THE NEW ATM-13 DIGITAL RECORDER
BY AMPEX □ No matter where you need
to acquire digital data, you can do it with
this new rugged, compact recorder. It's
built to perform in hostile environments
found in high altitude airborne, ground
mobile, and shipborne applications. □
The new ATM-13 can write and read data
in 7-track IBM or 9-track ASCII format —
on-line direct to a computer or off-line as
a data collector. No costly delay for for-
mat conversion. □ This low-cost milita-
rized recorder can give your system added
operational flexibility, with faster perform-
ance and improved data reliability. Re-
striction free program rates up to 75 ips
speed, 800 cpi density, 60 KC character
transfer rate. Data input range up to 500
KC continuous bit rate—7.5 MC burst rate
with buffered system. □ Fast start/stop
time and the 800 cpi packing density re-
duce tape wastage. With the optional buf-
fered system, variable rate digital data
can be recorded in block format. Your
programs can be completed quicker and
at less cost. □ Built for mobility, the light-
weight ATM-13 requires little space. Its
mechanical simplicity and electronic de-
sign techniques, incorporating integrated
circuits and all silicon semiconductors,
result in minimal maintenance and high
MTBF. Meets MIL E-5400-G Class II Air-
borne, MIL E-16400 Shipboard, and MIL
1-6181-D RFI, and your most critical per-
formance requirements. □ Want the full
story? Just fill out and mail the coupon.

Yes, I'd like to know more about the new
Ampex ATM-13 digital data system.
□ Send me brochure and specifications.
□ I have an immediate need. Have rep-
resentative contact me at once.

NAME ________________________________
TITLE ________________________________
FIRM __________________________________
ADDRESS ______________________________
CITY/STATE/ZIP __________________________

Mail to AMPEX CORPORATION, M.S. 7-14,
401 Broadway, Redwood City, Calif. 94063.

CIRCLE 1 ON READER CARD
ONLY 3C OFFERS
30 DAY DELIVERY
ON THE HOTTEST COMPUTER
IN THE $28,500 PRICE RANGE

DDP-116 computers are now operational in
over 50 installations including communica-
tions, data acquisition, hybrid and other
real-time control applications. Specifications
include: 16-bit word, 1.7 μsec cycle, ex-
pandable 4096-word memory and keyboard
with paper tape I/O unit.

Software is a proven factor! The compact
DDP-116 offers as many as 134 subroutines
in its ASA FORTRAN IV library. Also, it is
compatible with the DAP assembler and
desectorizing loader. A/D and D/A sub-
systems, a full peripheral line and special
purpose systems capability are available to
extend the flexibility of the basic DDP-116.

Write for full details, or telephone today to
test operate the DDP-116 at a selected 3C
regional office nearest you.

DDP-116

COMPUTER CONTROL COMPANY, INC.
OLD CONNECTICUT PATH, FRAMINGHAM, MASSACHUSETTS, U.S.A.
LONDON PARIS FRANKFURT

3C SALES OFFICES: NEEDHAM, MASS.; FOREST HILLS,
N.Y.; LEVITTOWN, PA.; SYOSSET, N.Y.; SILVER SPRING,
MD.; HOUSTON, TEXAS; HUNTINGTON, ALA.; CEDAR BEACH,
FLA.; DES PLAINES, ILL.; DETROIT, MICH.; WEST COG.
HILL, CALIF.; KENT, WASH.; ALBUQUERQUE, N.M.
MOORE 'EXTRA FUNCTION' FORMS PUT TOTAL VALUE IN YOUR FORMS-SYSTEM

PASTED POCKET ENVELOPES—flexible in construction, can be part of a continuous Speediflex, or of a Speediset, with pressure-sensitive tape or remoistenable glue to seal the envelope.
Need a form with special features? One that performs multiple functions to cut machine time and handling costs?

For example:

Moore can give you a multiple-part continuous form containing a self-sealer return envelope as an integral part of the set.

Another Moore form—ideal for paychecks, utility bills, premium bills, etc.—permits front and back data to be printed two-wide in one machine writing, then machine-folded and sealed, ready to mail. Special die-cuts with tear-off perforations, and margins treated for heat-sealing, give you sealed, addressed envelope and data all in one form—and one machine writing.

Or a Moore Pasted Pocket form to provide invoices, with a self-addressed envelope as an integral part of set, with control copies for accounting, credit use, etc. Pocket forms provide pockets for storage of tapes, cards, original or supporting documents, with the printed form.

Or forms that permit direct input from original document—bypassing keypunching and verifying—for direct reading by scanners.

Your form will be better because of the value we build into it—experience, design know-how, years of system background, unequaled manufacturing facilities.

For the form with Total Value, call us. If you work with forms, we can show you how to make forms work for you.
Looking for an HS PTR? Call our local representative.
It's new FORTRAN IV is compatible with IBM's 7094 and 360.

Raytheon Computer's FORTRAN IV is language compatible with FORTRAN IV (version 13) used with IBM's 7094 and is a sub-set of the FORTRAN IV designed for System/360 machines. This compatibility in an efficient one-pass processor is available only with Raytheon Computer's 520.

With Raytheon's FORTRAN IV you can exchange programs between the 520 and the 7094 and you can debug many 7094/360 programs on a 520 when either of the other machines is not available. Debugging is done faster if the 520 is equipped with its optional 1 microsecond memory and at lower cost, since the 520 runs about 1/20 the cost of the 7094 on an hourly basis. Equipment requirements are minimized too, since Raytheon FORTRAN IV runs on a 520 with an 8K memory.

FORTRAN IV is the third major FORTRAN package Raytheon has made available to 520 users and is a separate and distinct processor from the other two—FORTRAN II and Real-Time FORTRAN IV. This eliminates the overhead processing penalties usually associated with multi-purpose FORTRAN processors. Raytheon FORTRAN IV and Real-Time FORTRAN IV include all the features of the ASA standard.

Raytheon's FORTRAN IV enables real-time and hybrid installations to use the 520 for data reduction and hybrid support programs which otherwise have to be run on a 7094.

The majority of FORTRAN programmers are familiar with this language; those who do require training will be spending their time and your money learning a language that is the most widely used in the industry. Documentation effort and expense are also reduced.

The Raytheon 520, with your choice of either a 2 micro-second or 1 microsecond main memory, and input/output features like keyboard/CRT display station, disc pack and drum memory, direct memory access and improved analog interface units, is currently being specified for hybrid and real-time systems in the $100,000 to $300,000 price range. Your first step is to read the literature. Write today for Data File C-131.

Raytheon Computer, 2700 S. Fairview Santa Ana, California • 92704 (714) 546-7160 • TWX 714-546-0444
Once you remember to buy Computape and put it in use, you will probably forget it again almost immediately.

That's the way it should be.

Actually, we spend a great deal of time and effort in making Computape so it can be forgotten. By the time it leaves our shipping department, every quality control and production technique known has been used to make sure it performs perfectly — pass after pass — over its almost unlimited service life.

Don't forget, though, that whenever you need data recording advice or assistance, there is a qualified Computron engineer readily available to help.
22 COMPUTER GRAPHICS: TEN UNSOLVED PROBLEMS, by Dr. Ivan E. Sutherland. Requiring the attention of researchers, problems include three in the language area, three in computation and graphics, and two that may never be solved.

27 CANADIAN DP CONFERENCE. In three days, sessions on graphics & real-time, social implications, software, and management science. The scene: Banff.

28 COMPUTER GRAPHICS—WHERE ARE WE? by Dr. Frank D. Skinner. Looking toward a big future for displays and graphic I/O devices, the author discusses applications, techniques, and experimental programs designed to improve user-computer intercommunications.

32 COMPUTER GRAPHICS AND INNOVATIVE ENGINEERING DESIGN, by Steven Anson Coons. Computer-assisted design, one of the first steps in graphical man-machine communications, is discussed with specific reference to the classic SKETCHPAD system.

37 PROGRAMMANSHIP, by Thurston E. Wood. The immortal principles developed by Stephen Potter at Yoevil have been extended to data processing.

41 THE COMPUTER AND THE SCHOOL OF TOMORROW, by James Rogers and Donald Cook. Although many schools are now starting to make use of computers, the danger of drowning in paperwork is becoming more acute. The authors suggest an approach to use the present equipment efficiently, together with a look at future requirements.

51 DPMA CONFERENCE. Sessions on corporate information systems, data management, and developments in communications, data display, and optical scanning.

61 THE ADVANCE 6130 COMPUTER. For the digital systems market, the first of a line of 16-bit, monolithic IC machines. Cycle time is 0.9 usec.

91 THE SICSAM CONFERENCE, by C. N. Mooers. The ACM Special Interest Committee on Symbolic and Algebraic Manipulation, meeting in Washington, D.C., attracted some 450 for three days of papers and discussions.

datamation departments

8 Calendar
10 Letters to the Editor
17 Look Ahead
21 The Editor's Readout
65 News Briefs
73 New Products
81 New Literature
87 World Report
93 Washington Report
97 Books
98 Poem
105 People
111 The Datamart
116 Index to Advertisers
118 The Forum
NOW...A LOW-COST POWER SUPPLY WITH 1% LINE AND LOAD REGULATION, MINIMUM RIPPLE, 3% OUTPUT VOLTAGE ADJUSTABILITY, FREQUENCY INSENSITIVITY WITH 47-63 CYCLE OPERATION!

The new Wanlass LX Power Supply Series is the long awaited replacement for less efficient ferroresonant units. Low in cost, the LX Series provides 1% load regulation—so important in microelectronic circuits requiring large currents at low voltages (4-5 vdc). Crowbar over-voltage protection optional. Open frame construction standard on all units. Custom supplies? You bet!

$125.00*

IN 13 STANDARD SIZES INCLUDING 4, 4.5 and 5 volts

WANLASS ELECTRIC COMPANY

CIRCLE 9 ON READER CARD

*FOB Santa Ana, Calif. Price & Specs subject to change. Patents Pending.

Unretouched dual scope photo shows WANLASS LX ripple output (above) vs. typical ferroresonant unit under identical conditions.

![Image](image_url)
The users group for small IBM computers, COMMON, will meet July 6-8, Denver Hilton Hotel, Denver, Colo.

COURSES:

June 13-14, Organization of Reliable Computers, Univ. of California, Los Angeles, Engineering Extension. $300.

June 13-14, Organization of Reliable Computers, Univ. of California, Los Angeles, Engineering Extension. $300.

June 20-24, Feedback Control System Fundamentals, Ohio State Univ., School of Engineering, Columbus, O. $175.

June 20-July 1, Advanced Applied APT Workshop, IIT Research Institute, Chicago, Ill.

June 20-July 2, Digital Design Principles, Ohio State Univ., School of Engineering, Columbus, O. $275.

June 27-July 1, Computer Graphics, Ohio State Univ., School of Engineering, Columbus, O. $150.

June 29, Data Link Seminar, IIT Research Institute, Chicago, Ill.

July 11-22, Modern Theory of Communication, Ohio State Univ., School of Engineering, Columbus, O. $275.

Spend a dime.

Add 80,000 sq. ft. to your office.

Fill it with twenty-five million dollars worth of computer equipment and staff it with 950 experienced consultants, systems designers, programmers and data processing specialists.

It won't cost a cent until you use it.

How?

Call us. (314) 731-2121

And after we've talked, you can call our capabilities and facilities yours. It is the practical and economical way to effective management.
The article, "System/360 Assembly Language Programming" by Martin E. Hopkins (Dec., p. 73), is surprisingly rather erroneous

The equivalencing of the hexadecimal numbers 150 and 2381 to the decimal numbers 320 and 57943, respectively, is incorrect. (See Feb., p. 14).

The explanation of the example S 10, 25(3, 6) reads that 3 is the base and 6 the index. Machine instructions of the RX format (as S is) are represented in assembly language as OP n1, n2(x2, x3). Accordingly, in the example, 6 is the base and 3 the index.

The discussion of ENTRY and EXTRN usage states that an ENTRY symbol is to appear in the EXTRN list of another program or programs. The falsity of this statement lies in its rigidity. ENTRY symbols may be defined, which need never appear in the EXTRN list of another program or programs.

Immediately following is another blank statement to the effect that the programmer begins his program with an ENTRY symbol to the effect that the value of RX 3, 6 does not put you on the second half of a double word, but rather the second half word of a double word.

Following the assembler statement using LOCXYZ, 6, 8 the discussion states that the value of LOCXYZ and LOCXYZ+4096 are in registers 6 and 8, respectively. Also, the last paragraph of your article reiterates that the registers involved in a USING statement are already loaded at the time the USING statement is issued. This is very far from the truth. USING merely informs the assembler what registers to use as base registers in address calculations, and what values to consider as being in these registers. The user may or may not put these values in the registers. To force the user to load these registers as his intent states in the USING statement would be to remove a major employment of the DSECT statement.

Albert B. Sinopoli
Unitac, Systems Programming
Blue Bell, Pennsylvania

Author's reply: I want to thank Mr. Sinopoli. In early documentation (most of this book was written in 1964), there was some confusion over which was the base and which the index in RX instructions. I am afraid that the fact that such an error only rarely resulted in incorrect execution gave me a sense of false security. My thanks also for noticing that "word" had been left out of the description of the statement CNOP 2, 8. By the way, it is an "assembly instruction," not an "instruction."

Other errors were reported earlier in DATAMATION. A number of other small errors in the first printing have been corrected in the second; an errata sheet is available. Some of the other points which Mr. Sinopoli raises are a result of misunderstanding the purpose of this chapter. Its purpose is not to define the assembler language rigorously but to "familiarize" so that the examples which occur later in the book can be understood. The preface to the book from which this chapter was extracted states, "The reader should be generally familiar with programming in a symbolic language and he should have available to him a manual describing one of the System/360 assembly languages."

The difficulty of obtaining short descriptions which are completely accurate can be seen in Mr. Sinopoli's correction of my discussion of ENTRY. His statement, "... an EXTRN symbol must appear in the ENTRY list of another program or programs," is wrong on two points.

Appearance of a name on the ENTRY list of more than one program is an error. Also, appearance on an ENTRY list is not necessary since the name might have been defined as a CSECT or START name.

In explaining the alignment of AL 4 (PARAM), I used the term half-word boundary. This loose usage is current among experienced programmers and generally results in no confusion. The (L4) was used in this case to force alignment on the next address which "may" be an unnatural boundary. If it was a natural boundary, no rounding would take place, as Mr. Sinopoli points out. This is the desired result since the object here is to eliminate "slack bytes."

As stated, the USING assembly instruction is fully discussed in Chapter III, including methods for loading bases and handling DSECT assembler instructions. It is beyond the scope of this chapter to describe ways to "fooled" the assembler, Mr. Sinopoli assumes that there exists a DSECT address which could be loaded. A DSECT is a set of addresses which are relative to another but for which no space is allocated by the assembler; hence, their "location" in storage can vary. Therefore, it is most unlikely the name in the USING for a DSECT and the address which is loaded into a register to address the DSECT would ever be the same.

The length of both Mr. Sinopoli's criticism and my reply reflect the difficulty and complexity of these subjects and demonstrate that explanations of nuances in statements about the programming systems of third-generation computers are a function of both the audience and frame of reference.

cold, cold batcave

Sir:

On page 15 of your February issue is a rendering that might be classed as a humorous cartoon if it existed only in the mind of its creator. But it is not (see photo). Not to be confused with the Batcave, which is equipped with...
the same brand computer (see Life, March 11, p. 22), in this room are Mary Hawes at the controls, Gerald Licht, Lew Reinwald and Gil Rollins in the back, and Charles Greenberger and Dick Schubert at the auxiliary heating plant. With his back to the camera: Goldfinger (Roy).

CLAUSE A. ROICHEL
Pennington, New Jersey

computers & law research
Sir:
The story in the February issue (p. 79), which describes the legal citation service planned by Law Research Service Inc., refers to Western Union as "partner to the firm." This is not correct. Law Research Inc. has the full business and legal responsibility for the service; our responsibility is to provide the computer and computer services including the on-line computer programming necessary to mechanize the citation service which, incidentally, we expect to announce around May 1.

WILLIAM H. WATTS
Western Union Telegraph Company
New York, New York

checkless society
Sir:
Recent articles on the checkless society, more speculative than analytical, tend to focus on what can happen rather than what should happen. Using such an approach, one could also speculate and write imaginatively about a bookless society where all volumes are recorded on microfilm and all homes and businesses have inexpensive microfilm readers—then formulate the libraries of the future and the benefits to society . . .

Mr. Zipf's article (March, p. 121), was a departure from this speculative school and contains significant and useful observations on the checkless society. On the other hand, Mr. Head's article (March, p. 22) was considerably less interesting; his speculations, while imaginative, are of no practical use to those responsible for long-range automation planning.

In addition, I single out Mr. Head's article because his approach to this subject is weakened by his determinist view of history; namely, he sees the checkless society as inevitable. Based on this conviction, he selects favorable evidence of the "irresistible" trend toward the checkless society and rejects counter-evidence as reactionary.

Before anybody should make any

100 OR 1000 OR 10000 PARTS WITH TOLERANCES TO .001 OR .0001 OR .00001 OR LESS
WHAT KINDS OF "PARTS"?

Tools to make ferrite cores for computer memories. These are produced with such precision that individual parts are completely interchangeable. Specifications read in part: Core rod diameter, +0, —0, .000050"; Punch I.D., —0, +.000050"; surface finish 2 to 4 microinches.

Carbide pivots for gyros used in space probes. Miniature pivots with tolerances held to .000005" and surface finish to 5 microinches. Roundness is assured by Van Keuren's unique "batch lapping" technique and proved in the measuring laboratory.

Seals for sophisticated hydraulic systems. Flatness of these seals is produced through a combination of grinding and lapping by technicians with years of experience. It is measured by interferometry to within a few millionths and the polished surface finish is comparable to the finest gage blocks.

Van Keuren Measuring Laboratory. This is one of the best equipped metrology laboratories in the country. And behind every Van Keuren product is the incredible precision of fine instruments, certified by the U. S. Bureau of Standards, in the practiced hands of experts.

For your next project, we will: 1. Manufacture to your specifications; 2. Grind and lap your material to your specifications; 3. Lap your material after you have ground it to our specifications. We work in steel, carbide and ceramics, and we'd be glad to hear from you.

Precision Parts Division
THE VAN KEUREN CO.
176 Waltham St., Watertown, Mass. 02172

May 1966
Click, whirrrrr

All that moves in the world's fastest printer is a motor and a fan.

Monroe Datalog® MC 4000 ultra high speed optical printer offers the unique reliability of only two moving parts. But reliability is only one feature. The MC 4000 records 6000 lines per minute, or any speed less that your application requires. Truly synchronous or asynchronous. Available in numeric or alphanumeric models—both 32 columns wide.

Features: character serial input, bit parallel. 6 microseconds per character data transfer time. Exceptional compactness—10½" x 10¾" x 21½". Any 4 or 6 line code with any logic level. All solid state. Cathode ray tube with fiber optics. Permanent copy option available.

And a full year's warranty. Price: $5650 for numeric model; $5850 for alphanumeric model.

For information, contact Monroe Datalog Division of Litton Industries, 343 Sansome St., San Francisco 94104. (415) 397-2813.

MONROE DATALOG
DIVISION OF LITTON INDUSTRIES
Militarized versions of MC 4000 also available.

letters

specific attempts to plan for the checkless society, these questions must be analyzed:
- Will the check and the check settlement system evolve and improve (and if not, why not)?
- Are banks today handling their check volumes better than ever before with MICR automation devices (and can they continue to handle future volumes)?
- Will bank customers (commercial, as well as individual) press for the development of a checkless society?

Evidence seems to point to these conclusions:
1. An automatic credit transfer system (of the type described by Mr. Head and others) is a highly plausible development in the long-term future. But there is no sense of urgency for this automatic credit transfer system, nor does this development imply the death of the check.
2. The check settlement system, through over-draft banking, broader encashment privileges and other features, will be strengthened in the near-term future.
3. The American economic system can support and may need more than one debt settlement mechanism.

What is now required is definitive research into each of these three areas. Until this is done it would be arrogant and irresponsible to consider the checkless society as inevitable and to make automation plans accordingly.

CHARLES BLOCK
Chase Manhattan Bank
New York, N.Y.

Mr. Head’s reply: If I am to be tagged as “arrogant and irresponsible,” not to mention “deterministic,” by people like Mr. Block, I can at least take solace in sharing this approbrium with the keynote speakers for the last two automation symposiums of the American Bankers Association: Messrs. Sarnoff of RCA and Watson of IBM. And I thought we had a friend at Chase Manhattan.

What I don’t understand is why Mr. Block recommends “definitive research” on the subject, since he has so obviously made up his own mind that the status quo is pretty comfortable and is going to be around for quite a while. If Mr. Block is a representative spokesman for the banking community, I am forced to conclude that some of the entrepreneurial interests mentioned in my article will be able to move fairly rapidly into the vacuum created by the bankers’ inertia.

SIR:
It is not at all uncommon for the average person to have eight or more credit cards in his possession. If, then, the major banks in the community (and in all probability it will only be the major banks) issue consumer credit cards and proceed to sign up most of the merchants to participate in the plan, does this not start the trend toward the one-identification-card-per-consumer system that Mr. Head and others are predicting for the not too distant future? I can’t believe that Mr. Head would be so naive as to think that the transformation to a one-card society will take place overnight.

Incidentally, today’s credit cards represent more than just “ prima facie evidence of credit based upon prior verification of credit status.” Not only are they used for identification purposes in check cashing services, but because they are machine sensible they can be used on-line for automatic verification and updating of accounts or for various data gathering applications. Off-line the cards may be used to create very accurate source documents for direct or semi-direct input into computer systems.

I am beginning to wonder if the one-card “checkless” society will ever be sold to the American public. As anyone can tell you, a three-foot-long string of credit cards is an infinitely loftier status symbol than a roll of bills or one nimbly identification card.

T. W. KOFOD
Addressograph Multigraph Corporation
Cleveland, Ohio

SIR:
In the Forum (March, pp. 121-122) on the subject of universal credit, Mr. Zipf states his opinion that there is a limited potential for profit in the universal credit system, this opinion based on the experience of BankAmericard. This conclusion may well be true from the standpoint of banking. Quite the opposite is true for the other organizations who will set up the credit systems if the banks fail to do so. The profit potential for these organizations is tremendous—it is the profit to be derived from taking the consumer credit business away from the banks.

THOMAS R. JENNINGS
Banco Popular de Puerto Rico
Hato Rey, Puerto Rico

The author replies: “It was not the intent to compare the profit potential of BankAmericard with that of a “universal credit system,” but rather to point out that the application of these “glamorous techniques” clearly increases operating expenses without clearly adding a measure of compensating “value”—even for a credit system controlled by one organization.

“The universal system—as popularly discussed—refers to one commonly shared, nationwide
HOW A CHESIRE MAKES ZIP EASY

Our mistake

Sir:

In your report on the Control Data "press conference" (March, p. 69), there is a gross error. On re-reading the remarks made by President William Norris at the press meeting, I do not find a single comment to the effect "... that building the 6600 in remote Chippewa Falls was a mistake." In fact, he never made any reference to "the facility", which, you quote him as saying, "lacked proper control, and the first four machines didn't work properly." Nor did Mr. Norris say that "the 6600 series is now being made in Minneapolis and the manufacturing problems ironed out." Furthermore, I know from conversations with Mr. Norris that he has the highest regard for the 6600 achievement accomplished by the Chippewa Falls laboratory.

GORDON V. WISE
Corporate Public Relations
Control Data Corporation
Minneapolis, Minnesota

Our apologies for publishing the erroneous report, and our thanks to Mr. Wise for setting the record straight.

Time-sharing terms

Sir:

Mr. Colilla's definitions ("Time-Sharing and Multiprocessing Terminology," March, p. 51) of multiprogramming and multiprocessing are contrary to those of the ASA's current Proposed American Standard Vocabulary for Information Processing, which follow:

Multiprocessing—Pertaining to the simultaneous or interleaved execution of two or more programs or sequences of instructions by a computer or computer network. Multiprocessing may be accomplished by multiprogramming (sic), parallel processing or both.

Multiprogramming—Pertaining to the interleaved execution of two or more programs by a computer. Contrast with parallel processing.

Parallel Processing—Pertaining to the simultaneous execution of two or more sequences of instructions by a computer having multiple arithmetic or logic units. Contrast with multiprogramming.

Further, ASA defines a multiprocessor as "a computer capable of multiprocessing." ... The definitions say that as long as you are processing multiple jobs, you are multiprocessing...

VAN B. THOMPSON
Burroughs Corporation
Detroit, Michigan

The author replies: The definition for multiprogramming is very close in spirit to the one I proposed. For reasons discussed in the article, I strongly suggest the substitution of the word processor for the word computer. Further, I think the word interleave, although very suggestive of what goes on in a multiprogramming environment, would have meaning only to those already familiar with the concept of multiprogramming. To others, interleaving would have to be explained somewhat along the lines of my suggestion for multiprogramming.

Multiprocessing can subsume many things, but I do not think it can subsume multiprogramming, as the proposed ASA definition suggests. From my study, writers who have defined their terms have never incorporated the notion of multiprogramming within multiprocessing. Also, all characterize multiprocessing as requiring more than one processor. It is true, however, that multiprocessing is sometimes used in a very general and vague sense which could encompass multiprogramming. It is this kind of use, however, that I feel should be eliminated. This does not mean that there is no place for a word to describe any kind of multiple-job operation. It is just that the word should not be multiprocessing.

Sir:

Mr. Colilla's definitions ... leave something to be desired. Perhaps this can best be exemplified by the following questions:

1. What is the distinction between a processor and a computer?
2. Is "divided job processing" a hardware or software function?
3. Doesn't "real-time" imply the ability to process a task, as well as receive and transmit, at rates commensurate with the I/O rates of the system?

LT. CARL J. KUEHNER
Communications/ADP Laboratory
Fort Monmouth, New Jersey

The author replies: To briefly answer your questions: (1) A computer may contain one or more processors; (2) Software—at least initially; (3) Clearly, yes.

Datamation welcomes your correspondence concerning articles or items appearing in this magazine. Letters should be double spaced ... and the briefer the better. We reserve the right to edit letters submitted to us.
Look for the familiar label.

You'll see it on Bryant Auto-Lift® memory drums being used in all types of EDP systems. Because the unique Auto-Lift fits any computer, it has become commonplace product line equipment with major manufacturers. Just as important, every unit is backed by Bryant's reputation for proven reliability. As the leading independent maker of drum and drum systems, Bryant maintains the best Product Assurance group in the field. It checks equipment from design through production to final acceptance testing. And Bryant's top management makes sure the product meets customer requirements. The whole story is in our free brochure #BCPB-108-5-65. We'll be glad to send it. Meanwhile, keep an eye out for our labels. You won't have to look far.
ASI Computer Division-EMR, announces the first in the ADVANCE 6100 Computer Series

the paper tiger with teeth...

The new 6130 computer system from the ASI Computer Division of Electro-Mechanical Research, Inc. is not available for immediate delivery. Some will call it a “paper tiger.” This computer, however, is a formidable one, fully equipped for data acquisition systems and other industrial applications. It’s designed to out-perform all competitive machines in the low-cost area.

Check some of the features of the ADVANCE 6130 and you’ll see it’s worth waiting for—

- 16-bit data word plus parity and memory protect bits.
- 0.9 microsecond memory cycle time.
- Monolithic integrated circuitry.
- Multiple bus system of organization which allows parallel communication and control between central processors, I/O channels, peripheral units, and/or various memory modules.
- Low price, $34,000.

For more information, contact any of our sales offices or our Marketing Department in Minneapolis directly.

ASI COMPUTER DIVISION

8001 Bloomington Freeway, Minneapolis, Minn. 55420
BIG BUGS PLAGUE

BIG MACHINES

It appears that IBM isn't the only manufacturer with big machine hardware and software problems. Control Data, for instance, is beginning to recover from a passel of problems with the early 6600's made in Chippewa Falls. Some of the early models (delivered as long as 18 months ago) are still not operating as well as units installed a month or so ago. One machine installed last spring has only recently been tuned to the point where it can begin acceptance tests. One user, getting 90% uptime, is paying 3600 rental rates. Later models with faster modules, made in Minneapolis, are sounder: one user reports his machine was up in less than a month; he's getting 95-97% uptime.

The CDC software story is similar: an early system made available with the first machines was produced by a small crew of Seymour Cray's people. Labelled the Chippewa system, it was supposed to give way to an elaborate and sophisticated software system -- SIPROS -- to be produced by the Systems Sciences Division. But SIPROS was scratched a few months back, and a revised and enhanced Chippewa system seems to be working satisfactorily at most installations.

It's a little early to assess big GE systems, only now beginning to be installed. Some deliveries have been delayed, though, and GE has reportedly failed to bid or withdrawn bids of 600's in some cases. They're quoting deliveries of 12-14 months up; CDC has quoted as little as two months, but says it's sold out through this coming December on the 6600.

The only conclusion seems to be that making big systems causes big headaches.

CONTROL DATA BREAKS THROUGH

Aerospace (El Segundo), evidently tired of IBM delays and software problems, has cancelled an order for 360/65, /40, and /30, will get a 6600 in May; a 6400 scheduled for August will replace two 3200's. On the way out: a direct-coupled 7094-II/7040. The 6600 won on delivery, and on benchmark performance. Reportedly, the 6600 compiled 10-12 times as fast as the 7094 mod II, using the Chippewa software, including Fortran and a 7094 simulator. This first dent CDC has made in the IBM aerospace stronghold was followed swiftly by a Boeing 6600 order.

LIVERMORE TAMES AN OCTOPUS

Phase I of Lawrence Radiation Labs' ambitious plans to tie its armada of big computers into one network is operational: 48 mod 33 Teletypes are on line to a 6600. Phase II will see the terminals switched over to a PDP-5, which will serve as the master to slave twin 6600's, a Stretch and other computers. Included in the system is a trillion-bit photostore, due from IBM in mid-'67. Thus, hopefully, a time-shared system within a direct-coupled system will offer the advantages of both T-S and batch processing.

A Lab official says that the system (appropriately named Octopus) will pay for itself -- including
If you can use a display system generating up to 500,000 char/sec...

