What do digital designers need to master the art of analog design?

Software tools integrate the management of complex design projects

X Windows terminal designers search for a single-processor solution
SCSI-2 is at your command with Rimfire® 6600 Series Parallel Disk Array Controllers.

Discover unmatched performance and data integrity for mass storage applications—the Rimfire 6600 series of Parallel Disk Array (PDA) Controllers.

The first array controller offering SCSI-2 as its host interface, as well as the first offered as a board level product, the Rimfire 6600 Series supports four data drives plus a single redundant drive. Because all disk data transfers occur in parallel, the array appears to the host as a single SCSI drive. For you, that means excellent performance. Transfer rates and capacity four times that of an individual drive. And exceptional data availability.

In addition, the flexibility of the PDA controller allows the OEM to select drives from many vendors. It's compatible with SCSI, operates with off-the-shelf host adapters and is priced significantly lower than other solutions of equivalent capabilities.

For detailed information on the Rimfire 6600 Series, or other SCSI-2 compatible products, call Ciprico, the industry leader in technology, technical support, customer service and respondability at 1-800-SCSI-NOW (1-800-727-4669). European customers call our United Kingdom office, (0703) 330 403.

Ciprico and Rimfire are registered trademarks of Ciprico, Inc. Disk drive courtesy of Seagate Technology.

CIPRICO LISTENS. AND RESPONDS.

CIRCLE NO. 1
There's Logic To Every Layer!

Look inside the first truly reliable, glitch-free VME backplane and you'll see the logic behind each detail of its design. Start with the signal layers—four of them—with the most "noise sensitive" lines isolated from the others. The spacing and placement of the layers in this stripline (with embedded microstrip) design was calculated to enhance the backplanes' high frequency bypass characteristics. It's the quietest backplane ever! Sharply reduced crosstalk is achieved by the increased separation of signal lines—both within and between the layers. Superior decoupling comes from the placement of both ceramic and tantalum capacitors between each slot.

Low inductance, low impedance power distribution is insured by the close proximity of the dual power & ground planes and the strategic placement of power connectors for each voltage across the entire length of the backplane.

There's more logic on the outside. Schottky diode terminations. Interrupt and Bus Grant jumpers accessible from either side. Wire wrap pins with shrouds on the end slots of the J1 and every slot of the J2. Ground pins in between J2 slots to provide I/O cabling with interstitial grounds. And much more.

Choose any size from 2 to 21 slots in separate J1 or J2 or monolithic J1/J2 configurations. Call us today for the inside (and outside) story on the highest performance VME backplanes ever made. It's the logical thing to do.

© Copyright 1990, Electronic Solutions

6790 Flanders Drive, San Diego, CA 92121
(619) 452-9333 FAX: 619-452-9494
Call Toll Free: (800) 854-7086
In Calif.: (800) 772-7086

CIRCLE NO. 2
No need to worry if modem communication is the last thing you consider in your new product design. There's always room for our K224L Low Power Modem IC.

Called "The Communicator," the single-chip, K224L measures out to just under 1/2 square inch, thus requiring less than one-quarter of the design space needed for current generation V.22bis data pumps.

The K224L is now available in a wide range of packaging options, is designed for worldwide application and provides you both synchronous and asynchronous communications.

The 5v only "Communicator" understands the constraints of your power budget, too. And seamlessly connects you to any Silicon Systems K-series modem chip. In other words, it's the perfect fit for wherever you need to apply full-duplex, 2400 bit/s data communications.

For the second half of the story, call us for a K224L Sample Kit and literature package CPD-9. We'll give you the name of your nearest Silicon Systems representative and update you on our latest developments.

1-800-624-8999, ext. 151.

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680
Ph (714) 731-7110 Fax (714) 731-6925
I TECHNOLOGY DIRECTIONS

Integrated Circuits
Multimedia waits for faster video processing chips 30
Multichip modules deliver high integration, high speeds and high cost .. 38

CAE/CAD Tools
Multichip modules push design tool limits 42
VHDL poised to overtake Verilog as support grows 46

Software and Development Tools
Protocol extensions bring 3-D to X Windows 52

Computers and Subsystems
New bus and transceiver technologies aim to unlock high-end systems performance 58

I TECHNOLOGY AND DESIGN FEATURES

Software tools integrate the management of complex design projects
Today's complex design projects demand more than just engineering tools 64

X Windows terminals designers search for a single-processor solution
Many designs can deliver performance in X Windows terminals—but it may require a next-generation processor to get the cost down 77

I NEW PRODUCT HIGHLIGHTS

PRODUCT FOCUS
Low-power DRAMs stretch battery life in portable systems 111

CAE/CAD Tools
PCB toolset .. 116
Logic simulator .. 118
FPGA synthesis tool 122

Computers and Subsystems
100 MFlops DSP board for VMEbus 123
40 Mips VME board 124

Integrated Circuits
Gate array with PLL 126
Ethernet interface 127
EISA chip set ... 128

Software and Development Tools
CASE test generator 129
Real-time 68000 development system 130

I DEPARTMENTS
News Briefs ... 8
Editorial ... 14
Calendar ... 22
Advertisers Index 135

COMPUTER DESIGN AUGUST 1991
Designers in the small form factor arena have a lot on their minds when it comes to selecting connectors for today's emerging standards: compatibility, reliability, availability. And solid engineering support where they need it—anyplace in the world.

That's why so many are choosing AMP and the AMPLIMITE .050 Series of high-density interboard and shielded I/O connectors.

The .050 Series is compatible with SCSI-2, IPI-2, HIPPI, and EIA.
High-density shielded I/O and interboard connections.

RS-232 standards—standards that AMP helped define in the first place. Engineering distinctions: smoothed tuning fork contacts, high-temp polymer housings, true footprint position and packaging for robotic application, and a wide range of hardware and mounting options.

And AMP is there to help you, with design-level engineering and support worldwide, manufacturing capacity second to none, and the high-speed application tooling you need to meet any production requirements.

For more information on the AMPLIMITE .050 Series high-density connectors, call our Product Information Center toll-free at 1-800-522-6752 (fax 717-561-6110). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.
Discover the one guaranteed

Stars cool. Volcanos fizzle. Even suns burn out.
But the IBM RISC System/6000™ family of
POWERstations and POWERservers is no flash in
the pan. In the year or so since we introduced it,
it’s only gotten hotter—offering performance rang­
ing from 9 to 25 MFLOPS and from 33 to 72
SPECmarks. All at prices that won’t even make you
break into a sweat.

An operating system that sizzles. The
RISC System/6000 family operates on AIX®, IBM’s
enhanced version of the UNIX® operating system.
AIX runs across the broadest range of platforms in
the industry, and not only supports all major
industry standards and programming languages,
but brings you additional enhancements like
enriched file system capabilities, support for
advanced systems management and much more.
Best of all, AIX fans the flames of the RISC
System/6000 family’s POWER architecture, to
give you even hotter performance.

<table>
<thead>
<tr>
<th>Hardware Price</th>
<th>MFLOPS</th>
<th>SPECmarks**</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWERserver 550</td>
<td>$62,000</td>
<td>25.2</td>
</tr>
<tr>
<td>SPARCserver™-470</td>
<td>$77,800</td>
<td>3.8</td>
</tr>
<tr>
<td>DECSystem™-5500</td>
<td>$74,700</td>
<td>4</td>
</tr>
</tbody>
</table>

MFLOPS are LINPACK double precision where n=100. AIX XL FORTRAN Version 21 and AIX XL C Version 11 compilers were used for these tests. SPECmark is a geometric mean of
the ten SPECmark tests. All prices current at publication.
IBM and AIX are registered trademarks and RISC System/6000 is a trademark of International Business Machines Corporation. UNIX is a registered trademark of UNIX Systems
Laboratories, SPARCserver is a trademark of Sun Microsystems, Inc. DECSYSTEM is a trademark of Digital Equipment Corporation. SPECmark is a trademark of Standard Performance
Evaluation Corporation.
source of power to stay hot.

DID YOU BRING THE MARSHMALLOWS?

An applications platform spreading like wildfire. The RISC System/6000 family already runs over 3,000 diverse applications in mechanical design, visualization, software engineering, accounting, retail store management and on and on. But we’re still feeding the fire. More and more applications are being written and ported over to run on the family every day.

IBM support: an eternal flame. There’s never been anything lukewarm about IBM’s commitment to its customers, and there never will be. With the RISC System/6000, you get the unparalleled worldwide support of IBM: service when you need it, 24 hours a day, 365 days a year. An IBM customer engineer can even come to your site and install your machines, configure your network and integrate all your systems, whether they’re made by IBM or not. It’s enough to make you feel warm all over.

To find out how you can harness the power of the RISC System/6000 family, call your IBM marketing representative or Business Partner at: 1 800 IBM-6676, ext. 843. Sorry, marshmallows not included.

For the Power Seeker.
IBM/Apple marriage marked by uncertainties

After all the ballyhoo about the agreement between Apple and IBM under which the two companies will standardize on the IBM RS/6000 RISC architecture, a few words of caution may be in order. One is that the two were pretty vague about the software that’s to come out of the “jointly owned, independently managed” company that will be set up. If it’s to be successful, that company must aim not only at the higher-end versions of current machines, but also at a large portion of the existing application base. The other industry standard consortium recently announced — the Advanced Computing Environment (ACE) — has vouched to do just that, basing its systems on the MIPS R4000 and Microsoft’s version of OS/2. Another aspect of the announcement that’s unclear is the networking agreement that appears to draw Apple into IBM’s enterprise systems — will it exclude other vendors?

We are faced with two rival “open systems” efforts which represent the struggle between IBM and Microsoft and their respective allies, processor architectures and operating systems. The only common ground seems to be the vow by both groups to support Unix. But then the Unix world, too, is split into two “open systems” efforts.

— Tom Williams

IBM/Apple/Moto deal sparks 88000 doubts

The announced cooperative agreement between Apple and IBM that will have Motorola manufacturing the IBM RS/6000 Power PC microprocessor has apparently sent shock waves through the ranks of users of Motorola’s own 88000 RISC processor. The 88Open Consortium has issued a statement that read in part, “We are confident that Motorola’s commitment to its 88000-based customers is unabated.” The statement doesn’t have a very confident ring to it.

Since Motorola has stated publicly that it will offer the Power PC chip on the merchant market, the 88000 could be in trouble in the long-term. And even if the Power PC confusion doesn’t permanently hurt the 88000, there eventually will be a shake-out among RISC processors. With their combinations of design wins in embedded systems and workstations, the i960 and the Sparc are not likely to go away. Since being designated the follow-on to the military’s 1750A, the MIPS R3000 is likely to be around a while, and MIPS’ R4000 is the processor chosen by the Advanced Computing Environment (ACE) effort.

Among other RISC contenders, the AMD AM29000 certainly has the edge over the 88000 in design wins. With entrenched competitors like these, how many more RISC processors can the market accommodate?

— Tom Williams

New microcontrollers near release at Moto

Motorola (Austin, TX) is planning to release four new derivatives of its HC16 microcontroller family. Code-named “Cutthroat,” “Tuna,” “Walleye,” and “Pike,” the devices will be announced later in the year. All the devices will be based on an HC16-based CPU core and will borrow heavily from the peripheral functions now used in the Motorola 68300 family. These functions will include a time-processing unit (TPU) and a new 8-bit A-D converter. The 68300 family may also sprout a new member, code named “Orion” and sporting flash EPROM and SRAM, in the same time frame.

— Dave Wilson

Group lays groundwork for lower-cost FDDI

A consortium of major FDDI (Fiber Distributed Data Interface) vendors is laying the groundwork for a new technology that will make FDDI’s 100-Mbit/s bandwidth available over unshielded twisted-pair wiring. Dubbed the Unshielded Twisted-Pair Development Forum (UDP), the consortium will include Apple Computer (Santa Clara, CA), AT&T Microelectronics (Allentown, PA), Crescendo Communications (Sunnyvale, CA), Fibronics (Hyannis, MA) and Ungermann-Bass (Santa Clara, CA). Additional members are expected to join later this year.

On the week of August 19th, the UDP consortium plans to make its initial presentation to the ANSI X3T9.5 TP/physical medium dependent (PMD) working group. The consortium will offer a demonstration of the technology at the Interop conference in October.

The UDP consortium will propose a dual physical-media-dependent standard that supports both shielded and unshielded twisted-pair media. Both standards will be fully compliant with the current X3T9.5 FDDI physical layer and media-access layer specifications.

The ability to implement an FDDI network using unshielded twisted-pair wiring is expected to make FDDI cost effective in a much broader range of applications. Until now, high cost has restricted the use of FDDI primarily to backbone applications.

— Jeffrey Child

One more step toward VME Rev. D

Early in August, VME vendors will be sitting down in Phoenix to take the next step in the finalization of Rev. D. Initially planned as the 64-bit extension, VME64 Rev. D has taken on new proportions as a number of vendors are pushing to include added features. The hot items on the agenda have become SSBLT (Source-Synchronized Block Transfer), open-boot PROM and the use of hardware semaphores. Of these, the item most discussed has been SSBLT.

As initially proposed, the high-speed block-transfer mechanism will boost VME performance to the 160- to 200-Mbytes/s range. An early conflict between the SSBLT proposal and the VME64 specification regarding the use of address-modifier codes has been resolved. But a number of other issues remain to be addressed. These include block size, fixed or programmable clock and a throttle mechanism.

Continued on page 10
Synergy brings you the power of an '040 SBC at an '030 price.

It's true. For only $2865*—less than the cost of most '030 boards—you can have a full-featured '040 SBC that gives your VME system vastly superior performance.

Synergy's new VME Workhorse VW40 is hardly a stripped-down SBC. There's SCSI and Ethernet onboard with 4 Mbytes of DRAM (2, 8 or 16 MB optional). There's a new multi-channel, intelligent DMA controller that handles both I/O and VME transfers—all concurrent with normal '040 operations.

Best of all, there's your choice of over a dozen EZ-bus modules with intelligent I/O—fully compatible with Synergy's entire line of '020, '030 and '040 SBCs. Compare that with any other manufacturer!

How about an '030 SBC at an '020 price?

Our new VW30 SBC can plug '030 power and capability into your '020-based system, and at $1595* we'll keep your system price competitive.

Just call us and you'll appreciate Synergy's customer support:
Application engineers that know VME.
Custom I/O designs. Unbeatable documentation. Along with the very best price/performance in VME.

*Price for qty. 100

Synergy Microsystems, Inc. 179 Calle Magdalena, Encinitas, CA 92024 (619) 753-2191 FAX: 619-753-0903

CIRCLE NO. 7
Continued from page 8

Initially, proponents hoped to have all the details finalized in time to develop working models and have the spec on the books by the beginning of next year. It now appears likely that the details won’t be settled for several months, delaying final approval until well into 1992.

—Warren Andrews

Batteries are the focus of new environmental regulations

In a move to keep rechargeable batteries out of landfills and incinerators, many states are enacting or considering new environmental regulations affecting rechargeable products. Effective July 1993, all battery-operated consumer products sold in certain states will be required by law to have an “easily removable” battery feature. The purpose of the “easily removable” legislation is to make it possible for consumers to remove all batteries from appliances and electronic products before discarding them. Currently, Minnesota and Connecticut have passed “easily removable” laws.

An unforeseen result of the new regulations could lead to potentially hazardous operation of rechargeable products. The danger arises when a discharged rechargeable battery in a standard form factor, such as a C cell, is replaced with a non-rechargeable battery. If the product has an automatic recharging circuit, the non-rechargeable battery will be subjected to a recharging current, creating a potentially hazardous situation.

Helping to simplify the designer’s task of complying with these laws, Gates Energy Products (Gainesville, FL) has developed a battery system called Intellilink, that allows throwaway batteries to discharge normally, yet would prevent recharging them. The system includes a battery/circuit interface that enables manufacturers to make batteries easily removable and replaceable, without sacrificing the convenience of automatic recharging.

The Intellilink technology will initially be available on the company’s own AA, C, and D-sized batteries. According to Gates, the technology will be made available on other well-known brands of rechargeable batteries soon.

—Jeffrey Child

Futurebus+ market projections rewritten

Rumors are starting to surface that a major Futurebus+ project is already in the works from a European telecommunications vendor. The project is said to call for some 300 systems.

If the rumors are confirmed and delivery is contracted before the end of 1991, it will obsolete all current estimates of Futurebus+ sales. If the total value of this contract is added to the few contracts from AT&T and others, the dollar volume in Futurebus+ could approach $50 million for this year—more than twice the most optimistic estimates.

—Warren Andrews

ASIC blocks for wireless communications

On its entry into the wireless communications market with a fully-packaged and tested G.721 transcoder application-specific standard product (ASSP), VLSI Technology (San Jose, CA) has also made the transcoder function available as a building block for ASIC implementation.

The block complies with industry-standard specifications, such as CCITT and ETSI. The transcoder block may be combined with other communication-specific blocks, standard libraries, silicon compilation, and synthesis tools to produce a customer-specific, cell-based communications systems chip.

VLSI claims that its low-power transcoder for 32-kbit/s advanced differential pulse-code modulation (ADPCM) is just a first step into the wireless communications market. “We currently have development activities ongoing in digital cellular telephony as well as cordless telephone products,” says Nick Kucharewski, vice-president and general manager of VLSI’s communication products division.

—Barbara Tuck

Micro Linear to build wafer fab

Micro Linear (San Jose, CA) is building its own 6-in.-wafer fab to manufacture mixed-signal and analog ICs for applications such as 2.5-in. disk drives and FDDI (Fiber Distributed Data Interface) networks that require highly integrated systems-level solutions. Until now, Micro Linear’s mixed-signal devices have been fabricated by outside manufacturers. The new 14,000-ft² facility will accommodate Micro Linear’s advanced digital BICMOS, CMOS and high-speed bipolar processes. Full production is expected by mid-1992.

—Barbara Tuck

One vendor’s attempt at media manipulation

One company considering a new RISC processor for an embedded application has informed COMPUTER DESIGN that the processor’s vendor refused to part with preliminary information on its architecture until the design firm agreed to let its name be used in endorsements by the vendor. These endorsements were to appear in the vendor’s press releases. Are we about to see a day when a designer’s request for technical information must be approved by a vendor’s public relations department?

—Dave Wilson

Cheap Sparcs Fly

At less than $6,000, the Sparcstation ELC is Sun Microsystems’ (Mountain View, CA) cheapest Sparcstation. Based around a 33-MHz integrated integer/floating-point Sparc processor, the ELC supports up to 64-Mbyte memory and a SCSI port for disk, tape, and CD ROM. Since the convection-cooled system board was housed inside the high-resolution monochrome monitor, no room was left over to support the SBus I/O Bus.

—Dave Wilson
For your “must-win” defense and aerospace programs, put the world’s leading supplier of MIL-SPEC VMEbus systems on your team. Ready-to-run VMEbus systems from DY 4 are selected overwhelmingly by system integrators for aerospace and defense programs worldwide.

DY 4 provides performance, reliability and cost-effectiveness through integration of a full range of open-system VMEbus products and services to military, rugged and commercial standards.

DY 4’s system solutions incorporate non-developmental item (NDI) products from the broadest product line in the business – CPUs... memories... communications controllers... analog I/O... high-performance graphics engines... chassis... Ada* foundation software and built-in-test (BIT) diagnostics.

DY 4 provides a comprehensive quality program to MIL-Q-9858A and fully compliant configuration management to MIL-STD-483; design procedures conform to MIL-STD-1521 with manufacturing according to MIL-I-45608 (quality control) and soldering to MIL-STD-2000 in an ESD-controlled environment.

*Ada is a trademark of the United States Department of Defense
Ironics. Putting

Ironics has continually led the VMEbus industry in developing High Throughput, Real-Time solutions... solutions that maximize overall system performance in addition to providing high MIPS and MFLOPS.

Ironics offers the highest throughput rates available on VMEbus for real-time I/O, multi-processing and for both intra- and inter-chassis data transfers.

A key element in any high throughput solution is fast processing and Ironics has the largest selection of high performance CPU families available from any one vendor. We even provide the unique ability to mix and match disparate RISC and CISC families in the same VMEbus chassis.
Our goal is to provide all the pieces for the best VMEbus System solutions. To this end, we have just added a full spectrum of cost effective Imaging and Graphics boards and systems.

At Ironics, we care about real world solutions. Our quest for more reliable and maintainable systems has even taken us into the realm of VMEbus enclosure design.

And now Ironics' new Systems Integration Group can help you put it all together. Call Ironics' VMEbus hotline today (800-334-4812) and ask for further information or a demonstration.

Real-Time, On Time, All the Time!
The dream is over

The 1980s will be remembered as the decade that was wasted debating the relative merits of the Apple Macintosh and the IBM PC architecture. Apple has just ended the debate. By endorsing a version of IBM's RISC 6000 called Power PC, Apple has sold out to IBM. To prevent Motorola from sending all their Macs packing, and perhaps to kill off Moto's own RISC, Apple and IBM roped in Moto to manufacture the RISC 6000 chip. As an IBM strategy, it's clever enough, but fatally flawed.

Since its introduction of the PC, IBM has had its clock cleaned. It has totally lost control of the hardware and software architecture of the PC. When IBM attempted to make the PC more proprietary, through Micro Channel, the clone vendors designed EISA. Users continued to buy ATs. When IBM tried to introduce a new software standard like OS-2, Bill Gates (who preferred to make more money upgrading existing PCs with Windows/DOS) screwed up. Users continued to buy DOS. Then there were the clones. Taiwanese PCs made it attractive for users to purchase anything but IBM. IBM looked silly. And IBM got mad.

To make IBM's blood boil, fly-in-the-ointment Apple Computer built friendlier computers. Worse, Apple manufactured a proprietary product that no one cloned. IBM got envious. And why not? Here was a company that could get away with charging $2,000 for a computer with a $40 processor in it. You'd have to be terminally naive not to see the motives behind this latest flight of IBM marketing fancy. IBM and Apple build a new PC architecture based on an IBM-designed chip made by Motorola. Motorola makes the processor available on the open market as a gesture to open systems — but (like the Mac) that doesn't necessarily mean the system will be open. Software is jointly developed by Apple and IBM. At last, IBM gets to tell Gates, the Taiwanese, the EISA bunch and the ACE group to go to Hades in a handbasket. IBM controls the chip, the software, and so they think, the market.

Will the new strategy work? Not outside the boardrooms of Apple and IBM. First, the installed base of DOS machines is huge. It has the greatest momentum in the history of computing. The 80X86 DOS architecture will not disappear overnight, or in ten years. Unlike IBM, Intel and Microsoft are not stupid enough to walk away from all those millions of DOS users. Intel will continue slashing prices on the 80X86 family, and Microsoft will make DOS friendlier. By the time DOS Version 6 comes along, it may even look like the Mac OS with a few Unix features thrown in. Intel's 586, expected far sooner than the 6000, will have the power of RISC and CISC combined on a die with three million transistors. Will you throw away your Intel/Microsoft/PC investment for a Unix-based IBM/Apple/Moto sales pitch? Don't laugh too loud.

Apple, once the innovative upstart, changed markedly when the Pepsi generation took the helm. Now they'll be wearing wingtips and reading the Wall Street Journal before COMPUTER DESIGN. Goodbye, Woz. Goodbye, Steve. The dream is over.
Integrating a PC with your VME system is a smart move. The “PC advantage” provides a superior human interface and access to the PC’s huge base of system, application and development software.

The PC Advantage belongs inside your VME system. Not attached to it. By embedding a PC inside your VME card cage, instead of attaching it externally, you break through the inherent communications bottleneck that constrains system performance. You also eliminate the superfluous hardware and software needed to attach two system architectures.

Only RadiSys EPC® Embedded PCs completely integrate the strengths of PC and VME. An EPC, with its exclusive EPConnect™ Software, is the only 386- or 486-based, PC-compatible computer with software that integrates the VMEbus into the DOS, Windows, UNIX and OS/2 environments. EPCs give your VME systems:

- **Highest system performance** from the real-time responsiveness of the direct 32-bit interface between the 386 or 486 and the VMEbus.
- **Improved system packaging** in 1/10th the volume, with integral VME ruggedness, and no bus link baggage.

And EPCs cost you less. EPC-based systems avoid the costly pitfalls of attached PC systems. No extra interfaces, cables, surrogate controllers, or the software to make them work.

Give your VME systems the EPC advantage. Call (800) 950-0044. We’ll send all the details. No strings attached.
So would you like the number

Yes, it's true some design teams see us as the emergency number of development systems providers.

Many more, however, use Applied Microsystems more productively by calling us in earlier—at the start of their embedded systems project.

Out of our experience comes tools and support to help your design team work like a team.

Long before the sirens ever begin to sound.

Development systems for today's embedded systems.

It's getting much more complicated in there. Like, several megabytes of code...
for Applied Microsystems?

in a 32-bit design. Which means more engineers to write it, often within very different, even mismatched environments.

Our modular development system architecture helps bring your design
together by integrating your computer environment with our high performance emulators, debuggers, simulators and compilers.

We even offer a networked system for Sun® setups. And a common interface for all our systems for easier 16- or 32-bit development.

All so your design team can begin working like a real team.

We work with the processors you work with most.

Megahertz for megahertz, our tools run with the best, such as the powerful 68020/030 or i960™ CA microprocessors.

In fact, we have alliances with Motorola®, Intel® and others. This enables us to deliver fully tested, compatible development systems sooner to support your processor’s unique features.

Moreover, supporting your development efforts is our only business. So unlike others who just dabble in development, we have to be better at it.

Which may explain why companies have called upon us to set up over 15,000 development systems worldwide.

Call before your development days are numbered.

It's never too early to talk with us about your upcoming design projects.

In fact, you can start now by calling for our brochure on what you should expect from a development systems company (and can’t afford not to get).

And of course, we'll be happy to take your emergency calls, too.

Applied Microsystems Corporation

Where it all comes together.

CIRCLE NO. 14
You’ll Find Som At Both Ends With

We’ve all seen the light regarding Ethernet on twisted-pair. Now we’d like to show you the full spectrum in 10BASE-T — with the most complete selection of silicon for both ends of the LAN.

At the terminal end, the TPEX™ (twisted-pair Ethernet transceiver) provides the physical layer connection for add-in cards, motherboards and stand-alone MAUs. At the hub end, the IMR™ (Integrated Multiport Repeater) integrates eight transceivers and an expansion port on one chip, and replaces over a dozen ICs. And that brings down your per-port cost.

So you can quickly design and assemble everything from compact Velcro® hubs that hang virtually anywhere, to larger intelligent hubs using multiple IMRs.

And you won’t find the design
ething Great
AMD's 10BASE-T.

risks you normally face. We'll lead you to market faster, supplying you with complete board level solutions. And we're behind you all the way with 10 years experience in Ethernet, including strategic partnerships with SynOptics and HP—co-developers of our TPEX and IMR, respectively.

And of course, all our 10BASE-T products comply with current IEEE specs.

So call AMD today at 1-800-222-9323 for a free information package. And give your next 10BASE-T design a truly brilliant ending.

Advanced Micro Devices

© 1991 Advanced Micro Devices, Inc. 901 Thompson Place, PO. Box 3453, Sunnyvale, CA 94088. TPEX and IMR are trademarks of Advanced Micro Devices, Inc. Velcro is a registered trademark of Velcro Industries B.V. (Netherlands Corporation) Amsterdam, Netherlands.
A supercomputer can compute this fractal image in about one second.

With a HYPERSPEED™ i860 board, so can your PC.

Imagine the power of a Cray supercomputer in an ordinary PC. Now there's no need to imagine it; it's real. With Hyperspeed Technologies' line of i860-based single and dual processor boards, any AT bus computer can become a true desktop supercomputer, starting for as little as $2,995!

ISA and EISA bus compatible • 25, 33, and 40 MHz models, SINGLE and DUAL processor • 2 to 16 MB DRAM on board • up to 160 MFLOPS per board (40 MHz) • single-slot DT-Connect™ and ITI VISIONbus™ boards • full Bus Master • shared & independent memory busses • 24 bit-per-pixel frame buffer • C, FORTRAN, assembly, real-time debug software • math libraries • multi-board systems • custom board designs • hundreds sold • quality-made in U.S.A. satisfaction guaranteed! HYPERSPEED is the leader in i860 board technology — CALL TODAY!

See us at booth #437
SIGGRAPH '91
30 July - 1 August
Las Vegas, Nevada

HYPERSPEED Technologies, Inc.
10696 Marbury Ave., San Diego, CA 92126-2838
(619) 578-4893 fax: (619) 271-6717

THANK YOU!
More and more of you have been rating Computer Design Number One in our readership studies. Thanks for the vote of confidence, and we'll continue to live up to your expectations.

CIRCLE NO. 17

COMPUTER DESIGN
Technology and Design Directions

EDITOR-IN-CHIEF/ASSOCIATE PUBLISHER
John C. Mikkosz, Ph.D. (508) 392-2114

SENIOR EDITORS
Warren Andrews, Computers and Subsystems
(508) 283-2102
Barbara Tuck, ASICs and ASIC Design Tools
(516) 744-2984
Michael G. Donlin, CAE/CAD Tools
(508) 392-2123
Tom Williams, Software and Development Tools
(408) 335-5514
Dave Wilson, Integrated Circuits
(508) 392-2176

SECTION EDITOR
Jeffrey Child, New Product Highlights
(508) 392-2126

MANAGING EDITOR: John Donovan
(508) 392-2115

ASSISTANT EDITOR: Lisa A. Coleman

PRESENTATION MANAGER: Richard Sarno

EDITORIAL ASSISTANTS: Claire Ellis, Terrie Robertson

ART DIRECTOR: Jan Horner

ILLUSTRATORS: Manuel King

COVER ART: Gary Torrisi

AD TRAFFIC MANAGER: Kelly Rice
(508) 392-2198

CIRCULATION DIRECTOR: Robert P. Dromgoole
(918) 832-9213

CIRCULATION MANAGER: George Andrew
(918) 831-9443

REPRINTS: June Bozarth
(918) 835-3161

PUBLISHER
David L. Allen (508) 392-2111

ASSOCIATE PUBLISHER/NATIONAL SALES MANAGER:
Tim L. Tobbeck (508) 392-2116

PennWell Publishing Company
Advanced Technology Group
L. John Ford, Senior Vice-President
Leslie R. Cypret, Vice-President, Administration
One Technology Park Drive
P.O. Box 990
Westford, MA 01886
Tel: (508) 692-0700 Fax: (508) 692-0525

Postmaster: Send change of address form 3579 to COMPUTER DESIGN Circulation Department, Box 3466, Tulsa, OK 74101

ABP
1.65 GB in a 5.25-inch Form Factor.
Available Now Is the New Hitachi DK516C-16 Winchester.
To back-up the famous Hitachi quality, the DK516 series drives are offered with a 150,000 hour MTBF and a 5-year warranty.

Edge-to-Edge Performance
The DK516C-16 uses Hitachi's advanced proprietary technology to deliver 1.65 GB of capacity and a fast 13.5 ms average access time.
Its SCSI interface provides a maximum data transfer rate of 5.0 Mbytes/sec (synchronous), with a 256 Kbyte data buffer and a 10K write look-ahead cache.
Or, if you have an ESDI application, look into Hitachi's new 1.54 GB DK516C-15 with a 14 ms average seek time and a 2.75 MB/sec data transfer rate.

Edge-to-Edge Quality
Choose the DK516 and get a drive backed by the quality and reliability of Hitachi—a $44 billion company. Unlike other drive manufacturers, we design, build, and test all key components in-house.
If your new system design is leading the edge, then there's only one disk drive choice: the new DK516, from Hitachi.
For more information about the DK516, or any Hitachi disk drive, call 1-800-HITACHI.

Hitachi America, Ltd.
Computer Division, MS500
Hitachi Plaza
2000 Sierra Point Parkway
Brisbane, CA 94005-1819

The Leading Edge of Capacity

CONSAN 612-949-0053
(IA, IL, IN, KS, MI, MN, MO, ND, NE, OH, PItsburch, PA, SD, WI)

See us at COMDEX FALL, Booth #1616

GENTRY ASSOCIATES
800-887-3229 (AZ, DC, FL, GA, LA, MD, MS, NC, SC, TN, VA)

CIRACLE NO. 18
SUPER SOLUTIONS
ALACRON provides expandable i860 based Super Solutions for your application
- AT or VME Bus
- Multiple i860 daughter cards providing up to 80 MFLOPS on a single card
- Megapixel High Speed True Color Graphics
- DT Connect and SCSI I/O
- Up to 64 MBytes of wait state local memory
- The best i860 software including DOS and UNIX interfaces, C and Fortran compilers, multitasking/multiprocessing kernels, and scientific subroutine library

71 Spitbrook Road, Suite 204 • Nashua, NH 03060
Telephone: (603) 891-2750 • Fax: (603) 891-2745
Trademarks are property of their respective holders.

CALENDAR

CONFERENCES

September 11 - 13
BUSCON/91-East
Omni-Shoreham Hotel, Washington, DC. The industry's leading board- and system-level show makes its mid-Atlantic debut this year in Washington, DC. The first glimpse of advances in bus architecture, from Multibus II to VMEbus, Futurebus+, SBus and Turbochannel, plus the newest offerings among other elements of systems architecture—boards, backplanes, chips, embedded software and operating systems—will highlight the show. Information: Conference Management Corp, 200 Connecticut Ave, Norwalk, CT 06856, (800) 243-3238, fax (203) 857-4075.

October 30 - November 1
Analog & Mixed-Signal Design Conference
Santa Clara Marriott, Santa Clara, CA. The Analog & Mixed-Signal Conference is dedicated to the unique needs of mixed-signal design. Over 50 lectures and workshops will focus on subjects including transmission line effects in high-speed design; mixed analog/digital design; modeling, simulation and test; and much more. Information: Angela Hoyte, Miller-Freeman, PO Box 7843, San Francisco, CA 94120-7843, (415) 905-2554, fax (415) 905-2630.

September 24 - 27
Embedded Systems Conference
Santa Clara Convention Center, Santa Clara, CA. The Third Annual Embedded Systems Conference will offer 75 intensive lectures, panel discussions and workshops on real-time programming, microprocessors, microcontrollers, CASE, embedded project management, programming languages, debugging and algorithms. Tutorials will be offered on building software teams and synthesis. Information: Angela Hoyte, Miller-Freeman, PO Box 7843, San Francisco, CA 94120-7843, (415) 905-2354, fax (415) 905-2630.

October 1 - 3
SysComp/91-East
Royal Plaza Trade Center, Marlborough, MA. The industry's first exclusive OEM systems/sub-systems components conference and exposition. Workshops and technical sessions will focus on technical solutions and directions involving microprocessor system architecture, OEM systems and software, power sources, interface technology, mass storage, systems packaging and manufacturability. Exhibitors will include vendors of critical systems building blocks including software, boards, complex microcircuits, power sources, storage systems, displays and other ancillary products. Information: Betsy Anderson, marketing specialist, COMPUTER DESIGN, One Technology Park Dr, PO Box 990, Westford, MA 01886, (508) 392-2209, fax (508) 692-0525.

Would you like your event listed here?
Computer Design can include a calendar announcement for your upcoming conference or seminar as long as it's received at least three months prior to the date of the event. Be sure to include a specific location, a description of the conference/seminar content, and a contact name, address and telephone number.
Pack more logic into every FPGA.

NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today's FPGAs, only Data I/O's new ABEL-FPGA™ Design Software has the power to pack in maximum logic. It combines the industry-standard ABEL Hardware Description Language (ABEL-HDL™) with our new intelligent FPGA Device Fitter™ technology. So, you can create more complex designs with less effort—ABEL-FPGA does the hard work for you!

ABEL-FPGA's powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, ICT, National, Plus Logic, and Xilinx. And with built-in knowledge of its target architecture, each fitter masters the complex features of its device automatically, intelligently.

Practical, detailed documentation, complete with FPGA design examples, also helps to ensure that you get the most from each architecture. And for added design power and flexibility, ABEL-FPGA lets you specify place-and-route constraints directly in your circuit description, so you can easily migrate the same design between multiple FPGA vendors.

Pack more logic into your next FPGA design, with the single solution to all your FPGA behavioral entry needs: ABEL-FPGA. Call today to find out more about NEW ABEL-FPGA.

1-800-3-DataI0
(1-800-332-8246)

The Personal Silicon Experts

DATA I/O Corporation

CIRCLE NO. 22
After thousands of hours, the major CAE suppliers have reached an agreement.

MINC design synthesis tools work right every time.

In system design, you want every advantage you can get. Which is why, after thousands of hours of evaluation, suppliers like Mentor Graphics, Valid, Teradyne, Racal-Redac and Intergraph/Dazix have chosen to integrate MINC's PLD/FPGA technology in their systems.

MINC's design synthesis software lets you design with programmable logic independent of specific devices or architectures. It handles top-down, multiple device and large, sophisticated designs.

MINC's design tools are based on next-generation technology... not just a new software revision. They're recognized as the highest quality, because they work right every time. And now that MINC software is available in both UNIX and DOS, you can enjoy the advantages of our programmable logic design tools stand alone, as well as an integrated CAE solution.

Of course, we don't expect you to spend thousands of hours evaluating our logic synthesis tools to see if they're right for you. The first time you try them, we're sure you'll agree. Call or FAX for complete information.
In the 21 years I've been involved with software development, everything has changed—and nothing has changed. Sure, people use different computers, programming languages, operating systems, user interfaces and applications software now than when I was a novice. But we're still struggling to develop systems. Software development is still basically a freestyle event in most organizations. Software consumers are not satisfied with either the quantity or the quality of our output. We continue to look for the breakthrough technologies that will obviate our problems, and have yet to agree on standard practices for most of our work. "Software engineering" describes what we aspire to, not what we do.

Why can't we do better? When we face the issues of software development, we usually trace our problems to multiple sources, including (but not limited to) bad programming languages, bad operating systems, bad methods or methodologies, bad tools, and bad management. But our typical response to these problems is to invent new programming languages, operating systems, methods, methodologies and management techniques. When coupled with the tremendous rate of change in other fields, this adds up to a continual flood of new technologies. Many of these technologies affect our work as software developers, but do not themselves advance our discipline. Only a small portion of new technologies will be of lasting value.

Unlike other engineering disciplines, software engineering is based as much upon hope and persuasion as it is upon science. This should make anyone generally skeptical of advances in our field, but too often we're forced to suspend disbelief in the face of market pressures that have little to do with technical reality. This phenomenon creates tremendous distractions which inhibit our understanding and resolution of the key problems in our field, and keeps software engineering at a poor relation to other forms of engineering.

Let's look at how this happens. A look at technology expectations and realities shows how market dynam-
could be improved by a factor of 10. Now many of these are extinct. In the '90s we're seeing a new wave of companies responding to the expectation that object-oriented technologies will solve our software problems.

