a count-of-8 event) occurs at the midpoint of each data bit.

This approach to clock recovery at the data link’s receive end has the advantages of simplicity and instantaneous response compared with the use of PLLs or phase-encoding schemes like biphase, FM, or modified FM. Most data transmitters and receivers include a crystal-controlled clock generator, from which you can usually derive fosc. Because such generators offer 0.1% or better accuracy and stability, the Fig 1 circuit need only provide phase synchronization.

The line receiver (IC2) should have hysteresis so that its output (waveform A) can provide the sharp transitions needed by the edge-detector circuit. The detector circuit’s output pulse widths t0 and tn should be less than the period of fosc, but wider than the minimum required by the counter’s Clear input.

As shown, counters IC4a and IC4b enable data reception and transmission by dividing the data period by 16. (This division factor results in a midbit quantization jitter of ±½ the fosc period, or ½ of a data bit.) Division by 8 is the minimum recommended.

To Vote For This Design, Circle No 748

Fig 1—By using synchronized dividers and a free-running local oscillator, this USART circuit operates in the 1× clock mode without requiring a separate clock line.

EDN October 1, 1987
Fortran program calculates op-amp noise

James S Taylor
James S Taylor & Associates, Fairborn, OH

Calculating the input-referred noise of an op-amp circuit isn't difficult, but making this calculation for several different op amps, over different bandwidths and for different circuit configurations, can become a chore. Listing 1 is a Microsoft Fortran program that simplifies this task. It computes the total input-referred noise for an op-amp circuit (based on the test circuit of Fig 1), is flexible enough to handle a range of options, and runs on IBM PCs and compatibles.

The program prompts you for the external resistor values and such op-amp noise parameters as noise-voltage and noise-current densities (Listing 2). (For those parameters, use a frequency well above the op amp's noise-corner frequency—1 kHz, for example.)

Listing 2 also includes an example of Listing 1's output for the OP-27A op amp. The program presents the data inputs and the output on your CRT screen for verification before printing. Boltzmann's constant and the absolute temperature are listed in separate data statements, so you can easily modify the program to calculate the resistor's thermal noise at different temperatures.

References
1. Precision Monolithics Inc, Application Note AN-15, Minimization of noise in operational amplifier applications, Santa Clara, CA.
3. Signetics Corp, Application Note AN-104, Explanation of noise, Sunnyvale, CA.

To Vote For This Design, Circle No 750

LISTING 1—CALCULATION OF OP-AMP NOISE

```
DIMENSION IWN, K, LBW, NE, NI, NIN, NIP, NOISE, &
           NE, NRSP, NRSN
LOGICAL NEWT, ANS
CHARACTER*8 OPAMP
CHARACTER*1 ANSWER

DATA KI /1.38E-23/ , T /300.0/ , NEWT / .TRUE. /

OPEN UNIT = 1, FILE = 'CON'
OPEN UNIT = 2, FILE = 'CON'

OPEN FILES

OPEN (UNIT = 1, FILE = 'CON')
OPEN (UNIT = 2, FILE = 'CON')

GET INPUT

1000 WRITE (1, 1) ' ', CHAR(27), '1', '2', 'J'
20 IF (NEWT) THEN
24 THE OP-AMP ID IS USED FOR LABELLING THE PRINTOUT
25 WRITE (1, 2)
26 READ (2, 3) OPAMP
```
SPECIFICATIONS

SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FREQ</th>
<th>GAIN, dB</th>
<th>MAX NF</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-1</td>
<td>DC-1000</td>
<td>18.5</td>
<td>15.5</td>
<td>13.0</td>
</tr>
<tr>
<td>MAR-2</td>
<td>DC-2000</td>
<td>13</td>
<td>12.5</td>
<td>11</td>
</tr>
<tr>
<td>MAR-3</td>
<td>DC-2000</td>
<td>13</td>
<td>12.5</td>
<td>10.5</td>
</tr>
<tr>
<td>MAR-4</td>
<td>DC-1000</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>MAR-5</td>
<td>DC-2000</td>
<td>20</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>MAR-6</td>
<td>DC-2000</td>
<td>13.5</td>
<td>12.5</td>
<td>10.5</td>
</tr>
<tr>
<td>MAR-7</td>
<td>DC-2000</td>
<td>33</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

NOTE: Minimum gain at highest frequency point and over full temperature range.

- 1dB Gain Compression
- +0dBm 1 to 2 GHz

dc to 2000 MHz amplifier series

Unbelievable, until now... tiny monolithic wideband amplifiers for as low as 99 cents. These rugged 0.085 in diam, plastic-packaged units are 50ohm* input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11dBm output, noise figure as low as 2.8dB, and up to DC-2000MHz bandwidth.

designers amplifier kit, DAK-2

5 of each model, total 35 amplifiers only $59.95

Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each.

<table>
<thead>
<tr>
<th>Size (mils)</th>
<th>Tolerance</th>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 x 60</td>
<td>5%</td>
<td>NPO</td>
<td>10, 22, 47, 68, 100, 470, 680, 1000 pf</td>
</tr>
<tr>
<td>80 x 60</td>
<td>10%</td>
<td>X7R</td>
<td>2200, 4700, 6800, 10,000 pf</td>
</tr>
<tr>
<td>120 x 60</td>
<td>5%</td>
<td>X7R</td>
<td>0.022, 0.047, 0.068, 1µf</td>
</tr>
</tbody>
</table>

Minimum Order 50 per Value
LISTING 1—CALCULATION OF OP-AMP NOISE (Continued)

D Line# 1 7 Microsoft FORTRAN77 V3.31 August 1985
27 C FCE = VOLTAGE NOISE CORNER FREQUENCY
28 WRITE (1, 4)
29 READ (2, 5) FCE
30 C FCI = CURRENT NOISE CORNER FREQUENCY
31 WRITE (1, 6)
32 READ (2, 5) FCI
33 C EWN = NOISE VOLTAGE DENSITY, F >> FCE
34 WRITE (1, 7)
35 READ (2, 5) EWN
36 EWN = EWN
37 C IWN = NOISE CURRENT DENSITY, F >> FCI
38 WRITE (1, 8)
39 READ (2, 5) IWN
40 C THE NEXT LINE CORRECTS FOR A TRADITIONAL ERROR IN THE WAY
41 C NOISE CURRENT DENSITY IS SPECIFIED
42 IWN = IWN * SQRT(2.)
43 NEW = .FALSE.
44 ENDIF
45 C RSP = SOURCE RESISTANCE AT THE POSITIVE INPUT
46 WRITE (1, 9)
47 READ (2, 5) RSP
48 C RG = RESISTANCE TO GROUND AT THE NEGATIVE INPUT
49 WRITE (1, 10)
50 READ (2, 5) RG
51 C RF = FEEDBACK RESISTANCE TO Out AT THE NEGATIVE INPUT
52 WRITE (1, 11)
53 READ (2, 5) RF
54 C RSN = EQUIVALENT SOURCE RESISTANCE AT THE NEGATIVE INPUT
55 WRITE (1, 12)
56 FL = LOWEST FREQUENCY OF INTEREST
57 WRITE (1, 13)
58 READ (2, 5) FL
59 C FH = HIGHEST FREQUENCY OF INTEREST
60 WRITE (1, 14)
61 READ (2, 5) FH
62 BW = FH - FL
63 LBW = LOG(FH / FL)
64 C CALCULATE INDIVIDUAL NOISE COMPONENTS
65 NRSP = SQRT(4.0 * K * T * RSP * BW) * 1.0E9
66 NRSN = SQRT(4.0 * K * T * RSN * BW) * 1.0E9
67 NE = EWN * SQRT(FCE * LBW + BW)
68 NI = IWN * SQRT(FCI * LBW + BW)
69 NIP = RSP * NI / 10000.
70 NIN = RSN * NI / 10000.
71 C CALCULATE THE TOTAL NOISE, ROUNDED TO THE NEAREST NANOVOLT
72 NOISE = INT(SORT(NRSP**2 + NRSN**2 + NIP**2 + NIN**2 + NE**2))
73 N6 = NOISE * 6.0
74 C DISPLAY THE RESULTS
75 WRITE (1, 15) OPAMP, FCE, FCI, EWN, IWN
76 WRITE (1, 16) NRSP
77 WRITE (1, 17) NRSN
78 WRITE (1, 18) NE
79 WRITE (1, 19) NI
80 WRITE (1, 20) NIP
81 WRITE (1, 21) NIN
82 WRITE (1, 22) NOISE, N6
83 C PRINT THE RESULTS, IF REQUESTED
84 WRITE (1, 23)
85 READ (2, 1) ANSWER
86 IF ((ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y')) THEN
87 OPEN (UNIT = 3, FILE = 'PRN')
88 WRITE (3, 14) OPAMP, FCE, FCI, EWN, IWN
89 WRITE (3, 15) NRSP
90 WRITE (3, 16) NRSN
91 WRITE (3, 17) NE
92 WRITE (3, 18) NI
93 WRITE (3, 19) NIP
94 WRITE (3, 20) NIN
95 WRITE (3, 21) NOISE, N6
96 CLOSE (3)
97 ENDIF
98 C ASK IF ANOTHER CALCULATION IS REQUIRED
99 WRITE (1, 24)
100 READ (2, 1) ANSWER
101 IF ((ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y')) THEN
102 AGAIN = .TRUE.
103 Listing continued on pg 192
Introducing the Honeywell Model 101e—an enhanced version of the rugged Model 101 that has proven its reliability in a wide range of applications over many years.

The new features of the Model 101e give you the greatest possible assurance of data accuracy by augmenting the many qualities of its predecessor.

Qualities like preamble recording with a "known" signal; microprocessor-controlled auto test for calibration verification at the speed you select; total system control via a direct-access panel; gentle tape handling; 5-year/5000-hour unprorated warranty on the ferrite heads; field services and a worldwide parts network unsurpassed for more than 30 years.

For more details, contact Darrell Petersen, Honeywell Test Instruments Division, Box 5227, Denver, CO 80217-5227. (303) 773-4835.

Together, we can find the answers.

© 1987 Honeywell Inc.
LISTING 1—CALCULATION OF OP-AMP NOISE (Continued)

```
103  WRITE (1, 24)
104    READ (2, .) ANSWER
105    IF ((ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'Y')) NEW = .TRUE.
106    ELSE
107       AGAIN = .FALSE.
108      ENDIF
109      IF (AGAIN) GO TO 1000
110     CLOSE UP AND CLEAN UP
111     WRITE (1, 1)
112     CLOSE (1)
113     CLOSE (2)
114     END
```

LISTING 2—INPUT PROMPTS AND SAMPLE OUTPUT

```
ENTER THE OP AMP TYPE: OP-27A
ENTER THE VOLTAGE NOISE CORNER FREQUENCY, Hz: 2.7
ENTER THE CURRENT NOISE CORNER FREQUENCY, Hz: 140.0
ENTER THE NOISE VOLTAGE DENSITY, nV / sqrt(Hz): 3.0
ENTER THE NOISE CURRENT DENSITY, pA / sqrt(Hz): 0.4
ENTER SOURCE RESISTANCE AT THE + INPUT, ohms: 10000.0
ENTER RESISTANCE TO GROUND AT THE + INPUT, ohms: 1000.0
ENTER RESISTANCE TO GROUND AT THE - INPUT, ohms: 1000.0
ENTER THE HIGH FREQUENCY LIMIT, Hz: 100.0

Op-Amp type: OP-27A
Voltage noise corner frequency: 2.70 Hz
Current noise corner frequency: 140.00 Hz
Noise voltage density: 3.0000 nV / sqrt(Hz)
Noise current density: 0.5657 pA / sqrt(Hz)

Thermal noise from Rs(+) = 128.69 nV
Thermal noise from Rs(-) = 35.61 nV
Op-Amp noise voltage = 35.15 nV
Op-Amp noise current = 25.51 pA
Noise current * Rs(+) = 255.13 nV
Noise current * Rs(-) = 22.96 nV

TOTAL NOISE = 291.00 nV RMS, 1464.00 nV-P-P

PRINT THESE RESULTS? Y
WOUL YOU LIKE TO CALCULATE NOISE AGAIN? Y
WOUL YOU LIKE TO SPECIFY A DIFFERENT OP AMP? N
```
These High-Rel SRAMs offer you all these benefits:

• 100 ns access time at 25°C
• Low standby current: 1 mA typical
• Full Mil temperature range
• 32Kx8 organization
• 28 Terminal DIL Package
• Screened to Mil-Std-883 Class B.* So they're perfect for use in a wide range of military systems. And, as you'd expect from the leaders in High-Rel CMOS, we have a full line of SRAMs, including 64K (8Kx8) and 16K (2Kx8).

Tops in Rad-Hard RAMs, too.

If you need rad-hardness, remember that we offer 1K, 4K and 16K CMOS/SOS RAMs as well. Our Rad Hard 16Kx1 CMOS/SOS RAM has an access time of 125 ns at 25°C and is available for immediate delivery to Class S type specifications.

CMOS/SOS is the ideal technology for rad-hard applications because:

• It's latch-up free under transient radiation
• It's highly tolerant to single-event upset caused by radiation (typically 2x10^-9 errors/bit/day)
• It has total dose tolerance from 100K RADs to “MEGARAD.”

We know, because we invented CMOS/SOS.

So whatever your needs in SRAMs, aim high, and call the Top Guns today. For additional information, call toll-free 800-443-7364, extension 20. Or contact your local GE Solid State sales office or distributor.

*Rev. C, Paragraph 1.22

GE/RCA/Intersil Semiconductors

These three leading brands are now one leading-edge company. Together, we have the resources—and the commitment—to help you conquer new worlds.

GE Solid State

In Europe, call: Brussels, (2) 246-21-11; Paris, (1) 39-46-57-99; London, 0276-685911; Milano, (2) 82-291; Munich, (89) 63813-0.

EDN October 1, 1987
V/I converter has zero I_B error

Roberto Burani and Giovanni Stocchino
FATME SpA, Rome, Italy

In a conventional (simplified) voltage-to-current converter (Fig 1), $I_E=V_{IN}/R_p$, and $I_C=I_E-I_B$. Because $I_B=I_1/(1+\beta)$, the output current is affected by changes in β, which varies with I_E, V_{OUT}, and temperature. The voltage-controlled current source of Fig 2 overcomes this drawback by eliminating the output transistor’s base current as a source of error. (For earlier voltage-to-current circuits, see EDN, September 15, 1983, pg 227, and January 10, 1985, pg 290).

Notice that the output device in Fig 2 (a composite of Q_2 and the optocoupler’s output phototransistor) has only two dc terminals, so I_C and I_E are identical at low frequencies. Output current, then, is proportional to current flowing in the optocoupler’s LED. The output device contributes only a negligible error due to current leakage (about 1 pA/V), which is caused by finite isolation resistance in the package.

To identify potential sources of error, consider the expression for output current:

$$I_C = I_E = \frac{V_{IN} \pm V_{OS}}{R_p} \pm \frac{I_B + 2I_{OS}}{2} \geq I_{DARK} + I_{OFF},$$

where V_{OS} is the op amp’s input offset voltage, I_B and I_{OS} are the op amp’s respective input bias and offset currents, I_{DARK} is the optocoupler’s dark current, and I_{OFF} is the cutoff current for transistor Q_2. Resistors R_5 and R_6 extend the output-current range by reducing I_{DARK} and I_{OFF} to a few nanoamperes.

The maximum deviation (d) of output current from the ideal (V_{IN}/R_p) is

$$d = |I_C - \frac{V_{IN}}{R_p}| = \frac{V_{OS} + I_B + 2I_{OS}}{R_p}.$$

You can control the major sources of error (V_{OS} and dV_{IN}/dT) by selecting a suitable op amp. (As intended, the quantity d contains no error contributions from the output device.)

For the circuit of Fig 2, a single programming resistor (identified as R_1) provides an output-current range of about six decades. (Note that this resistor’s TC is also a potential source of error; it dissipates 125 mW when $V_{IN}=5V$.) The maximum deviation is typically 50 nA—that is, 0.0002% of full scale.

To Vote For This Design, Circle No 746
Kulka. More choice in high quality, high density terminal blocks.

Miniatures. Sectional. Tubular. Flat base. In virtually every configuration and combination. High quality, high density terminal blocks from Kulka that meet every design requirement you can think of.

Take our miniature high density series for example. Available in 5 and 10 mm spacings, they’re engineered to meet all critical international regulatory standards. And include safety and quality features like dead front construction and wire protection as well.

Or our high density sectional series available in sizes from 6 to 22 mm. Advanced fuse blocks, switch blocks and contact sections all designed with tin-plated copper alloy conductors, anti-vibration tubular clamps and a mounting foot adaptable to 3 standard DIN channels.

And for truly custom applications, we’ll dedicate the design versatility that inspired the full range of Kulka products to creating a terminal block that meets your every specification.

DIALIGHT CORPORATION
DIALIGHT • KULKA • HHSMITI
A North American Philips Company

CIRCLE NO 127
Circuit monitors system’s power supply

David Wilson
Fairchild Industrial Products,
Winston-Salem, NC

Industrial systems that include μPs or μCs are increasingly prone to immobilization due to a low-voltage condition, a glitch in the supply voltage, or an outright failure of the power supply. Fig 1’s circuit, unlike most voltage-supervisor ICs, can handle all three of these problems.

Following detection of an aberration in the supply voltage, the circuit salvages program execution by activating the Reset line. IC, handles the conditions of power-up and low supply voltage, and the circuit’s external components enable detection of abnormal operation by the CPU. Software problems and thermal effects, for example, can affect the CPU.

During power-up, IC, asserts the active Reset and Reset signals until the supply voltage attains its nominal value. An internal current source and capacitor C, provide a time delay ($t_0=1.3\times10^4 C_4$), which ensures a proper reset before the reset lines become inactive. (For this circuit, $t_0=28$ msec.) Similarly, if the supply voltage dips low during normal operation, the reset

![Circuit Diagram](image-url)

Fig 1—Combining a supply-supervisor chip (IC,) with an external watchdog circuit provides protection for a μP system. The circuit issues a system reset in response to a CPU malfunction, a glitch, a low-voltage condition, or a failure of the power supply.

![Waveform Diagram](image-url)

Fig 2—The waveforms of Fig 1’s watchdog circuit show that a signal from the CPU (connected to the Input) prevents a system reset by repeatedly jerking the pin 2 voltage away from IC,’s V_T switching threshold. A malfunctioning CPU will allow the voltage to reach the threshold, producing a reset.
Chinon's design engineers have a serious commitment to produce the most technologically advanced products that the mind of man can imagine.

That commitment has created subsystems, peripherals and components that could change the way we think about computers—and change the way computers are used.

The Scanner and the CD-ROM units pictured here are the types of products that continually move the leading edge forward. The Scanner could change the way business works by making true OCR technology more affordable and easier to use than ever before. The unique scanning head design means that the document to be scanned remains fixed, unlike other scanners that can only accept a single sheet fed through the unit. It is also extremely compact and lightweight, and is designed to set new standards of cost-effectiveness.

CD-ROMS can provide users with access to databases that, only a few years ago, were possible only with a mainframe system.

Technology is still moving as fast as the best minds can advance it. At Chinon, our commitment to that progress keeps our products at the very forefront of the leading edge. We're bringing the future of computing to the needs of today.
lines become active until the voltage returns to normal and the delay time expires.

