SPECIAL REPORT: SYSTEMS DEVELOPMENT AND TESTING
Long recognized as the dominant independent tape controller company serving the mini-computer industry, Western Peripherals has extended this leadership to disk controllers.

The industry measures leadership by the numbers. Western Peripherals has the largest installed base of independent peripheral controllers operating in the field today. Products include disk and tape controllers for DEC, Data General and Perkin-Elmer computers. They include controllers for Winchester and removable disk drives, streaming, start-stop and cartridge tape drives. No other supplier has as broad a line.

Western Peripherals makes the numbers count. Leadership in performance and reliability. All Western Peripherals controllers have multiple drive support capability and are software transparent to the host computer. All feature extensive self-testing, as well as the industry’s highest reliability — over 45,000 hours actual (measured) MTBF.

And leadership in product availability, delivery, service and support. Western Peripherals controllers are available either separately or as a complete, fully tested subsystem. They are supported by a full year factory warranty and a national field service organization. In most cases availability is 30 days ARO.

Find out how much our leadership can mean to you.
Kennedy products have always provided innovative new features. And these features have always provided added benefits and convenience for the user. For instance, our Model 6455 offers these features and benefits:

Feature: Start/Stop Operation
Benefit: Drive can emulate a 1/2" tape drive by providing the ability to perform selective file back-ups, file-restructuring, journaling and software updates.
The drive is effectively a 1/2" Tape Drive in a smaller package.

Feature: Hard Read Error Spec. of 1 in 10" bits.
Benefit: Best data reliability of any tape cartridge drive.
Gives the user confidence in the integrity of the back-up medium.

Feature: On-board Diagnostics
Benefit: Drive can be tested off-line with no test equipment required. Use of S.A. also lowers the MTTR.

Feature: Cartridge Jam Protection
Benefit: Protects the cartridge from damage if cartridge jams. This is accomplished by sensing a current surge and then disabling the motor. Thus insuring that the cartridge will not be damaged.

Feature: High Density Recording
Benefit: Storage capacity of 23 MB on a single cartridge.

By now you can see what we're driving at. Model 6455 is full of unique features and benefits for you. For the complete story, write or call us today.

KENNEDY
An Allegheny International Company
1600 Shamrock Ave., Monrovia, CA 91016
(213) 357-8831 TELEX 472-0116 KENNEDY
TWX 910-585-3249

KENNEDY INTERNATIONAL INC.
U.K. and Scandinavia
McGraw-Hill House
Shoppenhangers Road
Maidenhead
Berkshire SL6 2QL England
Tel: (0628) 72939
Telex:
(851) 847871 KEN UKS G

KENNEDY INTERNATIONAL
Koningin Elisabethplein, 8
B-2700 Sint-Niklaas
Belgium
Tel: (03) 777-1962
Telex: 71870 KEN CO

KENNEDY • QUALITY • COUNT ON IT
CIRCLE 2
How You can Cut the Cost of Custom Memory Down to Size.

First, Compare Making Your Own to Buying From Us.

When you make your own, costs can vary. You gamble on finding and keeping experienced memory design engineers. Internal priorities can delay delivery. And your materials come from several sources.

When you buy from us, the price we quote, upfront, is the price you pay. Plus, you get the benefit of more than 10 billion bytes of experience in building memory products with an average of 250,000 hours MTBF. And you get a single product, on time, with a full warranty.

Then, Clip this Coupon and Send it to Us.

Need more information? Just clip this coupon and send it to us. Better yet, include your product specs for a free, confidential quote. Or call our Microsystems Division at (408) 743-4442. We're the name to remember in custom memory.

☐ Impress Me.
I'd like more information on your Custom Memory Program.

☐ Convince Me.
Enclosed are my immediate Custom Memory Requirements. Please send me a quote.

☐ Send Me.
Please send me your literature on G.E. Intersil Systems Standard Memory Products.

NAME: __________________________
TITLE: __________________________
COMPANY: _______________________
CITY: ___________________ STATE: _______ ZIP: __________
PHONE: _________________________

Intersil Custom Memory Boards—Used worldwide by Atlantic Research in series data communications protocol analyzers.

Intersil Systems
Microsystems Division
1275 Hammerwood Avenue · Sunnyvale, CA 94086 · (408) 743-4442

CIRCLE 3
TI microcomputer family to use Seeq EEROM technology

Texas Instruments’ TMS7000 family will be the first microcomputer to use Seeq’s EEROM technology. Under an agreement between TI and Seeq Technology, Inc, Seeq will develop versions of the 8-bit, single-chip TMS7000 microcomputers using Seeq’s 2K x 8, 5-V only, nonvolatile electrically erasable read only memory in place of TI’s standard ROM. The resulting EEROM TMS7000 and future versions will be available to TI beginning in 1984.

Functionally and electrically interchangeable with the TI TMS7020, the Seeq 72720 adaptive microcomputer will contain an added program instruction permitting it to program and alter its own nonvolatile program memory. Other features will include twice the amount of internal RAM (256 bytes instead of 128). Additional registers and control logic prevent external access to the internal program memory. The device will have a 13-ms byte write/byte erase.

HP commits to PBXs in future office networks

Agreements between Hewlett-Packard Co and ROLM Corp, Northern Telecom, and Intecom, Inc covering testing and certifications of HP 3000 business computers and HP terminals for interconnection through PBX products, in effect, are committing the computer manufacturer to PBXs for its office networks. HP foresees no conflict between the use of PBXs and the use of LANs based on the IEEE 802 CSMA/CD standard, such as for the HP 9000 32-bit desktop computer.

HP views the PBX as complementary, handling large numbers of terminals and low to medium speed workstations. Further, the twisted-pair distribution method used in PBXs and their ability to handle voice traffic make them well suited for office applications.

Another contender for the sub 4” floppy disk market

Competing in the 3¼”, 3½”, and 4” floppy disk market, particularly for the personal computer business, is Maxell Corp of America’s 3” version—the most compact of all. The 3” disk has a memory capacity of 500k bytes of information on both sides, the same as the compatible, 5¼” double-density minifloppy disk.

Support for the small disk format, jointly developed by Hitachi, Hitachi-Maxell Ltd, and Matsushita Electric Industrial Co, is provided by 17 American and Japanese companies. As rotation speed, data transfer rate, recording capacity/track, and other specifications are the same as those for the 5¼” disk, 3” drives can be substituted.

Agreement on streaming quarter-inch cartridge tape drives

QIC-24, a proposed recording format standard for quarter-inch streamers that permits recorded media interchange, has been agreed to by six manufacturers: Archive Corp, Cipher Data Products, Inc, Data Electronics, Inc, Qantex Div of North Atlantic Industries, Inc, Tandberg Data A/S, and Wangtek. ADES, Apollo Magnetics Corp, Kennedy, Nortronics Co, and Systech Corp were observers; committee members Irwin Magnetics, Inc and Sankyo Sieki Manufacturing Co were not present for the agreement.
Pretriggers

More than nine times the storage capacity previously available on the IBM Personal Computer is now provided on the XT version. Each XT system has 128K bytes of RAM, 40K bytes of ROM, a dual-sided 5½" diskette drive (368k bytes), and a 10M-byte fixed disk drive (also 5½ "). RAM is expandable to 640K bytes; other diskette drives can be added.

Two low cost, fully portable logic analyzers that provide 16 or 32 parallel channels of data acquisition at up to 50 or 20 MHz, respectively, have been added to the Tektronix Design Automation Div line. A joint design of Sony and Tektronix, both the 318 and 338 offer state and timing with optional serial state and character analysis.

An integrated voice and data terminal that permits access to computerized information resources and electronic mail systems via video screen and keyboard has been introduced by Northern Telecom. The SL-1 Displayphone is intended for use with the SL-1 digital business communication system.

Serial I/O protocols and electrical interfaces of the MPA-2000 communications controller from Metacomp, Inc can be altered for varying applications. Any of four full-duplex DMA channels supports SNA/SDLC, HDLC, or X.25 protocols, and RS-232 or -422/-423 interfaces.

Programmers can switch from editing to computing program modules on the SoloSystems single-user/multitasking workstation. Two MC68000 microprocessors handle CPU and display control functions.

Development and application tools for robotic systems, including manipulator arms, controllers, and software, are being offered in a joint venture of Machine Intelligence Corp and Yaskawa Electric Co. Machine vision can also be added.

Low cost color terminals and an ink jet color raster copier are among graphics products being introduced by Tektronix. A high end terminal features 1280 x 1024 fixed resolution and a 32-bit coordinate space.

Bit-mapped graphics can be added to color and monochrome displays via two controller chips, the SCN2674 and SCB2675, introduced by Signetics.

Both artificial intelligence and CAD, as well as other applications requiring large scale problem-solving applications, are targets for a Lisp based computer system introduced by Symbolics. Compared to similar superminicomputers, the dedicated single-user model 3600 is said to offer significant price/performance advantages, and can deal with massive intelligence programs that previously could only be handled on mainframes. Based on the Lisp language, its software environment also extends the size of a problem that a designer can solve.

Trace record acquisition at up to 20 MHz can be accomplished synchronously or asynchronously with a 32-channel logic analyzer/emulator from Advanced Digital Technology. The model 4009A supports all Motorola 6809/E microprocessor versions and combines features of both a logic analyzer and an in-circuit emulator.
It's easy to interface your 1/2" drive to a DEC computer. When you have connections.

Dataram provides tape drive connections to your host LSI-11, PDP-11, or VAX computer, with a family of couplers/controllers that operate in NRZI, PE, or GCR modes. Dataram's couplers/controllers operate with 1/2" tape drives from all major manufacturers. As slow as 25 ips — or as fast as 125 ips. 200 BPI to 6250 BPI. With TM11 and TS11 emulations.

Start-stop or streaming. Efficient streaming is supported by a unique RSX-11M utility, FASTSAVE-11M, which provides optional backup and save capability for Dataram's streamer coupler. A full one-year warranty is standard.

For more information about 1/2" drive connections, call (609) 799-0071. We'll help you make the connection you need!

<table>
<thead>
<tr>
<th>STANDARD AND STREAMER</th>
<th>GCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPEX</td>
<td>KENNEDY</td>
</tr>
<tr>
<td>CIPHER</td>
<td>PERTEC</td>
</tr>
<tr>
<td>CDC</td>
<td>S. E. LABS</td>
</tr>
<tr>
<td>DATUM</td>
<td>TANDBERG</td>
</tr>
<tr>
<td>DIGI-DATA</td>
<td>TDX</td>
</tr>
</tbody>
</table>

LSI-11, PDP and VAX are registered trademarks of Digital Equipment Corporation. FASTSAVE is a trademark of Computer Systems Advisors.
Computers: Bipolar processor keeps 16-bit mini alive

Data communications: Network combines voice and data

Development systems: Development tool eases complex design tasks

Software: CP/M spreads to 16-bit processors and beyond

Microprocessors/microcomputers: Network node puts supermini on desktop

Peripherals: Coprocessor allows true text preparation

Memory systems: Microfloppy deviates from proposed standard

Data communications: Securing data inexpensively via public keys

by Brian Schanning—Thorny problems of user privacy and data security are multiplying as fast as local area networks. Luckily, public key encryption methods offer an extremely secure medium for information exchange.

Adapting Forth to a multi-user world

by Bruce Sweet—This latest version of Forth for use on the M68000 processor addresses 16.7M bytes of memory, features improved arithmetic performance, and incorporates system calls into its threaded lexicon.

Authoring a dedicated operating system in Pascal

by Christopher DeMers—Designers: Create compact, customized operating system kernels for concurrent realtime applications.

Parallel data compression for fault tolerance

by James F. Nebus—When computers operating in software implemented fault-tolerant systems exchange the results of their intermediate error calculations, CRC or checksum based data compression is a must.

Bit oriented data link controls—Part II

by Alan J. Weissberger—The advent of VLSI chip sets serving specific data communication protocols like X.25 is resulting in more reliable and less expensive computer communication.

Neither computers, communications, nor people are cornering the market in “The Emerging Information Age,” theme of 1983’s National Computer Conference; all three play crucial roles in the evolving partnership between people and technology. This year’s program should give a good indication of where the players stand today.

There’s more than one way to make computer created images more vivid than life. And come May 10, exposing the what’s, why’s, and how’s beneath the changing surface of computer graphics technology will be the business of the Society for Information Display’s annual meeting in Philadelphia.
Special report on systems development and testing

Tools for system development and testing are filling the need for standalone instruments suited to the hardware or software specialty of their users. This month’s “Design Frontier” report looks at some important developments in instrumentation and information management. A staff report examines the recent activity in logic analyzers in terms of their ease of setup and use, and their ability to selectively capture and display data. Other articles deal with design information management, using logic analyzers in design tasks, and software based simulation of communication protocols.

System components

214 Small computer caters to professional uses
216 Flame retardant resins tailored to application designs
216 Computer puts printer, modem, CRT, and keyboard in one package
219 Low cost, high performance PCB CAD system
219 Latched EEROMs supply upward migration and 1-ms write time
220 Data communications
228 Software
232 Development systems
237 Test & measurement
240 Microprocessors/microcomputers
245 Memory systems
254 Interconnection & packaging
256 Peripherals
262 Computers
264 Interface
266 System elements
270 Control & automation
272 Integrated circuits
274 Power sources & protection
276 EMI protection

Departments

3 Up front
11 Publisher’s perspective
11 May preview
17 Editorial
22 Letters to the editor
278 Calendar
280 Literature
284 System showcase
286 Advertisers’ index
290 Designer’s bookcase
291 Career opportunities
293 Reader inquiry card
293 Change of address card

Designers’ preference survey*

251 Development systems, test & measurement

*Appearing in Domestic issues only

Editorial reviewers for parts of this issue:

Y. P. Chien
Jerry Mitchum
Ralph Preiss
Jim Zix
For microcomputer designers who want to do more than just get the job done.
Tek dedicates the 8500 Series.

Every new generation of processors means skyrocketing code requirements and debugging problems. Today, just getting the job done is a formidable challenge. But now, Tek's new 8500 Series gives you the best software pulses during program execution. You no longer have to design around restrictions imposed by your development system. For real-time debugging, the Trigger Trace Analyzer. The 8500 Series offers the development and integration tools for better and faster microcomputer designs in all three major design environments: Single-user, Multi-user and Host. The 8500 Series gives you 16-bit and 8-bit Real-Time Emulation. 16-bit designs can require awesome debugging. But the 8500 Series, with fully transparent Real-Time Emulation, makes absolutely no demands upon your prototype's memory space or interrupt structure. Nor does it impose wait states or stretched clock Trigger Trace Analyzer, a powerful real-time logic analysis option for the 8540 or 8550, which selectively acquires the data you specify so you quickly locate those hard-to-find bugs.

A full set of software development tools and more.

The 8500 Series provides all the standard tools: assemblers, editors, compilers, linkers and a library generator. It also gives you GUIDE (a friendly interface), a well-organized file system, as well as intelligent command files so you can quickly develop your software.

Complete support for all microprocessor design environments.

The 8540 interfaces with your mainframe computer to extend its software development capability to cover hardware and software integration.

The 8550 offers a complete set of microcomputer design tools in a single desk-top package. The 8560 is a "team-oriented" multi-user development system. It supports any combination of up to eight software or hardware workstations through an operating system called TNIX. Full transportability for planned growth. Besides getting the job done in the three design environments, the 8500 Series offers migration paths between them. This built-in hardware and software compatibility maximizes return on capital invested, and minimizes reorientation as people move from one environment to another.

For more information on purchasing or renting the 8500 Series, contact your local Tektronix sales engineer. We'll show you how our products help you get the job done. And a lot more.

U.S.A., Asia, Australia, Central & South America, Japan
Tektronix, Inc., P.O. Box 4828, Portland, OR 97208. For additional literature, or the address and phone number of the Tektronix Sales Office nearest you, contact: Phone: 800/547-1512. Oregon only 800/452-1877. Telex: 910-467-8708. Cable: TEKTRONIX

Europe, Africa, Middle East
Tektronix Europe B.V. European Headquarters, Postbox 827, 1180 AV Amstelveen, The Netherlands. Telex: 18312

Canada, Tektronix Canada Inc., P.O. Box 6500, Barrie, Ontario L4M 4V3. Phone: 705/737-2700

*TNIX is a trademark of Tektronix. **UNIX is a trademark of Bell Laboratories.
Run Intel's Software on the IBM Personal Computer

If you use Intel's Series-III MDSs to develop software for the 8086, 8087, 8088, 8089, 80186 or 80286, you will be excited to hear about ACCESS. ACCESS is a software package that allows the IBM Personal Computer to run Series-III software. This includes PLM86, ASM86, PASCAL-86, FORTRAN-86, LINK86, LOC86 and LIB86.

ACCESS combined with an IBM Personal Computer and a hard disk gives you additional development systems for less than a third the price of Series-III systems. Imagine: a complete development system for just $8,000! Compare this to $28,900 for a hard-disk Series-III system.

ACCESS combined with your Intel software and the IBM PC provides a complete development package. ACCESS provides you with a Series-III operating system simulator (UDI), support for Intel's ISBC-957 debugger, and a data link program for transferring files between the IBM and Intel systems. ACCESS and the IBM PC with a hard disk are also faster than a Series-III with a hard disk.

Call Genesis today to order your ACCESS package!

Genesis Microsystems
(408) 241-3727
P.O. Box 70280 • Sunnyvale, CA 94086

CIRCLE 7
PUBLISHER'S PERSPECTIVE

Now is the time

This month, our editors are addressing another important technological market—that of systems development and testing. While reviewing these Special Report articles, the issue of future directions in system design comes up. Will tomorrow's engineers be as creative, enthusiastic, and stimulated as today's? The answer to this question lies not in the intensity of the technological fires but rather in who has the fuel to stoke them.

This country is witnessing the erosion of two important American fundamentals—scientific education and professional opportunity. Today's students are being deprived of the high quality education afforded to the industry leaders and entrepreneurs who have placed the United States at the top of the technological ladder. These students are faced with shortages of qualified teachers, educational funding, and equipment.

Even for those who do make it through the educational obstacle course, our industry is offering fewer ground floor opportunities. Subsidized foreign competition, governmental policies, and increasing regulation are softening financier and venture capital support for emerging technology. Tomorrow's entrepreneurs will be dealing with risk factors beyond their control, unless we act now.

Our industry, and we as individuals, must become more active in supporting higher quality education. At the same time, our industry must come out from behind its veil of naiveté and become involved in geopolitics—otherwise, in 10 years our editors will be discussing what could have been.

Ronald W. Evans
Publisher

MAY PREVIEW

Special Report on Mass Storage Technology
Mass storage is not limited to large systems that hold hundreds of megabytes or even gigabytes of data. The almost insatiable demand for storage capacity is being increasingly met by much smaller systems that provide less than a megabyte. A staff-written article in the May Special Report, therefore, focuses on the smaller storage equipment currently available or being introduced: sub-4" floppy disk drives.

Other major articles on mass storage include: managing several host CPUs with a shared server . . . Streaming tape drive backup for Winchester drives . . .

National Computer Conference Products
An issue within an issue, descriptions of significant new products that will be shown at NCC '83 will be an important part of May's Computer Design.
The Gould Millennium 95168 Microsystem Integration Station.

If your microprocessor software has been developed on a VAX or PDP-11, only one emulator lets you download your executable code for total standalone debugging.

The Gould Millennium 95168 Microsystem Integration Station.

It's DEC-compatible so there's no need for software conversion.

Because it's standalone, you leave your host free for other projects, including continual code development.

The fact is, with an RS-232-C interface, you can use the 95168 with any host computer or development system.

Multi-Ice™ supports four microprocessors at once.

For debugging multi-processor systems quickly, the 95168 Multi-Ice™ lets you control and monitor any combination of four 8- or 16-bit microprocessors.

Simultaneously, in parallel. And in real-time.

Which means instant hardware communications between microprocessors. Synchronization of program execution. And interleaved display of independent trace buffers.

You can perform logic trace analysis. High speed memory emulation. Complex and super breakpoints.

Built-in procedural language interpreter.

The 95168 procedural language interpreter is a very powerful yet flexible tool derived from the high-level "C" programming language. It offers you a debug environment much like your own high-level programming environment, giving you the option of bypassing assembly language.

During debug and systems integration, it lets you manipulate and display data, access system resources, and control those resources.

In short, the procedural language interpreter will dramatically increase your effectiveness and productivity.

You can interrogate and make decisions based on real-time information from the 95168 hardware resources. Including software program analysis. Automatic test set-up and execution. Simulation of target hardware. And post-processing analysis.

No more "wait states."

Only the 95168 offers real-time universal emulation all the time.

It offers bus cycles as short as 160 ns.

Dual bus structures (expandable to 32 bits) provide real-time control and monitoring of independent measurement and debugging tools. Without stopping emulation.

You can set up all your conditions, run at full speed, then check the recording to see what happened.

With the 95168 you can specify up to 8 complex and 4 super breakpoints. Use 80 channel and 1,024 word-deep
trace memory for exceptionally qualified logic trace. Or gather information in real-time and display it—while the target system continues to be emulated.