The vertical drop from the crest of the wave of expectations, as shown on the diagram, reflects the fact that when the technology cannot meet our expectations, we tend to lose interest fast. Our expectations plummet. If our expectations are reasonable, this is a clear case of technology evolution in action. If, however, our expectations are overly inflated, we run the risk of losing potentially valuable technology. Note that development of the technology can continue for a while even after the general market loses interest, but not for long unless it's a key component of some other product or technology.

Inevitably, and usually quite soon, a new wave of technology expectations begins to rise, a new vacuum is quickly created to occupy our interests, and the same cycle begins again. In the hardware world, most new technology expectations derive from advances in materials. In the software world, the situation is different, and much more pernicious.

Gerry Weinberg, author of several books on software management, likes to remind us that the biggest problem in software development is management. Software managers are at a serious disadvantage compared to hardware managers because of the way software technologies evolve, or more accurately, do not evolve. First, let's look at the example of computer hardware technology evolution.

Even in first-generation computers, standardized components (tubes) let us build larger standardized components (gates) from which we could build larger (module) and larger (subsystem) components. Along the way, engineers and managers learned how to use subsystem components, and evolved some standard engineering practices.

How technology affects management

Transistors eventually proved to be a better technology than vacuum tubes. Because of informal or formal standards at each level of system abstraction, engineers could replace the lowest-level technology (tubes) easily, without having to redevelop the higher levels. Engineering managers, who may not have been intimately familiar with the new technology, could still apply their knowledge of module and subsystem engineering to help keep the project on track.

With the advent of integrated circuits, a level of system abstraction was absorbed into a new component technology, letting most designers work at the module level rather than the gate level. An engineering manager who wasn't completely knowledgeable about integrated circuit design could still function effectively because the new low-level technologies did not affect the high-level system description.

Software technology issues are very different from those of hardware. Our lowest-level software "materials" are programming language statements. There are hundreds of available programming languages to choose from. Some, like Ada, have a rigorously defined statement syntax. Others, like C, exhibit variations at the level of statement syntax. But this is the good news. The bad news is that, once above the instruction level, there are no standards for module, subsystem and system definitions.

Because of a lack of standardization above the instruction level, there's a tendency in software designs to have the entire system design influenced strongly by details of the lowest-level technology. There are at least two serious problems with this. First, systems designed this way (dare we say badly?) are very difficult to migrate to newer implementation technologies when they become practical or popular. Secondly, those managing the development of such systems must be conversant in the lowest levels of technology to make effective design decisions. This places more-experienced managers at a disadvantage unless they are willing to become "technology surfers."

As the name implies, technology surfers ride technology waves. Technology surfing is fun and exciting.

Technology Expectations And Realities

Users' expectations for any new technology follow the pattern of a wave. When a new technology is first announced, the expectations of potential users are low. Initial skepticism typically keeps expectations below what the technology can actually deliver (the reality of its capabilities). But as the reports of any early successes circulate, expectations begin to rise rapidly, soon exceeding reality. The amount by which expectations exceed reality creates a technology vacuum and leads users to attempt applications beyond the technology's real capabilities. In the final stages, expectations plummet as reports of user failures become common.
A technology surfer is always on the leading edge. Nonmanagement engineers who are technology surfers contribute to our industry. But engineering managers who are technology surfers are dangerous. They are always focused on implementation details (trying to stay on the wave), and rarely get time to think about the big picture (crossing the ocean). This lack of higher-level perspective leads to bad judgment when making design tradeoffs, especially when under pressure to fill a strong technology vacuum with the latest wonder technology.

Catching a wave

When a new technology wave begins to appear in the middle of a development cycle, technology surfers panic. Regardless of the state of the project, they'll find some way to jam this new technology into it. This would not be so bad if the impact were localized to the lowest layers of the system. But, because we don't have good standard practice for software design, more likely than not, the system architecture will be affected. This is a recipe for a project that will be, at the very least, late.

Earlier, we mentioned that new hardware technology waves were driven by advances in materials. Since the materials level is separate from other systems levels, but related to it in standard ways, much of our knowledge can be preserved across successive technology waves. But in software, most new technology waves are driven by changes in fashion. While a new hardware technology can and must demonstrate superiority in price, performance, power consumption or manufacturability before being widely used, a new software technology needs only the groundswe of public acclaim and the smallest proof-of-concept before being hailed as the next great thing.

Because new hardware technologies are very expensive to develop, companies are very selective about which technologies they choose to develop and release into the market. This tends to limit hardware engineers' technology choices to a manageable number. But because the initial cost to develop a new software technology is low, and anyone can develop one, software engineers are faced with an overwhelming number of competing technologies and no good way to evaluate them.

When is a wave all wet?

One way to evaluate a new technology would be to compare it incrementally against existing technologies. But most software technologists go for the revolutionary—the big hit. It also means that in espousing the revolutionary nature of the new technology, there will be few references made to prior technology, except disparaging ones. New terminology will litter the countryside. A thousand new concepts will bloom. Only later do we find that many of the revolutionary concepts are like new sheet metal on an old auto chassis, and the new terminology is just a different paint job. In the meantime, we've discarded many of our prior skills in our rush to embrace this new technology, and now must rehabilitate ourselves at considerable cost. Had these technologies been positioned as incremental advances in the first place, they might not have garnered as much interest from the marketplace, but they would have been easily evaluated and added to our collective software engineering knowledge.

All engineers are under pressure to keep up with new technology. This pressure comes from the same sources that drive technology expectation curves up so quickly. Cadre recently did some market research to explore how many people were using a new technology. We were surprised by the high percentage of affirmative responses until one participant commented, "If I said I'm not using this new technology, I'd look like an idiot."

When a technology is demonstrated to deliver compelling economic advantages, migration is necessary and obvious. When a technology is only claimed to deliver compelling economic advantages, migration is neither necessary nor obvious. We need to examine it closely to see if it constitutes a material advance before embracing it. Otherwise, we're just responding to the pull of the technology vacuum.

Ask some hard questions

What are some of the questions we should ask of new software technologies? Any question with the words measurable or provable is a good start. For example, "What are the measurable advantages of using new language X instead of language Y?" Follow this quickly with, "Where did you get your data?" Questions about compatibility are useful: "How does this new software technology work with what we've already got?" If the answer is, "it doesn't, you must fully embrace the new," we may be doubly skeptical because it's unlikely we'll scrap all of our existing technology. And a new technology that's incompatible with the present is likely also to be incompatible with whatever shows up in the future.

Failing to ask hard questions of a new technology, and going with it anyway, makes us technology surfers. We are now on the development team for that technology. We'll inevitably spend precious resources and considerable effort developing that technology instead of developing our products. If the technology ultimately fails, this effort is wasted. If it's successful, there's still no guarantee that our product will be successful because much of our effort will have gone into mastering the new technology.

In the preface to their landmark book, *Computer Architecture, A Quantitative Approach*, (Morgan Kaufmann, 1990) Hennessy and Patterson describe "a new approach to demystifying computer architecture—it emphasizes a quantitative approach to cost/performance tradeoffs. This doesn't imply an overly formal approach, but simply one that's grounded in good engineering design." Until a quantitative approach is applied, technology waves will continue to pound away at the software technology base, changing it at random, and washing away much of what has gone before.

Lou Mazzucchelli, is vice president and chief technical officer at Cadre Technologies (Providence, RI).
The Elegance Inside The HP LaserJet IIISi™ Printer:
The 29K™ RISC Microprocessor Family.

HP's customers were on the prowl.
And Hewlett-Packard knew exactly what they were hunting for—a faster, PCL5 and PostScript™ compatible, affordable desktop laser printer.

So they built the HP LaserJet IIISi printer. And naturally, they built it around the most versatile, high performance embedded RISC processor ever:

The 29K™ 32-bit microprocessor from AMD.

Only the 29K Family gives you the widest range of performance—thanks to its innovative register file and high-velocity memory interface. That's how HP achieves its blistering 17 page-per-minute throughput, even with complex PCL5 and PostScript documents.

Only the 29K Family keeps your system costs...
low, while keeping performance high. Features like AMD's unique on-chip caches and burst mode give you maximum performance from less expensive memory.

Only the 29K Family helps bring your product to market so fast. You'll breeze through development with AMD's own tools, or the hardware and software tools provided by over 50 Fusion29K Partners. And the 29K Family continues to grow, with new members offering even higher performance and integration.

So make sure your customers are happy puppies, and start designing with the 29K Family from AMD. Call 1-800-292-9263 Ext. 3 for more information.

Advanced Micro Devices
901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088; © 1991 Advanced Micro Devices, Inc. 29K is a trademark and Fusion29K is a servicemark of Advanced Micro Devices. LaserJet III is a trademark of Hewlett-Packard Co. PostScript is a registered trademark of Adobe Systems, Inc. All other brand or product names are trademarks or registered trademarks of their respective holders.

CIRCLE NO. 24
Multimedia waits for faster video processing chips

Dave Wilson, Senior Editor

Dave House, senior vice president of Intel (Santa Clara, CA) disclosed recently that Intel is completing the development of a programmable video processor with PictureTel (Peabody, MA) that will offer 10 times the performance of Intel's i750 video processor. The new device will be capable of on-line, real-time compression and decompression and compatible with MPEG, JPEG, CCITT, and Intel's current PLV and RTV algorithms. Intel has already shown some details of the SIMD (single instruction multiple data) architecture under nondisclosure.

But Intel isn't the only vendor interested in building such a multimedia processor. Motorola, Brooktree, Texas Instruments, Integrated Information Technology, LSI Logic, C-Cube Microsystems, and Cypress Semiconductor to name some, all have MPEG research projects underway.

Choose your standard

Two standards currently exist for the compression and decompression of motion video—MPEG and H.261 (Px64). While H.261 is devoted to teleconferencing applications, most silicon vendors are racing to build processors to meet the higher-performance MPEG "entertainment-quality" video standard. MPEG's charter is to develop standards for the coded representation of motion pictures and associated audio for storage and retrieval on digital media, such as CD-ROM and CD-I.

"Up until a year ago, MPEG1 was always talked about in the context of 1.5 Mbit/s, and a video format that was a 2:1 subsampled version of broadcast TV," says Cliff Reader, head of the US delegation to MPEG, and an engineering manager at Cypress Semiconductor (San Jose, CA). "People were working with pixel resolutions of 352 x 240 and 1.5-Mbit/s speeds." According to Reader, 1.5 Mbit/s was chosen because it was compatible with T1 transmission channels and the CD's transfer rate.

"Then it was realized that the transfer rate didn't need to be a hard restriction," he adds.

Hence, the MPEG standard has been written to allow higher bit rates and different formats of image data. The most computationally intensive problem faced by a multimedia MPEG processor is performing the encoding and decoding of images. Of these two, the encode function requires considerably more horsepower. "The biggest difference between MPEG and H.261 is how motion compression is achieved," says Jeff Teza, vice president of corporate technology at Brooktree (San Diego, CA). Both use a JPEG-like technique to reduce the spatial redundancy in a single still image and achieve a 25:1 compression ratio. To get higher compression, motion-compression techniques must be used. MPEG uses more powerful temporal compression techniques than H.261. While H.261 specifies that one frame be compared to a single prior frame for predictive motion-compression analysis, the number of frames MPEG compares isn't specified in the standard. "That makes MPEG a lot more difficult," says Teza. But the optional nature of the motion-prediction method means that MPEG encoders are likely to improve over time, as image-compression algorithms improve.

Chips reflect MPEG complexity

Because the MPEG encoder is so complex, especially in real-time, many encoders on the market today are for H.261. "An MPEG encoder is about three to four times the processing complexity," of an MPEG decoder, says Zohar Raz, market development manager at Motorola (Phoenix, AZ), a company that is developing an MPEG full-motion video decoder as well as an MPEG audio decoder.

Most available image-compression/expansion devices either perform a dedicated function, like the JPEG-CL550 processor from C-Cube Microsystems or provide a building-block approach like those from LSI Logic (Milpitas, CA) and SGS-Thomson (Phoenix, AZ). LSI's...
OS-9000. Bringing Economy of Design to Industrial 386 PC Developers.

Now, real-time high-performance system software is available for your industrial PC. Microware Systems Corporation, the world's leader in real-time VME system software, brings an economical real-time solution to industrial PC developers. Introducing OS-9000™, the first real-time operating system designed to unleash the power of your 386™ hardware.

Real-Time Response To Control Multiple Tasks

Why waste the power of your 386 by letting it control only one function at a time? Unlike PC-DOS, OS-9000 is a true multi-user and multi-tasking real-time operating system. Now you can utilize a single PC as a powerful time-sharing system able to control multiple processes simultaneously. And by using industry-standard protocols (like Ethernet and Arcnet), OS-9000 allows PCs to be interconnected and connected to different computers to exchange data quickly and easily. This versatility tremendously increases your productivity, while it reduces development time and equipment costs. Plus, interfacing to standard or custom I/O controllers is a snap.

Get OS-9000 Today

Pre-configured versions of OS-9000 are now available for your 80386™ PC-compatible hardware. These systems include integrated development tools such as a “shell” user interface, over 70 powerful utilities, a superlative C compiler, a C source-level debugger and a screen editor. Your full-featured, "plug-and-play" OS-9000/386 system is now available for just $995.

Call Microware® today to order your copy of OS-9000. Or order a FREE copy of the OS-9000 Catalog (your complete guide to the OS-9000 Real-Time Operating System).

Call Microware Today!
1-800-475-9000
In California, call (408) 980-0201

MORE CHOICES • MORE OPTIONS • TOTAL SUPPORT
CIRCLE NO. 26
Some people think we're power crazy, obsessed with quality and downright cheap.
Okay, we admit it. We're hopeless perfectionists. Driven to produce the best boards at the best price.

Take our new MVME187 and MVME167 single board computers, for instance. Best in performance at 23 MIPS (RISC) and 20 MIPS (CISC), respectively. Best in value at $174 (RISC) and $200 (CISC) per MIPS.

Which comes out to just $3,995 per board. And which compares rather nicely with the $8,000 to $12,000 you could pay for the competition's boards.

Based on the 88100 and 68040, Motorola's highest performance 32-bit microprocessors, the MVME187 and MVME167 employ VME D64 architecture. Boosting the VMEbus bandwidth to a full 40MB/s. And both boards come with four 32-bit timers, as well as SCSI and Ethernet connections.

Naturally, since they're made by Motorola, you can expect the best in quality. The Malcolm Baldrige Award is a powerful testament to that fact.

So call 1-800-234-4VME for a free color brochure. And see why so many people are obsessed with Motorola products.
seven chip set, called the L64700 family, is aimed at the P>64 market. SGS-Thomson offers the IMS A121 discrete cosine transform processor. Integrated Information Technology (Santa Clara, CA) has taken a somewhat different approach with its Vision Processor, a programmable device that the company expects (at 40 MHz) to be sufficient to decode and encode a compressed MPEG picture. A single chip is expected to be sufficient to implement the encoder of a P>64 (H.261) CCITT teleconferencing system having a full CSIF (common source input format) resolution at 50 frames/s.

Goodbye Mips, hello Bops

How computationally intensive is the MPEG encode function? According to Dr. Pat Hays, director of VLSI engineering at PictureTel, the Intel processor will be capable of 1 Bops (billion operations per second). It will not only perform the decode, but also the MPEG encode function, at 50 frames/s in real-time. “The performance is achieved through architectural parallelism,” says Hays. “We have no dedicated hardware on chip. Instead we have designed a more general data path that is highly programmable for functions like DCT and motion compensation.” According to Hays, the data path can be programmed to achieve the same speed as dedicated processors and with higher video quality. The device also can be time-multiplexed between different functions.

Texas Instruments (Stafford, TX) has a multimedia chip project under way too. But image processing and multimedia program manager Walt Bonneau indicates that “the (multimedia) problem is into the 2 billion plus operations per second,” rather than the 1-Bops figure mentioned by Intel. But Bonneau does agree with Hays that a programmable architecture makes the most sense. Despite this, Bonneau feels that the SIMD approach taken by Intel is limited. “When you structure yourself for only an SIMD operation, you have limited the parallelism aspects of the machine,” he says. Bonneau.

feels that a MIMD (multiple instruction multiple data) machine, or more specifically a synchronized MIMD machine would be a more effective solution. But it might not be possible to realize such a chip until late in 1992. By then, Bonneau claims that silicon may be available from a number of silicon vendors. “But,” he concludes, “anyone that has taken a serious look at the demands of multimedia realizes that it’s not a single processor function.”

Achieving broadcast quality

So, even with all its Bops, will MPEG meet the needs of applications in computer, consumer and communications markets? Apparently, not. Brooktree’s Teza claims that MPEG lacks capabilities for the broadcast field. The reasons—poor picture quality and lack of support in the specification for interlaced signals. “At 1.5 Mbit/s, MPEG1 is really not sufficient for broadcast quality,” Teza claims.

“At 1.5 Mbit/s, MPEG1 gives performance somewhere very close to the decision point between acceptable and unacceptable,” says Cypress’ Reader. “We’ve seen some material that looked fine, and some where the quality was questionable.” Reader says that there’s a lot of research currently underway at many organizations into smart en-

coders to improve the quality of the video at 1.5 Mbit/s. “There are a number of things that you can vary in the encoder to make it work better,” he says. “The principal tool is being able to dynamically vary the quantization of the data. People are using statistics gathered from the data to control the quantizer. That can be done on a very localized basis and has resulted in some noticeable improvements in quality.”

Designers that demand more than MPEG1 currently has to offer might look to MPEG “JVC extended mode” supported by C-Cube (San Jose, CA) and JVC (Huntington Beach, CA). Robert Soderbery, Manager of System Design at C-Cube says that the MPEG1 bit stream is suitable for CD-ROM applications, where constrained bit rates and low resolution images are used. But JVC and C-Cube are interested in addressing broadcast TV and digital VCR applications as well. To do that, they’ve extended the MPEG syntax, and optimized the MPEG algorithm for higher resolution and higher bit rate. “Our CL-950 processor [an MPEG decoder running in JVC extended mode] will offer the 6 to 9 Mbits/s that are needed in these applications,” says Soderbery. As for an MPEG encoder, Soderbery had no comment...yet.

For more information about the technologies, products or companies mentioned in this article, call or circle the appropriate number on the Reader Inquiry Card.

Brooktree Corporation (619) 452-7580 Circle 373
C-Cube Microsystems (408) 944-6300 Circle 374
Cypress Semiconductor (408) 945-2600 Circle 375
Integrated Information Technology (408) 727-9500 Circle 376
Intel (408) 765-8080 Circle 377
JVC (714) 965-2610 Circle 378
LSI Logic (408) 433-8000 Circle 379
Motorola (602) 244-6900 Circle 380
Pictetel (508) 977-9500 Circle 381
SGS-Thomson (602) 867-6100 Circle 382
Texas Instruments (800) 336-5236 Ext. 700 Circle 383
Do Machine Visionaries Have Digit Eyes?

If you're digitizing images for machine vision applications, you may have run into incorrect brightness and intensity problems created by hardware non-linearities. These shortcomings in cameras and monitors can be overcome if your image digitizer has an onboard lookup table to correct such gamma error—like Brooktree's new Bt252 gray-scale image digitizer.

It was designed for machine vision applications. Pattern recognition, for example, often requires multiple cameras to capture different data perspectives. The Bt252 has an input mux to accommodate up to four image sources.

Differing light levels require the ability to control the reference levels where digitization begins and ends—and program these levels on the fly. That's an important feature of the Bt252.

Brooktree is committed to providing applications-oriented solutions to your machine vision imaging problems. Ask for technical literature on our family of fast A/Ds and support devices.

Encoding and Decoding Digital Video? Brooktree is D1

If your workstation or broadcast system sends, receives, manipulates or displays digital video, you've probably developed a preference for the D1 video standard over the D2 standard.

No wonder. D2's digitization of composite video can be quite "lossy." D1, on the other hand, uses a 4:2:2 video format which samples chrominance and luminance independently and at different rates, giving you greater flexibility while preserving video quality.

For more on D1, and Brooktree's chip sets that provide complete 4:2:2 digital video for point-to-point reception and transmission, ask for: Bt291/294/296/297.
Move into the right 32-bit architecture and you'll be comfortable there for a long, long time.

Since nobody really relishes the thought of moving, you want to find an architecture you can stay with. And with the most complete line of 32-bit embedded processors, the Intel i960™ family is the perfect place to call home.

It's not only the most complete line, it's also the most complete solution. For starters, you get compatibility across the entire i960 line. So whatever direction you want to move within the family, the move is easy.

And with a price/performance path from under $20 all the way up to 100 MIPS, you'll have plenty of room to grow.

Obviously, a complete solution would be incomplete without a comprehensive set of development tools and support. Which is why we put together the Solutions960 Collection. Over 100 hardware and software products from debuggers to printer controller boards to help
you get started, to develop and to get your products to market quickly.

And when you move into the i960 line, you’ll be among some impressive neighbors. People like Dell, Seiko Instruments and Hewlett-Packard who’ve found the i960 processors are perfect for today’s more demanding applications—everything from laser printers to communication products.

So when you’re ready to settle into the most complete line of 32-bit architecture, call 800-548-4725 and ask for the 960 Welcome Guide for a more in-depth view of the i960 line.

Then sit back, relax and enjoy some very interesting reading.

intel®
The Computer Inside.™

CIRCLE NO. 28
Multichip modules deliver high integration, high speeds and high cost

Dave Wilson, Senior Editor

System designers are faced with a problem. Even with today's million transistor chips allowing microprocessor vendors to integrate more functions, system designers can't get everything they need in a single package. When chip vendors make tradeoffs to meet their silicon budgets, there's always a set of customers who feel their needs got lost in the shuffle. Enter the multichip module (MCM).

By allowing a collection of bare die to be interconnected via a structure that resembles a large IC, the MCM holds the potential to let whole CPU subsystems (CPU, floating-point unit, cache controller, and large data and instruction caches) be integrated in a package no bigger than an Intel 486. MCMs also present the designer with the option of choosing functions from a number of silicon vendors and packaging them to meet the needs of a specific application. All of the preceding arguments for multichip modules have been true since the advent of reliable hybrid technology. Yet designers outside of the aerospace industries have steadfastly resisted multichip approaches. But the final argument for MCMs is the most compelling; at 50-MHz processor speeds and above, there appears to be no alternative to the MCM.

Choices in MCM construction

There are a number of MCM technologies currently offered in the market. Thick film MCMs, like low-temperature co-fired ceramics, use a printed circuit board-like screen-printing technique to create an interconnection pattern. The resulting pattern has thicker features than thin-film MCMs, which use optical lithography to create the pattern image. Tradeoffs between the thick-film and the thin-film MCMs are influenced by circuit requirements such as frequency, speed, precision, and density. Thin film is better suited for high-frequency designs. Thick film offers a cost advantage.

“T...
Whatever your destination on the open bus highway...

Newbridge Microsystems can help you get there.

Newbridge Microsystems offers the industry’s most complete and flexible open bus silicon product line. Leading the way with our 32-bit VME chipset that supplies a full high performance VMEbus interface, we provide a pin-for-pin compatible migration path to VME64. Our product direction extends beyond VME to devices and VHDL models for emerging Futurebus+ protocols.

The CA91C014 and CA91C015 VME chipset provides:

- IEEE 1014/VMEbus Rev C compliance
- Full VMEbus interface implementation
- High performance VMEbus decoupling with on-chip DMA functionality
- Bus Isolation mode for system diagnostics and fault isolation

For those applications demanding even higher performance, the CA91C064 VME64 device will offer users of our 32-bit chipset a pin-for-pin compatible upgrade to VME64.

Newbridge Microsystems is also developing a highly flexible solution for entering the Futurebus+ market quickly. The CA91C396 and CA91C397 Futurebus+ chipset will feature:

- Generic local bus and decoupled Futurebus+ interfaces to support split transactions for multiprocessing and burst transfers for higher performance
- Support for scalable external performance enhancements for use across a spectrum of applications
- Portable VHDL models to minimize design effort — and your time to market

Our second generation Futurebus+ products will include processor specific single chip devices, such as the CA91C880 for the Motorola 88K RISC processor family.

Backed by the worldwide Newbridge group of companies and an international sales and distribution network, Newbridge Microsystems is laying out an open bus route to the future.

Newbridge Microsystems • A Division of Newbridge Networks Corporation.
603 March Road, Kanata, Ontario, Canada K2K 2M5
Tel: (613) 592-0714 • 1-800-267-7231 • Fax: (613) 592-1320

Newbridge and logo and Calmos are trademarks of Newbridge Networks Corporation. © Copyright 1990, Newbridge Networks Corporation.
Other brand and product names are trademarks or registered trademarks of their respective holders.
TECHNOLOGY DIRECTIONS

INTEGRATED CIRCUITS

In terms of cost-effectiveness in the commercial marketplace, MCMs have some problems. "First you must bond chips on a substrate, then you have to burn the whole thing in. What happens when one die fails—which is extremely likely after burn-in? Why spend all this money on an exotic substrate, on a technology where the rework and yield issues aren't non-trivial."

Nevertheless, Eliscu feels there's hope. "MCMs will come into their own when the IC houses start changing the I/O structure of the microprocessor, memories, etc.," he says. "By removing the ESD protection structure on an SRAM, for example, or minimizing the size of it, you can increase the performance of the device." Eliscu quotes one SRAM supplier as indicating that 4 ns was lost on the access time of an SRAM when ESD protection needed to be increased. "However," Eliscu adds, "you must know before hand that the device will be placed directly on an MCM and not handled by many people in the process."

Ceramic rather than silicon

The silicon substrate technology developed by nChip represents only one MCM methodology. Other vendors may use a thin film ceramic substrate, rather than silicon. And tape automated bonding, and flip-chip offer alternative approaches to placing the die onto the surface of the substrate. For example, Kyocera offers an MCM that uses a multi-layered thin-film ceramic substrate. Bare die are mounted on the ceramic substrate and then wirebonded to the interconnection pattern. Despite differences in substrates, wirebonding appears to be widely accepted as the most cost-effective interconnection technology for multichip CPU modules intended for workstation applications.

Above 50 MHz, ground bounce between power and ground planes in MCMs becomes a concern. The nChip solution is to place a thin-film capacitor in the silicon itself. With ceramic, either decoupling capacitors are used or thin layers of ceramic materials with high-dielectric properties are built into the substrate.

Thermal expansion is more of a problem with a ceramic substrate than silicon. Wei-Tau Chiang, president of ACC Microelectronics (Santa Clara, CA) says that because silicon and ceramic have different coefficients of thermal expansion, a ceramic module will not be able to sustain as wide a temperature range as silicon-on-silicon. Furthermore, with a silicon substrate, there are no catastrophic failures due to the chip attachment to the substrate itself. The geometries that can be put down on silicon are finer than their ceramic counterparts. "On silicon substrates, line widths can go down
to about 10 µm while ceramic substrates don’t allow lines finer than 25 to 30 µm,” says Richard Sigliano, new product development and marketing manager at Kyocera America (San Diego, CA).

What the ceramic approach offers over silicon is that the substrate and package can be offered as a single structure—dubbed either an integrated structure or a convergent package. “You integrate the circuitry with the ceramic package in one monolithic package,” Sigliano says. “When you use a silicon substrate, you have to use some kind of enclosure for the package. The nChip substrate is placed into a hybrid package.”

Sigliano feels that for the mid-range workstation market, the price of the assembled MCM will have to be approximately 5 percent of the total system cost. “If you take a $20,000 system, the MCM has to cost between $500 to $1000 dollars. This means that the MCM’s package cost should be about $50,” he says.

IMC still too pricey

“The nChip pricing is about the same as our MCM—and they are both too high for that market,” says Sigliano. Vendors are demanding that the cost of a high-performance convergent package for an MCM in a high-end ($40,000 to $50,000) workstation application has to be $20/in.².

“Everyone wants that number. Major semiconductor manufacturers demand price levels between $20 to $25/in.²,” Sigliano adds. But to get there, Sigliano feels that volumes will need to range from 50,000 to 100,000 pieces per year, with package production yields as high as 80 percent. Neither figure will be easily attained. He believes that it’s more realistic to expect prices to stabilize around $40/in.²—and that may be more than the market can bear. “You’re talking $100 to $200/in.², for a high-performance MCM package today, perhaps as low as $75 in volume. In five years, they will get to $40, not $20,” he adds. “That’s why we see a lot of people in the workstation market who don’t want thin film ceramic, they demand co-fired ceramic for any MCM. That part is $8 to $10/in.² which is right in their price range today,” he concludes.

For more information about the technologies, products or companies mentioned in this article, call or circle the appropriate number on the Reader Inquiry Card.

ACC Microelectronics
(408) 980-0622 Circle 201

IDT
(408) 944-0114 Circle 202

Kyocera America
(619) 576-2600 Circle 203

LSI Logic
(408) 433-8000 Circle 204

nChip
(408) 945-9991 Circle 205

© 1991 AT&T
Multichip modules push design tool limits

Mike Donlin, Senior Editor

Multichip modules (MCMs) are moving from the domain of high-ticket military applications to mainstream products such as workstations and personal computers. And as MCMs make this transition, EDA vendors are scrambling to produce tools that will let engineers design and simulate an as workstations and personal computers. Mike Donlin, Senior Editor

MCMs before the expensive manufacturing to produce tools that will let engineers design and simulate an MCM before the expensive manufacturing stage. But the very nature of an MCM, namely a cluster of bare ICs on a common substrate, introduces some thorny design problems which, if not addressed early, will result in an expensive, untestable product.

Some of the required tools have already been released by EDA vendors; tools that predict the thermal characteristics of components or the transmission line effects that result from closely-packed traces carrying high-speed signals, for example. Routing tools also stand ready to tackle the intricate layering of nets that results when a design that occupied a 12-in.-square circuit board shrinks to a 4-in.-square MCM. Most MCM tools available today are reworked versions of existing design tools. Allegro MCM from Valid Logic Systems (San Jose, CA), for instance, is an outgrowth of Valid's Allegro printed circuit board design tool, although changes had to be made to address the fine geometries of MCMs. "Up until now, many MCM designers have been making hybrids that are characterized by 5- or 10-mil traces separated by 5- or 10-mil spaces," says Shiv Tasker, director of product marketing in the printed circuit board division of Valid. "CAD packages are, therefore, designed to work with these relatively large dimensions. To deal with the tight geometries of MCMs, we adapted and reworked Allegro. We changed the database, for instance, from a 32-bit integer capability to a double-precision floating-point, 64-bit design to handle the finer pitches," states Tasker.

Mentor Graphics (Wilsonville, OR) took a similar approach by adapting its Hybrid Station when it recently unveiled the MCM Station design tool. The similarities between hybrids and MCMs made this

The MCM difference

Hybrids and MCMs are similar because they both house bare chips on a substrate, whereas a hybrid has a much lower level of integration with a lot of discrete resistors, capacitors and transistors on it.

The high density of VLSI components on an MCM, however, poses problems that designers of hybrids or circuit boards rarely have to face. Component placement, for example, gets critical when 50 devices are placed on a 2-in. square substrate. Thermal characteristics must be back-annotated after placement and preferably before routing, because in such confined spaces even the routed traces can affect thermal behavior.

Dazix (Boulder, CO), a division of Intergraph (Huntsville, AL) has taken thermal analysis a step further than other EDA vendors by incorporating the 3-D features of its CAD tools into its MCM-Engineer design tool. As a result, the tool provides a 3-D thermal image, which models heat conduction between the different materials of the MCM. "Being able to view a 3-D model of an MCM has several advantages," says Ed Miccio, hybrid/MCM product marketing manager at Dazix. "In addition to letting an engineer visualize the thermal ramifications of device placement, the 3-D layout can be viewed for manufacturing purposes. It gives a designer information about how the package will fit physically with the rest of the system in three dimensions. Placement can then be adjusted taking all these considerations into account."

Placement, of course, affects not only the thermal characteristics of an MCM but also routing efficiency, which translates directly into manufacturability and cost. Any discussion of routers, however, brings up

Mentor Graphics' MCM station models the thermal characteristics of a multichip modules' devices and substrate by implementing a finite-element method to model 3-D heat transfer. The top half of this screen shows the finite-element analysis mesh, the bottom half the isotherm map of substrate temperature.
Tough, rugged boards that handle shock, vibration, heat, cold and the budget squeeze

MATRIX VMEbus Rugged Series loves harsh environments. Designed to operate from -40° to +85°C, the Rugged Series surpassed these temperature specs and sustained continuous operation during a series of severe environmental tests.* At off-the-shelf prices, these boards are tough to beat.

Rugged 32-bit processors, memory boards, and a variety of specialty I/O boards make harsh environments manageable. Available in extended temperature and/or rugged versions, these products provide all the power and flexibility VMEbus can offer. And at a fraction of the cost of full Mil-spec products.

Call today for more information about our Rugged products. For less extreme applications, ask about our full line of VMEbus Industrial Quality systems, boards and enclosures. Telephone: 1-919-231-8000. FAX: 1-919-231-8001.

*CIRCLE NO. 31

Test results for the MATRIX Rugged Series show boards withstood 105 g's of shock for 6 ms and 10 g's of vibration at the first natural resonant frequency.

1203 New Hope Road, Raleigh, NC 27610
the gridless vs. gridded debate, which has raged in the printed circuit board world for years. The debate heats up when the dense geometries of MCMs enter the fray.

Proponents of the gridded approach cite advances made in routing technology that let their tools stay flexible for the varying pitches of MCMs, while offering the advantages of interactive routing, which traditionally must be done with some sort of grid in the background. "Our router isn't gridless, but it can adapt to the pitches of the various devices," says John Isaac, advanced packaging product manager at Mentor Graphics. "We've overcome the limitations associated with gridded routers in the past, which have the image of being inflexible. Many of these restrictions were addressed when the industry embraced surface mount devices and we had to adapt. Our router, for instance, doesn't demand that pads be on a grid. It routes on a grid and then can do a little jog over to the pad location, so it remains flexible."

Critics of the gridded approach point out that grids can take large amounts of system memory to adequately model the multitude of points that an MCM's densely-packed nets necessitate. Gridded router advocates that say gridless routers don't offer interactive editing capabilities, a feature that most seasoned designers demand. No matter which type of router is included in MCM design suites today, one thing is clear—the tightly packed traces of MCMs will eventually force everyone into a gridless scheme or into using gridded algorithms that aren't memory hungry.

Simulation difficulties

In spite of the host of tools available to designers of MCMs, there are still barriers to true behavioral simulation, mainly due to the lack of models for the mix of devices on a substrate. "If you go through placement and routing and run all kinds of thermal and signal integrity analysis, you've invested a great deal of time in a design," says Craig Palmer, manager in the systems division at Cadence Design Systems (San Jose, CA). "If anywhere along the line you find a major flaw in your design you have to start over, and that wastes a lot of time. We're taking the top-down approach and working on moving much of these analyses to the pre-layout phase of the design cycle. The people we're talking to want a way to simulate and analyze many of these physical and electrical effects at a high level, so they can proceed with their design using with a real set of design rules."

As printed circuit board technologies run out of gas, high speed, dense-I/O-count alternatives like MCMs will become a necessity. Finding ways to design, test and manufacture them will be one of the premier engineering challenges of the '90s.

For more information about the technologies, products or companies mentioned in this article, call or circle the appropriate number on the Reader Inquiry Card.

Cadence Design Systems

(408) 943-1234 Circle 206

Dazix

(909) 239-4111 Circle 207

Intergraph

(205) 730-2000 Circle 208

Mentor Graphics

(503) 685-7000 Circle 209

nChip

(408) 945-9991 Circle 210

Valid Logic Systems

(408) 432-9400 Circle 211
Your application is first in line with the MVC 16-line Async Commux. It's got processing capacity to spare, thanks to a 16 MIPS RISC, so system power goes to your users—not I/O.

Character processing and buffering is managed on-board by our RISC, so driver calls and host overhead are kept to a minimum. All 16 lines can operate at 38.4 Kbps. That's over 61,000 characters per second throughput, double the rate of other VMEBus async controllers.

The MVC's advanced features benefit both the integrator and programmer. Port and VMEBus parameters are soft-configured and set line-by-line. Modem control is standard. Full software support is also included, along with diagnostics and a Streams driver.

Advanced memory architecture and high-speed buffering eliminate overruns and port domination. Memory is expandable from 128KB to 1MB, so the MVC handles today's requirements and future application needs.

With over 11 years experience producing advanced storage, communications and memory products, Macrolink delivers the powerful and flexible MVC in 8 and 16 line configurations. Call us today. We won't keep you waiting.

Macrolink Inc.,
1500 North Kellogg Drive,
Anaheim, California 92807.
Phone (714) 777-8800,
FAX (714) 777-8807.

CIRCLE NO. 32
VHDL poised to overtake Verilog as support grows

Barbara Tuck, Senior Editor

So far, VHDL’s user acceptance is still behind that of Verilog, which is perceived to be a de facto industry standard. Core issues such as the lack of tools and models, difficulties with tool interoperability and lack of verification compliance have hampered the acceptance of VHDL as the standard hardware description language worldwide.

Less than two months ago, a group of leading EDA and ASIC vendors formed VHDL International to advance VHDL as the standard for the design and description of electronic systems. The new organization has as founding members Compass Design Automation (San Jose, CA), LSI Logic (Milpitas, CA), Logic Automation (Beaverton, OR), Mentor Graphics (Wilsonville, OR), Synopsys (Mountain View, CA), VLSI Technology (San Jose, CA), Valid Logic Systems (San Jose, CA), Vantage Analysis Systems (Fremont, CA), and Viewlogic Systems (Marlboro, MA). Also endorsing VHDL International is the VHDL Users’ Group which, as a subcommittee of the organization, is helping to define issues and recommend solutions.

The counterpart to VHDL International, Open Verilog International (OVI), established after Cadence Design Systems (San Jose, CA) opened the Verilog HDL to the public domain, is more user oriented than the VHDL group appeared to be at its inception. Yet the delicate balance Cadence has been striking between opening the language and hesitating to give away specifications to simulator clonemakers, has somewhat hampered the effectiveness of OVI. Though Cadence is a VHDL simulator supplier, it wasn’t invited to be a founding member of VHDL International, no doubt because it’s so closely tied to Verilog. Nevertheless, Cadence says that if VHDL International’s objectives are more user driven than they seem at first glance, and if the new organization takes on a more international perspective (to encompass Europe at least), then Cadence will accept a future invitation to join VHDL International at a high level. In the meantime, Cadence expects to strengthen its VHDL position with fourth-quarter shipments of its VHDL synthesis tool.