In addition, the circuit includes a watchdog function that activates a reset condition when the CPU exhibits abnormal operation. Once you connect a selectable CPU signal to the circuit's Input, C1 differentiates the signal, producing alternate negative and positive pulses. Each positive pulse causes transistor Q1 to turn on and discharge C2, which turns on transistor Q2.

Capacitor C3 discharges as Q2 turns on, pulling pin 2 of IC1 high. The R3C3 time constant ensures that C3 discharges completely before Q2 turns off. C3 immediately begins to recharge, driving the voltage at pin 2 toward the IC's internal switching threshold Vt (Fig 2). Unless the CPU signal toggles in time (within an interval defined by the R3C3 time constant), the pin 2 voltage activates a reset by crossing the Vt threshold. (Diode D1 helps hold Q2 on while the reset signal is active.) Thus, the minimum frequency f for the Input signal is

\[f = \frac{1}{R_3C_3 \ln \left(\frac{V_t}{V_{CC}} \right)} \]

Because Vt isn't a tightly controlled parameter and can range from 0.6 to 2V, f can vary from 4.7 to 11 Hz (when V_{CC}=5V). You must ensure, then, that the selected CPU signal exceeds 11 Hz. (You can choose a signal that comes from a CPU output and that toggles with each execution of a particular subroutine, for example.) The duty cycle is unimportant.

IC1 senses the pin 7 supply voltage at a threshold of 4.55V typ. Other ICs have different thresholds: TL7709A, 7.6V; TL7712A, 10.8V; and TL7715A, 13.5V.

Low-power circuit splits supply voltage

John A Haase
Colorado State University, Fort Collins, CO

The simple circuit of Fig 1a can convert a single supply voltage (a battery, for example) into a bipolar supply. Sense resistors R1 and R2 establish relative magnitudes for the resulting positive and negative voltages. Their rail-to-rail value, of course, equals V_SUPPLY. R4 and R5 represent the load impedances.

For example, equal-value sense resistors produce \(\frac{1}{2} V_{\text{SUPPLY}} \) across each of the load resistors R4 and R5.

The op amp maintains these equal voltages by sinking or sourcing current through R5; the op amp's action is equivalent to that of variable conductances G1 and G2 in shunt with each load resistor (Fig 1b).

Choose a value for R3 such that the largest voltage across it (the greatest load-current mismatch) won't exceed the op amp's output-voltage capability for the application. You can add a buffer amplifier at the op amp's output to provide greater load currents. If you need bypass capacitors across the load resistors as well, connect a capacitor (dashed lines) to ensure that the amplifier remains stable.

EDN

To Vote For This Design, Circle No 747

EDN

To Vote For This Design, Circle No 749

EDN October 1, 1987
THE ARNOLD CONCEPT... MULTI OUTPUTS FROM STANDARD MODULES.
SAVE TIME... SAVE SPACE... SAVE COSTS... REDUCE RISK.

CONFIGURE-YOUR OWN IN 5 EASY STEPS.

Arnold has over 30 years of high rel power supply experience, and our designs have been field proven in hundreds of tough, high-reliability Defense and Aerospace Electronic applications. We meet many provisions of MIL-STD-810D, MIL-E-5400 and MIL-E-16400.

Arnold's unique concept lets you choose outputs, input and case size from pre-designed standard modules. 1 to 10 outputs are available in a single encapsulated case with either AC or DC input. There are hundreds of possible configurations and we provide a 5-step guide that makes it easy to choose.

MINIATURE SIZE.
We're 50% to 75% smaller than other switching supplies. Our miniature packages with their unique narrow footprint provide more power (up to 400 watts) in less space.

Your power supply requirements won't "box" you in!

LOWER PROGRAM COST WITHOUT NRE.
There's no additional charge for unique output voltage combinations. Non-recurring engineering and qualification expenses of custom designs are avoided. Our standard modules provide lower cost for production quantities too.

QUICK DELIVERY.
Because our standard sub-modules are "off-the-shelf" you get delivery of your custom tailored power supply in 8 to 12 weeks.

IT'S ALL IN OUR CATALOG...
Tables, specs, drawings and "fill-in-the-blanks" work sheet with step-by-step instructions. Just phone us and ask for it...

PROVEN PERFORMANCE & RELIABILITY.
It's the no risk alternative to customs. Standardized modular designs ensure reliability and reduce the chance of failure inherent in custom circuits and packages.

Arnold Magnetics Corporation
4000 Via Pescador
Camarillo, California 93010-5049
Phone: (805) 484-4221
TWX 910-343-6468

CIRCLE NO 128
DESIGN IDEAS

Design Entry Blank

$75 Cash Award for all entries selected by editors. An additional $100 Cash Award for the winning design of each issue, determined by vote of readers. Additional $1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.

To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St, Newton, MA 02158

I hereby submit my Design Ideas entry.

Name ___________________________
Title ___________________________ Phone ___________________________
Company ____________________________
Division (if any) ____________________________
Street ____________________________
City ____________________________ State _______ Zip _______
Design Title ____________________________
Home Address ____________________________

Social Security Number ____________________________
(Must accompany all Design Ideas submitted by US authors)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.

Signed ____________________________
Date ____________________________

Your vote determines this issue's winner. All designs published win $75 cash. All issue winners receive an additional $100 and become eligible for the annual $1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

Ultra-Speed Memory:
CAPTURE 640 MB IN 3.2 SECONDS

Cluster units to 80 GB
From Dataram: high-speed data acquisition and management for signal/image processing, logic analysis, AI, other advanced applications.
- FAST: 200 MB/sec bidirectional
- FLEXIBLE: up to 8 I/O ports
- ADAPTABLE: interfaces for VAX, MicroVAX, Gould, Star, Numerix, VME, and others
- EXPANDABLE: 8-640 MB/unit

FOR BROCHURE:
Circle the Reader Response Number, or contact us directly for fastest response.

DATARAM
Dataram Corporation
P.O. Box 7528
Princeton, NJ 08543-7528
609-799-0071 • 800-822-0071

CIRCLE NO 27

MULTI-LAYER PROTOTYPES FAST.
with .005" lines and spaces.

The best CNC production drilling and routing equipment in the business coupled with top quality personnel mean PDI can build incredibly precise multi-layered prototypes. With our SMOBC techniques you can design boards with .005" lines and spaces and still be assured of quality prototypes. And delivery in one week. PDI does it. Consistently! Because we specialize in prototypes. Call or write for details and pricing.

Precision Diversified Industries, Inc.
15285 Minnetonka Boulevard
Minnetonka, Minnesota 55345
(612) 935-8825

CIRCLE NO 28
MUSIC JOINS PEOPLE TOGETHER

Of all tongues in the world, only music is universally understood. It takes an excellent instrument such as a violin to do justice to human talent in expressing the charms and subtleties of music.

In the world of datacom you have to combine the CCITT and Bell standards to be able to communicate across the world. Your instrument needs to be tuned to different needs in different parts of the world. Your modem needs to be as versatile as the violin.

MODEMS JOIN COMPUTERS TOGETHER

Micronas continues its strong commitment to develop versatile and worldwide compatible modem chips.

The MAS2122, one of the first 300/1200 chip sets available will soon have a single chip successor. The MAS2124 will cover all speeds up to 2400 BPS.

CIRCLE NO 129

Micronas Inc. Kamreerintie 2, P O BOX 51, 02771 ESPOO, FINLAND
Tel. 358-0-805 21, Telex 1000691, Telefax 358-0-805 3213
NEW PRODUCTS

COMPONENTS & POWER SUPPLIES

SIGNAL CONDITIONER

- Features direct transducer interface
- ±0.005% max nonlinearity

The 1B32 hybrid signal conditioner offers offset voltage and gain drifts of ±2 µV and ±6 ppm/°C max, respectively. It also features a nonlinearity of ±0.005% max and a common-mode rejection of 140 dB min. The unit consists of a lowpass filter, an adjustable transducer excitation source, and a chopper-based amplifier. Pin-strappable standard gains of 333.3V/V and 500V/V for 2 mV/V and 3 mV/V, respectively, are available. The integral 3-pole filter offers a 60-dB/decade roll-off higher than 4 Hz. The input noise (0.1 to 10 Hz) equals 1 µV p-p. The operating range equals -25 to +85°C. $52 (100). Delivery, four to six weeks ARO.

Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 461-3643.

Circle No 351

THYRISTORS

- Handle nonrepetitive peak currents to 100A
- Optimized for ac motor control, resonant converters

The BTS59 and BTR59 Series 15A GTO thyristors handle peak nonrepetitive currents as high as 100A. The BTS59 devices are optimized for ac motor-control applications operating at frequencies as high as 2.5 kHz; the BTR59 devices are designed for use in resonant converters operating above 20 kHz. The BTS59 Series comprises three devices with voltage ratings of 850, 1000, and 1200V; all these devices have a fall time of 250 nsec. The BTR59 Series currently comprises two devices with voltage ratings of 800 and 1300V; both have a circuit commutation turn-off time of 1 µsec. Both series have a maximum controllable anode current of 50A. The thyristors are packaged in SOT-93 encapsulations. Around $5.

Philips, Elcoma Div, Box 523, 5600 AM Eindhoven, The Netherlands. Phone (040) 757005. TLX 51573.

Circle No 352

Amperex Electronic Corp, George Washington Hwy, Smithfield, RI 02917. Phone (401) 232-0500.

Circle No 353

DATA CONVERTER

- Full-duplex communications on a single cable
- Requires no external power source

By altering the standard data signals, the Model 61 RS-232C-to-coax converter provides full-duplex communication on a single coaxial cable. It is packaged in a DB-25 cover and requires no external power source. The device provides full-duplex operation for Transmit Data and Receive Data at rates ranging to 9600 baud over distances of 2500 ft. It has a DTE/DCE (data-terminal equipment/data-communications equipment) switch that allows you to reverse pins 2 and 3 of the interface, as required, by the host port. The Model 61 comes equipped with a standard BNC connector for the coaxial cable and a male or female DB-25 RS-232C connector. $60 (100).

Telebyte Technology Inc, 270 E Pulaski Rd, Greenlawn, NY 11740. Phone (800) 835-3298; in NY, (516) 423-3232.

Circle No 354

EDN October 1, 1987
Sampling of Signals for Digital Filtering and Gated Measurements

William Rempfer

Introduction

For many signal processing applications a sample and hold function is required in a data acquisition system. It is often critical for the processing system to know the exact value of an analog input at an exact time. In DSP applications such as digital filters the usable bandwidth of the system is limited by the Nyquist frequency and the sample and hold bandwidth need only be, and is often intentionally limited to, one half the sampling rate. However, another area of application requires infrequently capturing instantaneous values of relatively fast signals, sometimes referred to as gated measurements. In the extreme case of pulse height measurements, only one sample point is required. Here, the sample and hold bandwidth should be as high as possible even though the sampling rate is very low.

The LTC1090 excels in both environments. This note shows how the LTC1090 sample and hold can be synchronized to an external event and gives two simple applications: an 8-channel data acquisition system with digital filtering, and the gated measurement of a 1MHz sine wave.

The LTC1090 Sample and Hold

The LTC1090 provides a sample and hold which is fast, accurate and can be synchronized to an external event. Although the sampling rate is limited (by the A/D conversion and data transfer rate) to about 30kHz, the signal bandwidth of the sample and hold exceeds 1MHz. The acquisition time is less than 1µs to 0.1% (1LSB). Accuracy is so good, in fact, that it is possible to include all the sample and hold’s error contributions (offset, gain, hold step, droop rate, etc.) into the converter specification and still maintain overall system accuracy of ±0.05% (±0.5LSB) over temperature.

Sampling occurs on the falling edge of the last data transfer clock pulse as described in the LTC1090 data sheet. Figure 1 shows a typical application which includes circuitry to synchronize sampling to an external sample clock, f_s.

8-Channel Data Acquisition System with Digital Filter

The circuit of Figure 1 contains an LTC1090 providing multiplexing, sample and hold, A/D conversion and data transfer to the microcontroller (MCU). An MC68HC05C4 is used as the

Figure 1. 8 Channel Data Acquisition System Showing Sample and Hold Synchronizing Circuitry
controller (much higher filter performance may be achieved with a dedicated DSP processor). The MCU communicates with the LTC1090 over the serial peripheral interface (SPI), performs the digital filtering algorithm and provides the filtered data on its output port. The DAC provides reconstruction of the filtered waveform for viewing on an oscilloscope or spectrum analyzer. The 74C74 and 74000 synchronize the sampling of the LTC1090 to the externally applied sample clock, \(f_s \).

In Figure 1, the MCU initiates a two byte serial data exchange with the LTC1090. This configures the LTC1090 for the next conversion, simultaneously reads back the previous conversion result and resets the 74C74. The LTC1090 will sample the analog input when the last shift clock (SCLK) pulse falls, so the MCU must end the data transfer by leaving the SCLK in a high state. This inhibits sampling of the selected analog input. When the sample clock, \(f_s \), rises, it clocks the 74C74 which raises the CS and drops the SCLK. This falling SCLK causes the sample to be taken and starts the conversion. After the MCU senses the rising sample clock it waits for the conversion to be completed (44 ACLK cycles) and then initiates another data exchange, preparing the LTC1090 for the next sample. This cycle repeats.

4th Order Elliptic Filter

Using the circuit of Figure 1, a 4th order elliptic digital filter was implemented. 10 bit input and output data words and 14 bit coefficients were used with the same coefficients being used for each channel. A direct form II IIR filter was implemented according the following equations:

\[
D(n) = [7203 \times D(n-1) - 19209 \times D(n-2) + 6324 \times D(n-3) - 4383 \times D(n-4)] \times 2^{-14} + X(n)
\]

\[
Y(n) = [3069 \times D(n) + 5505 \times D(n-1) + 7824 \times D(n-2) + 5504 \times D(n-3) + 3066 \times D(n-4)] \times 2^{-14}
\]

where:

- \(X(n) \) = filter input value
- \(Y(n) \) = filter output value
- \(D(n) \) = delay node value

The filter frequency response is shown in Figure 2. The cutoff frequency is 175Hz, one fourth the sample frequency of 700Hz. The cutoff frequency of the filter can be tuned by varying the frequency of the sample clock.

Because of 68HC05 speed and instruction set limitations, sample rate is limited by the MCU's ability to perform the DSP algorithm. Maximum sample rate was determined to be 700Hz for a single channel filter and 90Hz for eight channels. Using a high performance DSP would allow sample rates approaching the limit of 30kHz for one channel and 3.7kHz for all eight set by the LTC1090. Hopefully, this simple example will encourage the reader to pursue higher order, higher performance applications.

If large amplitude, unwanted AC signals are present on the inputs, a linear filter such as the LTC1062 can be used to remove them and prevent reduction in the dynamic range of the system.

Gated Measurements of Fast Signals

As an example of gated measurements, the circuit of Figure 1 was used with no filtering to repetitively sample a 5Vp-p 1MHz sine wave. The waveform was sampled at 15kHz (approximately one sample every 67 cycles of the 1MHz waveform). A 20ns pulse, triggered off the sample clock, was applied to the z-axis input of a storage scope to illuminate one dot on the CRT per sample. Samples were allowed to accumulate on the storage scope as shown in Figure 3. The upper waveform is the sampled input to the LTC1090 and the lower waveform is the sampled output of the DAC. (Remember that the waveforms are not real time: one dot was illuminated only every 67 cycles of the 1MHz sine wave.) With this technique the signal bandwidth of the LTC1090 sample and hold was determined to be 2MHz.

![Figure 3. Input and Output Sample Points of a 1MHz Sine Wave Accumulated on a Storage Scope](image)

Using the LTC1090 sample and hold, high speed circuits such as a 1MHz bandwidth AC to DC converter are possible. Because the acquisition time is less than 1µs it is also possible to make a gated measurement of the height of a pulse as narrow as 1µs to 0.1% accuracy.

For LTC1090 literature call 800-637-5545. For help with an application call (408) 432-1900, Ext. 361.

Linear Technology Corporation
1630 McCarthy Boulevard
Milpitas, CA 95035-7487
COMPONENTS & POWER SUPPLIES

TRANSFORMER
• Meets FCC Part 68 requirements
• Return loss equals 14 dB min

Produced to meet the requirements of FCC Part 68, the TA-40-01 telephone-coupling transformer is suitable for data/voice applications. It handles as much as 90 mA of unbalanced dc current and has operating levels of -45 to +10 dBm. Using the level at 1.8 kHz as a reference, it has a frequency response of +0.2 to -1 dB from 500 to 3500 Hz, and +0.2 to -2 dB from 300 to 3500 Hz. Over a 500- to 1800-Hz range, the primary impedance match equals 600Ω±20%. The minimum return loss is 14 dB. $3.70 (100).

Dale Electronics Inc, 2064 12th Ave, Columbus NE 68601. Phone (602) 665-9301.

MIXERS
• Designed for stripline assemblies
• 2- to 26-GHz bandwidths

The Pony Series switching power supplies come in 14 models that deliver 15 to 30W. The supplies are enclosed units and are UL recognized and CSA certified. All models feature an input EMI filter, a 115V ac input voltage rating, built-in overvoltage protection, and a typical efficiency of 65%. The line regulation, from low to high line, is 0.4%; the load regulation (from no load to full load) is 1%. All models provide a minimum holdup time of 20 msec. $24.90 (1000).

Computer Products Inc, 2900 Gateway Dr, Pompano Beach, FL 33069. Phone (305) 974-5500. TWX 510-956-3098.

CAPACITOR
• Accommodates bypass and coupling applications
• 10-pF to 1-µF capacitance-value range

The Mono-Axial capacitor is available in industry dielectrics of Class I (COG or NPO), Class II (X7R), and Class III (Z5U). The latter two are typically used for bypass and coupling applications. The capacitance value ranges from 10 pF to 1 µF in standard tolerances of ±5% (COG), ±10% (X7R), and ±20% (Z5U). The working voltages span 50 to 200V dc. The lead material is 24-AWG tinned copper-clad steel. The unit comes taped and reeled, per EIA RS-296E, to accommodate automatic-insertion equipment. $0.028 (1000) in production volume quantities. Delivery, 10 weeks ARO.

Mecpo/Centralab Inc, 7158 Merchant Ave, El Paso, TX 79915. Phone (915) 779-3961.

POWER SUPPLIES
• Feature an input EMI filter
• Have 20-msec holdup time

BACKPLANES
• Feature multilayer construction
• Offer various power options

The Pony Series switching power supplies come in 14 models that deliver 15 to 30W. The supplies are enclosed units and are UL recognized and CSA certified. All models feature an input EMI filter, a 115V ac input voltage rating, built-in overvoltage protection, and a typical efficiency of 65%. The line regulation, from low to high line, is 0.4%; the load regulation (from no load to full load) is 1%. All models provide a minimum holdup time of 20 msec. $24.90 (1000).

Computer Products Inc, 2900 Gateway Dr, Pompano Beach, FL 33069. Phone (305) 974-5500. TWX 510-956-3098.

These VSB (VME subsystem bus) backplanes are available in 3-, 4-, 5-, and 6-slot versions. They feature a multilayer, rigid laminated construction (with full ground and power planes) that minimizes signal interference. They connect to the J2 32-bit extension backplane via a lateral-coupling technique. The lateral coupler maintains the integrity of the connectors' center row of contacts across the VSB and J2 backplane interface. The backplanes are available with various power-input options. The 3- and 4-slot versions

EDN October 1, 1987

Circle No 356
Circle No 355
Circle No 357
Circle No 358
COMPONENTS & POWER SUPPLIES

have AMP connectors. The 5- and 6-slot models have the manufacturer’s 50A studs and AMP connectors. $238 for a 6-slot version.