Tasker has it: the new high-speed 922—a modular, customized system for a variety of exacting requirements in computer communications and input/output control. Here is high-efficiency man/machine interfacing...with a system that displays analog and digital data as well as dynamic data against static backgrounds. It also features random access: 3.5 microseconds to any position. Basic equipment includes the CRT, high-speed deflection circuits, controls and power supply. Optional accessories are five input and five output devices that give the 922 flexible, universal interface compatibility. Characters are bright, flicker-free, variable in size from 0.1 to 1.5 inches, and can be shaped to conform to customer specifications. Shapes generated by the optional stroke-writer comply with MIL-C-18012.

The 922 typifies Tasker's ability to solve tough, special problems in the new electronics generation. To prevent your project from snagging on displays and computer controls, get the best of help—ahead of time—from Tasker.

look to Tasker

Tasker Instruments Corp. / 7838 Orion Ave. / Van Nuys, Calif. 91409 / (213) 781-3150

COMMUNICATIONS — We need people with an understanding of computer communications systems, system analysis, and design to help with these, and analyze the requirements generated by new systems. The work covers a broad spectrum of computer communications and input/output control systems. This is a continuing need for people who are pioneers in the field of electronics.

At MITRE, professional growth is an ongoing necessity. To prevent your job from becoming narrow, lacking depth, or falling behind, MITRE is where you can grow. MITRE's work is on the cutting edge. We design and engineer advanced technologies which contribute to our nation's defenses.

SPECIAL REQUIREMENTS — MITRE's work is on the cutting edge. We design and engineer advanced technologies which contribute to our nation's defenses. The work covers a broad spectrum of computer communications and input/output control systems. This is a continuing need for people who are pioneers in the field of electronics.

At MITRE, professional growth is an ongoing necessity. To prevent your job from becoming narrow, lacking depth, or falling behind, MITRE is where you can grow. MITRE's work is on the cutting edge. We design and engineer advanced technologies which contribute to our nation's defenses.

TACTICAL SYSTEMS — One of our current projects is 40X748B TACACS (Tactical Air Control System). This encompasses all mobile communications systems and operating facilities. The project includes both the design and development of the United States Government. MITRE's Systems Division's mission is to design and develop mobile communications systems for the Air Force Systems Division of the Air Force Systems Command.
look ahead

MORE SOFTWARE COMPANIES
IN THE RUNNING

Census takers should note two more software outfits. Applied Data Systems Inc., San Francisco, is a two-year-old firm headed by Peter Harris and markets ADPAC, a gp, 2-address, commercial programming system said to be the only 1401 language fully transferable to the 360. And with new generators, source programs would run on virtually any machine. It also offers faster (than Cobol) assembly and test times at a lease price of $15K plus $1K per year. ... In Hackensack, N.J., Realtronics has been formed by three ex-ITT men. Specializing in real-time systems, the firm has contracts with ITT and Western Union.

RUMORS AND
RAW RANDOM DATA

We hear the State Dept. is encouraging sales of older U.S. computers in eastern Europe, though none with faster than 3.5 usec cycle times. Look for IBM, RCA, others to start pushing second generation machines in Poland and Czechoslovakia. ... CDC is getting $1200/hr. for use of its 6600 in L.A. But this sometimes includes patching, changing of control cards, etc. And if the job doesn't run at the rated performance, price adjustments or negotiations follow. ... IBM is supposed to release multiprogramming (they call it multitasking) software in December. Looks like they will scrap the E level assembler. ... Latest IBM software slippage is the F level PL/I, now due (four months late) in August. Seems that as the compiler now stands, if one codes erroneously, some of the errors slip through into the object program, creating havoc when the programs are run. ... Univac has won a $3 million order for an 1108 at the Naval Ordnance Test Station in China Lake, which had been a solid IBM customer for 15 years. Losers were the 360/65 and the 6400. GE withdrew earlier. ... The AEC has given SLAC (Stanford Linear Accelerator Center) permission to negotiate with IBM, presumably under the ITT, corp. ... Looks like CDC loses out. ... Westinghouse has ordered six more B 5500's to go with the two they now have. Meanwhile, the belief that big W will bid to build gear for Livermore (Feb., p. 17), encourages rumors the company may enter the computer biz by buying CDC. ... Harlan Anderson, SJCC chairman, has left DEC. He was a vp and one of the founders. ... RCA says it has over 300 orders for the Spectra 70. ... Standards fans are upset over an Air Force spec calling for a nonstandard Cobol. ... Another new firm, a time-shared service bureau using eleven 1440's and 1460's, is being formed in Washington. The name: VIP Systems Corp. ... Howard Bromberg is leaving CEIR to set up his own consulting operation in San Francisco. ... Two more Sigma 7 orders have been received since the first from Wadley Research Institute; they'll go to Johns Hopkins physics lab and Bolt Beranek and Newman. ... Computer Usage gets the contract from IBM to do command language for the Model 67. The company has opened a suboffice in Washington to concentrate the scientific programming talent in one place. ... Haverly Systems, Inc., Denville, N.J., is announcing linear programming software for the Honeywell 120, 200, 1200 and 2200. ... Datamation definition of a third generation computer: one that's incompatible with a second generation.
Do you want real time sharing or just a lot of conversation?

When most people talk about time sharing they mean the conversational kind—many remote users talking with a central processor. Sigma 7 does real time sharing.

All at the same time it can do real-time on-line control, conversational time sharing, batch processing and high-speed input/output, under a hierarchy of operating systems.

Sigma 7 can completely change its operating environment (both hardware and program) in 6 microseconds.

It will never hang up or stall so that it cannot deal with an interrupt. Yet every user sharing Sigma 7 is protected against loss or interference no matter how heavy the real-time demands may be.

Sigma 7 is an integrated system of hardware and software, designed to do all the jobs of business, industry, engineering and science on a time-shared basis.

No other computer system on the market can do what Sigma 7 does. The only one that tries to costs six times as much.

So when you’re talking about time sharing, remember: Real time sharing is more than just talk.

Scientific Data Systems
1649 Seventeenth Street, Santa Monica, California
Offices in principal cities throughout the world

CIRCLE 18 ON READER CARD
THE FUTURE STRIKES BACK

Last month, the Los Angeles Times carried an article reporting a talk by a professor from UCLA, who predicts that in a century or two science will be able to “re-create the exact duplicate of men and women who have been dead for thousands of years.” The reconstruction will be based on the genetic codes preserved in dried tissues of mummified bodies.

Quoting the professor, Elof Carlson, the article hints at some of the benefits of such activity: “For example, once the genetic code of great musical genius is determined, hundreds of thousands of his duplicates can be created for the world’s benefit.”

Ever-alert to the implications to our industry of advanced scientific thinking, Datamation offers here its interpretation of how such scientific sleight-of-body might affect information processing.

In the year 4096, for instance, we might find the head of programming at All American Aviation poring over some programs which exhibit strange characteristics: they don’t work. Tracing the evolution of the program, our hero finds in the archives an ancient, yellowed coding sheet dated April 1, 1966. Barely visible on it is the scribbled name of the coder, Fred Garbage.

A call to the programmer’s crypt reveals the identity of the culprit, whose genetic code is isolated and used to produce a duplicate of Mr. Garbage, who now recodes the program, creating the documentation he failed to produce before, thus enabling AAA to salvage one sick program. Whether Garbage (mod II) will be retained to create new problems for future generations of programmers—or be fired—is not clear.

The implications of the duplication of long-goners for manufacturers looms large also. It would seem possible to create a sales force of duplicates of 100 percenters. Or the company might want to duplicate salesmen who never met quota and try to get them hired by competition. Univac might try the same trick with the people who made the 90-column card decision.

The possibility of duplicating Great Programmers is enough to make the successors of Elmer Kubie and Fletcher Jones drool in anticipation. And it would seem that tomorrow’s employer might be able to offer each GP an exact replica of Marilyn Monroe or Sophia Loren as a secretary. For companies with access to the mummifying process, that would seem to be an attractive fringe benefit. After all, it does border on immortality.

At computer conferences, facsimile Herb Grosches and Jackson Granholms will regale luncheon audiences, while copies of the same old faces which run the shows, give the papers and fall asleep at the sessions will be seen as usual. This, of course, will be by design: manufacturers and users will send the umpteenth generation of conference goers off to trade shows (and standards meetings), leaving the workers behind to produce.

The fertile imagination of our readers will undoubtedly supply many other possibilities inherent in the re-creation of the dead. We have tried here merely to stimulate your imagination, and to suggest that for those of today’s firms which can survive another century or two, the future is unlimited.
Computer graphics, the use of computers to generate and interpret pictures, is an extremely broad subject. A complete discussion of computer graphics would include such areas as pattern recognition, display equipment, and schemes for plotting results from numerical computations, as well as a discussion of the on-line use of computer-generated pictures. The articles in this issue cover a part of this subject area.

This article, concerning the on-line use of computer pictures, discusses a representative sample of the topics of interest to today's researchers in on-line computer graphics.

Because there are very good people working on each of these unsolved problems, I expect that the next few years will see interesting solutions to many of them. As our use of on-line computer graphics improves, we gain new capability to visualize and thus understand complex processes. I feel that the gain will be worth the research costs.

Hardware characteristics & cost

The first problem is to get more people involved in on-line graphical systems. The only way to involve many more people is to bring the cost of on-line display devices down to a more reasonable level. The first and the biggest unsolved problem, then, is to build a low-cost display device suitable for on-line graphical use. The solutions to all the other problems may depend on solving this first one.

But the "ideal" low-cost display must have at least the following characteristics, outlined by Roberts at the 1965 IFIP Congress1 (see Table). First, a display device must have a certain minimum standard of quality. A mathematician working on a geometrical problem might draw three lines on his display as shown in Fig. 1. If there is a little triangular space between the three lines he may wonder, "Do those three lines really meet at a single point?"

Too many of today's displays have line generators that produce slightly curved lines. Such errors in display equipment undermine users' confidence in what they see.

The second characteristic is flicker rate. There is a lot of debate about what flicker rates are acceptable in a display. No one, however, will debate that refreshing a display once every five minutes is not acceptable. Flicker rates in the range of 15 to 45 cps are useful.

The third characteristic is modification time. People who have been waiting for three hours or three days for a result from conventional computing centers get impatient if they have to wait three minutes for trivial results from an on-line system. There is a point, between five and 20 seconds, where instead of waiting at the console ready to do the

next thing, you will get up to stretch your legs, or have a cup of coffee. A display system must respond to modification quickly.

Fourth, there must be some kind of stylus input. You have learned over years of experience to take your pen in hand and sign your name. Any other way of signing is unusable. A display must have some kind of device that you can take in your hand and which tells the computer where you are writing. DAC-I’s voltage pencil stylus plate and the RAND Tablet give this capability directly. A light pen can give position inputs with appropriate pen-tracking hardware or software.

The final and very important capability is pointing. You must have some kind of device which lets you talk about a picture in pointing terms. You have to be able to say to the computer, in effect, “I want to erase this letter,” by pointing to it. The light pen gives this ability directly. A RAND Tablet or DAC-I’s voltage pencil stylus plate must be augmented with coincidence detecting circuits or software to provide this information.

How we are going to get a low-cost display that has all of these characteristics I haven’t the slightest idea. It is an unsolved problem. Nevertheless, I feel sure that the next year or two will see a solution in one form or another.

problems of technique

There are a large number of little gimmicks that make the difference between a highly-useable and a difficult-to-use on-line system. People will approach difficult-to-use on-line systems only if the advantages are immediate and obvious. If on-line systems are to be used for simple tasks, they must operate smoothly enough to be useful. A draftsman, for instance, with a choice of using a computer system or his old familiar paper and pencil will choose to use the computer only if it actually makes his job easier. It will be some time before we learn to use enough techniques to make the on-line systems as smooth in operation as they should be.

Here are a few known techniques. In sketchnpad, I used a technique which we can call “Rubber-Band Line.” As you draw a line, the line stretches like a rubber band between where you left its starting point and wherever you have your stylus. What gets left in the computer is not the path of the light pen, but a single straight line as shown in Fig. 2.

Another technique I used in sketchnpad we can call the “Pseudo Pen Location.” When you bring the light pen near an existing line in a drawing, the little bright dot, which is the “point of your pen,” jumps to sit on the line. Anywhere near a line, the point of your pen sits exactly on the line with mathematical precision. Pseudo Pen Location proved to be a useful little feature. The RAND Corp. is pioneering a technique in which characters are recognized as they are drawn on a RAND Tablet. I think this is going to be a very important technique because you cannot type while holding a stylus in one hand. In systems which involve a little lettering, as well as other operations, it will be very useful to print the letters you want directly where you want them.

We need not be limited to recognizing letters. For instance, it should be possible to erase a curve in a picture by making some little wiggly “erasing” motion over it, instead of finding and then pushing the erase button. In editing text, we should be able to use motions familiar to typesetters such as ~, which says, “transpose those two characters.” The characters should instantly interchange. We should be able to draw balloons around sentences with little arrows to say, “Take out all this junk and put it up here.” These balloons would be recognized by a computer.

Fig. 1

Fig. 2

PATH OF LIGHT PEN

LINE SEGMENT DRAWN

May 1966
a long way. Because of the quadratic connection, the cursor moves extra rapidly. You will naturally turn the knob slowly when you are close, and then the cursor moves slowly and smoothly. This quadratic technique makes the cursor seem to "understand" what you want.

coupling problems

The third unsolved problem is how to connect computer graphic devices and systems to substantive computation. It is easy to draw a circuit or a bridge or a diagram of a part with a graphical device. It is not nearly so easy to make use of that drawing in doing computations about the thing that you have drawn. For instance, I should be able to draw a circuit diagram, and then observe the operation of the circuit as shown by some waveforms. I should be able to draw a complicated part, apply "forces" to this part by drawing them, and observe the stress distributions in the part. We have some computer programs which can do the computations. We have computer programs which can generate the drawing. But we don't have these separate computer programs put together. That is the problem of coupling.

For any specific system you can think of (electric circuit diagrams and stress analysis are just two of the most obvious

![Fig. 3](image-url)

A drawing as input to a simulator. Two sinusoidal oscillators were drawn and connected to a scope. Different frequencies were specified for the oscillators. The simulation was run, giving the Lissajous figure shown inside the scope.

one to attack), some straightforward programming will achieve coupling. There are, however, hundreds of programs which could use graphical input and output usefully. The problem of achieving coupling in a very general way, so as to apply to a wide variety of tasks, will require much thoughtful effort.

Let me mention a place where coupling does exist and where it will be useful. It is possible to draw shapes in two dimensions with computer systems rather well. It proved to be very easy to take the descriptions of those shapes and turn them into commands for numerically-controlled machine tools. Marvin Ling from GE provided me with the part shown in Fig. 5, which was actually produced from the computer-made drawing shown in Fig. 4. It is exciting to think that a light pen can, in effect, carve metal.

![Fig. 4](image-url)

![Fig. 5](image-url)

There are many unsolved problems having to do with the language of discourse between human beings and computers. Although we speak English every day, we don't often think of it as a "language" in the same sense that we think of FORTRAN as a language. In the computer business when we talk about languages, we usually mean the languages of written symbol strings. But whenever you interact with a computer, the commands you can give the computer and the cues that the computer gives you back, whether they are simple written strings or noises or flashes of light or clicks or press of buttons or motions of the light pen,—whatever they are, they constitute a language. It is sometimes a little more difficult to recognize complex drawing languages as languages than it is to recognize and talk about the symbol-string languages. There is a lot of theoretical work to be done in understanding the more esoteric languages such as Culler-Fried, Sketchpad and the better ones to come.

describing motion

There is one thing which does not exist in any of today's interactive graphical languages: a way to describe motion. Bell Telephone Laboratories has several computer-produced movies. One of these shows the motion of two masses interacting through gravity. In it you can see the two masses rotating about each other to form orbits of different kinds. The computer traces the path of the masses so that you can see the shape of the orbits.

The amount of information required to specify such a movie is really very small. For instance, the movie shows...
the motion of a mass under just the influence of a downward force. The mass starts at the bottom of the screen, moving up. The mass slows down because of the downward force. The movie shows that the mass is moving in a parabola because each second it leaves a mark behind. When the mass gets right up to the vertex of the parabola, the force is turned off. Without the force, of course, the object continues in a straight line.

To make this scene, the computer must be told "Draw me an object which observes F=MA. Apply a downward force to it. Give it initial velocity like this. When it reaches here, remove the force. I want velocity and force indicators like this." We could express that in FORTAN, but I should be able to express it more easily graphically and on-line.

Knowlton's movie language lets you describe moving figures of the kind shown in Fig. 6, but only in a written language. You can make animated cartoons of a type now made by hand, at a cost which is comparable to conventional means. The hard part of using Knowlton's language is figuring out what the picture is going to look like as you write. Since you want an artistic picture, you have to make a little sketch ahead of time on graph paper. You then pick off the coordinates from the sketch and jot the coordinates down on a piece of paper to give to the computer. Knowlton's language has the motion capability but it doesn't have the on-line characteristics. I should be able to sit at the console and draw what I want. I should be able to adjust it until it is artistic. I don't care about the exact coordinates and I shouldn't have to write them down.

half-tone capability

Any computer display that you look at today will be 90% blank space. The lines or characters will occupy only a tiny part of the display area. Most of the display area on that cathode ray tube will be unused. Today's displays characteristically produce the same kind of drawings that I can produce on a blackboard: drawings composed of narrow lines and little dots. There are many interesting things which computers could represent if they had some half-tone capability. Knowlton's movie language produces half-tone movies, but it cannot show them in real-time. I would like to see a half-tone display change as I watch. It should be possible to build hardware for such a display, perhaps even in color.

If I had such a gadget there would be a whole host of unsolved problems in graphics about how to use it. The entities that I would have to talk about would no longer be just simple lines or characters, but things with body: a shaded rectangle, or a rectangle outlined in dark and shaded in the middle, or shaded dark on one side and lightly shaded in the middle, or shaded dark on one side and lightly toward the other side. We haven't even begun to have languages that are capable of describing such things.

structure of drawings

The sixth unsolved problem has to do with the structure of drawings. We human beings are able to look at drawings and detect symmetry in them. For example, the drawing shown in Fig. 7 has a rather obvious structure or symmetry to it.

Now suppose that a man who is using an on-line system points his light pen or his RAND Tablet stylus at this drawing as shown in Fig. 7, and then says, "delete." The correct computer response to the "delete" command depends upon the real underlying structure of the drawing. If the drawing is intended to represent five independent boxes, the correct response might be to erase one of them. Or the correct response might be to erase the dot from each box. If, however, the underlying structure of the drawing is really two groups of two boxes each, with an additional box in the middle as shown in Fig. 8, then the correct response might be to erase the righthand dot in each pair.

For people, the underlying structure is made clear by context. In fact, we usually do not even think explicitly about the underlying structure. But if a computer is to make good use of the underlying structure of drawings,

If [image](Fig. 6)

![Image](Fig. 7)

then we must have languages powerful enough to explicitly represent the structure of pictures. Moreover, the languages must represent the structure of pictures. Moreover, the languages must represent the structure naturally enough so that it doesn't get in our way. We must represent the structure so users can see it. In Fig. 8, a dotted line around the groupings shows the structure, but that would not be appropriate in every case. We must learn how to represent structure for human consumption.

We must also build languages which can construct structure. Dialogue may help. If you, for instance, tell an electrical draftsman, "Remove the gate," while pointing to one of a parallel set of gates, he will immediately ask you,
"Do you want me to remove them all or just that particular one?" A computer could ask that same question too, given an appropriate program. We have much to learn before it will be possible to write such a program.

hidden lines

There are three more problems, which have to do with the computations involved in using computer graphics, rather than the graphics themselves. The first of these is the hidden line problem. When we look around the world we see opaque objects and we don't see what is behind the opaque objects. It is hard to make objects displayed by a computer look similarly opaque. It is easy to make a perspective presentation of any individual point in space. It takes a few multiplications and a division or two to implement the coordinate transformation from the three-dimensional space coordinates to the two-dimensional display coordinates. By programming this transformation you can easily display transparent or "wire frame" views of your object, as shown in Fig. 9.

It is much harder to decide whether a point ought to show or not. It is a major task to eliminate hidden lines from the drawing. For instance, in the display of a cube I ought either to see the rear lines dotted, or I ought not to see them at all. It is not too hard to eliminate the hidden lines for a single cube. You merely show all parts of any face of the cube that faces the viewer. It is much harder to eliminate parts of lines from one object that is partly hidden by another. You must decide how much of each edge, if any, to show for partly-hidden objects.

It is conceptually easy to eliminate hidden lines by brute force. You represent each line as thousands of little points and you eliminate any point hidden by any of the thousands of objects which might be in front of that point. Unfortunately, the amount of computation involved gets rapidly out of hand. A more elegant solution is possible. Roberts of the MIT Lincoln Laboratory generates views of solid three-dimensional objects with all the hidden lines removed11 (see Fig. 10). Roberts' technique, which uses a method of linear inequality, is limited to plain-faced objects. Applying Roberts' technique to surfaces more complex than plain faces—to the conics or cubics, for instance—is going to be quite a difficult task. It is essential to do this task if we intend to look at displays of "solid" objects.

program instrumentation

The eighth problem has to do with making computer programs less inscrutable. You can see all the pieces of a clock you have taken apart. Each has a characteristic shape. You can look at a gear and easily pick out the only other gear it could possibly match with by just looking at the size of its teeth. Because you can see what the parts do, you can look at a fairly complicated mechanical gadget, and understand it.

Have you ever tried to pick up somebody else's computer program and understand what it does? It ought to be possible to display whatever it is about a computer program that makes it unique. It ought to be possible to represent whatever it is that makes an individual computer program individual. I want to look at a display of a computer program and recognize that this part must go with that part just as I can match up the gears of a clock.

I ought also to be able to see a computer program running. I want to get a display of information about how the computer program is running and what it is doing. For instance, I might use a special program to count how many times each branch is used. I could look at these counters and know what parts of the computer program are used a lot and what parts are not used very much.

I could make a graphic presentation of such information. Imagine, for instance, a flowchart or a block diagram drawn in three dimensions. Two dimensions might show the diagram and the third dimension might show the number of times that this part has been used. All of the parts that have been used a lot would stick way up.

I am not suggesting that three-dimensional flowcharts are the answer for program instrumentation. I merely suggest them as an example. Only when we have actually had experience with several dozen such examples will we have any idea which kinds of presentations help. With such presentations, computer programs would be more scrutable.

The last two problems are unlike the others because they will be with us forever.

logical arrangement

Problem number nine has to do with the logical arrangement of drawings. When we draw an organization chart, we draw organizations of similar function or responsibility beside each other, rather than sprinkled all over the page. In drawing an electrical circuit we may use a convention that relates dc voltage level to position on the page. If I draw a block diagram of a multiplier, I try to show the different parts of the multiplier lined up together. If there is a register that consists of a bunch of flip flops, I try to line them up in a row. If there is a set of gates that enter information into the register, I try to show them below

the flip flops. If there is some other logic net, I try to show it collected together by function.

All of these things have to do with the logical arrangement of the drawing. They have nothing to do with its topology, which would be the same no matter how the drawing was arranged. By arranging the parts of the drawing in a "sensible" or "logical" way, the meaning of that drawing can become much more apparent. The ninth unsolved problem in computer graphics, then, is to get computers to make drawings with logical layouts.

Although there have been some fine attacks on this problem, each is limited to a particular area, and falls down in some cases. Because for each particular case, "logical" takes on a different meaning, we may never find a complete solution. Perhaps the best we can expect is an interactive system in which a man and a computer, together, can come up with an arrangement that satisfies the man.

working with abstractions

The tenth and final problem has to do with abstractions. In all fields of scientific endeavor, the man who makes the specific progress is the man who understands. Such a man has either a mental model, or a notation, that lets him represent and, therefore, think about a mass of complexities that nobody ever understood before. In one or two words he is able to say, "This is the way it is." He puts together a beautifully simple little "theory" which explains all the complexity.

For instance, we can think about a "bell-shaped curve." The heights of people probably form a pretty good "bell-shaped curve." But the bell-shaped curve isn't anything that exists in nature. It exists only because somebody chose long ago to represent heights in Cartesian coordinates and his graph came out with a characteristic shape. A lot of other things represented in Cartesian coordinates came out to have the same shape. People started to talk about the properties of the shape and useful predictions resulted. The "bell-shaped curve" is a fiction. It isn't anything that exists in nature. It is a description of the fact that certain things which do exist in nature come in different sizes: people come tall and short, but most people are of medium height.

What are some other examples of abstractions? We can speak of a "sawtooth oscillator." A sawtooth oscillator doesn't produce sawteeth (I can just see a sawtooth oscillator spitting out teeth!). It produces an output voltage that looks like sawteeth only when you graph it as a function of time. Another abstraction might be useful in representing an automobile sale in a computer. If you buy an automobile you have a choice of getting either white wall tires or black wall tires. Let me call that the "tire option." The "tire option" has properties. For instance, one of its properties is a price differential of $30 or $40. When you buy a car you also have an "engine option." You can either get a "six" or a "big V-8." The "engine option" also has a price differential associated with it. I can ask some questions which have nothing to do with automobiles at all but which ask you about these abstractions. I can ask, for instance, "is the engine option bigger than the tire option?"

I have some of my own useful abstractions. When I think about electric circuits, I represent dc voltage as a position on the page. I also represent ac voltage as a position on the page. I visualize an operating circuit as wiggling up and down. I think of resistors as springs, and wires as pieces of string. I think of transistors as containing a little bell-rope puller who doesn't care how much rope he has let out. All he cares about is pulling on his string; he is a current source. This abstract model helps me to analyze simple circuits instantly.

Unfortunately, my abstract model tends to fade out when I get a circuit that is a little bit too complex. I can't remember what is happening in one place long enough to see that is going to happen somewhere else. My model evaporates. If I could somehow represent that abstract model in the computer to see a circuit in animation, my abstraction wouldn't evaporate. I could take the vague notion that "fades out at the edges" and solidify it. I could analyze bigger circuits.

In all fields, there are such abstractions. We haven't yet made any use of the computer's capability to "firm up" these abstractions. The scientist of today is limited by his pencil and paper and mind. He can draw abstractions, or he can think about them. If he draws them, they will be static, and if he just visualizes them they won't have very good mathematical properties and will fade out. With a computer we could give him a great deal more. We could give him drawings that move, drawings in three or four dimensions which he can rotate, and drawings with great mathematical accuracy. We could let him represent all kinds of very complex and very abstract notions, and we could let him work with them in a way that he has never been able to before.

I think that really big gains in the substantive scientific areas are going to come when somebody invents new abstractions which can only be represented in computer graphical form. As he begins to work with his new abstraction, he is suddenly going to discover something brand new and really exciting which may revolutionize the world. How do you go about inventing new abstractions? I am afraid I really don't know.

CANADIAN DP CONFERENCE

If the selection of Las Vegas as the site for a computer conference kept you from getting authorization to attend, you might as well forget this one too. It's the fifth national conference of the Computer Society of Canada, being held May 29 to June 1 at the Banff Springs Hotel in Banff, Alberta. If it isn't "one of the finest conference sites in North America," as it's billed, it is one of the most attractive.

Among scheduled activities are two panel discussions. Moderating the session, "Social Implication of Computers," is Prof. Leslie Mezei of York Univ. And "Computing and Big Business in the Next Five Years" will be headed by Dr. Harvey S. Gellman of DCF Systems Ltd. and past president of the society.

The conference committee, under general chairman K. R. Marble of Imperial Oil Ltd. and program chairman B. A. Hodson of the Univ. of Manitoba, has set as the theme "Computers and You, the User," and has solicited papers from non-members of the society. Accordingly, authors from the U.S., Canada, Europe, and Australia have reportedly been heard from. Papers accepted cover computer graphics, time-sharing, assessment of programmers and analysts, statistical techniques in the oil industry, and a paper by a nurse: user's appreciation of a real-time system.

The Computer Society of Canada is that country's representative to the IRV. It consists of 10 geographical Sections, and the president is Prof. J. W. Graham of the Univ. of Waterloo, Waterloo, Ontario.
The computer-man interface has long been the limiting factor in computer productivity. New applications and tighter schedules have increased the need for faster, more convenient methods of user-computer intercommunication. Multi-tasking and time-sharing requirements have underlined this urgency. Computer-linked graphic devices promise a breakthrough comparable to the introduction of data processing itself.

It has been estimated that displays and graphic I/O devices, virtually unused as recently as 1963, will constitute approximately 13% of the information processing equipment cost for a typical manufacturing company by 1973.1

This article will report on the use of display consoles—cathode ray tube displays with versatile entry devices—now and in the near future. The many display devices now available range from small alphanumeric units to fairly sophisticated terminals which permit the display of graphic images with points or lines.

A display presents information from the computer to the user. The operator uses a light pen, a light-sensitive device, to indicate to the computer that a selected segment of the displayed information has been seen. With the addition of a tracking capability (either through hardware or programming), the light pen can also be used to feed in a continuous stream of two-dimensional, coordinate information to the computer.

Other data can be fed to the computer with alphanumeric keyboards, function keyboards (where the meaning associated with each key is determined by the user's program), switches, or knobs. These are only a few of the features available to users.

potential applications

The flexibility inherent in displays can best be illustrated by examining some potential applications. Six classes of applications will be explored. The first two relate to information generally associated with commercial data processing, the next two cover both commercial and scientific areas, and the last two are primarily engineering or scientific oriented.

Customer Service. Customer service applications gener-

ally require rapid access to large files of alphanumeric data, to provide answers to an inquiry. Since the inquiry typically arrives by telephone, the response must be provided within seconds. Inquiry data fed through a keyboard can be used by a digital computer program to access files of information. Responses can be fed back to a CRT display at rates which range from hundreds to thousands of characters a second (depending on whether the display is attached to a local or remote computer). Also, a light pen can be used to select inquiry options shown on the CRT display. Updating of the file may take place during—or as a result of—the inquiry. Examples of customer service applications include: airline reservations, customer billing of telephone inquiries, utility or retail inquiries, telephone mail ordering, and insurance claim servicing.