Menu simplifies debugging efforts.

The 9516S is ideal for the experienced and occasional user.

Its menu-driven interface lets you start debugging immediately, without having to learn a command language.

You can mix the easy-to-follow menu interface commands with the command language statements to set up specific tasks.

Eight soft keys help you move through the menu and provide fast selection of field options. And when you need help, you can access an online user manual for quick reference.

Uncompromising dedication to high performance.

At Gould Millennium, we believe in making every instrument the best for the job it's designed to do.

The standalone capability, procedural language interpreter, multi-processor control and human interface characteristics of our 9516S are evidence of that commitment to excellence.

For detailed application notes or demonstration, write Gould, Inc., Instruments Division, 4600 Old Ironsides Drive, Santa Clara, CA 95050-1279, Gould Biomation and Gould Millennium Products.

For fastest response, call toll-free:

Nationwide (800) 538-9320;

In California (800) 662-9231 or (408) 988-6800.

The Gould Millennium 9516S Microsystem Integration Station supports any combination of 8086, 8088, 68000, Z8001, Z8002, 68B09/E, 8085A and Z80A microprocessors. It includes a 1 megabyte thinline double-density, double-sided floppy disk drive. Its RS-232-C port lets you interface with any minicomputer for fast, effective software development.

*Introduction in the first quarter of 1983.
Use Megalink™ for 1 Megabit/sec DMA transfer between multiple DEC and Intel processors on local networks up to 32,000 feet long.

- Q bus, Unibus, and Multibus compatible units plug directly into DEC and Intel backplanes.*
- Multidrop operation of different processors on single coaxial cable for distributed networks.
- Integral 1 Megabit/sec FSK modem is immune to baseband noise, has better than 1 bit/10^12 error rate.
- Loadable RT-11, RSX-11M, and RSX-11S device drivers available on floppy disk.
- Virtual disk subsystem.
- HDLC protocol implemented in hardware.
- Polled, token pass, or CSMA contention networks possible.

Call Garry Stephens today at (203) 544-9371, or write now for specifications of Megalink DMA Interface Units

COMPUTROL
Division of Kidde Automated Systems, Inc.
KIDDE
15 Ethan Allen Highway
Ridgefield, CT 06877-6297 USA
203-544-9371
Telex 643358

*DEC, Q bus, and Unibus are trademarks of the Digital Equipment Corporation. Intel and Multibus are trademarks of the Intel Corporation.
Dollar for dollar you get less for your money with our 32-bit board sets.

We've hit two new lows with our QUADRABYTE™: price and profile. And in this case, less means more. It means more flexibility. More reliability. More value-added potential for the OEM.

Priced at under $13,000 in quantities of 100, QUADRABYTE has a remarkably small profile. Yet, it gives you all the throughput, modularity, expandability and performance you could want, and a variety of options. This lowest-priced, true 32-bit board set package provides maximized profits for you.

QUADRABYTE comes from the field-proven, powerful Gould CONCEPT/32™ family of superminicomputers. With the MPX-QB real-time operating system, applications are handled faster while supporting a larger variety of languages and software tools to simplify programming. And, you get the additional advantage of immediate delivery.

The scope of the board set product line allows total flexibility in your design process. Our products range from a basic 32-bit board set nucleus to packaged configurations with field-proven options. Buy just what you need for your specific application.

Gould has a commitment to building the best board level computer with off-the-shelf delivery at the lowest price. Why should you settle for less? See how we measure up.

Call or write Gould S.E.L. Computer Systems Inc. de Puerto Rico, 1224 North University Drive, Plantation, Florida 33322. 1-800-323-0320.
THE NEW CHROMATICS CT 4200

WITH OUR 2 YEAR GUARANTEE

$3995

NOBODY ELSE DELIVERS SO MUCH RELIABILITY FOR SO LITTLE MONEY.

- Best price/performance color terminal on the market.
- 512 x 512 x 4 Bitmap image, 512 x 384 viewable.
- No flicker 60 Hz refresh rate.
- 85 characters by 48 lines alphanumeric display.
- High resolution 13" precision in-line CRT.
- Optional 1024 x 1024 x 4 with 1024 x 768 viewable.
- 2 year limited warranty on all parts and factory service.
- Supported by many popular graphics packages.
- Quantity discounts available.

Chromatics

For full product information on the best price/performance color terminal in the business, contact:
Offices Worldwide

CIRCLE 12
A CARTEL BY ANY OTHER NAME...

According to Webster, a cartel is two or more businesses that join forces in order to limit output, fix prices, and divide available markets amongst themselves. Loosely, its purpose is to do some kind of market rigging. Cartels have been around for a long time. The Europeans and the Japanese were practicing the fine art of forming cartels while we were still learning how to survive as a nation.

Recently, we have witnessed a new high—in fact, a form of technical renaissance—in intercorporate cooperation for the purpose of furthering the state of the art. As technology advances at an increasing pace, there is a greater need for standards of all kinds. Standards committees and independent associations have served as forums for thrashing out differences in "specsmanship." But lately, we have had little patience with committees that have either taken too long to establish standards, or have come up with standards that are too convoluted. In the latter case, the joke about how "a camel is a horse designed by a committee" often holds true. Other times, we have totally disregarded committees and have been guilty of simply accepting or endorsing the standards set by the clear-cut market leader at the time.

Today, a 2-year delay in defining a bus standard, a local area networking standard, or a software interface for graphics is unacceptable. This slack time can keep hundreds of technical companies from furthering both the state of the art and their own economic well-being. As a result, we have witnessed the beginning of an era of cooperative standards efforts between major companies. By enlisting the backing and pledges of many companies to support a common standard, they all can get on with the business of developing markets that everyone knows lie in waiting.

Like it or not, we have also added a new dimension to the concept of a cartel. A group of companies can conceivably "rig a market" by defining an alternative to another group's set of standards, if they have enough economic clout. If we are going to play in the ball game of cartels, we must realize that we are playing an international game, where some of the other players are whole governments whose main interests do not include furthering any art.

Currently, we are the technology leaders. But, as the game moves into the cartel arena, the results do not necessarily depend upon technological leadership, they depend upon economic muscle. Maybe the economic might of an IBM or ITT is roughly equivalent to that of a small nation, but what kind of combine—cartel, if you will—does it take to equal the economic clout of a Japan or a Common Market? Our government is going to have to adopt a different outlook on the matter; we should at least be allowed to play the game using the same rules as the competition.

Saul B. Dinman
Editor in Chief

Best Technical Article of the Month—September
"Ethernet and the PBX—A Beneficial Partnership"
Vern Coleman, Advanced Micro Devices

This article will now compete with other monthly winning articles for the 1982 editorial excellence award.
In today's everybody-wants-a-piece-of-it desktop market, manufacturers are sending more and more systems into the office. And customers are sending more and more back—because of drive problems.

To counter this counter-movement, Shugart offers two solutions:

Our SA460 and SA600 desktop drives. Each has unique features that make the drive dependable when it really has to be.

Take our 96TPI double-sided Mini-floppy,™ the SA460. Its 4-step-per-track, HeliCam™ lead screw actuator makes head positioning faster. More accurate. More reliable. So diskettes can be switched without a hitch. And changes in environment won't mean changes in data.

The heads are specially contoured to optimize compliance. For improved signal/noise ratio. Minimum media wear. And increased data reliability.

All of which comes in a high performance design, with up to 1 megabyte of storage. (Incidentally, for those who don't need as much storage, our single-sided SA410 gives you the same reliability and performance at an even lower cost.)

For applications that require yet more capacity and performance, we have another 5¼” solution. The fixed disk SA600.

Its advanced Winchester design is forti-
INVESTMENTS, YOU GET NO RETURN.

Fied with remarkably rugged engineering. Like 4-point aircraft-type shock mounts, which make it virtually unaffected by shake-ups around the office. An automatic spindle and actuator lock, to protect the heads and media. And a dedicated landing zone, to protect the data area during shipping.

During operation, microprocessor-controlled head positioning and electronic damping increase accuracy—and minimize access times for increased throughput. And to increase the range of applications, there's up to 12.76-megabytes of storage.

Best of all, the SA600 and SA460 can work as a team. A reliable Winchester matched with a reliable backup.

Both supported by applications experts, a worldwide field engineering force, rigorous testing and documentation—everything you'd expect from the leader in low end drives.

Mind you, there's one thing you shouldn't expect.

A return on your investment.

For more details, contact Shugart Associates, 475 Oakmead Parkway, Sunnyvale, CA 94086, (408) 733-0100. Hamilton/Avnet, authorized distributor.

Shugart
Right from the start.
Milpitas, CA 408/263-2600; Minneapolis, MN 612/574-9750, Framingham, MA 617/879-1700

CIRCLE 13
Come and see us at NCC Booth #N3856
The Am29116 is no mortal microprocessor. It’s the fastest MPU ever made. The Am29116 was designed from day one with the most demanding intelligent peripheral control applications in mind.

It’s 16-bits. It’s micro-programmable. It’s made with IMOX®, our advanced bipolar process.

Best of all, it’s available right now. **THIS IS A JOB FOR THE Am29116.**

The Am29116 can control any peripheral. It can do bit manipulation, data merge under mask control, even multiple bit rotate in a single 100ns cycle.

And it’s fully supported with a high-speed development system called System 29/10A. Plus all the support circuits you’ll ever need. **YOUR COMPETITION WON’T KNOW WHAT HIT THEM.**

The Am29116 will put you as far ahead of the competition as we are. And it’s just one of our high-performance VLSI circuits.

There are controllers, bipolar and MOS microprocessors, communications and signal processing circuits, and more.

And every part in every family meets or exceeds INT-STD-123, the International Standard of Quality.

Rush into the nearest phone booth and call AMD. Ask for the chip that flies.

Advanced Micro Devices

901 Thompson Place, Sunnyvale, CA 94086 • For direct factory response call (408) 749-2900.

CIRCLE 14
Larger holes merit looking into

Before the industry spins off into the new drive geometry (see "Winchester 5 1/4" Drive Packs 140M Bytes on Eight Disks," Jan 1983, p 170), it seems that an analysis of the disk center hole dimension would be both instructive and, in the long run, fiscally prudent. With the arrival of this new geometry, there is clearly a trade-off whereby low value real estate (disk area near the center) may be reasonably exchanged for highly desirable motor volume. If the placement of the motor inside the spindle allows only one additional disk, the benefit seems very clear.

As a designer of fractional horsepower (FHP) and sub-FHP electric servo and disk drive electric motors, I would like to ask disk drive and disk manufacturers two questions: first, has anyone in the disk memory systems industry performed such an analysis? If so, will disk manufacturers offer a design with a larger center hole at a price the industry can justify?

Increasing the hole size from 40 to 50 mm offers motor manufacturers a performance improvement based on maintaining the same motor geometry that is approximately proportional to (50/40)^2 = 1.56. This will result in higher efficiency, less power dissipation, a smaller driver and, consequently, lower temperature rise. Further benefits are higher acceleration, reduced head flying speed, and lower instantaneous speed variation due to the motor manufacturers' option to design motors with less torque ripple over the entire frequency spectrum of interest. Magnetic shielding to reduce stray fields is also essential, and the increased radius would allow for extra shielding if required.

Thus, for a 56% increase in motor volume, the loss of disk area corresponding to the increased hole size works out to just under 8%. With the arrival of still higher density recording, I feel it is worth taking a hard look at our options before we become locked into the 40-mm hole size for all future generation 5 1/4" Winchester disks.

Peter M. Bartlett
Indiana General Motor Products
1168 Barranca Dr
El Paso, TX 79935

Required reading—with two exceptions

Both "Borrowing rf Techniques for Digital Design" by David Montgomery (May 1982, p 207) and "Understanding the High Speed Digital Logic Signal" by Malcolm Davidson (Nov 1982, p 79) should be essential reading for young engineers concerned with high speed logic. Unfortunately, Mr Davidson's otherwise excellent article has two misconceptions. First, it is often not practical to correctly match the transmission line. Second, his high reliability system contains a number of potentially serious single-point failures.

For example, mismatch occurs in the design of high speed backplane buses, such as the 9986. In this case, the backplane can be considered as a transmission line. However, the characteristic impedance varies considerably with the number of connectors and cards installed. Consequently, reflections are inevitable, even with approximately terminated lines. The waveform seen at any connection point will therefore be dependent on the physical position of both the transmitter and receiver, and also on the number and position of other cards installed at the time. Many problems can be overcome by careful design of the data transmission protocol, and by using extra strobe and acknowledge lines.

The high reliability example is the simplest form of "m" out of "n" modular redundancy. It is true that increasing logic does not necessarily increase reliability. However, such systems must be built so that no single hardware or software failure will prevent correct operation. Triplicating the transmission lines minimizes the failures concerned with the line; it does nothing to overcome failures due to the extra logic. Many problems can be overcome by careful (continued on page 24)

Computer Design adds new Field Editor

Sam Bassett has joined Computer Design as a Field Editor. Sam's background includes a wide range of experience. Previously, he was a senior editor at InfoWorld magazine, a technical writer with the Paul Pease and DWT Associates agencies, and a free-lance writer for various computer and electronics companies in Silicon Valley.

Sam holds a BA and an MA from Hawthorne/Paideia University in Petaluma, Calif. He has a knowledge of RPG, Cobol, Fortran, and PL/1 languages, and has taught himself Pascal and Forth.

Sam is working out of Computer Design's Sunnyvale, Calif offices. He is specializing in microprocessors, microcomputers, and memory systems. In addition, he is responsible for West Coast coverage of software, data communications, and computers.
Universal Data Systems' new 9600 bps modem brings economy and operating ease to high speed data communications systems.

- Front panel switch selects operating/test modes.
- Rear panel switch initiates fall-back frequency operation.
- Analog and remotely activated digital loopback capability conforms to CCITT V.54. A 511 pseudo-random test pattern, compatible with CCITT V.52, is provided.
- Digital adaptive equalizer is strappable to T or T/2 configuration.
- V.29 compatible and 100 ms mode are strap selectable.
- Pre-equalizer available for operation over unconditioned lines.

Contact Universal Data Systems, 5000 Bradford Drive, Huntsville, AL 35805-1953. Telephone 205/837-8100; TWX 810-726-2100.

Universal Data Systems

MOTOROLA INC.
Information Systems Group

DISTRICT OFFICES:
Old Bridge, NJ, 201/251-9090 • Blue Bell, PA, 215/643-2336 • Atlanta, 404/996-2715 • Chicago, 312/441-7450 • Columbus, OH, 614/895-3025 • Boston, 617/675-8868
Richardson, TX, 214/660-0002 • Englewood, CO, 303/694-6043 • Houston, 713/688-5506 • Tustin, CA 714/669-8001 • Sunnyvale, 408/736-0433

CIRCLE 15

$2650
Quantity one
LETTERS TO THE EDITOR

(continued from page 22)
attention to error detection and correction codes and protocols, without having to add large amounts of extra logic.

R. D. Edwards
Silhill House
2235/7 Coventry Rd
Shelton, Birmingham B26, 3NW,
England

Brits 1... Yanks 0
I would like to respond first on a technical note and second on a philosophical one. I agree that it is difficult to "match" the line or, more accurately, to define Z_0 over the entire length of an interconnect. If a backplane design is to be carried out, then the short, open circuit stubs that exist due to cards being plugged in can be thought of as additional capacitance. This Z_0 now becomes equal to

$$\sqrt{\frac{L}{C + C_s}}$$

where C_s is the additional capacity due to boards. This backplane must only be terminated at each end and never in the middle.

Mr. Edwards' points concerning reliability are appropriate; however, they reiterate the importance of careful design. There are always reasonable and unreasonable designs that satisfy system requirements. The competent designer will usually adopt a "reasonable" design based upon the correct fundamentals.

On a more philosophical note, it is ironic that the only response has been from England. The United States spends billions of dollars each year developing complex digital systems, often used as part of the nation's so-called defense. Based on the minimal response this series of articles has garnered, it is apparent that the system designers do not possess the appropriate theoretical expertise.

The digital electronics industry is producing small microcomputer systems that are offline, relatively simple data processing devices. They are controlled exclusively by software types (computer scientists) and the programming is being used to control inefficient hardware. The fundamentals are being gradually lost and, because this industry is market driven, the repercussions of this loss will be felt when it is too late.

Universities and colleges must be required to play an important role in reversing this trend of increasing ignorance for today's technology to be used efficiently in tomorrow's products.

Malcolm F. Davidson
Heaviside Industries Ltd
PO Box 2742
Westport, CT 06880

A dream made possible
Thank you very much for the Hall of Fame piece in your Dec 1982 issue (p 85). I am sincerely honored to have been chosen as a member of the Computer Industry Hall of Fame. It is truly an accomplishment I would never have dreamed possible!

Gary A. Kildall
Digital Research
160 Central Ave
Pacific Grove, CA 93950
Tell me how to drive bipolar stepper motors in less space, at half the cost.

The L297 and L298 monolithic ICs from SGS may be the total solution to your bipolar stepper motor drive requirements. In fact, the L297/L298 combination provides all necessary interfacing functions between microprocessors and fractional horsepower bipolar stepper motors without additional active components. Applications include carriage control and daisy wheel positioning in printers and head positioning in disk drives.

The L297 Stepper Motor Controller
The L297 needs only clock and direction input signals to generate the four phases required to drive the motor. The L297 features full or half-step modes, with 2 steps per clock pulse possible in the full step mode. The device accepts input commands for clockwise or counter-clockwise operation. In addition, a home signal is generated to detect when the motor is in the home position.

The L298 Multiwatt® Dual H Driver
The L298 is a dual full-bridge driver in SGS' popular Multiwatt® packaging. It effectively replaces 8 power transistors (2.5A each), inverter stages, resistors and other level-shifting components. The four phase signals necessary to drive the L298 can be provided by the microprocessor or the L297.

Cut Constant Current Drive Costs in Half
The L297/L298 combination can also be used with external sensing resistors to provide constant current drive to the motor. Normally, this requires a minimum of two additional ICs (gate and comparator packages). This function is also implemented in the L297 along with the four phase drive signals. By using the L297 and L298 instead of discrete devices, it is possible to cut installed circuit costs by as much as 50 percent.

L293 Dual H Driver
The L293 power amplifier can be used in place of the L298 for lower current, lower power motor drive applications.

Block Diagram and Typical Application

Multiwatt® is a registered trademark of SGS-ATES Semiconductor Corporation.

Technology and Service
Sales Offices: Boston, MA (617) 690-6688; Chicago, IL (312) 490-1890; Indianapolis, IN (317) 241-1116; Dallas, TX (214) 733-1515; Austin, TX (512) 458-9182; Phoenix, AZ (602) 867-6100; San Francisco, CA (408) 727-3404; Los Angeles, CA (213) 716-6600; Sao Paulo, Brazil (11) 647-245.
New 64K DRAM...

“Nibble Mode” gives effective cycle time under 85ns

Here’s another first in VLSI from INMOS. It’s a 64K x 1 DRAM with a feature called “Nibble Mode”. By providing the on-chip equivalent of 4-way interleaving, the IMS2600 allows high-speed serial read/write access to 2 bits, 3 bits or a nibble, allowing effective cycle times below 85 ns.

Two high-speed versions of the IMS2600 are available:

<table>
<thead>
<tr>
<th>Access Time</th>
<th>Cycle Time</th>
<th>“Nibble Mode” Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS2600-10</td>
<td>100ns</td>
<td>160ns</td>
</tr>
<tr>
<td>IMS2600-12</td>
<td>120ns</td>
<td>190ns</td>
</tr>
</tbody>
</table>

But that’s not all. The part operates at cycle times down to 160ns and dissipates only 303mW max at 350ns cycle time (standby power is only 22mW). In addition, this advanced 64K DRAM offers “CAS before RAS,” a refresh-assist function that frees pin 1 for future 256K use.

The IMS 2600 is a direct plug-in replacement for other 64K DRAMs in existing designs. And it’s the 64K standard for new designs. Available now, the IMS2600 is packaged in a 16-pin, 300-mil DIP with the industry standard pinout.

For a low-cost evaluation kit, “Nibble Mode” application note, or for technical assistance, complete the coupon and mail it today.

P.O. Box 16000 • Colorado Springs, Colorado 80935 • (303) 630-4361 • TWX 910/920-4904 • Burlington, Mass. (617) 273-5150 • Dayton, Ohio (513) 439-0588 • San Jose, Calif. (408) 598-1788 • Whitefriars • Lewes Mead • Bristol BS2 2NP • England • Phone Bristol 0272 290 861 • TLX: 444723.

inmos is a trademark of INMOS.
PRIAM

THE DRIVING FORCE IN WINCHESTERS.
In the world of Winchesters, only one company delivers the proven technology and breadth of line you need—PRIAM.

PRIAM Time. We’ve paid our dues by delivering thousands of Winchester disc drives. We’ve proven our technical superiority and high reliability in the field. We’re the force to be reckoned with on the high-performance Winchester scene.