Hybricon Corp, Box 149, Ayer, MA 01432. Phone (617) 772-5422. TWX 710-347-0654.

Circle No 359

POWER SUPPLIES

- 25W power outputs
- 1500V dielectric strength

The X and Y desktop linear power supplies provide 25W of output power and are available in single- and multiple-output versions. The standard values are 5, 12, and 24V dc. The supplies offer input voltage ranges of 105 to 130V ac and 220 to 240V ac. Their dielectric strength is 1500V, and they operate over 0 to 40°C. The output regulation is 5%. The supplies are designed to UL, CSA, and VDE standards and feature short-circuit protection. The housings are made of durable fire-retardant plastic. $40 (100).

Jerome Industries Corp, 730 Division St, Elizabeth, NJ 07201. Phone (201) 353-5700. TLX 132001.

Circle No 360

POWER MOSFETs

- Designed for high-voltage applications
- Continuous current rating to 8.1A

Designed for high-voltage applications, these power MOSFETs are available in two package styles. The IRFAE50, IRFAF50, and IRFAG50 are housed in the TO-3 packages and are rated at 800, 900, and 1000V, respectively. The similarly rated IRFPE50, IRFPF50, and IRFPG50 are housed in plastic TO-3P packages. On-resistance measures 1.2, 1.6, and 2Ω for the 800, 900, and 1000V units, respectively. Continuous-current ratings range from 5.25 to 8.1A for the TO-3 packages and 5.75 to 8.1A for the TO-3P-packaged units. $11 to $14 (1000). Delivery, 10 weeks ARO.

International Rectifier, 233 Kansas St, El Segundo, CA 90245. Phone (213) 607-8837.

Circle No 361

Turn Good Ideas Into Good Articles

With EDN’s FREE Writer’s Guide!

Would you like to get paid for sharing your clever engineering ideas and methods with your professional colleagues? If so, then send for EDN’s new FREE writer’s guide and learn how.

You don’t need the skills and experience of a professional writer. And you don’t need to know publishing jargon. All you *do* need are a little perseverance, your engineering skills, and the ability to communicate your ideas clearly.

Our new writer’s guide takes the mystery and intimidation out of writing for a publication. It shows you how to write for EDN using skills you already have. Plus, it takes you step-by-step through the editorial procedures necessary to turn your ideas into polished, professional articles.

Get your FREE copy of EDN’s writer’s guide by circling number 800 on the Information Retrieval Service Card or by calling Sharon Gilda at (617) 964-3030.
POWER SUPPLY

- Designed specifically for hard-disk drives
- Features 50W main-output rating

Designed specifically for hard-disk drive applications, the quad-output SQV350 350W switching supply provides power for two 8-in. drives or as many as eight 5¼-in. drives. The unit features a 5V main-output rating of 10A. One of the three auxiliary outputs is rated for 12 or 24V at 16A pk to accommodate initial turn-on/spin-up loads. The remaining two outputs are rated at 5A each with 7A peak loads. The supply features built-in overload and overvoltage protection and remote sense capability. $251 (100). Delivery, three to six weeks ARO.

Circle No 362

KEYBOARDS

- Combine full-travel and snap-action keys
- Virtually impervious to EMI

Using no adhesives of any kind, these custom military keyboards combine full-travel typewriter-style keys and snap-action function keys in a single housing. The units can be radiation hardened and are totally submersible and Tempest compatible. Both the individual key components are sealed and shielded so that they're virtually impervious to moisture, dust, and EMI. The keyboards are available with or without interface electronics, enclosures, bezels, faceplates, trackballs, joy sticks, displays, and other I/O options. From $1000 (100).

IEE Inc, Planar Products Div, 7740 Lemona Ave, Van Nuys, CA 91405. Phone (818) 787-0311. TLX 4720556.

Circle No 363

SEE WHAT A DIFFERENCE CMOS MAKES!

CMOS is fast becoming the chosen technology for developing integrated circuits. That's because CMOS ICs are able to implement ultra-complex system-level functions on a chip! Now you can meet the special challenges posed by this new breed of ICs with A Designer's Guide to CMOS ICs. You'll learn the advanced design and fabrication techniques required. Plus the latest linear and digital CMOS ICs available.

Mail coupon to: CMOS IC reprints — EDN Magazine
Cahners Building
275 Washington Street
Newton, MA 02158-1630

Please send __________ copies of A Designer's Guide to CMOS ICs (92 pages)
☐ $6.95 UPS ☐ $0.95 non USA (BANK DRAFT ONLY)

Check or money order made out to EDN REPRINTS must accompany each order. No COD. Mass. residents add 5% sales tax.

Please print clearly. This is your mailing label.

NAME

TITLE

COMPANY

ADDRESS

CITY STATE ZIP

EDN October 1, 1987 207
NEW PRODUCTS
INTEGRATED CIRCUITS

DISPLAY DRIVER
- 90V-output capability
- 0.1- to 1-mA constant-current outputs

The Si9559 column driver suits dc, flat-panel displays such as the electroluminescent (EL) and gas-plasma types. Like the company’s ac-display drivers, the Si9559 has 90V push-pull outputs. In addition, each output features a constant-current pullup that you can adjust from 0.1 to 1.0 mA. These pullups help control power dissipation and maintain uniform luminance in the display. The 32-channel device offers guaranteed operation and ±10% constant-current matching over the 40 to 90V supply range; thus, the chip remains compatible with an aging EL panel as the panel’s light-emission-threshold voltage increases. The device also includes a pin that controls data flow through the shift register (left or right). This feature lets you install the chip for use on either side of the display panel. The device comes in a 44-pin plastic, J-lead, surface-mount package. $10.95 (100). Delivery, eight to 10 weeks ARO.

Siliconix Inc, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (800) 554-5565, ext 1400.
Circle No 364

RAM CONTROLLER
- Addresses 64M bytes
- Has adjustable control-signal pulse widths

The DP8522 video RAM controller/driver can address and drive a 4M-bit video RAM array as large as 64M bytes. The video RAM controller, which is part of the company’s advanced-graphics chip set, lets you choose memory components that best fit your system’s requirements. The CMOS chip’s control signals have adjustable pulse widths. This feature allows you to adjust the controller/processor interface to accommodate clock signals that span a wide range and exceed 20 MHz. The programmable chip supports dual-port video RAMs, and it allows dual access to the same memory bank by a second graphics controller, a CPU, a LAN, or a DMA controller. Additional features that enhance speed include programmable tRAPH (row-address hold) and tCAC (column-address setup), and support of memory interleaving, which eliminates RAS (row-address strobe) recharge time. The DP8522 comes in a 68- or 84-pin plastic chip carrier. $28 (1000).

National Semiconductor Corp, Box 58090, Santa Clara, CA 95052. Phone (408) 749-7431. TLX 346353.
Circle No 365

CMOS CONTROLLER
- Two independent full-duplex channels
- Supports direct memory access

The VL85C30 is a CMOS serial-communications controller suitable for use with nonmultiplexed busses. Compatible with the industry-standard NMOS 8530, the chip includes two independent full-duplex channels, as well as a 14-bit byte counter and 19-bit-wide FIFO array that permit operation with a DMA controller. The device has facilities for modem controls in both channels. Further, it handles asynchronous formats, synchronous byte-oriented
Lost chips. Sliding chips. Adhesive oozing onto solder pads. Just a few of the SMT problems often blamed on the placement machine but, in fact, they're usually caused by adhesive failure. It's time to stick it to your old adhesive — and cure production problems — with Chipbonder™ adhesive from Loctite.

Loctite Chipbonder adhesive gives you higher dot height and faster curing to keep chips in place. It won’t string during dispensing and won’t flow during soldering — so parts and pads stay clean. And its controlled strength makes chip replacement easy.

Get the high performance adhesive designed for high performance assembly. Loctite Chipbonder adhesive. Call us today for immediate assistance or for our free “Solutions to Process Problems” brochure.

(203) 246-1223.

Airless packaging ends dot inconsistency. One year shelf life at room temperature. Packages for major machines.
C MODULA 2 PASCAL
Cross-Compiler Systems
• High performance, field-proven software development systems producing extremely compact, fast-executing, ROMable output code.
• Each cross-development package includes:
 • C, Modula 2, or Pascal Cross-Compiler
 • Macro Relocating Cross-Assembler
 • Object Code Librarian
 • Object Module Linker
 • Hexadecimal Format Loader
 [S-Records, Intel Hex, TEK Hex]
 • Standalone Support Library
 [EPROMable, with full floating point support]
• All languages can be intermixed with assembly language
• Targets supported:
 6301/03
 6801/03
 6809
 68HC11
 68000/08/10/12
 68020/881/851
 32000/32/81/82
• Available for following hosts:
 VAX: VMS/UNIX/ULTRIX
 PDP-11: UNIX/TNIX/VENIX
 68000: UNIX System V
 PC, XT, AT: MS-DOS
 PowerNode: UTX/32

INTEGRATED CIRCUITS

MONOLITHIC IA
• Software-programmable gains
• 0.01% max linearity error
The AD526 is a single-ended, monolithic, programmable-gain instrumentation amplifier (IA) that provides gains of 1, 2, 4, 8, and 16. You can obtain additional gains of 32, 64, and 128 by cascading two AD526s. No external components are required. The FET-input stage provides a 150-pA max input bias current; the max input Vos is as low as 0.25 mV (C grade). Laser trimming provides 0.01% gain error for gains 1, 2, and 4, and 0.02% gain error for gains 8 and 16. The linearity error is 0.01% max for all gains across the operating temperature range. The slew rate is 4V/µsec at low gains or 18V/µsec at higher gains. The settling time to within 0.01% is 2.1 to 4.1 µsec, depending on gain. The device is available in a 16-pin plastic or side-brazed ceramic DIP. Plastic J and K grades, $5.25 and $7.05, respectively, (100).

Thomson Semiconducteurs, 45 Ave de l'Europe, 78140 Velizy, France. Phone (1) 39469719. TLX 204780.

Circle No 369

16-BIT µP
• Multiple register banks ease bottleneck
• Register and memory storage in a 1k-byte RAM
Suitable for application in industrial equipment control and office automation, the HD641016 16-bit µP has a RAM-based architecture that joins register and memory storage in a 1k-byte array. The chip's multiple programmable register banks

Circle No 367

MOTOR DRIVER
• Drives bipolar stepper motors with currents to 1.5A
• Works with unstabilized motor-supply voltages to 45V
The TEA3718 stepper-motor driver IC controls the current in one winding of a bipolar stepper motor. The device provides facilities for half and full stepping, and it can control the motor-winding current over 5 mA to 1.5A from 10 to 45V supplies. It's suitable for use with unstabilized motor supplies. You can select the output current level in steps, or you can vary it continuously. Output-protection diodes are integrated in the output stage, and the driver has thermal-overload protection and an alarm output. Its control input is LS TTL compatible. The device is available in a DIP or a Powerpack package. The Powerpack device has a maximum output current of 1.5A; from a 40V supply, it dissipates 1.2W when delivering 0.5A, 1.5W when delivering 0.8A. $2.10 (1000).

Thomson Semiconducteurs, 45 Ave de l'Europe, 78140 Velizy, France. Phone (1) 39469719. TLX 204780.

Circle No 366

INTROL CORPORATION
647 W. Virginia Street
Milwaukee, WI 53204
(414) 276-2937
FAX: (414) 276-7026

Circle No 30

EDN October 1, 1987
We can help you make a cold call on 8900 Chinese electronics companies

One of the toughest things about doing business in the People's Republic of China is reaching the key people with buying influence. But now Cahners Publishing Co. can help.

Our will be the only business magazine in China exclusively for managers of electronics companies.

Like Electronic Business in the United States, we'll focus on business information, market research, manufacturing trends, new technologies and management profiles.

The Ministry of Electronics has selected 8,900 state-run companies in China to receive the magazine. One copy will be mailed to the top administrator of each factory, one copy to the chief engineer—for a total circulation of 17,800 high-level managers.

Electronic Business CHINESE EDITION

For more information on advertising rates and circulation, contact Allen S. Furst, Publisher, Electronic Business Magazine's Chinese Edition, Cahners Publishing Co., 275 Washington St., Newton, Mass. 02158 (617) 964-3030, x255

Other benefits
• Special page rates for advertisers in Electronic Business and participants in Internepcon China in Beijing, April 19-24, 1988
• Readership response cards, translated and processed for one full year after date of publication
• Bonus distribution of 2,200 at Internepcon China
INTEGRATED CIRCUITS

(sixteen 32-bit registers) alleviate the context-switch bottleneck encountered during subroutine jumps and during switching between interrupts. In response to an interrupt, the µP can execute a bank-switch instruction in less than 1 µsec. It also features a 1k-byte RAM that's used for general-purpose CPU registers and for high-speed data memory; a 4-channel DMA controller; a 16-bit, 2-channel timer; a 2-channel ASCII interface; an interrupt controller with 22 internal interrupt sources; a memory-access controller; and a clock generator. Intended for running C-language programs, the HD641016 is supported by a real-time in-circuit emulator and a complete development and debug system. It comes in an 84-pin PLCC or plastic pin-grid array. $75 for a sample. The IC will be available in the first quarter of 1988.

Hitachi America Ltd, 2210 O'Toole Ave, San Jose, CA 95131. Phone (408) 435-8300. TLX 171581.

Circle No 370

ANALOG I/O PORT

• Monolithic CMOS chip
• Contains a T/H amp, ADC, DAC, V_REF, and buffer

The AD7569 combines an 8-bit A/D converter, an 8-bit D/A converter, a track/hold amplifier, a buffer amplifier, and a 1.25V bandgap reference on a monolithic chip that combines CMOS and bipolar transistors. The A/D converter converts in 2 µsec max with ±1/2 LSB accuracy; the D/A converter's voltage output settles within ±1/2 LSB in 1 µsec max. The device's data sheet specifies all ac and dc parameters. These parameters include a total unadjusted error of ±2 LSB max, a min 44-dB S/N ratio, and a typical intermodulation distortion of 55 dB (D/A) and 60 dB (A/D). A single command generates the S/H signal and initiates the conversion. The bus-access time is 75 nsec; the write pulse width is less than 80 nsec. The device consumes less than 60 mW and operates on a 5V supply (or, to handle bipolar signals, it can operate on ±5V supplies). Specified for the commercial, industrial, and military temperature ranges, the chip comes in a 24-pin plastic or ceramic DIP or a 28-pin LCC or PLCC. From $6 (100).

Circle No 370

DUAL-PORT RAM

• 2k-byte×8-bit CMOS device
• 55-nsec access time

The V61C32 is a CMOS, dual-port static RAM that can provide asynchronous, simultaneous access to different memory locations without wait states. The device allows independent, asynchronous access to a common memory by two µPs, or access by a µP and a data bus to a common cache or buffer memory. Its power-down standby mode reduces the supply current to 100 µA max, and a battery-backup mode allows the chip to retain data when the power supply is as low as 2V. Different versions of the product are graded for 55-nsec, 70-nsec, and 90-nsec access times and for operation over the commercial, industrial, and military temperature ranges. The device comes in a 48-pin plastic or ceramic DIP or a 52-pin PLCC. From $18.90 (100).

Circle No 372

FLASH CONVERTER

• Has a guaranteed clock frequency of 30 MHz
• Consumes less than 600 mW of power

The SP97308E is an 8-bit flash A/D converter optimized for use in low-power, high-quality video systems, such as studio equipment and direct-broadcast satellite or high-resolution TV systems. The converter has a guaranteed clock frequency of 30 MHz, yet consumes less than 600 mW. Its typical differential and integral linearity is ±1/2 LSB, and the device maintains full accuracy to
Amplifier Arsenal

50KHz—2000MHz, Low Noise 100mW output Gain Controlled from $69.95

Our ZFL-2000 miniature wideband amplifier hit a bulls-eye when we introduced it last year. Now we’ve added more models to offer you a competitive edge in the continuing battle for systems improvement.

The ZFL-2000, flat from 10 to 2000MHz, delivers +17dBm output and is priced at only $219.

Need more output? Our ZFL-1000H, flat from 10 to 1000MHz, delivers +20dBm output.

Is low noise a critical factor? Our ZFL-500LN and 1000LN boast a 2.9dB NF.

Variable gain important? Our ZFL-1000G, flat from 10 to 1000MHz, delivers +3dBm output with 30dB gain control while maintaining constant input/output impedance.

Searching for a high-quality, low-cost amplifier? Our ZFL-500 flat from 50KHz to 500MHz, delivers +10dBm output for the unbelievable low price of only $69.95. Need to go higher in frequency? Consider the ZFL-750, from 0.2 to 750MHz, for only $74.95. Or the $79.95 ZFL-1000, spanning 0.1 to 1000 MHz.

One week delivery...one year guarantee.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FREQUENCY MHz</th>
<th>GAIN, dB (min.)</th>
<th>MAX POWER OUTPUT dBm(typ)</th>
<th>NF dB(typ)</th>
<th>PRICE $</th>
<th>Ea. Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFL-500</td>
<td>0.05-500</td>
<td>20</td>
<td>+9</td>
<td>5.3</td>
<td>69.95</td>
<td>1-24</td>
</tr>
<tr>
<td>ZFL-500LN</td>
<td>0.1-500</td>
<td>24</td>
<td>+5</td>
<td>2.9</td>
<td>79.95</td>
<td>1-24</td>
</tr>
<tr>
<td>ZFL-750</td>
<td>0.2-750</td>
<td>18</td>
<td>+9</td>
<td>6.0</td>
<td>74.95</td>
<td>1-24</td>
</tr>
<tr>
<td>ZFL-1000</td>
<td>0.1-1000</td>
<td>17</td>
<td>+9</td>
<td>6.0</td>
<td>79.95</td>
<td>1-24</td>
</tr>
<tr>
<td>ZFL-1000G*</td>
<td>10-1000</td>
<td>17</td>
<td>+3</td>
<td>12.0</td>
<td>199.00</td>
<td>1-9</td>
</tr>
<tr>
<td>ZFL-1000H</td>
<td>10-1000</td>
<td>28</td>
<td>+20</td>
<td>5.0</td>
<td>219.00</td>
<td>1-9</td>
</tr>
<tr>
<td>ZFL-1000LN</td>
<td>0.1-1000</td>
<td>20</td>
<td>+3</td>
<td>2.9</td>
<td>89.95</td>
<td>1-24</td>
</tr>
<tr>
<td>ZFL-2000</td>
<td>10-2000</td>
<td>20</td>
<td>+17**</td>
<td>7.0</td>
<td>219.00</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Finding new ways...
Setting higher standards.

Mini-Circuits
A Division of Synergy Components Corporation
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500
Fax (718) 332-4661 Domestic and International Telexes: 685264 or 620156

C101 REV.C

EDN October 1, 1987

CIRCLE NO 69
its Nyquist frequency limit. The converter features latched ECL-compatible outputs and an on-chip bandgap reference. The SP97308E comes in an 18-lead ceramic DIP and operates over -40 to +85°C. £25.26 (1000).

Plessey Semiconductors Ltd, Cheney Manor, Swindon, Wiltshire SN2 2QW, UK. Phone (0793) 36251. TLX 449637.

Circle No 374

Plessey Semiconductors, 9 Parker, Irvine, CA 92718. Phone (714) 472-0303.