Familiarity is comfortable

VHDL has had a tough time proving itself superior to designers already using Verilog, especially to those simulating with Verilog. Among backers of Verilog are large electronics manufacturers including Sun Microsystems, whose design groups are comfortable with Verilog and hesitant to suffer the productivity hits that would occur during a transition to VHDL. Very poor simulation performance at the gate level hasn’t helped VHDL win over Verilog users. Neither has the scarcity of VHDL models increased the desirability of VHDL in the eyes of Verilog users (who now have all the models they need). Support for VHDL is, therefore, likely to come from users just adopting an HDL. But as shipments of VHDL tools pick up, it’s also likely that even ardent Verilog backers, desiring to keep up with standards, will support both VHDL and Verilog simultaneously.

EDA and ASIC vendors backing VHDL as a standard have realized lately the need to do some standardizing of their own. Users have let vendors know that what they demand from VHDL is a commonality in approach, not a variety of products that either support different subsets of VHDL or interpret the VHDL specification differently.

VHDL a matchmaker

The benefits of using a common language has led VHDL-simulator-vendor Vantage Analysis Systems (Fremont, CA) to create a Synthesis Associates’ Program through which synthesis vendors and Vantage will cross-validate their respective software tools and thus make certain that a particular synthesis tool interprets VHDL consistently with the IEEE specification for the language. Vantage’s intention is to ensure that a wide range of VHDL-based synthesis tools will produce results that match those of its VHDL simulator.

Dave Coelho, founder and executive vice president of Vantage says, “Designers require a coherent method of integrating all of the different synthesis tools with VHDL so they can simulate at the behavioral level, synthesize at the gate level, then recompile for resimulation, and be certain the tools work together.”

The five-year projected growth rates for VHDL and Verilog HDL indicate that the number of VHDL users will surpass the number of Verilog HDL users in early 1992. Today’s growth in VHDL use is credited to the availability of VHDL-based products from the major CAE vendors. (Source: Dataquest, April 1991)
With our new metal latch SIMM® sockets, we've improved one of our greatest inventions.

At least in recent memory.

Invent. Then improve. That's the Molex approach—and the new connectors for SIMM memory package systems are the latest examples.

First, they feature two extra-strength stainless steel mounting latches. These lock modules firmly in place, and tell you, with an audible click, when they are positioned correctly. They allow easy upgrading, and guard the assembly against overstress and abuse.

SIMM sockets also provide two contact points per readout for added reliability. In fact, the contacts are guaranteed with any standard module board (.047" to .054").

Made with high temperature-resistant liquid crystal polymer housings, SIMM sockets come in .050" and .100" pitch, and are available in a broad range of configurations: single and dual row, verticals, low profiles, and right angle. Call today for more information.
I TECHNOLOGY DIRECTIONS

CAE/CAD TOOLS

Together.” Among VHDL synthesis vendors participating in the program are: Compass, which has released a VHDL-based version of its ASIC Synthesizer; Dassault Electronique (Saint-Cloud, France) which markets the VHDL-based Frenchip synthesizer; Exemplar Logic (Berkeley, CA), which focuses on field programmable gate array (FPGA) synthesis through the use of architectural analysis in Release 1.0; LSI Logic, which offers the Vantage simulator, Synopsys synthesis, and proprietary synthesis as part of its Silicon 1076 VHDL design environment; Mentor Graphics, which expects to make its AutoLogic VHDL synthesis tool available to run on Release 7.0 next month and on the Falcon-Framework-based Release 8.0 in the fourth quarter; Racal-Redac (Westford, MA), which is shipping its VHDL synthesis with its ASIC Expert design system; and Teradyne (Boston, MA) which has signed an OEM agreement with Dassault to market Frenchip worldwide.

I A design dilemma

Designers of FPGAs and complex programmable logic devices have been plagued with numerous proprietary languages and design tools, all sorely in need of a common thread to link them. Mine (Colorado Springs, CO) has finally shifted away from the exclusive use of its proprietary language and has entered into a relationship with CLSI Solutions (Rockville, MD), a leader in VHDL, to ease that dilemma. Mine is licensing CLSI’s VHDL and plans to jointly develop a set of VHDL constructs for programmable-logic synthesis with CLSI. The goal is to give users a common set of design entry methods that spans all tools and methodologies. Mine plans to release a programmable-logic synthesis product within a few months that will accept design descriptions in VHDL and will also interface to back-end tools in VHDL.

Mine and CLSI will push for additional constructs to be added to the VHDL specification because VHDL was not written to be used as a synthesis language. More than three dozen EDA vendors and end users are rallying behind Mine and CLSI to support VHDL as the standard for programmable design, according to Mine.

Also joining the list of vendors interfacing design tools through VHDL are Ikos (Sunnyvale, CA) with Racal-Redac and Zycad (Menlo Park, CA) with Synopsys. Expected to ship in the fourth quarter, the Ikos VHDL accelerator combines Ikos’ hardware-assisted mixed-level simulation technology with Racal-Redac’s simulation, synthesis and object-oriented framework technologies. Ikos claims the VHDL accelerator simulates a design module with 1,000 lines of VHDL code 20 to 50 times faster than software simulators running on high-performance
When you're putting your name on the line...

LBP-20.

LBP-LX.
Compact. 4 ppm. 300/400 dpi.

LBP-TX/RX.
8 ppm, 300/400 dpi. RX features duplex capability.

LBP-DX.
Handles paper up to 24" wide. Up to 508 dpi.

put it on the most advanced line of laser printer engines in the world.

Canon offers the most complete line of laser printer engines, featuring unsurpassed print quality and engine reliability. Models range from compact desktop printers to high speed and large format printer/plotters for virtually every OEM application.

Canon pioneered such innovations as the EP cartridge system, as well as desktop duplex printing and versatile paper handling. These features, combined with the most rigid standards for quality, have made Canon the world's leading supplier of OEM printer engines.

Find out how Canon's leadership and technology can work for your product line. Call 1-800-323-0766 for an OEM information kit. Or write to Canon U.S.A., Inc., OEM Operations, Printer Division, One Canon Plaza, Lake Success, NY 11042-1113.

©1991 Canon U.S.A., Inc. Product specifications subject to change without notice. Canon and the Canon logo are registered trademarks of Canon, Inc.
Learn one, learn 'em all
When you put a Microtek emulator to work, comfort comes with the territory.
All of our emulators make you feel right at home with windowed user interfaces and on-line help.
And, our hyperSOURCE™ high level language debugger integrates the best of source level support with the hardware features you look for in an emulator.
With hyperSOURCE™, you no longer need to lower your expectations when you combine source debug with emulation.

Super support
Integrating software and hardware is never challenge-free, even with all the right tools. Talk to our support engineers directly for quick answers to your applications problems. With over 26,000 systems in the field, these folks are hard to stump.

"Real" real-time
Our emulators don't add wait states, they don't slow your target, and they don't give you any surprises later.
Your final product will perform the same in front of your customer as it did with your emulator.

The Bottom Line
The choice is easy. Microtek doesn't leave any gaps in the development path.
For "real" real-time emulation, easy to use features, high level language debug and a technical support system envied by our competition, we're the one.
When you add it all up, there's only one name that should be on your next emulator...

MICROTEK
The Leader in Development Systems Technology™
For sales or leasing information, call 1-800-886-7333 ext. 1
workstations. A software/hardware mixed-level simulation environment that integrates the Synopsys VHDL System Simulator with Zycad's XP Simulation Accelerators went into beta site last month and is expected to ship in November. The combined technologies provide users with as much as 200x performance improvement in structural-level simulation of VHDL designs, according to Synopsys.

Also backing VHDL with a product that’s about ready to ship is Valid Logic Systems. Valid has integrated VHDL language-entry capabilities and a VHDL simulator into its Logic Workbench TD top-down design environment. Built into the Valid design capture system for non-expert VHDL users is a VHDL language-sensitive editor, a check for conformance to a synthesizable subset, an integrated language analyzer, and the ability to automatically generate VHDL code from a schematic.

VHDL products may be shipping and vendor backing may be strong, but it will be some time before the new VHDL tools are production-proven. Verilog simulators will continue, at least for the short term, to be the trusted tools. The need to have the flexibility to use a variety of synthesis tools will, perhaps more than any other factor, push users to adopt VHDL. For that reason, even die-hard Verilog users might find it beneficial to evaluate VHDL simulation and synthesis tools now and to participate in the resolution of VHDL modeling issues.

For more information about the technologies, products or companies mentioned in this article, call or circle the appropriate number on the Reader Inquiry Card.

Cadence Design Systems
(408) 943-1234
Circle 278

CLSI Solutions
(301) 963-5200
Circle 279

Compass Design Automation
(408) 433-4880
Circle 280

Dassault Electronique
53-1A-61-21-29
Circle 281

Exemplar Logic
(415) 849-0937
Circle 282

Ikos
(408) 245-1900
Circle 283

Logic Automation
(503) 690-6900
Circle 284

LSI Logic
(408) 435-8000
Circle 285

Mentor Graphics
(503) 685-7000
Circle 286

Minc
(719) 590-1155
Circle 287

Recal-Redac
(508) 692-5000
Circle 288

Synopsys
(415) 962-5000
Circle 289

Teradyne
(617) 482-2700
Circle 290

Valid Logic Systems
(408) 432-9400
Circle 291

Vantage Analysis Systems
(415) 659-0901
Circle 292

ViewLogic Systems
(508) 480-0881
Circle 293

VLSI Technology
(408) 434-3000
294

Zycad
(415) 688-7400
295
Protocol extensions bring 3-D to X Windows

The PEX protocols for X Windows allow distribution of 3-D graphics in a heterogeneous computing environment. They also allow multiple simultaneous views of data, as shown in the two window views of this computational fluid dynamics problem, displayed by Stardent's Application Visualization System.

Tom Williams, Senior Editor

The ability to distribute high-performance 3-D graphics in a heterogeneous computing environment is finally coming to users via the X Windows system. X has provided a basis for user-friendly graphical user interfaces (GUIs) that have made Unix-based applications accessible to a vast number of non-technical users, thus broadening the applications and market base of such systems. But, until PEX, X has lacked the ability to distribute 3-D objects around a heterogeneous environment.

Defining PEX

PEX represents a set of extensions to the X protocols that provide the ability to distribute 3-D graphics objects in a heterogeneous environment. The term "PEX" is a bit confusing since it originally stood for Programmer's Hierarchical Interactive Graphics Standard (PHIGS) Extensions to X. PHIGS is an application programming interface (API). An API invokes a protocol. The confusion arose because PHIGS was the first API to be implemented using the 3-D extensions to X. But any other 3-D API can be implemented on top of the set of protocols now referred to as PEX.

PEX is the result of the efforts of the PEX Interoperability Group, a group of 10 companies working with the blessings of the X Windows Consortium. The Companies include Sun Microsystems (Mountain View, CA), Hewlett-Packard (Palo Alto, CA), Digital Equipment Corp (Maynard, MA), Evans and Sutherland (Salt Lake City, UT), Convex Computer (Richardson, TX), IBM (Armonk, NY), Kubota (Sunnyvale, CA), ShoGraphics (Mountain View, CA), Stardent (Concord, MA), and Tektronix (Portland, OR). According to William Loesch, president of group member ShoGraphics, "Only a protocol allows for interoperability. You can put any API you want on top of PEX."

The definition of a protocol, then, leaves vendors with wide ranges of options as to their individual implementations. One of the members of the group, Sun Microsystems, was chartered to create a sample implementation to demonstrate both the client and server side of handling the protocols. The sample implementation incorporates both the existing X Windows system, the PEX extensions and Stardent's Application Visualization System (AVS), a user application. Companies that are going to provide products will make decisions on which parts of an implementation they will optimize for specific price/performance goals.

PEX follows the client/server model of the X Windows system. On the server side is a layer of device-independent protocol handlers which interface to the hardware via a relatively large layer of device-dependent code. The core X protocol handler has the intelligence to recognize when it receives a PEX protocol from the client side and passes that to the PEX handler. One key resource is the PEX renderer which transforms the coordinate system of the client model through local world coordinates, clips, orients and maps the view of the model to the X Windows coordinate system and finally to the physical device coordinates. The renderer also has a color transformation pipeline to do shading, depth cueing and mapping to physical device colors.

On the client side, there can be several layers ending with the end-user application. These include the xlib calls, perhaps a toolkit with widgets such as scroll bars, menus, etc., and a GUI such as Open Software Foundation/Motif or Open Look. Finally, of course, there's the end-user application which sees none of this except the programming interface to the GUI or the API of the 3-D graphics system. In the case of the PHIGS implementation, there's an API to which an application makes calls. The API then generates the protocols that are sent across the network or backplane to the client. The client essentially performs the rendering of the commands sent by the server.
You Don't Have To Take Chances With Bugs.

THE LOWEST-COST XDB ROM MONITOR DEBUGGER FOR MOTOROLA 68000, 68020, 68030, 68302, 68332 AND 68340 MICROPROCESSORS.

Every embedded microprocessor application starts off with a few bugs. But you can eliminate them without missing a beat — or a deadline. Because with InterTools XDB ROM Monitor Debuggers, you start and finish debugging sooner in actual prototype environments. XDB's powerful user-friendly interface and "smart" ROM Monitor make it the most productive debugger available. And, starting at just $2,495, it's also the lowest priced. Call now for more information, or to order.

With InterTools, you don't have to take chances with bugs. 1-800-356-3594 617-661-0072.
You Get High RISC Performance with Oasys RISC Tools

What good are high performance RISC chips without powerful software tools to support them? For once, lack of software is not an issue! Oasys provides you with the complete native and cross 88000 and i860 development environment you need to get your products to market.

Oasys Tools Offer High RISC, High Reward

- Oasys RISC tools produce the tightest code possible.
- Benchmarks show the Highest Dhrystone and MFLOP ratings.
- We lead the industry in providing the best CISC and RISC tools.
- Port your current applications rather than re-write them.
- RISC architecture relies on compiler technology to gain performance improvements—Green Hills is THE compiler expert.

Our Tools are Ready - Are You?

Green Hills 88000 Optimizing Native and Cross Compilers
- C, C++, Pascal, FORTRAN
- Optimizations include register allocation by coloring, strength reductions, inline procedure expansion, instruction scheduling and loop rotation.

Oasys 88000 Assembler/Linker System
- Macro Assembler, Linker, Librarian, CREF Utility and Symbol File Formatter Utility
- Feature rich, Motorola compatible tools generate 88000 COFF modules.

Oasys 88000 Simulator
- Enhanced and supported version of Motorola's Simulator.
- Create a complete 88000 run-time environment on host CPU.
- All 88000 instructions handled.

Oasys UDB 88000 Universal Debugger
- Multi-targeted, multi-window, source level debugger for embedded programming.
- Ideal for mixed target environments.

Oasys i860 Tools for C, FORTRAN
- Developed under contract for Intel.
- Includes Assembler/Linker System and Simulator.
- Take full advantage of the i860's instruction set and architecture.

Portability Built in with Complete Compliance
- 88open Member
- Our tools built 88000 Unix.
- Oasys tools are OCS, BCS, ANSI, and ISO compliant.

Proven CISC Tools
- Still not sure about RISC? Use our tools to decide. Oasys is the leading supplier of CISC based (680x0 and 80x86) software development tool kits.

Availability
- Sun-3, Sun-4
- DEC VAX VMS/Ultrix
- Motorola
- Apple A/UX
- IBM RT
- DG AViON
- Opus Systems
- Call for new hosts

To Get the RISC Advantage, Call Now
(617) 862-2002 Fax: (617) 863-2633

Single Source, Total Solutions
1 Cranberry Hill • Lexington, MA 02173

One of the major differences between PEX and X is that where X is limited to a set of 2-D integer screen coordinates, PEX supports the creation and transmission of 3-D floating-point coordinates. PEX has wisely dealt with a problem that has long been an issue in 3-D graphics: the question of retained structure or immediate mode. PEX supports both retained-structure and immediate modes and a mixture of the two.

In the immediate mode, the compute engine may mathematically define a model of some object, such as an airplane wing, in terms of lines, surfaces, lighting models, etc., along with non-displayed data such as strength, weight and thermal characteristics. It would then send the displayable parts of that model to be rendered and displayed in a 3-D floating-point coordinate system to the rendering portion of the graphics pipeline.

The PEX sample implementation uses a PHIG's API as an example of how a 3-D X Windows system can be implemented. The API includes interfaces to PHIGS C bindings, toolkit and xlib which generate machine-independent protocols to send over the network or system backplane. The PHIGS monitor manages PHIGS-specific input and events and is specific to a PHIGS implementation. Protocols are received by the Core X server and executed as X functions or passed to the PEX portion where they are routed to the machine-dependent portion and executed.

"If only we could use UNIX® for our realtime applications..."

You want the power of UNIX® development tools. But you also want the performance of a realtime OS. Which way do you turn?

Presenting QNX 4.0. The UNIX system that’s responsive enough for realtime apps, small enough for PC platforms, flexible enough for transparent networking, and modular enough for the most demanding configurations. Even embedded systems.

Based on the latest IEEE POSIX standards, QNX 4.0 delivers outstanding performance and portability for all your apps. And our 3-D OPEN LOOK™ GUI package is a sight for sore eyes.

So why bother choosing between a high-performance OS and a UNIX system? Now you can have it both ways.

What UNIX was meant to be. For more information, phone: 1-800-363-9001
1-613-991-9351
1-613-991-3879
FAX: 1-613-991-3879
Quantum Software Systems Ltd.

QNX is a registered trademark of Quantum Software Systems Ltd.
UNIX is a registered trademark of AT&T.
OPEN LOOK is a trademark of AT&T/Quantum Software Systems Ltd. 1991
In retained-structure mode, a view of the model is retained by the rendering engine. It can be viewed, rotated, clipped, zoomed, and panned by means of relatively simple matrix operations without having to be recomputed from scratch for every different view. This results in considerably less network traffic than if the client system had to recompute and send a new model for each view.

Finally, mixed mode may have elements of both modes. Consider, for example, viewing the effects of a wing design in an airflow. The wing itself doesn't change, but the view might, and would use retained-structure mode. Changing the angle of attack changes the airflow, requiring recomputation for each frame and hence operation in the immediate mode.

ShoGraphic's Loesch stresses that PEX is designed to be flexible from both the hardware and software aspects. It's not tied to any specific rendering algorithms so that even within a server implementation, the vendor can be creative in firmware as well as hardware. Because of format conversions, rounding errors, etc., however, PEX images cannot be "pixel perfect," in that each image on a server will be exactly that generated by the client. Variations in screen resolution, depth of frame buffers, etc., will see to that.

PEX will also be extensible. As proposals for upgrades are presented to the X Consortium, they can be voted on and approved and included in future releases in an orderly way. The current version of PEX will be available this fall on the latest release tape X11R5 from the MIT X Consortium (Cambridge, MA).

It's hoped that PEX will bring to mechanical engineering the kinds of productivity gains that are starting to show up in disciplines where 2-D often is sufficient, such as EDA.

STOP WASTING TIME & MONEY

BSO/TASKING'S new toolkit for developing software for the 68000 family, called TASKTOOLS, beats all others on the market today. Check out these features and benefits.

C COMPILER
- ANSI C
- Highly optimized code
- Reentrant code
- Direct control of I/O
- Interrupt handlers may be written in C
- Floating point support
- 68040 and 68332 support

CROSS VIEW DEBUGGER
- All major emulators supported
- Multi-window interface
- Code & data breakpoints
- Source level tracing
- Stack tracing
- I/O simulation

ASSEMBLER & LINKER
- Motorola compatible
- FPU & MMU support
- Fully featured

OTHER PROCESSORS WITH SIMILAR SUPPORT
- Motorola 68HC11
- Intel 8086
- Intel 8051 & derivatives
- TMS-320C25
- Siemens 80C166

CALL US
1-800-458-8276.
Outside U.S.A. 617-894-7800.
Fax 617-894-0551.

BENEFITS

TASKTOOLS offers you the following benefits:
- Reduced code size
- Increased productivity
- Great documentation
- Hot line support
- For PC, Sun, Vax, HP, Apollo, IBM & DEC RISC
- Multi object formats

For more information about the technologies, products or companies mentioned in this article, call or circle the appropriate number on the Reader Inquiry Card.

Convex Computer
(214) 497-4226 Circle 212

Digital Equipment Corp
(508) 493-5111 Circle 213

Evans and Sutherland
(801) 582-5847 Circle 214

Hewlett-Packard
(800) 752-0900 Circle 215

IBM
(914) 642-5448 Circle 216

Kubota
(408) 727-8100 Circle 217

MIT X Consortium
(617) 253-0628 Circle 218

ShoGraphics
(415) 903-3880 Circle 219

Stardent
(508) 287-0100 Circle 220

Sun Microsystems
(415) 963-1100 Circle 221

Tektronix
(800) 225-5434 Circle 222
At last, there's an alternative to expensive 68000 emulators

Now there's a software alternative to debugging embedded 68000-series code. Sure, you may need one emulator for your hardware debugging or for an occasional software bug that requires a trace, but why spend an extra $38,310 for each programmer when you can give them FreeForm and an RS-232 cable?

FreeForm is a remote source-level debugger that enables you to connect your MS-DOS or UNIX computer directly to your target hardware, giving you the most advanced software debugging environment available for less than 1/10 the cost of a hardware emulator. And you'll have more software source-level capabilities than you ever dreamed of getting from any hardware emulator:

- Debugs Fully Optimized Code
- Debugs Code in REAL TIME
- Complex Breakpoint Conditions
- Compile and Link from Debugger
- Full C Display of Variables
- Complete Linked List Display
- User-Definable Commands
- Automatically Finds Your Bugs
- Field Debugging Capabilities
- Royalty-Free Monitor
- Command Recall
- Automatic Testing Scripts
- Works with Real Time Kernels

FreeForm can't quite do everything, but it's close!

FreeForm's unique approach to remote C debugging gives you incredible power to find those difficult bugs, yet there are only five basic commands that you need to learn to get started.

FreeForm is completely integrated with our CrossCode C compiler. Time after time when a large amount of code is put through many different 68000 compilers, CrossCode C comes out on top.

In an independent test performed by a large corporation using 1300 lines of actual target code (not small unrealistic benchmarks), CrossCode C produced the smallest code and generated the fewest instructions.

You'll never again need to spend money on a new emulator or pod for each new project because FreeForm and CrossCode C support all 68000-series processors by Motorola, Signetics, and Toshiba.

With FreeForm, all you have to do is customize the monitor for each target that you use. And we assign one of our engineers directly to you to help you do this quickly and easily.

Best of all, this software is backed by one of the most responsive software companies in the industry. Here's what one client had to say:

Your tech/support is great, and your follow-up is incredible. I would recommend your products on the basis of support alone!

Free Trial!

If you're still not convinced, call us for this FREEFORM DEMO KIT. It includes a complete copy of FreeForm and CrossCode C so that you can run your own code through the compiler and debug it on an actual remote 68000-based system!

CALL TODAY for more information:

1-800-448-7733 x510
Outside the United States please dial
PHONE: 1-708-971-8170
FAX: 1-708-971-8513
SOFTWARE DEVELOPMENT SYSTEMS, INC

The Most Responsive Software Company.

DEPARTMENT CD1
4248 BELLE AIRE LANE
DOWNS GROVE, ILLINOIS 60515 USA

FreeForm", CrossCode®, MS-DOS®, UNIX® and XENIX® are trademarks.

CIRCLE NO. 50
New bus and transceiver technologies aim to unlock high-end system performance

Warren Andrews, Senior Editor

Sun Microsystems (Mountain View, CA), working in conjunction with the Xerox PARC (Palo Alto, CA), is reportedly about to release a new bus—and new transceiver logic—to the market. The new bus is DynaBus—a synchronous, packet-switched bus designed to meet all the needs of a high-performance, shared-memory multiprocessor system. The new transceiver logic, GTL (Gunner transceiver logic, named after developer William Gunner), is a low-threshold-voltage switching design using differential drivers to implement high-performance transceivers that can be incorporated into larger VLSI devices—such as bus interface ICs. GTL is reported to be designed for use on backplanes and for chip-to-chip busing. LSI Logic (Milpitas, CA) has been working with Xerox in the development of the logic. The new transceivers operate in the 1- to 2-V range and use differential inputs and outputs. According to sources, LSI has had GTL standard cells in its library for almost a year.

Multichip Sparc modules

The entire project is being conducted quietly under the code name SunDragon, but additional participants are being mentioned. Texas Instruments (Dallas, TX) apparently has a CPU project under development which is code-named Viking. Considering TI's decision to become a Sparc supplier, Sun's decision not to use Fujitsu's next-generation processor (Sparc H) whose development was subsequently cancelled, and the two names appearing together in a document about a next-generation workstation implies that TI will become a major Sun supplier.

Viking is only one of at least three CPU projects underway. All three CPU projects are Sparc-based multichip modules (MCMs). They all use MCM technology to achieve the desired levels of density and performance. LSI Logic has code-named its project Lightning, while Ross Technologies (Austin, TX) is working on a project called Pinnacle. Little is known of the projects except that they include at least one Sparc processor, a cache controller, some amount of high-speed SRAM cache and perhaps a floating-point or vector processor.

At this writing, the only hardware seen has been a silicon-on-silicon MCM assembled by nChip. The MCM comprises a processor, floating-point unit, two SRAMs, and a cache controller on a silicon substrate approximately one in. square. The whole thing is packaged in a large pin-grid array.

The MCM TI seems to be putting together (though it won't discuss the project—or even admit to its existence) comprises a processor, SRAM cache memory, and a cache controller interconnected with what TI refers to as its Viking Bus. There's no indication yet that the module contains either a floating-point unit or vector processor.

Single-chip interface and control

According to sources, the idea behind the physical structure and protocol of DynaBus is to allow direct interconnection of complex subsystems—everything from memory and graphic controllers to network and external bus controllers—with a single VLSI device type. A key element in the DynaBus strategy is to provide a power-stingy transceiver circuit so that all bus-interface and control functions can reside on a single chip.

Existing transceiver technology—including high-current TTL and even BTL (backplane transceiver logic)—dissipate enough power to...
INTRODUCING
THE EXTREME PERFORMER

A POWERFUL PERFORMANCE
The TEK-AT2 386SX belts out an extremely powerful performance with a 386SX chip set running at 16 or 20 Mhz. When you need it, the all CMOS TEK-AT2 supports up to 16 Mbytes of total onboard memory. And Mixed DRAM mode allows up to 1 Mbyte of Flash EPROM and up to 1 Mbyte of battery-backed SRAM disk space.

TEK-AT2 386SX PC/AT PALM SIZE SINGLE BOARD COMPUTER

THE TEK-AT2 386SX PACKS THE HOUSE
This harmoniously integrated 7" x 4.7" ruggedized PC, with onboard hard disk interface, floppy disk controller, two serial ports and parallel port, gives you the power you always needed, in the size you always wanted. And when you bring on our piggyback TEK-PG VGA controller, you have a complete industrial computer in the palm of your hand.

AUDITION THE EXTREME PERFORMER TODAY. CALL TEKNOR MICROSYSTEMS AT 1(514) 437-5682 OR FAX US AT 1(514) 437-8053
WE'RE IN TUNE WITH YOUR SINGLE BOARD COMPUTER NEEDS.

TEKNOR MICROSYSTEMS INC.
P.O. BOX 455, SAINTE THERESE (QUEBEC) CANADA J7E 4J8

CIRCLE NO. 42
SOFTWARE CONFIGURABLE BOARD MAKES DATA ACQUISITION EASY

“With our ‘Hands-Off’ DT2831 board series for the PC AT, all set up and calibration is automatic via software.”

—Fred Molinari, President

Total software control—No pots! No jumpers!
- Configuration of all board functions
- Self-calibration
- Gain and offset correction
- Independent selection of gains, sampling rates, DMA channels, and interrupts

Up to 250kHz gap-free data transfer
Simultaneous A/D, D/A
Up to 256 input channels with expansion panel
Two 16-bit counter/timers (AM9513)

Eight lines of digital I/O
Maximum noise immunity with shielded connector and analog modules

FREE software
- Drivers and subroutine library
- C, Pascal, BASIC and FORTRAN support

Application software available
- GLOBAL LAB® Data Acquisition
- Third-party support including LABTECH NOTEBOOK

Quantity pricing available
FAST 5 day delivery

Call for FREE Catalog
(508) 481-3700
In Canada, call (800) 268-0427

THE LEADER IN DATA ACQUISITION AND IMAGE PROCESSING

World Headquarters: Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752-1192 USA, (508) 481-3700, Fax (508) 481-8620, Tlx 950646
United Kingdom Headquarters: Data Translation Ltd., The Mulberry Business Park, Aylesbury, Buckinghamshire HP21 1SR, U.K., (01296) 708388, Fax (01296) 766670, Tlx 94011914
Germany Headquarters: Data Translation GmbH, Im Weilerlen 10, 7120 Bietigheim-Bissingen, Germany (0703) 54023, Fax (0703) 24044
International Sales Offices: Australia (02) 699-8300; Belgium (02) 466-2199; Brazil (11) 248-0598; Canada (416) 625-1567; China (11) 7864 x 122; Denmark 42 274511; Finland 1817617820; France 01 6907-7802; Greece (1) 361 4350; Hong Kong (012) 848965; India (011) 323-1300; Israel (02) 502-5555; Italy (0) 674102; Japan (0) 3779-1971; Korea (0) 718-9521; Malaysia 02-7480078; Netherlands (0) 399-6592; New Zealand (0) 475-8362; Norway (0) 53 12 50; Poland (022) 4070701; Portugal (0) 79434824; Singapore 388-1200; South Africa (11) 803-96064; Spain (1) 355-0191; Sweden 08 760-76 70; Switzerland (0) 723-1410; Taiwan (0) 243896
GLOBAL LAB and Data Translation are registered trademarks of Data Translation, Inc. All other trademarks and registered trademarks are the property of their respective holders.
require that transceivers be packaged separately from control circuitry. In BTL implementations, for example, only six—or at most eight—transceivers can be put in a single package. Using a low-power transceiver technology, it may be possible to package 32—or even 64—transceivers in a single VLSI chip along with other interface and control circuitry.

It's possible to configure DynaBus—or multiple DynaBuses—in a variety of ways. Depending on how they are interconnected, DynaBuses can be configured so that one logical bus can include multiple physical segments (separate backplanes, for example), or so that there are multiple buses that are totally independent.

Bus Performance

The bus provides a usable bandwidth in the range of several hundreds of megabytes per second, giving rise to speculation that it can be used on a broad range of machines—from high-performance computational servers to desktop workstations. One of the distinguishing features of DynaBus is that a conceptually-simple cache model is used to guarantee that each processor sees a consistent view of memory, one that reflects all caching and I/O transactions. The hardware ensures that multiple copies of read/write data in caches are consistent and that both input and output devices are able to access cached data.

According to sources, DynaBus comprises 88 signal lines, 64 of which are multiplexed data-and-address lines, the balance comprise control, arbitration, parity and clock signals. In operation, a requesting bus node must get DynaBus mastership from the arbiter before it puts its request packet on the bus. A transaction is completed when bus mastership is assumed by the bus node answering the request. The new master sends a reply packet to the requesting node. According to preliminary information, request and reply packets may be separated by an arbitrary number of cycles, during which time the bus is free to handle other traffic—provided a pre-defined timeout period has not been reached. Packet transmission, once begun, is uninterruptible (no other device can take the bus away during this time, regardless of priority).

Also according to preliminary information, DynaBus defines a variety of transactions handling data transfer between caches and memory, data consistency, synchronization, input/output, interrupts, and address mapping. Not unlike part of the Futurebus+ protocol, each transaction type is defined in the header information which precedes a transaction.

It appears the bus' transfer

When It Comes to Integration, Everyone Needs Something Different...

...and we can help. OEMs and Systems Integrators designing commercial and industrial products around PC technology have widely varied integration needs and requirements. Our Integration Services are the finest available. We handle the full range, from basic platforms to fully configured systems, including integration of your technology. It's part of our "Total OEM Program Support" plan that can make a real financial and performance difference for your total PC technology requirements.

Call 800-382-4229 for a FREE video look at T.O.P.S.™ See how we can help put it all together.
Accelerate Your Ethernet Solution With The Power Of Partnership.

When you team our high performance networking products with the solutions-driven approach we call The Power Of Partnership™, you get a complete Ethernet networking application that delivers faster, more efficient, more reliable communications. At CMC, we believe that by working together we can help you hurtle past any networking challenge.

For over a decade we’ve been providing high performance products to the world’s leading computer companies. The Power Of Partnership at CMC means you can place your trust and confidence in our products and our people.

Our Ethernet adapters for VMEbus, MULTIBUS™ and ISA bus provide a full range of solutions: from our FXP™ series – featuring CMC’s highest performance adapters – to the intelligent ENP series that includes 10 BASE-T support; plus, complete TCP/IP and GOSIP-compliant OSI solutions for UNIX® systems and drivers for real-time operating systems such as pSOS+®, VRTX™ and VxWorks™

To accelerate to new levels of connectivity bring The Power Of Partnership on board. Call 1-800-CMC-8023.

The Leading Intelligent Ethernet Adapters.

CMC
A Rockwell International Company

125 Cremona Drive, Santa Barbara, CA 93117, Phone: 1-805-562-3173
1-800-CMC-8023 FAX: 1-805-968-6478 In Europe: 44-81-577-2900

The Power Of Partnership, FXP and CMC are trademarks of CMC.

UNIX, MULTIBUS, pSOS+, VRTX and VxWorks are trademarks of USL, Intel Corporation, Software Components Group, Ready Systems, Inc. and Wind River Systems, Inc., respectively.
mechanism is relatively efficient, with claims made to indicate data-transfer efficiency as high as 73 percent. An early overview document claims that the efficiency rating, "derives from the fact that eight of the 11 (clock) cycles of block-transfer transactions carry data."

The XBus

One of the keys to Sun's new architecture is silicon. At the processor module level, the interchip bus (Viking bus) handles the chips comprising the CPU/cache assembly. The advantage of the interchip bus is that it permits a standard silicon interface for all chips so that components can be changed independently; changing one component won't require changes to other components due to interface differences.

Modules are interconnected via XBus, which appears to be an interconnection mechanism that is relatively efficient, "derives from the fact that eight of the 11 (clock) cycles of block-transfer transactions carry data."

Silicon Solutions

Because of its tight timing parameters, XBus virtually demands an ASIC implementation. Standard logic, say the specification's authors, would require too complex a circuit board, imposing excessive on/off-chip delays and delays from long circuit board traces.

Similarly, it's expected that DynaBus will use monolithic interface and transceiver circuitry. Faster, lower-power logic has been an elusive "holy grail" of system architects for years. The use of GTL logic—or some variant thereof—may provide some of the solution. If the technology proves out, it will undoubtedly be applied to other bus approaches, such as a GTL Futurebus+ profile. But the use of differential drivers poses its own problem because they require twice the pins of single-ended drivers. Doubling the number of signal pins may result in significant problems at the board and chip level.

It's been reported that there has already been some lobbying effort to modify the DynaBus logical protocol to match that of Futurebus+, leaving the physical and electrical implementation the same. The more likely scenario is that Sun will follow the same scheme it did with Sparc and SBus. Watch for Sun to start off with a proprietary approach, then just before—or simultaneous with—the emergence of competition, release the specification to the public domain. This would provide Sun with a proprietary hold on the technology at the onset, and a year-or-so lead time once it opened up the specification.

According to some sources close to the project, some product based on the technology may be surfacing soon—late this year or early next. The first products likely to be using the technology are high-performance servers—a product area where Sun has recently been lagging. It's not unlikely, however, that the technology may surface in other product areas from large, massively parallel systems and servers to powerful desktop workstations.

For more information about the technologies, products or companies mentioned in this article, call or circle the appropriate number on the Reader Inquiry Card.

LSI Logic

(408) 435-8000 Circle 254

Ross Technologies

(512) 448-8968 Circle 255

Sun Microsystems

(415) 960-1300 Circle 256

Texas Instruments

(214) 995-2011 Circle 257

Xerox PARC

(415) 494-4000 Circle 258

And Behind It All is the Finest of Today's PC Technology...

...and tomorrow's, too just as soon as it's available. Our enclosures* range from six to 20 slots. Our CPUs include 8088s and 286s with solid-state disks; 25-33 MHz 386s and 486s, all with cache - even fully integrated 486s with hard disk and SVGA video interfaces. And there's more. To put this technology to work for you, we'll provide the very best systems expertise. We can work with your existing technology base to develop whatever you need to complete your product. Whatever it takes to get to market rapidly - and successfully. It's part of our "Total OEM Program Support" plan that can make a real financial and performance difference for your total PC technology requirements.

Call 800-382-4229 for a FREE video look at T.O.P.S.™ See how our technological leadership can add to yours.

* All I Bus systems are certified UL1477: CSA22.2, TUV/IEC 950, FCC Class A and customer specified FCC Class B.

All trademarks are the property of their respective companies.
Software tools integrate the management of complex design projects

Today's complex design projects demand more than just engineering tools. They also demand automated ways of coordinating teams and tracking projects to produce a concurrent engineering environment.

Tom Williams
Senior Editor

Simple tools are only as good as the hands that hold them and the eyes that guide them. The complex tools used today in support of design projects are similarly limited by the guiding vision of their users. No matter how advanced the tools at hand are, using them without an overview of their ultimate purpose doesn't help much. This is especially true when the goal of an organization is to achieve concurrent engineering of products that are developed by different teams of designers working on electrical, mechanical and software design simultaneously. Then the goal is to orchestrate the entire development process from initial concept to release to manufacturing, and even beyond to include product support and modifications.

Much emphasis has been placed on providing engineers with proper sets of tools and tool environments, such as the frameworks in CASE and in EDA, to aid individual productivity and to promote concurrent engineering. While such frameworks are indispensable, they must also include facilities for tracking and managing the design activities of individuals, work groups, and an entire organization. Design management is being addressed by such vendors as Digital Equipment Corp (Maynard, MA) with its VAX/VMS-based Electronic Data Control System (EDCS), and Intergraph/Dazix (Huntsville, AB) with its Simultaneous Engineering Environment (SEE) for Intergraph workstations.

But beyond bundled design-management systems oriented to a single vendor's hardware platform or environment, independent vendors are offering systems to help managers control and coordinate the activities of engineers and their tools. These product information management (PIM) systems—also called product data management (PDA) systems—are aimed at concurrent engineering. Some were initially conceived as general, enterprise-wide engineering-management tools while others began in one area of specialization and are now being tailored to play in an enterprise-wide...
5 Reasons Why Your CPU Source Should Be Your Enclosure Source

If you're an OEM or Systems Integrator using PC technology in your commercial or industrial products, the I-Bus T.O.P.S." Program is for you.