A growing family of winners. From the beginning in 1978, PRIAM has been the driving force in high-end Winchester technology. We’ve proven our technology in the 14-inch Winchester market with our 34, 68 and 158 Mbyte units. Our 8-inch drives have capacities of 35, 70 and 105 Mbytes in a floppy-sized package. And, we’re adding a 50 Mbyte 5½-inch drive to our growing family.

PRIAM Winchester Family.

<table>
<thead>
<tr>
<th>Size</th>
<th>Model</th>
<th>Capacity (MB)</th>
<th>Access Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>14"</td>
<td>3350</td>
<td>34</td>
<td>45 ms</td>
</tr>
<tr>
<td></td>
<td>6650</td>
<td>68</td>
<td>45 ms</td>
</tr>
<tr>
<td></td>
<td>15450</td>
<td>158</td>
<td>45 ms</td>
</tr>
<tr>
<td>8"</td>
<td>3450</td>
<td>35</td>
<td>42 ms</td>
</tr>
<tr>
<td></td>
<td>7050</td>
<td>70</td>
<td>42 ms</td>
</tr>
<tr>
<td></td>
<td>804</td>
<td>105</td>
<td>42 ms</td>
</tr>
<tr>
<td>5½"</td>
<td>502</td>
<td>50</td>
<td>35 ms</td>
</tr>
</tbody>
</table>

SMART Interfaces. PRIAM gives you the finest in interfacing flexibility. Our intelligent interfaces can control up to four drives in any mix, plus tape or floppy backup. They’re your fastest and easiest route to putting a Winchester database in your system. Or, if you have an SMD or ANSI controller, our drives can be supplied with a matching interface.

We keep listening. We’re driving upward to higher capacities, more compact packaging and enhanced performance with increased emphasis on quality and reliability. We believe our customers deserve high quality products. And we’ve committed the resources to meet that objective.

If you’re thinking about Winchesters, think PRIAM. For more details, call (408) 946-4600 or the sales office nearest you. Los Angeles (714) 994-3593, Minneapolis (612) 854-3900, Boston (617) 444-5030, New York (201) 542-8778, London 44-7357-3575.
Bipolar processor keeps 16-bit mini alive

0verlapping its 32-bit cousin the MV/4000 in price and performance, Data General’s 16-bit S/280 can churn through instructions at 900k-Whetstones/s. Garnered from a microprogrammed bipolar bit-slice CPU and onboard cache memory, this performance level puts the unit one up on most 32-bit minis and makes it twice as fast as its predecessor, the S/140.

The minimum 3-board set uses the standard 15" x 15" (38 x 38 cm) form factor resulting in a compact configuration. Both CPU and system cache occupy a single board. Memory control unit/input/output unit (MCU/IOU) resides on a second board, and memory takes up the third. A bidirectional interprocessor bus provides communication between CPU and MCU/IOU. Separate memory address and memory data buses allow the MCU/IOU to access memory independent of the CPU. When CPU, 2M memory, and floating point and burst multiplexer channel (BMC) options are installed, there are still 10 slots left.

Based on a 16-bit arithmetic logic unit (ALU) consisting of cascaded 4-bit microprocessor slices, the CPU uses third generation bipolar technology to gain a 150-ns cycle time. Running under the direction of microprograms taken from the 288K-bit control store, the CPU processes machine level instructions in a 3-stage pipeline. Simultaneously performing fetch, decode, and execute operations on sequential instructions improves CPU performance.

Microinstructions residing in 55-ns PROMS are coded in a 72-bit horizontal microword, which is divided into multiple independent control fields. This division allows concurrent management of hardware resources. Assembly language level performance is improved by reducing the number of microcycles to execute a line of code.

Accelerating overall performance by improving memory access and reducing CPU to I/O contention, the system cache lies between the CPU and main memory. Fabricated in 55-ns bipolar RAM, this local memory permits the effective CPU cycle time to approach that of the cache RAMs rather than that of main memory.

Storing recently used instructions and data, the 4K-byte cache is divided into two sets of 256 blocks. Each block contains four 16-bit words associated with the contents of a 4-word block in main memory. The two independent sets within the cache yield a hit rate of approximately 95%. This results in an effective memory access time of 193 ns and permits programs that run predominantly from cache to execute at rates greater than 3M instructions/s.

The computer’s memory control unit provides the primary CPU interface to memory. Memory modules formed of 16K- or 64K-bit 150-ns dynamic MOS RAMs are 2-way interleaved on every board. Modules come in 512K-, 1024K-, or 2048K-byte increments. Error correction and detection are carried out continuously when memory locations are either refreshed by the memory control unit or accessed by a specific CPU operation. This prevents single-bit errors from accumulating and many multibit errors from occurring.

The I/O control function serves as primary interface to CPU accumulators and main memory. It also incorporates realtime clock, programmable interval timer, and asynchronous port. A data channel I/O bus provides direct memory access through the I/O control unit at a bandwidth of 2.2M bytes/s input and 1.7M bytes/s output. The BMC option supplies a wideband I/O path independent of the standard data channel. This channel permits bursts of data to be transferred into memory at 13.3M bytes/s and out of memory at 9.7M bytes/s.

Performance levels of the S/280 provide the power necessary to handle time-critical online applications, including scientific computation and industrial automation and process control. Prices range from $30,000 for a CPU with 512K-byte memory to $72,025 for a package containing CPU with 2M-byte memory, floating point unit, 73M-byte Winchester disk, 1600-bpi streaming tape drive, and operating system and language support. The hardware floating point unit sells for $6000 and the burst multiplexer option for $1500.

Data General Corp, 4400 Computer Drive, Westboro, MA 01580. Circle 240
NEC gives you up to 85 megabyte capacity and 25 millisecond access time. Put NEC’s D2246 8-inch Winchester to work in your medium and heavy volume interactive applications. Its speed and capacity make it perfect for virtual memory, database access, communications, or anything else requiring frequent disk access.

The D2200 family includes 8-inch Winchesters with capacities of 22.5, 42.5 and 85 megabytes, with even higher capacities on the way.

The entire line offers significant savings in installation, packaging, maintenance, cost of ownership and cost per megabyte. Just the kind of savings you’d expect from the Spinwriter™ people.

NEC technology gives you more. For easy systems integration, the D2200s use a conventional Storage Module Device (SMD) interface.

With the D2200 Series you get sealed-module Winchester technology, accurate rotary arm-voice coil actuators, direct coupled dc motors, and state-of-the-art LSI circuitry. All these combine to provide an MTBF in excess of 10,000 hours. With a 30-minute MTTR.

Get the same reliability that’s made our Spinwriter printers a legend. In the final analysis, that’s what makes our D2200 Series the last word in 8-inch Winchesters.

For more information, send the coupon to NEC Information Systems, Inc., 5 Militia Drive, Lexington, MA 02173.

NEC Information Systems, Inc.

Spinwriter is a trademark of NEC Corporation.
Network combines voice and data

All communication—whether voice or data, at high or low speed—is performed on the LANmark network. By integrating local area networking with a communication switch, InteCom Inc provides the advantages of both while eliminating the need for separate installations. The 512M-bps network is currently available for Ethernet applications.

Integration is accomplished through use of the company’s integrated business exchange IBX S/40. Star architecture permits the IBX to perform LAN functions internally. Simultaneous voice and data are provided to each user from 8192 ports without degrading performance standards. Terminals can be up to 2000’ apart for twisted pair wires or up to 25,000’ apart with fiber optics.

Both format conversion and protocol translation are performed by the IBX through packet switching techniques. The architecture is based on a non-blocking switching matrix and redundant 32-bit computers called the master control unit (MCU). The MCU contains 4M bytes of directly addressable memory and 67M bytes of disk resident memory, and handles as many as 64 switching networks. Each pair of these networks routes circuit and packet transmissions to different destinations.

Coordinating functions are provided for up to 32 distributed interface multiplexers (MUXes), the next layer in the architecture. The MUXes support the 8192 data ports and link up to 12,000 electronic telephones called integrated terminal equipment (ITE).

Both format conversion and protocol translation are performed by the IBX through packet switching techniques. The architecture is based on a non-blocking switching matrix and redundant 32-bit computers called the master control unit (MCU). The MCU contains 4M bytes of directly addressable memory and 67M bytes of disk resident memory, and handles as many as 64 switching networks. Each pair of these networks routes circuit and packet transmissions to different destinations.

Coordinating functions are provided for up to 32 distributed interface multiplexers (MUXes), the next layer in the architecture. The MUXes support the 8192 data ports and link up to 12,000 electronic telephones called integrated terminal equipment (ITE).

Single-data option boards within each ITE provide direct RS-232-C or RS-449 interface with data terminals, eliminating the need for modems and integrating voice and data. Because the ITEs also connect the IBX directly to Ethernet devices or to an Ethernet network, conventional Ethernet coax and transceivers are not used.

LANmark Ethernet can extend an existing network, both in distance and in number of attached devices; replace the Ethernet network; or interconnect existing systems. Among other Ethernet enhancements are expansion of bandwidth from 10M to 512M bps, full- instead of half-duplex, and packet and circuit switching where none existed before.

In a future application, LANmark will also replace IBM 3270 coax with twisted pair wiring. The 3270 workstations will be plugged into specially equipped ITEs, then to the IBX, and finally to the 3274 cluster controller. Workstations, therefore, will have access to many separate cluster controllers rather than to the present single controller. InteCom Inc, 601 InteCom Dr, Allen, TX 75002. Circle 241

Processor family eases communications

The Netway family of interface processors from Tri-Data allows the user or OEM to configure arbitrary networks without regard to the equipment manufacturer or the communications protocol used. Netway Processors provide a variety of hardware interfaces to make electrical connection between various brands of equipment. Software protocol conversion allows them to talk to one another, and firmware handles network management.

(continued on page 34)
This Lundy has an all-pervasive breath-takingly beautiful 4097th color.
It's called high resolution.

Lundy's T5484 Color Raster Graphics Terminals have the highest color resolution available.
Think of that resolution as a Super Hue—a 4097th color—that mixes with all other 4096 colors to make each as sharp as you've ever seen.

Our 5480 Series of color raster terminals and workstations aren't the only ones with 4096 colors. But the colors have never looked so good. Because resolution has never been higher.

New standards.
The 1536 x 1024 pixels set a new standard for displayable resolution. Raster staircasing is significantly reduced without the complexity of anti-aliasing.
But new standards don't stop with highest resolution. Areas are filled virtually instantaneously so the 5480 Series also sets a new standard for polygon fill.
Vector generation sets a new standard, too. The time lapse between the moment you draw until the picture is generated is as much as 50 percent faster than many others.

Enemy of obsolescence.
You shouldn't be forced to ditch programs in place when you buy a new terminal. For that reason, standard with all 5000 Series models is a Tektronix 4010 or 4014 Emulator with mixed-mode software switch for enhancing existing programs with color-native protocol.
Currently, our terminals can be driven by many of the leading software products. And the list is growing rapidly. Because Lundy is committed to an aggressive third-party software development program to provide the most comprehensive application packages.

Lundy will help you see more in graphics.
When you look at our 5480 Series, take a close look at Lundy, too. We're a company that's as good as its products.
A company that balances high tech with solid business sense.
A company as proud of its service (one of the largest service organizations in the industry—39 locations nationwide) as its engineering expertise.
A company you can count on to help you see more in graphics—and get more out of graphics—both now and in the long term.
For more information, write Lundy, Glen Head, New York 11545, or call: (516) 671-9000.

The Lundy 5698 displays 256 high resolution colors at a time. User downloadable character fonts, programmable character sizes.
Any mechanism that facilitates communications between hosts, servers, and terminals is a valuable addition to a system integrator’s toolkit. Tri-Data has developed such a mechanism in its Netway processors. The family of processors is based on the company’s proprietary operating system, Netway Communications Operating System, implemented on distributed multiple z80 microprocessors with appropriate connector and networking hardware.

The family consists of the Netway 200 communications processor, Netway 100 device interface processor, the Netway 50 interface, and the Netway communications operating system. The communications processor handles remote and local network management. Protocols supported include BSC3; Burroughs Poll/Select; ICL C0I, C03 (full XBM); start/stop ASCII; IBM 3270 SDLC; IBM 3270 SNA/SDLC; IBM IPARS (SABRE); and X.25 with X.3, X.28, and X.29.

Netway 200 comprises a processor board with a Z80 CPU, 256K bytes of RAM, multiple DMA controllers, and two RS-232 ports; a communications board with four RS-232 ports, a floppy disk controller, a Centronics parallel printer interface, and a 100K-byte/s SASI bus; and an 800K-byte 5 1/4" floppy disk drive. A 10M- or 15M-byte 5 1/4" Winchester drive is optional.

RS-232 ports can be configured to support asynchronous, bisynchronous, or bit oriented synchronous transmissions under software control. The SASI bus is used as a high speed communications channel, linking up to eight Netway 200 and/or external Winchester drives into a local network.

The Netway 100 device interface processor connects a workstation or host port to the Netway local network via an RJ11 tap to a twisted pair cable. In addition, it provides emulation and presentation services to the node being served. One Netway 100 is required for every workstation or host port unless its functions are workstation or host resident. The Netway 100 contains a Z80 and 64K bytes of RAM, and it communicates at up to 19.2k bps.

Basically a shielded cable with a plug at one end, the Netway 50 interface connects the Netway 100 to the Netway 200. Using a 4-wire RS-422 interface, Netway 50 can connect workstations or host ports up to a distance of 2 mi.

Netway communications operating system consists of an operating system kernel written in Z80 assembly language, with standard driver modules for interfacing with various hardware and software protocols. Full multitasking is implemented, so that multiple host protocols can be handled concurrently. The system also maintains a library of user messages and stores information and statistics on network operation for later review.

Dynamic network reconfiguration (rerouting messages around bottlenecks) is available on the system, as is password protection, and automatic log-on to value added networks and data bases via symbolic addressing.

Availability is quoted as early in the second quarter of 1983 in small volumes (5 to 15), with volume shipments to follow. The price of a Netway 200 configured for IBM 3270 Bisynch protocol will be $11,040 for a single unit, or $7680 in OEM quantities. Tri-Data, 505 E Middlefield Rd, Mountain View, CA 94043. Circle 242

Shown here is Tri-Data’s Netway 200 communications processor with communication board (left), and processor memory board (right). Card cage at rear is presented with high density 5" floppy disk drive and 10M-byte ST506 compatible hard disk installed.
NEW CTS conformal SIP networks offer...

LOW board profile (.195")
LOWER price

When cost is critical, quality a must, specify CTS Series 770 conformal SIP networks

CTS, acknowledged leader in resistor networks, now offers a line of conformal SIPs with an on-board height no greater than a DIP package (.195"). CTS experience in resistor network technology is now available in a new conformal network featuring a low selling price. Priced lower than molded or ceramic networks, CTS conformally coated SIP networks are finding more and more applications.

Series 770 networks are designed for high volume, cost-sensitive applications such as electronic games, personal computers, telecommunications gear and automotive devices. They are winning acceptance from OEM's who demand CTS reliability at a reasonable price.

Available in 2 to 12 pin sizes, these SIP networks can be supplied for large volume custom requirements or in many standard resistance values for fast off-the-shelf delivery.

Contact your CTS Distributor for off-the-shelf delivery or write for complete specifications to: CTS Corporation, 406 Parr Road, Berne, Indiana 46711. Phone: (219) 589-8220.

CIRCLE 22

CTS means Reliability
CTS CORPORATION • ELKHART, INDIANA

Series 375/465 Single turn side and top adjust cermet trimmers.
Phone: (219) 589-8220 CIRCLE 23

Loudspeakers 2" through 8" .05 oz.-20.0 oz. ferrite magnets.
Phone: (512) 546-5184 CIRCLE 24

Temperature Compensated Crystal Oscillators
High stability and reliability.
Phone: (815) 786-8411 CIRCLE 25

Series 710 Custom conductive plastic strip or disc resistors.
Phone: (704) 684-6451 CIRCLE 26

CTS Series 771 Standard height (.350") SIP Networks also available
When higher power handling is a consideration, the Series 771 conformal SIP is the answer. They offer the same well-known CTS reliability and are available in 4 to 20 pin sizes.
Excelan's Exos/101 frontend processor fully implements Ethernet Version 1.0 and is compatible with Version 2.0. The 8088 processor and memory are almost exclusively available for the execution of high level protocol software, thereby offloading this task from the host processor and simplifying LAN integration into the host environment.

High level protocol software consumes large amounts of host computer time and memory if executed there. Communication protocols are interrupt intensive and require much context switching. Since most operating systems are not optimized for performing these functions, they must be modified to do so efficiently. Modifying an existing operating system is no trivial programming task and becomes prohibitive when changes must be made in the protocol, or when the operating system is updated.

As the cost of microprocessors and memory moves down the semiconductor learning curve, it becomes more practical to offload communication control to an intelligent peripheral. Communication then becomes a matter of a simple operating system call, and the host resources can be devoted to important applications, such as computation and serving user requests.

The 16-bit 8088 CPU and 64K bytes of RAM in the Exos/101 Model 1 allow it to run high level protocol software, which can be downloaded from the host or from the network. Scratchpad and data areas consume 4K bytes, leaving 60K bytes free for high level software or up to 32 hardware-chained message buffers. The Model 2 has an additional 64K bytes of RAM, which can be used for software.

With a high level interface established between the host and the network, both the network and the protocols can change without impacting existing application programs. Likewise, operating system changes will not affect the way a node looks to the network, and file or message service can go on as usual.

Each Exos/101 has 8K bytes of PROM firmware, which acts as a network executive. Called NX/101, this firmware manages the Ethernet interface and maintains network management statistics such as number of error-free transmissions and receptions, CRC errors, collisions, timeouts, packet fragments received, alignment errors, and buffer overflows. In addition, this firmware manages the Multibus interface, generating all necessary control and data signals for the standard Ethernet interface. These signals are transmitted via the shielded cable from the edge connector on the top of the board to the interface.

Full diagnostics include loopback and a time division reflectometer function that locates cable faults to within about 35' (11 m). Firmware also provides a realtime, multitasking, mini-operating system kernel that defines the software environment for high level protocol development and execution.

Via hardware, the Exos/101 can recognize and respond to packets sent to up to 256 multicast addresses without interrupting the onboard 8088 or the host processor. Private bus access has also been provided to connect other boards supporting various link level connections.

Although no high level protocol software is provided at this time, the company has announced its intention to develop and support standard ISO protocols. Moreover, it plans to market and support de facto standard protocols from third parties, such as the Transmission Control Protocol/Internet Protocol and Xerox's Network System. The company also intends to support proprietary protocols for specific applications that individual customers have developed or are in the process of developing.

The Ethernet component of the Exos/101 is presently implemented as a bipolar finite state machine, using discrete components. As VLSI technology advances, and full-function Ethernet controller chips become available at reasonable prices, Excelan plans to replace discrete components with single chips, reducing real estate and power requirements without altering the interface or capabilities of the processor.

Excelan has also announced its intention to adapt the Exos/101 concept to non-Multibus environments, and to license the resulting customized hardware for OEM manufacturing. The company will also offer to redesign OEM supplied hardware to incorporate the appropriate VLSI Ethernet technology when it becomes available.

The Exos/101 Model 1 is priced at $1560 each, and $810 in OEM quantities of 500. The Model 2 is priced at $1795/$930. Both models are quoted as available for immediate delivery.

Excelan, Inc., 2180 Fortune Dr, San Jose, CA 95131.

Circle 243

Share your knowledge
Other system designers face the same problems you've already solved. You could help them by writing a technical article for Computer Design. For a free copy of our Author's Guide, circle 503 on the Reader Inquiry Card.
The World's Most Elegant Microprocessor Family is Here. Now.
NS16000
Elegance is everything.
No more band-aids to stretch an architecture.
The NS16000 features a totally new, totally practical architecture—not simply an enhancement of an existing one. With supporting National and third-party software, the NS16000 microprocessor family becomes the first to offer system designers the opportunity to adopt the migration path and performance of a full 32-bit architecture that will endure to the end of the century. That's elegance.

No more programming in novel ways for obscure reasons.
Only the NS16000 microprocessor family’s architecture is deliberately based on high level languages, intentionally designed to support their use. The architecture’s structure and behavior correspond directly to the objects and operations of HLLs—enabling symmetric use of general-purpose registers, memory locations, expanded addressing modes, data types, and sophisticated instructions. The disadvantages of writing programs in HLLs for microprocessor-based systems have now been elegantly relegated to computer history.

No more dead-end segmentation.
The NS16000 is the first commercial microprocessor to solve the problems of large memory management by using both uniform addressing and Demand Paged Virtual Memory. With this memory strategy—equivalent to that used in the VAX™-11 and all present IBM mainframe computers—each programmer, each program, each task, can simultaneously and independently access a uniform addressing space of 16 megabytes, without reservation or special exception. That’s elegance.

Think about it.
The New Criterion in Software Productivity:
The NS16000 Microprocessor Family.