Circle No 375

8-BIT CMOS DAC
- Performs 2- and 4-quadrant multiplication
- Has input latches

The TLC7524 8-bit CMOS D/A converter is pin compatible with similar products from Analog Devices, PMI, and Micro Power Systems, but can respond directly to fast control signals from the TMS320 family of DSP chips. The device includes an inverted R-2R ladder, analog switches, and input latches. For most applications, you must add an external op amp and a voltage reference. The device can perform 2- and 4-quadrant multiplication, which is useful for gain-setting and signal-control applications. Precision fabrication gives the converter a max linearity error of ½ LSB without the need for thin-film resistors or laser trimming. The converter's settling time is 100 nsec and its propagation delay is 80 nsec. It also features single-supply operation (5 to 15V), TTL and CMOS compatibility when used with a 5V supply, and monotonicity over the operating temperature range. The converter comes in a 16-pin DIP or an SO (small outline) package. Commercial version, $3.26; industrial version, $3.75 (100).

Texas Instruments Inc, Box 890066, Dallas, TX 75380. Phone (800) 232-3200, ext 700.

Circle No 376

XOR PALs
- 5-member family
- Eight product terms per output

The AmPAL20XRPXX family of five exclusive-OR (XOR) programmable-array logic (PAL) devices offers more speed and power options than do comparable 24-pin industry-standard products. Among the AmPAL devices are a part that specs a 20-nsec propagation delay, a 30-MHz operating frequency, and 1.05W power dissipation; a part that specs a 30-nsec propagation delay, a 22.2-MHz operating frequency, and 900-mW power dissipation; and half-power (450 mW) versions that spec 30- and 40-nsec propagation delays. The parts can execute counter, comparator, and parity-checking functions in computers and peripheral systems. The output combinations include four registered and six combinatorial, six registered and four combinatorial, eight registered and two combinatorial, and 10 registered outputs. Each device features programmable polarity and eight product terms per output; one device has 22 inputs. Software support for the devices includes the ABEL, CUPL, and AmCUPL programs. The 24-pin devices come in plastic, ceramic, and surface-mount packages. In plastic packages, the 20-nsec version sells for $9 and the 30-nsec version costs $7 (100).

Advanced Micro Devices Inc, Box 3453, Sunnyvale, CA 94088. Phone (408) 732-2400.

Circle No 415
Low-force contacts for MIL-C-55302 qualified connectors, still going strong after 100,000 connect/disconnect cycles, should be good news for high life-cycle applications.

Electrical repeatability that improves with use; edging down from 5 milliohms contact resistance and levelling off at 3, may be even better for add-on memory, firmware, portable disk drives, tempest systems and other low-resistance requirements. But what if you need it all?

HYPERTAC®: Inserting pin into hyperboloid sleeve.

You've got it. Our KA Series connectors, with patented Hypertac® contacts, set new parameters for low force, long life and low resistance... plus high reliability vs. shock and vibration. We've tested them beyond 5K cycles—but customers have already recorded 80K in actual use, plus tests that were abandoned after 150K and 500K—all with a failure rate of zero percent.

The OPL'd KA Series includes crimp, PC board, solder cup and wire wrap terminations, plus float for rack & panel mounting, with 17 to 160 contacts. End the connector compromise by calling 1-800-225-9228.
NEW PRODUCTS

COMPUTERS & PERIPHERALS

GRAPHICS ADAPTER

- **640×480-pixel resolution with two and 16 colors**
- **Compatible with EGA, CGA, MDA, and Hercules**

The VGA Extra is a plug-in board for the IBM PS/2 Model 30, as well as the IBM PC, PC/XT, and PC/AT. The adapter is compatible with all modes of IBM's Video Graphics ARRAY (VGA) standard. It provides VGA resolutions of 320×200 pixels with 256 simultaneous colors, as well as 640×480 pixels with two and 16 colors. All colors are available from a palette of more than 256,000 colors. The board also offers 640×480 pixels in 16 shades of gray; 320×200 pixels in 64 shades of gray; and high-quality 720×400 pixels (a 9×16 character cell). Besides being fully compatible with the EGA, the CGA, the MDA, and Hercules Graphics, the device provides a 132-column display with high-quality text (an 8×14 character cell) in spreadsheet and terminal-emulation applications. $495.

STB Systems Inc., 1651 N Glenville, Suite 210, Richardson, TX 75081. Phone (214) 234-8750.

Circle No 390

COUNTER/TIMER

- **Six independent counters and timers for the BitBus**
- **16 bits of digital output**

The dDCM345 is a Bitbus-compatible board for control applications requiring a counter/timer module. Each of its six independent counters and six independent timers contains 16 bits. It has 16 bits of digital output organized as 2 bytes and 24 bits of digital input organized as 3 bytes that provide bit and byte accesses to the I/O channel. Three independent 28-pin JEDEC sockets can support as many as 96k bytes of RAM or EPROM. The timer/counter commands can control 8- and 16-bit modes of operation along with BCD and binary configurations. The commands can also read and write the board's preset and current count values. $575.

Datem Ltd., 148 Colomade Rd, Nepean, Ontario, Canada K2E 7R4. Phone (613) 225-5919. TLX 0533864. FAX (613) 225-5996.

Circle No 391

2400-BPS MODEM

- **Stores 10 telephone numbers for automatic dialing**
- **Has automatic answer and is Hayes compatible**

The Practical Modem 2400 SA is a 2400-bps stand-alone modem that is fully Hayes compatible. It can store as many as 10 telephone numbers for automatic dialing and has features such as an automatic answer mode, echoplexer, speaker volume, and half- or full-duplex operation. You select the number of times the phones rings before the modem answers. The dial features include Touch Tone or pulse; programmable pause interval; and originate call from answer mode. It meets the CCITT standards for 2400-bps operation, the Bell 212A for 1200-bps, and the Bell 103 for 300-bps operation. It operates with the Hayes command set, which allows a computer or terminal to control the modem using communication software through an RS-232C interface. The modem measures 10.5×5.5×1.3 in. and is designed to fit under a telephone. $239.

Practical Peripherals, 31245 La Baya Dr, Westlake Village, CA 91362. Phone (818) 991-8200. TWX 910-336-5431.

Circle No 392
Denny Piscitello handles advertising for IEE's growing number of display products. Back in May 1986, she advertised in EDN News for the first time.

But not for the last.

That's because EDN News gets Denny Piscitello results. As she says, "We've enjoyed high response from all the ads we've run in EDN News, regardless of the product advertised.

"Now," she continues, "we find out that with a total of 423 inquiries, we're one of the top ten inquiry-pullers in the entire newspaper!"

Says Piscitello, "This tells me that the all-important readership factor for EDN News is very high. EDN News will remain a valuable part of IEE's advertising team, just as EDN magazine has for more than 25 years."

Advertising in EDN News works for Industrial Electronic Engineers. It can work for you.
Advanced thick film power hybrid circuits feature SM components and high power density.

Combine the unique experience in high current power devices, and the thorough understanding of thermal management with total in-house thick film capability, featuring surface mount components. . .and you have a superior source for your custom thick film hybrid circuit requirements. . .GORDOS!

We’ve developed and use this total capability and technology to miniaturize our own line of power I/O modules and solid state controls. . .with full testing right on site, including temperature, cycling, and dynamic burn-in. So you know we maintain an uncompromising standard of quality.

And now, it’s all available to accomplish your customized needs for combinations of high and low current elements on the same substrate for specialized applications, plant automation, telecommunications, automotive, control and test instrumentation.

Gordos will shorten the time between concept and final product, because we have the technology, experience, in-house facilities and total commitment to fulfill customers’ needs. Talk to a Gordos Sales Engineer.
ETHERNET ADAPTER
• Links the IBM PS/2 50, 60, and 80 to a LAN
• Network control performed in a custom ASIC chip

The NICps/2 is a card designed for the microchannel architecture used in the IBM PS/2 Models 50, 60, and 80 computers. It allows these computers to use an Ethernet LAN. The network interface controller uses an ASIC chip developed to fully exploit the computer architecture. The chip uses shared memory to maximize the speed of data transfers between the card's onboard RAM and the computer. No manual switches are needed because you can set port settings, memory locations, and interrupt levels by using the IBM programmable option select (POS) software and the software on the card. The board has a registered ID number from IBM. $495.

Ungermann-Bass Inc, 3900 Freedom Circle, Santa Clara, CA 95052. Phone (408) 496-0111.

Circle No 393

IEEE BOARD
• Connects the IBM PC to the IEEE-488 bus
• Addresses 4M bytes of memory on one card

The 4×488 board plugs into the IBM PC, PC/XT, PC/AT, or compatibles and has an RS-232C port, a parallel port, and an IEEE-488 interface. The board has a user-configurable space for 256k-bytes or 1M-byte of dynamic RAM, expandable to 4M bytes of onboard memory. Further memory extensions of 4M, 8M, 12M, or 16M bytes are possible with other boards, breaking the 640k-byte DOS barrier. The RS-232C port is user-configurable for DTE (data terminal equipment) or DCE (data communications equipment) operation, and the parallel port is an IBM-compatible Centronics-type port. The board features no-switch installation, configuration, and testing. The software assigns conventional or extended memory in 128k-byte increments. Memory-management software implements the Lotus/Intel/Microsoft expanded-memory specification. The board can also emulate Tektronix and Hewlett-Packard controllers. With no memory, $795; with 1M bytes of memory, $995.

Capitol Equipment Corp, 99 S Bedford St #107, Burlington, MA 01803. Phone (617) 273-1818.
Circle No 394

VME BUS BOARD
• Software support of the IBM PC/AT on the VME Bus
• PC/AT bus is accessible through the P2 connector

The VME-0286AT is a single dual-high Eurocard for the VME Bus that is software compatible with the IBM PC/AT. It runs MS-DOS while providing access to VME Bus resident boards. It has standard serial, parallel, and keyboard ports and can accept an optional daughter board.

Comparing VLSI's VT20C68/69 to Motorola's MCM6268 4Kx4 SRAM is like comparing the beauty and the beast. For one thing, our SRAM is 20% faster.

And, as if that isn't enough, the VT20C68 offers automatic power down and you can get the VT20C69 with 12 ns chip select. Call 1-800-872-6753 for more information. Or talk to Arrow or Schweber.

We have a hunch you're really going to like our SRAMs.

VLSI TECHNOLOGY, INC.
Surface Mount Flex...
- Greater Density
- Greater Reliability

It's Less Filling!

Get greater packaging density in a smaller area by combining surface mount technology with flexible circuit technology.

Get greater reliability too. Extensive environmental testing indicates that flexible circuit substrates prevent thermally fractured solder joints.

Now flexible circuits with surface mount density can be part of your designs. Just a phone call can put Sheldahl's integrated capability to work for you. And we can do the whole job. Cost-Effective Design...Flexible Circuit Manufacture...Surface Mount Assembly.
COMPUTERS & PERIPHERALS

for enhanced color and monochrome graphics. The board contains the following features: a P1 VME Bus Interface, A24/D16; a P2 IBM PC/AT bus interface; a 10-MHz 80286 µP; an 80287 coprocessor socket; a 1M-byte dynamic RAM dual-ported between the VME Bus and the 80286; and a socketed ROM BIOS (basic I/O system). By making the PC/AT bus accessible through the 96-pin P2 connector, a series of compatible support functions can be used. $2200.

Logical Design Group Inc, 6301 Chapel Hill Rd, Raleigh, NC 27607. Phone (919) 851-1101.

Circle No 395

DIGITAL READOUT

- Stackable readouts operate with linear shaft encoders
- Functions and values selected with a joystick

The Model LU10 digital readout is a stackable unit designed for use with Sony’s Magnescale linear shaft encoders. It includes an amplifier for the encoder’s magnetic head. When used to measure the multiaxis table displacement of metal-working machines, a primary unit serves as a power master, which distributes power to the auxiliary units stacked on top. The unit’s µP has three days’ battery back-up that prevents loss of displayed and preset values. You use a joystick to preset values. By pressing the joystick in four different directions, one of the seven segment digits can be erased, selected, incremented, or decremented. When all seven digits are preset, the values are stored in memory. The resolution is switch-selectable from 0.0005 mm to 0.01 mm in four steps. The unit is equipped with four audible alarms. Primary unit, $816; each auxiliary unit, $262.

National Machine Systems, 137 Bristol Lane, Orange, CA 92665. Phone (714) 921-0630.

Circle No 396

RAM DISK

- As many as 512k bytes of portable mass storage
- Compatible with HP-IL controllers

The HP-IL RAM disk is a portable mass-storage device available in sizes of 128k, 256k, and 512k bytes. The RAM disk measures 1.2x3.8x5.7 in. and stores data electronically without any moving parts. Powered by a 9V battery, it is

GATHER NO INMOS.

<table>
<thead>
<tr>
<th>VLSI</th>
<th>INMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT20C68/69</td>
<td>IMS1423</td>
</tr>
<tr>
<td>20 ns</td>
<td>25 ns</td>
</tr>
</tbody>
</table>

INMOS’ IMS1423 4Kx4 SRAM is no match for VLSI’s new socket snatchers. Our VT20C68/69 SRAMs are 5 ns faster.

And, as if that isn’t enough, the VT20C68 offers automatic power down and the VT20C69 offers 12 ns chip select.

Call 1-800-872-6753 for more information. Or talk to Arrow or Schweber.

Because the only thing you’re going to gather with INMOS SRAMs is dust.

VLSI TECHNOLOGY, INC.

CIRCLE NO 32
A Designer's Guide to Linear Circuits - VOLUME I
This original, 186-page collection by Jim Williams offers a wealth of analog design information. It includes practical and efficient ways to use op amps, comparators, data converters, and other analog ICs, and discusses the theories behind all the design techniques presented.

The Latest from the Best!
You can buy the volumes separately, or as a set. Either way, you'll have all the latest information on the most sophisticated linear ICs ... from Jim Williams, one of the country's foremost linear-circuit designers.

A Designer's Guide to Innovative Linear Circuits - VOLUME II
The reader response to Volume I was so positive, that we're offering Jim Williams' latest analog design articles - from 1983 to 1986 - in an all-new Volume II. An even bigger collection than before, Volume II is still written in the language of working engineers, but now covers the newest and more complex circuits and systems you asked for! 266 pages.

A Designer's Guide to CMOS ICs
CMOS is fast becoming the chosen technology for developing integrated circuits. That's because CMOS ICs are able to implement ultra-complex system-level functions on a chip! Now you can meet the special challenges posed by this new breed of ICs with A Designer's Guide to CMOS ICs. You'll learn the advanced design and fabrication techniques required. Plus the latest linear and digital CMOS ICs available.

A Designer's Guide to Semicustom Integrated Circuits
Learn how to design a semicustom IC with A Designer's Guide to Semicustom Integrated Circuits. Based on EDN's own design experience, this nine-chapter booklet outlines the complete procedure used to design, fabricate, and test EDN 1, a chip with a 1200 equivalent-gate complexity. You'll not only learn the steps to take when creating ICs, but also the design/cost analyses and vendor-interface methods that lead to successful semicustom chips.

Mail coupon to:
EDN Reprints/EDN Magazine • Cahners Building • 275 Washington Street
• Newton, MA 02158-1630

Please send the following Designer's Guide(s):

_____ copies of A Designer's Guide to CMOS ICs
☐ $ 6.95 UPS ☐ $10.95 non USA

_____ copies of A Designer's Guide to Semicustom Integrated Circuits
☐ $ 6.95 UPS ☐ $10.95 non USA

_____ copies of A Designer's Guide to Innovative Linear Circuits
Vol. I ☐ $14.95 UPS ☐ $19.95 non USA
Vol. II ☐ $18.95 UPS ☐ $23.95 non USA

_____ copies of the combined set of A Designer's Guide to Innovative Linear Circuits Volume I and Volume II
☐ $29.95 UPS ☐ $39.95 non USA

Check or money order made out to EDN REPRINTS must accompany each order. No COD. Mass. residents add 5% sales tax.
compatible with the following HP-IL controllers: HP-41, HP-71, HP-75, HP-110, HP Portable Plus, and an IBM PC or compatible with an HP-IL card installed. Multiple RAM disks (as many as 30 drives) can be used on the HP-IL Loop. The command set is compatible with the HP 82161A digital cassette drive. An optional RS-232C interface uses a DB-9 connector to emulate the HP 82164A HP-IL/RS-232C interface. It can transfer data at rates as high as 19.2k baud and supports XON/XOFF and ENQ/ACK transfers. From $345 (128k-bytes) to $895 (512k-bytes).

Corvallis MicroTechnology Inc, 895 NW Grant Ave, Corvallis, OR 97330. Phone (503) 752-5456.

Circle No 397

PROCESSOR BOARD

- Provides 16-bit features for STD Bus
- Operates with OS-9/68K operating system

The CPU-68K8 is a processor board that gives you a 16-bit upgrade on the STD Bus. The board operates with the OS/968K real-time operating system from Microware (Des Moines, IA). It features a 10-MHz 68008 µP with a 1 M-byte linear addressing space and a 68901 multifunction peripheral chip. The board has a programmable serial port, an 8-bit parallel port, two multimode timers, and a battery-backed real-time clock. Three sockets provide space for as many as 192k-bytes of onboard memory. You can obtain battery backing for the static RAM as an option. The board can handle both polled and vectored interrupts.

The OS-9/68K real-time operating system is available for software development. CPU-68K8, $371 (100); OS-9 software package (including a C compiler), $600.

XYZ Electronics Inc, Box 322, Indianapolis, IN 46236. Phone (317) 335-2128.

Circle No 398

RAM BOARD

- 16M bytes of CMOS static RAM
- Can be formatted as single or paged memory blocks

The COSMOS-16 is a double-Eurocard VME Bus memory board that provides as much as 16M bytes of CMOS static RAM with battery backup. To achieve this memory capacity, the board uses extensive surface-mount technology, and a piggybacked board assembly. It still only occupies one VME Bus slot width. The board's read access time (specified from the VME bus address setup time) is 100 nsec. You can configure the board as a contiguous 16M-byte memory block on any 16M-byte address boundary, or as sixteen 1M-byte pages on 1M-byte boundaries. In addition, you can protect individual blocks from write access, supervisor access, or all bus accesses, by using front panel switches, hardwire jumpers on the board's P2 connector, or software programmable control registers. The board's VME Bus (Rev C) interface supports 16- or 32-bit data transfers, and 16-, 24-, or 32-bit addressing. The VME Bus interface

I.D.T. IS D.O.A.

<table>
<thead>
<tr>
<th>VLSI</th>
<th>IDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT20C18</td>
<td>IDT6116</td>
</tr>
<tr>
<td>20 ns</td>
<td>30 ns</td>
</tr>
</tbody>
</table>

Our output enable is almost 50% faster. And we even offer you a PDIP package with a decoupling capacitor right on the chip. Call 1-800-872-6753 for more information. Or talk to Arrow or Schweber. And let I.D.T. SRAMs R.I.P.

VLSI TECHNOLOGY, INC.

CIRCLE NO 33
also supports unaligned transfers and address pipelining operations. The 16M-byte board costs around £8000. It is also available depopulated to 2M or 9M bytes.

dot Europel Systems Ltd, 5 Vo-Tec Centre, Hambridge Lane, Newbury, Berks RG14 5TN, UK. Phone (0635) 31074. TLX 848507.