The "Total OEM Program Support" concept emerged from our thorough understanding of the OEM's technology and support requirements. Here's why T.O.P.S." makes financial and performance sense for you:

1. **Design, Engineering and Manufacturing Services**: Collaborating with you from design through product development and manufacturing, we'll help you mini-mize time-to-market and meet all production goals while maintaining the highest product quality and reliability.

2. **Systems Integration Services**: Every OEM has different integration needs. Our service is the finest available, covering the full range from basic platforms to fully configured systems incorporating your proprietary hardware and/or software.

3. "Life-Cycle" Support: We understand your production, logistical and product life cycles. From our OEM Developers Program, supporting development and prototyping to change management throughout the production phase, I-Bus provides a full range of life-cycle support services.

4. **Total Customer Support**: I-Bus is dedicated to this concept. Program managers are assigned to your project to provide total support from the first design day, through production, integration, delivery, installation and beyond. And to accommodate your integration time frame, we provide an unprecedented Two-Year Warranty that lets you guarantee your customers the highest level of support available.

5. **Absolute PC Technology**: Commercial and industrial enclosures* from six to 20 slots; advanced CPUs: 8088s and 286s with solid-state disks; 25-33 MHz 386s and 486s, all with cache - even fully integrated 486s with hard disk and SVGA video interfaces. We'll put the best in proven - and evolving - PC technology to work for you.

Call 800-382-4229 for a FREE video look at T.O.P.S." And see how our PC technology and leadership ensure yours.

*All I-Bus systems are certified UL478, CSA 22.2, TUV/IEC-950, FCC Class A and customer specified FCC Class B. All trademarks are the property of their respective companies.
SOFTWARE TOOLS

Data-management environment. Vendors of these systems include Atherton Technology (Sunnyvale, CA), Sherpa (Sunnyvale, CA), Mentor Graphics (Wilsonville, OR) and TeamOne Systems (Sunnyvale, CA).

Dealing with human issues

Engineering may deal with hard technology, but engineering management deals with people and their foibles. In setting up a design operation, according to Atherton Technology's president Nick Copping, "Most people go straight to the hard technology and string all these tools together—editors, compilers, debuggers, etc. and say 'do it.' But they're just building the wrong thing faster." While frameworks are mostly aimed at coordinating communication between tools and their data, management systems need to control and track the process—and they must do it without stepping on the toes of the engineers.

"There's a cultural consideration," says Copping, "in the way people see themselves doing their work and getting rewarded for it. So the mix of management issues ends up including policies, procedures, ethos, etc." David Hoffman, president of TeamOne Systems, notes that a management system must satisfy the concerns of both managers and engineers. "From the manager's perspective, they want to do it right the first time. They want to control information between groups, they want change control, they want to minimize resources and they want visibility into the project." Engineers, on the other hand, want to be left alone and they want an environment where they can get the job done. The two interests need not be mutually exclusive, computer aided tools can advance both of them.

Managing complexity

The three most-important elements that engineering-management systems have in common are sharing of information among individuals and groups, control of access to information, and workflow management. Workflow management includes version control, configuration control, methods of implementing data sharing and coordinating approval cycles for different phases of a product's development cycle. In short, it's the ability to define and enforce an organization's policies and procedures.

PIM systems, such as Sherpa's and TeamOne's, maintain a project database (also called a data repository), separate from the design database, which contains all the information about the organization's defined policies and procedures and all the audit trails of user activity on the networked system. The PIM controls user access to the design database based on policies defined by management. It also tracks versions, configurations and revisions to design files and alerts appropriate users of changes. The PIM also lets managers track the status of a project and set policies and procedures and program them into the project database.

For example, the Sherpa Data Management System (DMS) has implemented the concept of a file vault from which designers can check out files, modify them and check them back in. The vault is not necessarily a physical place but is, as marketing director Stephen Wong puts it, "a kind of document police." The actual design files can reside on any node (or on multiple nodes) of the system; the PIM merely monitors activity on the system and controls access according to the defined policy. The "vault" is actually this enforcement procedure, which restricts a user's access if his or her actions don't conform to defined policy.

For example, if a designer wants to check out a design, the PIM first looks at his or her access privileges. If allowed, files can be check out and copied to a workstation. While that file is checked out, all other users are blocked from checking out the same file for modifications, although they can read it. When the user wants to check the file back into the vault, he or she must meet certain requirements. These could be requirements to run certain tests, enter certain information in a header file, or get a supervisor's sign-off or approval, according to the company's policy.

"Everything is configurable," says Sherpa's Wong. "We don't want to tell you how many steps you need, who's to sign off or any of that." A package called Formview that comes with the system lets managers create screens that may either gently prompt a user (e.g., "Run build before check-in.") or present extensive project status information. For the most part, engineers don't want to know that a PIM is running in the background except for such policy prompts.

TeamOne has taken a somewhat more flexible approach than the vault concept to file access/revision control. Instead of copying files physically to a user's workstation, the TeamNet system creates a local work space and a "virtual copy" of the file that has been checked out.

TeamNet product information management system

The TeamNet system by TeamOne intercepts file requests made over the network file system (NFS) and tracks them through its project repository, an object-oriented database that maintains audit and access information on a project. The management and query tools let management define policies for design updates, check-in/check-out procedures and monitor and control all activities associated with use of the design data.
How to implement CASE to support project team needs

CASE has great potential to speed the software development process, and to ease the traditional bottlenecks of documentation and maintenance. Many early CASE adopters, however, have been disappointed by tools and environments that just didn’t perform in the “real world.” A central problem is that the adoption of CASE was looked upon as a revolutionary concept. Most early CASE implementations grasped for the grail of a complete CASE environment from the start. As with the early engineering-design-oriented CAE frameworks, too much change had to take place and the support structure behind the tools had not been adequately developed.

In reality, adoption of CASE environments will be an evolutionary phenomenon. It must build upon practices and tools already in existence and allow groups to incrementally adopt improved design methodologies.

Building development strategies

The crux of any development strategy today is time-to-market. Each team wants to take advantage of the best tools available to meet project needs. The team needs to be productive and efficient. Team members need to know that they will be able to easily find and fix errors. They don’t have time to install and learn an entirely new methodology. New tools need to be easy to use and adopt, complementing, rather than impeding, work in progress.

In implementing an effective CASE environment, one must focus on the relationship between the manager and the designer. The manager is looking for tools that improve time-to-market, improve individual productivity, track change, eliminate unnecessary resources, and control the work flow between design groups.

Designers, on the other hand, must be able to set up a work environment easily, be assured of a stable environment in which to work, and manage a proliferation of data and complexity in the product design. They need an environment with nonintrusive program management, flexibility, and high performance. They need an integrated environment with the capability to freely mix and match tools, and they need easy-to-learn design-management products that also provide for ease in debugging and testing.

CASE considerations

To meet the needs of both of these groups, several criteria, based on the work by the CAD Framework Initiative, must be considered in designing or choosing a CASE environment.

First, does it facilitate large projects where many developers are working together in parallel? The sophisticated software being developed today requires the cooperative efforts of a team. It’s no longer an individual activity, and as the team grows, the communication lines among team members—and team workgroups—become increasingly complex. The environment must facilitate group communications and allow groups to work concurrently, focused on reducing time-to-market.

Does it provide for cost-effective, efficient, seamless incorporation of the users’ choice of tools into the environment? A project group isn’t a static environment. It will require different tools, from different vendors, at different times. If the CASE environment is restrictive, or it makes the incorporation of new tools difficult and time-consuming, it doesn’t support the team’s requirements for facilitating a short development cycle.

Does it support the management, sharing, reuse and exchange of information, without negatively impacting the work of the group? Different elements of the project team have different requirements for information. Managers must be able to easily access information on team progress and performance. At the same time, the design group needs access to group data and ways of sharing information that don’t significantly increase development overhead.

Does it allow tool and environment portability across multiple platforms? Most projects today consist of one or more networked workgroups. These workgroups tend to collect a variety of hardware platforms. Single-vendor shops are becoming increasingly rare. To efficiently communicate, the design group’s CASE environment must provide seamless access across heterogeneous environments. Standards are important in fulfilling this need. UNIX is already recognized as an important operating system for CASE tools and environments because of its availability on a broad number of platforms. Interoperability standards such as Sun’s network file system (NFS) make it easy to pass information across a large number of platforms, transparently to the user, without the need for extensive application-specific coding.

Does it provide the means to incorporate a consistent user interface? The Macintosh phenomena proved that consistent user interfaces facilitated rapid acceptance and easy utilization of new tools. X-Windows, Microsoft Windows, and Sun’s Open Look are all interface technologies that are facilitating consistent user interfaces.

Finally, does the CASE environment have the flexibility to extend easily to meet future needs of the group? An investment in a CASE environment isn’t trivial, even if the implementation mechanism is evolutionary. Environments need to be technology independent, design methodology independent and able to scale with project complexity to justify the investment.

CASE offers project groups the opportunity to develop systems more quickly and more effectively, but, like any other technology, it must be harnessed to serve developers, and not become the master to which project teams must conform. Careful evaluation of the power, flexibility, modularity, and scalability of CASE environments prior to implementation is crucial to getting the most out of a CASE investment.

David M. Hoffman, President, TeamOne Systems

COMPUTER DESIGN AUGUST 1991 67
All logic analyzers give you integrated state and timing, sooner or later.

Why not now?
Introducing the new Philips PM 3580 family of logic analyzers from Fluke: the first instrument architecture to give you state and timing together on each channel— with a single probe.

Connect the probe to your board for state and you’re automatically hooked up for timing. Or vice versa.

This means no more dual probing—a pain anytime and the source of loading problems—and no reconfiguration between state and timing. Which makes these analyzers simple to learn and use.

Plus, the pop-up menus and keyboard shortcuts guide you quickly through setup and data analysis. No matter if you use it every day or once a year.

What’s more, capturing an elusive bug has never been easier with eight unrestricted trigger levels that let you select from state and timing.
Why not sooner?

Timing trigger conditions on each level.

But being simple doesn’t mean simplistic. Basic performance of the PM 3580 family ranges from 32 to 96 channels, each with 50 MHz state and up to 200 MHz timing, plus 3 nanosecond glitch capture and 2K of memory per channel. For 8-, 16- and 32-bit processors.

And you get all this for nearly half the cost of comparable analyzers.

We’d like to send you a video. Or show you how to make state and timing measurements at your workplace—

in 30 minutes or less.

We’ll even bring the stopwatch so you can time us. And you can keep it to time the competition.

So call us today at 1-800-44-FLUKE.

Ask for extension 720.

Because sooner is better.

John Fluke Mfg. Co., Inc., P.O. Box 9090, M/S 2510, Everett, WA 98206-9090, U.S. (206) 356-5400, Canada (416) 896-7000. Other countries: (206) 356-5500. © 1990. All rights reserved. Ad No. 00001.

FAST ANSWERS.

FLUKE

CIRCLE NO. 48
SOFTWARE TOOLS

Changes made by the user during a session are stored in the local work space where it is checked into the baseline file. When the file is checked back in, after necessary approval and sign-offs, the changes are incorporated into the baseline to create a new version baseline (all previous baseline versions are retained).

TeamOne supports two different check-out models: a single-writer and a multiple-writer model. The single-writer model, like the Sherpa system, blocks other users from modifying a file that has been checked out by someone else. The multiple-writer model, however, lets more than one user check out the same file at the same time. The system has automated facilities to detect and help resolve conflicts between two people's versions of the same file when they try to check them in. Says TeamOne's Hoffman, "In a concurrent environment people have to branch out to do their own jobs, but they also need something to help them integrate their changes."

When a file under the multiple-writer model is checked back in, it goes to a merge-resolution, or holding area. When the next person tries to check in his or her version of the file, the system will try to merge the two. If merge conflicts are detected, the system will notify the user that potential conflicts exist and the files will have to be inspected. When the user is satisfied that conflicts have been resolved, he or she can sign off and the file(s) go to a sign-off area. There, a project leader can inspect the resolutions, see who did what and discuss it with everyone concerned before finally signing off the new baseline version.

A supervisor would, like the engineers in the group, be working within the established policy programmed into the system. Criteria for signing off on a design may be a list of requirements and the system will tell the manager if they have been met or not. For example, have certain tests been run, information logged, were there zero compilation errors, etc.? The supervisor would not be able to promote the design to the next level until "yes" was answered to all the items on the list.

Configuring the work culture

As a project progresses, people's roles change and at any given time, some users can have several different roles. A design is more than just a collection of individual files. A change to a schematic file can impact the board layout, the documentation, the bill of materials and more, perhaps even the actions of a purchasing agent in Taiwan. The product information management

Nick Copping, Atherton Technology president says that while the integration of engineering tools is important, an equally important question is, "How do you have to view software development, mechanical engineering, or electrical engineering to really run a business?" Computer aided to complex project management that consider technology needs, human needs, business needs and "quality-of-life" needs are vital to an organization's success.

plication process is a big one and not all companies are trying to address the enterprise-wide issues by themselves. Atherton Technologies is concentrating on the software development aspect while Mentor Graphics is concentrating on its expertise in EDA. Both are maintaining connections to the wider world because if the purchasing agent in Taiwan isn't notified of a change that affects purchasing, the effectiveness of the development project breaks down.

TeamNet utilizes the network file system (NFS) developed by Sun Microsystems (and now very widely used on Unix networks), to interconnect all client workstations with the PIM environment. Network communications keep users up-to-date on project changes made by other users. If a software developer, for example, checks out a file and makes changes, the documentation person can know that the file is being worked on. When the new software version is signed off and promoted, the documentation people are instantly notified that a new version exists so that they can update their documentation.

Similarly, Sherpa uses the network EMall facility to notify concerned parties of engineering changes. Notice of a change, such as a switch from round-head to flat-head screws, can be sent via predefined EMall to "alert" manufacturing (change screw inserters or other equipment), purchasing people (start buying flathead screws as of a certain date) and even to the CEO if needed. The "idea is to notify the affected people so they can plan their activities effectively.

Network communications and the ability to program policies into the project database make it possible to set up virtual work groups that need not be located in the same place. The Intergraph/Dazix SEE, for example, has a CAD conferencing feature that joins the visual display with voice communications. Users at remote locations can talk on a conference call and simultaneously display screen data for viewing during discussions. Changes can be made on the screen as they are discussed, problems resolved and approval cycles completed in real-time.

Getting a Handle on the Process

Can an organization just install a PIM system and start realizing productivity gains and cost savings? Nothing is that simple. Speaking from the point of view of the software-development process, but with implications for other design disciplines, Atherton's Copping sees the task of getting control of the software development process as a
Are you playing board games?

Choosing a board is serious business. The quality of the motherboard will determine the performance and reliability of your machine, and the success of your company.

That is why more OEMs and Integrators are using American Megatrends, Inc. for their motherboard needs. Already the industry leader in 386 and 486 BIOS, AMI has now established the standard for EISA and ISA boards.

EISA TECHNOLOGY
AMI has the expertise to provide you with premium 486 EISA boards. These 33 MHz systems can support up to 96 meg of memory and up to 256K of CPU cache. Used along with the optional SCSI Host Adapter, it creates a terrific high performance network server or UNIX hub.

ISA SOLUTIONS
If EISA is not required, the AMI 486 ISA boards are the answer. Operating at 33 MHz and possessing the fastest video speeds in the industry, they provide the perfect platform for graphic intensive applications.

THE AMI DIFFERENCE
Unlike any other motherboard, AMI boards provide total BIOS compatibility; this ensures the highest levels of performance and reliability. Call today and see how the team at AMI will put you ahead of the game.

Used along with the optional SCSI Host Adapter, it creates a terrific high performance network server or UNIX hub.

SINGLE SOURCE TECHNOLOGY

American Megatrends, Inc.
800-U-BUY-AMI or 800-828-9264, 404-263-8181, fax 404-263-9381

CIRCLE NO. 49
matter of time. Citing a study done by the Software Engineering Institute (SEI) of Carnegie Mellon University, Copping notes that the software development process can be broken down into levels of maturity. At the first level, the development process is described as "ad hoc" or "chaotic"—planning and management are done pretty much by the seat of the pants. The second level is intuitive, that is, certain individuals are able to keep an overview of the process in their minds and direct it based on their experience and instincts.

In the case of embedded software, there's a crisis looming that has been brought on by the introduction of high-speed 32-bit processors with their gigabyte address spaces. "An engine that big requires a very different approach to embedded systems development," says Richard Jensen, vice president of new business development for Applied Microsystems’ Jensen agrees: "The perception that every time you put process overhead in place, it's costing money is not necessarily true. Every time you make mistakes because you don't have a process, it's costing money."

At the first two levels, there's not much that management tools such as Atherton’s Software Backplane can do for the process except to watch it unobtrusively. "But that's useful," Copping says, "because we can then decide we've got a policy or procedure we want to implement or that we want to change slightly what's going on." First you have to know what's going on, then it may become possible to articulate a policy. Once a policy has been articulated, management tools can come into their own. "If you can state a policy, it can be enforced," says Copping.

It's at SEI level three—when the process is defined and institutionalized—that the introduction of new technology can aid the process. With policies stated and enforced, the effects of those policies on the design process can be measured and analyzed. With the technology in place, primarily the ability to program policies and procedures into the project database, there's a mechanism for change and a move to the fourth SEI level in which the process is not just enforced, but managed in terms of analyzing problems and the effects of changes.

Finally, at level five, achieved by only a very few projects according to Copping, improvements are fed back into the process to try to optimize it. The history of a project can be queried to answer questions like, "When was this defect introduced and how can we avoid similar problems?" Level five realizes that knowing how the data was built is as important as the data itself. If the origin of a fatal defect is buried somewhere in 50 file cabinets, says Copping, "it might be easier just to redesign the whole thing from scratch," than to try to find where a flaw was introduced. But moving from level one to five is a long-term commitment. It normally takes one to two years to move up one level of maturity, so getting to level five can be a ten-year proposition for a large organization.

Gains for the bottom line

Productivity gains that can be realized from project-management systems, unlike design tools themselves, come mostly from attacking the non-value-added activities that go into product development. This includes such intangibles as "running around," looking for a piece of paper, figuring out what you're supposed to do first thing in the morning, etc. "Once policies and procedures are in place," says Copping, "people don't spend a lot of time trying to figure out what they're supposed to do and where they're supposed to do it. They don't have to worry about policies and procedures; the system will remind them." Applied Microsystems’ Jensen agrees: "The perception that every time you put process overhead in place, it's costing money is not necessarily true. Every time you make mistakes because you don't have a process, it's costing money."

The Sherpa DMS allows distributed and redundant file storage and management. Here, two different servers are managing files physically located on a server, one or more clients, or both. Files marked DMS DB contain the project repository data and the numbered files contain design data. The HP-based server-2 can manage file one residing locally and files two and three residing on a remote VAX client.

Sherpa data management system

- **FILE 1**
 - CONTROL INFORMATION AND REAL-TIME STATUS FOR FILES 1, 2, AND 3
 - SHERPA SERVER 2 (HP)
 - SHERPA SERVER 2 (DEC/VAX)

- **FILE 2**
 - CONTROL INFORMATION AND REAL-TIME STATUS FOR FILES 4, 5, AND 6
 - DMS DB

- **FILE 3**
 - VAX SHERPA CLIENT

- **FILE 4**
 - SUN SPARC SHERPA CLIENT

- **FILE 5**
 - APOLLO NETWORK

- **FILE 6**
 - TCP/IP NETWORK

The history of a project can be queried to answer questions like, "When was this defect introduced and how can we avoid similar problems?" Level five realizes that knowing how the data was built is as important as the data itself. If the origin of a fatal defect is buried somewhere in 50 file cabinets, says Copping, "it might be easier just to redesign the whole thing from scratch," than to try to find where a flaw was introduced. But moving from level one to five is a long-term commitment. It normally takes one to two years to move up one level of maturity, so getting to level five can be a ten-year proposition for a large organization.
One company that's experiencing productivity gains is Sikorsky Aircraft, the helicopter division of United Technologies. In 1985, Sikorsky tried unsuccessfully to implement a system to manage its engineering data called Igor, named after helicopter inventor Igor Sikorsky. But management soon realized that the in-house effort required would be beyond them. Recently, however, the Igor project has been revived based on the facilities provided by the Sherpa DMS. These include the alert mechanisms mentioned above, version and revision control, electronic release facility, authorization levels for security and the user interface.

Currently, about 250 users are accessing the new Igor system and the company soon hopes to have all 2,400 engineers and managers online soon. The goal, realistically anticipated by Sikorsky management, is for the mature engineering data-management system to reduce the costs associated with design engineering by 20 percent and reduce time-to-market by up to 25 percent.

These anticipated savings correspond to the results of a study commissioned by Sherpa to analyze return-on-investment for its engineering DMS. The study by Coopers and Lybrand showed that an efficient data management system could reduce the overall engineering manpower budget by 20 percent. The systems achieved these results primarily by reducing the data-handling aspects of non-value-added activities by as much as one half. These non-value-added activities addressed by the study included processing engineering change orders (ECOs), tracking project status, the review and sign-off process, searching for parts information and retrieving and storing drawings.

The study showed that other benefits could be expected in terms of reduced cost-of-quality, i.e. reduction in costs caused by scrap, the connected via networks, comprehensive PIM systems tied to a single vendor's hardware are not going to have much of a future. Some vendors of PIM systems, such as Sherpa and TeamOne, have chosen to address the enterprise-wide concerns of an engineering operation. Others, such as Mentor Graphics and Atherton Technology, have chosen to first address the primary data-management concerns of their specialty (EDA and CASE, respectively) and to provide bridges, interfaces and avenues of growth to fit into the enterprise-wide environment.

The Sherpa Data Management System, for example, uses a client/server architecture in which a DMS server application and supervisor reside on a server node. The supervisor is a global network dictionary that keeps track of which server each database resides on. There's also a copy of the supervisor on each client node. In addition, the design files can reside on a server node, but can also reside as copies on whatever client nodes are convenient. This avoids having to send often-used files over the network each time they are called, but also maintains the integrity of the data management because the supervisor keeps track of all network transactions and policy events (e.g., meeting a requirement, sign-off, promotion to new level/version, etc.). Sherpa's Freedom architecture lets the system operate in a VAX/VMS environment, in an all-Unix environment, or across mixed VMS/Unix environments.

TeamOne's TeamNet has recently acquired a remote server option in which any system that can access NFS can be used to store engineering data managed by TeamNet. The mass storage of a large mainframe could be harnessed by the PIM system. Likewise, any client workstation that can connect to NFS can access and use design data managed by TeamNet. Actual data management takes place on the TeamNet server, which is a SunOS 4.X-based system, or on remote Sun clients running the TeamNet software. Project data is stored on the Sun server, but accessible via the NFS link by all client workstations (subject to access policy restrictions, of course).

The ability to operate in heterogeneous network environments is also vital to those PIM vendors who are concentrating on a specialty such as CASE or EDA because they

Atherton Technology's Software Backplane is a set of management tools designed to comply with the ECMA model that consists of "horizontal" tools such as the user interface and repository and "vertical" tools such as compilers and debuggers.

Software Backplane includes both horizontal and vertical services to manage the data associated with a software development project.

Currently, about 250 users are accessing the new Igor system and the company soon hopes to have all 2,400 engineers and managers online soon. The goal, realistically anticipated by Sikorsky management, is for the mature engineering data-management system to reduce the costs associated with design engineering by 20 percent and reduce time-to-market by up to 25 percent.

These anticipated savings correspond to the results of a study commissioned by Sherpa to analyze return-on-investment for its engineering DMS. The study by Coopers and Lybrand showed that an efficient data management system could reduce the overall engineering manpower budget by 20 percent. The systems achieved these results primarily by reducing the data-handling aspects of non-value-added activities by as much as one half. These non-value-added activities addressed by the study included processing engineering change orders (ECOs), tracking project status, the review and sign-off process, searching for parts information and retrieving and storing drawings.

The study showed that other benefits could be expected in terms of reduced cost-of-quality, i.e. reduction in costs caused by scrap, the connected via networks, comprehensive PIM systems tied to a single vendor's hardware are not going to have much of a future. Some vendors of PIM systems, such as Sherpa and TeamOne, have chosen to address the enterprise-wide concerns of an engineering operation. Others, such as Mentor Graphics and Atherton Technology, have chosen to first address the primary data-management concerns of their specialty (EDA and CASE, respectively) and to provide bridges, interfaces and avenues of growth to fit into the enterprise-wide environment.

The Sherpa Data Management System, for example, uses a client/server architecture in which a DMS server application and supervisor reside on a server node. The supervisor is a global network dictionary that keeps track of which server each database resides on. There's also a copy of the supervisor on each client node. In addition, the design files can reside on a server node, but can also reside as copies on whatever client nodes are convenient. This avoids having to send often-used files over the network each time they are called, but also maintains the integrity of the data management because the supervisor keeps track of all network transactions and policy events (e.g., meeting a requirement, sign-off, promotion to new level/version, etc.). Sherpa's Freedom architecture lets the system operate in a VAX/VMS environment, in an all-Unix environment, or across mixed VMS/Unix environments.

TeamOne's TeamNet has recently acquired a remote server option in which any system that can access NFS can be used to store engineering data managed by TeamNet. The mass storage of a large mainframe could be harnessed by the PIM system. Likewise, any client workstation that can connect to NFS can access and use design data managed by TeamNet. Actual data management takes place on the TeamNet server, which is a SunOS 4.X-based system, or on remote Sun clients running the TeamNet software. Project data is stored on the Sun server, but accessible via the NFS link by all client workstations (subject to access policy restrictions, of course).

The ability to operate in heterogeneous network environments is also vital to those PIM vendors who are concentrating on a specialty such as CASE or EDA because they

Atherton Technology's Software Backplane is a set of management tools designed to comply with the ECMA model that consists of "horizontal" tools such as the user interface and repository and "vertical" tools such as compilers and debuggers.

Software Backplane includes both horizontal and vertical services to manage the data associated with a software development project.

Currently, about 250 users are accessing the new Igor system and the company soon hopes to have all 2,400 engineers and managers online soon. The goal, realistically anticipated by Sikorsky management, is for the mature engineering data-management system to reduce the costs associated with design engineering by 20 percent and reduce time-to-market by up to 25 percent.

These anticipated savings correspond to the results of a study commissioned by Sherpa to analyze return-on-investment for its engineering DMS. The study by Coopers and Lybrand showed that an efficient data management system could reduce the overall engineering manpower budget by 20 percent. The systems achieved these results primarily by reducing the data-handling aspects of non-value-added activities by as much as one half. These non-value-added activities addressed by the study included processing engineering change orders (ECOs), tracking project status, the review and sign-off process, searching for parts information and retrieving and storing drawings.

The study showed that other benefits could be expected in terms of reduced cost-of-quality, i.e. reduction in costs caused by scrap, the connected via networks, comprehensive PIM systems tied to a single vendor's hardware are not going to have much of a future. Some vendors of PIM systems, such as Sherpa and TeamOne, have chosen to address the enterprise-wide concerns of an engineering operation. Others, such as Mentor Graphics and Atherton Technology, have chosen to first address the primary data-management concerns of their specialty (EDA and CASE, respectively) and to provide bridges, interfaces and avenues of growth to fit into the enterprise-wide environment.

The Sherpa Data Management System, for example, uses a client/server architecture in which a DMS server application and supervisor reside on a server node. The supervisor is a global network dictionary that keeps track of which server each database resides on. There's also a copy of the supervisor on each client node. In addition, the design files can reside on a server node, but can also reside as copies on whatever client nodes are convenient. This avoids having to send often-used files over the network each time they are called, but also maintains the integrity of the data management because the supervisor keeps track of all network transactions and policy events (e.g., meeting a requirement, sign-off, promotion to new level/version, etc.). Sherpa's Freedom architecture lets the system operate in a VAX/VMS environment, in an all-Unix environment, or across mixed VMS/Unix environments.

TeamOne's TeamNet has recently acquired a remote server option in which any system that can access NFS can be used to store engineering data managed by TeamNet. The mass storage of a large mainframe could be harnessed by the PIM system. Likewise, any client workstation that can connect to NFS can access and use design data managed by TeamNet. Actual data management takes place on the TeamNet server, which is a SunOS 4.X-based system, or on remote Sun clients running the TeamNet software. Project data is stored on the Sun server, but accessible via the NFS link by all client workstations (subject to access policy restrictions, of course).

The ability to operate in heterogeneous network environments is also vital to those PIM vendors who are concentrating on a specialty such as CASE or EDA because they
SOFTWARE TOOLS

must be able to link and share their data with the enterprise-wide systems. Mentor Graphics, for example, has developed its Design Management Environment (DME) as an integral part of its Falcon Framework. But Mentor also realizes that there must be bridges that link to the wider world of EDA and plans to grow its own management system to address the enterprise-wide concerns.

According to Deme Clainos, marketing manager for Mentor’s PDM division, connections to the wider world have become imperative. “The first time a request is made for an engineering change order, the first thing a manager wants to know is what are the pluses and minuses. What’s the effect on related designs?” In the past, Clainos says, companies like Mentor didn’t worry about this because no one could solve the problems. “But as technology moves on, we’re capable of solving them and customers are pushing for solutions.”

In the CASE arena, Atherton currently sells its Software Backplane as a management tool for CASE activities. The company is looking at fitting it more closely with Hewlett-Packard’s Softbench, a growing de facto tools-environment standard for CASE. Software Backplane is a framework that can fit into the Softbench framework. And Softbench itself is modeled after the so-called “toaster model” devised by the European Computer Manufacturers Association (ECMA). In the ECMA model, there are horizontal tools such as a user interface, tool integration services and data repository. There are also vertical tools such as structured analysis tools, editors, debuggers, and documentation tools—that all use the services of the horizontal tools.

According to Copping, Atherton Technology will be moving toward integration with Softbench and also compatibility with the emerging portable common tool environment (PCTE)—also a development of ECMA—that aims at having a comprehensive data repository for design and project data. “We are going to do a harmonization of these two pieces (Softbench and PCTE) to produce the next-generation product and will be using PCTE as a basis.”

The complexity of software development and of design in general is only going to increase, making it more imperative to get the process under control. “In order to have better software,” Copping says, “you’ve got to deal with all the stuff, the ugliest, the process improvement pieces, etc. The sobering news is that even Sony Handicams have software in them too, and probably more than the Patriot missile.”

* NEW BOOK *

PROGRAMMING AND DESIGN WITH THE 68000 FAMILY

Including the 68000, the 68010/12, the 68020, and the 68030

Content Highlights:

Hardware
- Glue Logic for 680xx Designs (e.g., BTO, DTACK/DSACK circuit)
- Address Decoder Design Approaches.
- Introduction to Designing with PLDs (PAL 22V10 used in examples)
- Circuit Hazards to watch such as metastability, glitches, bus contention.
- Interface to Memory Devices
 - SRAM Memory Design
 - DRAM Memory Design
 - NVRAM Memory Design
 - EPROM Memory Design
- Dual-Port Memory Design
- Interface to 680xx family peripherals (e.g., 68681 DUART)
- Interrupt Operation and Interface Logic (including daisy-chaining)
- Bus Arbitration logic

Software
- Description of each instruction is covered in detail with useful code fragments for possible applications.
- Subroutine usage and parameter passing techniques.
- Macros
- Looping structures
- Possible uses of Jump Tables
- Multiprocessor systems
- Instruction Timing Calculations
- Virtual Memory Techniques
- Coprocessors: FPCP and PMMU (Separate chapter)
- Exception Processing Details
- Use of Look-Up Tables
- Review of Floating-Point Notation (IEEE P754 Standard)

With real engineering designs and clearly worked examples, this book provides a complete and in-depth coverage of the family in 641 pages. The book is divided into three sections. The first section gives an overview and comparison of the 68000 family of processors. The family support such as the peripheral chips designed for the 680xx family are also discussed here. The second section covers the assembly language programming with emphasis on the 68000/10 and the 68020 processors, including the relevant computer science topics. The third section discusses the hardware design using the 68000 and the 68020 with many circuit schematics and timing diagrams. Comprehensive background is provided in designing memory devices, such as the intricacies and the operation of DRAM chips.

Author: Tibet Mimar, Ph.D.
Publisher: Prentice-Hall, Inc
ISBN: 0-13-731498-1
Contact your local bookstore, or order direct from Prentice-Hall (Ph: 201-767-5937)
Cyclone’s Squall Hits 80960CA.

Propelling a project forward in the whirlwind of advancing technology is a challenge. Cyclone Microsystems can help accelerate your product development with the CVME960 Single Board Computer.

PERFORMANCE: Cyclone’s CVME960 offers the 80960CA’s SuperScalar performance of multiple instructions per clock cycle and an on-chip DMA controller. Cyclone couples the 80960CA’s power to either 2 Mbytes of 35 nsec SRAM or up to 8 Mbytes of fast DRAM.

FLEXIBILITY: A SQUALL Module™ is an I/O module that utilizes the 80960CA’s capabilities as an embedded processor and an I/O server. The interface to the SQUALL Module includes four 32 bit DMA channels as well as the 80960CA’s address, data, and control signals. SQUALL Modules are available for High Speed Data Links, Communications, and Network Interfaces.

DEVELOPMENT: The CVME960 has the tools to get your real time and embedded projects moving. Like the GNU Compiler/Debugger and VxWorks Real Time Operating System with a symbolic source language debugger.

SUPPORT: Cyclone backs the CVME960 with comprehensive technical and software support. Engineering teams are ready to support your unique SQUALL Module requirements.

Call Cyclone Microsystems to find out how the performance and flexibility of the CVME960 and SQUALL Modules™ can help you survive the storm.

VxWorks is a product of Wind River Systems, Inc.
THE CI-VME40 FEATURES
ACCESS TIMES: 20/150NS
CYCLE TIMES: 95/195NS (BLT/SINGLE CYCLE)

- 4MB, 8MB, 16MB, 32MB, 64MB in one VMEbus/VSB slot
- Byte Parity Error Detection
- Addressable in 24 or 32 bit through 4 Gigabytes
- Memory start and end addresses selectable on 256KB
 Boundaries configured independently

ALSO AVAILABLE FOR THE VMEBUS ARE...

THE CI-VMEmory FEATURES

- 4MB, 8MB, 12MB, 16MB, 32MB, 64MB in one VMEbus slot
- VME Revision C compatibility
- Lower and upper memory addresses independently selectable in 64K byte increments
- Byte Parity Error Detection with Selectable Trap on Parity Error
- Control Status Register

THE CI-VSB-EDC FEATURES

- 4MB, 8MB, 12MB, 16MB, 32MB, 64MB in one VMEbus/VSB slot
- Dual VMEbus/VSB ported board
- Error Detection and Correction circuitry
- Addressable in 24 or 32 bit through 4 GIGABYTES
- Selectable on 256KB, boundaries
- VME and VSB configured independently
X Windows terminals
designers search for
a single-processor solution

Many designs can deliver performance in X Windows terminals—but it may require a next-generation processor to get the cost down.

Dave Wilson
Senior Editor

Somewhere between an ASCII terminal and a full-fledged workstation lives the X Windows terminal—promising workstation graphics at terminal prices. While the terminals provide an inviting graphics interface for users, they also represent an equally inviting market for chip vendors. Besides a local microprocessor, these terminals require quantities of other premium-priced devices: LAN controllers, memory controllers and video D-A converters. The chip volume represented by these terminals today is limited by their pricing, ranging from $1,500 to $5,000. The potential volume, forecast to unlock when terminal prices fall below $1,000, has chip vendors waiting eagerly.

But while the chip vendors are waiting, it seems that terminal designers are determined to keep them guessing. Although all X Windows terminals look pretty much alike on the outside, it's difficult to find two that are built around the same design concepts.

The million dollar question is: which devices will emerge as the choice of X Windows terminal designers? The answer may have as much to do with company politics as it has with how effectively a specific hardware architecture can be optimized to run X Windows software.

Generic X

A generic X Windows terminal typically includes a CPU coupled with a graphics processor subsystem, a network controller, nonvolatile memory, and a peripheral controller. But the critical design decisions involve the CPU and graphics processor subsystem. And judging from the current crop of X terminals, these design decisions can lead in almost any direction. Hewlett-Packard (Palo Alto, CA) uses the superscalar i960CA RISC engine from Intel (Santa Clara, CA) as a general-purpose processor to perform both networking and graphics operations. Samsung (Andover, MA) chose the 29000 RISC processor from Advanced Micro Devices (Santa Clara, CA) to handle the same tasks. Network Computing Devices (Mountain View, CA),
X WINDOWS TERMINALS

on the other hand, opted for a 680X0 from Motorola (Austin, TX) to work with custom graphics controllers. Tektronix (Beaverton, OR) uses a combination of the TMS 34010/20 graphics processors from Texas Instruments (Dallas, TX) and the Motorola 68030. The X20 platform from Northwest Digital Systems (Seattle, WA) is simply based around a single TI 40-MHz 34020.

“Believe it or not, there’s no one single approach that’s best,” according to Marco Thompson, president of Doctor Design Inc. (DDI), a design consulting firm based in San Diego, CA. “There are many divergent designs. They can include size of the monitor supported, whether or not color is involved and the performance that must be supported at a given price.”

Thompson groups X Windows terminal designs into three generations. The first used a dual-processor approach. Today’s second-generation products began the move to RISC technology for higher performance and lower cost. Third-generation products will be based on low-cost RISC processors that offer high performance and replace all the glue logic used in second-generation designs with ASICs.

To determine the suitability of a processor (or combination of processors) in an X terminal hardware design, it’s important to understand the functions performed by the software running on the terminal. In an X terminal, a processor is responsible for performing two major tasks: handling network protocols and managing graphics functions. Concurrent with X protocol request processing, the software may also be handling inputs from the mouse or keyboard. The performance of the system can be optimized by examining the processor load for the different types of concurrent operations performed.

Depending on whom you talk to, vendors offer software that conforms to the latest X Windows version from MIT, the added value comes in the enhancements that have been made to the software. XSoftWare from AGE Logic (San Diego, CA) and TiX from X Technology (Derry, NH) are typical of software packages needed to build an X terminal. While XSoftWare runs on a number of processors, including the 29000 and i960 RISCs, X Technology has concentrated on the 34020 working with a PC host.

AGE’s offering comprises the server code, networking software, boot ROM software and configuration menu software. A typical application might manage the network, decode the X protocols and maintain graphics contexts and draw pixels on the screen. Larry Hare, senior software architect for AGE Logic, agrees with DDI’s Thompson that high performance is important for the general-purpose server and networking code, especially in light of new object-oriented toolkits. These toolkits thoroughly exercise the non-graphics portions of the X server, he says.