Management Information System. A system for disseminating management information has requirements similar to those of the previous application. Here, however, there is a greater need for analyzing and formatting the data obtained from the file prior to its display. As with the customer service application, inquiries can be made with a key board or light pen. In some cases displayed data can serve as keys for further inquiries. For example, a display on the current status of a development project may contain an item related to the project budget. Selection of this item with a light pen could serve as an inquiry to display additional budget information. While a purely alphanumeric display may handle some applications in this area, there usually will be a need for a graphics capability as well. There is no obvious requirement for files to reflect continuously the up-to-date information needed for management review. A display console provides a very convenient method of handling such file maintenance.

Information Retrieval. The retrieval of information from a large file is a variation of the previously described applications. Some management information systems will have only an information retrieval capability. Information retrieval is listed as a separate area, however, since it can encompass categories of data outside of those required for customer service or management review. Examples of this would be an information retrieval system established to permit access to files of legal information, or to permit the review and selection of standard mechanical or electrical parts.

Programming. Programming applications include program writing, debugging and documentation.

A display console provides a convenient means of preparing program statements, whether in an assembly language such as FORTRAN, COBOL or PL/I. Language statements in card-format form can be collected in a file for input in batch form to an assembler or compiler. Alternatively, a "conversational" language capability provides for immediate assembly or compilation and—to some extent—combines the functions of program writing and debugging. In addition to being useful for debugging programs written in higher level languages (i.e., assembly), display consoles can also be effectively used to accomplish program debugging at the machine instruction level. The status of selected machine registers and memory locations can be rapidly reviewed and modified.

One aspect of program documentation is the preparation of flow charts. This involves organizing and interconnecting a variety of graphic symbols and associated alphanumerics—an easy task at a graphic display console with a light pen and a function keyboard.

engineering and mathematical analysis

Examples of engineering and mathematical analysis are electrical circuit analysis, structural analysis (individual mechanical component or an entire frame structure), analysis of the response of a feedback control system, weight determination, analysis of aerodynamic response, statistical correlation, system simulation, and mathematical function analysis. Input and output data for these applications usually fall into three categories—mathematical (either equations or numerical values), schematic, or geometric (both two-dimensional and three-dimensional). Programs of this type frequently are used in an iterative fashion. The output response to one set of data determines input data for the next computer run. A program user traditionally requires days or weeks to obtain an optimum solution to a problem. By using a graphic display console with keyboards and a light pen to supply input data and view program responses, an optimum solution often can be obtained in a few hours.

Engineering Design. Design can be broken down into two categories: (1) an extension of analysis applications into the conceptual stage; (2) the preparation of design documentation including detail drawings, assembly drawings, parts lists, bills of material and similar documents. The first category requires more creativity by the engineer, scientist or mathematician, while both require fairly sophisticated graphic data processing equipment and analytical techniques.

Part drawing generated by an experimental 2-D program. The lines, drawn by a light pen, have been straightened, dimensioned, and oriented by the computer program.

These application categories are not mutually exclusive. Also, many application areas have not been included (for example, computer-assisted instruction and medical display applications). New applications are continually being discovered. The categories given, however, should indicate the enormous range of potential display applications.

feasibility of using displays

The recent use of graphic displays at numerous university, research and industry locations has demonstrated that applications in the above areas are feasible. The key question which must be answered for any single application is, "Is it economical?" There is no general answer. It must
be asked and answered for a given application in a given environment. For example, the design of an electronic circuit involving considerable computer analysis may be allotted a completion time of a few weeks in one situation, a few days in another. The economics of supporting some device, such as a graphic console, which can radically change the access of the circuit designer to the digital computer, is entirely different in these two environments.

While no universal answer exists concerning the economics of using displays, their use offers potential in three major ways: (1) time savings, (2) dollar savings, and (3) a more thorough job. A graphic console on-line to a digital computer can reduce turnaround time substantially, particularly for applications requiring many successive computer runs. In some industries, rapid response to customer demands or market needs is critical, and any equipment or procedures which can save time must be exploited thoroughly.

While a reduction in elapsed time may have an economic value, dollars can be saved in other ways. For example, in many engineering analysis applications it is common practice to submit a computer run containing many sets of input data which bracket the expected area of interest. Only a small portion of the output results are expected to be significant. If an input data set is supplied to the computer through an on-line graphic console which then monitors the progress of the analysis operation, the user can abort a given run at any time and supply a new set of input data. In this way, the total number of input data sets required for the analysis should be lower, as should the average amount of computer time spent per data set.

In some cases, an on-line graphic console might be used not to save time or dollars directly, but to permit the exploration of many more parameter variations, whether these represent decisions in a management information system or physical parameters in an engineering design operation. This ability to perform a more thorough job analysis can be reflected in better operating procedures, or lower costs for manufacturing, installation and maintenance. Admittedly, this factor is difficult to measure and will take longer to properly realize.

Many of these advantages can be realized, at least partially, by other on-line user terminals. The value of displays, however, lies in the extent of some of their advantages, such as flexibility of formatting and variety of user-computer interaction techniques. Also, advantages such as speed, selective updating (only a portion of the display need be modified during any given update) and quietness should not be overlooked.

experimental programs

During the past few years, I have participated in the Kingston Laboratory. This work has not been associated with the production of release programs but, rather, with the exploration of techniques for using and programming graphic equipment. Some of these experimental programs have dealt with problems such as:

- Generation of circuit schematics,
- Circuit analysis,
- Indexed file retrieval,
- Simulated management information retrieval,
- General manipulation of two-dimensional geometric data.
- General perspective viewing of three-dimensional wire frame figures,
- Three-dimensional geometric construction,
- Program debugging.

Experience with these programs, plus a knowledge of other experimental work, indicate that some techniques can be shared in a variety of applications, and, therefore, are at least partially application independent. For example:

- **Operating System Support**—This is the most obvious example, and one which is certainly not restricted to graphic devices. It includes the capability to send data to and receive data from an I/O terminal, and to accept and sort attention signals requiring further action from the user's program. The initial processing of a signal received from a light pen or a keyboard requires no knowledge of the significance of this action. Programs operating at this level are entirely application independent and may even be device independent.

- **Data Plotting**—The capability to plot data, including the generation of plotting axes and their associated labels, can be shared by a number of applications (for example: plots of statistical data, transient circuit responses, and sales trends).

- **Point, Line, and Arc Generation**—In generating a graphic display, it is necessary to perform a data translation from some application model form in the computer memory to the actual orders which will drive the display. While the model may contain higher-level elements (the representation of a resistor, for example) there is a level in the data translation process at which most, if not all, of the graphic elements can be represented by points, straight lines and circular arcs (a resistor would be displayed as a sequence of straight lines). A further reduction of circular arcs to straight lines or points and of lines to points may be required, depending on the capabilities of the display hardware. A point can be defined in two dimensions by two pieces of data, a straight line by a minimum of four and a circular arc segment by a minimum of six. A general line display subroutine can accept four pieces of data and generate the appropriate order or orders to drive the display whether the line represents an axis on a data plot, the edge of a steel beam or the connection between two boxes on a flow chart.

- **3-D Projection**—The mathematics of projecting an arbitrary three-dimensional point onto a two-dimensional viewing plane—while cumbersome to perform manually—are easily accomplished within a digital computer (an experimental subroutine to perform this task contained fewer than 100 instructions). Since a straight line in three-dimensional space remains straight when projected onto a two-dimensional viewing plane, the projection of a 3-D wire frame figure is accomplished easily. Once the projection has been performed, the procedures described for graphic element display, window positioning and scaling can be used for the actual generation of display orders. The simple projection of a 3-D wire frame figure does not include the determination of hidden lines, and hence this procedure would not be suitable for complex 3-D shapes. Even with this limitation, it can be used to display such items as simple 3-D mechanical parts, tool paths, data from a surveying operation, and contour plots. Different application programs are required for each example but the generation of projected views can be accomplished in an application-independent manner.

- **Alphanumeric Page Formatting**—This does not imply the capability of accepting an arbitrary conglomeration of data and automatically determining a suitable display format, but rather the capability to permit the user to specify the positioning of data along a line of the spacing between lines. Such procedures are totally independent of the information content of the alphanumeric data being controlled.

- **Light Pen Selection**—The information detected on a CRT display by a light pen can be used by the program in at least three different ways. First, the light pen can be
used to select items from a displayed keyboard, which might consist of numerals, a complete set of alphanumerics, entire words or graphic symbols. Second, the light pen can be used to select one of a series of possible actions being displayed on the CRT. The selection of a given item must cause entry to a particular subroutine in the user's program. Third, the light pen can be used to select a display item which is to be modified in some fashion. In this case, merely changing the display is not sufficient. The requested action must be reflected by appropriate changes in the problem model housed in the computer memory. Thus, the light pen selection must be related somehow to an item in the problem mode.

These examples can each be described as the light pen selection of an arbitrary nth item from a total displayed set of m elements. A routine to permit this type of correlation can be shared by all six of the application areas described earlier.

- **Program Debugging**—This refers to debugging at the machine instruction level and not to conversational language capabilities. A subroutine, permitting the display and modification of machine registers and memory locations, can be entered from suitably placed calls in the program being debugged or, alternatively, through the use of an attention signal from the display console. Various levels of assistance are possible, such as the handling of relocation arithmetic or the ability to call for printer dumps which can be carried away for further study. Such a debugging subroutine is clearly application independent and even could be used for the debugging of programs which otherwise have no connection with display consoles.

- **Data Structuring**—This category is more nebulous than the preceding ones, and lies in the middle ground between what can be clearly defined as general purpose and what requires further exploration. The distinction between a data structure and a problem model is important. A problem model is housed within a data structure. This structure may be nothing more than a series of tables, but usually consists of a sequence of small storage blocks interconnected in some logical fashion (such as lists or rings) and capable of housing alphanumerical data. A particular model is formed by the actual alphanumerical data housed in the blocks and by the meanings associated with various block interconnections. Consequently, it is helpful to consider data structures and problem models as separate entities. A data structure capable of housing a circuit schematic model in which nodes are interconnected by circuit elements should also be able to house a model of a frame structure in which joints are interconnected by beams, or a flow chart model in which the block interconnections provide a means of tracing the flow of program control. While a truly general purpose model does not exist, there does appear to be a general approach to data structuring techniques which can be adapted to individual problem areas.

- **2-D Graphic Procedures**—This item also belongs in the middle ground between those which can clearly be defined as being general purpose and those which require further exploration. Many different procedures for manipulating 2-D geometric figures have been used experimentally, ranging from fairly rigid construction procedures similar to those used by draftsmen to the comparative freedom introduced by Ivan Sutherland in his Sketchpad work. It is unlikely that any single procedure for manipulating 2-D graphics can satisfy all applications. There is a clear distinction, for example, between schematic information—where the meanings associated with various block interconnections are the primary topological rather than geometric and where visual alignment may be suitable—and the information found on some engineering drawings, where dimensional accuracy is essential. Nevertheless, some generality is possible. For example, procedures suitable for manipulating a circuit schematic should also be useful for manipulating the elements of a program flow chart, or a block diagram representing a feedback control system.

This list undoubtedly is incomplete. It is sufficient, however, to indicate the existence of a broad range of graphic techniques which can be adapted to many different application areas. The initial adaptation should be made in those areas in which procedures for processing the application data already exist. The usefulness of such applications will already have been proved, and operating experience against which to measure the impact of a display console will have been obtained. While examples of such applications can be drawn from each of the six application areas described in the preceding article, the following three offer the most potential for the near future:

- **Customer Service**—Many applications in this area will be operational in the near future.

- **Programming**—Console debugging has been demonstrated, as well as manipulating the geometric data and alphanumerics required for flow charts.

- **Engineering and Mathematical Analysis**—A large selection of analysis programs already exist. Experience has shown that such a program can be adapted to include the use of a display console in six man-months or less. The resultant program may not make the most efficient use of the graphic console, but it will provide that all-important first step.

The computers of today and our knowledge of how to use them represents a few orders of magnitude of improvement over what was available 10 years ago. Similarly, the graphics equipment and the techniques for its use in 1975 will be vastly superior to that now available. Our progress must be evolutionary, however, and will be profoundly influenced by the practical experience gained during the next two years, using the tools of today.

It is rapidly becoming clear that graphical communication with a computer is of very great importance in man-machine interactive systems. At the beginning of an innovative engineering (or scientific) investigation, graphical modes of thought are natural; the engineer instinctively draws a sketch of a mechanism, or a diagram of a circuit, or possibly a flow diagram of a computational procedure, or a block diagram of transfer functions for a system. Indeed, graph theory itself is a study of graphs and their application to all of these abstract information structures.

The engineer's sketch serves as a mnemonic device that greatly assists him in fixing and focussing his ideas. It is superfluous to point out, for example, that an incidence matrix, while completely describing a graph, is a poor substitute when it comes to being an aid to human intuition and understanding. A similar reflection applies to tables of values that describe functional relationships; a graph is immediately clear, while numbers are not.

The early stages of innovative engineering activity in design are largely unstructured; there is no detailed algorithm that describes the heuristic, unpredictable process of creative engineering, or creative thought, for that matter for the same reason that there is no universal algorithm for constructing algorithms to solve problems, and it is certain that there never will be. This is not to say that certain intellectual procedures that men perform today by an exercise of art cannot in the future be formalized and subsequently mechanized, but it is to assert that there will always be an indefinitely extended hierarchy of intellectual procedures that remain above the boundary of mechanizable tasks, no matter how far we succeed in expanding the boundary. It is at the interface between art and algorithm that the man-machine interactive computer system has meaning and potential. And one of the important modes of manipulation of ideas by mutual action of man and computer is the graphical mode.

As is no doubt well known, the actual physical implementation of computer graphics usually involves a cathode ray tube or 'scope, a light pen or equivalent device for drawing and manipulation of the graph, an associated keyboard, and possibly an array of push buttons and toggle switches for designation of certain frequently used subroutines and macro instructions, all of this peripheral equipment being tied to a computer. The state of the art is one of vigorous change, improvement and growth, and there are many human engineering problems yet to be resolved about the best, simplest, least expensive, and most convenient console configuration that produces ideal coupling between man and machine.

the sketchpad system

The classic step toward graphical communication with a computer was, of course, Ivan Sutherland's SKETCHPAD program, written for the MIT Lincoln Laboratory TX-2 computer, completed in 1962 and probably familiar to most computer people. Sutherland, far beyond merely modeling his graphics capabilities on traditional paper and pencil methods, introduced many transcendental notions into the system. SKETCHPAD is not a passive drawing system, an expensive and precise replacement for traditional devices and methods; it is instead a system that actively participates and assists the user.

For example, the notion of applying a set of constraining relationships between elements of a graph, and the subsequent automatic relaxation of the geometry of the graph or drawing until these constraints are satisfied or until the discrepancies are at a minimum, makes it possible to perform many very sophisticated constructions with SKETCHPAD that would be quite difficult or at best tedious and confusing by conventional geometric or graphical processes.

For example, it is possible in principle to perform graphical field-mapping, the delineation of the potential field of ideal fluids (like electrical flow in conducting plate or magnetic fields, or heat flow, or water flow through earth). Briefly, this consists of sketching an array of flow curves within some flow boundary, and an orthogonal array of equi-potential curves, and modifying and resketching these curves until the resulting net consists everywhere of small squares.

In practice, this graphical procedure is extremely tedious and confusing; if the two families of curves are kept orthogonal, the small rectangles will not at first be geometrically similar. Some will be square, but others will be

long and narrow, while still others will be short and wide. This violates the requirement, and further readjustment must be done until the square condition is met. With SKETCHPAD, the computer maintains the constraints on all the small quadrilaterals automatically, and eventually achieves a proper map. Of course, such a procedure is not a very efficient way to solve such problems on a computer, but it is illustrative of the power of the notion of constraint satisfaction.

compound constraints

Again, in SKETCHPAD we see the germ of the idea of building compound constraints out of what might be called primitive or atomic constraints. Furthermore, such compound constraints are constructed graphically by a process that could be called "ostensive definition," that is to say, the computer is shown how to do something for a special case, and then it is possible to copy the picture of the definition of the procedure and apply it to other cases.

For instance, suppose we wish to make six lines parallel and also equal, by pairs. We set aside temporarily the drawing of the six lines, and start with a fresh "sheet of paper" on which we draw two lines. These will serve as dummy variables. We now call for the constraint that makes lines parallel. This can be caused to appear as an abstract symbol or ikon, on the scope, and consists of a small circle containing the letter P, with four radiating lines or tentacles.

We attach the ends of the tentacles to the four ends of the two lines. The computer has been instructed to apply the "make parallel" constraint to the lines. Next we call for the "make equal" constraint. This also appears as an ikon, and resembles the "make parallel" constraint. When we attach its tentacles to the four end-points of the lines, the computer has been instructed to perform a compound operation on the lines. In Sutherland's system, no action will be taken to satisfy these constraints until the operator specifically commands that it be done, by pushing an appropriate button.

We now store the ikon of the applied compound constraint, and recall the drawing of the three pairs of lines. We can now call for an instance (loosely, a copy) of the ikon of the compound constraint, and can "merge" or attach it to each of the two lines of each pair. In this operation, the computer replaces the dummy lines of the ikon with the actual line of the problem. When finally the constraint has been applied to all three pairs of lines, a push of the "satisfy constraints" button will cause the lines to become parallel.

With SKETCHPAD we deal entirely with geometry; although by artifice, it is possible to solve some problems that are not inherently geometric, there are many cases where it is either very awkward or even impossible to communicate meaning. William Sutherland (Ivan's brother) addressed himself to the broad problem of computer graphics, with the aim of making it possible to communicate abstract procedures of any kind to the computer, including not only the geometric ones of SKETCHPAD, but others that the user may in the future define for himself, either through the keyboard or by construction from a base of primitive operations already in graphical form.

In this program, a graph or diagram can be drawn composed of any constituent elements whatever; the meaning of these elements can then be defined and the diagram can then be "activated." For instance, one can draw a diagram of the arithmetical procedure for extracting the square root of a number, and then can introduce a specific number at the input terminal of the procedure graph on the 'scope of the computer, and obtain the result at the output terminal of the diagram if one wishes, by causing the computer to halt after each step; in this case, the various elements of the graph blink as they perform an operation on information. This makes it quite easy to "debug" the graphical procedure diagram. This graphical technique has already been used with a programmed electrical network simulator, so that a sketch of an electrical network is sufficient to provide machine code for the simulation computations.

Computer graphics differs from pencil and paper graphics in another extremely important aspect; it permits dynamic behavior of the graph. The moving parts of a mechanism can be shown in motion, and such motion adds immeasurably to the information content of the drawing as far as the observer is concerned. It is possible not only to design and delineate a device, but one can actually "make it work" and observe its behavior. In principle we might not only watch the moving geometry of a mechanism, but we might also observe the deformations of the parts of the device under the influence of varying inertial forces superimposed on the static loading.

free-form design

The design and subsequent detailed description of the objects with doubly-curved free-form surfaces is a very important and fruitful field for implementation by computer graphics. Airplanes, ships, and automobiles are examples of such free-form or "sculptured" shapes, and traditional methods for the design and production of such shapes are extremely tedious and slow. Sculptured shapes also occur around us in the small as well as in the large; the hand-set typesetter, the differential housing on an automobile, and the walnut stock on a shotgun.

Small objects usually are produced by artisans who sculpt models or patterns or sink forming dies based upon drawings furnished by the designer. These drawings usually consist of a few definitive design curves that depict and define the important aspects of the shape the designer has in mind, and leave to the artisan the job of interpolating the surface that will contain and agree with the intent of these curves. Of course the artisan and the designer can be in frequent communication with one another, so that if the designer has failed to be explicit enough about his intentions, he can add information, or can correct a misinterpretation in case the artisan goes astray.

In the case of the large sculptured shapes like airplanes, ships, and automobiles, such a procedure is of course out of the question; the designer must in some way define the surface explicitly and completely to a sufficient detail that further interpolation is mechanical and hopefully unique. Traditionally this has been done in the shipbuilding industry by an extremely long and tedious graphical process called "lines fairing" or "lines lofting," in which the ship is essentially drawn full size in several views or projections, and represented by a large number of plane sections or contours, somewhat like a topographic contour map. In lines fairing, it is by no means a simple, straightforward process to draw the section contours at intervals along the hull and thus generate a smooth "fair" surface. Instead, it requires many weeks or even months of drawing, cutting, trial longitudinal sections, and smoothing of these sections by readjustment of points along the curves before the shape is free of unwanted bumps and hollows.

In the aircraft industry these traditional shipbuilding techniques were employed up until about 20 years ago, but have since been replaced by certain mathematical techniques that remove all of the older graphical trial-and-error procedure. But even so, the delineation of an
The shape-descriptive information also forms the data base for other geometric calculations. It is possible to cut plane sections through the object, to obtain projected areas, surface areas, volumes, and to calculate the curve of intersection of two arbitrary shapes. The same data base also can furnish input to special programs for fluid dynamics calculations, three-dimensional stress analysis, and other analytical processes that require shape description and environmental description as inputs.

There is also a class of information structures which might be called quasi-graphical, consisting of mixtures of abstract symbols like words and numbers, but arranged in some familiar array or pattern. Matrices are excellent examples; we can cite also another example so common to us that it might be overlooked: the positional notation of our decimal number system itself, in which the geometry of position of digits is a means of conveying meaning concerning magnitude. The conventional integral sign with the appended upper and lower limits, followed by the integrand, followed by the differential operator and the independent dummy variable, is still another example of a quasi-graphical structure in which the array is a device for conveying meaning to the eye. Much of textbook mathematical notation has this quasi-graphical character, and it is important to preserve this structure when we are using a computer.

The keyboard with its one-dimensional input-output string and its rigidly limited set of characters is certainly not well adapted to such forms of communication; a large encrustation of circumlocutions and makeshift techniques has formed around computer languages in an attempt to make them compatible both with people and with machines. The reason that quasi-graphical arrays on the printed page are easy for people to understand is probably that they make it easy for the human information processing system to construct efficient data structure models of their content, and these data structures are easy to manipulate and to remember. It is possible that similarly the two-dimensional array on the computer console can lead to a more easily constructed information model within the computer; this implies an enhanced transparency at the interface between man and machine. The man can more easily look into the computer, and the computer can more easily look back. We often use the expression “problem-oriented languages.” It might be appropriate to say instead “people-oriented languages” to emphasize the goal of making communication with the machine truly natural. A measure of the degree to which some form of communication approaches the ideal is the degree to which it is understandable weeks or months after it is written, not statement by statement, but in the structure of meaning that it reveals or conceals. Graphical communication is inherently structural; it seems likely that a truly fundamental effort toward implementation of such a way of man-computer conversation is the most important step to be taken in computer technology.

REFERENCES

Latest generation tape maker

This is the most you will ever see of the new top-secret production area at Memorex. However, you will be seeing plenty of what it produces: Precision Magnetic Tape.

This super-clean facility was built to assure, for all your present and future applications, the smoothest, cleanest and longest-lived tape available. With Memorex magnetic tape, because it is manufactured and tested to exceed the most critical requirements, you know that all your information has been retained.

With the original Memorex production lines, several new generations of tape-making techniques and equipment came into being. Now, there is another new generation, further proof of Memorex's deep commitment to excellence. You will continue to benefit, with tapes that retain and recall all your data reel-after-reel-after-reel.

Ask your Memorex salesman to give you information about tape for your application.
With the new Milgo Digital Plotting System, you output only the end points on lines up to 42" long—the plotter does the rest... with no deterioration of the plotter's normal dynamic accuracy. There is never a second tier subroutine to compute the length of a line! Result: reduced computer programming, reduced computer output time, reduced plotting time.

The Milgo DPS-6 includes a choice of off-line readers, plus either a vertical or horizontal plotter. And the system provides for all standard digital inputs plus straight analog. It accepts magnetic tapes recorded in either gapped, gapless or long record format. An optional core storage buffer allows up to 10,800 bits between gaps.

Send for a brochure-full of additional features on the Milgo DPS-6. Write or call Milgo Electronic Corporation 7620 N.W. 36th Avenue, Miami, Florida 33147. Phone 305-691-1220. TWX 305-696-4489.

Now... save programming steps on every plot
It did not require a lengthy period of time for the writer to realize that his chosen field, computer programming, a game played with incredibly fast and accurate machines for large sums of money, was almost ideally suited to the exercise of the principles of Gamesmanship and Lifemanship. It was with a poignant awareness of lost opportunities that I suddenly realized that while I had, of course, been practicing Gamesmanship and Lifemanship (but only after they were first used against me) in the infrequent leisure time activities allowed by the press of my programming duties—tennis, polo, motor racing, and sailing, mainly—I had completely overlooked an easy and natural way to enhance my sense of job satisfaction.

It is hard to explain why this realization was not immediate—my first supervisor and the machine room supervisor with whom he maintained an uneasy truce were obvious Lifemen. Perhaps I felt that programs alleged to be "necessary and vital to the national defense" should be taken seriously. Or perhaps I was put off by the unreasonable attitude of management, whose constant harping on trivia like making the scene before ten and clamping lunch to two hours stifled my creativity. In any case, since my retirement from programming is imminent (I am preparing to open a chain of sailboat rental agencies), I thought I would set out my thoughts, in the hope that they might be of some interest to the data processing community.

It should be noted that while what follows was written by an employee of the General Foods Computer Division, General Foods assumes no responsibility for its accuracy or completeness. All inquiries should be directed to the author.

Finally, I would like to emphasize that I feel that every Lifemanship situation poses a grave moral question. Techniques as powerful as these should not, I believe, be used without extreme provocation, and then only in carefully measured amounts. The indiscriminate or habitual use of Lifemanship can only lead to chaos.

Mr. Wood is a programmer for Wolf Research and Development. His experience includes work with American Univ. and George Washington Univ., Melpar, Inc., and Avco Research and Advanced Development Div. He has a BA in mathematics from Rutgers Univ. and has been a graduate student at New York University.
avoid the common mistake of attempting to make your actual work appear difficult or obscure. Speak of your work with a puzzled look. People will remember how difficult it was to understand it, but they will also remember how much you have put in it.

Remember this too: no matter how incomplete and outdated your documentation, no matter how many subroutines you enter from only one point, and no matter how unpronounceable the labels you use, there is somebody, somewhere, who could, given enough time, figure out what your program actually does. It is for this reason that I do not recommend attempting to be a "black art" practitioner. Rather than claiming his work is difficult, one should, I think, have a special interest. Information theory and the theory of finite-state machines are good, if rather obvious. Personally, I like self-reproducing machines. Suggest that what you would really like to do is work full time on your program, be it accounts receivable or filtering by Chebyshev polynomials, in a casual, offhand manner. Never make any representation that it has been fully debugged, but rather, when questioned about some special case, reply with a puzzled, "Gee, I'm not really sure what it would do in that case." Promise to look into it, then dismiss the discussion from your memory. You'll have moved on before that improbable case occurs and, in any case, they can, and will, type his check by hand, as they should have planned on doing originally. It is a waste of machine time for a program to constantly test for improbable situations.

The basic gambit is, of course, to spend about four of five hours in the machine room. In all too many organizations, an unimaginative management may let it be known that they'd rather you remained at your desk, programming, but there are many ways to get around stupid restrictions of this type, while your resume circulates. Hanging around the machine room contributes to professional development in many ways. We'll just list three:

1. It makes it easy to remain on friendly terms with the keypunch operators. Many keypunch operators are, away from their machines, pretty swinging, but in any case turnaround time is usually reduced where interdepartmental relations are cordial.

2. It affords an opportunity for practice in Consolemanship—which is simply the ability to throw switches and depress buttons with blinding speed.

3. One can monitor the output of other programmers at his facility, thus learning valuable new techniques, perhaps. Most valuable, though, is probably the opportunity to run a quick cross-correlation between the observed performance of other people's programs and their remarks in the last progress report. Automation has certainly had its effect, but employee morale still demands an occasional laugh.

Table 1

<table>
<thead>
<tr>
<th>Tentative Ranking of Computer Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Recommended:</td>
</tr>
<tr>
<td>B. Intermediate:</td>
</tr>
<tr>
<td>C. Not Recommended:</td>
</tr>
</tbody>
</table>

Two-Tape Autocoder has been chosen as an example of Softwaremanship because most readers will have some familiarity, however inadequate it might be for writing a really efficient program, with the 1401. Two-Tape is a good language for programming the 1401 because its use runs counter to current trends towards higher-level languages, it is not officially supported by the vendor, and it is in fact a far more efficient tool than the package supplied by the vendor, when used by an experienced programmer. To be sure, it has some limitations—diagnostic messages are scarce and vague, and the use of certain characters in instructions can cause an incorrect assembly. Nor is the use of recursive literals allowed, but one can program around this.

Two-Tape Autocoder has been chosen as an example of Softwaremanship because most readers will have some familiarity, however inadequate it might be for writing a really efficient program, with the 1401. Two-Tape is a good language for programming the 1401 because its use runs counter to current trends towards higher-level languages, it is not officially supported by the vendor, and it is in fact a far more efficient tool than the package supplied by the vendor, when used by an experienced programmer. To be sure, it has some limitations—diagnostic messages are scarce and vague, and the use of certain characters in instructions can cause an incorrect assembly. Nor is the use of recursive literals allowed, but one can program around this.

Some Thoughts about Machineroomanship

The basic gambit is, of course, to spend about four of your five hours in the machine room. In all too many organizations, an unimaginative management may let it be known that they'd rather you remained at your desk, programming, but there are many ways to get around stupid restrictions of this type, while your resume circulates.

Two-Tape Autocoder: Softwaremanship Example

Readers familiar with projective geometry will recall the principle of duality, in which lines become points and points, in turn, become lines. Softwaremanship is actually nothing more than the application of Hardwaremanship tactics to software.
New computer-styled GOLD STAR
The most beautiful card file system in the world

Every file and accessory in the Gold Star File System has beautiful lines, a smooth charcoal gray finish, and a lustrous stainless steel trim. Every piece has been styled to complement the most modern data processing or computer area. There is a complete line of equipment — enough to fill any filing, storing, and transporting function you might require. There is so much to choose from — five full-suspension, three 3/4-suspension, and two complementary desk-top models, plus a unique “fifth-wheel” truck — that you can actually design your own system to fit your exact needs. The most outstanding feature in the system is a handsome, rugged tray that is completely interchangeable in all files. It may be used as a card handler, reference tray, processing tray, and storage tray. Send now for details about Gold Star — the most beautiful, most functional, and most efficient card file system in the world.