Circle No 399

TEXT CONVERTER
• Converts text to speech
• Works on software that sends ASCII code to printer

The Smart Speaker is a text-to-speech converter that connects to any computer having a standard parallel or serial port. It works with any software that puts out ASCII code to drive a printer. Because it can share the printer port via a built-in switch, it doesn't require an additional I/O port. The product converts ASCII text to speech and speaks it out through a built-in speaker. Numbers and text separated by spaces or periods are spelled out. The text-to-speech algorithm accepts data in formats that printers accept so that no special software is required. The converter can drive an external amplifier, VCR, audio tape recorder, or phone answering system. An external speaker can also be connected. It is available with a parallel-printer cable and power supply for $229.95.

Swisscomp Inc, 5312 56th St, Tampa, FL 33610. Phone (813) 628-0906. TLX 517399.

Circle No 400

CONTROLLER BOARD
• Provides IBM PC-compatibility for Superplot 80
• Supports software for Houston Instrument plotters

The TAC-385 is a controller board for the IBM PC, PC/XT, PC/AT, and compatibles that provides turnkey operation of the company's Superplot 80 thermal printer/plotter. It is a full-length board that provides a bridge between existing graphics software and the Superplot 80. It supports software for Houston Instrument or HPGL plotters. The board can do vector-to-raster graphics and can store graphics data on a first-in, first-out basis. It can print multipage plots as long as 163 in. Controller board and Superplot 80 printer/plotter, $2400.

Circle No 408
HARD

40-220 WATT POWER SUPPLIES
ARE NO LONGER HARD TO FIND...

acdc electronics now makes it EASY to find 40-220W, multi output power supplies.

<table>
<thead>
<tr>
<th>Watts</th>
<th>Main</th>
<th>CH 2</th>
<th>CH 3</th>
<th>CH 4</th>
<th>Model No.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>+5V/2.5A</td>
<td>+12V/2.0A</td>
<td>-12V/0.1A</td>
<td></td>
<td>RBT 41</td>
<td>PCB</td>
</tr>
<tr>
<td>60</td>
<td>+5V/5.0A</td>
<td>+12V/2.5A</td>
<td>-12V/0.5A</td>
<td></td>
<td>RBT 61</td>
<td>PCB</td>
</tr>
<tr>
<td>70</td>
<td>+5V/5.0A</td>
<td>+12V/2.5A</td>
<td>-12V/0.7A</td>
<td>-5V/0.7A</td>
<td>RBQ 71</td>
<td>PCB</td>
</tr>
<tr>
<td>135</td>
<td>+5V/15A</td>
<td>+12V/4.0A</td>
<td>-12V/0.7A</td>
<td>-5V/0.7A</td>
<td>RBQ 131</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>+5V/15A</td>
<td>+15V/3.2A</td>
<td>-15V/0.7A</td>
<td>-5V/0.7A</td>
<td>RBQ 132</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>+5V/15A</td>
<td>+12V/3.0A</td>
<td>-12V/0.7A</td>
<td>+24V/1.5A</td>
<td>RBQ 133</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>+5V/15A</td>
<td>+15V/2.4A</td>
<td>-15V/0.7A</td>
<td>+24V/1.5A</td>
<td>RBQ 134</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>+5V/20A</td>
<td>+12 or 15V/4A</td>
<td>-12 or 15V/3A</td>
<td>-5V/1.0A</td>
<td>RBQ 171</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>+5V/20A</td>
<td>+15V/4A</td>
<td>-12 or 15V/3A</td>
<td>+24V/1.5A</td>
<td>RBQ 173</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>+5V/25A</td>
<td>+12 or 15V/4A</td>
<td>-12 or 15V/3A</td>
<td>-5V/1.5A</td>
<td>RBQ 221</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>+5V/25A</td>
<td>+15V/4A</td>
<td>-12 or 15V/3A</td>
<td>+24V/3.0A</td>
<td>RBQ 223</td>
<td></td>
</tr>
</tbody>
</table>

HARD TO BEAT
- UL, CSA, IEC 380 / VDE 0806
- Replaceable Internal Fuse
- Full Output to 50°C
- FCC 20780 & VDE 0871 Level A
- 115/230 VAC Selectable Input
- Full power convection cooled

HARD TO SEPARATE VENDORS?
Not after you read this.

TALK TECHNICAL. Get answers to your technical questions. Today. Talk to one of our Technical Sales Engineers—located near you. Or call a member of our 40-220W Technical Staff. Who else offers such technical service?!

DELIVERY. We have a Nationwide Sales Organization and a nationwide Distribution Network to get your unit in your hands—quickly.

TEST DATA. Computer generated test data—furnished with every unit. The power supplies we ship you do work. You know it. We know it. The test data verifies it.

QUALITY. A nebulous word. Everyone claims it. acdc electronics proves it with the industry’s highest customer acceptance rate for over 30 years.

EASY

The 40-220W power supply you need is on the shelf at acdc electronics. Tested. Ready for shipping. Certain to pass qualification. And, priced competitively! Just call acdc electronics for the Sales Engineer in your area. Our number is 619/439-4200. It’s that EASY.

401 Jones Road, Oceanside, CA 92054.

acdc electronics

ACDC's POWER OFFERING

CIRCLE NO 91
NEW PRODUCTS
TEST & MEASUREMENT INSTRUMENTS

DIGITIZING PLUG-IN

- Digitizes at 200M samples/sec
- Performs waveform analysis

The 4180 digitizing plug-in for the vendor's 4094 digital oscilloscope provides simultaneous 8-bit digitizing at 200M samples/sec. You can install two 4180s in a 4094 mainframe; the plug-ins feed a 16k-sample/channel max sample memory. The digitizer can perform waveform analysis, including FFTs. Delivery, four months. $7900.

Nicolet, Test Instruments Div, Box 4288, Madison, WI 53711. Phone (608) 273-5008.

Circle No 379

HANDHELD SCOPE

- Functions as digital oscilloscope, DMM, and counter
- Is autoranging in all modes

The Scout SC01 is a handheld, multipurpose instrument. As a scope, it has two input channels with 20M-sample/sec, 7-bit digitizers backed by 256-byte sample memories. The 25-oz, battery-powered instrument measures 10 x 4 x 1.5 in., and its 3 x 3 in. LCD has a 128 x 128-pixel resolution. It also works as a 7-MHz frequency counter and as a dual-channel DMM. The device is auto-ranging in all measurement modes and can perform simple waveform analysis on captured traces. $1995.

Dolch American Instruments Inc, 2029 O'Toole Ave, San Jose, CA 95131. Phone (408) 435-1881.

Circle No 380

MULTIBUS II DEVELOPER

- Development systems handle six to 12 users
- Comes with real-time operating system

Two models of a Multibus II development/execution system called the Multibus II Modules Development Platform use 80386 µPs and come with the vendor's IRMX 286 real-time operating system. Model I supports six users and comes with one CPU board, 4M bytes of onboard RAM, an 80M-byte Winchester drive, a 60M-byte streaming tape drive, a 1.2M-byte floppy-disk drive, and a 6-port terminal controller. Model II supports six additional users and provides a second CPU board, hard disk, and terminal controller. Similar versions are available that run Unix V.3. System software includes the 80286 assembler, an editor, system-builder utilities, and the firm's proprietary high-level language, PL/M 286. Model I, $37,000; Model II, $45,000.

Intel Corp, Literature Dept W385, Box 58065, Santa Clara, CA 95052. Phone (800) 548-4725.

Circle No 381

GANG PROGRAMMER

- Accommodates 8M-bit EPROMs/EEPROMs in set, gang mode
- Can be upgraded to program PLDs, bipolar devices

The Model 8606 EPROM/EEPROM programmer has eight sockets and accommodates byte-wide and 16-bit word-wide devices. It can program in gang or set mode and handles devices with 1k- to 8M-bit capacities. You can use the programmer as a stand-alone unit or operate it by remote control. Internal data RAM
When top vehicle performance is crucial...

count on reliable KEMET® capacitors!

Nothing counts more than reliability in emergency vehicle services. Lives depend on it. That's why many designers of critical systems choose KEMET capacitors. You'll find them everywhere. In two-way radio communications. In engine-controlling on-board computers and climate control systems. In the rugged portable medical equipment which monitors and treats victims during an accident's most crucial time.

From high-reliability systems to everyday electronics, you'll find KEMET capacitors on the job. The choice is yours: solid tantalums, ceramics and precision film capacitors. In CV values for the whole range: commercial to industrial to MIL-grades. For fast service, not fast-talk, call your nearest KEMET sales office.
is 4M bits and is battery backed. You can upgrade the device to a Model 8608 PLD and bipolar-device programmer. The vendor provides free software updates for three years. $2500.

Sherman Pirkle Inc, 782 Massachusetts Ave, Lexington, MA 02173. Phone (617) 861-6688.

Circle No 382

PROGRAMMER/ADAPTER

- PLD-programmer adapter handles EPROMs
- Replaces PLD adapter

An EPROM adapter for the Model 60A PLD programmer enables the unit to accommodate 120 EPROM types. It supports 28-pin EPROMs. The plug-in adapter replaces whichever PLD adapter you have installed in your programmer. You can make EPROM updates by changing PROMs in the unit. Model 60A with EPROM adapter, $2495. The adapter is also available separately.

Data I/O Corp, Box 97046, Redmond, WA 98073. Phone (206) 881-6444. TLX 152167.

Circle No 383

64180 µP EMULATOR

- Has 4k-sample trace buffer
- Runs at clock speeds to 8 MHz without any wait states

The Ice-Engine/m-64180 emulates the 64180 µP, an enhanced 8080-like single-chip µP. The emulator runs at clock speeds to 8 MHz with no wait states and features a pair of 32k-byte RAM banks that are mappable over the chip’s 1M-byte address space. It has a 4k-sample trace buffer, 99 breakpoints, and one range breakpoint. $3496.

Ziltek Corp, 1651 E Edinger Ave, Santa Ana, CA 92705. Phone (714) 541-2931.

Circle No 384

NETWORK ANALYZER

- Covers the 10-MHz to 40-GHz frequency range
- Prints out test results without controller

The 561 network analyzer measures the transmission, return loss, and power of RF and microwave components over a frequency range from 10 MHz to 18 GHz, 26.5 GHz, or 40 GHz (depending on the model) without a controller. Its dynamic range is -55 to +16 dBm, and its noise floor is -62 dBm typ. The measurement resolution is 0.005 dB. The analyzer has a buffer memory that allows tests to proceed while previously taken data prints out. You need to normalize the instrument only once for a given setup. The unit can average repeated measurements, and it provides seven on-screen cursors. $7900. Delivery, 90 days ARO.

Wiltron Co, 490 Jarvis Dr, Morgan Hill, CA 95037. Phone (408) 778-2000.

Circle No 385

POWER METER

- Covers the 50-MHz to 26.5-GHz frequency range
- Requires only one sensor

The ML4803A microwave power meter covers the frequency range from 50 MHz to 26.5 GHz and has a dynamic range of -70 to -20 dBm. You need only one sensor diode for these ranges. The instrument reads out in W, dBm, or dB in absolute or differential modes. The front panel features both an LED display and an analog meter. The instrument has a built-in, 50-MHz calibration source. An IEEE-488 interface is standard. ML4803A, $2825. Sensors: amorphous, $550 to $1200; diode, $840 to $1315; millimeter waveband, $1900 to $6000.

Anritsu America Inc, 15 Thornton Rd, Oakland, NJ 07436. Phone (800) 255-7234; in NJ, (201) 337-1111.

Circle No 386

EMI FINDER

- Analyzer and near-field probe combo find EMI hot spots
- Probes alone suit any RF analyzer

The HP 8590A option H51 RF spectrum analyzer and the HP 11945A close-field probe set help engineers find EMI hot spots during EMC testing. The optional analyzer displays magnetic-field strength in dBµA/m. The analyzer compensates for the probe’s antenna factors. You can store as many as three traces in the analyzer’s memory to see if you are decreasing the EMI of the unit under test. The probe set comprises
Taiwan Liton Electronic Co., Ltd. produces a greater range of high-performance switching power supplies than most any other manufacturer anywhere: 20-1,000W. By customizing cost-saving standard models with an alternative component or two, available SPS configurations run into the thousands.

Design and production fully meets FCC class “B”, UL, CSA, TUV and VDE standards. Applications include PCs and workstations, telecommunications equipment, as well as OA equipment like facsimile machines, copiers and printers. PC models are electrically as well as physically IBM PC/AT, PC/XT compatible and are full-power rated and wired for hard-disk or tape drives, as well as other peripherals. We've built our reputation with top-quality components. With gigantic facilities and modern equipment, we design and manufacture computer and communications products which meet the highest international quality control and performance standards. Our R&D customizes a standard model or generates a 100% original design in a lead time worth switching for!
a 9-kHz to 30-MHz probe and a
30-MHz to 1-GHz probe. The pas­
sive probes work with any RF ana­
lyzer and have type-N connectors.
You can power the probes from an
RF source for EMI susceptibility
testing. HP 8509A option H51, $10,250; HP 11945A, $1110.
Hewlett-Packard Co, Inquiries
Manager, 1820 Embarcadero Rd,
Palo Alto, CA 94303. Phone local
office.

Circle No 387

FADE SIMULATOR
- Tests one channel without taking
 link down
- Has IEEE-488 interface

The TE1000 portable, multipath
fade simulator for microwave-com­
munications testing checks digital
radios for multipath-distortion ef­
effects. It injects this distortion into
the IF section of the receiver. You
can manipulate both notch depth
and frequency manually or under
program control, and you can record
these values once you’ve attained
the appropriate bit-error rate. You
can plot results with an interpath
delay as long as 25 nsec, and you can
test specific channels without tak­
ing the entire microwave link off
line. The unit is programmable over
the IEEE-488 bus and weighs 45
lbs. $32,500.
Tekelec, 26540 Agoura Rd, Cala­
basas, CA 91302. Phone (800) 835-
3532; in CA and AK, (818) 880-5656.

Circle No 388

DIGITAL SCOPE
- Digitizes input signals
- Displays analog waveforms

The 1604 4-channel hybrid analog/
digital oscilloscope has two 20M­
sample/sec digitizers that feed indi­
vidual 10k-sample memories. The
scope can also show 20-MHz analog
waveforms in real time. The memo­
ry depth and digitizing speed de­
pend on the number of channels the
digitizers have to service. A glitch­
capture feature logs 50-nsec glitches, and the instrument’s maxi­
imum time resolution is 50 nsec/div.
You can delay triggering until as
many as 16k events have been
counted. An optional keypad and
plug-in nonvolatile memory enable
the instrument to perform elemen­
tary signal processing. Plug-in
memories can store as many as 50
waveforms. The scope has an auto­
matic-setup button, as well as an
IEEE-488 interface bus and two
RS-232C ports. $5590.
Gould Inc, Test and Measure­
ment, 3631 Perkins Ave, Cleveland,
OH 44114. Phone (216) 361-3315.

Circle No 389

CERAMIC CHIP CAPACITORS
ON TAPE & REEL

Multi-Layer Ceramic Capacitor Chips packaged in 8 mm
tape on reel for automatic placement in surface mounted
applications. Available in NPO/COG and BX/X7R
dielectrics, with voltage ratings of 50 volts. Three of the
most popular standard chip sizes with values ranging
from 1.0 pf to 0.1 mfd.

JOHANSON DIELECTRICS
2220 SCREENLAND DRIVE, BURBANK, CALIFORNIA 91505
(818) 848-4465 TWX 910-498-2735

CIRCLE NO 35

TANTALUM CHIP CAPACITORS
FOR SURFACE-MOUNT DEVICES

MATSUO ELECTRONICS
2134 Main Street, Suite 200 (714) 969-2491
Huntington Beach FAX (714) 960-6492
California 92648 TWX (910) 596-1828

CIRCLE NO 36

EDN October 1, 1987
“OUR THIRD-PAGE ADS IN EDN MAGAZINE AND EDN NEWS PULL BETTER THAN OUR OTHER ADS ELSEWHERE.”

Chuck Altschul can say that with authority.

As vice president of marketing at Modutech Inc., a manufacturer of analog and digital panel meters, he has set up a lead tracking system with Inquiry Technology of Rhode Island. The system tells him precisely which ads work best.

“It’s right there in black and white: 18% of our leads come from EDN magazine and EDN News, and the highest percentage of sales also comes from them.

“In fact, our Big-Little™ DPM production has increased tenfold. Much of the increase is attributable to our consistent advertising program in the two publications.”

Chuck Altschul recognizes the power of EDN magazine and EDN News. “Based on what we’re seeing, we’ll expand the size of our ads in upcoming issues.”

Advertising in EDN magazine and EDN News works for Modutech Inc. It can work for you.

EDN Where Advertising Works

Charles E. Altschul
Vice President, Marketing
Modutech Inc.
NEW PRODUCTS

CAE & SOFTWARE DEVELOPMENT TOOLS

PROJECT PLANNER
- Generates critical-path and Gantt charts
- Calculates cost breakdowns

Project:Vision Level 2 is an enhanced version of the vendor's project-planning software package, which runs on IBM PCs and compatible computers. This package's resource- and cost-scheduling capabilities complement the time and activity functions of the earlier version. Using a spreadsheet-style interface, you can allocate resources (people, equipment, and materials) to all of the simultaneous or sequential tasks that constitute a complete project. You can assign precedence to each task and specify the relationships between tasks. The program identifies tasks that, if delayed, would slow down the whole project, as well as tasks whose start and finish dates are more flexible. Five levels of scrutiny allow you to survey the overall situation or to focus on two or three individual tasks. You can display a Gantt chart showing how your time, material, and money use varies with each task; a built-in text editor lets you document each activity in detail. You can also export project information to other spreadsheet and database programs for further processing. To run the program, you need an IBM PC or compatible computer with at least 256k bytes of RAM, a Hercules or IBM graphics adapter (CGA or EGA), and an Epson FX-80, FX-100, or equivalent printer. $349.

Inmax Corp, 200 W Thomas, Suite 110, Seattle, WA 98119. Phone (800) 922-7774; in WA, (800) 648-7775.

Circle No 409

C CODE GENERATOR
- Translates applications from database language to C
- Lets you search multiple databases

Quic-PRO 5 is a software-development package that provides a fourth-generation database language, an applications generator, a query language, a report generator, a C translator, a C compiler, and a file handler. You develop your database applications with the aid of the event-driven interpretive database language and the applications generator; these modules include more than 100 high-level commands and a screen painter. The query language lets you access multiple databases in any relation. It also provides logical selection of items to be matched and retrieved; provides totals and subtotals of selected items; gives highest, lowest, and average values of selected items; and lets you format and print mailing labels. The report generator provides extensive sorting and formatting capabilities for special reports and has 255 accumulators that you can use for totals and subtotals. The C translator converts 100% of the development-language code to C source code and creates a batch file that permits compiling and linking of complete application programs without operator intervention. The C compiler provides all Kernighan and Ritchie features of the language, as well as the extensions specified by the proposed ANSI standard. The single-user version operates on any hard-disk system that has at least 512k bytes of RAM and that runs PC-DOS, MS-DOS, or Concurrent PC-DOS. The multiuser version operates on systems that run Novell Netware, IBM PC Network, Concurrent PC-DOS, or MUCDOS. Single-user version, $199.95; multiuser version, $600.

Circle No 410

IMAGING SOFTWARE
- Processes color images at 768x575-pixel resolution
- Operates in a VME Bus environment

In conjunction with the company's range of VME Bus frame-grabber/frame-store boards, you can use the VCS software package to develop programs for image processing. You...
can use the software in two modes: You can either enter simple 3-letter mnemonics that execute image-processing algorithms, or you can develop a program from the library of image-processing functions supplied with the package. The library currently contains over 150 image-processing functions, including edge detection, object and character recognition, filtering and convolution, and histogramming. You can either incorporate your own routines in the library or call them as external routines.