The pure migration path and the virtuoso performance inherent in the NS16000 microprocessor family are just the beginning. The NS16032 CPU, now available, has a 16-bit-wide data path to memory and 32-bit architecture. Other CPUs in the family will feature 8- and 32-bit-wide data paths, but the 32-bit implementation in each ensures that the software you write today will work without modification tomorrow, when you upgrade from one CPU to the next.

Evaluating performance: a 32-bit integer multiply on the NS16032 CPU takes only 8.3µs at 10MHz.

The architecture of the NS16000 family is based on the roots of all the most powerful high level languages—to fully support the use of HLLs.

Programmers have long asked for a microprocessor designed with the software in mind. The regularity of the architecture for which code is being generated significantly affects its quality: the more regular the architecture, the simpler it is to produce lean, fast code. And, of course, designers and programmers write programs more quickly in high level languages.

The CPUs in the NS16000 family provide a high degree of regularity in the arrangement and use of their 32-bit registers. Data can be read or written 1, 8, 16, or 32 bits at a time, as a sophisticated program requires. Transfers from one register to another are not restricted: no special conditions inhibit a programmer's creativity.

The virtuosity of the NS16000 instruction set is clear. It includes over 100 basic instruction types, chosen on the basis of the use and frequency of specific instructions in various applications. Special-case instructions, which compilers cannot use, have been avoided.

The instruction set is also symmetrical: instructions can be used with any addressing mode, any operand length (byte, word, and double-word), and can use any general-purpose register. Instructions are genuine two-operand instructions as well.

These factors, combined with the regularity of the NS16000's architecture, mean that programs require significantly less code—greater code density, in fact, than the VAX-11. The simplicity by which it now becomes possible to implement a compiler, for example, is matched only by the increased speed of its execution.

The NS16000 family provides the largest number of different addressing modes ever included in a microprocessor.

Elegant programming demands that instructions be as powerful as possible, and that the range of addresses be as large as possible. So to be effective, a powerful instruction set must be accompanied by a powerful set of modes of referring to data in registers and memory.

The NS16000 architecture supports not only the standard addressing modes common to most processors (register, immediate, absolute, and register relative, for example), it also introduces HLL-oriented modes unique to microprocessors:

1. Top-of-stack (a simple, very powerful mode used to evaluate arithmetic expression in HLL);
2. Scaled Indexing (used to access elements in byte, word, double-word, or quad-word arrays);
3. Memory Relative (used for manipulating fields in a record); and,
4. External (used to access data in separately compiled modules).

Moreover, there are no restrictions on the use of these addressing modes—an instruction that operates on data of a particular kind can use any of the addressing modes that refer to that data.

With an architecture that supports uniform addressing, the NS16000's Demand Paged Virtual Memory strategy makes a gigantic memory possible at a minimum cost.

The NS16082 Memory Management Unit (MMU), provides dynamic address translation, virtual memory management, memory protection, and both hardware and software debugging support. Customers now sampling this MMU are impressed with its raw power.

The NS16082 breaks the logical address space into 32,768 pages, each with a fixed size of 512 bytes. Which specific 512-byte pages of a program or data are actually in real memory is a function of the most recent demands of the program itself.

This Demand Paged Virtual Memory operates automatically, and gives an applications programmer complete freedom from any consideration of memory size or allocation strategy. Since the operating system places part of the user's programs and data in peripheral storage and brings them into real memory only as needed, the user may regard the combination of real and peripheral storage as a single, large memory, and can write large programs without worrying about the physical memory limitations of the system.

The power of Demand Paged Virtual Memory allows any number of separate and independent programs or tasks to execute cooperatively and efficiently in a substantially smaller (real) memory configuration than needed by a microprocessor using a segmented memory management scheme.

And, because it does not limit data base growth, Demand Paged Virtual Memory provides for continuing future data expansion.
Floating point is just one of the nine data types that the NS16000 architecture directly supports.

The NS16081 Floating Point Unit (FPU) offers very high-speed floating-point operations for both single- and double-precision operands. A 32-bit floating-point multiply, for instance, takes place in 4.8µs at 10MHz.

Designing the NS16081 into a system will allow programmers to treat floating-point numbers as any other data types, and any of the addressing modes may be used to reference them. Customers now sampling this FPU are amazed at its performance.

The optional use of the FPU and MMU Slave processors—integral parts of the NS16000's architecture—gives the systems designer the ability to determine a price/performance trade-off while preserving all the initial software investment.

Evaluation tools are available now.

The DB16000 evaluation board is a complete microcomputer system. It carries the NS16032 CPU, the NS16201 Timing Control Unit, sockets for the MMU, FPU, and ICU (Interrupt Control Unit), 32K bytes of onboard RAM, a wide range of both standard and optional I/O interface devices, and a monitor program in PROM. To allow interfacing with a variety of computer systems, a complete pin-out of CPU addresses and functions for data and control are also included. Two BLX connectors enable functional enhancements.

A component evaluation kit (the NS160KIT) is also available, with complete documentation for each part.

The first products in a line of development tools—the NSX-16™ with a PASCAL compiler, and the ISE/16™—are available now.

The NSX-16 software development package allows quick and easy compiling or assembly of NS16000 programs on the VAX-11, using the VMS™ operating system. The package includes a PASCAL compiler, assembler, linker, librarian, symbolic debugger, and other utilities. Once compiled, programs can be down-loaded through a serial data link to the DB16000 for execution. (A NSX-16 hosted on RSX™-11M, and a C cross-compiler for VAX will be available by mid-year. Before the end of this year, a full NS16032-based development system, with a UNIX® operating system and a choice of either a C or PASCAL compiler, will also be available.)

The ISE/16 In-System Emulator—the first in a series—is available to ease integration of user software with NS16000 hardware. It runs with the NSX-16 software development package, and allows real-time emulation of the NS16032 CPU, the NS16201 Timing Control Unit, and the NS16082 Memory Management Unit.

The availability of third-party software for the NS16000 family is growing day by day.

Suppliers are now working on operating systems (UNIX, for example), language compilers (such as PASCAL, C, and COBOL), and software for program development (among them, on CP/M®).

Training classes are in progress now.

Courses lasting from two to five days—held either at the Microprocessor Systems Division Training Center, or on-site—cover "The NS16000 Architecture," "NSX-16 Software Development Support on Starplex II™ or VAX," and "ISE/16."

Now you have every reason to explore elegant applications using the NS16000 microprocessor family—from personal computers, to graphics systems, to process control.
Varied design approaches provide gateways

Attempting to link the asynchronous ASCII world of personal computers to the synchronous world of IBM SNA and public X.25 wide area networks has spawned a variety of product offerings. These range from terminal/cluster controller emulations to local area networks tied to wide area networks with gateway processors. Which product is adaptable to a system is dependent upon the particular application requirements and hardware already in place. There truly is no single product that meets all application needs.

Perhaps the most straightforward approach is to have personal computers such as the Tandy Model II or Apple II emulate the characteristics of popular ASCII terminals. Protocol converters such as the PCI 1076 from Protocol Computers, Inc can link asynchronous terminals to the synchronous protocols of IBM's proprietary SNA/SDLC networks. Public networks can be linked using the X.25/HDLC protocol. In such cases, the personal computer loses control of the keyboard and CRT screen to the converter. Within system firmware, keyboard and CRT control information is translated from ASCII format to commands understood by synchronous terminals such as the IBM 3278. Information is also translated from synchronous host computer to asynchronous terminals in much the same manner.

Besides providing 3278 terminal emulation, converters such as the PCI 1076 also tackle the functions of an IBM 3276 cluster controller. Since the controller contains the intelligence and memory in a typical SNA clustered configuration, the 1076 buffers data packets for as many as seven personal computers. It also provides error detection and retransmission between the host and cluster.

Printers, also under the control of the converter, direct hardcopy output directly to it rather than the screen. In addition, the IBM PC software package allows for downloading files from the host for local use.

Uploading files from the personal computer to the host is not supported since there are no host application programs available that deal with locally processed data. Files from an IBM host routed to the personal computer are stored in either printer format or a continuous data stream. The 7887 software package for the IBM PC is priced at $200, with the price of a single-port PCI 1076 quoted at $3100.

Another approach is possible with Computer Development, Inc's ETC 100 communication controller. The ETC 100 supports communication between personal computers, between IBM SNA networks, and between public X.25 networks. This local area network is configured as a star. Similar to Protocol Computer's approach of a master/slave relationship between personal computers and converter, the ETC 100 also handles keyboard and screen handling chores. In addition, it emulates IBM 2780/3780 devices in either SDLC synchronous or BSC bisynchronous formats. File handling software is provided in machine language formats for a variety of personal computers as well. Not only does this provide file downloading between host and personal computers, but it also permits files to be transferred between personal computers.

How the ETC 100 differs from Protocol's approach is in the manner that terminal characteristics are handled. Rather than have personal computers emulate ASCII terminals, the controller maintains a device table listing the actual screen and keyboard characteristics of the IBM PC, Zenith Z89/Z100, Televideo 802, NEC Advanced Personal Computer, Eagle II, and XEROX 820. Functions such as cursor and carriage control can be translated between personal computers as well as translated for synchronous terminal emulation.

Different personal computers can communicate with each other and remote hosts via the controller. Files, passed transparently through the controller, are reformatted by file servers residing within each personal computer. Pascal versions of the file transfer program are available on diskettes for those processors not already supported with machine language versions. Likewise, terminal characteristics are supported for personal computers not already contained in the ETC 100. A user merely enters a series of commands into the controller's system monitor program. These commands describe such functions as control characters and data transfer formats. Thus, designers are free to support any personal computer they choose at any time they choose. The fear of incompatibility is thus eliminated.

Each ETC 100 contains, in 8K bytes of firmware, the necessary information to convert 110- to 56k-bps asynchronous communications to synchronous SDLC/HDLC data link protocol and SNA/X.25 network and transport protocols. The system monitors download the necessary control data into 16K bytes (expandable to 64K bytes) of system RAM. Data formatting and control transfer for terminal communications is also handled this way.

Up to four personal computers are supported with individual serial I/O ports. A single-token local area network controller arbitrates interprocessor requests for an optional auto-dial modem or printer (either serial or parallel). Besides serving printers and modems, either one or both parallel ports can service synchronous SNA or X.25 communications and bisynchronous SNA transfers.

Using the onboard 6809 microprocessor for character translation, a gateway between SNA and X.25 networks can also be established. Protocol Computer's 1076 handles SNA/X.25 gateways as well, with separate SNA and X.25 converters.
The VISUAL 500 and VISUAL 550 are ergonomically advanced terminals that emulate the Tektronix® 4010/4014 but cost only about half as much. And they have 768 x 585 resolution for sharp text and graphic display on a large 14" screen.

Ergonomic features include a lightweight plastic housing that can easily be swiveled and tilted for maximum operator comfort. A detached keyboard, sculptured keys and non-glare screen are only a few of the many other human engineering advantages characteristic of VISUAL terminals.

Both the VISUAL 500 and VISUAL 550 are compatible with standard software including PLOT 10™, DISSPLA™, TELL-A-GRAF™, SAS/GRAPH, DI3000/GRAFMAKER, INFOgraf, SPSS™, TEMPLATE™, GSS-PLOT™, and GSS-CORE™.

Advanced graphics features include: Resident Vector draw, point plot, circle and arc draw, rectangle draw, multiple linestyles and patterns with rectangle pattern fill. Raster scan technology provides fast data update and develops a bright display image. An Auxiliary Port supports printer/plotters and data tablets.

Powerful alphanumeric operation is also provided, displaying 80 characters by 33 lines with separate display memories for alpha and graphics modes. The VISUAL 500 provides selectable emulations of the DEC VT52™, Data General D200, Lear Siegler ADM-3A, and Hazeltine 1500 terminals. The VISUAL 550 is DEC VT-100 protocol-compatible as well as a character or block mode terminal which complies to the ANSI X3.64 standard.

Call or write for details.

Service available in principal cities through Sorbus Service Division of Management Assistance Inc.

VISUAL Technology Inc.
540 Main Street, Tewksbury, MA 01876
Telephone (617) 851-5000. Telex 951-539
Using the SNA + software package and a network interface module, each IBM PC on the G-Net broadband network sends data packets. These packets are suitable for translation on the Gateway Communications gateway processor that handles 3270 terminal emulation and 3274 cluster control functions.

Error detection and retransmission is also provided for both local and remote asynchronous communications. A proprietary frame protocol ensures that messages are received without interruption. It also causes retransmission from the last good byte sent. The proprietary frame protocol can be embedded into SNA/X.25 transmissions for an added measure of security when ETC 100 controllers are at either end. Normal error detection with these protocols will cause retransmission of the entire message. However, SNA hosts without ETC 100 cannot detect the frame protocol since it is embedded into the data packet. Prices for the ETC 100 controller and associated software are available upon request.

Local area networks with baseband buses are linked to SNA and X.25 networks with gateway processors from Gateway Communications, Inc. The company developed an Ethernet-like network with a proprietary carrier sense/multiple access scheme to support up to 16 serial communication ports (RS-232-C or RS-422), and 8 high speed circuits operating at 56kbps. Additional processor boards are automatically reconfigured when added. These processors are dedicated to handling additional local network capacity or committed as gateways to wide area networks such as SNA and X.25. The executive can download application packages to handle 3270 BSC, 3270 SNA, 3270 DSP, and X.5 ASYNCH. Gateway processors can also serve as host pads for communications between SNA hosts and X.25 public networks.

Prices for the gateway processor and G-Net interface modules are quoted at $1560 and $595, respectively. SNA+ pricing is available upon request. Computer Development, Inc., 6700 SW 105th, Suite 200, Beaverton, OR 97005, Gateway Communications, Inc, 139 E Alton Ave, Santa Ana, CA 92707, and Protocol Computers, Inc, 6150 Canoga Ave #100, Woodland Hills, CA 91367.

Circle 244 Circle 245 Circle 246
The Alternative to High Performance
Start/Stop Tape...

at 40% less cost.

Improve system performance with CacheTape™

Start/Stop Performance

CacheTape outperforms or matches tape performance with tension arm, vacuum column, and 100/25 ips streaming tape drives at 1600 BPI using existing software.

<table>
<thead>
<tr>
<th>Tape Type</th>
<th>Measured Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streaming Tape</td>
<td>23 min.</td>
</tr>
<tr>
<td>Vacuum Column (75 ips)</td>
<td>10 min.</td>
</tr>
<tr>
<td>CacheTape - Model 890</td>
<td>10 min.</td>
</tr>
<tr>
<td>Vacuum Column (125 ips)</td>
<td>7 min.</td>
</tr>
<tr>
<td>CacheTape - Model 891</td>
<td>7 min.</td>
</tr>
</tbody>
</table>

*on a DEC PDP-11/34 under RSTS™ using file save routines for 16 MB with 4K blocks.

Tape Adapter Compatibility

CacheTape easily interfaces and operates with industry-standard tape adapters. CacheTape is completely interface compatible with existing couplers for products from DEC, DG, TI, and couplers for Multibus, S-l00, and other popular mini- and microcomputers. Take advantage of CacheTape's easy integration features and increase your system performance while eliminating extra time and expense from your budget. With CacheTape, you can use your current controller investment wisely and effectively... Plug in CacheTape for immediate benefits.

Software Transparent

Cipher's CacheTape products are completely software transparent with current vacuum column or tension arm start/stop tape software. CacheTape provides start/stop tape performance for tape applications such as file-oriented disk backup, transactional journaling, tape sort/merge, and data acquisition. Utilization of a cache memory in the tape drive means that CacheTape can provide higher performance than existing tension arm or vacuum column tape drives at much less cost. Just plug CacheTape into your system now...and benefit from total software compatibility.

Up to 40% Less Cost

- CacheTape Model 890$2820**
- CacheTape Model 891$53420**
- versus 10 MB Tension Arm$3900
- versus 75 MB Vacuum Column$4800

With CacheTape now available, do vacuum column and tension arm tape drives really make sense anymore?

CacheTape... the start/stop tape alternative

- Up to 40% less cost
- Start/stop performance
- Tape adapter compatibility
- Software transparent

Available Now

OEM Quantities

Cipher Goes Beyond

CacheTape

Cipher Data Products, Inc.

10225 Willow Creek Road, PO. Box 85170, San Diego, California 92138-9198
Telephone: (619) 578-9100, TWX: 910-335-1251

Cipher Data Products (UK) Ltd.
Camberley, Surrey, England
Telephone: 0276-682912
Telex: 858329

Cipher Data Products S.A.R.L.
Paris, France
Telephone: (11) 668 87 87
Telex: 203935

Cipher Data Products GmbH
Munich, West Germany
Telephone: (089) 807001/02
Telex: 521-4094

CIRCLE 29
The black facts about c

Fact 1. Software development is expensive.
Raster Technologies' Model One graphics systems feature software tools that speed application development. Like an integrated local debugger. Command stream translator. Local command execution. A complete HELP facility. And truly easy to use macro programming. These unmatched software tools save you time and money.

Fact 2. Software redevelopment is even more expensive.
With Raster Technologies' fully compatible Model One family, you can take advantage of the latest hardware without any software rewrites. This means an easy upgrade to a more powerful product while still using the same graphic commands, program development tools and host library. So the application developed for the best hardware today can run on the best hardware tomorrow. Without modification.

Fact 3. Performance is a lot more than good specs.
Graphics performance goes beyond pixel and vector timing specs. It is the ability to display a complex picture without having to wait. Provide instantaneous interaction between an application program and its user. And efficiently communicate with a host computer. The kind of total graphics performance you should measure before you buy.
The Model One family from Raster Technologies offers maximum flexibility at the lowest cost. Because it lets the user select the combinations of display resolution, color and refresh rates that are right for that particular application. Factors that are different for every application.

Graphics applications demand flexibility.

Raster Technologies is dedicated to one business: graphics. All our development efforts focus on advancing graphics technologies. With the latest microcircuits. The newest and fastest microprocessors. The most advanced display list architectures. And the most innovative pipelined multiple processor designs. All to advance graphics capabilities compatibly. And keep today's customers with us tomorrow.

Graphics technology is moving fast.

You should benchmark the Model One.

All three Model One graphics systems—the Model One/25, Model One/40 and Model One/60—offer the best software development tools. Total compatibility to eliminate software redevelopment problems. Total systems performance. Maximum flexibility. And a dedication to the graphics business.

The Model One/25 features vivid full color imaging performance with 512 x 512 resolution. The Model One/40 features ultra high 1024 x 1024 resolution. The Model One/60 features 100% flicker-free 60 Hz non-interlaced display with 768 x 576 resolution. All support our Advanced Graphics Application Development Firmware and powerful display list package.

Put the Model One family to the test.
Development tool eases complex design tasks

Anticipating the need to support multiple-microcomputer systems, the Rockwell Design Center (RDC) allows users to develop and debug programs simultaneously on four separate processors. The RDC can operate as a standalone development system, or as a satellite terminal to an Intel Isis-II system. In the latter case, the designer can use the familiar host operating system, editor, and mass storage facilities, while using the RDC to download and debug code for multiple-microcomputer systems.

The company notes that multiple-microcomputer systems fit well into dedicated realtime control applications where the traditional approach for software design is to split control functions into speed-dependent categories. Using single microcomputers, the designer must combine interrupt techniques with different sections of the realtime program. Control functions operating at different speeds can be interleaved to operate at their required speeds while still remaining within the microcomputer's capabilities.

Using single-chip microcomputers complicates program design and debugging since processors must jump from one section of code to another. Changes in one section of the program affect the functional timing of others. Development times are difficult to predict, and associated costs tend to escalate.

Multiple microcomputers overcome this liability by dedicating a single microcomputer to each realtime task. Smaller programs, assigned to separate processors, are less costly to design and easier to debug. They minimize the complex timing relationships involved with a monolithic control program. With this approach, different realtime control functions are processed in parallel to reduce the complex interleaving of different sections of code. This results in faster responses for individual functions, affecting overall system throughput.

Conventional development systems work well at integrating hardware and software in single-computer systems, but are not useful for multiple-computer applications. Development tools are typically dedicated to one processor, making it difficult to view other system segments. Consequently, if hardware/software integration problems do appear, it is hard to determine which processor is faulty.

The RDC supports multiprocessor systems with six buses. Four of the buses are dedicated to the target processor systems. The fifth allows I/O functions to be developed using standard board modules, and the sixth acts as the master controller for overall system integration by supervising the activities of the other buses. Such resources as 5 3/4" floppy disk drives, an optional PROM programmer, a 12" (30-cm) CRT display, a parallel printer port, and 64K bytes of dual-ported memory used for downloading code and actual program execution are provided.

This independent allocation of memory allows software to be debugged while application programs (such as editors and assemblers) are also executing. (continued on page 50)
WE BELIEVE THE STD-BUS
SHOULD FOSTER INNOVATION
NOT STIFLE IT.

IN THE WORLD OF
INDUSTRIAL CONTROL,
HARDWARE ALONE
JUST ISN'T ENOUGH.

At Datricon, we manufacture an
extensive line of high performance
hardware for the
STD-Bus. However,
unlike most other
suppliers, we don't
stop at hardware
and leave you to
search further for
the right software and development
support to make it all work.