Wright LINE
DATA PROCESSING ACCESSORIES

160 Gold Star Boulevard, Worcester, Mass. 01606
A division of Barry Wright Corporation
CIRCLE 20 ON READER CARD
John McNamara's thumb is tougher on forms than your high speed printer is.

Any high speed printer is tough on forms. But not as tough as John McNamara's thumb. His job is to make sure our Machine Mated forms are made right. And if they fail to meet specifications?

It's thumbs down and throw them out.

The specifications are tough and precise. They're based on getting the most out of your printer.

We work with the people who make the printer. And with you.

So we can develop accurate, exacting standards for a whole range of forms to meet your needs. Standards for papers, sizes, plies, carbons, punching, alignment, copy, feeding, handling, and fastenings.

High standards and a tough taskmaster like John produce a better form.

And that means uninterrupted runs. With no downtime.

Why not see our representative? Or write us at Standard Register, Dayton, Ohio 45401.

Now you know about McNamara's thumb. And where to put your finger on Machine Mated forms.

MACHINE MATED® FORMS BY STANDARD REGISTER

CIRCLE 21 ON READER CARD
THE COMPUTER AND THE SCHOOL OF TOMORROW

by JAMES ROGERS and DONALD COOK

The school of tomorrow is going to rely heavily on computers for the performance of tasks which are today the function of teachers and others on our school payrolls. The schools will have to use computers for their routine paperwork, because all projections indicate both that teachers' time will be in even shorter supply in the future than it is today, and that paperwork will increase as more students attend school. Even now—in early 1966—a few scattered school districts are successfully putting computers to work to relieve their staff of routine, time-consuming clerical tasks. Such jobs as scheduling of students, classrooms, and examinations, attendance reporting, grade reporting and analysis, preparing health notices and summaries, etc., are today being handled with dispatch by relatively small computer systems. Before many more years, every U.S. school district which serves an area of growing population will have to choose between automating and drowning in unavoidable paperwork.

The United States Office of Education is sponsoring a number of such projects. A brief summary of these will be found in a recent issue of American Education. An attempt to provide a wide range of computer services, covering a large geographical region from a central location, is currently in progress in the NEEDS (North East Educational Data Systems) Project.

The mere avoidance of routine paperwork, however, is hardly to be regarded as an advance in education. Administrative problems may be eased, but pedagogy remains the heart of the problem. The important innovation in the education process itself will be the use of computing systems in at least part of the instructional transaction: that is, some of the time that the student spends in learning will be spent in interaction with a computer, or with materials assembled for him by a computer.

Ever since Skinner's 1954 paper describing the advantages of having students learn by interacting with a program of instructional steps (called "frames") it has been obvious that, at least theoretically, the computer—with appropriate input and output devices—is the ultimate teaching machine: its storage capacity and speed, its ability to handle many input stations, and its potential flexibility in recognizing and responding appropriately to many different kinds of input, all suggest that the computer is the tutor whose flexibility and responsiveness cannot be exceeded. Computer manufacturers, universities, and other organizations with available hardware were quick to set up computer-assisted instruction experiments, and the literature is full of their reports. However, going through these reports can often leave the reader with the impression that we are already there—that as soon as a few refinements are made, a few bugs worked out of already-existing systems, we can present these electronic teaching machines to the educators, and get on with our other work.

Unfortunately, the solutions aren't as simple as some of the current reports imply. To identify and discuss the shortcomings which characterize much of the work published to date is beyond the scope of this article. The reader interested in state-of-the-art reports is referred to Coulson and Glaser. Instead, we will describe an alternative approach (Fig. 1) to computer-assisted instruction which seems to offer an effective answer to the mounting problems of teachers and schools.

the district computer

The school district of tomorrow will include a central computing system, located at the districts' administrative offices. Each of the schools in the district will be connected to the computer, and each will contain a terminal equipment station, with devices for reading and transmitting information to the processor, and devices for printing.

2 As an assist to educators for whom data-processing concepts may be new, there are texts which employ educational applications as examples. See A. Grossman and R. L. Howe, Data Processing for Educators, Chicago: Educational Methods, Inc., Aldine Publishing Co., 1965.
SCHOOL OF TOMORROW . . .
and image reproduction from the processor. The system will be used for all the routine operating and accounting paperwork, as well as the administrative decision-making of the kinds mentioned above. In addition, the system will be used for all the routine operating and accounting paperwork, as well as the administrative decision-making at individual school terminals. Materials such as lesson and image reproduction matter content of many courses, and transmit images, etc., can be selected by the computer and the images reproduced in the form and at the location where they are needed.

During a class meeting, the teacher may hand out sets of lesson sheets to each student. A lesson is part of an instructional program and is designed to be completed in anywhere from 15 to 45 minutes. Each lesson sheet is reproduced with the identifying information—school, teacher, subject, class, student, and lesson, page and frame numbers—across the top, in a man- and machine-readable character set. Upon completion of the class, the teacher collects the lesson sheets, returns them to the envelope, and drops off the envelopes for all of his classes at the terminal station at the end of the day.

The afternoon shift at the terminal station is supervised by one of the school district's full-time machine operators, and assisted by students themselves (students who need financial assistance in getting through school, and those enrolled in computer science programs get first priority in assigning the part-time work). They unload the envelopes, feed the sheets into the scanner, and replace the sheets in the teacher's in-box.

The lesson sheets for each student in each class—anywhere from 5 to 20 sheets per student per class—are read by the scanner and stored in the buffer. The computer empties each of the terminal buffers at each of the schools upon signal that the buffer is full. "Buffer ready" signals are stacked during peak loads, and handled on a first-in-first-out basis. Each student's work on each lesson—the answers he provided to the questions he encountered in the frames—are graded for accuracy and completeness.

The results go into each student's record and onto the teacher's class summary, and are also noted on course performance summaries, so that the curriculum design and instructional program writing groups will have continuous information by course, lesson, and frame of any deficiencies in any program's performance.

Together with the lesson sheets, the computer provides the teacher with a class summary sheet, which lists by student any errors, ambiguities, or uncompleted frames which occurred in the previous lesson. If a student misses the lesson due to absence, that, too, is noted. The class summary also lists the cumulative history of progress in the course by student, including total number of frames completed, quiz and examination grades, frame error rate, and frame completion rate. High, low, and average figures for the class as a whole also appear in the class summary.

Computer checking and selection

When it has digested the results of each class's performance, the computer composes the next lesson: it notices that a concept which had been adequately mastered by the class two weeks ago was not thoroughly understood in its relation to the concept presently being taught. So the computer selects for inclusion in the next lesson frames which sharpen the generalizations and discriminations comprising the relationship between the two concepts, then it goes ahead with frames on the new work. That the class needs this more careful review and covering of this material is, of course, noted for the benefit of the teacher on his class summary sheets (the fact also appears in the program-performance information for the program design groups).

The frames selected for the next lesson are assembled from storage into pages, and the identifying information is added to each page. Included with the lesson pages for each student are whatever ancillary material—diagrams, tables, photographs, etc.—he may need for this lesson, or

Dr. Cook is director of educational planning for Basic Systems and has been a member of the faculties of Columbia Univ., Barnard College, and Fairleigh Dickinson Univ. His consulting assignments have included work for the President's Committee on Juvenile Delinquency and Youth Crime and the President's Task Force on Poverty.
Click. Click. Click.

Your records are ready for data processing.

Now, your records don't have to be tied up when you convert to punch cards.

We come in and microfilm your company records on the spot. Then, we make xerocopies of your records from the microfilm. And the xerocopies are used to set up your data processing unit record system.

We meet government security standards. So confidential material stays confidential. And you get back all existing copies, plus microfilm file, if desired.

No inconvenience. No delays. No records lost. No matter how big or complicated the job is.

Just the click, click, click of the microfilm camera.

Go ahead—clip it out. We'll send you all the details.

Xerox Record Conversion Service
Xerox Reproduction Service
P.O. Box 3300, Grand Central Station
New York, New York 10017

NAME_________________________
TITLE__________________________
COMPANY________________________
ADDRESS_________________________________
STATE_________________________ZIP__________

CIRCLE 22 ON READER CARD
Voltage variations cause computers to make mistakes...

cause downtime, too!

Voltage surges cause damage to component parts, p.c. cards. Voltage dips cause memory loss, digit drops, loss of parity.

Voltage variations outside the limits of your equipment cause costly mistakes. Elevators, motors, plant equipment and other voltage-demanding equipment surrounding your plant or building are the culprits.

Protect your equipment and data with the Solatron® voltage regulator. Special 3-phase computer models provide ± 1% voltage regulation, correction begins in first ½ cycle.

SCHOOL OF TOMORROW . . .

may want to keep for future reference. In addition, whatever material is designed for the teacher's use—visuals for class display, descriptions of relevant experiments, questions for quizzes, etc.—is included with his class summary sheets.

Once all the material is assembled, the computer then connects the storage unit to the long-distance image producer at the school terminal, under control of the selectors it has chosen and stored. The lesson pages, reference material, teacher's aids, and teacher's summary sheets are then reproduced, where the terminal room staff pick them up, and do whatever collating and stapling is required. The class package is then placed into an envelope and dropped in the teacher's box for pickup prior to the next class meeting.

The system described above has many appealing features: it avoids the cost of providing individual student teaching consoles; it allows the teacher complete choice of and control over how much of the instructional program he wants to use, and when he wants to use it. If a student misses a class, he can make up the basic lesson work before the next class. If the teacher is absent, the substitute knows precisely where the class is in the course, and the lesson is "prepared" in advance. The teacher has a public record of each student's performance, and can devote his time more effectively to his role as model, counselor, and diagnostician.

The gains resulting from the reduction of lead time and inventory problems produced by such an arrangement may have even greater impact upon the effectiveness of educational management than that experienced in industry and business.

the need for natural-language processing

Any computer-assisted instruction system worth its cost must be able to read handwriting, and interpret lengthy statements in natural language. This requirement is inherent in minimal educational goals. While we can always make things easier for systems designers by compromising these goals, the informed and skilled citizen capable of functioning in the world of tomorrow will be called upon to measure up to goals which the student cannot learn to meet by pushing multiple-choice buttons, or writing one-word answers in blanks. He must not only be able to answer properly questions like:

"Whales' are fish. True or false?"

He must also be able to answer properly open-ended questions, such as:

"Someone says to you that whales are fish. Explain to him why he is wrong, including in your explanation at least two similarities and three differences."

The design implications of these differences in educational goals are discussed by F. Mechner in "Behavioral Technology and Science Education," in Glaser.

It will require sophisticated compilers to process and evaluate such answers, and this requirement represents the major technological obstacle standing between the experiments of today and effective computer systems for instruction in the schools of tomorrow. For the fruition of the prospects here sketched, a no-less-formidable task must be undertaken in the field of educational science: that of specifying the pedagogical rules which control the computer in its decisions and selections.

For most rapid progress, these two tasks should not be addressed separately. Evidence is heartening that the required forms of cooperation between the educational and computing sciences are beginning to emerge.
Introducing two new Burroughs 500 Systems:
B 2500 and B 3500

They’re built to respond to your needs instead of making you respond to theirs

These two new user-oriented computers are the latest Burroughs 500 Systems to be built by teams of hardware and software experts.

Burroughs started this new hardware/software integration trend with the B 5000, perfected it in the B 5500, and further implemented it with the other Burroughs 500 System, the B 8500 (the most powerful system yet designed).

Now this new level of computer responsiveness to business and scientific problems is available to even the smallest organization with a requirement for electronic data processing. Here are just a few of the impressive characteristics of the new Burroughs B 2500 and B 3500:

1. Extremely fast hardware speeds, some measured in billionths of a second.
2. The ability to do many unrelated jobs at once (multiprocessing)—and to continue doing them without interruption even if you drop in a sudden rush job.
3. An unprecedented degree of self-regulation in low-cost computer systems via a choice of two operating systems: the Basic and Master Control Programs.
4. Programming that’s so simple it can be started by one programmer and continued by another—or divided up and then integrated by the operating system.
5. Higher level programming languages (COBOL and Fortran) which save time and money.
6. A special suitability to real time, data communications and time sharing problems.
7. The ability to accommodate the fastest random access disk file on the market.
8. From 4 to 20 input/output channels (all of which may be active simultaneously and still leave ample time free for computation) plus multiplexors and exchanges that allow great flexibility and simultaneity of input/output operations.
9. Monolithic integrated circuit design which produces greater speed and reliability and reduces size and costs.
10. Emulators which make it simple and quick to convert from our B 200/B 300 systems or from 1401, 1440, or 1460 systems.
11. An unprecedented responsiveness which makes all aspects of change on these systems economical, quick and orderly.

The B 2500 and B 3500 share in one other important characteristic. They are both products of Burroughs acknowledged excellence in electronic data processing.

Burroughs Corporation
Detroit, Michigan 48232

May 1966
we don't mind making the second fastest large scale memory system.

That's because we also make the fastest. How fast? 650 nanoseconds for a full cycle with an access time of 300. That's our NANOMEMORY™ 650. It handles up to 16,384 words of 84 bits. They don't come any faster.

Right behind it, our NANOMEMORY 900 completes a cycle in 900 nanoseconds with an access time of 350 for the same capacity.

We've been able to reach these speeds by using a simple but ingenious magnetic organization. We call it 2½ D. It combines the speed potential of linear select with the economy of coincident current techniques. We've also reduced stack connections by 80% and widened operating margins to increase reliability.

Both these compact memory systems fit perfectly into real time or high speed computers and checkout systems.

If you've been looking for a memory system that delivers close to thin film speeds at magnetic core prices, stop looking. We've got two. For complete details on our NANOMEMORY 650 or 900, write or phone.

electronic memories

Memory systems, stacks and cores for commercial, military and space applications.

12021 Chadron Avenue, Hawthorne, California

(213) 772-5201

CIRCLE 25 ON READER CARD

DATAMATION
Helios, the sun god of ancient Greece, began each day by hitching his chariot to hybrid winged horses. They pulled him through the sky to his home in the West. Thus Greek mythology recorded one of the first instances of hybrid power.

Like Helios, you can harness your simulation problem with a Beckman hybrid computer. Years of research and development have culminated in a field-proven, solid-state system. Complementing this hardware achievement is a comprehensive library of hybrid software designed by personnel familiar with its practical application.

Follow the leader in hybrid... follow Beckman. Write for our new brochure, “Beckman/SDS Hybrid Computers,” or contact your local Beckman or Scientific Data Systems representative.
Don't be "sweet talked" into throwing your money away

You can throw away hard earned dollars by investing in copying equipment that doesn't do the job you want it to—or doesn't duplicate the way you expect it to—or gives you a "cost-per-copy" figure that doesn't include the cost of paper, labor, supplies, etc.

Remember

Quality — Our Multilith Offset 2550, teamed with our Bruning 2000 copier, gives you sharp, clear "original" copies every time.

Speed — You won't have to wait an hour to get 2400 copies. Multilith 2550 duplicates at 9000 copies per hour.

Versatility — You can duplicate copies on a wide assortment of sizes and paper stock. No special paper required. And, if you like, copies can be sorted automatically, ready for immediate distribution.

Save money, too — You know the exact cost of duplicating copies with Multigraph® equipment. The more you make the lower the cost. You can even duplicate on both sides of the paper, if desired. Ideal for all kinds of business documents.

So, talk to your Multigraph man today. He's in the Yellow Pages. Or write Addressograph Multigraph Corporation, 1200 Babbitt Road, Cleveland, Ohio 44117.
Unique concept advances frequency bandwidth of CEC recorders

CEC's multipurpose VR-2800 and VR-3300 Magnetic Tape Recorder/Reproducers now offer an extended frequency range of 100 cps to 300 kc. Most significant, this increased bandwidth was accomplished without the use of head drivers or reproduce preamplifiers, using field-proven heads and electronics.

Reason: the advanced capabilities of CEC's exclusive all-metal-surface magnetic heads.

Result: greater simplicity, performance and reliability at considerably less cost.

CEC magnetic heads are so reliable that many have logged more than 10,000 hours — and are still going strong.

As you may know, the six-foot VR-2800 laboratory recorder (right) and compact VR-3300 portable recorder (left) are among the recorder/reproducers most in demand in industrial and military use today. Although they differ in dimensions and applications, both share the same basic performance advantages and incorporate interchangeable electronics.

Other outstanding features:

- Complete 7 or 14 channel record/reproduce systems.
- Six speeds from 1 1/2 to 60 ips.
- Loop adapters available on both systems.
- Direct, FM and PDM electronics.
- Records data at 1/2 the speed required for conventional recorders.

- Uniform tape tension at all recording speeds.
- All components immediately accessible from the front.
- Solid-state electronics throughout.

For complete information about these outstanding recorders, call or write CEC for Bulletins 2800V-X1 and 3300V-X1.
APOLLO

Apollo's return from the moon is a planned splash in the Pacific Ocean. The total computer system problems involved in steering radars, acquisition, and tracking of Apollo aboard a sea-tossed vessel, and the continuous prediction of a splash point, were assigned by LTV Aerospace Corporation — Range Systems Division — to Planning Research Corporation.

For complex computer and engineering problems, whether sea-based, space-based, or land-based, Planning Research systems synthesis is complete. It begins with total systems analysis and design engineering — and ends with final checkout of any computer system. Applied, it saves time or money or both. Write for a complimentary brochure: Computer Systems Analysis & Programming. Address Dr. Alexander Wylly, Vice President for Computer Sciences.

PLANNING RESEARCH CORPORATION
Including the merged capabilities of Mesa Scientific Corporation
Home office: 1100 Glendon Avenue, Los Angeles, California 90024
The 15th International Data Processing Conference and Business Exposition of the Data Processing Management Assn. will be held at the Conrad Hilton Hotel in Chicago, June 21-24. Registration fees for the conference are $75 for DPMA members; $85, non-members.

The keynote speaker, H. I. Romnes, president of AT&T, will address the opening session on: “Managing the Information Revolution.”

The conference program will focus on four seminars in the areas of information management panoramas and techniques, data management guidelines, and special sessions. The Bell Data Transmission Workshop will be included in the seminar on information management techniques. The workshop will feature live demonstrations of existing data communications equipment and techniques, and will be presented at the Bell Seminar Center. Harry J. Goettel, seminar program supervisor, will review the latest in communications devices and discuss proposed changes in terminal equipment and new types of communication channels which are capable of transmitting millions of bits per second.

Eight special sessions are designed to assist data processing personnel in preparing for information management systems. Discussions are planned on the motivation of administrative personnel, and the introduction of computers in small businesses and educational administrations.

R. J. Taylor and Jerome Tagg of Honeywell EDP will enlarge upon management information and control systems in a case study. Under scrutiny: Honeywell's Micro-Switch division. Initially aimed at inventory control and sales order processing, the division's dp system now encompasses virtually all aspects of material allocation, fabrication, order and shipping functions, costing, and market forecasting, the spokesmen will report.

They will detail the master file concept that forms the backbone of the system, sales order processing, materials planning and control, production scheduling and dispatching, financial control, and management planning (including sales forecasting, product stocking and budgeting).

RCA and Chrysler Corp. will team in the presentation, “A Nationwide Real-Time Warranty System.” Representing Chrysler will be Frank A. Kros, manager, Data Processing Development, and from RCA will come William L. Bones, branch manager. Chrysler management believes that its return to significance in the automobile market is largely a result of its decision, in 1962, to offer a warranty of five years or 50,000 miles. While an important impetus to sales, the warranty posed a monumental problem in determining the continuing eligibility of cars under warranty.

A warranty edit and inquiry system was then developed and processing now includes the editing, coding, and updating vehicle histories, editing transfers and mechanical reports and handling inquiries. The RCA Race files contain vehicle serial number, body style, production date, option codes, sales data, selling dealer, color, trim, and certain special codes on all vehicles built. From this system, the firm can inquire as to the status of as many as eight million cars an obtain an answer in about six seconds from an inquiry from any one of 46 regional offices or local marketing offices.

Reporting on an airline's plans for a $50-million information system will be John W. Porter, manager of Organization Planning for United Air Lines, and L. E. Johnson, vp, Univac. It will be built around a centralized complex of three Univac 1108 computers that will be accessible by some 2,000 CRT input/output devices on a nationwide basis with a one-second response time. Alpha-numeric capability, multi-processing, shared core and high-speed mass storage, and visual display devices all were considered in the up-dated system. With these advanced technologies at their fingertips, United found that in addition to the passenger reservation system required, they could add an electronic information system. Thus, four current computer systems are expected to be merged into the future system. The four include the Instamatic system, an electronic switching system for administrative communications, automatic flight planning and monitoring, and performance statistics. Eight other manual operations, such as schedule and tariff information, ticket printing, routing, menu planning, etc., are headed for computer processing, the spokesman will explain.

“The Evolution of a Management Information System”
The Fabri-Tek Series MFA1 one-microsecond coincident-current core memory system offers you unsurpassed reliability, versatility, maintainability, and lowest ultimate cost.

All-silicon semiconductor construction assures maximum reliability and longer life in the operating temperature range. Word capacities are available from 32 to 32,768 in any desired bit length. Full-cycle, half-cycle, full-and-half-cycle, and split-cycle operation and all types of access modes are possible. Any combination of address register, data register, power supply, and self-test features can be ordered.

If you have a requirement for 1-microsecond memories and won't be satisfied with anything but field-proven quality, then the Fabri-Tek Series MFA1 system is your answer. Ask for Bulletin 6534A. Write, call, or wire: Fabri-Tek, Incorporated, 5901 South County Road 18, Minneapolis, Minn.; phone: 612-935-8811; TWX 910-576-2913.

FABRI-TEK LEADS IN MEMORY TECHNOLOGY

Check with Fabri-Tek for rewarding engineering opportunities!
will detail the dp system developed for the Gray Co. Inc., a Minneapolis manufacturer of air-powered lubricating, spraying and cleaning equipment. Grayco's IBM 1401 presently serves the manufacturing, marketing, and finance areas of the company. The engineering phase will be converted to computer processing when the company installs an IBM 360/40 this year. Presenting this review of a computer's capability in the manufacturing process will be Eugene J. Laguban, Jr., systems manager for Gray, and two IBM marketing representatives, Thomas B. Long and John D. Walker.

information management techniques

Eight seminars have been scheduled for the Information Management Techniques segment of the Conference. A popular feature on the agenda, these seminars offer an important exchange of ideas and developments for the data processing analyst.

Optical Scanning. A progress report on “Optical Scanning for Information Management” will bring together Herman Phillipson Jr., president of Recognition Equipment Inc. and Thomas Janning, manager, Field Engineering, The Standard Register Co.

In reviewing the evolution of computer processing, Phillipson will review the advantages and disadvantages of remote, time-shared terminals, voice recognition and magnetic ink character recognition before concentrating on the status of optical character recognition. After a discussion of cost, he will explain reading techniques, vocabulary, paper handling, format definition, and on-line processing as functions of an OCR system. Five existing applications of optical scanning will be presented.

Standard Register's field engineer will explore the COR equipment in use, study some of its applications and list some of the field's drawbacks. Department store and utility billing are two illustrations he will draw upon. He will also discuss recommended paper stock for this equipment, ink specifications, and forms design.

Data Display. "New Techniques for Data Display" will be the topic shared by Robert Petersen, chief of systems, Stromberg-Carlson Div. of General Dynamics; and Michael Noll, Bell Telephone Labs.

Admitting that the development of data displays has been slow compared with the rapid evolution of computers, Petersen will discuss new hardware and techniques.

Instant access to information. Guy Dobbs, manager, Computer Center Dept., System Development Corporation; and William Emmons, executive vice president, KEYDATA Corp., will explore "Man-Machine Interaction: Instant Access to Information." A case history of a time-sharing system now in use in the research and technology laboratory of SDC will provide the theme of Mr. Dobbs' remarks. In describing the center's operation, he will detail plant layout and operations, time delays for requested information, accuracy and security of records, communications, and output. He will also review managerial aspects of operations and management aids.

Data Communications. Speakers from Chrysler, Ampex, and Clark Equipment Co. will head the seminar, "Data Communications Information Management Systems."

Describing data communications as the nervous system of information management, seminar leaders will enlarge upon the problems involved in the organization and functioning of data communications systems in both large and small business and manufacturing operations. They will also describe the latest equipment and techniques available for efficient data communications. Representing Chrysler will be Robert Franklin, general supervisor of Data Communication Planning. Paul Hickey, manager of advance Systems, will speak for Ampex, and Don Dantine, director, Management Services, will represent Clark.

Effective use of simulation. Three men will share the rostrum in this seminar's investigation of simulation. They are Kenneth J. Soderstrom, manager, Operations Research, U.S. Div., Corn Products Co.; Donald H. Ross, manager, Management Sciences, International Minerals & Chemicals Corp; and Samuel M. Syverud, manager, Management Science Div., John Deere Co.

Describing how operations research and, in this case a simulation study can be of help in management decision making, Soderstrom will take as his example a manufacturing and distribution problem a company was faced with when sales forecasts predicted that product demand would soon outstrip production facilities. His paper will explain how a simulation program enabled management to arrive at optimum use of existing manufacturing facilities and helped plan the location and capacities of proposed plants.

Rounding out the Information Management Techniques seminars (with the exception of the Bell Data Transmission Workshops reported elsewhere on these pages) will be a discussion of "The Place of Design Engineering in the Total Systems Concept," and a seminar devoted to "Computers in our Space Program."

data management guidelines

Highlight of the conference will be eight separate discussions of management guidelines developed—as official association principles—to help managers in the control of systems, procedures, programming and data processing. The first seminar, "Intermediate and Long Range Systems Planning," will be presented by Irwin T. David and Henry S. Moss of Touche, Ross, Bailey and Smart.

Much is known about the developments of the next five years, and the systems planner will have little difficulty in predicting requirements, say, in display technology and direct access storage, according to the speakers. But certain disciplines will be required when the planner moves out of the short range picture. "It is extremely important that an attempt be made to project an organization's
Digitek is about to deliver the world's first full-language PL/1 compiler. This, in itself, is not startling when you consider the source.
systems capability out as far as 10 years and to give recognition to major trends and forces that may have an impact over that period."

The planner cannot neglect the environmental considerations of the firm's future business life, the speakers add. Purchasing and consumption of goods, strategies of competitors, and the rate of new product introduction must all be examined for the long term.

Haskins and Sells will send three consultants from the firm's Management Advisory Services Dept. to discuss, "Defining an Organization's Information Requirements." The speakers will be Richard C. LeRoy, Vito G. Petruzelli and Frederick S. Marks Jr.

This panel will review the structuring of a management team to study data requirements. "The study team's obligation should be to document the study objectives through a review of the organization structure. All major subsystems of the company should be investigated. Possible changes in organization should be noted for possible incorporation into the new design," the speakers recommend.

"Machine Selection" will be presented by Cecil Taylor, manager, Management Controls, Peat, Marwick, Mitchell & Co. Whether the machine study is approached on a team or committee approach, all areas of susceptibility must be uncovered so that the objectives of the study will be accomplished, Taylor says. These areas may include clerical functions, presently mechanized functions, or procedural changes. "Whatever the area involved, consideration should be given to the ease of converting an application and its effect upon the system as a whole."

Information needed by the vendor will include systems concepts to be followed, application areas to be considered, source documents required, a record index telling what data fields apply and how large they are, report volumes and requirements, data volume statistics, data flow charts, and report formats.

When evaluating proposed systems, an operating schedule should be made for each systems. Another screening level may be possible from the standpoint of timings or requirement discrepancies. "A final evaluation should verify compliance with proposal requirements. Numeric weights will then be assigned criteria within these requirements. After establishing an evaluation scale, ranking requirements, and assigning numeric weights to requirements, the system can be evaluated against the proposed criteria."

In documentation, an economic analysis of the resulting system should be prepared by developing non-recurring and operating costs, he concludes.

countrol systems and programming projects

Greater control and flexibility in systems work is being accomplished today by utilizing the project form of organization, attendees will learn from a team from the Management Advisory Services department of Price Waterhouse & Co. Seminar speakers P. A. Christensen, W. T. Meyers and J. F. Moynihan will list the five important characteristics of the project approach that cover the goals, cost commitments, measurable results, a set of events that assures prerequisites for adequate control, and a review in the form of a post audit.

"Establishing project goals in sufficient detail and determining interrelated activities comprising the project jointly form the basis of a task called "scoping the project," according to the team. "Scoping also provides for assigning responsibilities and checkpoints."

A seminar prepared by Stanley L. Cornelison and William E. Ellingson, both managers of the Administrative Services Div. at Arthur Andersen & Co., covers "Program-
What's going on out there?

Ocean Drilling & Exploration Company of New Orleans has engineers, 300 miles away, who have to know. Otherwise, supplies and decisions needed for daily drilling operations could be delayed, which might result in costly downtime.

Bell System Data-Phone* service is the vital link in the chain of communications.

The information flows from the nine offshore drilling rigs to the company's warehouse via radio, and on to headquarters in New Orleans over Data-Phone data sets. Where tedious and time-consuming manual copying of reports had been the procedure between the warehouse and headquarters, copies are now quickly and easily transmitted using facsimile machines and Data-Phone data sets. And the information is sent over regular telephone lines.

"Reports are in every morning, and there is less chance of human error or omission," says Mr. Charles S. Howe, superintendent of the General Services Department.

Business operations depend on fast, effective information flow. Our Communications Consultant is ready and able to help you plan a communications system to meet your business needs.

*Service mark of the Bell System
DPMA . . .

The systems managers will emphasize standard conventions as the rules associated with the detail design of the system as well as the manner in which the programmers develop and document the computer programs in the system.

"Once the details of report layouts, data record layouts and processing functions have been finalized, these facts must be available to systems analysts and programmers alike to insure that these individuals always have ready access to correct information," the speakers emphasize. In documenting operating procedures, care must be taken to spell out both computer operating instructions and manual procedures.