Primographics Ltd, Melbourn Science Park, Melbourn, Royston, Herts SG8 6EJ, UK. Phone (0763) 620 41. TLX 817932. Circle No 411

REAL-TIME OS

- Can run 100 application tasks
- Offers as many as 4095 envelopes for message passing

Version 2.0 of the AMX Multitasking Executive is a real-time, multitasking operating system for systems based on the 8086, 80186, and 80286 µPs. Its message-passing facility provides each task with four mailboxes in which the task receives messages from other tasks. A task does not have to issue a system call in order to receive a message. With the wait/wake feature, you can suspend a task until another task, timer procedure, or interrupt handler issues a request to wake the task again. Using the event manager, you can suspend a task to wait for a combination of events signaled by flags. The operating system provides 127 flag groups, each of which contains 16 flags, and you can define the events of interest in a group. The resource manager allocates system resources to tasks and ensures that only the task that currently owns a resource can release it. The semaphore manager provides a general-purpose counting semaphore with priority queuing and timeout. The buffer manager allows you to allocate multiple pools of fixed-size buffers; the number of pools is limited only by the amount of memory available. The memory manager controls the dynamic allocation of blocks of memory to particular tasks. The PC supervisor provides an interface to the I/O devices of the host PC, PC/XT, PC/AT, or compatible machine.

You can configure the operating system in several ways: as a linked system, which provides the smallest size and fastest execution; as a position-independent ROM image that you can place anywhere in your memory map; and as a resident system module in which all system modules are linked with the set of application tasks that the system will serve. $2195.

Kadak Products Ltd, 206-1847 W Broadway, Vancouver, British Columbia V6J 1Y5, Canada. Phone (604) 734-2796. TLX 0455670. Circle No 412

IC DESIGN TOOL

- Lets you design IC architecture
- Automatically compacts chip

ValidCompose is the first tool in the vendor's product line to be entirely driven by design rules. It runs on Sun 3 workstations and on DEC's VAXstation. You begin the design process by creating a functional schematic in which the cells to be used appear as boxes that define the cells' relative shapes and sizes and their connection points. You then use the program's editing features...
to optimize the cell placement. To minimize wire lengths, the program performs automatic pair and port swapping, as well as automatic rotation and mirroring of cells. It also provides both automatic and interactive routing. The program performs placement and routing according to design rules that you specify, by means of the editor, on the original schematic. You can identify critical paths and specify wider widths for individual wires than the design rules call for. During floor planning, the program groups cells with critical interconnections and alerts you to the occurrence of critical paths that are too long. Once the program has performed the initial cell placement, it automatically compacts the chip into the smallest possible space, while observing the design rules. $20,000.

Valid Logic Systems, 2820 Orchard Parkway, San Jose, CA 95134. Phone (408) 432-9400. TLX 3719004.

Circle No 413

EGA/VGA BIOS

- Offers full VGA compatibility on an IBM PS/2 system
- With an EGA chip set, provides most VGA features

The vendor offers three versions of the EGA/VGA BIOS. The EGA+Autoemulation version, in combination with the 82C435/436 EGA chip set from Chips and Technologies (Milpitas, CA), provides 100% hardware and software compatibility with the IBM EGA card, but operates at twice the speed. The autoemulation feature adjusts automatically to the display modes required by applications software. The second version adds VGA-resolution graphics modes, which include 640×480 pixels in 2 or 16 colors; 360×480 pixels in 16-color alphanumeric mode; and 720×400 pixels alphanumeric in both 16-color and monochrome mode. This version also has a 16×8-pixel character set with a 16×9-pixel update set, and some VGA BIOS-compatible calls. It can operate with an NEC multisync and compatible monitor and can generate an IBM Enhanced Color Display, an IBM Color Display, an IBM Monochrome Display, or similar displays. The third version is a fully compatible VGA BIOS that you can load into RAM to run the video system of an IBM PS/2-50 machine; when new chip sets are available for VGA, this BIOS is designed to work with them. OEM license, from $10,000.

Interlink Business Network Corp, 2700 E Imperial Hwy, Building A, Brea, CA 92621. Phone (714) 579-0693. TLX 753197.

Circle No 414

EDN October 1, 1987
$95 8751 PROGRAMMER

UPA8751 converts any programmer into an 8751 programmer. Production programming of 8751 sis fast and cheap with your gang programmer and one or more UPA8751s. Use the UPA8751 to copy protect your code by programming the 8751 security bit. Price $95 UPS Ground shipping included.

Logical Systems also provides development tools and services. We carry Simulators and Cross-Assemblers. For information call or write:

Logical Systems
6184 Teall Station
Syracuse, NY 13217 USA
(315) 478-0722

CIRCLE NO 325

2-3W MINIATURE REGULATED, SINGLE & DUAL OUTPUT, DC/DC CONVERTERS, E SERIES

- 3W Max. Output @ 75°C Ambient
- Single & Dual Output Models
- Miniature Size: 1" x 2" x 0.350"
- Internal Pi Filter
- 100M Ohms @ 500VDC Isolation

Prices from $49.00 ea. (1-9), Delivery stock to 2 wks. ARO.

CONVERSION DEVICES, INC.
101 Tosca Drive, Stoughton, MA 02072
Tel. 617-341-3266, TLX 920014

CIRCLE NO 328

KEY TO PCAD™ SOFTWARE

- Hardware decoder for all PCAD™ software
- 100% protocol compatible with PCAD™ security device
- Used through system RS232-C input port
- Also provides RS232-C output for your mouse
- One PC-WIZZ decoder per PC/XT/AT enables it to run all PCAD™ software
- Price: only $995., shipping included
- 90 day warranty

PC-WIZZ SYSTEMS, INC.
P.O. BOX 2190, HARBOR SQ.
CAMBRIDGE, MASS. 02238
1-800-363-8022

PCAD™ is a trademark of Personal CAD Systems, Inc.

CIRCLE NO 329

UL 478; CSA 22.2; IEC 380; VDE 0806

- Multi-Output–160 to 700 watts
- Single-Output–150 to 520 watts, 5 to 48 volts
- 31% Smaller Packages–Up to 4 watts/in³
- More Than 100,000 Hours MTBF, per MIL-HDBK-217D
- Single PC Board; Surface Mount Components
- ...and more.

From Industrial Controls to Telecom Systems—or any computer-based system, TODD Switching Power Supplies can give your OEM Products a competitive edge. Call 1-800-223-TODD, (516) 231-3366, or write:

TODD PRODUCTS CORP.
50 Emjay Blvd., Brentwood, NY 11717

CIRCLE NO 330

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
NEW BOOK

Properties of Mercury Cadmium Telluride $195.00

This handbook provides authoritative data for the most useful properties of cadmium telluride (CdTe) and for the solid solutions formed by substitution of mercury for cadmium. In addition to physical electronic and optical properties, the book covers many device-related aspects and contains sections on defects, diffusion, band structure, surfaces and other properties.

ORDERS TO:
INSpec Dept/IEEE Service Center
445 Hoes Lane, P.O. Box 1331,
Piscataway, NJ 08855-1331
Tel: (201) 981-0060 ext. 392
All major credit cards and telephone orders accepted

CIRCLE NO 340

CIRCLE NO 341

CIRCLE NO 342

OMEGA'S BOOK OF BOOKS
OMEGA'S Encyclopedia of Scientific and Technological Books is a one-stop ordering source for books from the major science and technology publishers of the world. This catalog gives information on over 12,000 books from 14 publishers covering 16 subject categories including all engineering disciplines, the sciences, math, engineering computer software, and computer science. For easy reference, books are "recommended" and noted as "new". Others are grouped in mini-libraries for easy ordering. All books can be ordered by calling an 800 number or by using the book's easy-to-use order form. Most major credit cards are honored. Circle reader service number or write today to:

OMEGA ENGINEERING
One Omega Drive, P.O. Box 4047
Stamford, Connecticut 06907

CIRCLE NO 343

6800-Family Development Software

Combine our software and your editor for a powerful development system. Our C-Compilers feature a complete implementation (excluding bit fields) of the language as described by Kernighan & Ritchie and yields 30-70% shorter code than other compilers. Our Motorola-compatible Assemblers feature macros and conditional assembly. Linker and Terminal Emulator are included. Wintek Corporation, 1801 macros and conditiona assembly. Linker and Terminal Emulator are included. Wintek Corporation, 1801

CIRCLE NO 344

All You Can Expect From AYE. A Professional IC Socket Maker

8, 14, 16, 18, 20, 22, 24, 28, 32-pin CLCC
40-pin and custom-design inquiries will be answered immediately.

CIRCLE NO 345

"D" SIZE PLOTTER

$2995.00 RETAIL

$1595.00 INTRODUCTORY OFFER

Model 3600
Repeatability .001"
Speed at 7" Per Second
Vacuum Paper Hold Down
High Resolution Circles: Suitable for PCB Artwork

(415) 490-8380 ZERICON
4423 ENTERPRISE ST. • FREMONT, CA 94538

CIRCLE NO 346

MTW2805S - MINIATURE DC-DC CONVERTER - 30 WATTS

Integrated Circuits Inc. announces the MTW2805S, the latest complement to their line of high efficiency, thick film hybrid, DC-DC Converters. Measuring only 0.95" x 1.35" x 0.50", the hermetically sealed MTW2805S generates a fully isolated +5VDC output over the input range of 19-40VDC from -55°C to +85°C. With 82% efficiency (typ.) Other features include short circuit protection, remote bus voltage sensing, internal 50µF ripple filters, an inhibit function and optional environmental screening. For additional information, contact: INTEGRATED CIRCUITS INCORPORATED 10301 Willows Road, Redmond, WA 98052 Telephone: (206) 882-3100 Fax: (206) 882-3100 TWX: 910-443-2302

CIRCLE NO 347

OMEGA'S BOOK OF BOOKS

OMEGA'S Encyclopedia of Scientific and Technological Books is a one-stop ordering source for books from the major science and technology publishers of the world. This catalog gives information on over 12,000 books from 14 publishers covering 16 subject categories including all engineering disciplines, the sciences, math, engineering computer software, and computer science. For easy reference, books are "recommended" and noted as "new". Others are grouped in mini-libraries for easy ordering. All books can be ordered by calling an 800 number or by using the book's easy-to-use order form. Most major credit cards are honored. Circle reader service number or write today to:

OMEGA ENGINEERING
One Omega Drive, P.O. Box 4047
Stamford, Connecticut 06907

CIRCLE NO 348

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
VME ASYNC COMM CONTROLLER
16 Async RS-232C Serial I/O Ports
10MHz 68000 CPU
512KB RAM, 256KB Dual-Ported
Intelligent Terminal I/O Firmware
Up to 38.4K Baud per Channel
Up to 9600 Baud on all 16 Channels
UNIX System V Device Driver
Multibus-I or VME Bus Interface

TADPOLE TECHNOLOGY INC.
647-K Sierra Court
Dublin CA 94568
(415) 828-7676

CROSS-COMPILERS
• Run on VAX, Sun, PC/AT
• Includes compiler and optimizer, relocating assembler, linker/librarian, run-time C library, and various utilities

Okapi Systems, Inc.
P.O. Box 3095 • Everett, WA 98203
(206) 258-1163

CIRCLE NO 349

NEW STD BUS INSTRUMENTS
Smart instrumentation runs its own high
level language with built in 8 MHz micro-
computer. Isolated from bus ground to
1000 V. High speed 12 bit A/D with user
definable signal conditioning for each
channel. Heavy duty 8 CH 13 bit D/A, 8
CH relay and 128 CH solid state multi-
plexers. User customizable module too.
Both 280 and Ziatech 8088 STD DOS
compatible

MILLER TECHNOLOGY, INC.
647 N. Santa Cruz Ave.
Los Gatos, CA 95030
(408) 395-2032

CIRCLE NO 752

UNIVERSAL EPROM PROGRAMMER $495!!
• Built in timer eraser option; foam pad area
• Menu selection; No personality modules
• User friendly softw Complete help menu
• Direct tech. support; Full 1 yr. warranty
• Stand alone duplication & verify
• Quick pulse algorithm: 27256 under 60 sec
• All 24/28 pins to 27011 & CMOS E(E)PROMS
• Quick pulse algorithm: 27256 under 60 sec
• Auto baud RS232 to 19.2k; Free PC Drivers
• Offset/split Hex, Binary, Intel & Motorola 8, 16 &
• 8741 ,
• All 24/28 pins to 27011 & CMOS E(E)PROMS
• Quick pulse algorithm: 27256 under 60 sec
• Quick pulse algorithm: 27256 under 60 sec
• Stand alone duplication & verify
• Quick pulse algorithm: 27256 under 60 sec
• All 24/28 pins to 27011 & CMOS E(E)PROMS
• Quick pulse algorithm: 27256 under 60 sec
• Stand alone duplication & verify
• Quick pulse algorithm: 27256 under 60 sec
• All 24/28 pins to 27011 & CMOS E(E)PROMS

B&C Microsystems
355 West Olive Avenue
Sunnyvale, CA 94086
Phone: (408) 730-5511

CIRCLE NO 753

8051 Debugger with In-Circuit-Element
The CY-8051 in-circuit element replaces the 8051 and co-
municates with your IBM-PC over COM1. The powerful
dynamic user interface provides source code and symboli
debugging with easy access to all 8051 registers. Live keyboard,
Global Symbol Monitor, "C" support. Histogram generated
during reduced speed execution. Lowest cost, most powerful
8051 design support. M-150 and CMOS versions available.

Cybernetic Micro Systems, Inc.
Box 3000 • San Gregorio, CA 94074 • USA
(415) 728-3000 • Telex: 910-350-5842

CIRCLE NO 756

CIRCLE NO 751

INSTRUMENT PAIR FOR IC IN-CIRCUIT TESTING
M-5700C Logic ScanMaster includes universal logic
state indicator, logic pulser and clip, automatic bad
level detector, auto-ranging DVM, pin to pin push-
bouton interface of the signal to scope, counter, etc.
M-150 Digital Comparator compares known good IC
to DUT in-circuit. This instrument combination offers
fast, accurate process to troubleshoot digital ICs to
component level. Price $1,695.00

Information Scan Technology
487 Gianni Street, Santa Clara CA 95054
(408) 988-1908

CIRCLE NO 757

Analog Circuit Simulation
A full featured SPICE based simulator runs on
the IBM PC with interactive Input and Output

These wave-
forms show an
IS_SPICE
analysis of a
power supply
snubber. Intu_Scope was
used for display
and computation
of power and energy.
The output shown
used an
Intu_Scope
plotter utility

PRE_SPICE, $200.00: Interactive control, Monte Carlo
Analysis, Optimization, libraries and parameter evaluation.
IS_SPICE, $95.00 Performs AC, DC and Transient analysis.
Intu_Scope, $250.00: Displays, manipulates and plots data.
Programs are not copy protected, come with a 30 day money
back guarantee and require PC with 640K RAM, fixed disk,
coprocessor and CGA or EGA or Hercules graphics.

P.O. BOX 6007
San Pedro, CA 90734-6007
Tel: (213) 632-0710

CIRCLE NO 754
NEW ENGINEERING SOFTWARE
Filter designs active filters up to order 30. Bessel, Butterworth, Chebyshev, Allpass; High, Low Bandpass and Bandstop. Fully menu driven, Filter designs, plots, and selects component values for any filter in seconds. LSAP analyzes linear systems producing Bode, Nyquist, Impulse, Step Response and Root-Locus plots. Micro-CSMP simulates control and servo systems with full support for non-linear behavior. Filter is $900, LSAP is $450, Micro-CSMP is $900 for the IBM PC.

IBM Compatible Software
IBM COMPATIBLE RS232 EASI-DISK
3 1/2-5 1/4 " FLOPPY DATA STORAGE & TRANSFER SYSTEM
Information Transfer to/from Non IBM Compatible Systems to/from IBM & Compatibles: (Over RS-232 or 488 Interface).
- Reads & Writes MS DOS Disks
- RS-232/488 I/O
- Rugged Portable Package/battery option
- ASCII or Full Binary Operation
- Baud Rate 110 to 38.4K Baud
- Price $895, Other systems with storage from 100K to 35 megabytes.

 Affordable Engineering Software
PC/MIDOS - ModemTech - CP/M
- ACNAP — $125.00
 AC Networks Analysis
 Component Libraries, Macros, AUTO Execute
- DCMAP — $95.00
 DC Networks Analysis, Component Library, Macros, AUTO Execute
- SPP — $125.00
 Signal Processing Program
 Macros, AUTO Execute, Windowing
- PLOTPRO — $72.95
 Scientific Graph Plotting
- PCPLD3 — $95.00
 High Resolution Graphics
 Screen and Printer graphics
- LOCIRPO — $95.00
 Roof Loss Analysis
 Macros, AUTO Execute, Batch
- ACTFL — $95.00
 Active Filter Design, Analysis, Synthesis
- BV Engineering - Professional Software
 (714) 781-0252

 Glide Through PCB Design.
TangoPCB - Create the toughest board designs with powerful layout software that's a snap to use. Function-rich Tango-PCB supports eight layers, 1 mil grid, OrcAD® or Schema™ netlist input, print/plot/photoplot output, and more.
TangoRoute - Get impressive completion rates and remarkable speed with Tango-Route, a four layer, eleven pass autorouter.

Fast Delivery
1201 South St, Lafayette, IN 47904
(800) 742-8428 or (317) 742-8428

HSC-9160 Graphic CRT Terminal Card
Variable resolution to 640 by 300 dots, multiple and downloadable character fonts. Two serial ports programmable to 38.4K baud, RS-232 and TTL/CMOS levels. Enhanced ANSI X3.64 control sequences. Configurable from host, on card switches or from keyboard. Composite or separate video and an IBM PC compatible keyboard input. The 100 by 160mm keyboard accepts ASCII or Full Binary, multiple and remarkable speed with Tango-Route, a four layer, eleven pass autorouter. $495 each.

ACCEL Technologies, 7558 Trade St., San Diego, CA 92121

PALS, BIPOLAR, EE/EPROMS, MICROCS, IC & MEMORY TESTERS, ERASERS $149 to $1195
THE COST PERFORMANCE COMPANY has PROGRAMMERS, ERASERS AND TESTERS TO FIT YOUR NEEDS

IEEE-488
IEEE-488 Communications Board
MXI-100
- GPIB controller board for IBM
 PC/XT/AT
- Control up to 14 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.

Qua Tech, Inc.
478 E. Exchange St, Akron, OH 44304
(216) 434-3154 TLX: 5101012726

CIRCLE NO 776

CIRCUIT NO 777

CIRCLE NO 778

CIRCUIT NO 779

CIRCULE NO 780

CIRCUITE NO 781

CIRCUIT NO 782

CIRCUIT NO 783

CIRCUIT NO 784

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
• Hardware and software - $395 complete.
• Fast and easy-to-use. Thousands sold.
• Use with ASYST's Lotus Measure™
• Control instruments and peripherals.