We provide all the necessary tools
to turn your innovative ideas — and
your everyday control requirements
— into working solutions. As easily,
quickly and economically as
possible.

YOU NEED A UNIFIED
FAMILY OF HARDWARE,
SOFTWARE AND
DEVELOPMENT SUPPORT.

Our complete line
of coordinated hard­
ware includes power­
ful single board com­
puters, memory
expansion
cards,
and ana­
log, serial
and paral­
el I/O. Plus
a host of system
support cards and
packaging hardware.

We give you a choice of two
powerful operating systems to match
the requirements of your application.

D-FORTH is our own enhanced
FORTH-style language system. The
inherently ROMable code produced
by D-FORTH eliminates the develop­
ment/target system dichotomy and

associated problems common in
other language implementations.

For general purpose applications,
we offer OS-9*, the most advanced
multi-tasking, multi-user operating
system available for 8-bit micro­
computers. OS-9 provides support
for BASIC-09, PASCAL, COBOL,
C, and a wide selection of business,
word processing and special appli­
cations programs.

Our DV-9 Software Development
System enables you to streamline
your application, and simplify the
integration and debugging of your
final system solution. And it's all
backed by Datricon's field and fac­
tory application engineers for expert
assistance when you need it.

PUT YOUR
BRIGHT IDEAS TO
WORK. CONTACT
DATRICON TODAY.

In the industrial control world,
there's simply no faster, surer or more
cost-effective way to implement
innovative solutions than with
Datricon's unified family of STD-bus
products and services.

For more information or to discuss
your needs, contact us today. Use the
reader service card, write, or call.

Datricon Plaza
155 B Avenue
Lake Oswego, OR 97034
Phone: (503) 636-7671
TWX: 910 455 8184

* OS-9, trademark of Microware
Development tool
(continued from page 48)
A single-board computer on the system bus acts as a host for software development before programs are downloaded into target personality modules. These modules currently support the company's 6502 based microcomputers. Dual processors (the system CPU and the target processor) allow the user to maintain control even while the target processor is executing a program. Five internal breakpoints, with synchronous outputs, can be used with an external logic analyzer. In conjunction with a user-defined break signal, breakpoint conditions in one processor can trigger a series of events in another processor, providing a basic level of interprocessor communications. More elaborate schemes are left to the designer.

Each personality module provides extensive debugging facilities including illegal opcode detection and memory allocation for I/O operations and ROM emulation. Since target processors need not be the same type, each of the four target systems can operate at different clock rates.

An optional trace module provides a built-in bus analyzer with stimulus capability allowing simultaneous tracking of multiple processors. Each trace module handles 32 channels of 200-bit depth, with four trigger condition levels. To monitor complex timing relationships, trigger conditions between trace modules can be linked to follow program execution in separate processors.

The Rockwell Design Center comes with CRT display and keyboard, two double-density/dual-sided 5 1/4" disk drives, Forth based operating system, 64K bytes of memory, and both serial and parallel ports. Prices start at $10,950 for the basic system and $1950 for personality modules. Rockwell International, Electronic Devices Div, 4311 Jamboree Rd, Newport Beach, CA 92660. Circle 247

Mini vs micro, survival of the fittest

Microprocessors and minicomputers are serious competitors in the effort to provide integrated design workstations. Microprocessor system supporters are struggling to meld computer aided design and computer aided engineering (CAD/CAE) capabilities with microprocessor development and manufacturing support. Meanwhile, minicomputer supporters argue that, on their end, that goal has been reached. Control Electronics believes that its microprocessor based Kontron development system (KDS) can easily expand to support both CAD/CAE and manufacturing support software. On the other hand, First Systems notes that their minicomputers already run such software. In fact, they also serve as a development system with cross-assemblers and target processors.

The key question is, which class of processor is the most effective vehicle for hardware and software integration? Microprocessors allow the distribution of intelligence to end users, and the sharing of instruments like logic analyzers and in-circuit emulators. Mini-computers provide powerful number-crunching capabilities and extensive software tools that are also shared among users.

At the heart of its workstation, Kontron has a 286 microprocessor with 256K bytes of memory running under CP/M. Moreover, an upgrade to the UNIX operating system will be available this summer that will have a 68000 based central processing unit with 1M byte of memory. In this configuration, the 286 card acts as the I/O controller for the UNIX based system.

A 14" CRT terminal with detachable keyboard controls the central processing unit, peripherals, and engineering modules. Peripherals include two floppy disk drives, each with 614K bytes of formatted storage, an optional 10M-byte hard disk drive, and a network controller allowing the linkage of several workstations. Engineering modules consist of the Kontron logic analyzer (KLA) and Kontron slave in-circuit emulator (KSE). Because all peripherals and engineering modules can be placed off the bench, the engineer needs only the terminal and target hardware on his workbench.

Through its modular architecture, the KDS can be configured to meet a designer's specific needs. It can also operate as a linked network, sharing peripherals and data bases. Workstations can be fully configured with terminals and local mass storage and engineering modules. A modified terminal with a 280 processor, instrument modules, and I/O supported by network software can also be used. Up to eight distributed stations can be linked on the 800M-bps KOBUS communications link. MP/M and CP/Net are the current software packages supporting the network, with UNIX based stations using an Ethernet protocol.

Although engineering modules are not under network control, the company notes that files can be transferred to workstations that have in-circuit emulators and PROM programmers. Command sequences included with these files can cause the desired operations to be executed and the results transmitted to the sending station. Consequently, the cost per workstation can be reduced by sharing expensive resources such as hard disks and instrument modules. Meanwhile, each workstation has sufficient memory and processor capability to

(continued on page 52)
Now with GEN.II™ choose a monochrome, gray-scale, or color-formatted terminal to deliver our Tek 4010/4027 compatible graphics.

For a variety of text terminals, the world of cost-efficient graphmaking is now made possible by Digital Engineering's GEN.II Retro-Graphics terminal enhancement — a "snap-in" PC card assembly that provides Tektronix®-based graphics software compatibility.

Once installed, GEN.II will perform monochrome imaging on the TeleVideo® 950, 925, 920, 912, and 910, Lear Siegler ADM 3A, 3A+, 5, and ADDS VIEWPOINT and VIEWPOINT/3A PLUS; gray scale on TI's Model 940; and color on the Datamedia™ ColorScan™ 10, 30, 60, 70, and 10H.

But best of all a Retro-Graphics enhancement costs only a fraction of what you're paying now for an equivalent graphics terminal, about $1200-1900, depending on the GEN.II model you order.

Introducing GEN.II Retro-Graphics. For superior bit-mapped technical plots and MIS charts.

Our second-generation enhancements provide emulation of the Tektronix 4010 graphics terminal and simulation of the Tek™ 4027 color graphics terminal. In standard resolutions on all GEN.II models, and in medium resolution — 640 by 480 pixels — on Color Retro-Graphics™ for the ColorScan 10H.

Because GEN.II products are based on industry-standard Tek protocol, operation is both powerful and familiar to most programmers. Raster-scan images are generated quickly on GEN.II because up to 48 Kb's of graphics intelligence is "resident." This also means costly host-terminal data transmissions are held to a minimum.

English-like commands simplify graphics operation and programming. For example, entering from the keyboard or computer the following command string

\[\text{PLOT, 200, 90, 120} \]

will cause the upgraded terminal to draw a pie chart sector with a radius of 200 and fill in the area between 90 and 120 degrees.

The filled area can be a color in the case of Color Retro-Graphics, an intensity level in the case of gray-scale GEN.II, or a dithered shade in the case of our one-color products.

In addition, GEN.II enables the programmer to draw polygons and vectors. Define and shape text characters. And recall stored graphs with similar high-level command strings. And you get all this without the loss of existing terminal features.

GEN.II software compatibility protects your hardware investment.

Since our products are compatible with Tek's 4027 and 4010, GEN.II's performance on utility and applications programs, both present and future, is ensured. Currently, more than 20,000 Retro-Graphics enhancements are successfully being used with DISSPLA® and TELLAGRAF®, PLOT 10™, Template™, DI-3000™, and ILS® graphics programs.

Comprehensive support at every level.

Good ideas mean little if you cannot build on them. Optional interfaces let you hook up a variety of input/output devices of your choice. These include a light pen and digitizers, impact and non-impact serial printers, and video devices. There's solid documentation at every level. And fast, accurate backup by our own customer service and worldwide distribution network.

Digital Engineering's GEN.II Retro-Graphics and your choice of terminal — for economy and compatibility in a sophisticated graphics workstation.

Call us today for full details, demonstration, and the name of your local Retro-Graphics distributor — your "one source" for graphics.
While executing, the designer can use the emulator to trigger the logic circuitry. The logic analyzer can use interrupts forced by the processor under test to determine timing relationships.

Changing microprocessors requires initiating another target, not a rewrite of the original program.

Designers can edit the assembly source code generated by the compiler, or link in assembly programs from a user-defined library. Thus, Pascal's structure and documentation features can be combined with assembly language speed.

Once code has been debugged and compiled, it is loaded into emulator or target memory for sequential execution. While executing, the designer can use the emulator to trigger the logic circuitry's timing sequence or the microprocessor's breakpoints. The logic analyzer can use interrupts forced by the emulator under test to detect signal faults.

Using a vast array of electro-mechanical component and system products, Alps offers a particular advantage for the global market.

The price for the KDS begins at $12,500 for the terminal and CPU chassis, 256K bytes of RAM, and two floppy disk drives. KSE modules start at $5700 with 32, 48, and 64K bytes of PROM. KLAS offer 32, 48, and 64K bytes of ROM, with the PROM programmer, and 64K of RAM. The KDS features a total of 512K bytes of PROM, 256K of ROM, and 512K of RAM, with the PROM programmer, and 64K of RAM.

The Alps Advantage is everything you need to improve your products and enhance your competitive position - and everything you'd expect from a world-class supplier. Since its founding in 1948, Alps Electric Co., Ltd. has experienced steady, stable growth - to a level of world-wide sales now up to $1 billion per year!

We look forward to the opportunity of putting The Alps Advantage to work for you - to get started, please contact the Alps Sales Rep nearest you:

AL Huntsville (Jack Harvey & Assoc.) ... (205) 536-4414
AR Phoenix (Eintron) ... (404) 286-2164
CA Santa Clara (Novo Tonic, Inc.) ... (404) 727-9530
CA Woodland Hills (Relcom, Inc.) ... (213) 340-9143
CA San Diego (Cereon) ... (714) 885-9143
CO Englewood (Nelligon Co.) ... (303) 761-2121
FL Plantation (Galagher & Assoc.) ... (305) 473-2101
GA Norcross (Jack Harvey & Assoc.) ... (404) 449-4543
IL Arlington Heights (Micro Sales, Inc.) ... (312) 956-1000
IN Indianapolis (Jack Harvey & Assoc.) ... (317) 453-4250
IN Kokomo (Jack Harvey & Assoc.) ... (317) 453-4250
KS Kansas City (BC Electronic Sales, Inc.) ... (913) 342-1211
KS Wichita (BC Electronic Sales, Inc.) ... (316) 942-9840
MD Timonium (Allen Assoc.) ... (301) 232-4133
MA Waltham (Technology Sales, Inc.) ... (617) 647-5700
MI Oak Park (A. Blumenberg Assoc.) ... (313) 968-3230
MI Minneapolis (P.S.I.) ... (612) 454-4594
MO St. Louis (BC Electronic Sales, Inc.) ... (314) 291-1101
NJ Boonton (PAF Assoc.) ... (201) 235-0980
NJ Nutley (PAF Assoc.) ... (516) 360-0940
NJ Albany (Reagan/Compare) ... (518) 488-4777
NY Endwell (Reagan/Compare) ... (607) 723-8743
NY Farport (Reagan/Compare) ... (585) 727-2230
NY New Hartford (Reagan/Compare) ... (315) 732-3775
NC Raleigh (Burgin-Kreh Assoc., Inc.) ... (919) 781-1100
OH Rocky River (Norman Case Assoc.) ... (216) 333-0400
OK Tulsa (Nercom, Inc.) ... (918) 832-7747
PA Willow Grove (Harry Nash Assoc.) ... (215) 657-2213
TN Johnson City (Jack Harvey & Assoc.) ... (615) 989-7900
TX Pharr (Jack Harvey & Assoc.) ... (713) 436-6021
TX Dallas (Nercom, Inc.) ... (214) 386-4886
TX Austin (Nercom, Inc.) ... (512) 451-2757
TX Houston (Reagan/Compare) ... (713) 239-0321
VA Lynchburg (Burgin-Kreh Assoc., Inc.) ... (804) 239-2626
WA Bellevue (Venture Electronics) ... (206) 454-4594
CANADA: Toronto (Vitel Electronics) ... (416) 676-9700
CANADA: Stittsville (Vitel Electronics) ... (613) 836-1776
The Alps Advantage in micro-printers:

"Simply amazing, yet amazingly simple!" That's the usual reaction to our new Series DPG printer-plotters. We think you'll agree they're a good example of the innovative technology that's such an important part of The Alps Advantage. Totally unique and different from any other printer on the market today, they offer an exclusive combination of design and performance features:

Ball point pen writing, for alphanumericics and graphics. Exclusive ink technology developed by Alps makes possible the use of specially engineered, tiny ball point pens that actually write, in 1 or 4-colors, with a simultaneous plotter action in the X and Y-axes. Virtually unlimited capability for character size variations, special symbols, images, even 3-D graphics.

Battery operated, totally portable. Four Ni-Cd rechargeable batteries power the DPG, ideal for portable applications. Or, use an AC-DC line converter for fixed installations.

2 1/4" or 4 1/2" plain paper. All DPG mechanisms use standard commercially available plain paper: 2 1/4" for Models DPG 11 or 13 (1 or 4-color); 4 1/2" for Models DPG 21 or 23 (1 or 4-color).

High performance specifications. Printing speed 12 characters per sec. average. Column capacity up to 40 for 2 1/4" models; 80 for 4 1/2" models.

5 VDC operation. A choice of intelligent LSI driver-controllers is available, depending on model and application requirements.

Get your hands on The Alps Advantage. There are many ways we can help you—technical data, evaluation samples, application assistance, price-delivery information, etc. Write or call today, and let us put The Alps Advantage to work for you.

Series DPG microminiature printer-plotters.
Alpha-numerics and graphics in 1 or 4-colors.
Battery operated, totally portable.

ALPS ELECTRIC (USA), INC.
100 N. Centre Ave., Rockville Centre, NY 11570
Phone 516-766-3636 • Telex (WU)14-4508

CIRCLE 34
channels at prices beginning at $10,000. A PCB routing package is planned for the spring, to be followed by such software packages as list of materials, and engineering change orders.

Such software is already running on minicomputers and mainframe computers, with cross-development tools prevalent on this class of processors. However, in the most dominant techniques—simulation and target processing—the emphasis is on the cross compiler or cross assembler. Usually little assistance is provided for debugging microprocessor code in the host computer, and little interaction when the code is downloaded for target processing.

A cross debugger, available from First Systems, keeps both diagnostic facilities and all symbol tables on the host. The cross debugger can be used with an in-circuit emulator, or the target system, with a small monitor program installed.

Without the aid of an in-circuit emulator, the user causes the transfer of code from the host to target RAM. In a typical session, the user instructs the host cross debugger to insert a breakpoint in target memory at a specified line in the program. A GO command starts the target processor executing at full speed until the breakpoint is reached.

At this time, the monitor program in the target asserts control and uses a serial communication link to inform the host that a break has occurred. A user then has a variety of options: examine or set symbolic variables, registers, or absolute memory locations; remove or insert additional breakpoints; and display a procedure call trace-back. Target execution is then resumed until the next breakpoint is reached.

Together with the company's cross assemblers and cross compilers, the cross debugger supports program development for the Intel 8086. Programs for the iAPX/186 are on the way. Languages supported include the company's Pascal-86 (with Intel's Pascal-86 supported soon) and Intel's PL/M-86 and 8086 assembler. Users can examine the value of full expressions using the syntax of the program being debugged. They can also interact with I/O statements of the target program. Such features as automatic transfer of application data and test files between the target system and host will soon be added.

In-circuit emulators can be shared among users via a serial communication link between the host and emulator. An in-circuit emulator would debug ROM code, accumulate traces of recent bus events, and break complex events, such as store operations, into locations within a memory range. With the 100 breakpoints that it provides, the cross debugger can be used to overcome typical large-program limitations of 2 to 4 breakpoints.

Cross debuggers, assemblers, and compilers are available for the DEC VAX-11 family as well as for IBM 370 compatible mainframe computers. Prices range from $6000 to $10,000 with specific prices available upon request. Kontron Electronics, 5730 Buckingham Pkwy, Culver City, CA 90230, and First Systems Corp, 865 Manhattan Beach Blvd, Manhattan Beach, CA 90266.

Circle 248
Circle 249
Now, a Logic Analysis System that puts a bench-full of instruments at your fingertips.

The NPC-764. It just makes good sense. When performing logic analysis and other measurement functions, you shouldn't have to face different sets of knobs, switches and dials. That's why we've developed the NPC-764, the Electronic Workbench. Now your analysis tasks are all done the same way—with a familiar ASCII keyboard and easy-to-use, self-prompting menus. Simple keystrokes are all it takes to run tests and record data on disk. And all logic analysis and other internal functions are ROM-based and ready to go on power up. No messy setups. No relearning of multiple instruments.

The NPC-764 includes a 48-channel State Analyzer and a 16-channel, high-speed Timing Analyzer. And, as optional plug-ins, a single-channel Digital Storage Oscilloscope, a 5-function Counter/Timer/Spectrum Analyzer, and bidirectional Serial Tester.

But the NPC-764 is more than just a multiple-function instrument. It also incorporates a GPIB controller and RS-232 MASTER/SLAVE capability. Standard. A common set of commands lets you control the internal analyzers and any GPIB- or RS-232-compatible devices you include in your setup—pattern generators, emulators, spectrum analyzers, PROM programmers.

And that's not all. The NPC-764 is a full desk-top computer, with floppy disk storage and a CP/M® operating system. Use it for general-purpose computational tasks or the execution of commercially available CP/M programs.

The NPC-764, with all its internal measurement functions, requires less than half the investment of the equivalent instruments purchased separately. And the ASCII keyboard and menus are so user friendly it sets a new standard for the industry.

Not quite ready for all this capability? Start with our basic NPC-748. It provides exactly the same measurement functions, but 16 fewer state channels and no floppy disk drive. Upgrade easily to the NPC-764 at any time.

There's a whole lot more we'd like to tell you about the Electronic Workbench. For additional information, applications assistance or a personal demonstration, just give us a call: (800)-NICOLE (CA/IL); TWX: 910-381-7030. Nicolet Paratronics Corporation, 201 Fourier Avenue, Fremont, CA 94539.

*CP/M is a registered trademark of Digital Research.

Leading The Way In Analysis Technology.
Get ready to make a quantum leap past your competition. Because with our new 68000 VMEbus boards and UNIX™ operating system, that’s exactly what you’ll be able to do. What’s more, our new board-level solutions are just the first wave of the multi-user system solutions you’ll be able to get from Mostek. So now, there’s no reason not to be launching into the future with the Mostek MK68000.

What makes us so confident? First of all, consider the VMEbus, a very compact board structure with truly high-performance timing parameters. And inherent expansion to 32-bit address and data.

Second, look at the boards: VME-SBC: At the heart of it, an 8 MHz MK68000 with upgradeability to 10 or 12 MHz, SIO, BYTEWYDE™ memory and a firmware monitor. VME-SASI: A SASI™ controller with DMA. VME-ILP: A double-sided, double-density floppy disk controller with DMA and sector buffer. VME-SIO: Four-channel (RS-422/RS-232). VME-DRAM: ¼ MB DRAM with byte parity, plus full 32-bit VME interface. VME-MMCPU: Memory-managed CPU with on-board 128K bytes DRAM and full multiprocessor capability.

Third, there’s our VME BASELINE System to get you started. It includes three boards (SBC, DRAM, SIO) and a power supply in a 10-slot card cage.

Finally, coming later this year will be UNIX, the high-performance, program-development operating system that opens the door to Pascal and C, as well as our Assembler/Linker software and RADIUS™ development station.

Together, it all adds up to the most powerful and versatile way yet to hit the round running with a 68000 system solution. To find out more, contact Mostek Corp., 1215 W. Crosby Rd., MS2205, Carrollton, Texas 75006. (214) 466-6000. In Europe, Mostek International (32) 2. 762.18.80. In Japan, Mostek Japan KK (31) 3. 404. 7261. In the Far East, Mostek Asia Ltd. (852) 5. 296.866.

NIX is a trademark of Bell Laboratories.
ASI is a trademark of Shugart Associates, Inc.
*BYTEWYDE is a trademark of United Technologies’ Mostek Corp.
*RADIUS is a trademark of United Technologies’ Mostek Corp.
FINALLY, MULTIBUS STORAGE SYSTEMS DESIGNED WITH THE MOST IMPORTANT FEATURE YOU CAN BUY.