Two managers from the Management Consulting departments of Lybrand Ross Bros & Montgomery will tackle the question of "Making EDP Controls Work for You." Jerome D. Baker and William A. Kane will discuss potential reliability in the control of information systems. The theme is that control concepts, properly applied, will work for you.

The speakers will call for serious involvement on the part of executive management in assuming responsibility for planning data processing controls. Under discussion will be input controls, programmed controls, operating controls, and internal checks. Controls over the processing and conversion of media must be accomplished under some

what flexible rules and must be governed in the degree of controls by the importance of the data. The volume of transactions will also determine the degree and type of control to be established, they say.

"Procedures, such as key verification, batch totals, sight verification, or printed listings should be used only when they meet the criteria of reasonableness, in light of the degree of control required and the cost of providing control in relation to the importance and volume of data involved."

Operation & Personnel Evaluation

Arthur Young & Co. will be represented by Ernest W. Kosty and George Holthus, both associate consultants in the firm’s Management Services department. This seminar will explore "Data Processing Department Operation and Personnel Evaluation." Work measurement techniques will be investigated and standards reviewed to evaluate personnel performance, manpower requirements and equipment utilization. This discussion will highlight the characteristics of a methods-measurement program. Time study, work sampling, rated actual time and predetermined time standards will be among the techniques described.

The speakers will also scrutinize the areas of quality control checks, production standards and manpower staffing. For purposes of the methods-measurement program, the dp department will be broken down into the input output group, the data input group and the machine sections. The discussions of work-measurement techniques will cover the forms normally used, the mechanics of measuring activity, setting production standards, and reporting performance on the basis of these standards. Techniques to establish manpower budgets for each dp group will also be reviewed.

Closing these guideline seminars will be a discussion on...
How does the U.S. Army know that Alvin Smith of Council Bluffs, Iowa, is skilled enough for another stripe?

An NCR Computer tells them.

Times have sure changed in "this man's army." No more guesswork about Specialist Smith's ability, or his performance compared with other radar Specialists. Now the U.S. Army's Enlisted Evaluation Center has an NCR 315 Computer at Fort Benjamin Harrison in Indianapolis to automate "MOS" (Military Occupational Specialty) qualifications. Over a million documents including examination results and performance ratings, are processed yearly. All these data are stored on the NCR 315's unique CRAM (Card Random Access Memory) cards for instantaneous reference. The NCR 315 provides detailed hard copy reports on each man to make sure, whatever his specialty, that his capabilities and performance are known. Evaluations are continually updated as every man's military career develops. This is just another example of how the NCR team goes in and gets the job done.
the structure of a data processing function. Three representatives from Ernst & Ernst, led by David A. Woellner, will participate. Assisting him will be William S. Nebe and Robert L. Anderson, both managers in the company's Management Services department.

Here, the tasks will be one of defining the functions, natural subdivisions or facilities in the term, "data processing activity," and then relating them to the varied attitudes in the business world, to the many different operating objectives, and finally to the organization necessary to standardize an ideal structure.

Within the management environment, Ernst & Ernst recommends two broad guidelines. The first states that if data processing is not considered a corporate or entity wide function, then each recognized function should have its own structure of the dp activity. The second holds that the four major functions of dp—systems, programming, operations, and control—should report to one executive regardless of environment or level of organization.

A third guideline to be reviewed concerns the recommendation that the dp activity be considered a corporate function if computers are to be used effectively at the senior executive level. "Organization and deployment of data processing functions must then be based on the degree of sophistication comprehended by each of the major functions served and all of the people in it whether directly involved with data processing or not. The corollary is that data processing personnel need to know as much about the business functions served as they expect the operating function personnel to know about the data processing function," the report concludes.
ARE YOUR COMMUNICATIONS FACILITIES GAGGING YOUR COMPUTER?

RIXON USERS HAVE INCREASED THROUGHPUT FROM 200 to 360 CARDS PER MINUTE; YOU CAN BOOST YOUR OWN THROUGHPUT BY 80% ...OR MORE!

If line speed is slowing up the processing of data at your central site ... if the information you need in a hurry is being delayed ... you need the only data set now available that doubles your line speed: The Rixon 48M! Present users in government, the military, and private concerns report throughput increases as high as 88%. It increases efficiency ... it decreases costs, for it minimizes or eliminates completely the need for extra circuits, extra terminal equipment, extra shifts ... and it frees your computer to handle extra jobs. No compatibility problem. FCC approved, it utilizes standard telephone data lines (boosting their bit per second rate from 2400 to 4800), and interfaces with any computer manufacturer's equipment. Find out how much it can do for you. Write today for specifics:

RIXON ELECTRONICS, INC.
2120 Industrial Parkway/Silver Spring, Maryland 20904
The EMR-ASI Computer Div. has announced the first of a series of 16-bit (plus parity bit and memory protect bit) computers—the ADVANCE 6130. A fully monolithic IC model with a 0.9-usec cycle time, it sells for about $34K. The add time is 1.8 usec (including indexing), multiply time is 4.2 usec, and the double-precision add time is 2.7 usec.

For the Computer Div.—formerly the Advanced Scientific Instruments Inc., Minneapolis, acquired in 1963 by Electro-Mechanical Research Inc.—it’s a chance to penetrate the low-cost digital systems market. Specifically, data acquisition and process control. Other machines in the 16-bit series are expected to be announced this fall.

As reported last month (p. 17), features of the 6130 include 16- and 32-bit instructions, 4-32K of core, three hardware index registers (single or double indexing), 6-and 8-bit I/O channels (programmed, multiplexed, or word/byte), multilevel priority interrupts, and hardware multiply and divide. The several addressing modes are indirect, indexed, doubly indexed, relative, and immediate. And the special instructions include double-precision (add, load, store), normalize, increment memory, as well as a variety of jumps and skips.

Included in the software package is a Real-time Executive, with a batch processing monitor that operates under real-time control, a Batch Processing System, an assembler, and an ASA BASIC Fortran IV that operates in a 4K configuration.

A rack-mounted computer, the 6130 is an addition to the company line that consists of the ADVANCE 6020, 6040, 6050, and 6070—all 24-bit machines.

CIRCLE 160 ON READER CARD

Lockheed Missiles and Space Company operates the largest single industrial digital computer facility in the United States. It provides exceptionally versatile and advanced computation and data reduction services to all parts of the Company.

Degree and appropriate experience are required for the following assignments:

- **DESIGN** computer systems and evaluate equipment for information retrieval, graphic processing and real-time missile component testing.
- **DEVELOP** advanced software operating and programming systems on IBM 1410/7094 computers and Univac 1107/1108 computers.
- **OPTIMIZE** commercial programs for efficiency and cost reduction and adapt programs to new equipment, certifying for conformance.
- **DEVELOP** real-time data systems for commercial applications such as source data acquisition, updating, retrieval and administrative control systems.
- **ANALYZE** and program new business applications on medium and large scale computers. Develop financial, engineering, manufacturing and procurement integrated systems for real-time and off-line functions.
- **PROGRAM** and operate analog or hybrid computers and differential analyzers. Define models for simulation of aerospace guidance and control problems and analyze results.

Please write Mr. K. R. Kiddoo, Professional Placement Manager, Lockheed Missiles & Space Company, 443 Industrial Relations Building, P. O. Box 504, Sunnyvale, California

May 1966

CIRCLE 38 ON READER CARD

“LOOK AT LOCKHEED IN COMPUTERS AND PROGRAMMING...”

ANALOG BUSINESS SCIENTIFIC DIGITAL

SUB-SYSTEMS DIVISION
SEALECTRO CORPORATION
HOYT STREET • MAMARONECK • NEW YORK
PHONE: 914-698-1600 • TWX: 710-566-1110
Sealectro Ltd., Portsmouth, Hants, England

CIRCLE 123 ON READER CARD
Lost at sea: $2,129.68 and 14 days!

TWA compares surface vs. air on a 6,200 lb. computer shipment from Pittsburgh to Rome.

<table>
<thead>
<tr>
<th>Via Surface:</th>
<th>Time: 15 days</th>
<th>Cost: $4,975.48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging</td>
<td>$ 700.00</td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td>1,980.00</td>
<td></td>
</tr>
<tr>
<td>Inland freight (Pitt-N.Y.)</td>
<td>428.40</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>22.00</td>
<td></td>
</tr>
<tr>
<td>Ocean freight</td>
<td>476.08</td>
<td></td>
</tr>
<tr>
<td>Customs clearance</td>
<td>52.00</td>
<td></td>
</tr>
<tr>
<td>Inland freight (Naples-Rome)</td>
<td>281.00</td>
<td></td>
</tr>
<tr>
<td>Interest charges</td>
<td>1,036.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Via Air:</th>
<th>Time: 15 hours</th>
<th>Cost: $2,845.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging</td>
<td>$ 20.00</td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td>900.00</td>
<td></td>
</tr>
<tr>
<td>Inland freight</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Air freight</td>
<td>1,832.80</td>
<td></td>
</tr>
<tr>
<td>Customs clearance</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>Inland freight</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Interest charges</td>
<td>74.00</td>
<td></td>
</tr>
</tbody>
</table>

Savings in shipping costs are immediate...and just the beginning. There are other benefits: reduced inventory and warehousing costs, better customer service, increased sales in time-limited situations.

The speed of air also cuts your investment in goods in transit, increases capital turnover and holds obsolescence to a minimum. Get all the details. Call or write your nearest TWA Air Cargo office.
How's the new time sharing computer? You say the central system's on the air and all the remotes are on line, but the queue is beginning to back up? Your programs are running sluggish? The time sharing executive's a bit sticky, the real-time compiler's even worse, and you've got no hardware validation monitor at all? Yesterday your system library was used as the scratchpad and some clown with a light pen wiped out your priority structure? Now a sore loser is running amok with a degausser, erasing everything in storage? Be calm! IDC is here.

Whether it's a problem involving displays, mass storage, real time executive routines, real time compilers, dynamic storage allocation, remote hookups, communications systems, design, let IDC help you find the right solution. IDC has a complete range of systems programming experience and an unbeaten track record for bringing the job in on time. At a fixed price that's right. For an improved perspective on your software management problem, contact IDC now! 1621 East 17th Street, Santa Ana, California. Phone: (714) 547-8861.
Magnetic Media Corporation develops a fourth generation computer tape... 829,440,000 bits on an 8½” reel

MICRO MEDIA 25

One 8½” reel of ‘Micro Media 25’ stores 829,440,000 information bits — as much as two standard 10½” reels. You get 4800 ft. of tape in one-fourth the storage space you now use.

MICRO MEDIA 25 is the most advanced computer tape available. MICRO MEDIA 25 is a new development which one day will make all other tapes obsolete — and it took the technical capability and precision equipment of Magnetic Media Corporation to produce it.

Magnetic Media Corporation has dedicated itself to solving tomorrow’s problems today by constantly extending existing parameters. Innovation is our key activity — only by performing in unexplored areas can the standards of the industry be raised. All products which bear the Magnetic Media trademark reflect those high standards. Try MICRO MEDIA 150 today — insist on MICRO MEDIA 25 tomorrow.

For further information, contact...

MAGNETIC MEDIA CORPORATION • 616 Fayette Avenue, Mamaroneck, N.Y. 10543 • Tele: (914) 698-8660
HONEYWELL BUYS COMPUTER CONTROL COMPANY

Honeywell's $29 million acquisition of Computer Control Co., Inc. marks the addition of many new dimensions to the firm's data processing capabilities. CCC, sold for 345,000 shares of Honeywell common stock, is a 1300-man digital systems firm based in Framingham, Mass., and operating three manufacturing plants. Its sales for the last two years have been in the $20 million range, with almost half of that reportedly stemming from logic modules sales.

Honeywell has said 3C will operate as a separate unit, maintaining its personnel, plants and product lines. The new and supplementary capabilities 3C provides include first, a well-established market in digital subsystems and modules, such as i.e. logic modules, i.e. core memory systems, and magnetostrictive delay line memories. Major computers in its line are the DDP-116, 124 (its first i.e. system, announced last May), and 254; the price range is from $28.5K to $120K. All these products are primarily sold to systems-building firms for use in such areas as process control, railroad traffic control and aircraft simulation; 3C also produces complete special systems for graphic arts, machine tool control, communications, and other industries.

Honeywell, although its major market is business dp, does manufacture process control systems (H-20 and 21) at its Industrial Division in Fort Washington, Pa.

CCC also manufactures some of the monolithic integrated circuits for its equipment; Honeywell does not have this facility (although it has three i.e. research and development centers), and the larger systems in the H-200 series uses these circuits. Honeywell resources that could aid 3C computer sales are its extensive line of peripherals and its marketing rights to Bunker-Ramo 200 and 400 displays. An area 3C has not explored, although its computers are qualified, is the general scientific market; a larger marketing force is needed, to enter the fray, but the Honeywell group is business-oriented and doesn't seem likely to provide that power.

Both firms have overseas marketing staffs, but only Honeywell has manufacuting plants abroad; conceivably some of the 3C line could be produced there. The agreement which permits Bunker-Ramo to use 3C hardware and technology on a worldwide basis is still in effect.

Financially, 3C's earnings were down in fiscal '65, due, said the firm, to an "unusually high concentration" of new product announcements. Sales in '65 were almost $24 million with earnings of $388,000, compared to $19 million in sales and $525,900 in earnings in '64. The prospect is brighter for '66, as first-quarter sales hit $6.6 million with a net after taxes of $339,000.

GROSCH SPEAKS ON DEACON DATA BASE SYSTEM

A small-scale data base system called DEACON (Direct English Access and Control), being developed by a 24-man group at General Electric TEMPO in Santa Barbara, Calif., was described recently by the project manager, Dr. H.R.J. Grosch. Addressing the Los Angeles chapter of the ACM, Grosch said the project is an attempt to: (1) enable the user and system software to structure data to reflect the "world view" and semantic preference of the person who put it in and will be taking it out (same person), and (2) allow the use of unrestricted, open-ended English—in its free and redundant form.

Currently operating, for example, is a data base "world" that consists of 12 ships moving in and out of six ports. If the user were to ask, "What ships are in Boston Harbor?" the system would list not only those ships in the harbor but also all ships whose home port is Boston; DEACON is thus not able to distinguish which listing is desired by the way the question is phrased. However, by asking, "In what port is the carrier Forrestal?" the interrogator would get the correct answer.

Drawing an analogy, Grosch said the system resembled an executive secretary who didn't understand the
New LINK Waveform Display/Analyzer—precision film reading and recording with one machine.

Here is a new graphic input/output device that can help reduce computer time and programming costs significantly. The Waveform Display/Analyzer allows real-time access to information and immediate updating and analysis. You can change the display with a light pen and keyboard and request further action from the computer without the assistance of a programmer.

The light pen lets you alter, add and delete data. You can move, enlarge and reduce images, plot graphs, and label displayed information. Problems can be altered for further analysis. It is not only a problem-solving tool—it's a system for producing new designs.

The light pen saves time and cost by eliminating the need for an output record, thereby cutting down on equipment and producing answers more quickly.

AND THESE OTHER FEATURES—
• Scan a film image or waveform and digitize the data.
• Display data and images on a high-resolution CRT.
• Store computer output data on film in black-and-white or a 16-level gray scale.
• Handle large amounts of information by film scanning—(1024 x 1024-bit matrix with 16,380 x 16,380 also available).
• Buffer system storage capacity 1024 words, 36 bits each.
• All solid-state circuitry.
• Utilizes interchangeable film transports making it possible to use 16mm, 35mm and 70mm film in both the read and record mode.

The Waveform Display/Analyzer can operate as a single unit with one small binary computer or as one of several time-shared units on a large host machine.

For an informative brochure, write to Advanced Product Sales, General Precision, Inc., Link Group, 1451 California Ave., Palo Alto, Cal.
news briefs

business. With some training, however, she would be able to find the information her boss seeks on the basis of a terse word or two. DEACON is an attempt to develop this type of relationship, thus the importance of the man seeking the information being the same one who put it in.

Some 200 grammar rules are in the system, a mere one-tenth of what's needed, he said. And only 80 to 90 are in the system at any one time. Currently being added is negation. While about 3,000 words are stored so far, the capacity is 400,000 words. Other improvements contemplated are a computer faster than the GE 225 now being used, and the construction of a system having several data bases—e.g., ships at sea, personnel, etc. Delivery of the system to a user might be in two or three years, Grosch said.

DESIGNERS DEBATE SERIAL VS. PARALLEL PROCESSING

The April meeting of the Orange County, Calif., chapter of the IEEE Computer Group featured a debate on the subject of "Serial Versus Parallel Processing." Moderator was Gerard Hollander of Hollander Associates. Other participants were Dr. Richard Fuller of Librascope, Dr. Gene Amdahl, IBM, and George West, SDC.

It was agreed at the outset that definitions were required before the debates could get under way and Dr. Fuller offered four definitions of parallelism:

Operand parallel—today's conventional computer structure with one arithmetic and control unit and, for purposes of this debate, a serial computer.

Array parallel—a structure with many, perhaps thousands, of identical processors but with a common control unit.

Overlapped control sequence—a structure with some multiplicity of control and arithmetic elements operating on a single instruction stream, commonly known as a program lookahead implementation.

Parallel program sequence—a set of independent processors, each with its own arithmetic and control capability, commonly known as a multiprocessor configuration.

The discussion showed that no one was defending the serial processor but Fuller supported the array parallel type, Amdahl the overlapped control sequence (which he called "pipeline architecture," and West favored the parallel program sequence concept.

Debate ultimately centered on two of Amdahl's graphs, which purported to show that pipeline processors tended to be better than array processors (even an infinite number of them) for realistic problems, typically less than 75% parallel. Fuller vigorously questioned the basis for such a low estimate of intrinsic parallelism for certain classes of problems, while West felt that pipeline processing did not recognize the frequent requirement for graceful degradation. Hollander declared a three-way tie.

GPL SHOWS COLOR DISPLAY USING BLACK-AND-WHITE FILM

A technique for projecting displays in full color using a single frame of black-and-white film and a banded filter has been devised by the GPL Div. of General Precision, Inc. Developed for use in the Navy Bureau of Ships' C&C display system, orcon-center, the technique is still 30 seconds away from achieving "real-time," but a significant development nevertheless.

Dubbed LentiColor by GPL, it uses lenticular film, which has a black-and-white emulsion on one side of the film base and parallel lenticules on the other. Color-separation images can reportedly be made from full-color material, as well as pre-selected synthetically created colors from black and white material. Recorded in register on the film, they remain in register despite film dimensional changes. The initial exposure and subsequent projection are made through a filter that has parallel bands of blue, green, and red.

Operating with an on-line CRT, a single-lens camera with the lenticular film can photograph the face of the scope, which bears background information superimposed over computer-generated data. In the 30-second delay time, this image can be displayed in full color.

SPEECH RECOGNITION SYSTEM DEVELOPED BY RCA

Voice control of computers, extremely low-power transmission of processed speech from spacecraft ground stations, and transmission of multiple telephone conversations over one telephone wire are benefits hoped for from a Speech Recognition System being developed by RCA for the Air Force. Use of a phoneme technique is said to be the basis for greater accuracy. This is identification of the smallest units of speech (phonemes) distinguishing one utterance from another, such as the "p" in "pin" or the "f" in "fin".

The Air Force, which wants to
Management Assistance Inc.
973,762 Shares
Common Stock
(Par Value $.10 per Share)

Price $36.50 per Share

Copies of the Prospectus may be obtained in any State only from such of the several underwriters as may lawfully offer the securities in such State.

White, Weld & Co.
Incorporated
Glore Forgan, Wm. R. Staats Inc. Kidder, Peabody & Co. Incorporated
Carl M. Loeb, Rhoades & Co.

April 7, 1966

news briefs

decrease power needed in deep-space voice communications, notes that digitizing a voice for transmission requires 30,000 bps; the phoneme method, which extracts key features, requires only 100 bps. The symbols are reconstructed into words at the receiving end, being typed out or verbalized through use of a voice reply system.

The experimental system recognizes phonemes by parallel processing, using 600 identical circuits which function like neurons, performing both binary and analog operations. These artificial neurons are now able to identify, with 90-99% accuracy, 29 of the required 40 phonemes.

Development of a technique that will lead to automatic, “intelligent” program segmentation is being pursued by Celestron Associates under a contract with Rome Air Development Center. Intended for multiprogram or time-shared installations, the system is planned to be capable of accepting programs written without regard to segmentation requirements and rearranging them to fit optimally into fixed length memory segments. The system will also compute segment running time and report to the programmer on segmentation it has produced.

IBM has developed a console which can be used to take electrocardiogram readings on a hospital patient and transmit the data to a computer. The system, used at Mt. Sinai Hospital and New York University Medical Center, tells the physician only desired measurements and significant changes in the rhythm of the heart. To take an ECG, the technician first enters information about the patient, then connects leads to him. Pulses from each lead are recorded on a strip chart recorder and on the console’s tape recorder as well as being transmitted to the computer center. Only points of interest in the ECG waveform are selected, reducing the amount of data to be handled by a factor of 10.

The English financial community now has an on-line computer service which will calculate and quote prices of equities and stocks on the London and European exchanges. Intinco Ltd. of London is providing the service, called scan, using a 32K Univac 418 computer. The firm also hopes to provide New York over a direct computer-to-computer telephone circuit.
Here's how we designed our small, real-time control computer—the H21

FIRST IN A SERIES—

WORD LENGTH — small, scientific computer manufacturing costs are almost linearly proportional to word length. What is the optimum word length? Here are the critical considerations: accuracy and efficiency of data representation; a desirable instruction repertoire; efficient and simplified programming that goes with a directly addressable memory; and suitable architecture for supporting advanced software.

We chose an 18-bit word for our H21 real-time control computer. It gives a data resolution of one part in 262,000—and packs three alphanumeric characters into each word. The extra bits provide for a larger, more powerful instruction set. And a single word instruction directly addresses a full 8192 word core bank making program straightforward and efficient . . . no cumbersome, memory wasting addressing schemes, such as paging, double word instruction modes, relative addressing, etc. are necessary.

18BitS

PARITY—it adds a bit to the word length. But it's well worth the investment. Past experience has shown parity to be valuable in ensuring proper system operation and safety. It's also a time-saving maintenance tool. It's a standard feature in the H21.

MEMORY GUARD—a new concept in real-time systems. This feature allows critical system programs (executives, monitors, etc.) to be guarded. Once guarded, a program is protected against accidental modification by un­debugged, unguarded programs. Since each word carries its own guard bit, we now have a 20-bit word length . . . and a new dimension in system utility and reliability.

HARDWARE INDEXING—everything an index register can do, programmers can simulate with subroutines. But the tedious and time-consuming programming effort, and the extra memory required, result in false economy. Who cares how much extra memory you have to buy after you've bought the machine? We care . . . we include a "full use" hardware index register to ensure program efficiency.

BULK MEMORY—a moving head disc file is cheaper than a head per track. And less reliable. And slower . . . (moving head disc files have long access times, normally 10 times that of fixed-head discs or drums). In high-performance, real-time systems, fast bulk memory is desirable to simplify system programming. Also core memory requirements are reduced since fewer programs have to reside permanently in core.

COMPUTER INTERFACE—manufacturing costs could have been pared by building a minimal interface—singular I-O connector, low power bus drivers, etc. But this only defers the cost, multiplied several times, to the user at the time of system tie-in. Therefore, we include multiple I-O connections, husky bus drivers (75ma) and a generous set of clocking and control signals. The H21 interface even packs and unpacks characters into or from memory. The results . . . simple and economic interfaces for real-time systems.

PRICE—the lowest for computers with this capability. For just $21,000 you can get a central processor with 2K memory, and an I-O typewriter with tape punch and reader. An 8K system (that's 8192 words) costs only $32,000. And the delivery is good . . . try us.

If you'd like to get immediate information and complete H21 specifications, call or write to Control Computer Department, Honeywell Inc., Fort Washington, Pa. 215-643-1300.

Honeywell
news briefs

Twenty customers are now using scan, with up to 100 expected by the end of the year. Teletype terminals are used.

- New England Telephone and Telegraph has signed with Control Data for a joint study to develop an on-line portion of the telephone company’s business information system. CDC estimates the study will run about two years and notes that this procedure will allow optimum integration of hardware and programming needs.

- Newly formed ITT Data Services will set up a big west coast service center network, with headquarters in El Segundo, Calif. A System/360 Model 30 has already been installed; it will be joined by a 262K 50 this summer and a 67 sometime next year. Satellite subscriber stations will be set up in the Los Angeles area, tied to the center by high-speed data lines. Plans call for adding centers in San Francisco, then in cities in other western states during the next few years.

- At the annual Memorex stockholders’ meeting, president Laurence L. Spitters announced that Disc Pack Corp. of Hawthorne, Calif., will become an affiliate—meaning that Memorex has bought part of the company. Full acquisition is possible later this year. Disc Pack makes the discs themselves in stack form, not the drives, and sells them to IBM and others. President Raymond Stuart-Williams was formerly with Data Products Corp.

- Highest data transmission rates by cable between Europe and North America are claimed by Rixon Electronics of Silver Spring, Md. A rate of 4500 bits/second was reached between the U.S. Weather Bureau in Suitland, Md., and the Deutscher Wetterdienst in Offenbach, Germany. Rixon Sebit-48M data transmission modems were used on each end in duplex mode with error rates below the acceptable limit of 1 in 10^6.

- Univac’s APT numerical control program for machine tools is now operational for the 1108 II. The program is said to be compatible with APT for the 1107 and to run four times as fast. The original program and special language was a joint development effort by 40 aerospace companies.

What’s so great about the Computer Field? WILEY BOOKS!

MEASUREMENT AND ANALYSIS OF RANDOM DATA
By J. S. Bendat and A. G. Piersol. Pertinent mathematical and statistical parameters that describe random physical phenomena—theory and techniques. 1966. 330 pages. $17.75

DIGITAL COMPUTER TECHNOLOGY

DATA PROCESSING
By H. P. Hartkemeier. How to Program and Operate Punching, Sorting, Accounting, and Electronic Statistical Machines, including IBM Types 24, 26, 20, 50, 62, 63, 85, 101, 402, 403, 407, 514, and 367. 1966. 399 pages. Prob. $7.50

RECENT ADVANCES IN OPTIMIZATION TECHNIQUES

COMPUTER SIMULATION TECHNIQUES

PATTERN RECOGNITION
Theory, Experiment, Computer Simulations, and Dynamic Models of Form Perception and Discovery. Edited by L. Uhr. Twenty-two selections from Philosophy, Psychology and Physiology on aspects of the problem of pattern perception. 393 pages. Paper: $5.95; cloth: $8.95

ANALYSIS OF NUMERICAL METHODS
By E. Isaacson and H. B. Keller. A thorough study of many basic numerical methods, including current research. 1966. Approx. 520 pages. Prob. $11.95

TRANSFORM AND STATE VARIABLE METHODS IN LINEAR SYSTEMS

Available from your bookseller, or

JOHN WILEY & SONS, INC.
605 THIRD AVENUE
NEW YORK, N.Y. 10016
CIRCLE 70 ON READER CARD
DAMATION
In spring of 1967, Western Union will complete a 1300-mile extension of its coast-to-coast microwave network which will link it in the northwest with the Canadian National-Canadian Pacific network. The $13 million addition, which will go between San Francisco and Aldergrove, B.C., is being built by Sylvania. The system will also hook into the Comsat facility at Brewster Flat, Wash., to carry satellite communications including television, data, and voice transmission. A complement to the Buffalo-Toronto eastern link, the new facility will provide a wide range of transmission speeds and will have a capacity of 1200 voice grade channels. It adds more than 31 million telegraph channel miles to the 80 million now provided by the present 7500-mile network. Complete electric power back-up will enhance the system.

The AFIPS report titled "The State of the Information Processing Industry" has now been published, based on the results of a 1961 study completed last year and since updated. The 100-page report covers personnel, hardware, financial statistics, new industries, automation effects, and applications. Some sample findings: there were over 30,000 computers installed at the end of 1965 and projections suggest there may be 85,000 by 1975; non-government use of computers has increased since 1950 from 21% of the total to 84%; a scientific problem occupied a 1950 computer for an hour could now be handled by present machines in three or four seconds. On the software side, costs—as a proportion of the total spent on computer systems—have been rising steadily and are expected to pass the 50% mark during next year. Programming employment has also grown swiftly, although it seems peculiarly difficult to count programmers: the report says that there were "an estimated 60,000 to 120,000 in 1965."

The Triangle Universities Computation Center, serving the Univ. of North Carolina, Duke, and North Carolina State, will be supported by a grant of $1.5 million from the National Science Foundation, divided equally among the three schools. The center is getting a 360 Model 40, to be upgraded later this summer to a 75. Each of the universities will also have a small 360 tied to the computation center by telephone lines and several terminals will be added later at each campus. Plans call for eventual extension of the service to 76 other educational institutions throughout the state.

COMPARISON OF TWO LEADING DESK-TOP ANALOG COMPUTERS.

<table>
<thead>
<tr>
<th></th>
<th>HITACHI 505</th>
<th>EAI TR-48*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Designed</td>
<td>1965</td>
<td>1961</td>
</tr>
<tr>
<td>Computing Voltage Level</td>
<td>± 100 volts</td>
<td>± 10 volts</td>
</tr>
<tr>
<td>Expansion Capability</td>
<td>120 Amplifiers</td>
<td>58 Amplifiers</td>
</tr>
<tr>
<td>Amplifier Chopper</td>
<td>Solid State, FET Stabilized</td>
<td>Electromechanical</td>
</tr>
<tr>
<td>Digital Voltmeter</td>
<td>All Silicon, 5 Digit + Sign, Readout storage, DC, ratio and autorange</td>
<td>4½ Digit Readout</td>
</tr>
<tr>
<td>Solution Display Scope</td>
<td>Electronic Grid provides + 0.1% accuracy</td>
<td>Mechanically-Generated Scale</td>
</tr>
<tr>
<td>Patchboard</td>
<td>All-aluminum shielded</td>
<td>Plastic, unshielded</td>
</tr>
<tr>
<td>Function Generator</td>
<td>Exclusive Two-variable Function Generator</td>
<td>Not available</td>
</tr>
<tr>
<td>Digital Logic</td>
<td>Integrated Digital Mode Control Unit, $3000</td>
<td>Separate Unit DES-30, $5000-10,000</td>
</tr>
<tr>
<td>Price</td>
<td>505-32 (32 Amplifiers) $16,543</td>
<td>TR-48-2 (32 Amplifiers) $21,197</td>
</tr>
</tbody>
</table>

*All specifications and prices from manufacturer’s published literature.