TVME 1613 (MVME 110-1 Compatible) $795
TVME 1612 (MVME 110-1 Compatible) $620
TVME 1611 (MVME 117-3 Compatible) $895

• TVME 1611 (MVME 117-3 Compatible) $895
• Up to 4 MB DRAM
• 100% MOTOROLA MVME COMPATIBLE
• LOW COST PLUG-IN REPLACEMENTS

Call Now - Toll Free 1-800-227-8144
P.O. Box 1147, New Albany, IN 47150

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
App notes discuss waveform digitizing
Application notes AN-2017, Principles of Digital Waveform Recording and AN-2018, Digital Signal Processing, provide an overview of waveform digitizing and analysis. The two papers fill 28 pages of text, diagrams, and illustrations. They address such topics as fundamentals of ADC technology, understanding digitizer specifications, digitizer applications, digital signal processing, and computer-aided-test system design.

LeCroy, 700 S Main St, Spring Valley, NY 10977.

Circle No 401

Report addresses use of laser for graphics
The 8-pg white paper, Lasers in Graphic Arts, discusses laser technology as a bridge between typographic output, and hardware and software used for publishing. The report deals with three graphic-arts applications: image setting, scanning, and printing.

Compugraphic Corp, Literature Div, 65 Industrial Way, Wilmington, MA 01887.

Circle No 402

Brochure discusses traveling-wave tubes
This brochure covers the vendor’s line of microwave tubes and amplifiers for manufacturers of communications and military products. It describes products for military electronic counter measures (ECM) and radar, for stationary and mobile transmitters, for transmitter amplifiers in up-link ground stations of satellite TV and direct broadcasting systems, and for point-to-point satellite transmission of business data. The 20-pg booklet includes a section on product safety.

Stantel Components Inc, 636 Remington Rd, Schaumburg, IL 60173.

Circle No 403

Booklet presents high-reliability products
Meeting the Challenge of Hi-Rel, a 38-pg brochure for the military market, contains an extensive QPL (quality products list), a compilation of high-reliability process offerings, and a glossary. Other sections include die and wafer ordering information and a summary of application notes.

Intersil Inc, 10600 Ridgeview Ct, Cupertino, CA 95014.

Circle No 404

Guide lists graphics hardware
The TMS34010 Third Party Guide provides information about products using the TMS34010 graphics system processor. More than 50 companies describe their TMS34010-based products, which include IBM PC add-in boards, electronic publishing systems, and image-processing systems. The book serves as a resource for high-performance graphics hardware and identifies software developers that have operating environments, development tools, and applications for the TMS34010.

Texas Instruments, Semiconductor Group (SC-754), Box 809066, Dallas, TX 75380.

Circle No 405

Data sheet for surface-mount repair
A 2-pg data sheet describes the vendor’s SRM-100 surface-mount rework and repair system. The publication details how the system works and how it utilizes the proprietary programmable matrix heater. It also highlights the system's features and benefits, which include elimi-
nating the need for expensive tooling to handle different surface-mount-device configurations. The data sheet's reverse side lists general, control-system, vision-system, utility, and physical specifications of the product.

SRTechnologies Inc, Pond Lane, Concord, MA 01742.

Circle No 406

Newsletter contains CAD/CAM information

Published continuously since 1981, the Computer Aided Design Report newsletter covers computer-aided design and manufacturing topics. The May and June issues provide a comparison of personal-computer CAD software from three Fortune 500 firms and software from two smaller companies. The results show that buying software from major manufacturers won't necessarily be the best solution for your particular needs. Copies of both issues are available for $23. An annual subscription costs $138.

CAD/CAM Publishing Inc, 841 Turquoise St, Suite D, San Diego, CA 92109.

INQUIRE DIRECT

App note deals with signal measurement

Application Note No 59 describes channel-associated signaling measurements on pulse-code-modulation (PCM) systems. It covers primary- and secondary-order PCM systems operating at 2048k and 2448k bps, and it includes making measurements in traffic and detecting errors in the line code and in 2048k-bps frame-alignment words. A diagram illustrates the frame and multiframe structure of a 2048k-bps digital stream according to CCITT recommendation G704. Other subjects include signaling on PCM systems, the 2388A measurements channel number and signaling state, measurement configurations with illustrations, and local monitoring.

Marconi Instruments, 3 Pearl Ct, Allendale, NJ 07401.

Circle No 407

EDN INFO CARDS

The Fastest, Most Cost-Effective Way to Generate Sales Leads!

For further information, contact Lauren Fox, EDN Info Cards Manager, at (203) 328-2580.

*Numbers represent actual responses
Paul Hughett's consulting business started out well enough. He found a client company that needed his computer-graphics expertise, and he signed a one-year contract that provided him with full-time work. At the year's end, the client still needed him, so Hughett stayed on. The one-year pact eventually stretched into two and a half years.

When the job finally ended, Hughett began a campaign to drum up new business for his consulting practice. He made cold sales calls on potential clients and offered his services to companies that had run newspaper advertisements for engineers. Six months later, he hadn't obtained enough contracts to support himself financially. "What I was doing wasn't working, despite the fact that I had all these technical skills," Hughett remembers. "I was having a good deal of trouble getting meetings with people, never mind getting business from them."

Hughett had come up against a hard fact of consulting: Technical skills don't sell themselves. Many engineers go into consulting expecting the opportunity to at last design in a hassle-free environment. Instead, what they find is that design is often the easy part of maintaining a consulting practice. The hard part—and the part that occupies the greatest portion of their time—is acquiring the business acumen and salesmanship needed to manage a small, client-oriented business.

There are no statistics on the number of engineers in private consulting. Membership in two organizations, the Professional and Technical Consultants Association and the American Consulting Engineers Council, remains steady. The Independent Computer Consultants Association, however, grew rapidly earlier this year, jumping from 1800 members in December 1986 to 2400 in July. Executive director Jack Christensen attributes the increase to a new tax law that changes the criteria by which independent technical consultants qualify for tax benefits, and consultants' resulting need to belong to an organization that can convey information on the new laws.

Consulting appeals to engineers for many reasons. Some engineers long to escape the multiple layers of management and the endless procedures that prevail in large companies. "The amount of bureaucratic procedure and the time I spent coping with the bureaucratic requests were an annoyance," says Nathan Sokal, a consultant since 1965. "Some people can let those things roll off their backs, but it wasn't as easy for me."
Others want more varied work than most permanent jobs allow. “I wanted to choose what I could do and to work with a variety of projects—things one typically can’t do as an employee,” says Guy Scharf, owner of Software Architects in Mountain View, CA, which specializes in office automation and software development. Scharf spent many years debating whether to open his own business before finally deciding to do so in 1981. “I either had to go out and do it, or give up the dream,” he recalls.

Other engineers give consulting less forethought, deciding to give it a try when the opportunity presents itself. When a local company offered her a consulting job, Lynn Silberman of JL Software Systems in Portola Valley, CA, wasn’t sure that she wanted to give up the security of corporate employment. She turned down the offer, but when a second opportunity arose, it piqued her curiosity and she accepted it.

Despite their varied reasons for hanging out a shingle, engineers’ perceptions of consulting are remarkably uniform. They describe consulting as fraught with frustrations, financial insecurity, and long hours. Moreover, the skills that they need most in consulting—salesmanship, marketing savvy, and general business know-how—are not necessarily the ones they developed working in engineering environments.

First on any consultant’s list of things to do is cultivate clients, and doing so requires many engineers to undo the problem-solving skills that they were taught. “Engineering thinking is mainly analytical,” says Arlen Burger, formerly a salesman and sales consultant and now a senior consultant with Robert Blake Associates (Santa Clara, CA), an out-placement company. “But when you’re persuading someone to buy your product or your expertise, there are a lot of intangibles. The intangible, emotional characteristics of decision-making drive engineers crazy.”

Burger estimates that as many as 40% of the engineers he counsels consider becoming consultants. Eighty percent of the engineers who enter consulting return to permanent corporate employment, Burger estimates, and he cites poor salesmanship as the reason.

Building a practice requires an active sales and marketing effort. For example, few companies advertise for consultants. And consultants who run advertisements in the hopes of attracting potential clients usually come up empty-handed.
"The only response I got was from another consultant who wanted to know if I'd gotten any response," says Dennis Paull of Paull Associates in Los Altos, CA.

Like Hughett, other consultants have unsuccessfully tried to offer their consulting services to companies that ran help-wanted ads for permanent, full-time engineers. "If they run a help-wanted ad, they don't really want someone part-time," says Hughett. Promoting his services to personnel departments proved to be another "worthless" undertaking, he says.

The best way to create a profitable business, consultants maintain, is to use industry contacts. In rare cases, a word-of-mouth campaign is enough to acquire business. But most consultants point to cold sales calls as an equally important—if dreaded—method for building a practice.

"You don't have to learn to love selling, but you do have to be able to do it and not be unhappy about it," says Sokal. Joel Becker, an independent consultant specializing in antenna design, agrees with Sokal. Becker says that after nine years of consulting, he still isn't used to sales. "I don't think I ever will be," he adds. "Basically, you have to learn to take a rebuff and not take it personally."

Selling yourself

Making cold calls, says Marty McGrath, "was about the hardest thing I ever did. After you get a few turn downs, you start feeling that maybe you don't have anything to offer." Maintaining self-confidence is crucial for a newcomer to consulting, says McGrath, who credits the sales experience he gained in an earlier real-estate job with helping him to get his consulting practice started in 1981.

Through trial and error, though, most consultants are able to formulate a sales pitch that meets with some measure of success. "I ask potential clients what they're looking for and then figure out how to fill those needs," says Hughett, who sought to refine his selling techniques by hiring Burger as a sales consultant. "Then I say 'When do we start working on this?' It takes a lot of assertiveness."

McGrath tailors his sales strategy to appeal to the needs of companies in Silicon Valley, where he's operated his consulting practice, McGrath Technical Services, for the past six years. "In Silicon Valley, the average engineering turnover is two years. An engineer who leaves after two years often has just two weeks to document the work he's been doing. Usually, it just doesn't get done. I point out that I know I'll be gone in six months, so I'll have the documentation done."

In addition to sales calls, consultants find lots of other innovative ways to market themselves. Hughett, for example, attends conferences to stay up to date technically and "to stand around and talk to people at the coffee break. I get more useful information that way.
Scharf recently began distributing a 10-pg newsletter to about 100 clients and potential clients. The newsletter, which includes technical information on Scharf’s office-automation and software-development specialties, costs $150 to produce each month. Yet Scharf considers the money well spent: The two issues that he’s published to date have already produced two business leads.

Role playing

Securing a contract, though, is just the beginning of a consultant’s work. In many cases, technical consultants perform a variety of roles for their clients: technical expert, mediator, and nursemaid. “There’s a wide spectrum of personalities working for your clients,” says Sokal. “You have to work with these people without offending them or making them feel anxious about the presence of a consultant. You have to be able to tell them something that might be unpleasant news, but present it to them in such a way that they get the technical content, without the emotional load.”

What’s more, consultants often must practice diplomacy in a variety of uncomfortable situations. They might carry the burden of being hired to solve a problem that has stymied the client’s engineers. A consultant might also find himself hired to substitute for an engineer who’s quit suddenly or been fired. One consultant remembers having been hired to replace a chief engineer who had died unexpectedly. Without the assistance of the engineer who worked on the product, the consultant takes on the additional role of detective as he tries to retrace the project’s progression. All of these circumstances lead to tense working environments. “You walk into the situation, and people are under a lot of stress; they’ve been having a lot of problems,” says McGrath. “You have to prove yourself every time. You walk out of one job and you might be a hero. You walk into a new job, and they say ‘So you’re a consultant, huh? See if you can solve this’.” Indeed, the ability to handle very demanding jobs and to work smoothly with people is critical because repeat business and positive references are the crux of a consultant’s network of contacts, and consultants perform a variety of roles for their clients: technical expert, mediator, and nursemaid. “There’s no better the income they had as employees. “You have to enjoy doing it and have to feel it’s better than working for someone else,” says Hughett. “It takes too much grunt work and running around and taking risks. Money alone can’t motivate people to do that.” Scharf’s advice is more stern. “Unless you feel irresistibly drawn to running your own business, don’t bother starting a practice.”

Lean times prompt some consultants to toy with the idea of returning to regular corporate employment, which would provide them with some protection against economic fluctuations. “There was a time last year when I was very low than by listening to the papers.”

Financial and other rewards

Consulting salaries vary. Most say consulting isn’t a financial windfall, but allows them to equal or better the income they had as employees. “You have to enjoy doing it and have to feel it’s better than working for someone else,” says Hughett. “It takes too much grunt work and running around and taking risks. Money alone can’t motivate people to do that.” Scharf’s advice is more stern. “Unless you feel irresistibly drawn to running your own business, don’t bother starting a practice.”

Lean times prompt some consultants to toy with the idea of returning to regular corporate employment, which would provide them with some protection against economic fluctuations. “There was a time last year when I was very low

For more information . . .

You can obtain information on independent consulting from the following organizations.

Professional and Technical Consultants Association (PATCA)
1930 S Bascom Drive
Suite D
San Jose, CA 95128
(408) 287-8703

Independent Computer Consultants Association
Box 27412
St. Louis, MO 63141
(314) 997-4633 or (900) 439-4222 or
(800) 438-4222 or

American Consulting Engineers Council
1015 15th St NW
Washington, DC 20005
(202) 347-7474

EDN October 1, 1987
in money and had had a contract fall out from under me,” Hughett says. “I had to think: Did I want to stay a consultant and be poor, or go back to industry and have less fun but make more money? I decided I enjoyed consulting enough to stick with it.”

In addition to the security of permanent work, some consultants also miss the ready supply of colleagues with whom to swap ideas. “If you’re working with other engineers, you can kick ideas around. That type of discussion is useful in problem solving,” says McGrath. “In consulting, you don’t have colleagues just down the hall.” McGrath has a foolproof, if costly, solution to this problem: “I call people that I know and ask them if I can buy them lunch. I get a 100% response.”

So with all of the drawbacks to consulting, why does anyone stay in the field? For one thing, consultants choose the engineering projects they work on, so the work tends to be more interesting than what they were assigned as corporate employees. “I’ve never attempted to peg a real specialty in the way that’s generally advised,” says Scharf, who prefers to work on a variety of technologies.

The learning curve for consultants is high. “I thought you had to be an expert and know it all, but that’s not the case,” says Silberman. “As long as you know something about the application, you can learn the rest of it.”

Some consultants say they’d never return to corporate employment. “I’d never consider anything other than being in business for myself,” says Becker. “I like being my own boss. I know why I do things; I was mystified by the decisions of some of the larger companies I worked for.”

Article Interest Quotient (Circle One)
High 518 Medium 519 Low 520

EDN October 1, 1987
SURFACE MOUNT TECHNOLOGY

Compaq Computer Corporation is one of the world's leading manufacturers of high performance, industry-standard personal computers for professional use. We are experiencing unprecedented growth through sales of the broadest line of desktop and portable business personal computers on the market.

Our outlook for the future continues to be very optimistic. While many facets have contributed to our success in the last 5 years, one clearly stands out—the extraordinary team of professionals who work here. Because of our employee's experience and commitment, Compaq will continue to provide an unparalleled heritage and success record. And with this success will come a broad range of challenging and exciting career opportunities for those individuals wishing to play a major role in our success in Houston.

We are currently seeking Engineers with Surface Mount Technology experience in the following areas:

- Design Engineering
- Sustaining Engineering
- Reliability Engineering
- Quality Engineering
- Manufacturing Engineering

A BS in Electrical Engineering or Mechanical Engineering with 3 or more years experience in a high volume manufacturing environment required. If you desire to be part of a stimulating and dynamic environment where dedication and team spirit are essential, you belong at Compaq.

The Compaq success story continues with our facilities. Our new complex offers 150 acres of a campus environment 20 miles Northwest of Houston, providing easy access to all the amenities of a leading international city, yet isolated enough in its scenic setting to avoid the associated hustle and bustle. Our location is also very accessible to many recreational opportunities and a wide variety of very affordable housing.

Compaq offers stock options and relocation assistance in addition to a salary philosophy that is sensitive to employee achievement. For immediate consideration, please send your resume to: Compaq Computer Corporation, Dept. EDN101-TH, P.O. Box 692000, Houston, Texas 77269-2000. Compaq is an affirmative action employer m/f/h/v.
Three ways to explore Western’s Civilization

Western Digital Corporation. Some 15 years ago, a universal asynchronous receiver/transmitter chip heralded the dawn of Western Digital’s technology. Since then our horizons have widened to include a diversity of storage management and communications controllers and enhanced peripheral products based on advanced semiconductor technology. We’ve also grown to include two highly significant subsidiaries:

Faraday Electronics, Inc. gets to the heart of technology with logic devices and chipsets that support computer Central Processing Units (CPUs). In this systems and solutions-oriented environment, you’ll be at the very center of discovery.

Paradise Systems, Inc. Everything looks better in Paradise because this video technology company produces devices and boards that bring greater control and clarity to computer display screens. If Paradise is your choice, a colorful, full-focus future will be the reward.

Current and on-going career opportunities exist for talented professionals with successful backgrounds in any one of these areas:

- Engineering
- Manufacturing
- Marketing
- Sales

Together, we have virtually all the makings a growing market requires to develop sophisticated IBM compatibles. And together, we present young professionals with a future of promise—and choice—as we explore technology’s frontiers. But our growth is more than a matter of technology. It’s also a matter of spirit. A unique working culture that provides you immediate responsibility and constant challenge.

Western Digital Corporation offers competitive salaries and a full benefits program. Talented individuals are invited to write: Mr. Dennis Dohner, Western Digital Corporation, Professional Employment, Dept. TP, 17900 Van Karman Avenue, Irvine, CA 92714. We are an equal opportunity employer.

WESTERN DIGITAL
Growing With You
VLSI Imaging Device Research
GE Research & Development Center

GE designing new solid state imagers...
The Challenge—Developing advanced designs that push the limits of resolution and performance of VLSI solid state imaging devices, developing new circuit techniques for high resolution imagers (millions of picture elements) with high sensitivity, (operate in "normal room" lighting.) Applications range from robot eyes to space vehicle guidance.

for exciting applications...
Opportunities exist for highly motivated individuals with EE/Physics background (advanced degree preferred) and interest in:

• Solid State Device Physics
• Analog Circuit Design, Analysis, and Test
• Low Noise Solid State Circuit Techniques
• Video Signal Processing
Experience in Imager Design/Physics is preferred.

in unmatched research facilities and location
The facilities offer opportunity to work with interdisciplinary teams and are located in an area that offers a wealth of recreational, cultural, and historical attractions. A few hours' drive gives you easy access to Boston, New York, Montreal, Lake George, and Saratoga.

Whom to Contact...
Compensation, benefits (including relocation assistance), and career prospects are excellent. Please send resume, indicating specialization, to: Mr. Neff T. Dietrich, University Relations and Recruiting, Ref. 72K, GE Research and Development Center, P.O. Box 8, Schenectady, NY 12301.

An Equal Opportunity Employer
Right now at GTE Government Systems, we're creating powerful systems solutions to prepare America for a new decade of defense challenges. Now you can contribute to our efforts and take on a lead role in programs of national importance.

Using Ada* as the basis for large-scale systems development, we are designing and developing next-generation architecture for digital voice and information processing applications. Our systems integrate many technologies: LAN communications, distributed data base management, SIGINT, distributed computer security, high availability system configuration, speech signal processing, and storage migration over magnetic and optical media.

Make an impact on our vision of electronic defense for the 21st century. Join us now as one of the following:

PROGRAM MANAGERS
Your responsibilities will include controlling and managing the development of large subsystems—from generating proposals to ensuring the highest level of cost, schedule, and technical performance at every stage of the system lifecycle. You will also play an important role in customer presentations and briefings.