CREASE
t.
The Multibus® market is very quietly growing like crazy. The 16-bit processors are taking off. The applications are getting more complex. And the users are becoming more and more sophisticated.

If you’re one of them, it’s probably as clear to you as it is to us that you’re going to need high performance disk systems designed to accommodate your future growth.

Rather than make you wait until the last minute, here they are.

Presenting the 770 Multibus Storage Systems from Data Systems Design.

The DSD 770 Multibus storage systems offer you the kind of flexibility and performance you’ll need, not only now, to get your product to market quickly, but also later, to keep pace with your growing needs.

The systems come in four basic configurations: An 8" 10 Mb or 40 Mb Winchester with either a 1¼" streaming tape for back-up, or a 1 Mb floppy for low cost software distribution. All competitively priced. And they all fit nicely into a 19" rack because each system is only 5¼” high.

But the real magic comes courtesy of our new multi-function Multibus controller/interface.

Multiple choice on one Multibus board.

Our new controller/interface contains a Winchester disk interface that will handle two drives of up to 40 Mb each. An interface for 1¼" streaming tape. And a floppy drive interface that can control two 1 Mb floppy drives.

Plus data separation.

32-bit ECC for high reliability.

Full compatibility with IEEE 796 standards.

Intel® iSBC® 215 and iSBX® 218 emulation.

24-bit addressing.

A high speed internal bus and pipelined architecture with a dual port buffer to move data at non-interleaved speeds. And a read/write sequencer to go with it that’s capable of running faster than any 8" Winchester drive likely to come along for a long time.

But here’s the kicker. All this takes up just one slot in your Multibus backplane because it all comes on just one board.

And for those of you with unique packaging requirements, our controller/interface board is also available by itself, for 8” or 5½” disk drives.

Hindsight will prove you right.

We don’t expect you to buy systems with an eye to the future without looking into service and support. But this is one area we were unable to improve upon. Because we decided we should offer the same kind of efficient service and intelligent support that’s made us a leading storage system supplier in the DEC®-compatible market.

That kind of service includes our exclusive on-board HyperDiagnostics*, Remote diagnostic assistance. Rapid Module Exchange*. And the most comprehensive, yet inexpensive extended service program in the business: HyperService*, now with guaranteed twenty-four hour or less module swap.

All backed by support which, according to our customers, is second to none.

It pays to plan ahead.

Given the opportunity all this presents, you’re probably going to want to know more about the 770’s. And the new Multibus controller/ interface that goes with them.

We can supply you with a comprehensive twelve-page data sheet, that tells you everything you need to know about both, and it’s yours for the asking.

So call us today.

Better yet, call us yesterday.

The way things are going, it’s already tomorrow.

DATA SYSTEMS DESIGN

INTERNATIONAL SALES: Australia 03/544 3444; Belgium and Luxembourg 02/7209038; Canada 416/625 1907; Denmark 02/63 22 33; Finland 90/88 50 11; France 03/411 54 54; Hong Kong and Peoples Republic of China 03/696231; Israel 52-52444; Italy 02/4047648; Japan, Osaka 06/323 1707, Tokyo 03/345 1411; Netherlands 02/777-22456; New Zealand 04/993 098; Norway 02/78 94 60; Singapore, Malaysia, and Indonesia 224/377; Spain 01/433 2412; Sweden 08/38 03 70; Switzerland 01/741 41 11; United Kingdom 7073/3474; West Germany and Austria 089/1204-0; Yugoslavia 61/263 261

*Intel, Multibus, and iSBC are registered trademarks of Intel Corporation. *iSBX is a trademark of Intel Corporation. *DEC is a registered trademark of Digital Equipment Corporation. *Rapid Module Exchange, HyperDiagnostics and HyperService are trademarks of Data Systems Design, Inc.
Seagate's ST400 Series is the most popular family of Winchester disc drives ever offered. And no wonder. These 5¼" Winchesters deliver more value for your money. More quality. More reliability. More performance. And all at a better price.

The ST 400 Series offers the right capacities: 6.38, 12.76 or 19.14 megabytes (unformatted). All use the same industry-standard ST506 controller and matching mini-floppy form factor for easy upgrade.

The right features. All use manganese-zinc heads, advanced stepper motor, metal band actuator, open loop head positioner, and patented air flow spindle pump. An onboard microcomputer provides buffered seek and fast step algorithm for an average seek of 85 milliseconds, including settling time.

The right quality. Seagate backs the ST400 family with a full one year warranty, our industry-leading "105% Seagate Guarantee," and the world's biggest support team devoted entirely to 5¼" Winchesters.

Meeting special needs. Looking for faster, more reliable removable storage? Go with our new ST706

See us at the Hanover Fair West Germany, April 13-20
removable cartridge drive. Need a more compact drive? Pack more data in less room with our new ST206 half-high Winchester. Both new drives store 6.38 megabytes (unformatted) with reliable bit and track densities. We have what you want in Winchester.

<table>
<thead>
<tr>
<th>The ST400 Series</th>
<th>ST406</th>
<th>ST412</th>
<th>ST419</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unformatted capacity (MB)</td>
<td>6.38</td>
<td>12.76</td>
<td>19.14</td>
</tr>
<tr>
<td>Formatted capacity (MB)</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Average access time (ms)</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
</tbody>
</table>

Now Shipping In Volume

Seagate Technology
360 El Pueblo Road, Scotts Valley, California 95066 (408) 438-6550, TELEX 172114 SCVL
Regional Sales Offices: Hopkinton, Massachusetts (617) 435-6961; Newport Beach, California (714) 851-9964; Richardson, Texas (214) 783-6711; Schaumburg, Illinois (312) 372-3727
European Sales Office: Kreillerstrasse 21, 8000 Munich 80, West Germany, 89-43-13-900,
TELEX 5 213 379
Authorised U.S. Distributor: Arrow Electronics

"Turning the tide in disc technology"
CP/M spreads to 16-bit processors and beyond

Using the C programming language as a vehicle, Digital Research, creator of the CP/M operating system, is opening up new avenues for CP/M. One path leads CP/M to a wide range of 16-bit microprocessors, and another allows software authors to write programs that are compatible not only with CP/M, but also with Bell Labs' UNIX operating system.

The initial package for these applications is CP/M-68K, a single-user, single-tasking version of the MC68000 microprocessor family's operating system. Another version was developed for the Zilog Z8000 family following an agreement between Zilog and Digital Research in October 1982.

Since programs written in C are easily transported between processors that have available C compilers, Digital Research wrote a C version of CP/M that could be compiled to run on the 68000 family as well as on the Z8000. Since C software written in a UNIX environment now runs equally well in the CP/M world, Digital Research sees an opportunity for synergy. First, UNIX provides an excellent environment for multi-user program development with a great array of tools available to the software professional. Second, CP/M provides a less intimidating environment for the end user while still supplying many useful utilities and occupying much less memory. Thus, sophisticated software development projects can now be undertaken in the UNIX environment with the results easily transported to the CP/M world.

Version CP/M-68K requires about 24K bytes of memory, depending on the basic I/O system (BIOS) size. This BIOS is the only part of the operating system that needs modification to adapt to a given hardware environment. CP/M-68K, however, can manage up to 16M bytes and handle a maximum disk capacity of over 8G bytes.

To simplify CP/M software conversion, the CP/M-68K file system is compatible with all other CP/M and MP/M file systems, including CP/M-86. Digital Research says that high level language programs can be recompiled with little or no modification, while assembly language programs, obviously, must be recoded.

The CP/M-68K package includes a C compiler and runtime library compatible with UNIX Version 7. Also included in the package are a 68000 assembler, a linker for both relocatable and absolute load modules, and a utility to convert CP/M-68K load modules to Motorola S-Record form. In addition, a version of CP/M-68K cross-development tools is available to run under UNIX on a DEC PDP-11 or under VMS or UNIX on a DEC VAX-11.

To adapt CP/M-68K, as with all other CP/M versions, to a given set of hardware, the OEM or system integrator must create a custom BIOS for that hardware environment. The operating system is shipped with a BIOS configured for a Motorola EXORMACS development system, along with one working BIOS written in assembly language and another written in C. Further customization is possible through use of resident system extension (RSX) modules, which are attached to the CP/M-68K base. The use of coprocessor chips, such as math and text processors, is not restricted but must be supported by the application.

The emergence of CP/M in C and UNIX applications leaves open the possibility of its use in virtually any processor that supports a C compiler. Digital Research, PO Box 579, Pacific Grove, CA 93950. Circle 250

Network node puts supermini on desktop

Based on the MC68010 microprocessor, DN300 delivers a 16M-byte virtual memory address space with 1.5M-byte main memory. Also included in a desktop package are high performance graphics and access to a 12M-bps network.

Eliminating the dependency on mainframe access, Domain network nodes make technical professionals independent by putting them in control of their own time. Apollo's DN300 computational node supports this concept by replacing mid-range superminis with a desktop unit. Operating alone or as part of a 12M-bps local area network, the unit costs 20% to 30% less than competitive units. Resources such as mass storage, communication gateways, and printers can be shared across the network as though they were locally connected.

To achieve standalone power, the DN300 uses the Motorola MC68010 microprocessor and DMA controller. This virtual memory processor, combined with memory management unit (MMU), is claimed to deliver the power of a VAX-11/750. The dedicated VLSI processor supports up to 15 concurrent user processes. Each process gains a virtual address space of 16M bytes from the integral MMU. This MMU dynamically maps 24-bit virtual addresses into a 22-bit physical memory address space (continued on page 64)
The only one left to convince is you.

FRANK,
Power/Mate's EVD Series
Switchers meet all
these specs,
VDE-0806
IEC-380
VDE-0871
UL-478
CSA
FCC 20789/15/"J"

Go WITH IT!

See us at ELECTRO '83, Booth No.'s 1056-1058

CIRCLE 40

RT-EPOWER/MATE
THE PACESETTER IN SWITCHING POWER SUPPLIES

POWER/MATE CO. 514 South River Street, Hackensack, NJ 07601-6697 (201) 440-3100 TWX: 710-990-5023
Network node
(continued from page 62)
and maintains protection and usage statistics for each 1024-byte page of data.

The station is built around two printed circuit boards that contain the CPU with 0.5M-byte main memory, memory management hardware, display controller with 128K bytes of dedicated display memory, and network interface. The network interface provides a 12M-bps baseband data rate, made possible by self-synchronizing hardware bit stuffing techniques, ring topology, and token passing arbitration. Two separate RS-232-C ports provide independent, software selectable transmission rates from 50 to 19.2k baud.

The integral display provides a horizontally oriented 17" (43 cm) screen with 1024- x 800-pixel resolution. The 15 concurrent virtual memory processes can be viewed using the screen in a multi-window mode; highest resolution is obtained by using the entire bit-mapped raster scan display. A dedicated 128K-byte dual-port display memory performs interlaced refresh at 80 kHz.

Local Winchester and floppy disk drives can be directly connected to the station. An 8" Winchester supplies 34M-byte capacity and a 1M-byte/s DMA transfer rate. The 1.2M-byte double-sided, double-density 8" floppy provides a 500k-byte/s DMA transfer rate.

Standard software for the DN300 includes the Aegis operating system which provides network-wide virtual memory. Optional are FORTRAN 77, Pascal, C, and the SIGGRAPH Core graphics library. In addition, AUX provides a software environment based on UNIX System III; D3M is a distributed data management system; and DOMAIN X.25 supports the X.25 packet switching communication protocol.

Prices for the node range from $10,449 to $27,900 depending on the amount of main memory and mass storage. Apollo Computer Inc, 15 Elizabeth Dr, Chelmsford, MA 01824. Circle 251

32-bit architecture for 8-bit systems

National Semiconductor's 8-bit NS16008 maintains 32-bit architecture in its internal data paths, ALU, and general registers, along with a 24-bit address that gives a 16M-byte linear addressing range. The instruction set facilitates high level language programming.

An 8-bit CPU with many of the performance features of a 16-bit device is National Semiconductor's claim for the NS16008, the latest member of the NS16000 microprocessor family. The device has an 8-bit data bus, multiplexed with the low eight lines of its 24-bit address bus, while maintaining a full 32-bit architecture in its internal data paths, ALU, and general registers.

In building new systems, designers are often faced with difficult choices in deciding whether to use an 8- or a 16-bit microprocessor. An 8-bit device results in lower overall systems costs by limiting chip counts. On the other hand, 16-bit CPUs have wide addressing ranges and more flexible, powerful instruction sets.

The NS16008 is offered in a 48-pin DIP. Pins A0 through A7 are multiplexed to act as either an 8-bit bidirectional data bus, or as the low-order 8 bits of the address bus. Together with pins A8 through A22, they also make up a 24-bit address bus, which provides the NS16008 with a 16M-byte linear addressing range.

Most previous 8-bit CPUs provided only 16-bit address buses and were limited to a 64K-byte address space. The NS16008 avoids this 64K limitation and the time and circuitry necessary to implement bank switching—the traditional way 8-bit devices have overcome it.

Internally, the NS16008 has a complete 32-bit architecture (Figure). A with other members of the NS16000 family, the register set consists of six 24-bit special-purpose registers and eight 32-bit general purpose registers. The general registers can hold byte, word, or double-word data or addresses and can also hold quad-word (64-bit) data when used as even/odd pairs.

(continued on page 67)
DIALIGHT LED CIRCUIT BOARD INDICATORS STEP UP YOUR PRODUCTION BY ELIMINATING PRODUCTION STEPS.

You'll save money when you stop mounting LEDs on PC boards the old way — bending leads, inserting holders, adding resistors — and start using LED Circuit Board Indicators from Dialight. Mounting our LED Circuit Board Indicators is easier and less time-consuming. They eliminate production steps and reduce labor costs. Not only is positioning faster, it's far more accurate. As soon as you insert the assembly you are ready for wave soldering.

Dialight originated the idea of packaging LEDs for easy mounting on PC boards. And we've developed over 50 different Circuit Board Indicators in red, green, yellow and red/green bicolor. Choose single-element LEDs or QUAD-LED™ four-element arrays with a wide range of voltages with or without current limiting resistors.

Send for our catalog. And the next time you need LEDs for PC boards, eliminate steps and save money — specify Dialight. 203 Harrison Place, Bklyn., NY 11237 (212) 497-7600 TWX: 710-584-5487

See us at ELECTRO '83 Booth No's 2617-2621

DIALIGHT meets your needs.
A North American Philips Company

CIRCLE 41
An OEM Computer Company Of A Different Stripe.

Each of the above computer systems is different. Not just outside because of color. But inside as well, because each is configured for a totally different set of user needs.

They are Momentum 32/4s inside and out perhaps the most versatile desktop business systems ever offered to OEMs.

Styled By Bertone. Powered By 68000™ And System III UNIX.™

The look of the Momentum 32/4 gives you an immediate sense for its capabilities. Its lines wrap smartly around the most compact chassis in its class, a chassis really in a class by itself, thanks to the styling of Italian master designer, Bertone.

But while style can catch the attention of the OEM, only performance can keep it. And with the Momentum 32/4, that performance starts substantially with the industry-standard M68000 microprocessor and the enhanced System III UNIX operating system—but there's more of the same.

More Innovation And Versatility: From The Graphics Package To The Storage Package.

For OEMs, market edge comes with system uniqueness. Uniqueness achieved with the least hassle for the fewest dollars.

The Momentum 32/4 performance features give OEMs that edge.

There's Direct Memory Access and the proprietary Memory Management Unit, both of which significantly enhance system throughput. There's 1/2 megabyte of RAM memory, standard. Three additional serial ports, standard. Word processing and spread-sheet, standard.

The versatility of the Momentum 32/4 is apparent everywhere. There's a completely customizable external I/O board. A powerful graphics board option, controlled by its own 68000 processor, features 256K of RAM and functions that are totally software definable. Even the storage package offers the versatility of two Winchester cartridge drives, delivering ten megabytes of on-line capacity as well as removable backup capability.

Put Momentum Behind Your System.

The Momentum 32/4 provides plenty of reasons why you should. But there are others. One is the fact that the 32/4 is part of, and fully compatible with, the largest and highest quality line of UNIX-based 68000 computer systems in the industry. And the fact that the 32/4 is the product of a company that makes only UNIX-based 68000 computer systems. A company that can boast unmatched configuration versatility within its standard product line. But a company that also knows you have to work closely with OEMs—to be, wherever necessary, an extension of their operations, from custom design through quality control. And lastly, a company with the engineering and manufacturing resources to deliver these high-quality products in quantity, on time, at the lowest possible cost.

Momentum. Put it behind your system today.
32-bit architecture (continued from page 64)

The dedicated registers provide three address registers: INTRBASE, which points to the beginning of a program or routine; static base (SB), which points to the frame pointer (FP), which can be used to point to local variables for a currently executing subroutine. Two stack pointers (SP0, SP1) and a program counter are also included in the special-purpose registers.

The NS16000 family provides a number of instruction set features designed to ease high level language implementation. Memory relative addressing allows any general purpose register's contents to be used as an offset from a fixed address. This permits a routine or control to pass data to any other routine located within an 8M-byte memory area.

A CASE instruction allows multiway branching, depending on a general purpose register's contents (up to 2^{32} possibilities). Bit-manipulation instructions handle Boolean operations and control of peripherals via parallel ports, and string instructions allow search, movement, and translation operations to continue until (or while) any given character class is found.

The NS16008 also eases the assembly language programmer's job by the symmetry and orthagonality of its instruction set. Any data type can be used in any instruction, with any addressing mode, and with any source or destination. Thus, the instruction set is easier to remember, requires less research in manuals to determine restrictions, and generates less code. High level language compilers are therefore easier to write, smaller, and faster.

Single-address machines, such as most 8-bit CPUs, require that arithmetic and Boolean operations be carried out on a specific register's contents, thereby requiring a great deal of data movement both from and to the accumulator. The NS16008 provides general 2-address capability, allowing addition, subtraction, multiplication, division, and other operations to be carried out while both operands are in memory, again saving both time and memory.

While the NS16008 has many of the characteristics of a 16-bit CPU, it is not a 16-bit device and is not suited specifically for 16-bit applications. Applications that need efficient virtual memory support, or high throughput, like CAD/CAM, require other microprocessors such as the NS16032 (and its CMOS version, the NS16032C) or the NS32102.

The NS16008 is best suited to applications that deal with byte-wide (8-bit) data such as CRT terminals, word processors, and dedicated controllers. Documentation, training, software products, and developmental support are available from the company.

Sampling of 6-MHz parts will begin soon, with production quantities available in the third quarter of 1983. Price is quoted as $100 in quantities from 1 to 24. The 10-MHz parts will be sampled in September 1983, with production scheduled for late 1983 or the first quarter of 1984. National Semiconductor, 2900 Semiconductor Dr, Santa Clara, CA 95051.
What’s our secret? Simply this: the Trilog TIP-300 uses an exclusive dual print head system.

Unlike conventional dot-matrix printers that push a single print head to 300 lpm, each TIP-300 head cruises at a nice, easy 150 lpm. Both heads run simultaneously. So the total output is still 300 lpm. But each Trilog head is working at a 50% duty cycle. No wonder Trilog printers are so reliable!

Non-Stop-Printing™: the next best thing to a spare printer.

Trilog’s dual heads offer another advantage, too. If one print head should temporarily fail, you’re not out of business until a service representative shows up.

Instead, the operator simply flips a switch and the remaining head continues printing at 150 lpm. There’s no other printer that gives you this much protection from downtime.

Advanced innovation isn’t just in our heads.

That’s why we also gave Trilog printers dual tractors. They not only...
stabilize the paper and minimize friction, but allow the paper to move forward and backward. This gives you plotting capability and lets you generate forms. You can also print bar codes. Plus business and engineering graphics.

Five printers for the price of one.

Besides graphics, the Trilog printer gives you four other types of printing: standard data processing characters. Letter quality characters that approach the sharpness of fully formed characters. And two versions of compressed characters for paper savings and special formats.

For more information contact: Trilog, Inc., 17391 Murphy Ave., Irvine, CA 92714. Or call toll free in the continental U.S., except California: (800) 421-7164. In California call (714) 549-4079. TWX (910) 595-2798.

We'll show you that the best way to get more work done is with a printer that doesn't have to work so hard.

Non-Stop-Printing starts with TriLog

We do it

without even breathing hard.

For more information circle 44
For a sales contact circle 45
In the dynamic world of computer graphic peripherals, only CalComp can offer a complete line of quality products spanning the entire spectrum of input and output devices. Whether you are an OEM systems integrator, a multiple-product end user, or simply trying to build the best possible graphic workstation for a particular application, CalComp is the source.

Quality products and attractive new pricing.
CalComp is now offering the “Multi-product Sales Plan” to provide maximum discount leverage. When you agree to buy a specified quantity of plotters, digitizers or displays from CalComp, the same quantity discount applies to all other eligible CalComp products over the life of the agreement.

This plan is a major price breakthrough for multiple-product end users and OEMs.

Products for every application. More and more industries are discovering that computer aided design is a competitive necessity, and the market is expected to quadruple by 1986. Today’s graphic workstation environments already include computer rooms, offices, trucks, ships, drilling platforms and more. But unlike so many new companies with single product offerings, CalComp offers more than 40 different products—digitizers—displays—plotters—to allow you to configure a system to meet your needs.