Write or call today for complete technical data and prices and to learn when the demonstration tour will visit your area. Ask for Data File H505-A.
Like having two typists for the price of one!

What is?the Dura® Edit Control

It eliminates the costly manual retyping of revised material!

Type copy, change it, paragraph it, update it, polish it... Dura Edit Control more than doubles the production of the average typist. With the Dura® Mach 10®, automatic typewriter, you have a fast, easy and economical way to revise typed data. All unchanged data is retyped at up to 175 words a minute without error from punched paper tape or cards. To make changes, push a button to stop the typewriter automatically after a character, word, line, sentence or paragraph. Then, type in corrections. The right margin automatically adjusts to compensate for new data. Legal documents, catalog and engineering specifications, endless other typing applications are naturals for this Dura combination. For details, call your representative or write Dept. D23-56, Dura Business Machines, 32200 Stephenson Highway, Madison Heights, Mich. 48071.
new products

communication printer
The TP-10 is an electronic strip printer that operates with a Touch-Tone telephone to provide a hardcopy record of inquiries and computer responses. Printing speed is 10 cps. While input is limited to numeric data, output may be alphanumeric and/or special symbols. Message length is unlimited. DATA TRENDS INC., Parsippany, N.J. For information: CIRCLE 130 ON READER CARD

data communications terminal
The DCT 2000 consists of an 80-column card punch, 250-lpm printer, 200-cpm card reader, control unit, and operator’s console. The system can send or receive data (in ASCII code) over voice-grade lines at up to 300 cps. Numerous type faces are available, each type bar containing 63 characters with 80 print positions; 26 special symbols are offered. Deliveries begin early in 1967. UNIVAC DIVISION, SPERRY RAND CORP., New York, N.Y. For information: CIRCLE 131 ON READER CARD

tape status monitor
The Console Tape Status Monitor gives a visual indication of the conditions of all tape drives on-line to a computer, eliminating the need for frequent manual checks. The information, which is displayed on Nixie tubes or incandescent bulbs includes: tape drive and program select identification numbers, ready status (to accept a command), and drive select. The unit, which is attached to the computer and does not require modification of system circuitry, measures 24½ inches by 5 inches by 5 inches. EDUCATIONAL TESTING SERVICE, Princeton, N.J. For information: CIRCLE 132 ON READER CARD

data collection
The 128 series includes single- and multiple-card reading terminals, on-line scale adaptors, high-speed line printer, tape drive, and interfaces to computers. There’s also a 18K-byte stored-program receiver processor. DATA PATHING INC., Palo Alto, Calif. For information: CIRCLE 133 ON READER CARD

upper, lower case printer
Operating off-line with its own tape drive, the model 1000 uc/lc is a drum-type printer that can operate at 640 lpm with upper- and lower-case fonts, as well as at 1200 lpm with all upper case. The print drum, of course, must be replaced for this changeover. Features include parity checking, 7-or 9-channel IBM compatibility, and triple density availability. Tape densities can be 200, 556, or 800 bpi. DATA PRODUCTS CORP., Culver City, Calif. For information: CIRCLE 134 ON READER CARD

programmable calculator
The portable DAC-512 performs the usual arithmetic functions, and can hold up to eight stored programs, each with up to 64 commands. It comes with a library of such functions as powers and roots, factorials, and evaluation of integrals. Number capacity ranges from 1×10^{-49} to 1×10^{49}. Arithmetic is floating point with 12-character words consisting of nine decimal digits, sign, and 2-digit exponent. Price is less than $10K$. DATA ACQUISITION CORP., Hamden, Conn. For information: CIRCLE 135 ON READER CARD

data recorders
The Series IV systems include hard-copy/mag tape recorders and trans-

PRODUCT OF THE MONTH

The 1500 is a total system specifically designed for computer-assisted instruction (CAI). It is initially being leased or rented to a limited number of educators for research, development, and operational use. Up to 32 specialized terminal systems can share a central IBM 1131 processor. These newly developed student stations can consist of: a 1510 instructional display (640-character capacity) with keyboard and light pen; a 1512 image projector with a 9-by-7 inch screen and the ability to show 1,000 images in any sequence; and/or a 1518 typewriter. Each station can also provide audio instruction and permit student recording; an audio adapter contains and controls transmission from and recording on the audio tape drives.

The 8K 1131 can retrieve CAI courses from a 2310 disc (512K words/cartridge) and analyze student responses. The 1500 operating system includes: an expanded Coursewriter language which will permit a course author (non-programmer) to prepare or modify subject material and communicate with the system through any station; provisions for recording student performance data; utility programs which provide a wide range of student performance data and course listings; and a Mathematical Algorithm Translator which permits students to compose solutions in mathematical notation.

Other equipment includes a 1501 station control with 24K words of core storage, an 1132 line printer, three box drawers or a box drawer and a file drawer with full suspension. STEELCASE INC., Grand Rapids, Mich. For information: CIRCLE 136 ON READER CARD

keypunch console
Styled to wrap around the IBM 029 keypunch, the 7229 console provides additional work surface and desk drawer storage. The pedestal is designed to reduce noise level, and adjustable glides compensate for uneven floors. Pedestals are available with three box drawers or a box drawer and a file drawer with full suspension. STEELCASE INC., Grand Rapids, Mich. For information: CIRCLE 137 ON READER CARD

May 1966
One way to keep an engine clean inside is to keep the oil dirty.

Oil additives—dispersants—help to do this. But how? Chemists have postulated that one way is through a dispersant’s ability to form hydrogen bonds with polar oxidation products—products such as acids and solids that result from cooking the oil and burning the fuel during engine operation. But experimental evidence has been scarce.

Now GM Research has evidence that ashless dispersants of both high and low molecular weight do form hydrogen bonds with polar liquids, tying the polar molecules to the dispersants.

Using alcohols as polar molecules—representing oxidation products—one of our chemical engineers studied the effects of adding various concentrations of two ashless dispersants (an aminoalkenylsuccinimide, with low molecular weight, and a high molecular weight methacrylate-pyrrolidone copolymer).

He monitored the interactions, using infrared spectroscopy . . . and found that hydrogen bonds did form between the dispersants and the hydroxylic hydrogen atoms of the alcohols. In an engine oil, hydrogen bonding apparently enables the dispersants to form protective shrouds around the polar oxidation products, keeping any sludge in the oil, preventing sludge deposition.

We knew that dispersants worked. Now we have a better understanding of how. But that’s not the end. From the new understanding may come a better product . . . and even cleaner engines.
new products

mitter interfaces to 400 series Data-phone subsets. The latter operates at 55 cps, and is available in both attended and unattended versions. The recorders have a 10-column keyboard and cartridge-loading tape deck. Machine cycle is actuated by manual lever operation, but recording is by self-contained power. Recording in bcd format is on half-inch mag tape. UGC INSTRUMENTS INC., Houston, Texas. For information:

CIRCLE 138 ON READER CARD

special-purpose reader
Operating with proprietary, invisibly-coded cards, electromagnetic reader is able to pull off a parallel 25-bit output, which can then be recorded on cards or tapes, transmitted by wire, visibly displayed, etc. Output signal is rated from 0.6 to 24 volts DC. Code cards, not easily duplicated, can bear holder's photo, fingerprint, etc. SECURITY CONTROLS INC., Burbank, Calif. For information:

CIRCLE 139 ON READER CARD

tape block reader
The 5000 series reads paper tape in blocks of 40 to 320 bits, equivalent to five to 40 8-bit characters. Stepping speeds vary from two to 12 frames per second. ELECTRONIC ENGINEERING CO. OF CALIFORNIA, Santa Ana, Calif. For information:

CIRCLE 140 ON READER CARD

paper tape splicer
The model 5100 enables user to place tape ends on the splicer and never again touch the tape until splicing is completed. Six position pins align the tapes, tabs hold down the coiled ends, and arms maintain pressure on the fresh splice. The unit is all metal, portable, and can be bolted down. DRESSER PRODUCTS INC., Providence, R.I. For information:

CIRCLE 141 ON READER CARD

BIAX® STORES 2000 PERFECT BITS PER CUBIC INCH

Two-wire airborne MicroBIAX memory arrays pack individual elements into a virtually solid ferrite matrix. Density — including selection diodes — is more than 2000 bits per cubic inch. Whether your system is 2000 bits or 200,000 bits, 100% testing guarantees performance and uniform electrical characteristics of each element — vital in high reliability MIL-spec data systems. MicroBIAX means megacycle-plus TRUE NDRO performance, unequalled tolerance to voltage and current swings. Data stored in MicroBIAX is permanent and cannot be destroyed. Write today for Data File B-130.

RAYTHEON COMPUTER, 2700 South Fairview Street, Santa Ana, California 92704

CIRCLE 55 ON READER CARD

Increased capability . . . at considerably less cost

Designed to meet demanding commercial standards, this new, bi-directional Tape Reader/Spooler combination has free run speeds of 1000 characters per second and stop/start speeds of up to 500 characters per second. Tape capacity is 1000 feet on 10% inch NAB hubs. The quoted price is for the combination unit. The Reader and Spooler are also available as separate units. For complete specifications contact . . .

FERRANTI-PACKARD ELECTRIC LIMITED
ELECTRONICS DIVISION • TORONTO 15 • ONTARIO • CANADA

CIRCLE 53 ON READER CARD
NEW PRODUCTS

DATA COLLECTION TERMINALS

Additions to the firm's Transacter line include the 3010 printer, which is an 80-column, 48-character, 150-lpm unit; the model 319 data set adapter, and I/O device that matches the interface of a computer via a communications terminal controller to that of a voice-grade line (up to 1200 bps); the model 328 modem, which operates at up to 1200 bps over schedule 4A facilities; the 329 modem for use with schedule 4B facilities at 2000 bps; and the model 330 adapter (2000 bps). CONTROL DATA CORP., Minneapolis, Minn. For information:

CIRCLE 142 ON READER CARD

SHORT MAG TAPE

The Mac 600, mounted on 7-inch, solid flange reel, is a 600-foot length of tape full-width tested at 800 bpi. It comes with a Wright Line Tape Seal, a file protect ring, and photo-sensing markers. MAC PANEL CO., High Point, N.C. For information:

CIRCLE 143 ON READER CARD

CARD-TO-VOICE READER

The PD 260 is a portable unit that translates numerical data from 80-column punched cards to a voice read-

SEND FOR FREE WRIGHT LINE
3-D FLOOR PLANNING GUIDE
for new data processing departments

You get:

- Three-dimensional scale models of your data processing equipment
- Similar models of Wright Line handling and storage equipment
- A layout sheet large enough for a 36' x 48' area
- Instructions for assembly and arrangement of elements

Now you can easily determine maximum efficiency and work flow in your new data processing department! Send for your free floor-planning guide by writing to us on your company letterhead. Tell us your type of system (IBM or UNIVAC). Your free guide will be mailed to you immediately. A Wright Line specialist will be happy to help you assemble the various pieces in the guide and work closely with you in planning your installation. Our address: Wright Line, 170 Gold Star Boulevard, Worcester, Massachusetts.

In Canada: Wright Line of Canada, Ltd., 600 Eglinton Ave., East, Toronto 12, Ont.
There once was a PDP-8 that lacked a peripheral mate.

A module or two — some rice and a shoe — how simple it is to relate.

Marriage is a serious business, even between an on-line scientific computer and a user's experiment. This union should be easily entered into, quick to adapt to new situations, happy and fully compatible.

The PDP-8 is a compact, high speed, core memory, real time, eminently marriageable general purpose computer. It sits right there on the lab table taking inputs directly from an experiment and pouring out collated, integrated, analyzed data. It can feed, and be fed by, a host of easily attached equipment.

Partly, this is because there are 35 standard plug-in options. A 320 page catalog of standard, readily available modules helps. A 68 page interface manual tells you what to use and how to use it for special inputs and outputs. 85 DIGITAL field engineers are available for counselling. And, of course, the computer itself was designed for marriage.

If the PDP-8 is not perfectly suitable, other eligibles include the LINC-8 and the larger PDP-7.
new products

out. It features an automatic or manual advance from card to card, audio that can be switched from an internal speaker to a headset, and selective reading of 20 or more bits from each card. The start and repeat-read operations can be controlled with a remote-control switch. AUTOMATION DYNAMICS CORP., Northvale, N.J. For information: CIRCLE 145 ON READER CARD

tape reader
A photoelectric paper tape reader that operates asynchronously at up to 125 cps, the FTR-00100 has an integral reeler that rewinds at 20-40 ips. The unit handles opaque tapes, but is also available for use with translucent tapes. OMNI-DATA DIV., BORG-WARNER CORP., Philadelphia, Pa. For information: CIRCLE 146 ON READER CARD

disc file
Unidisc is designed for use with the Univac 1004 and 1005 systems in such applications as billing, order entry, inventory control, etc. Two disc cartridges in the system each store two megacharacters. Access time is 135 msec. Special features are a simplified data search command and a Fast-band index track which contains a series of identifiers to locate data and to position the read/write head; this eliminates the need for reading all data serially. Up to three systems—or six disc surfaces—can be accessed by a 1004 or 1005. UNIVAC DIV., SPERRY RAND CORP., New York, N.Y. For information: CIRCLE 147 ON READER CARD

disc storage
The LIBRAFILE 3800 uses six 38-inch discs to store 200-million bits accessible in an average of 17 milliseconds. Transfer rate is up to 42-million bps. Other features include head/track design, two methods of search and retrieval (fixed address or record-content search), and retractable head plates. GENERAL PRECISION INC., LIBRASCOPE GROUP, Glendale, Calif. For information: CIRCLE 148 ON READER CARD

crt display
The model 8880 is for analog or hybrid problem solutions. With a 16-inch CRT, it permits the simultaneous display of four signal traces from 18 analog inputs. In its three display modes, from one to four traces can be plotted against time, two can be plotted against time while each of the other two are cross-plotted against two other variables, and three traces can be plotted against the fourth. In addition to full parallax controls, the unit offers three basic sweep ranges and two multipliers. ELECTRONIC ASSOCIATES INC., West Long Branch, N.J. For information: CIRCLE 149 ON READER CARD

Write it Right!
(With Sanders new PHOTOPEN*
Light Sensing System)

MARK
CORRECT
COPY
ERASE
ADD
TRANSFER

Make any information changes on the face of any CRT . . . it takes only 2 microseconds when you use Sanders new push button PHOTOPEN System. Simple, convenient and easy to use, an illuminated finder circle precisely encloses the area to be changed, regardless of how you hold the pen unit.

Designed to provide greater display versatility, you can use the PHOTOPEN System to write last minute changes right on the screen of any visual information display . . . quickly, accurately and directly with push button convenience. No other input device is required.

The product of advanced display editing technology, Sanders new PHOTOPEN System is extra versatile. It senses the presence of light from below the human visual threshold to above the level for comfortable viewing.

 Completely reliable, the PHOTOPEN System eliminates false or multiple triggering on long persistence phosphors, ambient lighting and reflections from CRT face or implosion shield.

SANDERS ASSOCIATES, INC.
MICROWAVE DIVISION
Creating New Directions in Electronics

CIRCLE 58 ON READER CARD
Only your data processors know for sure. Ask them what happens to those useless strips of paper that run between continuous tabulating cards. They'll show you overloaded trash cans; floors that would make even a litterbug cringe. To make matters worse, this daily strip routine wastes time and can put a real crimp in your processing operations. In the long run you pay for this wastepaper. All that excess baggage costs you money. Perhaps it's time you were introduced to FORMSCARDS, the only continuous tabulating cards that have no wasteful medial strips. Every inch is workspace; and when you get what you pay for, that's good business. So cut out the strip in your office. Let FORMSCARDS help you keep it clean. Forms, Inc., Willow Grove, Penna. Phone: OLdfield 9-4000 Area Code 215.

May 1966
It is made with simple KB building blocks

KB offers these exclusive advantages:

KB allows new freedom of arrangement. Modular construction makes it easy to customize your panels—economical, too. Switches and indicators available in a wide variety of colors, shapes, sizes. Arrange in vertical columns, horizontal rows, compact rectangles, or individually—all, in a single cutout.

KB allows bench assembly. Assemble a complete keyboard matrix at the bench where the job is easier, faster. Even the wiring is done before the matrix is set into the console.

And only one panel cutout is required because KB forms its own self-supporting matrix—no additional support required.

KB provides plug-in modularity. With KB plug-in switches, simply loosen two screws, lift out the unit and plug-in a replacement—all from the front of the panel.

Store a reserve unit right in the board—or “borrow” one that is not as urgently needed elsewhere on the panel. Downtime is practically eliminated.

KB simplifies expansion. KB modular construction makes planned or unplanned expansion easy, economical. In many cases, you simply remove spacers and plug-in additional switch or indicator modules to update your panel. No additional cut-outs, no wiring, no soldering, no behind-the-panel work required.

What is KB? The KB system provides all the components necessary for a complete, self-supporting matrix, including: Power Switches and Indicators with lighted display, Encoding Switches with up to eight output bits, Mechanical Interlock Modules for a variety of sequential functions, and a unique Modular Framework System.

Find out what KB can save you in engineering time, tooling costs, assembly costs, panel space and weight—and how KB can put more sales appeal into your panels.

For a KB demonstration, call a MICRO SWITCH Branch Office (see Yellow Pages). Or, write for literature.
new literature

GP COMPUTER: SCS 650-2 is described in a 10-page booklet which covers basic instruction format, addressing modes, instructions including arithmetic, load, store and jump, list of commonly used microinstructions, operate and I/O instruction format, internal machine organization, optional equipment and areas of application according to industry. SCIENTIFIC CONTROL SYSTEMS INC., Dallas, Tex. For copy: CIRCLE 150 ON READER CARD

ANALOG BUYER'S GUIDE: Comparative study of performance and operational characteristics of six leading desk mounted analog computers is outlined in four-page publication. Subjects covered are performance, operator convenience, analog computing capacity and capability and hybrid computing capability for Applied Dynamics AD-40, Comcor CI-150, Computer Products CP-10/50, EAI TR-48, GPS 200-T and Systron Donner SD-40. COMPUTER PRODUCTS INC., Newton, Mass. For copy: CIRCLE 151 ON READER CARD

LABORATORY COMPUTER: 16-page brochure describes LINC-8, a research-oriented system designed to control experiments, gather and analyze data, and present results in alphanumeric form. Applications include arterial shock wave measurements, in-phase triggering of stimuli from EEG alpha waves, processing of single-unit data from the nervous system, and EKG processing. Other application areas are chemistry, geology, meteorology, oceanography, psychology, radiation, seismology and sound. DIGITAL EQUIPMENT CORP., Maynard, Mass. For copy: CIRCLE 152 ON READER CARD

PRESET DIGITAL CLOCK: Two-page bulletin describes model PC16 which features silicon integrated circuits and dual preset capability. Variety of models display seconds, minutes, hours and days. UNITED COMPUTER CO., Tempe, Ariz. For copy: CIRCLE 154 ON READER CARD

EVAPORATOR CONTROL SYSTEM: Eight-page booklet describes a feedforward control system for automatic control of multi-effect evaporators in paper mills. Included in the booklet is a complete diagram of the system that automatically adjusts input and output of an evaporator though feedforward control. System anticipates changes in output, monitors changes in input, and computes the action necessary to

This announcement is not an offer to sell nor a solicitation of offers to buy any of these securities. The offering is made only by the Prospectus.

NEW ISSUES

200,000 Shares

Levin-Townsend Computer Corporation

Common Stock ($.25 par value per share)

Price $16.50 per Share

Copies of the Prospectus may be obtained from the undersigned Managing Underwriter and other Dealers or Brokers as may lawfully offer these securities in this state.

Bache & Co. Incorporated

April 11, 1966
NEW LITERATURE

LOOKING FOR A $200,000 SYSTEM LIKE THIS?

Sorry, you won't find it. The only second generation microfilm printer/plotter is less than half that price. The best $200k systems may match some of the B-L 120 features above. But no other system can also offer these exclusive B-L 120 advantages:

OFF-LINE OPERATION • CUTTING TAPE TRANSPORT COSTS • 7-TRACK AND 9-TRACK COMPATIBILITY • UP TO 128-192 INPUT CHARACTER CONTROL • THE ONLY SILICON SOLID-STATE SYSTEM AVAILABLE

These are just a few of the performance advantages which can slash your operating costs. Write or phone today to find out more fully how the B-L 120 is designed to save thousands of dollars per month in your printing and/or plotting application.
New! Woven, plated-wire computer memories

WITH THESE ADVANTAGES:

100 NANOSECOND NDRO FULL CYCLE

250 NANOSECOND DRO FULL CYCLE

AUTOMATED WOVEN FABRICATION

LOW POWER CONSUMPTION

HIGH BIT DENSITY AND LOW WEIGHT

NO HEATING BY MEMORY ELEMENT

AEROSPACE ENVIRONMENTAL TOLERANCES

FOR COMPLETE DETAILS

WRITE FOR OUR TECHNICAL BULLETIN

LIBRASCOPE GROUP
808 Western Avenue
Glendale, Calif. 91201
Is the engineer fated to be frozen out of the computer loop?

Not if EAI can help it.

That is why we designed the EAI 8400 Digital Computer.

Often overlooked in digital computation is the battery of people and procedures which stand between the design engineer and the execution of his program. He's working one step away from the machine—and his problem.

This is tough on anybody who is used to the "hands-on" approach to computer usage.

The EAI 8400 fills this gap in man/machine communication.

It's a sophisticated digital computer that brings the engineer and his thinking back into the design loop. Designed to satisfy the stringent requirements of computer simulation, the 8400 lets the creative engineer use the familiar model-building, trial-and-error design process...in real time and faster than real time...in an on-line environment.

We've given the 8400 the power to perform extremely high speed, floating point arithmetic. How important is this? Well, 40% to 60% of all instructions in simulation and real time programs deal with floating point operations.

The EAI 8400 offers a new high level of capability in software. Throughout all phases—program preparation, debug and execution. It has a FORTRAN IV compiler and four other powerful languages. You can talk these languages while being interrupted for real time processing—without even knowing it.

You'll also be hearing a lot about EAI's Dynamic Storage Reallocation—a fundamental innovation that allows programs to be reassigned within memory, at will.

We didn't design the 8400 as the computer to do everything. It was designed specifically to expand the creativity of the engineer and the scientist, and it answers the exacting needs of the simulation laboratory. Why not investigate the EAI 8400 for the solution of your engineering problems?

Write for detailed information.

EAI
ELECTRONIC ASSOCIATES, INC., West Long Branch, New Jersey
How does Midwestern guarantee data reliability?

The M4000 pneumatic tape transport system is guaranteed to read tapes recorded to IBM compatibility specifications with less than one transient error per 10^9 data bits; at densities to 800 bpi, and at transfer rates to 120 KC. Every production tape transport is factory tested for a minimum of 100 full reel passes; reading and error checking random record length, variable pattern data tapes under full program control. Actual statistical results of these tests, over a number of transports and many thousand full passes, have shown an average data reliability rate of one transient error in 27.1×10^9 characters read. This safety margin, developed from actual test data, makes Midwestern's guarantee of one error in 10^9 a realistic promise, not just another empty claim.

For more information on the M4000, write or call Ralph P. Bohn, Digital Tape Products Division, P. O. Box 1526, Tulsa, Oklahoma 74101. Our phone number is 918-627-1116.
FAIRCHILD CORE PLANES:
4096 and 16,384 bits, strung
and stacked to your order.

Lead-in wire relief prevents damage
to electrical connector from
cable flexing.

20 mil or larger, standard
or wide temperature range
Fairchild cores.

1/16" and 1/32" NEMA G-10
glass epoxy board.

Solder plated 1 oz.
copper pads to
prevent oxidation
and improve
reliability.

Stress relieved
inter-plane wiring.

High temperature, high
lead content solder
joints for improved
strength.

For information write:

FAIRCHILD
MEMORY PRODUCTS

Department of Fairchild Camera and Instrument Corporation
2525 Charleston Road, Mountain View, California 94040
Telephone: 415-962-2917 TWX: 910-379-6949
Pressure is being brought to bear on the French government to re-establish an independent computer manufacturing industry. The electronics sector is urging that three or four medium size firms should be provided an incentive for the joint development of a series of general-purpose machines. First proposals to be made public have come through a report published by the Conseil Economique et Sociale, an organisation backed by industry and labour. Recommendations are for the government to find ways of regaining national independence in this field to off-set a market dominated by the U.S., meaning IBM and Bull-General Electric.

A quest for a compiler-compiler, to act as the general-purpose translator for any language, is going on in the U.K. The Ministry of Technology has awarded a $280,000 grant to London's Imperial College for a three-year study. The first project in this field started more than five years ago at Manchester, where Brooker, of the Atlas software team, propounded fundamentals. Work ground to a halt when he took a year out for IBM in the States. But the project is rumoured to be back in good shape since his return.

A new school for teaching computer programming and computer center management will soon start operation in Japan, to be sponsored by FUJI television and Japan radio. First two courses offered are 20 weeks and 40 weeks and a student body of 600 will start May 10, 1966. About 80% of the students are being sent to the school by the company or government organization they work for; the other 20% are paying their own way. When completed, the school will accommodate 3000 students.

With minimum publicity, IBM has pushed a new drum onto the European market. Closing paragraph of its release to users is "it is envisaged that one of the uses will be to provide fast access to peripheral stored programming modules of operating system 360, particularly in real-time." Interpretation among large users is that a big drum is apparently needed to handle the full operating system most efficiently -- a contention that drum-based Univac people in Europe have held for some time.

It's not often that the work of an individual within IBM manages to stand out from the long shadows of the corporate machine. But this seems to have happened with "Management Standards for Data Processing," a manual that has gladdened the heart of many British users with shiny new 360s standing in the corner. It first appeared on duplicated typewritten sheets, lacking the customary IBM publicity shine) for chewing over by a mixed manufacturers and users confab at a society's private meeting. Slight imperfections in its presentation (more obvious to a

(Continued on page 89)
Moving data fast is half the battle.
The other half is moving it without mistakes.

Now, for the first time, you don't pay extra for error-free data. So if you have data communications problems, we think it will be well worth your while to take a look at the Tally 311—the machine that transmits clean, error-free perforated tape. For full details, please address Robert Olson, Tally Corporation, 1310 Mercer Street, Seattle, Washington 98109. Phone: (206) MA 4-0760. TWX: (910) 444-2039. In the U.K. and Europe, address H. Ulijohn, Tally Europe Ltd., Radnor House, 1272 London Road, London, S.W. 16, England. Phone: POLiards 9199.
journalist than a user) indicated a personality. George Lowry, of Brandon Computer Services, London, said it heartened him to find that IBM (U.K.) had published their own book, which was, as far as he knew, ahead of the U.S. parent company and also the first from any manufacturer. The standards volume now has a typical IBM public relations cover around it. But Lowry comments that the System 360 prefix should be ignored by the reader and IBM would be well advised to do a re-issue as a generalised manual. There is no author identity on the cover; but one gets the feeling that the programming sheets used as illustration and labelled "programmer Waller" may tell their own story.

NOTES FROM AUSTRALIA

Equipment designed to transmit paper-tape data speedily over long distances by ordinary telephone lines has been successfully tested. The technique appears particularly suitable to rapid data communication between organisations widely spread over Australia's huge land mass. The test was made with the ICT 7000 series Datalink and the Australian Post Office is expected to announce formal approval for use shortly. The 7000 is a paper-tape to paper-tape system that can be used to produce input for computers and certain advanced types of accounting machines. Either the public switched network or private telephone lines can be used for speeds of up to 100 cps ... First remote console service here will link typewriter-like units in various departments to a central computer complex at the University of Sydney next year. Staff and students of departments such as economics and engineering will be able to use the consoles to communicate directly with the equipment in the Basser Computing department with five computers interconnected on a core-to-core basis ... The computer industry in Australia has begun to yield high profits for those companies with the marketing know-how. In the year to November 30 last, Honeywell lifted profit from $13,130 to $432,106 -- after making provision for taxation of $389,972. Honeywell joined ICT and Control Data in reporting increased profits and these are the most successful competitors of IBM in Australia. ICT lifted its profits by $144,886 to $405,032 and Control Data's profit rose from $864 to $102,900. These improvements contrast with IBM's decline in profit by 11% to $1,433,226. It is expected that nearly 200 computers will be installed in Australia this year and these companies are expected to share the major contracts among these.

BITS & PIECES

Elwro Electronic Works, Wroclaw, Poland has introduced the Odra 1013; a 10K bit store with undisclosed speeds ... Sweden's Svenska Flatfabriken has joined with Husqvarna Vapenfabrik to form a joint dp centre with 100 staff called W.Data AB ... With 450 1900 series now on order, ICT has delivered its 100th and is producing at one a day ... Computer Resale Broker's managing director, Allen Hales, expects to land orders worth $3 million for secondhand machines during the International Computer Fair, Prague, May 12.
What's good for the Dodgers is good for ITT.

Walter O'Malley knew what he was doing when he picked Southern California for his ball club. He wanted to move into a fast-growing area so he could have room to make his good East Coast team into a great West Coast Team. The planners at ITT Data Services picked the same area for the same reason.

The name of ITT's West Coast team is the Western Regional Computer Center. It's at 999 Sepulveda Boulevard, in El Segundo.

An IBM System/360 Model 30 is already in operation, doing all a 1401 can do—at up to 3 times the speed.

And this summer (around the time the Dodgers should be sewing up the '66 pennant) an IBM System/360 Model 50 will be moved in alongside the "30."

While the "30" and the "50" are handling your programs, ITT Data Services will be busy opening a complete data service network in the Southern California area. Including high speed data links, and everything else that goes with a complete data processing service.

All these plans are leading up to the installation of a System/360 Model 67 in 1967. With time-sharing and a full range of business and scientific applications.

While ITT is enlarging its operations with bigger and better equipment, don't think that 999 Sepulveda Boulevard is just a bunch of machines. Our Western Regional Computer Center is also data specialists, business experts, problem solvers. People who'll work closely with you to provide top quality, low cost data service. The best data service on the West Coast.