Dual or single

Before deciding whether to design with a single graphics engine or use two processors, designers need to consider four factors, according to Charlie Jagow, project manager of Tektronix’s X Windows Group (Wilsonville, OR). First is cost, second is time-to-market and third is performance. And last, but not least, is the familiarity of the designer with the software environment.

Dual-processor X terminal implementations fall into two categories. First, there are those that use a graphics processor, such as the 34020 for all graphics functions, and combine it with a slower general-purpose processor, such as the Motorola 68000 or Intel 80186 for networking. Many of the older X terminal designs used a dual-processor approach because the 34010 was not perceived to be powerful enough to handle both communication and graphics functions.

The second class of dual-processor designs is typified by the NCR (Lake Mary, FL) and Tektronix (Wilsonville, OR) terminals. Here, a 68020 or a 68030 is used as the main CPU. It runs the majority of the code with the exception of graphics routines that use the 34010 or 34020 microcoded graphics processors. Tek-
We put SoftBench on Sun. So you can put your CASE on autopilot.

SoftBench automates all those tedious, repetitive tasks in the software development process. This gives your developers more time to think and speeds up the project life cycle, while reducing errors and rework. And now it runs on Sun SPARCstations, as well as HP and Apollo workstations.

A tool integration platform, with its own set of tools, SoftBench provides distributed computing services, tool communication, and a common user interface that's easy to learn and use. Add Encapsulator, and you can integrate your favorite CASE tools. Now and in the future. Without even having to change source code.

SoftBench will make your software development process far more efficient, cost-effective and accurate than ever before. It will protect your present and future hardware and software investments, too.

Call 1-800-637-7740, Ext. 2195 for complete product information. And get the best CASE environment under the Sun.

© 1991 Hewlett-Packard Company CSE9001
The higher speeds and greater complexity of electronic systems are making your job more challenging. As clock speeds climb to 50MHz and beyond, analog characteristics become major considerations for digital designs. Demands for mixed-signal technology have increased in the peripherals, telecom, and automotive markets. According to Technology Research Group, 40% of all ASICs will be mixed analog and digital by 1994. Beat the most challenging issue in design engineering in the '90s — with the first-ever ANALOG & MIXED-SIGNAL DESIGN CONFERENCE.

Finally — a source for objective and up-to-date information on analog and mixed-signal design. This technical conference, sponsored by COMPUTER DESIGN magazine, features over 50 lectures and workshops 100% dedicated to your needs. No where else will you find so much information, so much technology and so much expertise all under one roof.

INTRODUCING...
THE ANALOG & MIXED-SIGNAL DESIGN CONFERENCE

HIGH-QUALITY WORKSHOPS

Respected engineers will offer high-quality information that you can immediately use to complete your design projects more quickly, creatively, and elegantly. You’ll learn about analog and mixed-signal simulators, different design techniques, analog implications of high-speed systems, and much more in workshops such as:

- Analog Effects in High-Speed Design
- Mixed Analog/Digital Design, Modeling, Simulation, and Test
- Selecting the Optimum Analog Devices
- Digitizing Analog Functions
- Solving Convergence Problems in SPICE
- Configuring Mixed-Signal with ASICs
- And much, much more.
PRACTICAL, HANDS-ON INSTRUCTION

For years you’ve been subject-ed to press releases from vendors under the guise of objective discussions or exposed to academic papers that had little bearing on your design problems. The Analog & Mixed-Signal Design Conference is different. You’ll find in-depth, practical and real-world information from industry experts who have been there. They’ll give you knowledge you can bring to the workstation tomorrow!

WHO SHOULD ATTEND?

The Analog & Mixed-Signal Design Conference is dedicated to the unique needs of mixed-signal design. If you’re a digital designer addressing the problems of high-speed designs, a digital designer involved with analog, or an engineering manager making decisions about CAE/CAD tools, you must attend this conference.

QUESTION AUTHORITY

The Analog & Mixed-Signal Design Conference Vendor Products Exhibition features booths crammed with the latest in analog and mixed-signal design tools. As questions arise during the workshops, you can go directly to the vendor authorities on the exhibit floor for answers. They will be on hand to let you try out and compare products, give you a clear grasp of the practical tools available, and tell you where to look for new avenues of information exchange.

As an attendee at the Analog & Mixed-Signal Design Conference you’ll learn how to improve your design skills, how to increase your productivity, and where to turn in order to ensure design success. All in three days, all under one roof.

Join your colleagues this October in Santa Clara. Launched with your needs in mind, this in-depth, technical conference promises to be one of the most significant industry events of the year!

The Analog & Mixed-Signal Design Conference
Santa Clara Marriott
Santa Clara, California
October 30-November 1, 1991

For more information call Angela Hoyte at (415) 905-2354 or FAX at (415) 905-2234

Sponsored by COMPUTER DESIGN Magazine
Produced by Miller Freeman Inc., P.O. Box 7843, San Francisco, CA, 94120-7843.

CIRCLE NO. 55

TELL ME MORE about the Analog & Mixed-Signal Design Conference.
I’m interested in ☐ Attending ☐ Exhibiting

Name ____________________________
Title ____________________________
Company ____________________________
Street ____________________________
City, State, Zip ____________________________
Phone (__________) FAX (__________)
Hewlett-Packard's high-end 700/RX-CA X Windows terminal teams a superscalar Intel i960CA RISC processor with a custom memory controller that boosts graphics performance. Superscalar C code also helps the terminal perform faster.
Run PC Software on a Hardhat Computer

With Xycom's large family of PC/AT products for the VMEbus, you can run the most popular PC software packages, as well as take advantage of the multiprocessing capability and increased reliability designed into the VMEbus architecture. Complete your system with a full line of Xycom hardhat hardened VMEbus 68000 family CPUs, I/O, peripheral controllers and support modules.

Xycom offers one-stop shopping for all the VMEbus hardware and software you'll need in any automation, control or data acquisition application.

Xycom's complete family of PC/AT hardware includes: 80386SX®, 80486SX® and 80486® PC/AT processors. Call today for a detailed catalog of all Xycom VMEbus systems.

1-800-AT XYCOM
software operation. In most dual-processor configurations, one processor tends to be waiting on the other. The only benefit of having a 68020 front-ending a product like a 34020 is that the graphics code is easier to write on the 020 and the general-purpose code is easier to write for the 68030.

"I would agree with part of that," says Tom Arthur, X Station product development manager at IBM (Austin, TX), whose latest X terminals support a 80186 in conjunction with a TI 34020 processor. Like others, the general-purpose code was easier for IBM to write on a 186, while the graphics code was easier on the 34020. "We had to concentrate on the area of synchronization, but to say that one processor is always waiting on the other is an overstatement. Our software is ported by AGE, and some of our efforts with them were aimed at making the synchronization work better."

Most agree that a single-processor solution is more effective than a dual-processor implementation—at least in terms of cost, if not necessarily performance. But should designers choose a RISC processor implementation based on the 29000 or i960, or a standalone graphics processor implementation around TI's 40-MHz 34020? And even if designers settle upon a RISC processor to run all of the code, should they opt to design custom silicon to accelerate certain common graphics functions like scrolling, fills, and tiling operations? With a RISC CPU such as the 29000, designers should carefully weigh how much extra performance this approach will buy them.

Designers that have invested in RISC agree that it's important to choose a vendor with a family of devices, rather than just a single processor. In this way, software investment in the device can be preserved across a number of designs at different price/performance points. Both Intel and AMD currently have a range of derivatives in their 1960 and 29000 families.

"Both are good embedded RISC processors," says IBM's Arthur. "Each of them have pluses and minuses. But while the 29000 has an MMU, the i960 doesn't. And today's breed of programmer assumes that systems have virtual memory. So if your (X Windows) platform supports an MMU, porting of code will be far easier."

How do they handle memory?

The effectiveness of the memory subsystem is very important in all X Windows designs. "We assume all RISC chips have (roughly) the same performance and make our choice based on availability and price, the availability of development tools, and how hard it is to interface to device," says Ed Basart, vice president of engineering at NCD the leading vendor of low-cost terminals.

While X and the i960CA may support different memory-interfacing techniques, they share some things in common. One of these is that load and store operations are decoupled from CPU execution. Once a load operation is initiated, for example, the processors can continue executing if there are no other instructions that require the results of memory. Most other RISC processors don't offer capabilities such as these, so those processors may halt instruction execution until the load or store operations have completed.

The 29000 sports several features beneficial to designers of graphics terminals. For data accesses, for example, it will try to perform Load Multiple and Store Multiple operations using burst-mode accesses. Burst-mode accesses take advantage of sequential addressing patterns and let the processor operate with standard DRAM memories in page-mode, which improves the access time of the system and keeps costs down. Although the first burst-mode memory access may take four or five processor wait states, every memory access after that might only take one. Hence, the processor provides a capability that lets the designer control the memory bandwidth of the machine and get a single-cycle transfer on large pieces of memory.

DDI's Thompson feels that the

Dr. Design's President Marco Thompson is designing two gate arrays for a next generation X Window's controller. He claims that the new board will be half the size of the current XQC-8200 controller (inset) and match the performance of the i960 CA-based Hewlett-Packard controller for about half the price.
What's the Difference Between

1 SPARCstation with 3 GXTRA 1280s

These SPARCstation Users?

3 SPARCstations

About $25,000 and 800,000 Pixels!

If you...

• Want to support multiple graphics users on a single SPARCstation
• Need to reduce hardware costs
• Require multiple displays
• Want single slot SBus graphics acceleration
• Are looking for higher resolution
• Need more power than a color X terminal
• Are running Open Windows 2.0

Then you need the GXTRA 1280...

The GXTRA 1280 SBus graphics subsystem from Tech-Source Inc. allows you to add another color graphics user to your SPARCstation.

The GXTRA 1280 is a single slot SBus card which provides GX style acceleration, 1280 x 1024 8-bit color frame buffer, and a Sun-4 style keyboard and mouse port. The GXTRAstation 1280 combines the GXTRA 1280 with a Sun compatible keyboard, mouse and a 19" color monitor.

The GXTRA 1280 runs all Sun software and can replace or supplement your existing graphics option.

Contact us today for information on how the GXTRA 1280 can help you decrease your equipment costs, while increasing productivity.

CIRCLE NO. 57

See Us at Siggraph '91 - Booth 631

All product names mentioned are trademarks of their respective companies
X WINDOWS TERMINALS

29000 has the edge over the i960 because of its triple-bus (data, instruction and address) architecture. "The most important feature of the 29000 processor is its ability to execute an instruction on every clock cycle while also performing a data transfer on every clock cycle to randomly access or burst access data from the video memory," he says. While Thompson agrees that the i960CA can do that, he feels it's limited in its ability compared with the 29000. "The i960CA doesn't allow these operations to be performed in parallel."

There are other, more detailed, reasons why Thompson likes the 29000. "The 29000 can barrel shift and merge a 64-bit entity into a 32-bit entity in a single instruction. This is a very important function if you're performing a bitblt on nonaligned boundaries. And a lot of an X terminal's performance is highly dependent on how effective windows can be moved around—in other words, how effective the bitblt function is."

Despite these problems, the i960CA has some advantages over the 29000, like a superscalar architecture that in some cases can allow more than one instruction per clock cycle. "Nevertheless," says Thompson, "when we looked at a product based on the 29000, and took into account the memory system, the external logic required for the memory system, and the processor, we found that we could get more performance for less money with a 29000 that has a 1960."

But just how good is the 29000 in comparison to other approaches? According to DDI's Thompson, a 29000 can draw lines and move pixels faster than a 34020. "Because of the serial nature of most X protocols, a single RISC processor that works faster than a 68030 or a 34020 is the right X Windows solution from a price/performance standpoint," AGE's Hare agrees. "With the 29000, you can write code that will do graphics operations such as tile patterns much faster than many graphics processors."

Like the 29000, the designers of the i960 RISC controller paid attention to supporting useful memory-interface features. These can be used to advantage by software designers. A multi-word memory access capability, for example, can provide a programmatic means to control burst-mode access to memory. According to AGE's Hare, by recoding graphics algorithms to use the processor's quad-word transfer capability, designers can reduce the average time required to transfer one 32-bit word from four wait states to two wait states, doubling the performance of the X software for that operation.

Design ins, design wins

In May, DDI's XQC-8200, a color X Windows base unit and controller system based on the 20-MHz 29000, won a bid from CCL (Computer and Communications Laboratories), a government consortium based in Taiwan. The goal of the consortium is to standardize on an X terminal design that will be manufactured as a product for up to 17 Taiwan-based companies like Acer, Tatung, Quume, ADI, and CTX. The XQC-8200 technology license provides a complete package of design data, manufacturing and test data, documentation, and manufacturing rights to licensees. "The CCL win means that in the next year you will be seeing a whole variety of X Terminals based on our design and the 29000 processor," says Craig Schmidt, vice president of marketing at DDI.

DDI has already developed monochrome and color X Windows controllers for both Samsung and Arche Technology. The Samsung terminal is a 17-in. color unit based on DDI's XQC-8200 and priced at about $3,500. To further reduce the size and cost of the XQC-8200 controller, the company is developing two ASICs (called the DDI-4129 and DDI-4029), that will work with the 29000 and effectively shrink the size of the XQC-8200 by 50 percent.

The DDI-4129 will support color resolutions up to 1280 x 1024, while the DDI-4029 supports lower resolutions up to 1024 x 1024. Both ASICs support monochrome resolutions up to 1600 x 1280. DDI will also sell the ASICs to interested third parties.

At the high end of the X terminals world, Hewlett-Packard (Waterloo, Ontario, Canada) is one company that chose the i960CA for the design of its HP 700/RX family of X-Stations. The terminals range in price from $3,000 for monochrome to $6,000 for the color version. Jeff Dawkins, project manager for the X Windows terminals project says that one of the reasons the i960CA was chosen is that the design did not call for memory management or floating point capabilities. The 22.5-MHz speed of the i960CA is consistent across all the Hewlett-Packard designs. Performance differences in the family are due to different memory controllers. The high end of HP's family, the Ca X terminal, uses two HP-designed custom controllers that bank-interleave memory and achieve zero wait state burst-mode accesses at full CPU speed. HP's 16CI and 19MI terminals use a somewhat simpler memory controller. Engineers at HP designed the custom memory controllers when they couldn't find an off-the-shelf solution that met performance and time-to-market needs. "We wanted very high processor/memory bandwidth both for keeping the CPU running at maximum speed and for performing high-speed bitblt memory transfers," says Dawkins.

According to Marc Morin of Morin and Associates (Waterloo, Canada),
When you need power and flexibility in the board game, there's really only one choice:

On the chessboard there are only a few pieces that offer you the combination of power and flexibility. Knowing which ones to employ makes the difference between winning and losing.

In the VMEbus board game, you have the same selections to consider. But when it comes to looking for power and flexibility you only have one choice—Formation.

HERE'S WHY

Power?

Formation has the power that comes from nearly 20 years of experience as a responsive, customer-oriented computer engineering firm, that brings highly trained and sophisticated expertise to all our customers.

This kind of powerful support is why so many respected firms in the computer and telecommunications industry have continually made us an integral part of their teams.

Flexibility?

Formation is a supplier. We're also your partner, your consultant, your advisor and a member of your team. And that kind of flexibility means when you need it, we will become as intricately involved in your operation as you need us to be.

At Formation you will find that we talk to our customers to clearly ascertain their needs. And the results are innovative solutions like the first 16/4 Mbps Token-Ring adapter and high-speed WAN and fiber-optic LAN (FDDI) communications products.

Quality solutions created to specific applications.

Solutions that have helped our customers take the lead in their markets . . . and win.

Why not find out more about a company who can bring this kind of power and flexibility to the table. Formation. Truly a master in the board game.

Call us toll free for more information and our latest brochures.

121 Whittendale Drive, Moorestown, NJ 08057, (609) 234-5020, Outside NJ toll-free (800) 257-0452

CIRCLE NO. 58
a contractor to Hewlett-Packard that performed the i960CA work, the independent bus controller and register scoreboard in the i960CA let the computation and memory subsystem operate in parallel. For bitblt operations, which are memory bound and not CPU bound, the memory system is driven at 100 percent bandwidth while the i960 is also executing two instructions per clock cycle. Multi-byte memory operations increase the memory bandwidth by performing a bus cycle that reads (or writes) two to four words at a time. With a zero wait state memory subsystem (with pipelining), the i960CA can read one long word per clock cycle and write four long words in five clock cycles continuously.

The 700/RX's 1 Kbyte of on-board SRAM is accessible in parallel with the external memory. This lets the i960CA access results within this area of memory without affecting the external bus controller. The SRAM has a 128-bit wide bus that lets the i960CA read or write a quad word every clock cycle. The 700/RX uses this area as a scratchpad for graphics rendering. Finally, Morin says, the i960CA's extended-shift right instruction is very useful for rendering in X. It extracts a 32-bit value from a 64-bit quantity, which permits barrel shifting the data during a bitblt and for collecting bits from fonts when rendering text. According to Morin, this feature alone was responsible for doubling the speed of text rendering in the design.

Graphics processor advantages
The tradeoffs between a dedicated graphics and a RISC approach are many. Although RISC may have captured more attention in recent months, the 34020 has a lot going for it. Its first attraction is cost. A RISC processor may cost more than those required by many of the RISC processors.

Unlike a RISC processor, the 34020 has a set of general-purpose functions as well as graphics functions that can be used to construct high-level functions. It also provides programmable control of the CRT interface as well as the memory interface (both standard and multiport DRAM). TI claims that a very effective X Windows terminal can be built based on the 34020 working with the 34075 video interface palette. One design can cover a range of resolutions (up to 1280 x 1024), pixel depths from monochrome to color, and support the PEX 3-D standard by adding the floating point 34082. Such a design might use as few as 50 ICs, or fewer in designs using gate arrays for bus control logic.

Northwest Digital Systems' NDS X20 controller is a single-board controller that uses the 34020 as a single chip to perform all graphics and networking functions. NDS' Mark Champion says that "although they got a bad rap in the past as single-chip solutions, when you really look at it, these processors don't have to have a heck of a lot. This is an embedded application, and the processors don't have to run a wide range of code."

NDS decided to go with a single processor because it was a less-complicated hardware solution. Like others in the business, NDS felt that a dual-processor design meant that it would need to build a communications protocol to allow two processors to communicate, and that the protocol had the potential of becoming a system bottleneck.

Having had some experience with earlier 34010 designs, NDS is pleased with the performance enhancements Texas Instruments has added to the 34020. First, the 34020 runs at twice the clock speed of the 34010. Second, it's a 32-bit, rather than a 16-bit, processor. And it has the ability to take advantage of page-mode memory, which the 34010 did not. Finally, the 34020 boasts a 512-byte instruction cache, double that of the 34010.

NDS used TI's optimizing C compiler on the X Windows code the company wrote to maximize its performance. NDS also rewrote the inner graphics loops in assembly language. Not only did that help speed up performance, it also let the company run the loops out of the on-chip cache.

There are others, however, who aren't quite as sold on the TI approach. "You're not going to get good performance with an antiquated part like the 34020," retorts NCD's Ed Basart. "It was invented 10 years ago and it takes a lot of clocks to get much done."

Is a single-chip solution coming? Clearly, the RISC camps have squared off against Texas Instruments for "The Battle Of The Third-Generation Design Win." But with all the activity surrounding X Windows, it seems that a single-chip X Windows processor might soon emerge to compete with embedded RISC processors and graphics processors. Such a processor might be based on a RISC core, and would certainly embrace a feature-ridden, low-cost memory-interfacing strategy. "That's a very interesting idea," says IBM's Arthur. "The question is whether or not X is going to be pervasive enough to make it worthwhile building something dedicated to it."

Quite possibly, a better RISC for X already exists. "Neither the 29000 or the i960CA are anything compared to the LR33000 embedded RISC processor from LSI Logic (Milpitas, CA)" says NCD's Basart. Although no vendors have currently announced terminals using the chip, Basart is very enthusiastic. "It blows everything else away," he says.
Opening a New Eye on the Cosmos

The Naval Research Laboratory needed a better way of seeing the Universe. They came to Interferometrics for help.

When Interferometrics needed computers to control NRL's revolutionary Imaging Optical Interferometer they came to Themis Computer.

The NRL Big Optical Array imaging interferometer requires a perfectly synchronized dance of mirrors to eliminate the delay and distortion of starlight passing through turbulence cells in the atmosphere. These mirrors require an intricate network of motors, sensors and actuators, linked through Ethernet, working together, to counter the earth's motion and distorting effects of the atmosphere. Themis Computer's broad, fully-compatible family of VMEbus CPU, I/O and Communication boards provides real-time control for this stellar project.

The result will be a new generation of optical telescope capable of imaging star systems to an angular resolution 1,000 times greater than conventional ground-based optical telescopes, and 200 times greater than the Hubble Space Telescope. Significantly, this will be accomplished at a cost of only $10 million, 1/200th of the Hubble's cost.

This remarkable project will result in more accurate mapping and measurement of the stars and improve our understanding of phenomena such as black holes, binary stars, and quasars.

We at Themis are proud of our involvement in this endeavor.

Whether your application is on the factory floor or out of this world, Themis has the hardware and software to put it all together.

Call (415) 734-0870, fax: (415) 734-0873, or in Europe, 33.1.69.86.15.25, fax: 33.1.64.46.45.50.

At Themis, we're making the open systems promise a reality.

Americas: 6681 Owens Drive, Pleasanton, CA 94588
Europe: 29, Av. de la Baltique, 91953 Les Ulis Cedex-France
When you're picking an embedded processor, it pays to watch your step. Or you may wind up with a design that doesn't meet your performance expectations, and a schedule that keeps slipping. Not so with the new Motorola 68EC000 line.

From the 68EC000 that's just two dollars and change, to the 68EC040 that delivers a full 22 MIPS, they're all based on the world's most popular architecture. The 68000.

Which means you get a seamless migration path and reams of reusable code. Because each 'EC000 embedded microprocessor is binary compatible with all 68000-based microprocessors, and with every other 'EC000 family member.

What's more, they're all engineered to give
your products virtual immunity from memory wait states.

They also deliver superior levels of sustained performance, not "peak" MIPS like with other processors. So you can use DRAM instead of SRAM, and minimize your overall system cost.

As you'd expect from Motorola, high performance, low cost and exceptional technical support are all part of the package. And 'EC000 embedded microprocessors are available at the price/performance points you need.

So before you pick your next embedded microprocessor, call 1-800-845-MOTO, and get a free sample from the 68EC000 family.* It's one step you'll never regret.

*Motorola's 68000 families let you choose the performance and integration that's right for your application.

68000 MICROPROCESSOR FAMILIES

<table>
<thead>
<tr>
<th>68000 CPUs</th>
<th>68EC000 EMBEDDED</th>
<th>68000 INTEGRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Integration</td>
<td>EC000</td>
<td>EC020</td>
</tr>
</tbody>
</table>

© 1991 Motorola Inc. All rights reserved.
What do digital designers need to master the art of analog design?

Barbara Tuck
Senior Editor

Real-world applications are forcing more engineers to include analog functions in their designs. But analog design is an arcane art form for many of today's engineers. Better tools from CAE and silicon vendors will help, but it will be a long time before tools can replace the skills of a seasoned analog designer.

Analog design is still an art because the sophisticated analog specialist is the only one aware of all the nuances and complexity of a design. But for digital and system designers, the vision of a mixed analog and digital design is anything but a pretty picture. Nonetheless, the real world is analog, and the demand for end products such as pacemakers, hearing aids, cellular phones, and disk drives is forcing designers to address the problems that surround mixed-signal design.

The growing requirements for mixed-signal design are increasing pressure for better design tools and support. Tool vendors and silicon vendors are developing new strategies to bring mixed-signal design capabilities to more users. One primary difference in these strategies is the degree to which they put design responsibility into the hands of the end user.

The two extremes

Perhaps the two companies which best illustrate the extremes in the degree to which mixed-signal devices can be customer-designed rather than customer-specified are Analog Devices (Norwood, MA) and SGS-Thomson Microelectronics (with headquarters in Grenoble, France; Agrate, Italy; and Carrollton, TX). Analog Devices strictly adheres to the turnkey design approach while SGS-Thomson has installed design tools for its analog cells and arrays at 50 customer sites. Philippe Lambinet, SGS business manager of analog cells and arrays at Grenoble, reports that the 50 sites represent a 100 percent change from about two years ago. Half of the SGS customer sites are in Europe where users have been faster to accept mixed-signal design responsibility. SGS mixed-signal design activity is currently split on a 60/40 basis, with 60 percent of the designs being done externally.

SGS offers design flows, such as the Analog Design System based on the Design Framework from Cadence Design Systems (San Jose, CA). For simulation, SGS includes its own Mozart digital simulator and the Anacad (Grenoble, France) Eldo mixed-mode analog simulator, which has its own Spice circuit simulator. SGS handcrafts its standard cells and offers users of its BiCMOS STKM2000 standard-cells the ability to modify the behavior of analog and digital functions through the use of module generators. CMOS standard-cell users are not offered that flexibility. By October, libraries will be ported to Eldo in the FAS analog behavioral language, which Lambinet says will cut simulation times from hours for transistor-level models to minutes for the new behavioral models.

Analog Devices, highly respected for its precision analog products, is at the other extreme when it comes to putting tools into users' hands. Tremont Miao, Analog Device's ASIC strategy manager for mixed-signal ASICs, admits that, "We're not viewed by the industry as being very cooperative. We hold onto everything, some say." But Miao explains that, "At the 8-bit level, vendors may let people make their own mess. But beyond that, mixed-signal has to be accomplished as a turnkey custom design." According to Miao, modeling and simulation is lagging. "All model languages are too restrictive to let us do what we want to do. We don't have good transmission-line effect models, parasitic models, or crosstalk models." The system or instrumentation person moving into chip design lacks the ability to predict the interactions of analog and digital, explains Miao. "At design and layout reviews, customers ask..."
about parasitic phenomena and where to run power lines.

Modeling dilemmas

Miao thinks that in the future customers will use cells, models, and system-level simulators at their own sites, but that models will have to be prepackaged like data sheets. "We wouldn't be able to guarantee manufacturability if users could modify models and cells," he says. Miao distinguishes between Analog Devices' modeling methodology and a "polygon-pushing" methodology. For example, to modify a particular cell to drive 10 mA instead of 2 mA, polygon pushers, according to Miao, "go in there and pull the design apart and open Pandora's box." In such an instance, Analog Devices would design a new cell and build a model, says Miao, because of all the yield-related issues involved. According to Miao, the results prove Analog's approach; he claims that 80 to 90 percent of their mixed-signal designs go to production.

Analog Device's Spectrum event-driven, mixed-signal simulator is based on a dynamic partitioning algorithm that, Analog claims, significantly reduces simulation time in mixed analog/digital circuits. Spec-
MIXED-SIGNAL TOOLS

trum's extensible framework lets multiple simulation algorithms be integrated to operate together. An automatic behavioral model generator analyzes circuit topology and creates switch-level behavioral models. Based on pattern recognition and signal flow, the algorithm currently generates CMOS and ECL logic models and

a wide range of analog models, such as differential pairs, current mirrors and integrators.

Modeling is the top priority of vendors and the major concern of users because there can be no simulation without models. Differing opinions as to the difficulty of modeling seems to be a function, at least in part, of how much of a mixed-signal design is digital and how much analog, as well as how complex and precise the analog functions are. Don Mac Lennan, vice president of marketing at Sierra Semiconductor, which made its Montage simulator available to customers years ago, says that, “Modeling is not a problem unless, of course, you're looking for the Holy Grail, for engineers to sit down and just bang out a design.”

Sierra works on a semicustom basis with its mass-storage customers, almost entirely on application-specific standard products (ASSP) for communications and graphics products.

Runtime vs. accuracy

In addition to its own Montage simulator, Sierra uses tools from Compass Design Automation (San Jose, CA) and the Mentor Graphics (Wilsonville, OR) Lsim simulator. Sierra relies exclusively on behavioral models, developed using Spice. Mac Lennan says that, “The perception that behavioral models are not as accurate as transistor models is a fallacy if they've been developed for a specific application. We've never had a device fail,” says Mac Lennan. “The key here is time to market and accuracy.”

Janet Babka, manager of IC design at Cardiac Pacemakers (St. Paul, MN), says that her group has to create all transistor-level Spice models because their designs operate in the weak-inversion area of the transistors. “It’s very difficult to model,” says Babka, “because the models have discontinuities when you're transitioning from one area to another.” Babka's group, which develops pacemakers and implantable defibrillators to treat slow and abnormally fast heartbeats, uses the HSpice circuit simulator from Meta-Software (Campbell, CA) and the Viewsim digital simulator from Viewlogic (Marlboro, MA). Since the Viewsim/HSpice mixed-mode environment supports multi-level modeling with speed/accuracy tradeoffs, Babka's group is looking into using VHDL behavioral modeling for digital portions of the design.

To verify mixed-signal designs, Doug Curtis, president and engineering director at OnChip Systems (San Jose, CA), uses both Spice models and, to a limited extent, behavioral models, but he relies on a breadboard for system-level simulation.

The practice of mixed-signal design today depends on a mixed technology base. Designs blend custom and semicustom methodologies, including ASIC, USIC, CSIC, ASSP or just plain IC. And since mixed-signal requirements are encountered in such diverse applications and products, there are many different definitions of mixed-signal.

The result is that mixed-signal has about as many faces to it as analog design has variable parameters. Just as numerous are opinions on how effectively today's design tools can substitute for analog expertise.

It's important to note that, with so many variables in mixed-signal, the opinions and strategies of any vendor or user will be largely influenced by the particular technologies being supported or implemented.

Cardiac Pacemakers depends on transistor-level models in Meta-Software's HSpice to provide the required accuracy in its analog designs for cardiac pacemakers and implantable defibrillators. Manager of IC design, Janet Babka, says her group is now using Viewlogics digital simulator for the digital portions of their designs and considering VHDL behavioral modeling.

Why the confusion about mixed-signal?

Gary Kennedy, president of custom IC manufacturer Orbit Semiconductor (Sunnyvale, CA) offers a custom chip design program he refers to as Tiny Chip to mixed-signal designers who might not have analog expertise. Kennedy says that with Tiny Chip, designers partition the analog portion of a design right up front in the design cycle and send specifications to Orbit. For $1,500, Orbit runs the critical analog section though the fab and returns a dozen silicon prototypes four or five weeks later. In the meantime, users can fully simulate the digital portion of the design. Though Tiny Chip delivers a working analog section, customers still face the obstacle of merging the analog with the digital and performing system-level simulation.
Finally, Intel has conquered space, bringing the performance of EISA to i486™ desktop designs.

The new, high-performance 82350DT chipset allows you to build EISA systems for the desktop using just half the chips of current EISA designs. The result: server power on the desktop, offering 32-bit I/O performance that can really boost applications like databases and graphics.

To ensure your design investment is protected, Intel's new chipset features another first—modularity. With it, you can design a flexible system platform that will accommodate future CPU/cache configurations. So updating motherboards is as simple as plugging in a daughter card.

Do some space exploration of your own. For an Intel EISA Brochure, call 1-800-548-4725 and ask for Lit. Pack #HA53. You'll find out how to build i486 desktop systems that are truly out of this world.
The accuracy of the model for the interface between analog and digital circuitry in a system-level mixed-signal simulator is a major customer concern. Viewlogic user, analog design engineer, Omer Kal, of LSI Logic (Milpitas, CA), is hesitant to trust the interface of the coupled HSpice and Viewsim. "I rely on Spice to verify those timing interfaces," Kal says. He wants to avoid any inaccuracies that might occur within the algorithm that converts the event-driven digital to time-based analog, so he works around the coupling. Kal's department handcrafts customer-specific, mixed-signal cells for LSI's strategic customers.

Sandra Hawley, manager of electronic technology at Rosemount (Eden Prairie, MN), a manufacturer of industrial controls, shares Kal's cautious attitude with regard to the interaction of analog and digital simulators. "It hurts the design if we can't look at the relationship between analog and digital when simulating." As a result, she admits that, "It's not a really warm feeling going out of here with some of our designs." Hawley's design group is using libraries from NCR Microelectronics (Fort Collins, CO) to develop a cell-based 7,000-to-8,000-gate ASIC for a measurement system. The group uses HSpice for analog and Verilog for digital simulation. The biggest issue Hawley faces as a manager, she says, is having to work with tools that are not mature. "I don't think tools for mixed-signal design are there yet," she says. "It's not an individual vendor's problem, but an industry problem."

Built-in analog expertise

Among industry vendors addressing the concerns of designers is Gould/AMI (Pocatello, ID) which expects to release an enhanced mixed-signal toolset next month. Bryce Baker, computer-aided engineering manager, says that, "We take the analog expertise we have and build it into software such as our Model Builder tool." Because cells designed for one application are often not appropriate for another, Gould is offering a generator approach that will let users capture a specification and then generate a physical layout that matches the spec. Users will have access to a menu with min/max...
Multi-level analog modeling speeds mixed-signal simulation

With the growing complexity of mixed analog-digital products, it's becoming increasingly difficult to simulate a complete system, board or subsystem on a chip. Simulation run times for mixed-signal applications are simply becoming too long to be practical, especially if simulation is approached in traditional ways using transistor-level Spice simulations or even available mixed-signal simulators.

What can the designer do to work around the problem of excessive simulation times? The most direct approach is to utilize high-level models for the circuitry that can speed up simulation times by one, two and, in some cases, three orders of magnitude. In the digital world, this is already an accepted practice, with wide use of logic and register-level representations of the circuitry, and, more recently, high-level behavioral (or functional) descriptions in the form of a language such as Verilog or VHDL. As the modeling for a digital circuit block is moved up a level from, for example, transistor-level (Spice) to logic, or resistor-transistor logic (RTL) to behavioral language, there's a significant reduction in simulation time, but there's a comparable reduction in the accuracy of the simulation. If care is taken to choose the appropriate level of modeling, it's possible to get very usable predictions of circuit and system behavior without exceeding practical limits on simulation time.

Today's mixed-signal simulators are generally constructed using two simulation engines, a logic simulation engine (for example, Verilog or Lsim) and an analog simulation engine (for example, Spice or Spectre). It's important to note that in a typical mixed-signal simulation, analog simulation times are usually more than 100 times longer than the logic simulation times, so they dominate the simulation time. This time difference holds true even in the common situation where 80 percent of the circuitry is logic and 20 percent is analog. The time difference will only worsen if there's a higher percentage of analog circuitry. As a result, in a mixed-signal simulation situation it's highly important to find ways to reduce the simulation time for the analog part of the circuitry.

Using high-level models

Just as for digital simulations, there's a direct approach to reducing analog simulation time: the analog portions of the mixed-signal circuit must be represented by high level models. There are three reasonably distinct levels of analog modeling available today: Spice transistor-level models; Spice-based analog macromodels (which are approximate circuit models for often-used blocks such as an op amp, comparator, voltage regulator or digital-to-analog converter); and models written in an analog behavioral language.

Compared to Spice transistor models, macromodels and analog behavioral language models offer about the same speed-up, typically a factor of about five to 10 times. But the speed-up can be as high as 50 to 100 times if the system behavior is reasonably insensitive to a circuit's behavior, allowing the designer to use a relatively simple (very high level) model for that circuit block.

As an example, suppose you are designing a data-acquisition system, and you have two op amps in it: one for dc level translation and the other to act as an output amplifier for a fast-settling 12-bit D-A converter. The model for the dc level-shift op amp can be quite simple; it doesn't need accurate representations of, for example, input or output voltage limiting, current limiting, excess phase shift, or slew rate effects. A simple high-level model (in macromodel or language form) can be used to represent this op amp and can be expected to run about 100 times faster than the transistor-level equivalent. On the other hand, the op amp used for fast-settling to 12-bits should be modeled with much higher accuracy, and should be expected to have only the 5- to 10-fold speed-up over a transistor-level model.

For board-level designers using off-the-shelf analog parts, the models should be supplied by the manufacturers of their semiconductors. Only recently have manufacturers started to supply such analog models and they still have a long way to go to cover even the high-volume sellers in their data books. In the meantime, the system designer can get the broadest model libraries from today's EDA vendors such as Cadence, Mentor and Valid. And as for the inevitable missing models needed to complete a typical system simulation, designers will have to generate their own models, until the manufacturers respond.

James E. Solomon, president of the Analog Division, Cadence Design Systems

parameters.

For mixed-signal simulation, both Gould/AMI and NCR have included Saber/Cadat in customer toolsets. The Saber circuit and system simulator from Analogy (Beaverton, OR) and the Cadat digital simulator from Racal-Redac (Mahwah, NJ) are synchronized via the Calaveras timing algorithm. Because one simulator reaches a specific point in time before the other, the simulators appear to leapfrog, thus the name Calaveras, after the country in California that hosts the famous frog jumping contest. Analogy uses what it refers to as hypermodels to represent the analog operation of digital input/output pins.

Saber/Cadat supports models at behavioral, functional, gate, and switch levels for analog and digital, and at the primitive level for analog.

All of Saber's models are written in Mast, Saber's analog behavioral language. According to Analogy, Mast is one of the languages being considered by the VHDL Users' Group committee, which is trying to tie an analog HDL to VHDL as an extension.

A link between the Saber simulator and the Hewlett-Packard (Cupertino, CA) IC-CAP software for accurately characterizing user-defined analog models was recently announced by Analogy and HP. Analogy refers to the customer benefits of the link as a "prudent trade-off between model complexity and simulation speed." It happens too often that designers develop overly complex models that simulate poorly because they can not identify the critical design...
I MIXED-SIGNAL TOOLS

PCB simulation can help ASIC designers

S
ystem designers realize that the creation of a prototype board for complex printed circuit board designs is already a long and difficult process. The problem is magnified because ASICs are now "systems" which include both digital macrofunctions and analog functions. Simulation of the printed circuit board design before making a prototype is a powerful alternative that allows designers to improve the design and identify errors by performing worst-case analysis early in the design cycle, while the ASIC is still in development. Simulation will improve the first-pass success of the ASIC within the printed circuit board.

To achieve simulation of the printed circuit board including ASICs, designers require models for both the standard components and ASIC standard cells. The leading mixed-signal ASIC vendors now provide models for both analog and digital standard cell libraries for mixed-signal simulation.

The types of analog models determine the runtime, accuracy, and convergence of the mixed-signal simulation. The majority of vendors provide primitive models or macromodels of their analog standard cells. These models, however, may not be accurate, may not converge well (depending on the simulator), and have long runtimes for complex designs.

A less common approach is for the ASIC vendor to provide analog behavioral models in a primarily digital simulator. Such models typically have very fast runtimes and can achieve moderate accuracy. But there are problems with circuits containing local feedback, which is handled better by transistor and macromodeling approaches.