- CalComp offers a wide assortment of digitizers—both tablets and wide area tables—providing exceptional accuracy and high resolution. Solid and backlit surfaces are available.
- CalComp continues to dominate the pen plotter field, with drum, beltbed and flatbed models. All have outstanding resolution, high throughput, simplicity of operation and dependability.
- A growing force in Electrostatic Plotter/Printers, CalComp offers a full range of EPPs for high quality “quick copies.” These are available in floor models and a new rack-mounted mobile unit.
- CalComp has online, offline and combination controllers driving its plotters, including those that can run both pen and electrostatic plotters.
- Providing a new definition for the term “interactive,” is the new 4000 Series of Vistagraphic™
Displays:
Resolution - 640 x 512, 1024 x 768, 1024 x 1024
Models - Color or Monochrome
CPU - Dual Motorola MC68000
Digitizers:
Tablets - 11" x 11" to 24" x 24"
Tables - 24" x 36" to 44" x 60"

Displays, available in both monochrome and color. Two microprocessors are used, one devoted to display processing and the second for peripherals and communications.

Service protects your investment.
With more than 15,000 graphics systems installed worldwide, CalComp understands how vital responsive service is. Backing CalComp's superior parts and labor warranty are over 75 field service offices. And with our Maintenance Alert Program, if problems cannot be solved quickly, we'll call in our senior national technicians to get you back on line without costly delay. Our ability to maintain and service our equipment throughout the world underscores CalComp's commitment to stand behind its products and its customers!

Single source simplicity.
For hardware, software, supplies, service and advice, no one even comes close to CalComp as the single source for all your computer graphic peripheral needs. A call to your local California Computer Products sales office listed in the white pages will do the job. Or write to CalComp, Product Marketing, Department M/S 52, 2411 W. La Palma Avenue, Anaheim, CA 92801.
For a list of international sales and service offices write: International Division, 5425 East La Palma Avenue, P.O. Box 3250, Anaheim, CA 92803.
Coprocessor allows true text preparation

A text coprocessor chip from Intel Corp uses DMA and linked list processing to display publication quality text onscreen. In addition to displaying proportional spacing with simultaneous superscripts and subscripts, the 82730 maintains linked lists of text blocks for extremely rapid manipulation and formatting of text files.

Thus, one broad application area in word processing opens up—the designer can program the text display coprocessor to match the capabilities of a known printer in the system for true text preparation.

The programmable nature of the 82730 allows for dynamic loading of soft ports, multiple windows, and user programmable field and character attributes. The CPU, however, is relieved of the need to attend to display control through the use of message blocks; it merely issues a channel attention (CA) command to start the 82730 working. A command block set up by the CPU contains commands and pointers to other message blocks, such as mode block containing screen characteristic parameters, and also lists pointers that keep track of the sequence of text blocks.

After the text coprocessor has set itself up by reading the parameters, it uses its DMA capability to take in the text data stream indicated by the string list pointer. In addition to the mode and string list pointers in the command block, the 82730 can process high level commands embedded in the text stream, such as TAB, SUPERSCRIPT/SUBSCRIPT, SKIP, and REPEAT.

The string pointer list is particularly important in speeding up text block manipulation. Instead of forcing the coprocessor to shift data around to keep all text blocks in memory contiguous, the 82730 maintains a list of pointers to the text block locations in memory. When it has processed all the commands in a memory control block, the 82730 signals the CPU that it is ready to start another block. In the meantime, the CPU may have prepared an entirely new block for the 82730 to work on, or may have sent the processor back to the original block, depending on the CPU's requirements.

The 82730 is divided into two main sections: the memory interface unit (MIU), which handles communications between the 82730, the CPU, and the memory; and the display generator (DG), which controls the screen.

The MIU is further divided into two sections—a bus interface unit (BIU), and a microcontroller unit (MCU) that contains microinstruction store for display parameters and attributes.

Thus, the MCU fetches data from memory and stores them either in row buffers (for data to be displayed), or in display characteristics registers that store the display parameters (eg, screen size and blink rate). The MCU and DG communicate asynchronously—the MCU fetches one row of up to 200 characters while the DG displays the other row. The buffers are swapped at the end of each display operation, so there is no wait between rows being displayed. Since the contents of the display characteristics registers are read in from a memory control block and determined by the DG parameters, the user can invoke parameters for the whole screen with a single high level command to reference a given memory block.

Control of screen resolution and other parameters has also been put into the user's hands by separating the video (continued on page 77)
Name one microsystem with

- multi-user capability
- a real-time operating system
- 1 MIPS performance
- integrated disc storage
- 3-D interactive graphics software
- 4.27 Mbytes/second I/O bandwidth
 - 12 interfaces
- memory expandable in 128kb, 512kb or 1Mb increments
- data base management software
- powerful networking capabilities
- a starting price of just $8,021.
The HP 1000 Model 6.
You'll be amazed at how much you can do with such a little computer. Because the HP 1000 Model 6 is only small in size and cost. When it comes to performance, it's another story.

By using our range of plug-in cards, you can easily put together a wide variety of configurations. You could, for example, plug in 8 terminals. 12 instruments, a plotter, printer, hard discs, machine tools and communications links with other computers—and have them all running at the same time. Mostly because of the way our multi-tasking operating system—RTE—takes advantage of the hardware, and delivers big system power. As a result, we can give you virtual memory capability. Dynamic memory positioning. And multiple real-time ways to schedule programs—by event, time, or operator. Not bad for a system that starts at only $8,021.

And because it's a complete system, you don't have to hassle over compliance with the increasingly tight RFI regulations. Or go through all the paperwork it takes to get UL® approval. Or lie awake nights worrying whether the hardware and software will work together. When you use the HP Model 6, all those problems are behind you.

Even better, the architecture and operating system give you so much flexibility that you can fine-tune our micro to your application as if you'd built it yourself.

It's so fast it makes you faster.
To get 1 MIPS performance, you'd expect to have to pay for a much more expensive minicomputer. But that's the kind of speed we're talking about in the HP Model 6 microsystem. So you don't have to spend time optimizing your application. And with all the system integration, government testing, and government approvals already taken care of, you can get your system to market a lot faster.

With high-speed Direct Memory Access (total I/O bandwidth up to 4.27 Mbytes/second) and a powerful memory system, you're really flying. And our wide range of interfaces gives you 12 ways to communicate with the outside world. There's even an I/O processor built into every single interface. This takes a big load off the CPU, freeing it for more important tasks. By distributing intelligence in this way, our micro turns in macro performance.

A growth path that's easy to follow.
HP offers the widest range of instruments and peripherals to fit into your system. They were all made to interface easily, and stand up to a lot of hard work.

And since the Model 6 is based on our A600 processor, it's easy to upgrade. Just move up to our A700 with optional floating point hardware and microprogramming. Both processors are 100% software compatible. That's another powerful argument in favor of HP microcomputers. And our competitive pricing discounts are another example of our commitment to OEMs.

For more information about the HP 1000 Model 6, call your local HP sales office listed in the white pages of your telephone directory. Ask for a technical computer representative. Or write for our OEM Information Kit to: Hewlett-Packard, Attn: Joe Schoendorf, Dept. 12152, 11000 Wolfe Road, Cupertino, CA 95014.

HP Model 6 microsystem. You don't have to spend time optimizing your application. And with all the system integration, government testing, and government approvals already taken care of, you can get your system to market a lot faster.

With high-speed Direct Memory Access (total I/O bandwidth up to 4.27 Mbytes/second) and a powerful memory system, you're really flying. And our wide range of interfaces gives you 12 ways to communicate with the outside world. There's even an I/O processor built into every single interface. This takes a big load off the CPU, freeing it for more important tasks. By distributing intelligence in this way, our micro turns in macro performance.

A growth path that's easy to follow.
HP offers the widest range of instruments and peripherals to fit into your system. They were all made to interface easily, and stand up to a lot of hard work.

And since the Model 6 is based on our A600 processor, it's easy to upgrade. Just move up to our A700 with optional floating point hardware and microprogramming. Both processors are 100% software compatible. That's another powerful argument in favor of HP microcomputers. And our competitive pricing discounts are another example of our commitment to OEMs.
No other back-up stacks up.

The world of information back-up just became a lot more dynamic. And the new Memorex 400 Series is the reason why. These Winchester disc drives deliver 10 or 15 formatted megabytes of storage in a single, compact and cost-efficient package. They are compatible with industry 5.25-inch mounting, media and interface standards. The Model 410 features 5 megabytes fixed and 5 megabytes removable, while the 415 provides 10 megabytes fixed and 5 removable.

Innovations In Reliability And Performance.

Gone are the low performance, inconvenience and marginal reliability of tape and floppy back-up approaches. Gone, too, are the question marks that have punctuated previous fixed/removable offerings. Indeed, the features built into the Memorex 400 Series make others pale by comparison. Features which experience tells us are mandatory to ensure reliable operation with removable cartridge media.

For instance, there's a unique cartridge media self-seal, a protective head enclosure door and a high performance closed loop air and purge system that together deliver unparalleled contamination protection. There's an embedded servo voice coil actuator that positions the heads accurately, ensuring media interchangeability and excellent data integrity. There are proven air bearing head mechanics, with dynamic loading to prevent head/media contact, and a head retraction system that protects both the heads and the media when the cartridge is removed or the drive powered down.

More Than Data Back-Up.

Integral back-up is only one way to look at the Memorex 400 Series. You can look at it as a versatile, economical, high-quality data base as well. With proven Winchester reliability, and fast voice coil access time, with the convenience of a foolproof front-loading cartridge and the data security achieved with hard disc standards. And with the cost efficiencies inherent in a small cartridge, compact design and all-DC power requirements.

Immediate Delivery And Worldwide Support.

Two other points about the Memorex 400 Series. One, we have them, in production quantities, ready for immediate shipment, complete with evaluation kits to speed your system integration. And two, we back them, comprehensively, with a responsive technical support network that stretches around the world.

High reliability and performance. Integral back-up. Proven technology. Standard mounting and interface. Compact and cost-efficient design. Immediate delivery. These are just some of the ingredients that have earned Memorex its reputation in the OEM marketplace for "Working Within The Systems."

MEMOREX
A Burroughs Company

OEM Equipment Sales, Service and Marketing, San Tomas at Central Expressway, Santa Clara, California 95052, (408) 987-3308 Telex 334-492.
In Europe: OEM Equipment Sales—England: Staines, Telephone 0784 51488, Telex 935013; West Germany: Hamburg, Telephone 0406 322075, Telex 215019; Frankfurt, Telephone 061 166051, Telex 411240.
Coprocessor chip
(continued from page 72)

interface clock from the bus interface clock. The video interface clock consists of two clocks: the reference clock (RCLK) and the character clock (CCLK). The RCLK controls the raster timing, thus determining scan rate and lines, while the CCLK controls the rate at which character and attribute information is shifted out of the chip. Thus, characters of varying resolution, size, and position can be defined, and proportional spacing can be controlled.

Intel Corp,
2625 Walsh Ave, Santa Clara, CA 95051.
Circle 253

MEMORY SYSTEMS

Microfloppy deviates from proposed standard

Presenting designers with yet another alternative, Tabor has announced its entry into the microfloppy market, as promised. Unlike its competitors, the TC500 Drivette uses a 3 1/4" flexible disk that is packaged in the soft vinyl jacket used in larger versions.

A single-sided drive with 500k-byte capacity, the drive contains a standard 5 1/4" interface to make it plug to plug compatible with existing 5 1/4" drives. In addition, by recording at a 140-tpi density, it provides data compatibility with single-sided 96-tpi 5 1/4" drives since both contain 80 tracks of data.

To make the device particularly attractive in portable instruments, recorders, and computers, the design has eliminated unnecessary weight. Reduced complexity results from incorporating multifunction parts, minimizing fasteners through the use of self-piloting and snap together parts, and basing the unit on a rugged 1-piece die-cast chassis. This produces a drive one-fourth the size, one-half the weight, and with only 60% of the power requirements of a 5 1/4" floppy drive.

The unit holds 500k bytes of unformatted data, recorded using MFM techniques at a 9250-bpi density on the inner track. Formatted capacity is 328k bytes. Rotating the disk at 300 ±1% rpm, the direct drive spindle motor eliminates belt drive and associated problems. Speed is accurate and stable. Start time is 400 ms maximum. The stepping motor lead screw carriage incorporates a no-backlash feature that provides accurate recording on 80 tracks at a 140-tpi density. Track to track access time is specified at 10 ms minimum with an average access time of 282 ms. Average latency is given as 100 ms.

According to company president Michael F. Hanley, the flexible jacket was chosen over the hard shell used by other vendors because it lends itself to available manufacturing techniques. Accordingly, media prices should drop to $1 per disk by 1984; the hard shell diskettes are projected to have a 40% higher manufacturing cost because of their mechanical complexity.

Evaluation units are currently being shipped, with full production on the way. Price per unit is $315. Tabor Corp,
Lyberty Way, Westford, MA 01886.
Circle 254

Soup to Nuts.

Some would have you think that a matrix printer is a mere side dish that comes with your computer. Don't believe it. What you get out of your printer is what you get out of your computer. If your printer is small, slow, noisy or unreliable, your computer will be limited, sluggish, irritating, or inoperable. Just telling it like it is. That's why Infoscribe has come up with a gourmet line of multifunction matrix printers specifically for business and professional users. You can switch from high-speed data processing to business letters, at will; handle up to 16-inch-wide paper; make up to five crisp carbons; generate gorgeous graphics in up to eight colors; and enjoy truly elegant and incredibly quiet operation, day-in and day-out.

Check the menu for the printer that meets your exact needs. Why go with the computer manufacturer's combo plate when the same money will let you buy Infoscribe, a la carte? Your favorite computer dealer or systems specialist will be delighted to arrange a demonstration for you. Or contact the matrix d'Infoscribe, 2720 South Croddy Way, Santa Ana, California 92704, USA, Phone (714) 641-8595, Telex 692422.

PRINT WITH INFOSCRIBE

CIRCLE 49
SEEING IS BELIEVING

THE ¼-INCH STREAMER THAT PACKS 20 OR 45 MEGABYTES INTO A HALF-HIGH 5.25-INCH SPACE.

Wangtek, the leader in half-high streamer technology, invites you to see the new Series 5000 half-high ¼-inch streamer. The Series 5000 will be shown at The Hilton At The Park during NCC—May 16–19. Please join us or contact Wangtek for your special invitation.

Wangtek, 5845 Uplander Way
Culver City, California 90230
(213) 410-1444, Telex: 664425.

See us during NCC at “The Hilton At The Park.”
Take representative parts: computers, communications, and people; mix thoroughly for four days, and what do you have? The National Computer Conference, which returns to Anaheim, California May 16 to 19. Together with the equipment exhibition and Professional Development Seminars, NCC '83's Technical Program will give attendees the chance to stay on top of their own field and catch up with what's been happening in other sectors of this multifaceted computer industry.

As in previous years, the Technical Program is organized along interest tracks that will help conference-goers pinpoint their areas of greatest concern. This year's tracks are set up as follows: software engineering, management and education, database and distributed systems, human and social issues, office automation, decision support systems, hardware, telecommunications and computer applications, and personal computers. Sessions most likely to attract Computer Design readers are listed on the following pages.

High performance Winchester technology will head this year's hardware sessions. Though well-established in large computers, its entry into small business systems, word processors, and personal computers is keeping Winchester technology in the news. High performance disk drive development trends that cover a wide range of potential applications will be identified.

Meanwhile, high performance computing in itself remains the consuming passion of many Computer Design readers. A panel will present state of the art vendor offerings, application requirements, how one facility develops and provides available resources, and the new directions university research may take in the area of scientific simulation.

Up-and-coming multiprocessor computer designs are also likely to draw attention, particularly from designers of fault-tolerant systems. The advent of inexpensive VLSI components is making multiprocessor architecture feasible in a growing breadth of applications.

Beyond that, separate sessions will be devoted to microcomputer design and array processor development. Microcomputer design topics will emphasize evolving Multibus standards, dynamic RAM architectures for graphics applications, and a unique approach to microprocessor memory. Array processor panelists will evaluate the impact of hardware and software advances and look to a plethora of powerful new array processors being used in applications like signal processing, image processing, simulation, CAD, testing, and dynamic analysis and control.

Day by day, the partnership between telecommunications and computer applications becomes stronger. Work on the reference model for open systems interconnection (OSI) continues (continued on page 80)
at full tilt toward settling ground rules for developing protocols that interconnect heterogeneous systems. When this goal is realized, designers will be able to integrate advanced technologies into systems they just dreamed about 10 years ago.

One session will review the latest draft of OSI's 7-layer protocol, network layer service, and the role intelligent peripherals can play in system architecture. Other sessions will assess strides in computer communication network techniques for routing, flow and congestion control, and network configuration management. Ongoing development is zeroing in on improved performance, algorithm efficiency, and distributed operation support.

At the session on fifth-generation computers, the human element will assume a bigger slice of the computer pie as speakers cull their experience from ongoing technology based projects. Japan has thrown down the gauntlet for leadership in advanced computer technology by the 1990s with its government funded Fifth-Generation Computer Project. U.S. government and industry leaders will describe their strategies for meeting this challenge through parallel work on supercomputers and powerful logic-inference machines. Then watch for the software engineering meeting titled "Artificial Intelligence: Blue Sky or Tools of the Future?"

For registration information, contact NCC '83 Registration, Dept 1040, Washington, DC 20044. Tel: 703/558-3680.

Technical Program Excerpts*

Session M1-1: Communicating with Data Bases in English
Mon 1:30 to 3 pm, Salon G
Leader: M. Evens, Illinois Institute of Technology
M1-1/1 "Knowledgeable Contexts for User Interaction"
B. H. Thompson, F. B. Thompson, and T-P. Ho, California Institute of Technology
M1-1/2 "An English Language Processing System Which 'Learns' about New Domains"
B. W. Ballard and J. C. Lush, Duke University
Panelists: L. Harris, Artificial Intelligence Corp; and B. J. Grosz, SRI

Session M1-3: Current Database Machines
Mon 1:30 to 3 pm, Salon A
Leader: M. Plesset, Aerospace Corp
M1-3/1 "Application of the Massively Parallel Processor to Database Management Systems"
E. Davis, North Carolina State University
Panelists: S. Fuld, Amperif Corp; E. I. Lowenthal, Intel Corp; and R. Epstein, Britton-Lee, Inc

Session M1-4: Office Automation: State of the Art and Key Issues
Mon 1:30 to 3 pm, Salon E
Leader: A. Wohl, Advanced Office Concepts

Session M1-5: High Performance Winchester Trends
Mon 1:30 to 3 pm, Salon 1
Leader: T. Williams, Computer Design magazine
M1-5/1 "Winchesters for Multi-User/Multitask Applications"
L. Jacob, PRIAM
Panelists: R. Brechtlein, Century Data Systems; J. Ramos, Evatek; D. Weir, IBIS; and T. Scooros, PRIAM

Session M1-6: Protocols for Computer Communications
Mon 1:30 to 3 pm, Salon F
Leader: H. V. Bertline, Bell Labs
M1-6/1 "A Standard Session Protocol for Open Systems Interconnection"
C. E. Young, Bell Labs
M1-6/2 "The Role of Intelligent Peripheral Interfaces in Systems Architecture"
I. D. Allen, Sperry Univac
M1-6/3 "Progress on the Network Layer of the OSI Reference Model"
P. F. Linington, Rutherford Appleton Lab

Session M1-7: Microcomputer Software Protection
Mon 1:30 to 3 pm, Salon 3
Leader: W. Green, Wayne Green, Inc
Panelists: B. Godbout, Godbout Electronics; G. Morrow, Morrow Designs; G. Kildall, Digital Research; P. Hipson, Alternative Micro Systems; and D. Myers, Jones Futurex

Session M2-1: Artificial Intelligence: Blue Sky or Tools of the Future?
Mon 3:30 to 5:30 pm, Salon 1
Leader: R. Maxion, Xerox Corp
Panelists: J. Mostow, USC/Information Sciences Institute; E. Rich, University of Texas, Austin; J. S. Brown, XEROX PARC; and J. McDermott, Carnegie-Mellon University

(continued on page 82)
Available with either a 12 or 14 inch CRT, the BC Series 200/300 displays provide the line rate, information density, and the resolution you need, at a price you can live with...to make your package look better, perform better, and sell easier.

The Ball BC Series displays give you the broadest horizontal scanning range available. Our advanced circuit design handles all applications from 15.25 to 19.4 kHz or 20 to 25 kHz.

You get single board construction to increase reliability and simplify service and direct drive input to eliminate the need for stripping circuits in the monitor and mixing circuits in your logic interface. Our wide band horizontal oscillator, high brightness and resolution, and low geometric distortion give you even more to enhance your product.

And now the BC Series displays come as a complete package, with a companion switch mode power supply that is designed to meet your +5, +12, and -12 volt DC power requirements while it ends your interference and noise problems. You get the complete package you need...and avoid the extra time and expense that can occur when you try to match components from different sources.