Call John Barrett, at (213) 322-7800. He's sort of our Walter Alston when it comes to data.

ITT Data Services is a Division of International Telephone and Telegraph Corporation.
SICSAM
DRAWS 450

A new stage of maturity in computer science was marked by the well-attended and enthusiastic meeting of the ACM Special Interest Committee on Symbolic and Algebraic Manipulation (SICSAM) held March 29-31 at the Sheraton Park Hotel in Washington, D.C. During the three-day meeting, the presentations and activities included: 27 formal papers, two panel discussions, survey reports of the field, three on-line demonstrations, and two evenings devoted to some 10 concurrent, informal discussion sessions on a variety of topics.

This meeting had a three-fold significance. The first was to demonstrate the size and degree of interest in this cryptically named field of “symbolic and algebraic manipulation.” The registration of about 450 people, most of whom were in continuing attendance during all three days of presentations of the papers, and their active discussion during both the formal and informal sessions, gave a vivid demonstration of the interest.

The second point of interest was that the distribution of papers offered at the meeting provides a snapshot of the contemporary activities in this field. As announced by the organizers at the meeting, the papers which were submitted were used to structure the meeting. The best of the submitted papers were selected, and the various sessions were then organized from topical groupings around them. It was interesting to note what did not appear—presumably because no papers were submitted on the topic, or because the topic has a definite discipline, technology, or jargon of its own. There were no papers on the following: artificial intelligence; information retrieval; natural language translation; handling of files; compilers; and of course nothing on accounting applications; nor on the ordinary kinds of numerical “scientific” computation.

There was heavy emphasis on dealing with actual algebraic expressions, but at two levels. The largest group was primarily concerned with practical “applications.” They were interested in manipulating algebraic formulas of varying complexity, with the intent of getting out algebraic results of various kinds. Variations upon this theme included problems in finding the greatest common divisor, performing factorization, and other manipulations. The other (smaller) group was also interested in algebraic expressions, but at a symbolic or theoretical level. Comments from this latter group indicated that they felt there was a strong distinction between these two approaches, and that one had to be concerned with various deeper questions (such as computability) which might not be of much concern to the practically-minded group.

Besides algebraic manipulations, there were a number of papers which ranged widely over topics having to do generally with symbol manipulation. Each of these papers seemed to include a discussion of a set of rules, some statement with respect to the degree of implementation (or lack of it) on a computer, and (most characteristic) a name formed from some catchy acronym to give substance to the presentation.

The third point of significance of this meeting was that it was the first to be primarily devoted to applications of computers to a class of problems which are of real mathematical significance, but which are not basically numerical. In this sense, it marks the beginning of an era visualized and hoped for in 1944 by the computer pioneers Mauchly and von Neumann when the electronic engines were still in their conception. The papers themselves did not dip too deeply into these matters, though they did at times allude to some of the problems, such as algorithms for Markov normal forms in such systems as PANON-1B or AMBIT, or in concern with computability in handling of general mathematical expressions. The deepest plunge into these interesting matters occurred in some of the evening discussion groups. These discussions, of which there were a total of 10, were organized informally by various small “coalitions” interested in special topics. One, which dealt with mathematics and metamathematics of algebraic manipulation languages, and which was held at a dinner-displacing 6:00 p.m., was attended by a surprisingly large group of 65 persons. Some of the topics discussed there could be viewed with some alarm by any “hard-boiled” engineer type who thought he knew what computing was all about. In the first presentation, the computer, with its program, was viewed as constituting an “algebra.” Another discourse outlined a proof that the general determination of equality of two expressions, each containing only a restricted group of elementary functions, is a problem which is recursively unsolvable. This latter proof was based upon a surprising mixture of steps ranging from analytic properties of sines and cosines, epsilon-delta arguments, and conclusions taken from advanced logic. Yet, the results were of most immediate concern to any not-too-advanced problems in the reduction of expressions—such as those involving nested radicals, logarithms, or the like.

The following clusters of acronyms will compress the reporting for the rest of the meeting. For polynomial and general expression manipulations, the names ALGEM, ALPAC, ALTRAN, AUTOMAT, FORMAC, FORMULA ALGOL, Grad Assistant, MANIP, PM, SYMBOOLANG, and others were mentioned. More general (or other) manipulations were described with papers on AMBIT, CONVERT, FLIP, L6, PANON-1B, and others. Uses of general tool languages such as LISP and SLISP were also described.

Edited versions of many of the papers presented at this symposium are planned for publication in an issue of the Communications of the ACM, under the editorship of Robert Floyd of Carnegie Tech. General chairman was Jean Sammet of IBM. Lew Clapp and Ellen Wax (Computer Research) and their assistants handled local arrangements, and Dan Bobrow, (Bolt, Beranek and Newman), Jim Griesmer (IBM), Paul Abrahams (Information International), Douglas McIlroy (Bell Telephone Laboratories), Max Goldstein (New York University) and Tom Cheatam (Computer Associates) also made major contributions.

—C. N. Mooreas

May 1966
WITH THESE NEW MOLDED PLASTIC FRAMES

RCA can deliver your memory stack prototypes in 6 to 8 weeks

For conventionally-wired coincident-current stacks

Wired with RCA wide-temperature-range cores, your stacks can meet many MIL Specs... and you get the economy of molded plastic frames

Specifically designed to cut the cost of memory stacks for the commercial market, these new high-impact plastic frames are so rugged that they meet many MIL Spec requirements. And they offer these important advantages:

Rugged Construction. Individual plane frames are molded of tough, rigid high-impact plastic. Wiring terminals are molded into the material and jig-soldered for maximum uniformity from plane to plane.

Compact Design. The new design features reduced space between cores, reduced space between planes, shortened wiring to reduce length of current paths, and also eliminates complex printed-circuit input/output connections.

Three Basic Plane Sizes. Planes are available with 4096 cores (64 x 64), with 8192 cores (64 x 128) or with 16,384 cores (128 x 128)... with diagonal or rectangular sense-line wiring.

High-Operating Speeds. For 1 μsec memories... with high-speed RCA 20- or 30-mil coincident-current ferrite cores.

Adaptable to Special Packaging. Densities to 12,000 bits per cu. in. have been attained.

Economy. These new plastic frames and the new manufacturing techniques mean new low prices... let us quote on your design requirements.

For complete information on how to design Memory Stacks with RCA's molded-plastic frames, ask for Application Note AN203.

Call your local RCA field office today... or call, write or wire RCA Electronic Components and Devices, Memory Products Operation, Section FD5, 64 "A" Street, Needham Heights 94, Mass., 617-444-7200.
THE COMMUNICATIONS PLOT THICKENS

Last February, the FCC intimated that Bunker-Ramo Corp.'s Telequote IV time-sharing service would be subject to federal regulation if it carried general message traffic. B-R got that message and decided to move only buy-sell orders and related communications. Now the Western Union situation poses the opposite question: whether dp services provided by communications common carriers should be regulated.

WU has installed a pair of 418's in New York City. Currently, this equipment is storing, switching, and multiple-addressing some customers' messages. The company is dickering with Law Research Systems, Inc., and another, unnamed firm, in hopes of offering a Telex-wide dp service. Four more cities are scheduled to go on-line within the next year. The company is also negotiating with AT&T to combine Telex and TWX into a single system.

In a March 14 letter to the FCC, WU contended that federal regulation of its new "information utility" would be a handicap (because competing dp services are unregulated). But a lot depends on FCC's current study of data communications. A key question is whether Western Union could obtain leverage by offering low rates and recouping any losses from its other activities.

A House small business subcommittee will probably question Western Union about the new venture sometime this month. The subcommittee suspects that data transmission rates are artificially high, and that smaller dp service firms are being squeezed unnecessarily.

Earlier, the subcommittee loaned a sympathetic ear to John Goeken, president of Microwave Communications, Inc., who has been seeking an FCC license to offer microwave service between Chicago and St. Louis at rates way below those charged by Ma Bell (about 10.5¢ per mile per month, versus approximately $1.10 per mile per month). The FCC has finally agreed to hold a hearing (which Goeken says is unnecessary).

GSA WILL NEGOTIATE LEASEBACK AGREEMENTS

"Within the next 30-60 days," says a GSA official, "we should be ready to negotiate leaseback agreements covering punchcard equipment now rented by VA and the Department of Commerce." GSA believes it can ultimately cut federal sae and edp leasing costs $13 million per year. One possible way would be for a commercial leasing firm to put the money into the revolving fund created by the Brooks bill. GSA admits it's trying to circumvent the non-assignable purchase option welded into federal IBM contracts, but says IBM has "indicated" that it will go along. However, insiders think they will fight the plan.

FEDERAL TIME-SWAPPING PROGRAM GROWS

GSA opened its 14th adp sharing exchange a few weeks ago in Houston. Two others -- in Alaska and Hawaii -- will go into operation soon. This program, launched last June, lets federal agencies or their subdivisions use each other's available machine time, instead of buying it from outside data processors. By the end of fiscal '66, the exchanges will provide $4-6 million worth of time to some 40 agencies.
11. MANAGEMENT STANDARDS FOR DATA PROCESSING. Dick H. Brandon. Covers methods standards for data processing: the functions of systems analysis and programming, etc. List Price $12.00

12. PROGRAMMING AND CODING DIGITAL COMPUTERS. Philip M. Sherman. Lucid guide to all aspects of computer programming—with many examples. List Price $11.00

13. INFORMATION, COMPUTERS, AND SYSTEM DESIGN. Ira G. & Martham E. Wilson. Astute examination of concepts and practices in system design and operation. List Price $12.50

14. NEW DECISION-MAKING TOOLS FOR MANAGERS. Edited by Bursk & Chapman. Provides mathematical techniques managers need to solve problems in vital areas. List Price $7.95

15. COMPUTER SOFTWARE: PROGRAMMING SYSTEMS FOR DIGITAL COMPUTERS. Ivan Flores. Practical handbook on techniques and applications. List Price $16.00

Members Enjoy These 4 Privileges:

- A choice of the most authoritative, most valuable books covering new frontiers and developments in the computer and information sciences: books on applications of computers in business and management, systems design and operations, programming languages and equipment, and many other areas
- A savings of up to 40% on all books (the most economical way to build a basic computer library)
- A FREE Bonus Book of your choice after every fourth Selection
- No pressure to buy. Members pay no fees or dues. And you need accept as few as three more Selections during the next twelve months.

Choose any 3 of these important books for only $4.95 with membership in

The Library of Computer & Information Sciences

offering outstanding books on all areas of the computer and information sciences, including programming for digital computers, systems design, information handling, computer software, etc.—all at discounts up to 40%!
This IBM recruitment ad is about empty airline hangars.

Yes, empty airline hangars.

Obviously, the less time a plane's in the hangar, the more it's in the air—working.

But what has this to do with your career opportunities at IBM? Simply this:

IBM, in cooperation with Eastern Airlines, is developing a new digital airborne processing and recording system. It's called AIDS—Aircraft Integrated Data System. What's its object?

To alleviate unnecessary on-the-ground checks.

How? By identifying components that really need to be fixed or replaced, and predict when this will occur.

A prototype IBM AIDS capable of monitoring 300 key airframe, engine and subsystem parameters, as frequently as once a second, is currently operating aboard an Eastern Airlines Whisperjet on regular passenger flights.

Today this data is recorded during flight, then processed and evaluated with ground computers. Tomorrow, on-board computers will process this data in real-time.

New? Revolutionary? Exciting? Yes, all of these. And AIDS is just one example of the dynamic work being done by the Electronics Systems Center of IBM's Federal Systems Division in Owego, New York. What we need now are professionals who can develop and design more new systems like AIDS. Perhaps you.

If you're challenged by the prospect of developing newer and more sophisticated systems and their applications, you could be one of the growing minds we're looking for.

See if your discipline is listed. Then write, outlining your experience and education, to: J. R. Raftis, Dept. 701-S, IBM Electronics Systems Center, Owego, New York 13827.

IBM is an Equal Opportunity Employer (M/F).
The surprising role of programming at Xerox

or

(how to quietly put your skills to work on the mainstream of some very unusual corporate and scientific problem-solving...decidedly upstream.)

The first surprise generally comes with the comment that throughout the corporation's many operating divisions, as well as within the more centralized business and scientific computing groups, Xerox already employs a healthy number of programmers (upwards of 100). Not neophytes. And we have ample room for more. Also not neophytes.

The second surprise surrounds the kind of work we'll invite you to do, and the way we encourage you to do it.

To begin with, we've toppled the concept that a lot of people have—that computers are merely data processing machines, no matter how wondrous. We've had the good fortune to participate in (maybe precipitate) a thorough organizational awakening to the fact that a computer in a scientific environment should be used to enhance the insights of scientists and engineers—not just be used to process a problem they may have. And the same goes for non-technical, decision-making management.

If these be platitudes, they're platitudes in action.

And so you'll find many of our "programmers" acting as consultants to managers of fundamental and applied research, advertising, marketing, manufacturing, finance, etc.

This is not routine programming. And a routine programmer wouldn't be up to it.

In addition, there's some interesting work in progress on time-sharing systems. The software aspect is a challenge all its own.

You'll find enough modern EDP equipment here so that your creativity isn't likely to be inhibited by a lack of hardware. To give you a few examples, we've recently installed a 7044 at our Scientific Computing Center. Then there are two 7010s sharing almost a billion characters of random access storage, supported by 1460s and 1401s, all in one of our installations.

One last possible surprise. If you thought Xerox was in the office copier business, you were not entirely correct. This will be more apparent when you visit us and we discuss your approach to problem-recognition in fields like optical technology, laser studies, behavioral science, remote imaging, and a few additional subjects that are peculiarly relevant to the real business of Xerox—graphic communications.

Most, but not all, of our current openings are in Rochester, New York.

Please forward your resume, in confidence to Mr. David E. Chambers, Dept. YVE-119, Xerox Corporation, P.O. Box 1540, Rochester, New York 14603.

XEROX
An Equal Opportunity Employer (M&F)
I must preface the comments to follow with the admission that this reviewer has never before studied a "self-instruction" text, which this is, so any inspired comparisons must necessarily be lacking. I am reminded of the good bishop Pontoppidan’s chapter on owls in his history of Iceland; he wrote simply that there were no owls in Iceland and that constituted the whole of his chapter.

The authors are described by the book jacket as staff engineers active in IBM education programs, at least at the time the book was published. The book’s organization implies that the material presented has benefited by considerable classroom use (four revisions are claimed) prior to its publication. Portions are almost too clear, a fact which tends to slow the pace at times so that the reader either skips or risks ennui.

The text is composed of what are called “frames.” Each frame, and there are about 500, contains a single concept to be learned by the student, followed by a related question. The answer is given at the start of the next frame. If the student properly answers the question (the use of pencil and paper is suggested by the authors), he goes on. Otherwise, he reads the explanation and may even go back and review until the material is clear. It is expected that the reader will require about 25 hours to read and comprehend the material.

The book is divided into two major sections: Part I, Boolean Algebra, and Part II, Minimization Techniques. The first chapter is introductory and does not contain any frames. The next chapters discuss, sequentially, Boolean Inversion, AND and OR operations, truth tables, block diagram representation, Dr. Morgan’s theorem, and translation of English sentences into Boolean functions. Part II continues with equation manipulations to place them in standard form followed by a discussion of minimization by the Quine-McCluskey method and, finally, the more familiar Karnaugh Map. The last chapter just touches on logic implementation with other elements—exclusive OR, NOR, NAND and others. The appendix usefully tabulates a comparison of the various symbols of similar meaning as used by the different disciplines within science, engineering and mathematics. Binary numbers, diode circuits, and relay logic are briefly treated. Problem answers, a listing of several references and a useful cross-index section showing the reader the corresponding pages in the references where similar subject matter is treated completes the volume.

My feeling about the book is that it is very easy to read and understand and that its contents can be nicely assimilated by an interested student.

I take mild exception to the authors’ statement in the preface that it is “...intended for the education of the logic designer...”; it is misleading to imply the text is written on that level. The serious logician today is writing about such things as, “Chebyshev Approximations and Threshold Functions,” “Completeness of Sets of Delayed-Logic Devices” etc. This text, of course, will not remotely prepare the reader for an understanding of logic design in this sense.

As alluded to above, I was a little uncomfortable with the thought as I read that the information density in this type of text is perhaps one fourth what we have learned to expect in

PROBLEMS! PROBLEMS! PROBLEMS!

DECISIONS! DECISIONS! DECISIONS!

At American-Standard we have a variety of problems. We need MEN who are not afraid to face them—in fact we need men who rather enjoy solving problems.

At present we are practically doubling our Management Information Systems Department. We are also going through an extensive re-evaluation of our existing systems and equipment.

The qualified candidates we seek must have their sights set high...we do. Our aims, backed by a top management team, are to set up fully integrated company management information systems to assist our executives in making tomorrow's increasingly complex decisions.

Our policy is to promote from within. But because of our dramatic increase in size we have created new positions. Men, geared for growth, are invited to investigate the following immediate opportunities.

SENIOR SYSTEMS ANALYSTS • SYSTEMS ANALYSTS
SENIOR PROGRAMMER ANALYSTS • PROGRAMMERS
PROGRAMMER ANALYSTS

Please direct your resume including salary requirements to:

Jeff Stark/Corporate Placement Office

AMERICAN Standard
40 West 40th St., New York, NY 10018
An Equal Opportunity Employer M/F
books
texts using standard format and also that after the thing has been purchased and read, it is singularly poor as a reference. Finally, a gentle warning for those of you who have not read one of these self-instruction manuals. Perhaps of necessity, the style and personality of the author are totally lacking. In fact, it is as though the text were written by a-—; I wonder if there really are a Hoernes and Heilweil at IBM; did you notice the double alliteration in those names?

—John C. Alrich

THE SECRETARY FIGHTS BACK

FIFO and LIFO went to sea
In a beautiful pea green boat,
With a subroutine and some
grenadine,
And a buffer, which they could float.
They sailed away from FORTRAN
Bay
On a JOVIAL night in June.
They got in a scrimmage with
Data Image,
And escaped—but none too soon.
A random number of miles they went.
Said FIFO to LIFO, “How many?”
“Every commuter should have a
computer,”
Said LIFO, “but I haven’t any.”

So on and on went the pea green boat,
No flow charts recording procedure;
And, after a while, reached Binary
Isle.
(It just proves where ERRORS can
leadeur.)

Here the octal bird in the printout tree
Sang of love for his Two Twenty-Five.
And an input fish on an output dish
Said naught, for he wasn’t alive.
FIFO looked ‘round, and to LIFO
he said,
“Let’s tie up the schooner and stay.”
LIFO, the duffer, cut loose the buffer,
So that’s where they are to this day.

Mary Mayes

PROGRAMMERS
Let’s Talk About Growth...
Yours and Ours!!!

Burroughs has a 78 year record of accomplishment in the field of computation. A significant barometer of Burroughs growth today is reflected in our Corporation profits—up 20% in 1964 and a phenomenal 71% in 1965.

Specializing in the design, development and manufacture of commercial electronic data processing systems and auxiliary equipments, our Pasadena Plant is playing an important role in the overall growth of the Corporation. Few California businesses have charted a steadier, more progressive growth pattern. This Division has developed such industry-acknowledged firsts as the B 5500 Information Processing System, the B 100, 200 and 300 series of computers and the On-Line Disk File System. A whole genealogy of sophisticated systems such as these have contributed importantly to Burroughs reputation.

This growth pattern is conducive to the advancement of career-minded programmers. Creative efforts are rewarded with stimulating and challenging assignments in broad areas of the total systems concept.

Professional individuals whose background and interests are in systems, engineering or applications programming are invited to submit a resume to Mr. F. P. Wilson, Employment Manager, 480 Sierra Madre Villa, Pasadena, Calif.

Burroughs Corporation
PASADENA, CALIFORNIA
An Equal Opportunity Employer

CIRCLE 126 ON READER CARD

CIRCLE 108 ON READER CARD
NEW! ECONOMICAL WAY TO SPLICE, EDIT AND REPUNCH DAMAGED OR INCORRECT TAPES!

ROBINS® SPLICE-N-PUNCH
A complete punched tape splicer and encoder in a single efficient, compact unit to solve most paper tape problems. Encoder and Splicer have precise sprocket hole pins for fast, accurate alignment. The encoding block has .003 tolerance for punching of any type of perforated tape with any alpha-numeric code. #DPS-1 for standard sprocket hole tapes. #DPS-1A for advanced sprocket hole tapes. Designed for use with any of Robins pre-cut, ready to apply splicing patches (PE and PEM series). For information write Dept. DPS.

ROBINS DATA DEVICES, INC.
Subsidiary of Robins Industries Corp.
15-38 127TH STREET, FLUSHING, N.Y. 11356

Systems Expansion
Creates Vacancies at Both Beginning and Advanced Levels for Graduate:
ENGINEERS
MATHEMATICIANS
SCIENTISTS
Computer oriented problem solution utilizing Operations Research and Management Science techniques and requiring considerable independent, creative thought and an ability to work closely with all levels of technical personnel.
Northern enjoys a reputation for continued growth in the stable but competitive Natural Gas and Petrochemical industry.
Excellent salary and benefits supplement an atmosphere of professionalism.
Please forward resume and salary history. A reply will be prompt and confidential.

GEORGE WOLF, PERSONNEL DEPARTMENT

Northern Natural Gas Company
2223 Dodge Street,
Omaha, Nebraska
CIRCLE 73 ON READER CARD

CIRCLE 97 ON READER CARD

NCR
TOTAL EDP SYSTEMS

Continued expansion of the EDP effort of the National Cash Register Company in the United States has created outstanding opportunities for individuals with professional experience in commercial EDP systems. Due to the nature of the EDP industry, there is a strong requirement for people with flexibility in their planning, but firmness in their objectives. Key positions for your consideration are listed below.

Programming research. The desired background would be a college education plus two years or more of programming experience with magnetic tape and random-access systems. Challenging opportunities exist in new and diverse problem areas in commercial applications. Primary assignments would be in Dayton, Ohio.

Systems analysis customer representative. General requirements are two years or more experience in programming with related systems analysis in commercial applications involving medium-to-large scale magnetic tape and random-access systems. Openings are in various parts of the United States. After an initial period of orientation, every attempt will be made to assign individuals to the general region of their preference.

Many other permanent opportunities are available for programmers and operators at NCR EDP Centers throughout the United States. Confidential inquiries for all these positions may be addressed to:

Mr. Thomas F. Wade
Executive and Professional Placement
The National Cash Register Company
Main & K Streets
Dayton, Ohio 45409

An Equal Opportunity Employer, M & F

May 1966

CIRCLE 99 ON READER CARD

CIRCLE 97 ON READER CARD
PEER MEASURING

Occasionally, the best of us need to look through a window at our peers—in order to judge ourselves. For the typical person, this is an extremely difficult task. An individual may not have all the facts nor is he able to remain objective in self-evaluation. EDP is unique in this regard. We are able to “peer gaze” for you. Through our extensive field exposure to the scientific and commercial computer field, we will assist you in evaluating your progress and professional standing against that of your peers. Peer gazing may lead you into another world of greater challenge and compensation. Write today for our free computer opportunities bulletin. For immediate consideration, forward a detailed experience resume. All inquiries are held in strict confidence.

David N Grimes
edp personnel, inc.

EXCLUSIVELY DATA PROCESSING
100 S. Wacker Drive, Chicago, Ill. 60606, Ph. (312) 782-0857

DATA PROCESSING PERSONNEL
WANTED NOW

EDP Consultants $12,000 to $16,000
28 to 35, with degree. Manufacturing experience preferred.

Senior Systems Analyst $14,000
To age 35 with degree. Production-inventory applications.

Systems Analysts to $12,000
With degree. Manual to EDP systems.

Scientific Programmers to $14,000
Degree, experienced in numerical analyses.

Programmers, Peripheral Systems to $12,000
Degree with Mass Memory Storage experience.

Operations Research $13,000
Degree. Min. 2 yrs systems and programming experience.

Systems Analysts to $12,000
Degree, Accounting Background.

Programmers and Analysts to $12,000
Degree req. West Coast location.

Programming Manager $14,000
Degree. Set-up installation experience.

Hundreds of design positions open to $30,000

Send complete resume with salary information to:
Mr. R. D. Weaver

SUNOCO

SUN OIL COMPANY
1600 WALNUT STREET • PHILADELPHIA, PA. 19103
An Equal Opportunity Employer

CIRCLE 102 ON READER CARD

Data Processing Personnel wanted now

EDP Consultants $12,000 to $16,000
28 to 35, with degree. Manufacturing experience preferred.

Senior Systems Analyst $14,000
To age 35 with degree. Production-inventory applications.

Systems Analysts to $12,000
With degree. Manual to EDP systems.

Scientific Programmers to $14,000
Degree, experienced in numerical analyses.

Programmers, Peripheral Systems to $12,000
Degree with Mass Memory Storage experience.

Operations Research $13,000
Degree. Min. 2 yrs systems and programming experience.

Systems Analysts to $12,000
Degree, Accounting Background.

Programmers and Analysts to $12,000
Degree req. West Coast location.

Programming Manager $14,000
Degree. Set-up installation experience.

Hundreds of design positions open to $30,000

Send complete resume with salary information to:
Mr. R. D. Weaver

SUNOCO

SUN OIL COMPANY
1600 WALNUT STREET • PHILADELPHIA, PA. 19103
An Equal Opportunity Employer

CIRCLE 105 ON READER CARD

CIRCLE 101 ON READER CARD

CIRCLE 100 ON READER CARD

CIRCLE 103 ON READER CARD
people

- Dr. John L. McLucas, assistant secretary general for scientific affairs in NATO, will become president and chief executive officer of the MITRE Corp., Bedford, Mass., on July 1.
- Robert V. Head has joined Computer Sciences Corp., El Segundo, Calif., as manager of management information technology. He was formerly associated with Touche, Ross, Bailey & Smart in Los Angeles, and is a contributing editor of Datamation.
- Edwin Camson, a former vp of Ampex, heads a new Los Angeles company, CERTRON Corp. The organization rehabilitates and recertifies magnetic tape.
- Samuel S. Brand has been elected vp of systems and procedures, McCrory Corp. A pioneer in retail dp, he will remain a vp of Lerner Stores Corp.
- At GE computer equipment department, Phoenix: Dr. Erwin Koeritz, former manager of GE metallurgical products dept, in Detroit, is now general manager; Paul Quantz, most recently manager of programming at Philco Corp. in Willow Grove, Pa., has been named manager, programming operations.
- Brian Middleditch, former director of advanced planning of the corporate staff at Control Data, now directs the product management group at Scientific Data Systems, Santa Monica, Calif.
- Frank H. McCracken has been promoted to president of IBM's newly-named information records division, formerly the supplies div., Princeton, N.J.
- Donald L. Stevens will direct Philco TechRep Div.'s new automation advisory and service group, Fort Washington, Pa.
- Forrest P. Dewey has been appointed director, data processing, Beckman Instruments Inc., Fullerton, Calif.
- John Thomson has been chosen manager, data processing systems, Consolidated Electronics Industries Corp., New York, N.Y.
- William B. Dobrusky has been named head of System Development Corp.'s corporate information systems group.

LET A PROFESSIONAL HELP YOU MAKE YOUR PROFESSIONAL CAREER GO

AND GROW!

And that's the reason top companies get top executives and EDP specialists through Brentwood. Where professionals handle professionals. Where you'll talk to men who talk your language... men with degrees in engineering, physics, personnel practice. Men skilled in matching the right man and the right job... in the best interest of both! Let us help you put grow-power in your career! Start by sending us a resume...

BRENTWOOD
Where Professionals Place Professionals

COMPUTER CAREERS
- Applied Systems
- Compilers
- Assemblers
- Automatic Languages
- Utility
- Commercial Programming
- Scientific Computation & Analysis
- Real Time Operations
- Operations Research
- Systems Design
- Information Retrieval
- Diagnostics
- Digital and Logical Design

Fees are paid by the companies we serve.

Write in confidence, or call collect: Mr. F. X. Jones (201) Market 2-0915

BRENTWOOD PERSONNEL ASSOCIATES
786 BROAD ST. NEWARK, N. J.

WRITE: Mr. P. J. O'Brien, Suite 2368, 35 E. Wacker Dr. Chicago, Illinois 60601

May 1966
WHAT IS YOUR TRUE WORTH?

FREE Data Processing Opportunities Bulletin

Every month, in the privacy of your own home, you can evaluate the nation's finest openings in the data processing field. Cadillac, the nation's largest executive and professional placement service, represents the majority of the nation's top companies. Their best jobs at salaries from $6,000 to $75,000 appear in our monthly Data Processing Opportunities Bulletin.

Our placements show that the average data processing man is worth 10% to 20% more than his present income. The Bulletin helps you evaluate yourself in today's market. Both the Bulletin and our confidential placement service are free. Client companies pay all costs.

For your free Bulletin, without any obligation circle Subscriber Service Card No. 117. Please use home address only.

LON D. BARTON, President
Cadillac Associates, Inc.*
29 E. Madison Bldg. Chicago, Ill. 60602
Financial 6-9400

* "Where More Executives Find Their Positions Than Anywhere Else in the World."

In Los Angeles—Lon Barton Associates, 3275 Wilshire Blvd.

CAREER MEMO
To PROGRAMMERS/ANALYSTS/ENGINEERS
From EVERETT KELLEY ASSOCIATES

If your present position lacks professional motivation...NOW is the time to let us program your professional future...

Consult our staff of experienced specialists who are at your disposal. They will open doors and arrange favorable interviews with selected clients. Utilize your total professional capability in:

- Scientific Programming
- Real Time Systems
- Software Development
- Operations Research
- Applied Systems
- Systems Design
- Consulting
- Digital or Logic Design
- Circuit Design
- Commercial Programming
- Mathematics
- Development Engineering
- Communications
- Sales/Marketing

Salary range: $8,000-$30,000. All expenses paid by client companies (fees, interviewing and relocation). Submit your resume in strict confidence, including salary requirements and geographic preference, directly to Mr. R. L. Keliholtz or Mr. Donald Wayne, or write for our composite resume form.