- Give designers what they need

Providing customers with sets of models that offer tradeoffs of accuracy and runtime is a more effective approach. Fast simulation with approximate or unit-delay models is utilized to quickly verify design functionality. More detailed models are then used for accurate simulations. These can be accomplished utilizing an analog hardware description language that permits behavioral, macromodeling, and transistor techniques to be combined in a single model. Moreover, the analog HDL allows parameters to be passed into these models and device warning messages to be issued during simulation.

For example, NCR Microelectronics provides three models for the OA5001B operational amplifier in the VS1500 library. These analog models have been developed for Saber/Cadat and will also be available in Saber/Verilog using Analogy's Mast analog HDL. The most detailed OA5001B model represents characteristics that accurately match worst-case characterized silicon. Another model provides approximate worst-case results and the third model provides ideal characteristics. A customer may perform simulations with Saber using the most detailed models early in the design cycle to develop modules of the analog portion of the design. These modules are brought together into the mixed-signal design for very fast simulation of the complete design with the approximate and ideal simulation models. The particular model chosen is selected by simply changing a property on the schematic or with a command line option during netlisting for simulation.

One NCR customer recently performed mixed-signal simulation with Saber/Cadat of an ASIC that consisted of 6,000 digital gates and over 200 analog components. This very complex ASIC included a successive-approximation register A-D converter, D-A converters, and 30 operational amplifiers. The simulations were performed using approximate worst-case models prior to fabrication and uncovered five design errors. The result was a first-pass functional success of a very complex ASIC.

Both users and semiconductor suppliers are beginning to utilize the advanced capabilities in today's mixed-technology, mixed-signal simulators. As the technology evolves, design groups will undoubtedly change their methodology to incorporate ASIC, printed circuit board, and full-system simulation to achieve better time-to-market with higher-quality products.

Don Cassidy, BSEE, Mixed-signal products manager, NCR

aspects of the model. With the Saber/IC-CAP link, once a new model is developed, customers can use IC-CAP to make measurements on the actual device and then invoke the new Saber model for the parameter-extraction process. IC-CAP ensures that both the measurement equipment and the Saber simulator run the same test.

- Digitize the analog?

But even with a proven mixed-signal simulator like Saber/Cadat, users face the tough challenge of determining which portions of a design to model as analog and which as digital. Should high-speed digital circuitry that exhibits analog behavior be modeled as analog? And if some analog is changed to digital to cut runtimes, will it retain the accuracy of analog? More than a few designers doing mixed-signal don't have the experience required to successfully resolve these conflicts.

Robert Bowman, president of ANAmation (Fairport, NY), claims that designers using the ANAsim mixed-signal simulator don't have to designate which portions of a design should be modeled as analog and which as digital. The simulator is based on research done at the University of Rochester. "The simulation happens implicitly, with the determining factor being the quality of the signal itself," says Bowman. Relaxation methods and event-driven methods have been integrated into ANAsim. In addition to analog models, a superset of Spice includes a model description for every logic element type in ECL, CMOS, and TTL. The user simply feeds the netlist to ANAsim and presents the system with a stimulus. A handful of major electronics manufacturers will begin beta testing the ANAsim simulator this month.

Rick Ross, CAD manager at Mo-
The Analog & Mixed-Signal Design conference, jointly sponsored by COMPUTER DESIGN and Miller Freeman Publications, is the first conference of its kind to focus on the needs of designers involved with high-speed digital designs and mixed digital/analog designs at the board and ASIC levels. The Show Guide for the conference will be mailed with the October issue of COMPUTER DESIGN and will have major added-value editorial—a directory of standard analog IC vendors, analog and mixed-signal ASIC vendors and CAE/CAD tool vendors—to underscore the conference's emphasis on mixed-signal board and chip design. This directory provides an opportunity for companies not exhibiting at the conference to reach COMPUTER DESIGN'S 100,000-plus readers who have an interest in analog and mixed-signal design.

The Guide:
A complete show, events, and area directory including:
• Comprehensive Floor Plan
• Official Exhibitor Directory
• Technical Course Catalog
• Area Entertainment Guide

Value-added Editorial:
COMPUTER DESIGN's directory of standard analog IC vendors, analog and mixed-signal ASIC vendors and CAE/CAD tool vendors.

Distribution:
The Show Guide will be polybagged and mailed with the October issue of COMPUTER DESIGN to the full circulation of 100,000+
PLUS
Full distribution at the Analog & Mixed-Signal Design Conference
PLUS
Additional distribution to all pre-show registrants.

Issue Date:
October 1, 1991

Pricing:
$4,000 Per Page — including color.

Special Discounts:
$3,500 Per Page — including color — if you run in either the August or November issue of COMPUTER DESIGN
$3,000 Per Page — including color — if you run in both the August and November issues of COMPUTER DESIGN

Closing:
September 10, 1991
torola's ASIC Division (Chandler, AZ) is not so sure he'd trust a simulator that solved the whether-to-simulate-as-analog-or-digital problem transparently. "Unless the simulator's given enough circuit design rules," says Ross, "it could designate a path as critical that you don't want to be a critical path."

Ross' group designs library elements, from small AND/OR gates to megaells, that can be embedded onto Motorola's BiCMOS H4C customer-defined arrays. The group has successfully integrated HSpice into Valid Logic Systems (San Jose, CA) Analog Workbench toolset. "The Analog Workbench was put together in such a way that, when you plug in a third-party tool like HSpice, the system doesn't know the difference." For mixed-mode, Ross's group uses Mentor's Lsim simulator with the Adept algorithm for CMOS digital and plans to integrate HSpice into that simulation environment as well.

More tools coming
Valid is now working with several customers to develop its own mixed-signal, mixed-level simulation solution. In the meantime, the company has begun to ship its Profile behavioral analog solution and has introduced its top-down digital toolset, Logic Workbench TD. The simulation backplane that's part of the Logic Workbench is a key technology for the company's mixed A-D simulation strategy, according to Dick Albright, Valid's CAE product marketing director.

Although Texas Instruments (Dallas, TX) does turnkey design for its customers, it's moving toward putting tools into customers' hands with its Flagship toolset (currently in beta site evaluation). TI has plugged its own version of Spice into Mentor's Lsim, which supports Mentor's M behavioral language and VHDL. Lsim acts as a simulation manager, tying together a number of simulators, including Saber. Paul Koch, LinASIC program manager, reports that TI will use this mixed-signal solution for the next generation of DRAMs. Because DRAM cells comprise a transistor and capacitor pair exhibiting primarily analog characteristics, they must be accurately modeled to predict memory device behavior.

Harris Semiconductor (Melbourne, FL) has been using its Fastrack design system internally for mixed-signal design as well as offering it to users. Director of design systems, Nick English says that, "Fastrack can take IC designers and change them into system designers, but they've got to be experienced in analog design." For mixed-signal simulation, Harris uses a Cadence version of Spice (part of the Analog Artist toolset) interfaced to Verilog. English says that Harris will switch to Cadence's Spectre advanced circuit simulator at a later date. According to Cadence, Spectre can handle designs with more than 50,000 transistors up to 10 times faster with equal or better accuracy than existing simulators.

Harris has very recently enhanced its toolset for customers designing with its mixed-signal libraries. Mixed-Signal Fastrack (MSF) now includes two more Harris-developed simulation algorithms that link to Cadence's new version of Spice, called cdsSpice, via subroutine calls. Harris customers now have access to the Switched Capacitor Analysis tool (Scan) for high-level simulation of switched-capacitor circuits, and the Automated Synthesis of Integrated Macro/Behavioral Models (ASIM) tool for simulating analog-intensive mixed-signal designs. Within MSF's mixed-signal simulator, the user selects a simulation algorithm for each block based on speed/accuracy tradeoffs. According to Harris, any combination of simulation algorithms and
At Last, a \textit{Truly} Industrial 386 PC AT System for the OEM

Introducing the first 386 PC AT system originally designed to be embedded into your machinery or instrumentation.

With the GESPAC AT system, "ruggedized PC" no longer describes a desktop PC in a stronger black box. Instead it is an architecture made to last by design, with such features as small and robust board format, and ultra-reliable pin-in-socket connector.

What’s more, the GESPAC System is built for performance with Intel’s original 16 or 20 MHz 80386SX processor and 80387SX Arithmetic Unit. In fact, this system is the most compact implementation of the 386 in the market today.

The powerful G-64/96 bus interface lets you customize your AT system with any of the 200-plus system components available from GESPAC, to match virtually any system requirement.

Take advantage of GESPAC’s 12 years of experience in serving the OEM marketplace. Call today to receive your free data sheet and GESPAC’s catalog of board level microsystem products. Ask about GESPAC’s exclusive Guaranty of OEM Long Term Delivery.

Full 32-bit expansion bus for easy system expansion and customization with up to 20 slots.

Unprecedented selection of inexpensive I/O functions, from the simplest parallel and serial I/O, to high performance networking, MIL 1553, motion control, and computer vision.

Call Toll Free 1-800-4-GESPAC or call (602) 962-5559.

MS-DOS is a registered trademark of Microsoft. QNX is a registered trademark of Quantum.

CIRCLE NO. 62
Sizing up silicon vendors

Application-specific mixed-signal cell-based IC design projects are most successful when the process technology and cell libraries meet the application requirements. Planning a mixed-signal project requires careful appraisal of the match between the customer's requirements and a supplier's capabilities.

The supplier's production capabilities, including process and packaging technologies, are obviously the first areas to evaluate. In addition to the basic capabilities, a supplier offering application-specific cells which provide proven compliance with application standards can decrease a user's time-to-market.

The supplier's development support must also be weighed. Cell libraries, design tools, design methodology, and engineering support are all important ingredients. These reduce the design risk, engineering effort, and cycle time associated with mixed-signal IC development.

Process technology

The capabilities of a process technology can be summarized by four things: the type of circuit components it allows, the performance of these components, their size, and the means available for interconnecting them. No single process technology meets the requirements of all applications, so suppliers may offer more than one.

Texas Instruments supports three primary technologies for designing application-specific mixed-signal ICs. Each is a modular technology, meaning that each has a basic range of electrical components and optional extensions to meet application-specific requirements. Process modularity allows the product development team to make process complexity and cost trade-offs to meet design requirements. For example, our LinBiCMOS technology supports 15-V bipolar transistors with an fT of 750 MHz. There are process options, however, which can extend the transistor performance to an fT of 2,500 MHz or an operating voltage of 30 V. A similar option extends the range of the CMOS transistors from 15 to 30 V. Our 1-µm LinEPIC technology is based on the same technology we use for our digital standard cells and several graphics and digital signal processors. These process extensions support the high precision resistors and capacitors needed in data converters and switched capacitor filters.

Cells and libraries

A collection of reusable cells is a cell series. The electronic representation of those cells is the cell library. One cell series may have multiple libraries, one for each supported workstation. The availability of a cell series reduces the effort required to complete a design and reduces design risk.

The logic cells supported in a process are the most frequently reused. An increasing number of customers participate in the design of the digital portion of mixed-signal ICs. Logic cell libraries for mixed-signal applications require both logic models and circuit descriptions. Some process technologies feature multiple applications-oriented logic series. For example, LinBiCMOS supports three logic series. One is designed for performance, another for functional density and low speed, and the third for higher operating voltage. Compatibility with familiar cell libraries is also important.

A basic set of general-purpose analog cells is beneficial because they may be usable directly from the library to meet application requirements. They also give users a means to evaluate the ability of a process technology to meet system requirements. Finally, they provide a starting point for the rapid development of new cells.

Cells which are designed for use in a single application or closely related set of applications are application-specific cells. A cell's differentiated performance in the application lowers design risk. The faster cycle times associated with these cells cut development time. This is particularly true where industry standards are part of the application's requirement.

TI's mixed-signal libraries contain several application-specific cells. In LinBiCMOS, we have worked with Digital Equipment Corp to develop a set of standard Ethernet interface cells. In the LinEPIC technology, we have worked with leading workstation, PC and telecom companies to design application-specific data conversion cells for high-performance graphics, audio processing and digital communications. Typical applications combine these cells with 10,000 gates of logic from our 1-µm ASIC logic library.

We have developed a cell especially for a hand-held video camera. We have also developed application-specific cells for hard disk drive and automotive applications.

Process technology and cell libraries play important roles in selecting a mixed-signal vendor and meeting high performance mixed-signal IC design objectives. Careful evaluation and selection will result in an IC development project yielding a competitive advantage and faster time-to-market.

Delbert Whitaker, senior vice president, Semiconductor Group, Texas Instruments

any number of blocks are allowable within one simulation run. With Scan and ASIM, a set of time-stepping algorithms links the simulators so that there is "continuous" input and output between simulation engines, claims Harris.

Simulating mixed-signal designs that go into multichip modules (MCMs) at a system level is still in the experimental stage. Nevertheless, it's inevitable that a good number of complex mixed-signal designs will go into MCMs because production volumes won't always justify the costs of single-wafer designs. Ed Shi, Head of the Design Automation Group at Hughes Aircraft (Newport Beach, CA), believes that, "System-level simulation is a big question mark for MCMs. They're larger, more complex, and thus more difficult to simulate than a single chip."

From a simulation standpoint, it makes sense to treat a mixed-signal MCM like a big board, Shi says. His group recently used Mentor's Hybrid Station (Mentor has since introduced a more sophisticated toolset for MCMs called MCM Station) to design a seven-layer 2×4-in. mixed-signal module on polyimide dielectric for a space application. Because
Test issues in mixed-signal ASICs

In the early eighties, test was a major barrier to the commercial acceptance of digital ASIC technology. Today, mixed-signal ASIC technology faces the same hurdle. For mixed-signal to follow a growth path similar to its digital counterpart, it must overcome a much more complicated set of issues. Only after test issues are solved will cycle times, development costs and ultimately, product-to-market times decrease.

Design considerations related to mixed digital and analog on a single substrate include cross talk, subtle parasitics, and thermal interaction issues. Tied to these are the requirements for properly designed libraries and mixed-signal design capability. Digital simulators based upon well-defined threshold levels and on/off output states don't work with the continuously variable functions found in analog design. Parameterized, easy-to-use functions like op amps and current sources are important core functions which can be placed in design libraries to aid in the design process.

The final piece of the puzzle is a well-defined test methodology. Although digital ASIC test is certainly not trivial, true mixed-signal applications require attention to issues raised by the inclusion of analog circuitry.

Harris is addressing this problem by placing the test-creation activities concurrent with the design process. Test considerations need to be understood and dealt with early in the process to avoid long debug cycles in production.

The degree of mixed-signal test impact depends on the type of mixed-signal circuit under consideration. Mixed-signal circuits optimized for digital are a short step removed from classic digital ASICs, with analog functionality limited to a few rudimentary comparators or op amps serving as output interfaces. For these all-CMOS circuits, 95 percent of the test program is automated, while test creation for the analog circuitry (the remaining 5 percent) is primarily manual.

More analog, harder to test

Mixed ASICs optimized for either analog or power face more severe test creation and validation issues. Circuits optimized for analog require higher-performance analog components for low offsets (2mV) and high-gain bandwidths (from greater than 300 MHz to the GHz range). For these circuit, which may combine less than 5,000 gates of CMOS logic with analog via bipolar (NPN/PNP structures) at operating voltages greater than five volts, no automatic test stimuli or control program is available at present.

Mixed-signal circuits optimized for power (intelligent power), primarily BiCMOS analog ICs with either P or N DMOS devices for power, address applications requiring more than 50V or 2 amps or more than 2 watts. These circuits face the most-severe test challenges: bussing, high voltage, high current-induced crosstalk, and the subtleties of circuit and tester environment induced parasitics.

Software, hardware, and automatic test equipment form the test triumvirate. Digital test vectors are only a portion of the inputs required to generate test. Definition of analog stimuli, control, and response are the real issues. This becomes acute in mixed signal devices that are optimized for analog/power. Harris is working in this area by expanding its Fastrack design system in the test areas through joint development with Cadence and three test equipment manufacturers. This included simulating the actual tester environment of Hewlett-Packard test equipment. The test validation prior to silicon was facilitated using ATE models derived by Hewlett-Packard. The ability to simulate the device, the hardware interface, and the tester early in the design process forms the foundation of a capability that can reduce time-to-market significantly.

The ultimate goal is a framework which includes rapid automatic mixed signal test program development. None of this is possible without a strong working relationship between IC manufacturers, CAD developers, ATE suppliers, and universities (University of California at Berkeley, Carnegie Mellon and the University of Texas). Although the complete solution is still in development, it is critical that the industry continue to make investments in the test areas to improve customer service. The universities, in particular are working to define the concepts that hopefully will create an accepted approach for analog and mixed signal testability (such as, failure modes, fault models, analysis methodologies and tools). Those vendors willing to make the investments necessary to drive down NREs (nonrecurring engineering expenses) and product-to-market cycles are the ones that will survive through the nineties and beyond.

Dean F. Henderson, Director of Strategic Marketing, Intelligent Power Products, Harris Semiconductor

the module contained numerous high-precision analog components, Hughes designers had to add an extra power and ground plane to maintain signal integrity and minimize noise.

Layout requires experience

Though no mixed-signal simulator satisfies engineers at Exar (San Jose, CA), vice president of engineering and marketing, Ilhan Refioglu, says that simulation is not the limiting factor when it comes to customer-designed mixed-signal projects. "Laying the design out with all those nitty-gritty details is what will make or break you," he says. "There are no guidelines to substitute for years of experience." Exar, which has upgraded its mixed-signal technology from array-based to cell-based for flexibility and performance, does 90 percent of its designs on a custom basis with the other 10 percent done at customer sites or designed jointly with customers at Exar design centers. Exar combines analog and digital with memory storage in BiCMOS. Target applications include automotive, industrial, medical, and consumer.

As for putting tools into customers' hands, Refioglu explains that, "We're trying to break the ice, but design in the analog world is still an
art. Expecting customers to know how to partition a circuit, how to run ground lines, how to handle crosstalk and jitter is putting a burden on their shoulders. We have to walk before we run and build up the customers' expertise."

Laying out handcrafted analog cells and blocks is "never really a problem if you have a good netlist-driven layout editor and router," according to Tom Palomino, physical design manager at Level One (Folsom, CA). A Valid user, Palomino designs analog-intensive CMOS parts for T1 and local area network applications.

"I can crank out mixed-signal designs pretty quickly with Valid's Construct layout editor and Compose auto place and route software," Palomino says. Compose is able to route all power supplies, according to Palomino. "I can bring designs to 99 percent completion within layout. The tools are getting better and better, but you never really have all you need."

Cardiac Pacemakers' Babka reports the need for a great deal of interaction with layout tools. "Both," she says.

Problems involved in laying out mixed-signal designs naturally multiply for designs that go into MCMs. Giora Goldberg, vice president of Sciteq Electronics (San Diego, CA), reports that a Sciteq MCM with GaAs D-A converter, ALU, and memory on a ceramic substrate went through three layout iterations, incurring three NREs (nonrecurring engineering expense). Sciteq sent specifications for the MCM to Triquint which did a turnkey custom design. Sciteq-developed MCMs are targeted at signal generation applications such as medical imaging.

Test is the real nightmare

If modeling, simulation, and layout are bogey-men for mixed-signal designers, test is a real monster. Alan Morton, applications manager for Silicon Systems (Tustin, CA) says, "It would be an absolute disaster putting mixed-signal designs through test if tools were put into users' hands. There'd be a really serious efficiency problem with regard to the factory." Silicon Systems, which uses mixed-signal ASIC technology in its products, addresses the customer-involvement issue by selecting an extremely small number of customers to participate in what it refers to as the Key Account Design System (KADS) program. Only modem-maker Hayes and two other customers participate in the KADS program and design with Silicon Systems' tools at their own sites.

On designing for testability, Harris' Nick English says, "It's not even as if people understand the problem of mixed-signal test and don't know how to solve it. We don't even have the concepts yet."

According to English, Harris is working with Cadence, Teradyne, LTX, and Hewlett-Packard on analog and mixed-signal test creation. "Everyone understands design capture, now we're talking about test capture." English says that mixed-signal designers need very accurate simulation models of tester resources so that designs can be simulated in the same environment they'll see when they get to the test floor.

Model tester resources

James Spoto, vice president of R&D at Cadence's Analog Division, says that the intent behind this push to verify the test configuration within the design environment will mean more design-for-test work for the designer, "But the designer will be ensured that the device under test will work within the test head and not just in an ideal environment," says Spoto. "We're still in the concept phase with partners. There are no release dates yet," Spoto reports.

Bruce Webster, manager of A500 systems applications engineering at Teradyne (Boston, MA), says that it takes a collective triumvirate of silicon, EDA, and automatic test equipment vendors to attack a prob-
Smash the Cache Barrier

IDT's 64K BiCEMOS™ TTL I/O Static RAMs are the ideal solution for high-density cache systems, and are the perfect match for optimizing the high-performance needs of RISC and CISC processors. These 8ns and 10ns SRAMs provide the highest system speed without sacrificing system chip count or increasing power consumption.

Smash the barrier to efficient cache operation at the highest clock speeds. Call today and ask for Kit Code 8041 for free samples of our new 16K x 4 and 8K x 8 TTL SRAMs.

COUNT ON IDT

35MIPS RISC COMPONENTS AND MODULES
R3000A, the most MIPS at any MHz. The R3051 integrates CPU, cache, and buffers on one chip. RISC modules, eval. boards, and software complement our family of mips®-based RISC products. Your RISC solution is a phone call away!

HIGHEST-PERFORMANCE MEMORIES
Fast FIFOs, dense dual-ports, BiCEMOS ECL, and modules for every system. Over 120 of the fastest FIFOs and multi-port memories. 5ns ECL SRAMs, as well as standard and custom memory modules. Get the specs in the Specialized Memories Data Book.

4ns LOGIC: WORLD-CLASS SPEED
The industry leader. FCT-AT and FCT-CT CEMOS families achieve the fastest speeds with 40% less noise. Everything you need for high-performance designs can be found in the Logic Data Book.

12ns 256K SRAMS
Fastest cache solutions for RISC and CISC processors. More than 36 ultra-high-speed sub-micron SRAMs for 33MHz processing and beyond. Read all about them in the SRAM Data Book.

Call today for your new IDT data books with complete technical specifications and application information.

When cost-effective performance counts.

(800) 345-7015 • FAX: 408-492-8454

Integrated Device Technology, Inc.

CIRCLE NO. 63
MIXED-SIGNAL TOOLS

Problem like analog and digital testing. Webster reports that Teradyne is developing specific models with Cadence's "Cadence wants to give users the ability to draw a sketch of the test they want, and then add test instrumentation models from a separate palette of library elements." The maintenance and responsibility for libraries will lie with ATE vendors, according to Webster.

Teradyne is also working with Analog Devices on a mixed-signal test project that aims at eliminating many of the unknowns involved in the performance of a mixed-signal ASIC in the test environment. As the result of a joint engineering project, Analog and Teradyne have linked Analog's Spectrum mixed-signal simulator with Teradyne's Image test simulator, which is used on Teradyne's A500 family of analog VLSI test systems.

Mixing simulators a problem

Michael McGonigle, technical operations manager for the Systems IC Products Division of Analog Devices, says that, "Integrating different simulators is a much harder proposition in the mixed-signal world because of the analog part of the problem. But we're already seeing the payback in terms of shorter development cycles for mixed-signal ASICs."

The Image test simulator uses a special event-description language to convert a test program simulation into a series of discrete, tersely described and time-stamped events. Since the Image-generated events describe ideal state changes, the Spectrum simulator has to apply information from detailed models of the device under test and models of the target tester's instruments to bring the simulator's ideal test events into line with reality.

Webster says the ability of the tester simulator to hook into Analog's mixed-signal simulator allows designers to look at all implications at the pins of a device and within the device as well. The diagnosis of mixed-signal testability problems will probably be more automated in the future, according to Webster, but "stepping through a software simulation file to find problems during design is far easier and more economical than waiting until the fabricated device meets the tester to start debugging."

For more information about the technologies, products or companies mentioned in this article, call or circle the appropriate number on the Reader Inquiry Card.

ANAmation (716) 377-2560 Circle 223
Analogy Devices (617) 339-4700 Circle 224
Analog Devices (503) 626-9700 Circle 225
Cadence Design Automation (408) 943-1234 Circle 226
Cardiac Pacemakers (612) 638-4000 Circle 227
Compass Design Automation (408) 433-4980 Circle 228
Exar (408) 434-6400 Circle 229
Gould AMI (208) 233-4690 Circle 230
Harris Semiconductor (552) 724-7000 Circle 231
Hewlett-Packard (552) 753-0900 Circle 232
Hughes Aircraft (714) 759-2411 Circle 233
LSI Logic (408) 439-8000 Circle 234
Level One (916) 985-3670 Circle 235
Mentor Graphics (503) 685-7000 Circle 236
Meta-Software (408) 371-5100 Circle 237
Motorola (602) 821-4366 Circle 238

NCR Microelectronics (303) 482-5333 Circle 239
OnChip (408) 988-5400 Circle 240
Orbit Semiconductor (408) 744-1800 Circle 241
Racal-Redac (201) 848-6000 Circle 242
Rosemont (612) 941-5560 Circle 243
Sictex Electronics (619) 292-0500 Circle 244
SGS-Thomson (619) 466-6000 Circle 245
Sierra Semiconductor (408) 263-9300 Circle 246
Silicon Systems (714) 731-7110 Circle 247
Silvar Lisco (408) 99-6000 Circle 248
Texas Instruments (503) 336-5236 Circle 249
Teradyne (408) 482-2700 Circle 250
Trientic Semiconductor (503) 644-3535 Circle 251
Valid Logic Systems (408) 432-9400 Circle 252
Viewlogic (508) 480-0881 Circle 253

[Postscript]

If you're an analog IC designer doing mixed-signal, you have at least half a chance of putting your hands on a toolset that will help you achieve first-pass silicon success at your own site. But if you're a PCB-board or digital designer hoping to find tools that substitute for analog IC expertise, hold on to that hope. And at the same time, hold on to your favorite fab for custom turnkey service, at least for the analog portion of your design.

Why can only good analog IC designers use today's tools? Because mixed-signal methodologies are so varied and in such a state of flux that it takes an expert to even define the analog problem well enough to knowledgeably explore possible solutions.

And what of the future? I don't think it's too much to expect that analog expertise will eventually be resident in design tools. If the R&D efforts underway at universities like Carnegie Mellon, Berkeley and the University of Rochester are on target, I expect we'll have tools a few years from now that will solve many of today's library, modeling and simulation problems. If academia's efforts collapse, silicon vendors will have to invest heavily in R&D to build these tools for their customers, because no vendor will have the facilities to accommodate the growing numbers of mixed-signal designs on a custom basis.

Barbara Tuck
In the world of electronic systems, being good isn’t good enough. It takes a company-wide commitment and the very best professionals to put technology on target.

At E-Systems Garland Division, we understand that to succeed in the complex world of electronic systems, we’ve got to be better than good. We’ve got to go one step beyond—to redefine the meaning of excellence. That’s because there are no near-misses in our business. Only bulls-eyes. And bulls-eyes on bulls-eyes.

So it’s no accident that we’re one of America’s fastest growing suppliers of electronic systems. Outstanding systems, products and technologies come from superlative professionals.

E-Systems Garland Division is a Dallas-based leader in advanced signal and image processing technologies, sophisticated receiver systems, and systems integration for programs like JSIPS and the Distributed Wargaming System.

Be outstanding in your field.

If you’re a technical professional, we invite you to stand out with E-Systems Garland Division.

Management Information Systems
• Business Systems Programming
• IDMS/Cullinet
• Applications Development Management

Senior Software Engineers
• UNIX, “C”, Ada, Pascal, PL/1, PL/M
• X-Windows
• 68000 Firmware
• Sun, Daisy, Micro VAX Workstations
• Cray and IBM Systems Software
• DEC VAX/VMS Software
• Algorithm Development
• Real-time Applications
• Test Software

Electronics Technicians
• Research and Development
• Production Test
• High-Speed Digital Circuitry
• Analog (RF/IF) Circuitry
• 68000 Firmware in Assembly Language or “C”
• ASIC Design, CAD/CAE Systems
• Systems Integration
• Firmware Test
• Electro-Mechanical Checkout

Take aim at the future.

Our technical careers are on target, as well; we have one of the lowest turnover rates of any company in our industry. As a technical professional with E-Systems Garland Division, you’ll enjoy a superb compensation package—featuring a flexible program that lets you tailor your own benefits. And our ESOP program makes every E-Teamer part owner of the company.

Be better than good. Join E-Systems Garland Division today. Send your resume to: Ann Olson, Director of Staffing, E-Systems, Inc., Garland Division, P.O. Box 660023, Dept. 51, Dallas, Texas 75266-0023.

Principals only, please.
U.S. Citizenship Required.
An Equal Opportunity Employer, M/F/V/H

CIRCLE NO. 64
When your project calls for a single-board computer, here's the scoop on getting a board tailored to meet your application needs. Tadpole's expertise is in the design and development of leading-edge computing engines, fully supported by UNIX and Real Time software. Our high-performance standard range includes MC680x0, MC68100, i860 & i960 design choices on VME or Multibus II. As an extension of our standard range, Tadpole offers its expertise in semi-custom or full custom design services.

One taste of what Tadpole has to offer, and you'll never settle for plain vanilla again.

Here's just a taste of what we can offer.

TP34V...68030 on high-performance VME with 2 SCSI controllers, 6 RS232 ports for enhanced I/O
TP34V...68040 on VME with up to 32MB DRAM & SCSI. A complete SBC solution
TP41V...68040 on VME/VSB with memory protection hardware for task partitioning
TP43M...68040 on Multibus II. Designed for high-performance I/O operations
TP860M...i860 high-performance 64-bit RISC processor on Multibus II
TP960V...i960 on VME. Flexible DRAM, SRAM, EEPROM for embedded control
TP881V...88100 on VME/VSB with 1-8 CPU's & up to 128MB parity DRAM
TP884M...88100 on Multibus II with up to 32MB EDC-protected RAM

Software available includes TP-IX UNIX, VRTX velocity, pSOS+ & VxWorks.
Canon P-670 Bubble Jet Printer Engine

The latest addition to Canon’s extensive line of printer engines, the P-670 Bubble Jet Printer provides OEMs with a low-cost alternative to large-format laser printers and electrostatic plotters, and a quiet, high-quality alternative to impact printers.

The P-670 delivers laser-quality output at 360 dpi on plain paper up to 17” wide (C-size). Its wide carriage and multiple paper handling features make it suitable for applications such as business graphics, CAD/CAM, spreadsheets, desktop publishing and posters. Its patented, 64-nozzle print head prints up to 6.7 pages per minute with whisper-quiet (45 dBA) operation.

Canon engines are recognized for their proven reliability, advanced technology, and innovative features. These qualities, combined with dedicated technical and product support from Canon, have helped many OEMs to become successful industry leaders.

For more information, call 1-800-323-0766. Or write to Canon U.S.A., Inc., OEM Operations, Printer Division, One Canon Plaza, Lake Success, NY 11042-1113.

OEM Operations
Printer Division

*Product specifications subject to change without notice. Canon and the Canon logo are registered trademarks of Canon, Inc.

CIRCLE NO. 66
Low-power DRAMS stretch battery life in portable systems

There was once only one significant trend in DRAM technology—every few years their storage capacity expanded. Today, driven by technology evolutions, competitive pressures, and demands from laptop and notebook computer designers, DRAM vendors are now offering products to meet specialized needs.

As each new generation of systems routinely appears with larger complements of DRAM-based system memory than its predecessors, power consumption has moved nearer to the top of the designer's list of concerns.

In the normal mode of operation power required by system memory, almost entirely drawn during the DRAM refresh cycle, represents a significant amount of the total power used in a system. In the standby power mode offered by many portable computer systems, DRAM-based memory becomes the largest user of power. And in sleep mode the DRAMs are practically the only devices that are drawing power.

To meet these requirements, DRAM vendors are offering parts with extended refresh intervals, battery-backup modes, and even self-refresh capabilities. Several vendors have designed DRAMs specifically for low-power use and some of these are available now (or will be within the next year). To meet immediate needs, however, most DRAM vendors are selecting low-power devices from their standard DRAM lines.

Selecting for low power

Traditionally, low power has meant extended refresh time. By stretching out the refresh cycles, the power drain can be reduced. With this in mind, DRAM vendors are testing DRAMs from their standard product lines to find devices that have a high data-retention capacity and, therefore, don't need to be refreshed as often. "A capacitor in a DRAM cell is typically designed with a large engineering margin," says Gene Cloud, vice president of semiconductor marketing at Micron Technology (Boise, ID). "That capacitor can be tested for a much longer refresh specification than is guaranteed in a normal power data sheet."

Selecting a part for low power is a matter of spending the time to test for that extended refresh specification. The trade-off is the added costs due to the extra test time. "In crude terms, it takes eight times longer to test a part in such a way because you have to guarantee a refresh that's extended by a factor of eight," says Cloud.

There are a number of advantages in selecting standard parts for extended refresh. For instance, such selection means low-power parts are...
PRODUCT FOCUS/Low power DRAMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Organization (Bits)</th>
<th>Access time (ns)</th>
<th>Power dissipation (active/inactive in mW)</th>
<th>Refresh interval (ms)</th>
<th>Battery backup current (uA)</th>
<th>Modes</th>
<th>Availability</th>
<th>Price</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB814100-80L</td>
<td>4 M x 1</td>
<td>80</td>
<td>413/8.25</td>
<td>128</td>
<td>250</td>
<td>fast page</td>
<td>now</td>
<td>$19.50</td>
<td>TSOP II package</td>
</tr>
<tr>
<td>MB814101-80L</td>
<td>4 M x 1</td>
<td>80</td>
<td>413/8.25</td>
<td>128</td>
<td>250</td>
<td>nibble</td>
<td>now</td>
<td>$19.50</td>
<td>same as above</td>
</tr>
<tr>
<td>MB814400-80L</td>
<td>1 M x 1</td>
<td>80</td>
<td>413/8.25</td>
<td>128</td>
<td>250</td>
<td>fast page</td>
<td>now</td>
<td>$19.50</td>
<td>same as above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fujitsu Microelectronics, IC Div</th>
<th>Model</th>
<th>Organization (Bits)</th>
<th>Access time (ns)</th>
<th>Power dissipation (active/inactive in mW)</th>
<th>Refresh interval (ms)</th>
<th>Battery backup current (uA)</th>
<th>Modes</th>
<th>Availability</th>
<th>Price</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitachi America, Semiconductor & IC Div</td>
<td>Model</td>
<td>Organization (Bits)</td>
<td>Access time (ns)</td>
<td>Power dissipation (active/inactive in mW)</td>
<td>Refresh interval (ms)</td>
<td>Battery backup current (uA)</td>
<td>Modes</td>
<td>Availability</td>
<td>Price</td>
<td>Comments</td>
</tr>
<tr>
<td>Micron Technology</td>
<td>Model</td>
<td>Organization (Bits)</td>
<td>Access time (ns)</td>
<td>Power dissipation (active/inactive in mW)</td>
<td>Refresh interval (ms)</td>
<td>Battery backup current (uA)</td>
<td>Modes</td>
<td>Availability</td>
<td>Price</td>
<td>Comments</td>
</tr>
<tr>
<td>Mitsubishi Electronics America</td>
<td>Model</td>
<td>Organization (Bits)</td>
<td>Access time (ns)</td>
<td>Power dissipation (active/inactive in mW)</td>
<td>Refresh interval (ms)</td>
<td>Battery backup current (uA)</td>
<td>Modes</td>
<td>Availability</td>
<td>Price</td>
<td>Comments</td>
</tr>
<tr>
<td>Motorola Semiconductor, DRAM Operations</td>
<td>Model</td>
<td>Organization (Bits)</td>
<td>Access time (ns)</td>
<td>Power dissipation (active/inactive in mW)</td>
<td>Refresh interval (ms)</td>
<td>Battery backup current (uA)</td>
<td>Modes</td>
<td>Availability</td>
<td>Price</td>
<td>Comments</td>
</tr>
</tbody>
</table>
Searching...For A R3000 VME Hardware/Software Solution?

Omnibyte has the most complete line of MIPS R3000 VME hardware, software and systems for your project. In fact you may select from 72 distinct VME configurations.

You can get the fast and powerful Pulsar 3000™, shown above, featuring:
- 25MHz R3000A RISC CPU
- 25MHz R3010A Floating-Point Coprocessor (opt.)
- (4) R3020 Write Buffers
- 128KB (or 32KB) I-cache
- 128KB (or 32KB) D-cache
- 32, 16, 8 or 4MB DRAM
- High speed SCSI port (opt.)
- Ethernet interface (opt.)
- (4) serial ports
- (4) ROM sockets (up to 4MB)
- Real time calendar clock w/battery
- 2KB NV RAM
- VIC068 VME Interface (slot 1) Controller

And the Pulsar is available with the following software:

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP/e³</td>
<td>PROM monitor debugger & I/O library</td>
</tr>
<tr>
<td>SPP¹</td>
<td>SPP/e with architecture & cache simulator</td>
</tr>
<tr>
<td>IDT/c²</td>
<td>IBM/SUN X-compiler</td>
</tr>
<tr>
<td>C EXECUTIVE³</td>
<td>Real time monitor</td>
</tr>
<tr>
<td>ADA⁴</td>
<td>ADA compiler</td>
</tr>
<tr>
<td>VxWorks⁵</td>
<td>Real time o.s.</td>
</tr>
<tr>
<td>RISC/os¹</td>
<td>UNIX⁶</td>
</tr>
</tbody>
</table>

In addition to our boards and software, we can also provide you with a complete line of MIPS development systems.

For further information, give Larry Snow a call today at 800-638-5022, (708-231-6880 in IL).

OMNIBYTE CORPORATION
245 W. Roosevelt Rd.
West Chicago IL 60185

Trademarks: 1-MIPS Computer Systems Inc. (available in binary or source), 2-Integrated Device Technology, Inc., 3-JMI Software Consultants Inc., 4-DOD, 5-Wind River Systems (available for MIPS and DEC workstations), 6-AT&T
Omnibyte supports your total effort with a complete line of MIPS R3000 VME hardware, software and systems. With Omnibyte, you will get the most appropriate VME board for your application. That's because VME is our business and we have 72 distinct configurations to meet your needs. You can obtain the software and software support directly from us. And you can get full R3000 systems to help you develop your application.

Just look at the features on our high speed OB/ACP-VR3000™ shown above:

- 25MHz R3000A RISC CPU
- 25MHz 3010A Floating-Point Coprocessor (opt.)
- (4) R3020 Write Buffers
- 128KB (or 32KB) of I-cache
- 128KB (or 32KB) of D-cache
- 32, 16, 8 or 4MB of DRAM
- (1) RS232C serial port
- (4) ROM sockets (256KB max.)