To qualify, you must demonstrate a broad perspective on system engineering and program management. Your background must include a BS/MS in an engineering field and 8-10 years experience with distributed systems, high-performance processing systems, fiber optics, distributed computer architecture applications, and mass storage. Familiarity with milestone planning, C/SCSC, and system-level reviews as well as DOD SIGINT experience are essential. You must also understand the DOD acquisition cycle, and have at least two years program management experience on small programs ($5-$10M).

BUSINESS DEVELOPMENT SPECIALISTS
In your pursuit of new opportunities within the defense and intelligence markets, you will have a hands-on role in marketing, customer briefings and demonstrations, performing market analysis and planning, and forecasting revenue and B&P requirements. You will also analyze and refine requirements, develop technical solutions to customer problems, respond to RFPs, and write and negotiate proposals.

A solid SIGINT background along with thorough understanding of the DOD acquisition cycle, requirements process, and costing are required. You must also have a BS/MS in engineering, or equivalent; 8-10 years system design emphasizing signal collection or processing; and prior program management and system development experience within the intelligence community. Knowledge of these technologies is a must: artificial intelligence, voice processing, system and software engineering, distributed and high-performance computing systems, workstations, data base engineering.

All candidates must have the appropriate background to work with the defense and intelligence community.

Participate in programs that will guide us through the 1990s and beyond... now at GTE. We provide competitive compensation and an excellent benefits package, including educational assistance, a stock purchase plan, a tax-deferred savings plan, and much more. For immediate consideration, please send your resume in confidence to:

GTE GOVERNMENT SYSTEMS CORPORATION
Washington Operations
1700 Research Boulevard
Suite 200NA
Rockville, MD 20850

An equal opportunity employer. U.S. citizenship required.

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.
A strategic opportunity with DECwest.

Digital’s Western Engineering Group, just outside of Seattle, is definitely the right place. And now’s the perfect time...if you’re a seasoned strategist interested in incomparable opportunity for innovation.

We have the kind of atmosphere that makes such things possible. An environment that’s entrepreneurial, energized. Yet with the commitment and resources that only a success like Digital can provide.

So take a look at the position. And if you have the expertise we’re after, let’s talk strategy.

Diagnostic Supervisor

We need a strategist to develop and maintain a fault management plan for our next generation computing system. You’ll lead the strategy and implementation in such areas as fault insertion, hardware repair level tests and manufacturing tests using current system directed diagnostic techniques. You’ll supervise a small diagnostic development group and influence and interface with other engineering groups.

This is a key position, requiring hands-on project lead experience and a working knowledge of hardware logic design approaches. Five years of experience, including test or diagnosis, programming, and high level language and assembly required. Knowledge of VAX/VMS®, Pascal or C a plus. A BSEE or equivalent degree/experience preferred.

For consideration, please send your resume to: L. Taylor, Manager, Dept. 1001-7820, DECwest Engineering Group, Digital Equipment Corporation, 14475 NE 24th, Bellevue, WA 98007. Proof of legal right to work in the U.S. is required.

We are an affirmative action employer.

*Trademark of Digital Equipment Corporation

TECHNICAL WRITERS
PUBLICATIONS ENGS

NATIONAL OPENINGS

HARDWARE — COMMERCIAL COMPANIES:
Experience writing technical manuals (maint, install, operation, etc.)
- digital computer systems to 34K
- CAD systems to 36/38 keyboard/display terminal development.
- telecommunication eqip (modems, PBX, telephony) to 38K
- CPU documentation to low 40's

SOFTWARE — COMMERCIAL COMPANIES:
Experience writing sw documents to technical & non-technical audiences
- C/UNIX documentation to mid 40's
- CAD systems to low 40's
- computer systems (application, end user manuals) to 40K
- computer systems (operating systems, compilers) to 40K
- software specifications to 40K

DEFENSE/MILITARY CORPORATIONS:
- electronic warfare or communication systems to 40K
- avionics/aircraft systems to 38K
- test procedures & plans (QA test documents) to 36K
- software specifications (i.e. MIL-M-2167) to 40K
- Army New Look to 36K

Please call Michael Dunn (collect) at 609-424-8600, or send resume to:

JUDGE INC
1930 East Route 70
Suite B-10
Cherry Hill, NJ 08003

All positions are DIRECT CAREER OPPORTUNITIES with all fees and interviewing expenses paid by client companies.

EDN October 1, 1987
EDN's CHARTER

EDN is written for professionals in the electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, and design techniques.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products that are immediately or imminently available for purchase:
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN provides specific "how to" design information that our readers can use immediately. From time to time, EDN's technical editors undertake special "hands-on" projects that demonstrate our commitment to readers' needs for useful information.

EDN is written by engineers for engineers.
ADVERTISERS INDEX

ACCEL Technologies Inc .. 239
ACDC Electronics ... 225
Acopian Corp* .. 41
ADE Inc ... 164
ADP ... 239
Advanced Micro Devices .. 128
Advanced Micro Systems Inc 239
AIE Magnetics .. 236
Airpax Corp/Circuit Div ... 72
AMP Inc .. 154-155
Ampex Electronic Corp* .. 32, 224
Analog Devices Inc .. 129
Apelon Computer ... 100
Applied Microsystems Corp 14-15
Aptek Microsystems ... 236
Aries Electronics Inc .. 114
Arnold Magnetics Corp ... 199
Augat-Alcoswitch .. 115
Augat-Interconnection Systems 93, 149
Autodesk ... 173
AVX Corp ... 99
Aye Enterpr ise Co Ltd .. 237
Bayer AG** .. 136-137
BBS Electronics ... 236
B&C Microsystems ... 238
BICO-Veco Electronics Inc .. 139
Bourns Triplet/Networks .. 153
BP Microsystems .. 239
BV Engineering .. 239
Cahners Exposition Group .. 52
California Scientific Software 239
Canon USA Inc .. 46
Capital Equipment Corp .. 50
Chicon America Inc .. 197
Comair Rotron Inc ... 248
Concurrent Technology** ... 176
Connector Corp .. 130
Conversion Devices Inc .. 235
Corning Electronics .. 106
Cotronix** ... 252
Cybernetic Micro Systems ... 114, 238
Cypress Semiconductor ... 56
Data I/O Corp ... C4, 31
Dataram Corp .. 200
Deception ... 237
DeFond Electronics .. 244
Dialight Components .. 195
Digital Equipment Corp* .. 136-137
Dow Chemical USA .. 113
DuPont Co, Vacrel ... 140-141
Dynamec Inc ... 101
Eastman Kodak Co ... 33
EG&G Reticon .. 34
EIE Electronic Industrial Equipment** 186A
Elan Digital Systems .. 128
Electronic Solutions .. 124
EIA Corp ... 77
Elliott Jordan ... 102
Emerson & Cuming Inc .. 66
Encounter Products Corp ... 236
E-T-A Circuit Breakers .. 238
ETA Industries Inc .. 67
Ferranti Electric .. 18
GE Plastics .. 135
GRC/RA Solid State .. 50-51
General Instrument, Optologic Div 95
Gigabit Logic .. 120
Gordos Corp ... 218
Greatlink Electronics Taiwan Ltd** 186B
Harris Semiconductor Products 82-83
Heritage Systems Corp .. 239
Heunikon Corp ... 117
Hewlett-Packard Co .. 35-40
Hilevel Technology Inc .. 166
Hi-Chien Enterprise Co** .. 133
Holmberg Electronics .. 88
Honeywell Test Instrument Corp 191
Hypertronics Corp ... 215
IC Sensors* ... 75
IEEE Information Scan Technology Inc 238
Integrated Circuits .. 237
Intel Corp ... 68-69, 174-175
Intelligent Machinery Corp .. 238
International Rectifier .. C3
Interprop Corp .. 210
Intuitsoft ... 238
IRC Inc ... 103
Ironwood Electronics .. 236
ITT Cannon ... 147
Ji-Haw Industrial Co Ltd* .. 231
Johanson Dielectrics Inc .. 230
Kemet Electronics .. 227
Kepco Inc ... 71
Kingdatram Electronics .. 231
Linear Technology Corp ... 203-204
Loctite Corp .. 209
Logic Systems Corp ... 49
Magnesys ... 47
Matsa Harris Semiconducteurs 49
Matso Electronics ... 230
Maxiconn ... 247
Maxim Integrated Products ... 60
Maxtek Inc ... 108, 109
Mechanical Enterprises Inc 110
Mentor Graphics Corp .. 10-11
Mepco/ Centralal ... 151
Micro Switch* ... 104, 105
Midwest Components ... 64
Mill Max ... 8
Miller Technology Inc .. 238
Mini-Circuits .. Laboratories
Monolithic Memories Inc ... 16-17
Motorola Inc ... 42-43
Motorola Semiconductor Products Inc 132-133
National Semiconductor Corp 18-19
NCR Corp ... 131
NDK ... 112
Nikolet Test Instruments Div 25
Nikon Kahihei Ind Co Ltd** .. 186C
Nokia Micronas .. 201
Northwest Instrument Systems 20
Nova Tran Corp .. 233
Octagon Systems ... 235
Okapi Systems Inc ... 238
Omega Engineering Inc ... 237
Optimal Technology .. 240
Oyster Terminals ... 107
Pacific ... 110
Patton & Patton ... 236
PC Wizz Systems ... 235
P-Cad ... 62
Philips Ecoma Div** ... 206-207
Philips Test & Measuring Instruments Inc** 41, 139
Pittman ... 48
Polytron Corp ... 240
Power-One Inc .. 121-122
Precision Diversified Industries 200
Precision Monolithics Inc .. C1
Pro-Log Corp ... 4
Qua Tech Inc ... 239
Rapid Systems .. 91
Rogers Corp .. 53
Samsung Semiconductor ... 84-85
Samtec Inc ... 28-29, 240
Seaq Technology Inc ... 97
SGS ... 54-55
Sheldahl Inc ... 220
Secor Corp ... 81
Siemens AG** ... 186H
Siemens Components Inc* .. 139
Siemens Corp, Special Products Div* 176
Signetics Corp ... 58-59
Signex Corp ... 240
Single Board Solutions ... 236
Southern Computer Corp .. 239
Stanford Research Systems Inc 183
Statel ... 237
Tadpole Tech ... 238
TA-Tronic Membrane ... 18
Tableau Systems ... 12
Taiwan Liton Electronic Co Ltd 229
Taiwan Zetatronic .. 240
TDK Corp ... 30
Tektronix-CAE Systems .. 185
Teltone Corp ... 236
Teradyne Inc ... 44-45
TL Industries Inc ... 240
Todd Products Corp ... 235
Tokin Corp ... 116
Triad Udrad ... 165
TRWLSI Products Div .. 23
Unemac Products Inc ... 252
Universal Cross-Assemblers 240
Vishay Intertechnology .. 102
Visionics Corp ... 119
VLSI Technology Inc .. 219, 221, 223
VTC Inc ... 2
Wavetek San Diego Inc .. 3
Weidmuller Terminations Inc 156-157
WinSystems Inc .. 236
Wintek Corp ... 237, 239
Zenicon ... 237
Ziatech Corp ... 1
Zilog Inc ... 127

Recruitment Advertising

Compaq Computer ... 248
DECE West ... 250
General Electric R&D ... 250
GTE Government Systems .. 251
Judge Inc ... 252
Telex Computer Products .. 252
Western Digital .. 249

*Advertiser in US edition
**Advertiser in International edition

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

EDN October 1, 1987
VLSI ATE becomes a critical issue

The cost of testing is exploding, according to Electronic Trend Publications (Saratoga, CA). The expanding use of VLSI devices and board-level products is pushing the cost contribution of testing, which historically has ranged from 5 to 10% of total device cost, to 45% of that cost and beyond. ETP concludes that design-to-test and built-in test techniques will be a crucial concern for the remainder of the decade.

Nearly $1.7 billion went into device and pc-board automatic test equipment in 1986. This considerable sum can be attributed to the growing volume and complexity of the components themselves. By 1992, forecasters suggest, the market for automatic test equipment worldwide will reach $3.37 billion.

In 1986, 58% of VLSI ATE expenses was devoted to device testing, whereas the remaining 42% went to board testing.

To stay competitive, electronic-equipment manufacturers must develop relevant strategies for component and board testing. This revamping is important not only to reduce the individual testing costs and problems but to carve out longer-term integrated factory-automation programs.

In addition to higher speeds and increased device complexity (and consequently increased board and system complexity), built-in tests at the device level are becoming a more important consideration. A tighter linking among CAD, CAE, and CAT is also a noteworthy trend, as is a shift from the traditional shared-resource tester architecture to a structure centered on the tester-per-pin technique. ETP also emphasizes how new fixturing techniques at the pc-board level, which are designed to accommodate surface-mount devices and reduced lead spacing, are changing automatic-testing strategies. The use of hardware device models at the pc-board test level is another factor worth considering.

Other trends that equipment manufacturers should keep in mind include the increasing number of built-in pc-board, product, and service-level tests, as well as board, product, and system-level testability interfaces. Furthermore, remote troubleshooting in the field and the use of machine vision at the product-test stage have both increased.

The market-research firm has developed some guidelines for formulating a strategy that encompasses these trends and changes. First, it’s important to select and use automatic test equipment that yields better productivity, ensures high product quality, and incurs the lowest possible test costs. Achieving a workable balance among these factors is, of course, the greatest challenge. Second, it’s important to remember that technological and economic tradeoffs should be made during product design rather than later. Third, manufacturers must consider the impact of CAD, CAE, and CAM strategies on ATE.

Signal-generator market to top $775M by 1993

The market for signal generators, which in 1983 totaled $232.5 million, should exceed $362 million this year, according to the Market Intelligence Research Co. (Mountain View, CA). Moreover, the research organization forecasts that by 1993 the total will more than double to reach $777.5 million.

For its study, MIRC defined signal generators as all primary sources—analog or digital—for test signals. Used primarily by the military, the communications industry, and the computer and semiconductor industry, they are prevalent both at production sites and in design and development labs. Their applications include the testing of communications receivers, the testing of components in the communications industry, simulations for testing electronic warfare, and logic testing of digital components and products.

MIRC observes that, with more than 200 vendors selling signal generators, the products in general continue to be upgraded and improved. Although the signal-generator market experienced the effects of the overall slowdown in test-and-measurement purchases over the past few years, this market has outperformed other test-and-measurement segments because of its large base in the communications industry.
Tough enough to pass stringent MIL-STD-202 tests, usable from dc to 6GHz operation, and smaller than most RF switches, Mini-Circuits' hermetically-sealed KSW-2-46 offers a new, unexplored horizon of applications.

Unlike pin diode switches that become ineffective below 1MHz, this GaAs switch can operate down to dc with control voltage as low as -5V, at a blinding 2ns switching speed.

Despite its extremely tiny size, only 0.185 by 0.185 by 0.06 in., the KSW-2-46 provides 50dB isolation (considerably higher than many larger units) and insertion loss of only 1dB. The surface-mount unit can be soldered to pc boards using conventional assembly techniques. The KSW-2-46, priced at only $32.95, is yet another example of components from Mini-Circuits with unbeatable price/performance.

Switch fast...to Mini-Circuits' KSW-2-46

SPECIFICATIONS

<table>
<thead>
<tr>
<th>FREQUENCY RANGE</th>
<th>Freq. dc-4.6GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT. LOSS (dB)</td>
<td>typ max</td>
</tr>
<tr>
<td>dc-200MHz</td>
<td>0.9 1.1</td>
</tr>
<tr>
<td>200-1000MHz</td>
<td>1.0 1.3</td>
</tr>
<tr>
<td>1-4.6GHz</td>
<td>1.3 1.7</td>
</tr>
<tr>
<td>ISOLATION (dB)</td>
<td>typ min</td>
</tr>
<tr>
<td>dc-200MHz</td>
<td>60 50</td>
</tr>
<tr>
<td>200-1000MHz</td>
<td>45 40</td>
</tr>
<tr>
<td>1-4.6GHz</td>
<td>30 23</td>
</tr>
<tr>
<td>VSWR (typ)</td>
<td>1.31</td>
</tr>
<tr>
<td>SW. SPEED (nsec)</td>
<td>rise or fall time 2 (typ)</td>
</tr>
<tr>
<td>MAX RF INPUT (dBm)</td>
<td>up to 500MHz</td>
</tr>
<tr>
<td>above 500MHz</td>
<td>+27</td>
</tr>
<tr>
<td>CONTROL VOLT.</td>
<td>-8V on, 0V off</td>
</tr>
<tr>
<td>OPER/STOR TEMP.</td>
<td>-50 to +100°C</td>
</tr>
<tr>
<td>PRICE</td>
<td>$32.95 (1-24)</td>
</tr>
</tbody>
</table>

EDN October 1, 1987
THE FIRST PROGRAMMER WITH A SINGLE SITE FOR EVERY DEVICE.

NEW UNISITE 40 HANDLES LEADING-EDGE DEVICES WITH SPEED AND EASE.
Now you can program and test the latest programmable devices and packages, fast and accurately — all in a single site. The first true universal pin drivers support any device of a given package type in the same site. The UniSite™ 40’s single DIP socket handles any device up to 40 pins, including PLDs, PROMs, IFLs, FPLAs, EPROMs, EEPROMs, and microcontrollers. The same site accommodates the most popular PLCCs and SO packages. A 16-bit processor, coupled with custom ICs and high-speed RAM, set new speed records for programming and testing.

TIMELY ACCESS TO TOMORROW’S DEVICES. With universal pin driver electronics hardware, device-specific instructions can be loaded from one 3½” micro-diskette. When new devices are introduced, you simply load a new master diskette, and the UniSite 40 is quickly updated.

MENUS MAKE PROGRAMMING EASY. Use your cursor to select any function. Menus prompt you step-by-step and HELP messages assist you throughout operation. A built-in listing of devices speeds part selection. The UniSite 40 can even save your most frequently used parameters for instant recall.

SHORTCUTS SPEED SETUP. More frequent users can bypass menus and zoom directly to specific operations by selecting key commands. Special software commands, like the ones in our QuickCopy™ mode, are also available to streamline your programmer operation.

DESIGN FREEDOM FOR TOMORROW. Call today and get the design freedom only the UniSite 40 can provide.

I-800-247-5700 Dept. 803

© 1987 Data I/O Corporation
The most compatible surface-mount power devices ever made

HEXFET® & Rectifier SMDs

Compare. You'll find no other power SMDs so closely matched in features and capabilities. Together, our HEXFET power MOSFETs, Schottkys and ultra-fast recovery diodes will transform your design ideas into real-world performers.

Look at the options: Schottky and ultra-fast diodes in D-PAKs, I-PAKs and SOT-89s. The same for N and P-channel HEXFETs. In all, almost 100 different SMD part numbers made to precise manufacturing standards.

This means top quality. Top reliability. Top performance. And a unique combination that makes us the price-competitive leader in complementary surface-mount power devices.

Your choices? N-channel HEXFETs up to 200V, and 15A, with Rds (on) as low as 0.10 Ohms; P-channels to 200V, 9.9A, and 0.28 Ohms. Schottkys to 100V, and 6A; Ultra-fast recovery diodes to 400V, 6A, with maximum tᵣ, to 30ns at rated current.

See them all listed in our new 1987 catalog.
Write, or call (213) 607-8842. Today.

Unprecedented power dissipation in a small package

Number 1 in power MOSFETs

Unprecedented power dissipation in a small package