EVERETT KELLEY ASSOCIATES
Consultants to the Computer Industry
121 So. Broad Street (Suite 300)
Philadelphia, Pa. 19107

CIRCLE 103 ON READER CARD
Programmers

How high is your goal?

Ours are out of sight—in the labyrinth of space. But your opportunities are a tangible reality, here and now at North American's Space and Information Systems Division.

Openings exist at all levels:
- On-Line and Real-Time Systems Programmers
- Administrative Systems Programmers
- Operating Systems Programmers
- Data Management Programmers
- Scientific Programmers

Interested? Please contact:
Mr. E. E. ELAM
ENGINEERING AND SCIENTIFIC EMPLOYMENT
12214 LAKEWOOD BLVD.
DOWNEY, CALIFORNIA

All qualified applicants will receive consideration for employment without regard to sex, race, creed, color, or national origin.

Honeywell
ELECTRONIC DATA PROCESSING

Opportunities exist at other Honeywell Divisions. Send résumé to F. E. Laing, Honeywell, Minneapolis 8, Minnesota. An equal opportunity employer.

Mr. Edwin Barr, Employment Supervisor
200 SMITH STREET, DEPT. DA02
WALTHAM, MASSACHUSETTS 02154
(617) 891-8400

May 1966
SYSTEMS & DATA PROCESSING

Full acceptance by top management with demand for services in all areas and a major planned expansion to third generation computers, have created a number of attractive openings in our Data Processing Department at several locations.

SYSTEMS ANALYSTS

RAHWAY, NEW JERSEY—to travel worldwide, approximately 50% installing or improving systems from EAM to full scale computer installations.

SUBURBAN PHILADELPHIA—to innovate or improve management information systems in all areas.

PROGRAMMERS

RAHWAY, NEW JERSEY—to design commercial programs.

Desirable candidates would have experience in several of the following areas: 1401 and 7070 Programming, system 360, COBOL, operating systems, direct access, systems work, EAM.

OPERATIONS RESEARCH SPECIALISTS

RAHWAY, NEW JERSEY and PHILADELPHIA—to apply OR techniques on an independent, creative basis to marketing problems now being conducted by outside consultants.

SCIENTIFIC PROGRAMMERS

RAHWAY, NEW JERSEY—Math graduates to develop programs for OR activity.

Interested candidates please send resumes to G.A. Ducca

Merck & Co., Inc.

Rahway, New Jersey

AN EQUAL OPPORTUNITY EMPLOYER

BUSINESS SYSTEMS—PROGRAMMER ANALYSTS

To develop systems and programs in our rapidly growing Distribution Department. Knowledge of inventory, order entry, data transmission, forecasting and general business applications helpful. Applicants should have at least 1 year's experience in programming; college degree preferred.

These positions are in Rochester, New York. Please forward resume, including salary history, in confidence to Mr. Noel Selby, Dept. YVE-112, Xerox Corporation, P.O. Box 1540, Rochester, New York 14603.

XEROX

An Equal Opportunity Employer (M&F)

PROGRAMMERS for UNION CARBIDE

Union Carbide Corporation Space Sciences and Engineering Group, located in suburban Westchester County, New York, has three newly created openings for scientific programmers on its research staff. The professional challenge and working environment rank these positions among the best available today. Local teleprocessing facilities provide an unrivaled opportunity to experience programming on a variety of corporate computer systems located throughout the United States.

Scientific Programmer-Analyst

MS in Physics or Mathematics and large scale computer experience. Requires the ability to supervise projects and to consult with senior scientists and engineers on complex scientific computer problems.

Mathematician

MS or equivalent. Strong in numerical analysis with a minimum of one year computer experience.

Scientific Programmer

MS or BS with minimum of two years of FORTRAN experience. Large scale computer experience preferred.

Send resume to:
R. G. Massey
P. O. Box 278
Tarrytown, N. Y. 10591
An Equal Opportunity Employer

Merck & Co., Inc.

Rahway, New Jersey

AN EQUAL OPPORTUNITY EMPLOYER
FREE! CAREER OPPORTUNITIES BULLETIN

A complete and comprehensive listing of outstanding positions at salaries from $6,000 to $30,000 with National Companies for:

ENGINEERS / DATA PROCESSING

Our professional staff combines Customized Service with technical know how to insure for you maximum career development in the following areas:

- LOGIC DESIGN
- CIRCUIT DESIGN
- SYSTEMS DESIGN
- SYSTEMS ENGINEERS
- OPERATIONS RESEARCH
- PROGRAMMING
- PROCESS CONTROL

For your free bulletin without any obligation, circle subscriber service card.

SOCONY MOBIL OIL COMPANY, INC

is essential. Disc Storage and Data Retrieval techniques, desirable, as desirable. Should possess demonstrated leadership as a lead computer programmer or project leader. Will provide professional counsel and service with application to the use and capabilities of FORTRAN II, Monitor Systems is essential. Disc Storage and Data Retrieval techniques, desirable, as well as a basic knowledge of accounting principles and procedures. College degree desirable.

Will provide professional counsel and service with respect to the application of mathematical methods and computer facilities to line and staff problems. Analyzes, Programs and Implements non-technical (business) applications on data processing equipment. Should possess demonstrated leadership as a lead programmer or project leader.

Attractive salary commensurate with experience and abilities, plus 30% overseas increment, cost of living allowance, housing allowance, etc. If you qualify, please submit a detailed resume, including present salary, in confidence to:

SOCONY MOBIL OIL COMPANY, INC.
150 E. 42 St., Dept. 3217, N. Y., N. Y. 10017

An equal opportunity employer/A Plans for Progress Company

CIRCLE 110 ON READER CARD

Programmers and Systems Analysts at North American Aviation

Very soon the 360-30 hardware will be in our plant to replace second generation computer equipment now in use; and within one year the 360-50 will be delivered.

Several excellent positions are open for experienced programmers and analysts in all phases of operation and use of this new equipment.

Degree in math, engineering or accounting desired.

Please send resume to:

MR. E. E. PAPIN
North American Aviation, Inc.
Professional Employment Office
Box DA 772
4300 East Fifth Avenue
Columbus, Ohio 43216

All qualified applicants will receive consideration for employment without regard to sex, race, creed, color, or national origin.

North American Aviation
Columbus Division

CIRCLE 112 ON READER CARD

SENIOR COMPUTER ANALYST

Looking for an interesting & challenging overseas assignment (LIBYA) with top pay to boot?

Mobil

Qualified applicants should have a minimum of 4 years’ experience including operating experience with electro-mechanical and electronic computer equipment, on the IBM 407 and 1620 Model 11. Knowledge of uses and capabilities of FORTRAN II, Monitor Systems is essential. Disc Storage and Data Retrieval techniques, desirable, as well as a basic knowledge of accounting principles and procedures. College degree desirable.

Will provide professional counsel and service with respect to the application of mathematical methods and computer facilities to line and staff problems. Analyzes, Programs and Implements non-technical (business) applications on data processing equipment. Should possess demonstrated leadership as a lead programmer or project leader.

Attractive salary commensurate with experience and abilities, plus 30% overseas increment, cost of living allowance, housing allowance, etc. If you qualify, please submit a detailed resume, including present salary, in confidence:

SOCONY MOBIL OIL COMPANY, INC.
150 E. 42 St., Dept. 3217, N. Y., N. Y. 10017

An equal opportunity employer/A Plans for Progress Company

CIRCLE 113 ON READER CARD
WANTED:

\[P = \nabla (P \cdot g) \]

Systems Thinkers for Planetary Exploration

Bellcomm has immediate openings for highly imaginative, hardheaded systems thinkers who can plan what will be needed for Manned Space Flight missions to other planets in the years ahead and can begin fulfilling those needs today.

Scientists and engineers at Bellcomm not only must determine what new rockets, propulsion systems and other hardware and software are needed for the future but what new knowledge must be learned to accomplish this.

Bellcomm, systems engineering contractor of the National Aeronautics and Space Administration, needs qualified men in fields ranging from physics to guidance equations, computer science to systems analysis—men with the vision to think years ahead, innovating newer technology for America’s long-range program of space exploration.

If you are a creative thinker, not frozen to today’s ideas, you may want to work with Bellcomm on advanced systems. Send your résumé in confidence to Mr. N. W. Smusyn, Personnel Director, Bellcomm, Inc., Room 1403-E, 1100 17th St., N.W., Washington, D.C. 20036. Bellcomm is an equal opportunity employer.

Bellcomm, Inc.
A Bell System Company
Professional Services

UNGERLEIDER & CO.

Representatives for EDP Equipment & Services

P.O. Box 1180
Alexandria, Va.
Area Code 703
768-6700

Used Equipment

Before Selling or Returning IBM EAM or EDP Equipment, Contact us for Premium Prices. GMA LEASING 138 NEPPERHAN AVENUE, YONKERS, NEW YORK 10701. Phone 914 — YO 5-0807.

Immediate delivery IBM 029, 059, 026, 024, 056. Call 914-235-7421.

Sale Leasebacks—IBM COMPUTERS 1401, 360-20, etc.

EQUIMENT WANTED

WANTED IBM 024, 026, 056 Key Punches. Highest prices paid. Call us before your delivery of 029's. COMPUTER LEASES INC., 18 Dennis Drive, New Rochelle, NY 914-235-7421.

We need immediately 1,000 402, 403 Self-Contacting Control Panels, 500 Tab Files—DATA PROCESSING SUPPLY CORP., 18 Dennis Drive, New Rochelle, NY 914-235-7421.

Classified Advertising

DATAMATION

Address all replies to box number advertisements as follows:

Box.................
DATAMATION
F. D. Thompson Publications, Inc.
141 East 44th St.
New York, N. Y. 10017
Classified Advertising

Scientific Programmers:

How would you like to tackle some far-out problems on a third generation, large-scale computer?

Fact is, most of our work is way out... determining orbit velocities and trajectories for interplanetary space flights, the "angle of attack" for a supersonic transport. Things like that. We've got the equipment—a new IBM Series 360 with Models 40 and 65—to do the job. Now, we need Scientific Programmers to accept the challenge.

You'll work on projects like Apollo and LEM; on a guidance system for Titan III; on avionics systems for supersonic aircraft; on guidance, navigation and control systems for land, sea and undersea vehicles; and on other projects too secret to mention here.

If you're a qualified Scientific Programmer, and meet the requirements for any of the positions listed below, send us your resume today.

SR. SCIENTIFIC PROGRAMMERS—Responsibilities include the development of large-scale digital computer programs for orbit determination and simulation of highly complex space and missile guidance systems. B.S. or M.A. in Math or Physics, plus experience on large-scale computers required. Locations: Los Angeles and Milwaukee.

SCIENTIFIC PROGRAMMERS—Analyze and prepare computer programs for solution of engineering and scientific problems utilizing the IBM System 360. Scientific applications include design automation, missile trajectory simulation and missile flight test data reductions. Degree in Math, Physics or Engineering required. Minimum of two years' experience plus operation knowledge of large-scale computers. Locations: Milwaukee, Los Angeles, Boston, Houston, New York and Cape Kennedy.

PROGRAMMER (SCIENTIFIC/REAL TIME)—Analyze and develop digital computer programs for solution of engineering problems related to inertial navigation systems and components. B.S. in Math, Physics or E.E. required, with experience in machine language and Fortran. Locations: Boston and Milwaukee.

SEND RESUME TO: R. W. Schroeder, Dir. of Scientific & Professional Employment, Dept. #5753-DM, AC Electronics Div., Milwaukee, Wis. 53201. Your resume for one of the above positions will be reviewed immediately, and a reply made within a matter of days.

AC ELECTRONICS

DIVISION OF GENERAL MOTORS

CIRCLE 115 ON READER CARD

May 1966
Why do Programmers and Data Processing Professionals select FOX-MORRIS PERSONNEL CONSULTANTS?

1. **FINANCIAL IMPROVEMENT** — Our select group of blue chip clients offer unexcelled starting salaries in the $10-30,000 range. (All fees & employment costs paid by client companies).

3. **PERSONALIZED CONFIDENTIAL SERVICE** — Our National Data Processing Division is professionally recognized as the most complete, effective, & confidential service in the placement industry. (Affiliate offices coast to coast).

For full details, reply in strictest confidence by letter or resume, or call collect, W. B. McNichols, Manager-Data Processing Division, 215-LO 3-7922.

FOX-MORRIS ASSOCIATES Personnel Consultants
1500 Chestnut Street Philadelphia, Penna. 19102

CIRCLE 111 ON READER CARD

EDP SPECIALISTS... Commercial & Scientific WE WERE "BORN WITH THE INDUSTRY"

How many personnel consultants can say the same? We've been in the field since its inception. Our contacts with the industry are unmatched. Our computer oriented staff can evaluate your peak professional potential and open important doors for you in the dynamically expanding fields of automation.

Professional Opportunities for:

- Computer Programmers
- Digital Circuit Designers
- Applied Mathematicians
- Logic Circuit Designers
- Systems & Methods Analysts
- Electronic Engineers
- Operations Research
- Sales Engineers

Our clients assume all fees and expenses. Discuss your career goals with us, or direct your confidential resume, including salary and geographic parameter, to Don Sabia or Jack McElwee, EDP Search, Department D.

E. J. BETTINGER COMPANY
Technical Personnel Consultants to the Electronics Industry
20 South 15th Street Philadelphia, Pennsylvania (215) LOcust 4-0700

CIRCLE 116 ON READER CARD
Address an envelope as shown above. Enclose your resume and drop it in the mail. We'll send you, without delay, complete information about professional opportunities with Computer Sciences Corporation.

The "CSC Story" is one of spirited growth, both in company size and in diversity of assignments. It is the story of an organization totally oriented to integrated computer systems, both scientific and executive. Since we produce no "hardware," our programming specialists enjoy total conceptual involvement with problems ranging from management systems to trajectory analyses. We are, in short, problem solvers for an impressive and growing roster of clients in business, industry and government.

If you are now at a senior level of programming responsibility (or know you have what it takes to get there) and have solid experience with large-scale computer applications, we believe you will find our story vitally interesting. If you have an advanced degree and supervisory or managerial experience, so much the better. Our growth has created opportunities at various levels.

And with CSC, you can virtually choose your own location. We have offices in seven major metropolitan areas — Los Angeles, New York, Washington, D.C., Boston, Houston, San Francisco and San Diego — and serve the Pacific Northwest through an installation in Richland, Washington.

Get the complete story. Address that envelope today. It could truly be the start of something big!
INFORMATION SYSTEMS
SCIENTISTS AND ENGINEERS

Bendix Research Laboratories has excellent career opportunities for B.S., M.S., and Ph.D. graduates with 2 to 15 years experience in one or more of the following key areas:

- **ARTIFICIAL INTELLIGENCE**, pattern recognition, trainable systems, adaptive logic.
- **COHERENT OPTICAL PROCESSING**, spatial filtering, optical correlation, electro-optical systems and components.
- **DIGITAL COMPUTER DESIGN**, systems analysis, logic and circuit design, real-time computer control.
- **ANALOG COMPUTERS AND SYSTEMS**, information theory, control theory, circuit and servo analysis, correlation techniques.
- **REAL-TIME COMPUTER PROGRAMMING**, mathematical analysis, scientific computing.

Assignments involve research and development in automatic extraction of information from photographic records, image processing and computer control applications, digital and hybrid computing techniques, and advanced real-time control systems.

Interested individuals are invited to call collect or to send a resume to our Personnel Director.

Research Laboratories Division
Southfield, Michigan • (313) 353-3500
An equal opportunity employer

SCIENTIFIC PROGRAMMERS

Opportunities in Florida

These openings are for real-time, data reduction applications associated with range operations in support of the Gemini and Apollo space programs at the John F. Kennedy Space Center in Florida—where Federal Electric Corporation is engaged in implementing KSC's central scientific computers to the task of data recording, reduction, transmission and real-time display of thousands of measurements telemetered from the vehicle, spacecraft and ground support equipment.

Requirements include a degree in mathematics and/or related fields with a minimum of 2 years of programming experience on large-scale computer systems. Experience in symbolic and FORTRAN languages required.

Please forward your resume, in confidence to Mr. H. B. Arnold, Federal Electric Corporation, 8660 Astronaut Blvd., Cape Canaveral, Florida.

FEDERAL ELECTRIC CORPORATION
An Equal Opportunity Employer (M/F)

amplious?

go where the GROWTH is!

During the past 10 years, Texas Instruments has grown at a rate of 30% per year. Today, TI is a company of 35,000 people with plants and facilities throughout the free world. Sales in 1965 were $436 million. Continuing growth, plus strong emphasis on advanced management concepts, provides exceptional opportunities for:

BUSINESS PROGRAMMERS

... to program business systems for existing IBM 7074 and large-scale multi-processor IBM S/360 configuration to be installed. Requires BS or MS with 1 to 5 years’ large-scale business systems programming experience. COBOL and disk experience helpful.

BUSINESS SYSTEMS ANALYSTS

... to design, develop and install corporate management information and control systems for IBM S/360, encompassing world-wide activity. Requires BS or MS with 3 to 5 years’ system design experience. Programming experience helpful.

SOFTWARE SPECIALISTS

... to develop software for one of the world’s most advanced data processing centers. Configuration includes IBM 360/65-1 and 360/501 central processors coupled together sharing disk files, data cells and magnetic tape units—also remotely located IBM 360/20's connected to the central facility over high-speed communication lines. Requires BS or MS with at least 2 years’ programming experience on large-scale equipment. Operating system experience desirable.

ALL THE ABOVE POSITIONS provide excellent career advancement opportunities with a fast-growing organization using latest techniques and advanced management systems concepts—including teleprocessing, inquiry and display.

OTHER KEY POSITIONS available in management systems require experience in such areas as operations research, probability and analysis, programming (linear, non-linear, dynamic, and integer), decision models, and game theory.

Please send your confidential resume to Tom Clark, Dept. C-358.

TENAS INSTRUMENTS INCORPORATED
P.O. Box 5474
Dallas, Texas 75222
An Equal Opportunity Employer
Move up to a dynamic career in computer technology with the world leader in jet transportation

The Boeing Company, today's world leader in the field of jet transportation, is already at work on the next generation of jets—including supersonic passenger liners and other manned aircraft systems.

Immediate openings are available at Seattle for qualified graduates in engineering, physical sciences, mathematics, production management and business administration who are interested in expanding the scope of their careers in computer technology. Assignments are open in the following areas:

Manufacturing and Business Data Processing Systems — Graduates in industrial engineering, production management, business administration or engineers with an interest in computer technology. Experience preferred in systems analysis and digital computer programming for commercial applications. Assignments involve programming in such areas as production control, manpower forecasting, finance, facilities, quality control, materiel inventory control and management information systems.

Engineering Computing Systems — Graduates in engineering, physics or mathematics including some training in numerical analysis with large scale IBM 7000 series digital computer programming experience. Work involves programming engineering applications (structural analysis, digital simulation, fluid dynamics, propulsion systems analysis, etc.) with emphasis on the integrated system approach. Use of geometric mathematical models is also involved.

Computer Methods and Standards — Engineering and business administration graduates with experience in large scale digital and peripheral hardware, systems and languages. Responsibilities include: development of computer software, establishing computer standards, evaluation and selection of digital computer equipment.

Analog Computation and Flight Simulation — Graduates in engineering or mathematics with experience in aerodynamics, analog and digital computer applications in flight simulation. Assignments include developing and applying simulation techniques to the solution of complex aircraft problems, using such techniques as adaptive design, mathematical models and hybrid methods.

Systems and Operations Research — Advanced degree in mathematics, statistics, engineering or physical sciences with a knowledge of systems engineering or operations research. Knowledge of computer programming is desired. Systems Research positions involve studying and developing analytical models in support of technical management for evaluation of alternate airplane or system design concepts. Operations Research assignments include research in management sciences involving decision making and operational problems, and assisting in the formulation and solution of these problems.

Salaries are competitively commensurate with your experience and educational background. Moving and travel allowances are paid to newly hired personnel. Boeing is an equal opportunity employer. Send your resume, today, to: Mr. Thomas Sheppard, Commercial Airplane Division, The Boeing Company, P. O. Box 707-CCX, Renton, Washington 98055.

CIRCLE 125 ON READER CARD
Analyze, develop, rec­

Air France 55
American-Standard 97
Addressograph Multigraph
Albert Associates
Acivertisers'
Ampex
Albert,
Beckman Instruments,
Cheshire
Chrono-Log Corp.
Brentwood Personnel Associates 15
Bryant
Columbus
Computer
Computer

• SYSTEMS AND PROCEDURES MEN
• COMPUTER PROGRAMMERS

If your present position has approached the limit of its challenge and potential, consider the very real opportunities for advancement with Abbott Laboratories, a growth leader in ethical, consumer, agricultural and industrial health care products.

Positions available offer excellent starting salary plus a superior benefit program, including profit sharing, stock purchase plan, pension and insurance program.

AREA SYSTEMS MANAGER, RESEARCH-ENGINEERING—Review system requirements, develop and implement both business and technical systems for research, development and engineering.

SENIOR SYSTEM ANALYST—Analyze, develop, recommend and implement new and revised systems and procedures for all functional areas of Abbott's business.

PROGRAMMING SUPERVISORS—Supervise a team of programmers in the design and maintenance of computer programs for existing and new applications.

PROGRAMMERS—Assist in the development of new applications for computers and related hardware.

For full information, in absolute confidence, contact:

Peter Johnson, Professional Employment

ABBOTT LABORATORIES
North Chicago, Illinois 60064
An Equal Opportunity Employer

CIRCLE 124 ON READER CARD
The Forum is offered for readers who want to express their opinion on an aspect of information processing. Your contributions are invited.

Today's Commercial Software

Has Inertia Set in?

From 1956-1966, the number and use of computers by industry has increased at least ten-fold. During that time, the software provided by computer manufacturers has not significantly changed in scope or concept. For the benefit of those skeptics among us, I quote from an advertisement that appeared in 1958:

"Software provided with the IBM 7070 includes an assembly system, a sort/merge, FORTRAN, an I/O package, multi-programming and miscellaneous utility programs."

One would expect that over a 10-year period, new software would emerge that would reduce programming costs and/or make programming easier. However, it appears that programming today is more difficult, and the manufacturer is content with providing the same software tools that he previously provided, tools which eventually will be viewed as very rudimentary.

My view of the software proposed by all computer manufacturers is that it is not enough, and it is not the right kind. The manufacturers' emphasis is now on operating systems and new languages... but what will they really do for the average user?

Operating Systems & Languages

Many operating systems are now being built for large, as well as small, computer systems. There is no doubt that new and large computer systems are more complex and require sophisticated operating systems. The performance of these operating systems, however, has been penalized because of the compatibility required within the smaller systems in a line of compatible computers. For many of these smaller computer systems, operating systems are not necessary and will not improve the efficiency of an installation or reduce programming costs. I/O packages, monitors and loaders have existed for a long time (since at least 1956); we've just changed the label and put some icing on the package.

PL/I is procedure-oriented, similar to other languages, and still requires a logical solution, coding, debugging and system testing. It is not conceptually new.

The computer manufacturers have progressed only in that they now can build a limited set of software that will function with reasonable efficiency. The software itself, is, in general, the same. These very same software systems were defined and implemented back in 1955 and 1956 by various computer manufacturers.

That is not progress!

Programming is more complex than ever. Programming costs are as high as they were 10 years ago. The computer user still is required to write programs for most of his applications. There are no more debugging aids now than there were on the first-generation computers. There are still no recognized procedures for organizing a program, debugging a program, system testing and program documentation. Most commercial programming is still done in assembly language.

Minimum Needs

There are two specific areas where new software should be developed for commercial data processing users.

1. The first area would be programs for reducing application coding, checkout and maintenance costs.

 A new computer user currently spends a major portion of his costs not in system design, but in programming, checkout and documentation. Great strides could be taken to reduce these costs. For example, since coding, test data preparation, debugging and documentation is a major part of a programming effort, every programming language (be it assembly or higher level languages) should have the following facilities:

 a. Test data generation based on simple parameters.

 b. Source language memory and tape dumps, traces, program interrogation during tracing, multiple debugging of program sections, facilities for displaying core during debugging.

 c. Automatic flow chart generation of the program.

 d. Simple I/O File and work storage data descriptions.

 e. Logical generative macros—MOVE, COMPARE, ARITHMETIC, SWITCH, LOOP, etc. which are based on data descriptions.

 f. Quick compilation on re-assembly.

 g. Load and go facilities.

2. The second area where new software programs should be developed is in the area of general business packages. Most data processing applications are composed of standard logical functions along with unique data processing logical operations. These standard logical functions are scanning, matching, merging, selecting, validating, sorting, extracting, file maintenance, combining, moving, comparing, performing arithmetic calculations, iteration, rearranging, editing, summarizing, etc. These functions should be available as modules, or segments of code, ready to be tailored to user parameters. They would be tied together during assembly or by a binder at load time. They could then operate as independent programs.

1 Datamation, Sept/Oct., 1958, p. 38. COBOL and Report Generator were included in the software announced for the IBM 7070, although these software programs did not appear in the advertisement.

2 The software of 1958-60 was based on similar software developed on first-generation computers, (i.e., Univac I and IBM 705) back in the 1955-57 period. From 1960 to the present, some new software has emerged but these software programs have not, to date, been implemented for most computer systems.

3 Some attempts in this area are being made: NCR's BEST, Datafor's OPCON, Informatics' MARK II... and Government agencies have built generalized business packages. Computer manufacturers have ignored this area.
PROGRAMMERS
PROGRAM ANALYSTS

We're going to the top
(of the data services business)
and we're looking for
top people to help us
get there.

ITT Data Services, a recently formed division of
International Telephone and Telegraph Corporation,
has set its sights on the top spot in the data
services industry and will not spare any effort
to get there.

Following a pattern already established in the
Greater New York area, where we currently operate
the world's largest commercial data processing com­
plex, we are now establishing an important data
processing service network on the West Coast. These
computer and data communications networks will
offer a full range of data processing services to
business, scientific, and government organizations.

Openings are now available at both our Los Angeles
and Paramus, New Jersey facilities for Program­
mers and Analysts with experience on commercial
applications with either a scientific, business and/or
accounting programming background. Experience
writing proposals or estimates desirable. Requires
experience with IBM 7094, 1401, 7070 or 360. Ex­
perience in COBOL, FORTRAN languages desirable.

For immediate consideration and information on
openings at either Los Angeles or New Jersey,
please send resumes to Mr. John Mattson, ITT
Data Services, Route 17 & Garden State Parkway,
Paramus, N. J.

the forum

as part of a program, in combination to
form new programs or combined with
special coding written in assembly or
higher level languages.

With these logical functions available, simple programs could be de­
veloped using check-list forms. Complex
programs would be developed using
parameters as input to a business pack­
age compiler. For both cases, program
debugging and documentation costs
could be drastically cut and the dupli­
cation which now exists in program­
ing would be minimized.

a look to the future

Computer users are currently de­
pendent on computer manufacturers
and organized computer user groups
for software development. To date,
these organizations have not played a
large role in developing new software
or in making existing software concepts
more effective.

The computer manufacturer has de­
veloped new software only if he can
gain a competitive advantage when
marketing computers. Unless the com­
puter manufacturer changes his ways,
most of tomorrow's software will be
produced by independent program­
ing companies. Even today, program­
ing companies are developing new
proprietary software programs for
lease to users. The day may come when
all software will be produced by pro­
gramming companies, and the comput­
er manufacturer will be in the position
he has always sought... manufacturing
computer hardware exclusively. Users
today are dependent on the manufac­
turers' software expertise and initiative.
Unfortunately, the manufacturer's past
performance has left much to be de­
sired.

There is no doubt there is a mam­
moth amount of new software which
can dramatically change computer ap­
plication concepts and problem solu­
tion. From where it will emerge... or
when?... these are questions unan­
swered. One thing is certain: when this
new software arrives... traditional
program concepts and procedures will
prove to be poor and ineffective, and
the power of a computer will be more
fully realized.

MARTIN A. GOETZ
Staff Consultant
Applied Data Research Inc.
Princeton, N.J.
sometimes, you can have too much of a good thing.

MAC Panel has taken 600 feet of top quality, heavy-duty computer tape and put it on a seven-inch, solid flange reel, complete with a Wright Line Tape Seal.

The result? Greater convenience, greater savings in storage space, greater economy for your computer tape operations.

You get guaranteed computer tape, full-width tested at 800 BPI. Also included: the standard file protect ring and photo sensing markers. And to brighten your day even more, you can have MAC 600 reels in blue, gray or red.

MAC 600 is another MAC Panel first, and is the result of knowing what you need and then producing it. Whether your needs call for the short run features of 200-foot MAC TransiTape, the small-reel MAC 600, or the standard 1200 or 2400-foot lengths, MAC is your source. Your MAC representative can give you the full details, or write MAC Panel.

Please ship the following quantity of MAC 600 (available only in ½ dozen and dozen lots):

- ½ dozen MAC 600 @ $72.00
- dozen MAC 600 @ $144.00 per dozen

Check reel color: □ Red □ Blue □ Gray

Name_____________________________

Company_________________________

Address__________________________

City________State________ZIP_______

GUARANTEED FULL REFUND IF NOT SATISFIED
You just may lose your head over this ad.

Why? Because Ferroxcube high density ferrite (99.95%) recording heads are better. Gaps and assemblies are completely glass bonded. It's a patented process. Only we can do that.

This permits such a high recording density and ultra stable mass that our multi-track assemblies can hold a long term flatness of 12-24 microinches. The result: A truly low-flying head (with extremely short gaps of 20-30 microinches). Only we can do that.

Our fine surface finish lets you get in closer and increase packing densities better than ever before. Makes life happier if you're involved with discs or drums. Or cost...which is less per bit of storage. Only we can do that.

And for contact applications, glass bonded heads present the ideal surface capable of thousands of hours of continuous use. Since there's no epoxy on the head, there's no chance of oxide gunking. Only we can do that.

Technical bulletins 1004 and 1006 are available on request. We're willing to have our heads examined, too. Then we'll see how long it takes you to lose yours. Only you can do that.

FERROXCUBE CORPORATION OF AMERICA
Saugerties, New York

CIRCLE 3 ON READER CARD