And you can get the following software with the VR3000:

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP/e¹</td>
<td>PROM monitor & debugger</td>
</tr>
<tr>
<td>SPP¹</td>
<td>SPP/e plus architecture & cache simulator</td>
</tr>
<tr>
<td>IDT/c²</td>
<td>IBM/SUN X-compiler</td>
</tr>
<tr>
<td>C EXECUTIVE³</td>
<td>Real time monitor</td>
</tr>
<tr>
<td>ADA⁴</td>
<td>ADA compiler</td>
</tr>
<tr>
<td>VxWorks⁵</td>
<td>Real Time o.s.</td>
</tr>
<tr>
<td>RISC/os⁶</td>
<td>UNIX</td>
</tr>
</tbody>
</table>

You also have this same selection of software for our PULSAR 3000™ which is shown on the opposite side of this page.

For more information on our line of R3000 VME boards, software or systems, call Larry Snow today at 800-638-5022, (708-231-6880 in IL)

OMNIBYTE CORPORATION
245 W. Roosevelt Rd.
West Chicago IL 60185

Trademarks: 1-MIPS Computer Systems Inc. (available in binary or source), 2-Integrated Device Technology, Inc., 3-JMI Software Consultants Inc., 4-DOD, 5-Wind River Systems (available for MIPS and DEC workstations), 6-AT&T
<table>
<thead>
<tr>
<th>Model</th>
<th>Organization</th>
<th>Access time (ns)</th>
<th>Power dissipation (active) (mW)</th>
<th>Refresh interval (ms)</th>
<th>Battery back-up current (µA)</th>
<th>Modes</th>
<th>Availability</th>
<th>Price</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC Electronics</td>
<td>401 Ellis St, PO Box 7241, Mountain View, CA 94039 (415) 960-6000</td>
<td>4 M x 4</td>
<td>4 M x 1</td>
<td>60, 70, 80</td>
<td>16</td>
<td>300</td>
<td>fast page</td>
<td>now</td>
<td>$17.75-$19.50</td>
</tr>
<tr>
<td>Oki Semiconductor</td>
<td>785 N Mary Ave, Sunnyvale, CA 94086-2909 (408) 720-1900</td>
<td>4 M x 1 or 1 M x 4</td>
<td>4 M x 1</td>
<td>70, 80</td>
<td>128</td>
<td>300</td>
<td>fast page</td>
<td>now</td>
<td>static column</td>
</tr>
<tr>
<td>Panasonic Industrial</td>
<td>Two Panasonic Way, Secaucus, NJ 07094 (201) 392-4819</td>
<td>4 M x 1</td>
<td>4 M x 1</td>
<td>70, 80</td>
<td>550/5.5</td>
<td>495/1.1</td>
<td>fast page</td>
<td>now</td>
<td>SOJ, ZIP and TSOP I & II packages available</td>
</tr>
<tr>
<td>Samsung Semiconductor</td>
<td>3725 N First St, San Jose, CA 95134 (408) 954-7229</td>
<td>1 M x 4 or 4 M x 1</td>
<td>1 M x 4</td>
<td>70, 80</td>
<td>550/5.5</td>
<td>495/1.1</td>
<td>fast page</td>
<td>now</td>
<td>static column</td>
</tr>
<tr>
<td>Sharp</td>
<td>5700 NW Pacific Rim Blvd, Suite 20, Camas, WA 98607 (206) 834-2500</td>
<td>1 M x 4</td>
<td>1 M x 4</td>
<td>70</td>
<td>495/5.5</td>
<td>523/0.6</td>
<td>fast page</td>
<td>now</td>
<td>DIP, SOJ and ZIP packages available</td>
</tr>
<tr>
<td>Texas Instruments, Semiconductor Group</td>
<td>PO Box 809066, Dallas, TX 75380 (800) 336-5236</td>
<td>1 M x 4</td>
<td>1 M x 4</td>
<td>70</td>
<td>578/0.6</td>
<td>256</td>
<td>fast page</td>
<td>now</td>
<td>self refreshing</td>
</tr>
<tr>
<td>Toshiba America Electronic Components</td>
<td>9775 Toledo Way, Irvine, CA 92718 (714) 455-2000</td>
<td>1 M x 4 or 1 M x 4</td>
<td>1 M x 4</td>
<td>70</td>
<td>660/1.1</td>
<td>128</td>
<td>fast page</td>
<td>now</td>
<td>self refresh version available</td>
</tr>
<tr>
<td>Vitelic Semiconductor</td>
<td>3910 N First St, San Jose, CA 95134 (408) 433-6000</td>
<td>1 M x 4</td>
<td>1 M x 4</td>
<td>70, 80</td>
<td>639/2.2</td>
<td>16 or 64</td>
<td>fast page</td>
<td>now</td>
<td>self refresh version available</td>
</tr>
</tbody>
</table>
automatically available in common DRAM configurations. But as system designers grow ever more miserly about power consumption, DRAM architects are going back to the drawing boards to create DRAMs specifically designed for low power.

At present, Micron Technology's low-power 4-Mbit DRAM is selected from their standard production line. Within six months, the company will offer a DRAM that is specifically designed for low power. Based on a new mask set, this new design focuses on reducing power in the back-bias generator—a part of the DRAM which typically draws a lot of current. This DRAM will have a battery-back-up current of 300 µA. Without specifying the yields of their DRAMs selected for low power, Micron expects to get significantly higher yields from a DRAM designed for low power.

Micron isn't the only vendor designing parts specifically for low power. With the laptop and notebook computer markets booming, the timing for low power is right for DRAM customers. But this isn't the only reason why DRAM vendors are doubling their efforts to reduce power.

"We've now decided that we're at an adequate speed, so we're now concentrating on reducing power."

—Ken Pope, Hitachi

"When we reduce the cell size of a DRAM, we can either reduce power or increase speed," says Ken Pope, group product marketing manager for memories and mass storage at Hitachi (Brisbane, CA). With average DRAM access times of around 60 ns, boosting speed is becoming less of a concern. "We've now decided that we're at an adequate speed, so we're now concentrating on reducing power." As a result of these efforts, Hitachi's line of low-power DRAMs has the lowest active power in the industry, with power dissipation in the 100-mW range. To further reduce power, the company has developed some very high-quality oxides enabling their DRAMs to refresh in 512-ms cycles.

Self-refresh

At the present time, most DRAMs are refreshed by some sort of external control. In a standard DRAM, a controller has to charge each cell every 15 ms. The most-recent trend among DRAM manufacturers is to design parts that can decide themselves when they need to be refreshed.
cluding Hitachi, Micron Technology, and Texas Instruments (Dallas, TX) have self-refreshing DRAM designs in the works, Toshiba (Irvine, CA) has the first self-refreshing part already in production.

When the self-refreshing DRAM is in standby mode, and it identifies that certain conditions are met, the DRAM puts itself into self-refresh mode. From then on, the refresh is controlled internally. During the battery back-up mode, these parts automatically put themselves into the self-refresh mode. In that mode, the 4-Mbit part draws less than 200 mA.

"When you put it in internal-refresh mode, the device will take care of its own refresh," says Avo Kanadjian, marketing manager at Toshiba. "Through its sensing scheme it will effectively do a refresh every 100 to 200 ms. That will obviously result in a drastic drop in power." Available now in volume, the TC14800A, Toshiba's 512×8-kbit, self-refreshing DRAM is already being used in at least one notebook design—Toshiba America Information System's T2000SX notebook. A 512k×9 part will be available soon.

Lowering the voltage

The attack on power consumption will make its greatest strides when more-extreme changes occur. "The next step will be changing the power supply to 3.3 V," says Toshiba's Kanadjian. "The JEDEC standard calls for a change of the DRAM's supply voltage for devices of 64-Mbits or more capacity." While this reduction in voltage translates into drastic reductions in power consumption, the change probably has little to do with market demands for lower-power DRAMs. The primary concern was getting to the smaller geometries needed for the higher-density DRAMs to work at all. "At the 4-Mbit level we have an internal voltage converter which takes the external voltage of 5 V and reduces it internally. We did this because the 0.7-µm process could not handle 5 V internally."

Hitachi, now in the second generation with its 4-Mbit DRAMs, will soon bring out a third generation of 4-Mbit parts at 3.3 V. "In our third generation of 4-Mbit DRAMs we will be designing in a lot of things we learned from our 16-Mbit designs," says Hitachi's Pope. "Because we're making them at 3.3 V, there won't be any backwards-compatibility problems." According to Pope, Hitachi has a large number of customers that can use 3.3-V DRAMs right now.

Not all system designers will want 3.3-V DRAMs right away, however. "It's a little bit like 'the chicken and the egg' at this time," says Kanadjian. "It's more than a just a memory issue. The peripheral devices and glue logic that interface with memory also have to be converted to 3.3 V."

EPSON

DRAM Expansion Memory Cards

EPSON DRAM Expansion Memory Cards plug into the computer through a slot in the side of the case.

They afford users with instant add-on memory... no need ever to touch the delicate motherboard.

State of the art replacements for conventional expansion SIM modules

- Capacities of 1 Megabyte, 4 Megabytes or 8 Megabytes, 60-pin cards for 16-bit microprocessors.

- Higher capacities for 16-bit cards plus a new line of 88-pin cards for use with 32-bit microprocessors are coming.

- Cards are 86 mm X 54 mm X 3 mm, use JEDEC standard 60-pin, pin-in-hole connectors.

- A new EPSON TAB technology process using double sided PCB's allows cards to be small and compact with high memory capacities.

EPSON

EPSON AMERICA, INC.

Call your sales rep today.

CIRCLE NO. 68
NEW PRODUCT HIGHLIGHTS

CAE/CAD TOOLS

PCB toolset couples schematic capture and layout

As the clock speed of digital circuits increases, the critical impact of circuit board layout on signal integrity is forcing printed circuit board designers to tighten the integration between the schematic entry and the layout phase of a design. Printed circuit board tool vendors are answering these demands with tools that bring the layout process into the domain of the design engineer. The Visula High Performance Engineering (HPE) System from Racal-Redac is the latest suite of tools to provide this integration by linking the elements of physical layout (specific signal delay, impedance and manufacturing constraints) to high-level design rules.

The Visula HPE toolset includes schematic capture, printed circuit board layout, the HyperScan layout analyzer and an on-line transmission line simulator, Scope Probe, jointly developed by Quantic Laboratories and Racal-Redac. The suite lets the user specify, simulate and control—with graphical feedback—the effects of layout parasitics on the performance of digital circuits. These effects will typically show up as layout-sensitive propagation delays, as crosstalk from adjacent lines or as signal attenuation. HPE also lets engineers visualize these parasitic effects on a specific net by invoking the Scope Probe simulator at any point during physical layout.

In addition, the limits for parasitic effects (for example, the maximum acceptable routing delay) can be specified as a constraint by the engineer during schematic capture. HPE users also have the ability to define pin and branch orders, the maximum acceptable crosstalk, the acceptable impedance range on pins, or the maximum acceptable attenuation as constraints on the system.

The HyperScan module checks all nets identified as critical, calculates the values of the parasitic electrical properties of those nets and compares them with specified values. This ensures that physical properties, such as stub length and pin order, can be correlated with electrical constraints such as signal crosstalk and attenuation. The tool produces a report that will identify any detected violations of the constraints.

Values calculated by HyperScan, Scope Probe or with Quantic Labs’ Greenfield software can be included in a physical domain simulation. There the flat physical layout (as opposed to the hierarchical schematic) is passed to Racal-Redac’s logic simulator, Cadat 2000, along with the calculated propagation delays. The result is a board-level worst-case timing simulation.

Visula HPE is available for Apollo, Sun-4 and DECstation platforms. The full suite costs $75,000.

—Mike Donlin

Visula HPE at a glance

- Integrated PCB design toolset
- Rules-driven layout and routing
- Transmission line simulator displays parasitic effects
- Layout analyzer checks all critical nets
- For Apollo, Sun-4 and DEC station platforms $75,000

Racal-Redac
1000 Wyckoff Ave
Mahwah, NJ 07430
(201) 848-8000
Circle 354

Trademark Information

UNIX is a registered trademark of AT&T Bell Laboratories.
PAL is a registered trademark of Advanced Micro Devices, Inc.
SMART-POWER is a registered trademark of Nartron Corp.
CDA and BurstRAM are trademarks of Motorola, Inc.
SCOPE and ASSET are trademarks of Texas Instruments, Inc.
IRIS POWERVISION is a trademark of Silicon Graphics, Inc.
RealTimeX is a trademark of Concurrent Computer Corp.
Zone Bit Recording is a registered trademark of Seagate Technology, Inc.
Bothered by Bus Bugs?

Now you can see the whole picture.

<table>
<thead>
<tr>
<th>VME</th>
<th>VSB</th>
<th>VBAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Captures up to 64K VMEbus events</td>
<td>• VSB State Analysis</td>
<td>• VMEbus Anomaly Trigger</td>
</tr>
<tr>
<td>• Stores 96 VME signals with a time tag during each event</td>
<td>• Switches analysis between VME and VSB buses</td>
<td>• Screens 98 lines for 28 classes of violation</td>
</tr>
<tr>
<td>• 50MHz VME Timing Analysis</td>
<td>• Synchronous sampling of VME/VSB events up to 25MHz</td>
<td>• Fully automatic with 104 preset triggers</td>
</tr>
<tr>
<td>• Bus Master Capability</td>
<td>• Slot number identification command</td>
<td>• 37 individual LED's and trigger outputs</td>
</tr>
<tr>
<td>• Printer/Passthru port for connection to Printer and Host Computer</td>
<td></td>
<td>• Detects extra transitions on strobe line</td>
</tr>
</tbody>
</table>

A NISSHO ANALYZER is indispensable for ENGINEERS and DESIGNERS who are involved in:
- Hardware system design, analysis and debugging
- Hardware production testing and quality assurance
- Industrial instrumentation and control system integration
- Software development
- Field service

For your copy of "ANALYZER APPLICATIONS" and a FREE 30 DAY EVALUATION, call: 800-233-1837; in California 714-261-8811
New algorithms, compact data structure speeds logic simulator

Logic simulators have to sacrifice speed, accuracy or capacity as a simulated circuit’s size increases. Users are reluctant to accept these tradeoffs, especially in accuracy. And though most designers acknowledge that speed must be sacrificed as circuit complexity increases, few are willing to accept days of simulation time for complex ASICs and printed circuit boards. Evaluations Per Second (EPS) has developed what it claims is the answer to this dilemma—the Simetri logic simulator.

According to EPS, the Simetri simulator can achieve speeds of up to 270,000 events/s on a 33-MHz 486-class machine. When the Sparcstation and IBM RS 6000 versions of the simulator are released later this year, EPS promises even higher performance.

At the heart of the simulator are proprietary algorithms and an extremely compact data structure. “Most primitives can be represented in 64 bytes,” says Michael Massa, president of EPS. “This has several advantages. A large circuit of up to 250,000 gates can fit in only 16 Mbytes of main memory. This also means that large portions of the simulation can remain in cache, which reduces cache misses.”

Separating events and evaluations

According to Massa, Simetri’s two-list, event-driven, timing-wheel algorithm provides superior simulation accuracy with full timing information. “The two-list approach—where events and evaluations are stored in separate lists—eliminates event-ordering dependencies that plague simulators relying on one-list algorithms,” Massa points out. “This accuracy is especially important for electronic designs containing flip-flops, feedback paths and potential race conditions.”

Though Simetri can run in unit-delay mode, it also handles typical timing parameters such as setup- and hold times, rise and fall times and minimum pulse width. Users can set minimum and maximum values, but the simulator doesn’t support dynamic worst-case timing analysis.

For the present, the Simetri simulator has no direct interface to any EDA toolsets but it does accept EDIF 200 netlist data. Though Simetri is presently strictly a gate-level simulator, EPS doesn’t rule out support for VHDL and Verilog at a later date.

Simetri boasts an intuitive user interface with pull-down menus, multiple windows, on-line context-sensitive help and mouse support. The simulator also provides multiple overlapping output windows that display state information in tabular, event-trigger, snap-shot, and waveform representations. These multiple user-named output windows can simultaneously monitor the output response of different sections of the circuit under test. An event-driven display-processing feature allows the debugging of large electronic designs without the traditional performance penalties. Simetri will be available for 386/486 PCs with extended memory for $10,000 in the third quarter of this year. Support for Sparcstations and the IBM RS 6000 will come in the fourth quarter at a cost of $25,000.

Mike Donlin

Simetri at a glance

- Up to 270,000 events/s on a 33-MHz 486 PC
- Up to 250,000 gates can fit in 16 Mbytes of main memory
- Two-list algorithm eliminates event-ordering dependencies
- Multiple user-named windows display
- Available Q3 for 386/486 PCs; Q4 for Sparcstations and IBM RS 6000s
- $10,000 for PC version; $25,000 for workstation version

Evaluations Per Second
100 Fifth Ave
Waltham, MA 02154
(617) 487-9959
Circle 351
BUSCON '91 East, the nation's leading trade show and technical conference for board and systems level technology is coming to Washington, DC for the first time.

BUSCON '91 East is the one place to see, test and compare the newest products and technology from hundreds of leading vendors.

Get an inside track on technical developments you can use now at the industry's premier seminar program. Learn what is new from the people actually developing the technology.

It's all at BUSCON '91 East, September 11-13 at the Omni Shoreham Hotel, Washington, DC.

For more information about attending BUSCON '91 East, just complete and return the coupon below or call (800)243-3238 (in Connecticut call (203)852-0500).
Introducing....

SysComp—
The Industry's First Exclusive OEM Systems/Sub-Systems Components Conference & Exposition

A New Marketing Opportunity—
For Vendors of Today's Systems Building Blocks

THE SHOW
SysComp is the only conference/exposition specifically designed for those with the engineering/technical responsibility for designing OEM systems and sub-systems. These people specify and integrate systems building blocks for commercial, industrial, and military/aerospace applications.

THE TECHNICAL FORUM
Technical solutions and directions involving microprocessor system architectures, OEM systems, OEM software, power sources, interface technology, mass storage, systems packaging and manufacturability—all organized by the senior editorial staff of Computer Design magazine. A career-enhancing personal-development opportunity.

Plus a special forum on the DoD's new streamlined initiatives sponsored and conducted by Defense Electronics magazine.

THE AUDIENCE
6,000+ systems designers and engineering managers, plus their concurrent engineering team partners in both New England and Silicon Valley. These two regions graphically represent and reflect the evolution from a parts focus to today's systems viewpoint.

THE EXHIBITORS
World-wide vendors of critical systems building blocks including software, boards, complex microcircuits, power sources, storage systems, displays, packaging and other ancillary products and services. Product areas include: storage devices, display devices, board-level products, real time/embedded software, I/O devices, OEM computers, backplanes and enclosures, power sources, high performance ICs.

THE MANAGEMENT
Sponsored by Computer Design/Pennwell Publishing and managed by Multidynamics, Inc., providing a unique combination of OEM technical ability and conferencing expertise...in cooperation with Defense Electronics.

SYSCOMP/91 EAST —
Royal Plaza Trade Center
Marlborough, Massachusetts
OCTOBER 1-3, 1991

SYSCOMP/92 WEST—
San Jose Convention Center
San Jose, California
FEBRUARY 18-20, 1992

FOR MORE INFORMATION, CALL, FAX, OR WRITE
Paul LaGris, 3432 Timberlake, Costa Mesa, CA 92626
Phone: (714) 966-1526 Fax: (714) 241-1108

CIRCLE NO. 101
SysComp is the first truly OEM-oriented systems/subsystems conference and the Show Guide editorial reflects this orientation. The editorial feature for the Guide looks into the future of OEM integration with special emphasis paid to what's happening in some critical, but often overlooked areas—disk drives, power sources, displays and design for manufacturability.

Since microprocessor and bus architectures play a major role in determining the performance and functionality of OEM systems, these will also get attention, with an emphasis on how they impact the selection of other major system components. In addition to this feature, a New Products section will highlight products being introduced at, or prior to, SysComp.

<table>
<thead>
<tr>
<th>The Guide:</th>
<th>A complete show, events, and area directory including:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive Floor Plan</td>
<td>Complete Seminar Program</td>
</tr>
<tr>
<td>Official Exhibitor Directory</td>
<td>Area Entertainment Guide</td>
</tr>
</tbody>
</table>

Value-added Editorial: An overview of technology directions that affect the OEM integration of busboards, disk drives, power sources, displays and software.

Distribution: The guide will be polybagged along with the Eastern portion of COMPUTER DESIGN's September issue for a total distribution of 50,000+. In addition, a special mailing will go to all of the pre-registrants...and it will be distributed to each attendee at the show.

Issue Date: September 1, 1991

Pricing: $2,200 Per Page — including color.

Savings Opportunity: Advertise in the September Show issue of COMPUTER DESIGN and save $500 per Show Guide page.

Closing: August 10, 1991

SysComp/91-EAST
Royal Plaza Trade Center
Marlborough Massachusetts
October 1—3, 1991
FPGA synthesis tool has architecture-specific optimizers

The AutoLogic field-programmable gate array (FPGA) synthesis tool from Mentor Graphics offers architecture-specific optimization for Xilinx, Actel, and Altera FPGA technologies. Based on Mentor's AutoLogic synthesis product for ASIC and IC design, AutoLogic FPGA optimizes for area and speed, providing a mix of Boolean minimization and factorization, as well as state assignment and technology mapping algorithms for the logic optimization of supported FPGA devices.

Mentor claims that ASIC optimizers fall short when used to synthesize FPGAs since cost functions (measurements of circuit area and speed used when optimizing) of CMOS gate arrays do not correlate to FPGA logic elements. With regard to applying ASIC- or programmable logic device-specific optimization technology to FPGAs, director of marketing for Mentor's Design Synthesis Division, Rob Mendes da Costa, says, "These approaches lack architecture-specific optimization capabilities and often show worse, rather than better, results. Benchmarks have shown that AutoLogic FPGA achieves up to 50 percent better results than ASIC-specific optimizers."

Multi-level optimization algorithms in AutoLogic FPGA minimize design logic and transform the structure of netlists. And the architectural-specific algorithms let users map directly into FPGA logic elements and thus, according to Mentor, ensure accurate cost correlation. Custom mapping rules address device-level architectural features. For instance, for Xilinx-specific technology mapping, lookup-table (LUT) synthesis elements emulate the Xilinx CLB (configurable logic block). AutoLogic FPGA contains special lookup-table primitives which cover all three- and four-input design functions and common five-input combinatorial logic functions. These special primitives are given a normalized cost of one, equivalent to the cost of any Xilinx library primitive (e.g. a two-input NAND). During technology mapping, logic functions that can be implemented in these elements are preserved and mapped directly into a LUT.

The AutoLogic family of Mentor's synthesis tools is integrated into the company's ASIC and IC design environments. AutoLogic Blocks, an optional product, allows users to graphically express design functionality using high-level macros, and AutoLogic VHDL will provide VHDL synthesis for ASICs, FPGAs, ICs, and PLDs.

AutoLogic FPGA supports the Xilinx XC2000, XC3000, and XC4000 families, the Actel Act 1 and Act 2 families, and the Altera MAX 5000 family. Available now in Mentor's Software Release 7.0 design environment, AutoLogic FPGA is priced at $5,000 per vendor supported. AutoLogic FPGA can also be purchased as an option to a standalone version of AutoLogic (for use in a mixed workstation/personal computer environment). Users can interface to EDA environments through EDIF, Xilinx XNF, and Actel ADL netlist formats.

— Barbara Tuck

AutoLogic FPGA at a glance

- Support for Xilinx, Actel, and Altera
- Cost function correlation in FPGAs
- Custom technology mapping algorithms
- Interface to other tools via EDIF, XNF, and ADL writers

Mentor Graphics
8005 SW Boeckman Rd
Wilsonville, OR 97070-7777
(503) 685-7000

Generate cost-effective sales leads with Computer Design's Showcase Advertising

For as little as $840 for each 1/9 page ad, your advertising message reaches over 100,000 computer systems designers, and developers—each a key decision maker responsible for purchasing your products.

Just send a glossy photo and approximately 60 words of copy. We'll do the rest...with no production charges. If no photo, 100 words of copy accepted. Two and four color available at nominal charge.

Closing date: First day of previous month.

For more information or to reserve space: Call Sue Shorrock at 800-225-0556 or In Massachusetts at 508-392-2185

COMPUTER DESIGN
One Technology Park Drive
PO Box 990
Westford, MA 01886

COMPUTER DESIGN CIRCLE NO. 82
The first VMEbus board to offer Analog Devices' latest floating-point processor, the ADSP 21020, comes from Ixthos (Laurel, MD). The IXD7232 board boasts a pair of the new processors, each with a sustainable 50-MFlops performance. And the two processors can work together to make a full 100-MFlops board. Ixthos also includes three separate mezzanine buses to provide I/O and memory flexibility.

Ixthos' IXD7232 is designed to handle the I/O and processing rates required in many real-time applications. Each of the two processors includes its own digital signal processing chip, I/O mezzanine channel, 512 kbytes of data RAM and 192 kbytes of program RAM. All program and data RAM banks operate with zero wait states to take advantage of the ADSP 21020's modified Harvard architecture. Since there's no swapping or slaving between the two processor sections, each is free to run at optimum rates.

According to Ixthos, one of the keys to the board's performance in a system is found in the dual-mezzanine connectors. The two I/O connectors—essentially a pinout of the ADSP 2120—allow the board to be configured for processing almost any type of analog or digital signal while the memory mezzanine card provides reconfigurable global memory to let the board be optimized for a wide variety of algorithms and applications. In addition, multiple boards can be connected and still provide deterministic performance thanks to fast parallel FIFOs which allow optimum transfer rates between DSPs.

Tied together
While each ADSP 21020 can provide 50 MFlops independently, the two on-board processors can be combined using an internal 2 kbyte x 32 parallel BiFIFO which ties the two processors together such that the board yields 100 MFlops of processing power. Another advantage of the mezzanine architecture, claims Ixthos, is that additional DSPs on adjacent boards can be added to the pipeline and contribute their full processing power. With this configuration, a two-board pipeline can perform 200 MFlops on a continuous real-time signal entering the system at 50 Mbytes/s. Additional processors will provide a linear increase in performance, up to the point where system constraints impede further advantage.

The ADSP 2120 is Analog Devices' latest entry into the floating-point chip market. Available with published benchmark of TI's 320C30/40 chip.

Board integration
To limit the processors' overhead so they can run at optimum speed, the IXD7232 board incorporates many separate functions such as dedicated on-board I/O and DMA controllers. These take over tasks normally performed by the processor such as data movement, timing and synchronization. The zero-wait-state program and work-space RAM also isolate the DSPs from the effects of system overhead.

The board uses a standard D32/A32 VMEbus-master interface. It has provision for high-speed burst-data rates using the four DMA channels and block-transfer capability. In addition, the board can receive four mail-box interrupts in addition to generating or receiving any of the seven standard VMEbus interrupts. Multiple boards can easily be synchronized using the location-monitor feature.

The I/O mezzanine boards can accept any of a variety of options offered by Ixthos, or customers can figure their own custom mezzanine cards. At present, Ixthos offers two families of mezzanine boards: one comprises four filtered 18-bit data converters (four A-D converters, four D-A converters); the other, eight filtered 12-bit data converters with synchronous conversion rates to 29 kHz. Prices for the IXD7232 start at $7,950. Mezzanine interfaces start at $495.

—Warren Andrews

IXD7232 at a glance

• 100-MFlops performance
• Dual ADSP 21020 DSPs
• Two mezzanine bus connectors
• Standard VMEbus interface

Ixthos
8046 Sandy Spring Rd
Laurel, MD 20707
(301) 890-1000
Circle 355
Dual-processor VME card hits 40 Mips

Dual-processor VME cards promise significant performance advantages over single-processor boards, but outside of a handful of digital signal processor boards, they have been relatively scarce. The latest example is the SV420 from Synergy Microsystems (Encinitas, CA), which is based on two 68040 processors. “Motorola’s 68040 is the first CISC processor with a large enough cache and enough intelligence to allow two on a 6U-VME board,” says Tom Powell, Synergy’s marketing director. The board can use the two processors in either a tightly coupled or loosely coupled mode, allowing the processors to either cooperate on a single task or operate independently on two separate tasks. The SV420 doesn’t use either processor for I/O functions. Instead, the board provides an optional DMA coprocessor which supports SCSI, Ethernet and four additional synchronous serial ports. “This intelligent controller,” says Powell, “lets all I/O operations take place in parallel with normal 040 operations increasing the board’s efficiency.”

VME64 ups transfer speeds

The SV420 allows for 64-bit block transfers, using the proposed VME64 (D64) standard to help increase transfer rate. A proprietary controller with specially designed burst-mode circuitry lets the board sustain a transfer rate of 66 Mbytes/s. This transfer rate means that the board can move data nearly as fast as the on-board 68040s (80 Mbytes/s). Further, the board’s memory design is tailored to the 68040’s maximum data transfer rate of 80 Mbyte/s. It uses field-interchangeable DRAM modules configurable in 2, 4, 8, 16 or 32 Mbytes, which support single memory-wait-state reads, and zero wait-state writes. The modules, which are triple ported to the 68040, the VMEbus and Synergy’s own mezzanine bus, incorporate byte parity protection and support the 68040 cache burst fill with 3-1-1-1 burst reads and 2-1-1-1 burst writes.

The company claims that the board, with two 25-MHz 68040 processors and up to 32 Mbytes of DRAM, can provide up to 40 Mips of processing power. But while the Mips rating is impressive, it may not be that simple to put all that processing power to work on a single task. The company reports that there are presently a handful of beta sites for the board, “one of which is working on a multiprocessing version of Unix.” Other evaluators are either running multiple versions of a single operating system, or running different operating systems on each processor. For example, Unix along with a real-time operating system simultaneously.

While the board boasts two high-powered processors, in many applications they operate like two processors on separate boards. The two major differences are the efficiency in communications between the two processors on a single card, and the fact that a single card can replace two. Having the two processors on a single board with direct communications eliminates much of the bottleneck usually encountered trying to move large amounts of data from one processor to another.

Multiple SV420 boards can be interconnected through the mezzanine bus—addressed by both processors—speeding transfers from one board to another. In one application, three SV420 boards are used to process radar information. Each of the six processors operates on a different portion of the incoming data. By using the dual-processor board, the customer has been able to double the performance of a system based on single-processor boards while cutting the number of boards in half. And because the two processors on the SV420 share the same on-board resources (VME interface, timers, clocks etc.), the cost for the dual-processor board is well below that of two single board computers.

—Warren Andrews

SV420 at a glance

- 40 Mips SBC for VMEbus
- Dual 25-MHz 68040s
- DMA coprocessor offloads I/O tasks from 68040s
- VME64 sustains 64 Mbyte/s
- Multiple SV420s boards can be linked through mezzanine bus

Synergy Microsystems
179 Calle Magdalena
Encinitas, CA 92024
(619) 753-2191
Circle 352
Sponsored by the Rochester Section of the IEEE
In Cooperation with the IEEE Computer Society

THE FOURTH ANNUAL IEEE

ASIC CONFERENCE AND EXHIBIT

ROCHESTER RIVERSIDE CONVENTION CENTER

September 23-27 1991

Highlights

- Tutorial Sessions
- Exhibits:
 Manufacturers and Vendors will exhibit their most innovative
 hardware and software for ASIC Design, Test, Simulation,
 Manufacturing and Service.
- Papers by Industry Leaders
- Design Case Studies
- Panel Discussions
- Distinguished Speakers
- Educational Workshops
- Proceedings of Papers

Spouse Program:

Interesting and informative excursions to Niagara Falls and Finger Lakes Winery are available for all spouses. Please indicate interest when registering.

Registration:

For Advance Program and Reservations:
Lynn M. Engelbrecht
Conference Coordinator
170 Mt. Read Blvd
Rochester, New York 14611
Ph: (716)328-2310, Fax: (716)436-9370

The 1991 ASIC Conference and Exhibit will provide ASIC and system level designers as well as R&D and manufacturing managers, and educators with knowledge of the tools and techniques required in all phases of ASIC design and implementation. Over 130 technical papers, tutorials, and workshops were chosen to be presented from 200 submitted from around the world. The conference offers:

- An in-depth introduction to ASIC implementation for system designers
- A forum for ASIC practitioners and vendors to share their case design experiences
- Executive overviews of ASIC trends, strategy, economics, and competitiveness

Distinguished Speakers

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Title</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todd Bache</td>
<td>Director, Sun Microsystems</td>
<td>ASICs & High Speed Workstations</td>
</tr>
<tr>
<td>Tommy Ng</td>
<td>Gen. Mgr., Mentor Graphics</td>
<td>Design Methodology</td>
</tr>
<tr>
<td>Bruce McWilliams</td>
<td>Sr. Vice Pres., nChip Inc.</td>
<td>Multichip Modules</td>
</tr>
<tr>
<td>David G. Richardson</td>
<td>VP, Northern Telecom Elec.</td>
<td>ASICs In Telecomm. Systems</td>
</tr>
<tr>
<td>Frederick T. Tucker</td>
<td>Sr. Vice Pres., Motorola, Inc.</td>
<td>ASICs in Automotive Industry</td>
</tr>
</tbody>
</table>

Workshops (Mon, Tues)
- Mixed Analog/Digital ASICs
- VHDL Simulation
- ASIC Synthesis
- ASIC Design For Test
- Designing with FPGAs
- Megafuncsions and Synthesized Logic Blocks
- Accelerated Mixed Mode VHDL Simulation
- CAD Synthesis of A/D VLSI
- HLD and Logic Synthesis
- Converting a Multiple PLD Design to FPGA

Tutorials And Papers
- CAE Simulation Tool Select
- Programmable IC Architecture
- VHDL Management Overview
- Computer Aided E-Beam Test
- Power Dissipation in CMOS
- Test Generation Algorithms
- VHDL For Describing Digital Systems
- Self Timed Digital Systems
- PLD Applications and Technology
- Gov. & Aerospace ASICs

Panel Discussions

Wednesday Evening:
1. ASICs: Is our goal world-wide competition, partnership, or survival?

Thursday Evening:
2. System Level Design - Can we develop the ASICs?
3. Mixed Signal ASICs, Can You Test It?

1.25-GHz ECL array has on-chip phased-lock loop

The Q20P025 ECL array from Applied Microcircuits offers users digital logic gates and an on-chip phased-lock loop (PLL), with operating frequencies from 200 MHz to 1.25 GHz, to serialize and de-serialize high-rate data in fiber-optic telecom and datacom applications. Peak-to-peak edge jitter for the PLL is from 50 to 100 ps. Typical gate delays range from 100 to 250 ps, and maximum total power is from 1.5 to 3 W (0.5 to 1 mW/gate). Frequency and clock-recovery macros are available for the on-chip PLL. For the digital portion of the array, a library of SSI and MSI macros includes encode/decode functions, high-speed shift registers and divide-down counters.

"In the video and graphics arena, speed requirements are increasing as screen size and number of colors expand. Combined with the trend of workstations moving onto the desktop, cost and power reductions are forcing greater integration, resulting in the need to combine the previously separate PLL and shift registers that feed video D-A converters," says Mike Hollabaugh, AMCC vice-president of marketing.

The basic PLL on the Q20P025 consists of a phase detector which compares the phase difference between a VCO and a reference input; a loop filter, which converts the phase detector output into a smooth DC voltage; and the VCO, which generates a frequency based on input voltage. Due to differences in reference inputs to the phase detector; metal pattern implementations on AMCC-provided PLL building blocks differ for frequency synthesis and clock recovery. The frequency synthesis PLL generates a high-frequency clock in phase with the input reference (typical frequency multiplication factor is 20, with extension as high as 64). The clock recovery PLL generates a clock which is at the same frequency and 180 degrees out of phase with the serial data reference input. For datacom and telecom applications, both local and link loopback are supported. At the designer's option, transmitter and receiver designs can be made to perform bit-error-rate measurement to verify fiber-optic link integrity.

Equivalent gate count for the Q20P025, based on AMCC's Q20000 series ECL/TTL logic arrays, is 3,000 by the full-adder method and 2,150 by the flip-flop method. I/O cells can be configured to interface with standard and positive reference (+5 V) 10K and 100K or TTL thresholds. Mixed ECL/TTL capabilities allows interface to both technologies on a single chip without the use of external translators. For dual power-supply devices, the I/O is also capable of a Darlington-type ECL output. And for designs involving external loop filters, selected pins with specified parasitics are predetermined.

Designers can use Mentor, Valid,
and Dazix tools, as well as Verilog and Lasar simulators, to design AMCC’s new array. The Q20P025 is available in surface-mount packages with loop-filter elements mounted on the package or with pin access directly to the filter nodes. Both commercial and military-grade devices will be available. AMCC is accepting orders now, with first prototypes expected next quarter. For commercial grade devices in 100-lead LDCC, the price is $195 in quantities of 2,500.

Q20P025 array at a glance

- On-chip PLL with 1.25-GHz capability
- Edge jitter as low as 50 ps
- Configurable I/Os
- Frequency synthesis and clock recovery macros for PLL
- SSI and MSI macros library

Applied Microcircuits
61950 Lask Blvd
San Diego, CA 92121-1792
(619) 535-6528
Circle 359

Put Our List On Your List

Our list can help you do the other things you have on your list. Such as buy a car... estimate social security... start the diet... check out investments...

Our list is the Consumer Information Catalog. It’s free and lists more than 200 free and low-cost government booklets on employment, health, safety, nutrition, housing, Federal benefits, and lots of ways you can save money.

So to shorten your list, send for the free Consumer Information Catalog. It’s the thing to do.

Just send us your name and address. Write:

Consumer Information Center
Dept. LL.
Pueblo, CO 81009

ST-NIC at a glance

- Integrated Ethernet IC
- MAC and endec functions
- AUI and 10Base-T interface
- Supports all 802.3 Media
- Evaluation board available

ST-NIC at a glance

With the announcement of the DP83902 Serial Network Interface Controller for Twisted Pair (ST-NIC), all of the functions of an Ethernet interface have been consolidated on one device. The chip includes a network interface controller (NIC), a serial network interface (SNI), and a coaxial transceiver interface (CTI). The ST-NIC solution provides the media access control (MAC) and endec (encoder/decoder) functions with an attachment unit interface (AUI) and 10Base-T interface in accordance with IEEE 802.3 standards. Designers using the company’s earlier multi-chip Ethernet interfaces will appreciate the 20 percent reduction in board space as well as the 75 percent power reduction that the new device offers. Furthermore, because the ST-NIC is compatible with National’s DP8390 chip set architecture, upgrading to the new device can be achieved without redesigning network operating system software.

The ST-NIC is designed to support all IEEE 802.3 media options. These include Ethernet (10Base5), Thin Ethernet (10Base2) and twisted-pair Ethernet (10Base-T). The part’s 10Base-T transceiver incorporates the receiver, transmitter, collision, loopback, heartbeat, jabber and link integrity functions defined by the standard. A complete physical interface from the endec module to the twisted-pair medium can be built using equalization resistors, transmit/receive filters, and pulse transformers.

The integrated endec allows Manchester encoding and decoding via a differential transceiver and phased-loop decoder at 10 Mbit/s. Also included is an integrated crystal-controlled oscillator, collision-detect translator and diagnostic-loopback capability. The endec module interfaces directly to the transceiver module and provides a fully IEEE 802.3 compliant AUI for connection to other media transceivers. For example, fiber optic media can be supported through the AUI.

The MAC function provided by the NIC allows control of packet transmission and reception by means of dual 16-bit DMA channels and an internal FIFO. Bus arbitration and memory-control logic are integrated to reduce board cost.

To speed system development, National provides a 10Base-T daughterboard that can plug directly into a DP8390 socket. The daughterboard allows the existing Ethernet controller board to operate over twisted-pair wiring with no added hardware or software modifications. The company also has a $480 evaluation board that can be inserted into a half-size AT bus slot. The evaluation board uses the ST-NIC device to interface to twisted-pair wiring, and can use the ST-NIC AUI port to interface to thick or thin coax Ethernet when a DP8390 Coaxial Interface Transceiver is added.

The ST-NIC also drives five network display LEDs that can be used to provide visual support. These announce Good Link, Transmit, Receive, Collision and Polarity. The display of the first four helps bring some network management functions to the node level. The polarity display indicator indicates the polarity of the twisted-pair wiring which the ST-NIC chip automatically accommodates.

The DP83902 ST-NIC is available now in production quantities. Price is $42 each in 100-piece quantities. The device is offered in two package options: a standard 84-pin PLCC and a 100-pin PQFP.

Ethernet interface delivered on one chip

With the announcement of the DP83902 Serial Network Interface Controller for Twisted Pair (ST-NIC), all of the functions of an Ethernet interface have been consolidated on one device. The chip includes a network interface controller (NIC), a serial network interface (SNI), and a coaxial transceiver interface (CTI). The ST-NIC solution provides the media access control (MAC) and endec (encoder/decoder) functions with an attachment unit interface (AUI) and 10Base-T interface in accordance with IEEE 802.3 standards. Designers using the company’s earlier multi-chip Ethernet interfaces will appreciate the 20 percent reduction in board space as well as the 75 percent power reduction that the new device offers. Furthermore, because the ST-NIC is compatible with National’s DP8390 chip set architecture, upgrading to the new device can be achieved without redesigning network operating system software.

The ST-NIC is designed to support all IEEE 802.3 media options. These include Ethernet (10Base5), Thin Ethernet (10Base2) and twisted-pair Ethernet (10Base-T). The part’s 10Base-T transceiver incorporates the receiver, transmitter, collision, loopback, heartbeat, jabber and link integrity functions defined by the standard. A complete physical interface from the endec module to the twisted-pair medium can be built using equalization resistors, transmit/receive filters, and pulse transformers.

The integrated endec allows Manchester encoding and decoding via a differential transceiver and phased-loop decoder at 10 Mbit/s. Also included is an integrated crystal-controlled oscillator, collision-detect translator and diagnostic-loopback capability. The endec module interfaces directly to the transceiver module and provides a fully IEEE 802.3 compliant AUI for connection to other media transceivers. For example, fiber optic media can be supported through the AUI.

The MAC function provided by the NIC allows control of packet transmission and reception by means of dual 16-bit DMA channels and an internal FIFO. Bus arbitra-
EISA chip set lowers system cost

If the cost of building a 486 EISA board was within a $100 of the cost of building a 486 AT board, would many engineers opt for the EISA design? With the introduction of its new EISA chip set, Opti (Santa Clara, CA) is betting they will. The Opti EISAWB chip set operates with the 386DX, 486SX and 486 processors at clock rates from 20 MHz to 33 MHz. It comprises four VLSI devices, a memory cache controller (MCC), an EISA Bus controller (EBC), an integrated system peripheral (ISP), and a data bus controller (DBC). Each of them is contained in a 160-pin PQFP.

The MCC controls memory subsystem access for the host CPU, other EISA/ISA bus masters and a DMA controller. The memory subsystem consists of up to 16 Mbyte of page-mode DRAMs with hidden refresh, and up to 512 kbytes of write-back cache. (Opti claims that it's the first EISA chip set with integrated write-back cache.) The cache is 2-way interleaved for operation with a 486 CPU.

The EBC translates bus control signals and addresses between the host, EISA, ISA and DMA masters and slaves. It generates clocks for the system board and EISA bus, system board resets, and latch buffer controls for EISA addresses and data. It also arbitrates between the host CPU and other masters on the EISA bus and refresh-requests for access to the EISA bus.

The ISP integrates two 8254 timers, EISA NMI/time-out logic, two modified 8259 interrupt controllers, an EISA/DRAM refresh controller and an EISA system arbiter. The ISP connects directly to the EISA system data bus (the SD bus) and buffers the 8-bit peripheral bus (the XD bus). The DBC integrates data buffers, data buffer control, XD bus control, address-enable generation, decode logic for an external keyboard controller, a real-time clock and system-configuration RAM. The DBC provides two programmable I/O chip selects for embedded system peripherals.

Configured for 20-, 25- and 33-MHz systems, the chip set is priced at $150 in quantities of 1,000. Evaluation kits with complete development support from Opti are priced at $2,000. Currently sampling, the chip set will be available in quantity in September.

Dave Wilson

Opti EISAWB at a glance

- Integrated EISA chip set
- Compatible with 386DX, 486SX and 486DX
- 20-MHz to 33-MHz operation
- Integrated write-back cache
- $150 in 1000s

Opti
2525 Walsh Ave
Santa Clara, CA 95051
Tel: (408) 980-8178
Circle 357

The cost of building a 486 EISA board can be close to that of an ISA board when Opti's integrated EISA chip set is used. The four PQFP devices on this board are controllers for the EISA bus, the data bus, the memory cache and system peripherals.
Tool automates test case generation from graphic design charts

The front-end analysis and design tools used in CASE environments help assure software quality by defining the functions of the finished code. But the software must still be tested to see that it conforms to the requirements set out in the definition and analysis stages of a project. A new tool, called Teamwork/TestCase, has been added to the Teamwork CASE environment by Cadre Technologies (Providence, RI) to automate the generation of test cases from front-end structured design and analysis tools.

Teamwork/TestCase is based on T, a proven test-case generation tool developed by Programming Environments (Tinton Falls, NJ). T uses an English language interface to define test cases. Cadre has integrated T with its tool environment by creating two translators that can read the output of Cadre analysis tools and automatically translate them into the T input format.

The first such translator, TestCase/SD, translates module and data definitions within structure charts. Test cases generated from structure charts can be used to test single routines or multiple units of code at the same time. The second translator, TestCase/SA, interfaces with structured analysis diagrams to provide system-level tests based on the requirements specified in the requirements documents. Thus, software can be progressively tested at each phase of development. Test cases can be generated for testing each routine, the integration of routines, and for testing external functional requirements for system-level or acceptance testing.

Cadre’s structured design tool not only specifies the structure of the modules within a program; it also defines the data elements (known as couples) that are the input and expected output of each module. The test case generator can use these data elements to generate parameters for testing. For each specified requirement the program uses boundary-value analysis, equivalence class partitioning, cause-effect graphing and error guessing techniques.

The process of manually generating test cases was largely an ad hoc process, with very little record of what was tested and how it was tested. But Teamwork/TestCase documents each test case. And the documented test cases are completely repeatable. As requirements change, TestCase can be used to regenerate test cases based on the new requirements without having to modify them by hand. According to Cadre’s product manager Bill Sundermeier, although CASE tools are supposed to provide organizations with reusable code, programmers have been reluctant to reuse code generated by others because they were not sure of its reliability. Thorough and documented test cases now make it possible for an organization to certify reusable code so there will be no doubts about the reliability of modules written by others. The test cases themselves are equally reusable and maintainable.

Teamwork/TestCase is available now for the Sun Sparcstation and will be available in the fourth quarter of 1991 for the IBM RS/6000 and for Sun 3, Hewlett-Packard and other workstations. Pricing starts at $9,995.

—Tom Williams

TestCase at a glance

- Automates test case generation
- Uses proven test case generation methodologies
- Integrates with structured design and analysis tools
- Provides repeatable, documented test cases

Cadre Technologies
222 Richmond St
Providence, RI 02903
(401) 351-CASE

Circle 358
NEW PRODUCT HIGHLIGHTS

SOFTWARE AND DEVELOPMENT TOOLS

Cross development system builds real-time 68000 applications on PCs

A cross-development environment for developing real-time applications for the Motorola 68000 family of microprocessors runs on inexpensive PC computers running the MS-DOS operating system. VRTXvelocity DOS/68K by Ready Systems (Sunnyvale, CA) includes a runtime operating system, networking capabilities, system and source-level debugging tools, cross compiler and other cross-development tools. The system is intended to allow engineers to use existing PC platforms for high-end 68000-based real-time development based on the Ready Systems VRTX32 real-time kernel.

The VRTXvelocity DOS/68K environment is built around VRTX/OS, a real-time operating system that includes the VRTX32 kernel. VRTX/OS resides on the PC and includes IFX, a hierarchical target file system and I/O support; the TNX networking facility based on TCP/IP; and a set of run-time C libraries.

The debugging capability of VRTXvelocity is aimed at the multi-tasking VRTX32 executive. Called RTScope, the debugger resides on the target and serves both as a board-level monitor and a system-level debugger. In addition, VRTXvelocity DOS/68K has included a set of ANSI C tools by Microtec Research (Santa Clara, CA). These include a 68000 ANSI C cross compiler, C cross-reference utilities and Motorola-compatible assemblers, linkers, and libraries.

By combining proven compiler technology with its real-time kernel and debugging tools, Ready provides a development package that lets the user concentrate on the problem at hand and not hardware-specific issues. Ready also includes a number of board-support packages (BSPs) to support commercial CPU and controller boards by such manufacturers as Force, Radstone, Motorola, Heurikon and Tadpole. For custom boards, a support system called VES supplies a template for users to build their own BSPs by merely rewriting the hardware library.

VRTXvelocity DOS/68K is available for 80386 PC computers and compatibles running DOS 3.3 or higher. Initial target support is for the 68020. Other 68000 family members will be supported in the near future. Development system prices start at $12,500 with volume discounts and target licenses start at $145 in quantities of 100.

— Tom Williams

VRTXvelocity DOS/68K at a glance

- Real-time 68000 cross-development environment for PCs
- Includes VRTX/OS real-time operating system
- Integrated system-level debugger
- Includes ANSI C tool set

Ready Systems
470 Potrero Ave
Sunnyvale, CA 94086
(408) 736-2600
Circle 356
SYSTEM SHOWCASE

Reach over 100,000 qualified engineers and engineering managers with SYSTEM SHOWCASE advertising.

Rates start at $840

For more information call Sue Shorrock at 800-225-0556 or 508-392-2185

Industrial 386sx

$3200.00

- 19" Rack Mountable
- Passive Backplane
- VGA Graphics
- 1.44MB Floppy
- 2 Serial/1 Parallel
- Intel 80386xs-16MHz

Custom Cases/Graphics Other Systems Available

Distributors Welcome
Call For Complete Information

Industrial Computer Solutions
236 Bergen Blvd., West Paterson, NJ 07424 (201) 256-7272 Fax (201) 256-1126

CIRCLE NO. 177

Reduced size 180 MHz Clock Oscillator

Connor-Winfield Corp. announces literature on a new line of High Speed 8-pin DIP oscillators. The A53 Series line of AC/DC logic clock oscillators covers the high frequency range of 50-120 MHz. Literature for a 14-pin version (AC53) with frequencies to 200 MHz is also available. The A53, 8-pin model will soon be available in a 48" square ceramic surface mount package. Contact Barney 111 for details. Additional specifications listed below:

Model : A53

Package : 8-pin DIP

Duty Cycle : 50/50 +/- 2%

R/F Times : 2-3 ns typical

Connor-Winfield Corporation
1865 Selmar Road
Aurora, IL 60505

PH: (708) 851-4722 FAX: (708) 851-5040

CIRCLE NO. 178

Economical Universal Programmer with Lifetime Software Support

Model 9860 Features:

- Programs E2EPROMs, PALs, PEELs, PFLAs, GALs, EEP/PLDs and MPUs.
- User Definable Programming Parameters
- Provides Test Vectors for PLD Functional Test
- Menu Driven Operation on any IBM PC/XT/AT or M386. 8/S86 up to 25 MHz
- 40 pin Replaceable ZIF Socket with "Pin Driven" Programming Method
- Software Diagnosis / Hardware Calibration
- PLCC Adapters are available (optional)
- Four Software Updates Annually

For FREE DEMO DISK, CALL: AMERICAN RELIANCE.

(800) 654-9838 FAX (918) 575-0881

CIRCLE NO. 182

Intelligent VME I/O Controller w/Optional Mezzanine Modules

- 20/25MHz 68020 microprocessor
- 1 or 4 Megabytes DRAM
- Mezzanine modules for analog, digital, I/O, memory, Ethernet, SCI and more...
- VPU-25 is a cost-effective design platform for adding I/O and networking capabilities to industrial/process control applications. Call SBE, Inc.: 1-800-347-2666

CIRCLE NO. 183

SBus Display Board

Display VGA, Super VGA, Multisync...up to 1280x1024 pixels. The Vigra VS-10 and VS-12 SBus display boards have programmable pixel resolution, and a repertoire of 256 colors displayable from a palette of 16.7 million. Device drivers are included for Sun's window environments.

Vigra, Inc.
4901 Morena Blvd., Bldg. 502
San Diego, CA 92117
(619) 483-1197 / FAX: (619) 483-7531

CIRCLE NO. 184

Low Cost, High Performance solutions for users of programmable ICs. BYTEK offers logic & memory programmers for Design, Production, Field Service & Engineering Labs. Stand-alone units offer RS232 & Parallel Port for quick data transfer. 3.5" Disk Drive for easy updates. FREE Warranty & Updates for 1 yr. Models from $495. (US)

Call for Catalog: 800-523-1565.

BYTEK Corporation
543 NW 77th St., Boca Raton, FL 33487
(407)984-2520 FAX: (407)984-2616

CIRCLE NO. 179

68HC11

PC-based emulator for 68HC11

Programmer with Lifetime Support

- Supports A, E, D and F parts
- Symbolic and C Source Level Debugging, including In-line
- No Intrusions to 68HC11 resources
- Up to 16 MHz real time emulation
- Pull-down menus with full window support, combined with command-driven user interface
- Hardware Calibration
- No intrusions into the 68HC11 resources
- All bit wide 16 bit deep trace. All functions usable without restrictions
- Symbolic and C level debugging, including in-line
- Supports A, E, D and F parts
- Prices: 64K Emulator and pod

CALL OR WRITE FOR FREE DEMO DISK!

CIRCLE NO. 180

America's Electronic Advertisement Directory

CIRCLE NO. 181

AIR COMPRESSORS VACUUM PUMPS

- Quiet (from 35dbA/m)
- Lightweight (1.5-10 lbs)
- Operating ranges: 1.42-49PSIG 10 to 23.6" Hg .028-1.94CFM air flow
- 40 models - micro to standard
- Low power

Free catalog

CIRCLE NO. 182

COMPUTER DESIGN AUGUST 1991 131
Over 300 Prototyping Adapters

- Adapt-A-Boards make it easy to adapt standard or high-density prototyping boards to a variety of packages.
- For all package types: LCC, PLCC, PGA, PQFP, SIP (shrink SIP devices), SOIC and more!
- Bottom configurations adapt to wire wraps or solder tail pins. Boards conform to Mil-C-45204.
- Quick turnaround on custom engineering services, if needed. For a free catalog, contact:

Emulation Technology, Inc.
2344 Walsh Ave., Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0664

RS-232
INSTRUMENT CONTROL NETWORK

- High speed twisted-pair network allows every serial device to have an address
- Control all your RS-232/422 from one computer port
- 2 to 6400 drops!
- Distances to several miles
- Ideal for machine control and supervisory systems

(800) 426-2872 (203) 354-9395

CIRCLE NO. 185
CIRCLE NO. 186
CIRCLE NO. 187

STD BUS PRODUCTS

8 & 16 Bit CPU's
Peripherals & Card Cages
Custom Design
Worldwide Service
OEM Discounts
Guaranteed Delivery

ZWICK SYSTEMS INC.

17 Fitzgerald Rd., Suite 104
Nepean, Ontario, Canada, K2H 9G1
Tel (613) 726-1377, Fax (613) 726-1982
Representatives Required!

CIRCLE NO. 188
CIRCLE NO. 189
CIRCLE NO. 190
VMbus ANALOG I/O

The RVE788 is a 3U (halfwidth) VMbus card with 16 inputs and 8 outputs, all with a 12-bit resolution. Replace two or even three RVE788 cards with one RVE788. Input filters, res. prog. gain, sample-hold, variable speed operation, low power CMOS, optional current loops.

FEATURES:
- 1 Megabit of DRAM
- +5/-2.5V parallel in & out ports
- Binary, Intel hex, & Motorola formats
- 3112-powered
- ±150.0 KGauss with select probes
- ±100 miligauss AC fields
- ±0.1% bipolar display
- RS-232, parallel in & out ports
- Made in USA
- 2 year warranty

Connor-Winfield Corporation
1865 Selmarian Road
Aurora, IL 60505
PH: (708) 851-4722 FAX: (708) 851-5040
EMPLOYMENT OPPORTUNITIES, OUTPLACEMEN T AND POSITIONS WANTED

Recruitment Advertising Manager
Tom Murphy
(213) 372-2744

POSITIONS WANTED ADS
Free 1" ad to subscribers seeking full-time employment. Just include 50 words of copy and your subscription label. We'll run your ad in 2 consecutive issues. Free to non-subscribers or consultants/companies at $125 per column inch. Mail your position wanted ad to:

COMPUTER DESIGN
Positions Wanted
One Technology Park Dr
PO Box 990
Westford, MA 01886

INTELLIGENT SENSIBLE EE was suckered into Silicon Valley and wants to get out fast! If your area has a high QOL and you have a stable position for a EE >10 yrs experience: 6 yrs Digital (CPU, Data Link); 2 yrs Analog (Power, Tuner, Op Amp); 2 yrs Software (Assy, C, UNIX); 1 yr Systems (Plant Control, Image Processing). Please call now! James (415) 573-0737

PCB/DESIGN ENGINEER, 12 Years experience in design and help EE to achieve the max out of each board. Designed rigid, flex and special prototye boards for military use in Europe, Mid-East and U.S. worked on CADAM, OrCad Cadnetix and Learning P-CAD. Looking for a long term commitment. Motivated team player devoted and looking for the challenge. Resume on request and willing to relocate. Call Ron at (703) 641-7035.

SALES/_MARKETING MANAGEMENT -25 years working with small to mid size companies. Products were computers, peripherals, terminals and software. Assisted in raising venture capital. Developed field and telemarketing sales as well as channels of distribution. Knowledgeable in Government, OEM and end user markets. Compensation negotiable. Call Ray (919) 261-6997.

DEPT MGR/VP-Director: 20+ years engineering, program management, product development, manufacturing and marketing experience in DoD COMM-ELEX equipment and systems. Department and profit-center leadership, P&L, planning, and administration expertise. Polished people, presentation, customer-interface, closing, and business turn-around skills. BSEE, MSc MGMT. Call Al (407) 773-2472.

SALES/MARKETING SPECIALIST, 12 years experience in electronics/computers and telecommunication industry. Specializing in: Opening up new territories & territorial sales expansions, Sales organization restructuring and re-positioning. Strong technical background; skilled in DSTP-4 techniques for people territory and accounts direct management. Can work in Western Canada or will relocate. Contact SAM by FAX: (403) 252-8455 for more details.

REGIONAL SALES MANAGER, 20 plus years demonstrated record of success selling high-tech computers, peripherals and subsystems. Outstanding track record with new product introductions and mature products. Worked with managed Rep's and distributors to achieve sales goals. Fully equipped "home office" available if needed. Ed (415) 992-2214, Fax (415) 992-0216.

ENGINEERING VP/MANAGER: 21 years of high-tech development and management expertise. Substantial business and international joint venture experience including an IPO. A strong, practical and profit oriented leader. Based in Silicon Valley, very well connected. Knows how to get a lot done with minimal resources. Call Dan (408) 796-3749.

SYSTEMS/COMPUTER SECURITY ENGINEER: 20 years experience in real time, C2, OS, automations and distributed systems design and implementation. Commercial and secure military systems experience. All phases of system life cycle. Most programming languages and design methodologies. Lead security system architect of the only accredited multilevel secure multi-mainframe system in the world. Will consider full time or contract positions. Call evenings and weekends: Mike (719) 481-4285.

COMMUNICATIONS/NETWORK ANALYST: Monitor and maintain communications network operations and provide support to network users. Troubleshoot network problems covering a variety of computer and communications hardware and transmission facilities. Interface with computer operations, systems software, communications carrier personnel, as well as equipment vendor personnel. Bob Mazzola (714) 841-8978.

REALTIME MULTITASKING SW SPECIALIST 10+ yrs. exp. Languages: C, Assembly, Pascal, Macro-11, Fortran, Oper Sys: VxWorks, VRTX-32, VRTX-86, OS/2, VAX VMS, PCDOS, MSDOS, CP/M. Seek longterm SW engineering position. Richard D. Dumas (214) 783-8455.

Closing Dates for upcoming magazine issues

<table>
<thead>
<tr>
<th>Issue</th>
<th>Closing dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>August 2</td>
</tr>
<tr>
<td>October</td>
<td>September 2</td>
</tr>
<tr>
<td>November</td>
<td>October 4</td>
</tr>
</tbody>
</table>

positions wanted

SALES/MARKETING SPECIALIST: 12 years experience in electronics/computers and telecommunication industry. Specializing in: Opening up new territories & territorial sales expansions, Sales organization restructuring and re-positioning. Strong technical background; skilled in DSTP-4 techniques for people territory and accounts direct management. Can work in Western Canada or will relocate. Contact SAM by FAX: (403) 252-8455 for more details.

REGIONAL SALES MANAGER: 20 plus years demonstrated record of success selling high-tech computers, peripherals and subsystems. Outstanding track record with new product introductions and mature products. Worked with managed Rep's and distributors to achieve sales goals. Fully equipped "home office" available if needed. Ed (415) 992-2214, Fax (415) 992-0216.

ENGINEERING VP/MANAGER: 21 years of high-tech development and management expertise. Substantial business and international joint venture experience including an IPO. A strong, practical and profit oriented leader. Based in Silicon Valley, very well connected. Knows how to get a lot done with minimal resources. Call Dan (408) 796-3749.

SYSTEMS/COMPUTER SECURITY ENGINEER: 20 years experience in real time, C2, OS, automations and distributed systems design and implementation. Commercial and secure military systems experience. All phases of system life cycle. Most programming languages and design methodologies. Lead security system architect of the only accredited multilevel secure multi-mainframe system in the world. Will consider full time or contract positions. Call evenings and weekends: Mike (719) 481-4285.

COMMUNICATIONS/NETWORK ANALYST: Monitor and maintain communications network operations and provide support to network users. Troubleshoot network problems covering a variety of computer and communications hardware and transmission facilities. Interface with computer operations, systems software, communications carrier personnel, as well as equipment vendor personnel. Bob Mazzola (714) 841-8978.

REALTIME MULTITASKING SW SPECIALIST 10+ yrs. exp. Languages: C, Assembly, Pascal, Macro-11, Fortran, Oper Sys: VxWorks, VRTX-32, VRTX-86, OS/2, VAX VMS, PCDOS, MSDOS, CP/M. Seek longterm SW engineering position. Richard D. Dumas (214) 783-8455.
<table>
<thead>
<tr>
<th>ADVERTISER</th>
<th>PAGE NO.</th>
<th>CIRCLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accel Technologies</td>
<td>132, 191</td>
<td>-</td>
</tr>
<tr>
<td>Advanced Micro Devices Inc</td>
<td>18-19, 26-29</td>
<td>15, 24</td>
</tr>
<tr>
<td>Alacron, Inc.</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>American Megatrends</td>
<td>71</td>
<td>49</td>
</tr>
<tr>
<td>American Reliance, Inc.</td>
<td>131</td>
<td>182</td>
</tr>
<tr>
<td>AMP</td>
<td>4-5</td>
<td></td>
</tr>
<tr>
<td>Analog Mixed Signal Conference</td>
<td>80-81, 99</td>
<td>55, 61</td>
</tr>
<tr>
<td>Applied Microsystems</td>
<td>16-17, 133</td>
<td>14, 199</td>
</tr>
<tr>
<td>Ascill Seminar</td>
<td>125</td>
<td>85</td>
</tr>
<tr>
<td>AT&T</td>
<td>40-41</td>
<td>30</td>
</tr>
<tr>
<td>Avocet Systems, Inc.</td>
<td>48</td>
<td>34</td>
</tr>
<tr>
<td>Bancomm</td>
<td>126</td>
<td>86</td>
</tr>
<tr>
<td>Brooktree</td>
<td>35</td>
<td>27</td>
</tr>
<tr>
<td>BSO/Tasking</td>
<td>56</td>
<td>41</td>
</tr>
<tr>
<td>Buscon Show Guide</td>
<td>119</td>
<td>81</td>
</tr>
<tr>
<td>BYTEK</td>
<td>131</td>
<td>178</td>
</tr>
<tr>
<td>Canon USA</td>
<td>49, 110</td>
<td>35, 66</td>
</tr>
<tr>
<td>Chrispin Industries</td>
<td>76</td>
<td>53</td>
</tr>
<tr>
<td>Chronology Corp.</td>
<td>131</td>
<td>196</td>
</tr>
<tr>
<td>Ciprico</td>
<td>CVR2</td>
<td>-</td>
</tr>
<tr>
<td>CMC</td>
<td>62</td>
<td>46</td>
</tr>
<tr>
<td>Connecticut Microcomputer Inc.</td>
<td>132</td>
<td>189</td>
</tr>
<tr>
<td>Conroy-Winfield Corp.</td>
<td>131, 133</td>
<td>180, 195</td>
</tr>
<tr>
<td>Cyclone Microsystems</td>
<td>75</td>
<td>52</td>
</tr>
<tr>
<td>Cypress Semiconductor Corp.</td>
<td>CVR2</td>
<td>-</td>
</tr>
<tr>
<td>Data I/O</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>Data I/O</td>
<td>132</td>
<td>186, 187</td>
</tr>
<tr>
<td>Data Translation Inc.</td>
<td>60</td>
<td>44</td>
</tr>
<tr>
<td>DY-4 Systems, Inc.</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Electronic Solutions</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Emulsion Technology</td>
<td>132</td>
<td>188</td>
</tr>
<tr>
<td>Engineered Components</td>
<td>118</td>
<td>80</td>
</tr>
<tr>
<td>Epson America, Inc.</td>
<td>115</td>
<td>68</td>
</tr>
<tr>
<td>E Systems</td>
<td>107</td>
<td>64</td>
</tr>
<tr>
<td>Formation</td>
<td>87</td>
<td>58</td>
</tr>
<tr>
<td>GCOM</td>
<td>132</td>
<td>190</td>
</tr>
<tr>
<td>Grammar Engine, Inc.</td>
<td>132</td>
<td>185</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>79</td>
<td>54</td>
</tr>
<tr>
<td>Hitachi America Ltd Peripheral Sys.</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Hyperspeed Technologies</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>I-BUS Systems</td>
<td>61, 63, 65</td>
<td>43, 45, 47</td>
</tr>
<tr>
<td>IBM</td>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>IKOS Systems</td>
<td>CVR3</td>
<td>-</td>
</tr>
<tr>
<td>Image Watches, Inc.</td>
<td>130</td>
<td>191</td>
</tr>
<tr>
<td>*Industrial Computer Solutions</td>
<td>131</td>
<td>177</td>
</tr>
<tr>
<td>*Intel</td>
<td>135</td>
<td>95</td>
</tr>
<tr>
<td>*Intel</td>
<td>36-37, 95</td>
<td>28, 60</td>
</tr>
<tr>
<td>Interactive Circuits & Systems</td>
<td>136</td>
<td>97</td>
</tr>
<tr>
<td>Integrated Devices</td>
<td>105</td>
<td>63</td>
</tr>
<tr>
<td>Intermetrics</td>
<td>51</td>
<td>38</td>
</tr>
<tr>
<td>Ironics, Inc.</td>
<td>13</td>
<td>9-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVERTISER</th>
<th>PAGE NO.</th>
<th>CIRCLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Fluke Manufacturing Co.</td>
<td>68-69</td>
<td>-</td>
</tr>
<tr>
<td>L</td>
<td>133</td>
<td>176</td>
</tr>
<tr>
<td>L-COM</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>Matrix Corp.</td>
<td>31, 43</td>
<td>133, 198</td>
</tr>
<tr>
<td>Medio USA</td>
<td>131</td>
<td>181</td>
</tr>
<tr>
<td>Moletek</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>Microwave Systems Inc.</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Mimar Books</td>
<td>74</td>
<td>51</td>
</tr>
<tr>
<td>Minic Inc.</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>Molex Inc.</td>
<td>47</td>
<td>33</td>
</tr>
<tr>
<td>Motorola Semiconductors</td>
<td>32-33</td>
<td>25</td>
</tr>
<tr>
<td>N</td>
<td>133</td>
<td>197</td>
</tr>
<tr>
<td>Needleman's Electronics</td>
<td>131</td>
<td>179</td>
</tr>
<tr>
<td>Newbridge Microsystems</td>
<td>59</td>
<td>29</td>
</tr>
<tr>
<td>Nippon Electronics</td>
<td>117</td>
<td>69</td>
</tr>
<tr>
<td>Nohau Corp.</td>
<td>131</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>54</td>
<td>39</td>
</tr>
<tr>
<td>Omnimbyte Corp.</td>
<td>INSERT</td>
<td></td>
</tr>
<tr>
<td>Quantum Software Systems Ltd.</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>R</td>
<td>Radisys Corporation</td>
<td>15</td>
</tr>
<tr>
<td>Robotrol Corp.</td>
<td>133</td>
<td>194</td>
</tr>
<tr>
<td>S</td>
<td>SBE Inc.</td>
<td>131</td>
</tr>
<tr>
<td>Silicon Systems</td>
<td>2</td>
<td>3, 4</td>
</tr>
<tr>
<td>Software Development Systems</td>
<td>57</td>
<td>50</td>
</tr>
<tr>
<td>Synergy Microsystems</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>SysComp Show Guide</td>
<td>101</td>
<td>62</td>
</tr>
<tr>
<td>T</td>
<td>120-121</td>
<td>83</td>
</tr>
<tr>
<td>Tadpole Technology</td>
<td>108-109</td>
<td>65</td>
</tr>
<tr>
<td>Tech-Source Inc.</td>
<td>85</td>
<td>57</td>
</tr>
<tr>
<td>Tektron Microsystems, Inc.</td>
<td>59</td>
<td>42</td>
</tr>
<tr>
<td>Thernis</td>
<td>89</td>
<td>59</td>
</tr>
<tr>
<td>Toronto Microelectronics</td>
<td>114</td>
<td>67</td>
</tr>
<tr>
<td>Trenton Terminals</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>V</td>
<td>Venturecom</td>
<td>51</td>
</tr>
<tr>
<td>W</td>
<td>Walker Scientific</td>
<td>133</td>
</tr>
<tr>
<td>X</td>
<td>Xycom</td>
<td>83</td>
</tr>
<tr>
<td>Z</td>
<td>Zwick Systems</td>
<td>132</td>
</tr>
</tbody>
</table>

*Foreign Only

The Advertisers Index is published as a service. The publisher does not assume liability for errors or omissions.

OBSTACLE COURSE.

Unfortunately, many employers just don't realize how vital the National Guard and Reserve is to our armed forces. The fact is, they make up over 44% of our national defense.

So the next time someone who works for you needs time off for Guard and Reserve duty, please give your full support. And let the obstacle course begin at annual training.
8-Channel, 16-Bit Analog I/O Board
With Direct Interfaces to Popular Array Processor and DSP Boards

Features
- Up to 100 KHz/Channel Sampling Rate
- Four or eight 16-Bit Differential Analog Inputs
- Optional Four 16-Bit Analog Outputs (Daughter Card)
- Simultaneous Sampling
- Programmable On-Board Sampling Clock
- Convenient VMEbus Access of ADC or DAC Data
- Direct Serial and Parallel Interfaces for Array Processor and DSP Boards

Applications
- Sonar Signal Processing
- Digital Audio
- Vibration Analysis
- Seismic Signal Processing
- Large BW Track And Hold Amplifiers Permit Under-sampling of Signals (Band Limited) of Frequency up to 500 KHz
- Precision Applications Requiring Matched Channels, Negligible Sampling Aperture Jitter and Low Inter-channel Crosstalk

Ruggedized Version Also Available

CALL US TOLL FREE
1-800-267-9794
Tel: (613)-749-9241 Fax: (613)-749-9461

ICS-140

Executive Office: One Technology Park Dr, PO Box 990, Westford, MA 01886
(508) 692-0700 Fax: (508) 692-0525 Telex: 883436
Publisher: David L. Allen (508) 392-2111
Associate Publisher/Editor-in-Chief: John C. Mikosz (508) 392-2114
Associate Publisher/National Sales Manager: Tim L. Tobee (508) 392-2116
Administrative Assistant: Peg Alexander (508) 392-2112
Marketing Specialist: Betsy Anderson (508) 392-2209
Ad Traffic Manager: Kelly Rice (508) 392-2198
Recruitment Advertising: Tom Murphy (219) 372-2744
Postcards/System Showcase/Bulletin Board: Sue Shorrock (508) 392-2185
Circulation Director: Bob Dromgoole (918) 392-9213
Circulation Manager: George Andrew (918) 391-9443
List Rental: Deanna Rebko (918) 391-9551
Reprints: June Bozarth (918) 395-3161

SALES OFFICES

- U.K./Scandinavia: David Round
 69 Imperial Way
 Croydon, Surrey CRO 4RR
 England
 Tel: 81-686-7655
 Fax: 81-686-2134
- France/Belgium/
 Southern Switzerland/
 Spain/Netherlands:
 Daniel R. Bernard
 10, rue Michelet - B.P. 279
 78502 Sartrouville Cedex, France
 Tel: 01-39-14-67-80
 Fax: 01-39-14-70-14
- Germany/Austria/Northern
 Switzerland/Eastern Europe:
 Johann Bylek
 Verlagsburo Johann Bylek
 Stockseeckerring 62
 D-8011 Kirchheim/Muenchen
 Federal Republic of Germany
 Tel: 89-903-88-06
 Fax: 89-904-35-26
- Italy:
 Luigi Rancati
 Rancati Advertising
 Milano San Felice Torre 5
 20050 Segrate, Italy
 Tel: 02-70300088
 Telex: 328601 RANCAD I
 Fax: 02-7532354

Japan:
- Toshiba Egusa
 PubNetwork
 C407, 2-22-6
 Tuskuda Chuo-ku
 Tokyo 104, Japan
 Tel: 03-3536-5404
 Fax: 03-3536-5490

Southwest Asia:
- Taiwan/Hong Kong/Korea/
 China/Thailand/Philippines/
 India/Pakistan/Singapore/
 Malaysia/Indonesia/Australia/
 New Zealand
 DMI Asia-Pacific, Ltd.
 Suite 925, Guardian House
 32 Oi Kwan Rd, Happy Valley
 Hong Kong
 Tel: 833-2181
 Fax: 834-5620

Computer Design (ISSN-0014-5466) is published monthly by PennWell Publishing Company, 1421 S Sheridan, Tulsa, OK 74112. Second-class postage paid at Tulsa, OK 74112 and additional mailing offices. Editorial offices are located at One Technology Park Dr, PO Box 990, Westford, MA 01886. Annual subscription price: $68 in the U.S.A., $139 in Canada, $148 for Europe via air, and $192 other foreign via air. Call (918) 832-9263 for subscription information. Microfilm copies of COMPUTER DESIGN may be purchased from University Microfilms, a Xerox Company, 300 N Zeeb Rd, Ann Arbor, MI 48106. POSTMASTER: Send change of address form to COMPUTER DESIGN, Circulation Department, PO Box 3466, Tulsa, OK 74101. 01991 COMPUTER DESIGN by PennWell Publishing Company. All rights reserved. No material may be reprinted without permission from the publisher. Officers of PennWell Publishing Company: Philip C. Launer, Jr., Chairman and Chief Executive; Joseph A. Wolking, President; John Ford, Senior Vice-President; Carl J. Lawrence, Senior Vice-President; Joe T. Bessette, Senior Vice-President; John Mancy, Vice-President/Finance; Steve Zimmerman, Vice-President/Corporate Services.
Does he know something about VHDL system simulation you should know?

IKOS File: Case No. 101

The Accelerated VHDL Solution

I got a tip that a major military contractor had to simulate a system defined in VHDL at the behavioral level. The problem was, they had to process a minute of real time data through the design to verify it. Using a SPARC 2 with enough memory for a herd of elephants, it still would have taken months. But these guys simulated that minute of real time data on the entire design in a few hours. How? Turns out they were a beta site for the new IKOS VHDL Accelerator. The brass was impressed.

Check out the details. And if they ask you where you heard about IKOS, just say, “A little bird told me.”
TAKE THE SPEED LEAD.

PAL™ 22V10: 7.5ns.
World’s fastest programmable 22V10.
Here is the logic for high-performance systems running up to 111 MHz. Set-up is just 3 ns. Fast logic for fast systems. You get the same high speed and low noise with the 22VP10. It offers additional flexibility, including an I/O feedback path to accelerate state machine applications.

BICMOS. The first BiCMOS 22V10, from the company that delivered the first CMOS 22V10. ECL core path for record-setting performance. CMOS logic outside the speed path, for low power. The speed of smaller PLDs, the convenience of the popular, flexible 22V10 and field programmable too.

Broad 22V10 PLD family and more. Cypress’s 15 ns CMOS 22V10 consumes less power than any electrically erasable alternative. It’s just one of a broad range of low-power CMOS PLDs. Also get 28-pin applications-tailored PLDs, and our high-capacity MAX™ PLDs too.

Call Today. Order our PLD Kit and we’ll ship it right away. Why wait?

Hotline: 1-800-952-6300.*
Ask for Dept. C11Q.