We have also designed the BC Series 200/300 displays so that you can meet your specific needs with a variety of options...at a very low add-on cost. For a demonstration or information, call our nearest sales office.
Session M2-3: Research Database Machines
Mon 3:30 to 5:30 pm, Salon J
Leader: P. Hawthorn, Lawrence Berkeley Lab
M2-3/1 "A Reconfigurable VLSI Architecture for a Database Processor"
K. Oflazer, Carnegie-Mellon University
M2-3/2 "Implementing Set Theoretic Relational Query Functions Using Highly Parallel Index Processing Hardware"
S. Pramanik, Michigan State University
M2-3/3 "Cost-Effective Ways of Improving Database Computer Performance"
D. K. Hsiao, Naval Postgraduate School
Panelists: M. Missikoff, Instituto di Analisi dei Sistemi

Session M2-6: Advances in Computer Communication Networks
Mon 3:30 to 5:30 pm, Salon 3
Leader: E. F. Wunderlich, American Bell, Inc
M2-6/1 "Three Heuristics for Improving Centralized Routing in Large Long-Haul Communication Networks"
I. M. Pesic and D. W. Lewis, University of Santa Clara
M2-6/2 "A New Probabilistic Routing Algorithm for Packet Switched Computer Networks"
C-Y. Chin and K. Hwang, Purdue University
M2-6/3 "Optical Wireless Modem for Office Communication"
T. Minami, H. Morikawa, and O. Takahashi, Fujitsu Labs Ltd
M2-6/4 "A High Throughput Interconnection Structure"
J. A. Hernandez and R. Joly, Ecole Nationale Superieure des Telecommunications; and E. Horlait and G. Pujolle, Universite Pierre et Marie Curie

Session T1-1: Writing Less Code: An Approachable Ideal
Tues 8:30 to 10 am, Salon A
Leader: N. L. Bloom, American Management Systems, Inc
T1-1/1 "Writing Less Code—An Approachable Ideal"
N. L. Bloom, American Management Systems, Inc
T1-1/2 "Foundation Software: A Significantly Improved Approach to the Development of Large Application Systems"
G. A. Curtis, American Management Systems, Inc
T1-1/3 "A Case Adaptable Applications Software"
M. Woodward, Associates Financial Services; and P. F. Digimmarino, American Management Systems, Inc

Session T1-3: Fifth Generation Computers
Tues 8:30 to 10 am, Salon E
Leader: F. F. Kuo, SRI International
Panelists: R. E. Kahn, DoD—DARPA; E. Feigenbaum, Stanford University; and D. H. Brandin, SRI International

The Grinnell 2800 Image Processing/Graphic Display System. Whatever your mind can imagine, the Grinnell 2800 System can visualize at a very cost effective price. Powerful, flexible and compact. The 2800’s exceptionally fast, easily programmed distributed computing archi- tecture give you an incredible repertoire of graphics instructions and image processing capability. Built around a high-speed bit slice processor, it’s ideal for a wide range of monochrome, 3-color and multispectral applications in everything from 512 x 512 to 1024 x 1280 formats. Exactly what you need, when you need it. Its flexible, modular design lets the system
Session T1-5: DSS Design Methodologies—1
Tues 8:30 to 10 am, Salon G
Leader: D. T. Lee, University of Hartford
T1-5/1 "A New Look at Existence Dependency in Data Bases"
T. C. Chiang, Bell Labs
T1-5/2 "Issues in the Design of Relational Model Management Systems"
R. W. Blanning, Vanderbilt University
Panelist: D. Wszolet, Information Builders

Session T1-6: High Performance Computing
Tues 8:30 to 10 am, Salon J
Leader: D. Theis, Aerospace Corp
T1-6/1 "Universities and the Future of Computing Technology for Scientific Simulation"
K. G. Wilson, Cornell University
Panelists: S. Chen, Cray Research, Inc; J. Swanson, Swanson Analysis Systems, Inc; G. Michael, Lawrence Livermore Labs

Session T1-7: Voice Processing
Tues 8:30 to 10 am, Salon 3
Leader: J. L. Flanagan, Bell Labs
T1-7/1 "The Technology of Digital Speech: Compression, Editing, Storage"
R. E. Crochiere and J. L. Flanagan, Bell Labs
T1-7/2 "Statistical Modeling for Automatic Speech Recognition"
R. L. Mercer, T. J. Watson Research Center
T1-7/3 "Implications of VLSI Technology for Speech Processing"
R. W. Broderson, University of California, Berkeley

Session T2-1: Software Management for the '80s
Tues 10:30 am to 12 noon, Salon A
Leader: S. M. Jacobs, TRW
Panelists: G. L. Barksdale, Jr, Ford Aerospace & Communications; R. Loesh, Jet Propulsion Lab; D. Reifer, Reifer Consultants, Inc; R. Valleni, TRW; and J. D. Wick, Xerox Corp

Session T2-3: Relational Database Management
Tues 10:30 am to 12 noon, Salon E
Leader: P. Shaw, IBM Corp
T2-3/1 "Local Query Translation and Optimization in a Distributed System"
A. Hevner, University of Maryland
T2-3/2 "Progress Toward Database Management Standards"
D. R. Deutsch, General Electric Information Services Co

(continued on page 84)
NCC '83
(continued from page 83)

Session T2-3: Command Usage in a Relational Database System
J. D. Joyce and D. D. Warn, General Motors Research Labs

Session T2-4: DSS Design Methodologies—2
Tues 10:30 am to 12 noon, Salon G
Leader: D. T. Lee, University of Hartford
T2-4/1 “The DSS Development System”
R. H. Bonczek and A. B. Whinston, Purdue University; N. Ghaseddin, University of Notre Dame; and C. W. Holsapple, University of Illinois
T2-4/2 “Applications of Fuzzy Languages and Pictorial Data Bases to Decision Support Systems Design”
E. T. Lee, Memphis State University
Panelist: S. Kimbrough, Massachusetts Institute of Technology

Session T2-5: Microcomputer Design Topics
Tues 10:30 am to 12 noon, Salon J
Leader: S. Cooper, Intel Corp
T2-5/1 “Dynamic RAM Architectures for Graphics Applications”
D. Finke, Intel Corp
T2-5/2 “The iRAM—An Innovative Approach to Microprocessor Memory Solutions”
J. J. Fallin, Intel Corp
T2-5/3 “Multibus Continues to Evolve to Meet the Challenges”
S. Cooper, Intel Corp
T2-5/4 “Analysis of the M68000 Instruction Set”
J. Boney, Intel Corp

Session T2-6: Human Voice Communications with Computers
Tues 10:30 am to 12 noon, Salon F
Leader: J. M. Nye, Marketing Consultants International
Panelists: R. Rabin, Verbex/Exxon Communications Systems; M. H. Hitchcock, Interstate Electronics Corp; C. Berney, Centigram Corp; and J. M. Nye, Marketing Consultants International

Session T3-1: Reducing Program Development Risks with Reusable Code
Tues 1:30 to 3 pm, Salon G
Leader: L. Martin, Raytheon Computer Services
Panelists: J. A. Manara, Security Pacific National Bank; J. E. Kunkler, Xerox Corp; J. Corkery, Raytheon Computer Services; and R. Lanergan, Raytheon Missile Systems Div

Session T3-7: Distributed Processing
Tues 1:30 to 3 pm, Salon F
Leader: D. Kutnick, The Yankee Group
Panelists: D. Kutnick and P. Burstyn, The Yankee Group; and P. Dorn, Dorn Computer Consultants

Session T4-1: Software Engineering Techniques and Approaches
Tues 3:30 to 5:30 pm, Salon 1
Leader: A. Pyster, TRW/DSG
T4-1/1 “Stepwise Structuring: A Style of Life for Flexible Software”
E. Sandewall, S. Hagglund, C. Gustafsson, and L. Jonesjo, Linkoping University
T4-1/2 “HITS: A Symbolic Testing and Debugging System for Multilingual Microcomputer Software”
T. Chuso et al, Hitachi, Ltd
T4-1/3 “A Global Checkpointing Model for Error Recovery”
K. Kant, Northwestern University
T4-1/4 “Development Tools for Bus Controller Software”
M. I. Thomas, Tecsi-Software

Session T4-3: Microcomputer Database Management Systems
Tues 3:30 to 5:30 pm, Salon A
Leader: E. Ivie, Brigham Young University
Panelists: K. F. Barley, DataWise; G. Everest, University of Minnesota; D. J. Rodman, David Rodman Associates; J. C. Norman, Condor Cord; and J. C. Collier, MicroPro

Session T4-4: Electronic Mail
Tues 3:30 to 5:30 pm, Salon 3
Leader: W. Ulrich, Walter Ulrich Co
T4-4/1 “Current Issues in Electronic Mail Heraldin a New Era”
W. Ulrich, Walter Ulrich Co
T4-4/2 “The Integration of Multimedia Communications”
B. P. Donohue, ITT, American Bell, Inc
T4-4/3 “Voicemail”
P. F. Finnigan, Voicemail International, Inc
T4-4/4 “Electronic Mail: Evolving from Intracompany to Intercompany”
H. P. Burstyn, The Yankee Group

Session T4-5: Dynamic and Reconfigurable Architectures for Realtime Parallel Systems: Software Problems
Tues 3:30 to 5:30 pm, Salon J
Leader: C. Davis, Ballistic Missile Defense Advanced Technology Center
T4-5/1 “Reconfigurable Fault-Tolerant Multicomputer Network”
C. Davis, Ballistic Missile Defense Advanced Technology Center; S. P. Kartashev, University of Nebraska; and S. I. Kartashev, Dynamic Computer Architecture, Inc

(continued on page 86)
It's your choice.
At Rosscomp, we build the industry's finest, most dependable 1/2-inch magnetic tape drives to back up high-capacity Winchesters. Our D160 records 160M bytes on 24 tracks in less than 20 minutes, uses standard 1/2-inch tape, and fits into an 8-inch envelope. No one else can say that.

No one.
So for Winchester back up that really works, come to the experts. Us. Write for details on our Evaluator Package, and see for yourself how well we back you up.
Think about it. You've come a long way in storage capacity.
And that means you've got a lot more to lose.

ROSSCOMP
We're backing up your future.
16643 Valley View Avenue, Cerritos, CA. 90701 (213) 926-5533
See us at NCC, Booth's D2427, D2429, D2431 and D2433
Session T4-5: Dynamic and Reconfigurable Architectures for Realtime Parallel Systems (continued): Hardware Structures
Tues 3:30 to 5:30 pm, Salon J
Leaders: S. P. Kartashev, University of Nebraska; and S. I. Kartashev, Dynamic Computer Architecture, Inc
T4-5/1 “Reconfigurable Architectures for VLSI Processing Arrays”
M. Sami and R. Stefanelli, Politecnico di Milano
T4-5/2 “Conflict-Free Memory Allocation for Associative Data Files”
S. P. Kartashev, University of Nebraska; and S. I. Kartashev, Dynamic Computer Architecture, Inc

Session T4-6: Network Security
Tues 3:30 to 5:30 pm, Salon F
Leader: J. M. Nye, Marketing Consultants International, Inc
T4-6/1 “Network Security and Vulnerability”
J. M. Nye, Marketing Consultants International, Inc
Panelists: L. Adleman, University of Southern California; D. R. Whitson, Datotek, Inc; and R. O’Connor, Motorola, Inc

Session W1-1: Directions for Software Engineering: Now and in the Future
Wed 8:30 to 10 am, Salon A
Leader: W. E. Riddle, Software Design & Analysis, Inc
Panelists: R. Balzer, USC Information Sciences Institute; L. Belady, IBM Corp; J. Munson, System Development Corp; and J. Musa, Bell Labs

Session W1-5: Super Microsystems: Commodity Computer, Commodity Software
Wed 8:30 to 10 am, Salon F
Leader: J. Stidd, Molecular Computing
Panelists: P. Alker, Convergent Technology; M. Florio, Onyx; and J. Stidd, Molecular Computing

Session W1-6: Special Applications of Technology
Wed 8:30 to 10 am, Salon J
Leader: L. Cameron, Atlantic Richfield Co
W1-6/1 “The Laboratory Automation System in the Electrical Communications Laboratory”
N. Terashima, Nippon Telegraph & Telephone Public Corp
W1-6/2 “Applications of Digital Optical Disks in Library Preservation and Reference”
W. R. Nugent, Library of Congress
Panelist: J. Cornwell, Walt Disney Productions, Inc

Session W1-7: Software Transportability in the Personal Computer World
Wed 8:30 to 10 am, Salon 3
Leader: P. O’Grady, Micro Focus
Panelists: P. O’Grady, Micro Focus; T. McCalmont, Cromecom, Inc; and T. Rollander, Digital Research

Session W2-1: Software Technology for Adaptable Reliable Systems
Wed 10:30 am to 12 noon, Salon J
Leader: L. E. Druffel, U. S. Department of Defense
Panelists: S. Redwine, The MITRE Corp; and E. Kruesi, General Electric Co

Session W2-2: Software Maintenance—Application System Perspective
Wed 10:30 am to 12 noon, Salon G
Leader: N. Chapin, Infosci, Inc
W2-2/1 “Improving Software Maintenance Attitudes”
P. C. Tinnirello, A. M. Best Co
W2-2/2 “A Methodology for Minimizing Maintenance Costs”
J. Connell and L. Brice, Los Alamos National Lab
W2-2/3 “Quality Assurance and Maintenance Applications Systems”
B. J. Taute, Time, Inc
W2-2/4 “Human Investment Techniques for Effective Software Maintenance”
N. L. Marselos, Western Electric Co

Session W2-3: Measuring the Impact of Information Techniques
Wed 10:30 am to 12 noon, Salon 3
Leader: J. M. Nilles, University of Southern California
Panelists: D. Mankin, Rand Corp; A. M. Mohrman, University of Southern California; and G. Talbot, TRW, Inc

Session W2-5: Videotex Systems
Wed 10:30 am to 12 noon, Salon A
Leader: G. H. Arlen, Arlen Communications, Inc
W2-5/1 “Tales from the Trial Trail: Videotex Progress in the United States”
G. H. Arlen, Arlen Communications, Inc
W2-5/2 “Videotex and Teletext in the Business/Consumer Marketplace”
L. T. Pfister, Time Video Information Services
Panelists: S. Berkman, Time Video; M. Hayes, DEC; J. Holly, Times Mirror Videotex

(continued on page 88)
We've Got Some Pretty Bright Characters at Hitachi

And color display units make the picture perfectly clear. In charts, graphs, displays, read-outs—just about any way you want. Here are just a few of their colorful features.

- MORE THAN 2,000 CHARACTERS can be displayed in alphabets, numerals and graphics in seven bright colors: red, green, blue, yellow, cyan, magenta and white.
- IN-LINE ULTRA-HIGH RESOLUTION display tube (13 inch or 33 cm) incorporates a 0.31 mm dot pitch matrix that gives you sharp, clear characters and graphics.
- Compact chassis employs a SELF-CONVERGENCE SYSTEM, with enough space to encompass extra logic circuit boards.

Hitachi will beautify your image with a few of our bright characters.

NSA
Nissei Sangyo America, Ltd.

Boston office: 40 Washington street, Wellesley Hills, MA 02181 (617) 237-9643
New York Office: 825 Third Avenue, New York, NY 10022 (212) 755-2900
San Francisco Office: 460 E. Middlefield Road, Mountainview, CA 94043 (415) 969-1100

CIRCLE 54
Session W2-6: Network Services Planning
Wed 10:30 am to 12 noon, Salon E
Leader: J. King, DMW Group, Inc
W2-6/1 “Planning High Speed Digital Services in the Bell System”
G. Handler, American Telephone & Telegraph
Panelists: H. Jamison, Tymshare; and D. Russell, Satellite Business Systems

Session W2-7: The Next 5 Years in Microcomputers
Wed 10:30 am to 12 noon, Salon F
Leader: P. Nesdore, Auerbach Publishers
Panelists: P. Nesdore, Auerbach Publishers; J. Pornelle, Author; and A. Osborne, Osborne Computers

Session W3-1: Experience in Ada Applications
Wed 1:30 to 3 pm, Salon A
Leader: G. Booch, Consultant
Panelists: S. Fox, Computer Corporation of America; K. Krishnaswimy, Ford Aerospace Corp; and J. Hutchison, GE Research and Development Center

Session W3-2: Control of the Maintenance Function
Wed 1:30 to 3 pm, Salon 3
Leader: N. Zvegintzov, Zvegintzov Assocs
W3-2/1 “Structured Software Maintenance”
G. R. E. Schneider, Naval Weapons Center
W3-2/2 “Application Maintenance: One Shop’s Experience and Organization”
R. E. Marsh, Dow Corning Corp
W3-2/3 “Organizational Issues of Effective Maintenance Management”
G. L. Richardson, Texaco, Inc; and C. W. Butler, University of Arkansas
Panelist: R. Martin, National Bureau of Standards

Session W3-6: Howard Aiken and the Harvard Computation Laboratory: The Machines
Wed 1:30 to 3 pm, Salon G
Leader: I. B. Cohen, Harvard University
Panelists: G. Hopper, U.S. Navy; R. M. Bloch, R. M. Bloch Assocs; J. A. Harr, Bell Telephone Labs; and P. F. Strong, Harvard University

Session W4-1: Future Visions: Ada Environments of the 1990s
Wed 3:30 to 5:30 pm, Salon A
Leader: H. Hart, TRW
W4-1/1 “Implementation of an Ada Runtime Environment”
H. Fischer, Litton Data Systems; and E. H. Sibley, Alpha Omega Group, Inc
W4-1/2 “Future Ada Environments”
S. H. Saib, General Research Corp
Panelists: F. Belz, TRW; T. Standish, University of California, Irvine; and H. Hunke, Commission of the European Communities

Session W4-3: Applications in Distributed Database Management
Wed 3:30 to 5:30 pm, Salon F
Leader: C. Mohan, IBM Corp
W4-3/1 “A Distributed Database Design for a Communications Network Control System”
S. L. Kota, S. C. Lo, and M. H. Aronson, Ford Aerospace & Communications Corp
W4-3/2 “Empact: A Distributed Database Application”
A. Norman and M. Anderton, Tandem Computers Inc
W4-3/3 “Dynamic Replication, An Overview”
T. P. Daniell, R. C. Harding, Jr, and S. H. Nauckhoff, IBM Corp
Panelist: C. Mohan, IBM Corp
(continued on page 90)
WHAT SHOULD YOU EXPECT FROM A PRINTER THAT DOES EVERYTHING?

Now there’s a better choice in data printers — Hitachi Koki’s new 300 and 600 LPM matrix printers from NSA. Better because they can print anything anywhere on the page with pinpoint registration. Better because they are virtually silent. And better because they’ve been refined, built and proven for low cost of ownership by Hitachi Koki — a world leader in printer technology.

With the AD 30 and AD 60 printers, you can offer your customers a single printer for all their requirements. One that can generate any character set. Produce graphics. Handle correspondence. Generate forms without the expense or hassle of preprinting. And deliver reports with the enhanced look and readability that sophisticated typography can provide. Call or write for details.

NCC
Booth D216

NSA
Nissei Sangyo America, Ltd.

Boston:
46 Washington Street
Wellesley Hills, MA 02181
(617) 237-9643

New York:
825 Third Avenue
New York, NY 10022
(212) 755-2900

San Francisco:
460 E. Middlefield Road
Mountain View, CA 94043
(415) 969-1100

In Europe contact:
Nissei Sangyo G.m.b.H
Mannheim (Tel. 0621-406051)
Nissei Sangyo Co. Ltd.
London (Tel. 01 427-5612)
Session W4-5: Howard Aiken and the Harvard Computation Laboratory: The Laboratory and Aiken's Contribution
Wed 3:30 to 5:30 pm, Salon G
Leader: R. Ashenhurst, University of Chicago
Panelists: F. P. Brooks, Jr, University of North Carolina; K. E. Iverson, I. P. Sharp Assoc; M. V. Wilkes, Digital Equipment Corp; A. G. Oettinger, Harvard University; and W. L. Semon, Syracuse University

Session W4-6: Network Management
Wed 3:30 to 5:30 pm, Salon 3
Leader: K. Maruyana, IBM Corp
W4-6/1 "IBM Information Network Performance and Availability Measurement"
R. C. Soucy and R. M. Bailey, IBM Corp
W4-6/2 "Designing and Managing an SNA Network for Growth"
S. M. Schi ffman, IBM Corp
W4-6/3 "Backup and Recovery in the IBM Information Network"
K. Bhadra and S. M. Schi ffman, IBM Corp
W4-6/4 "Logical Problem Determination in an SNA Network"
R. A. Weingarten and E. E. Iacobucci, IBM Corp

Session H1-1: Software Engineering by the Year 2000
Thurs 8:30 to 10 am, Salon E
Leader: J. A. Rader, Hughes Aircraft Co
Panelists: B. Boehm, TRW; L. Belady, IBM Corp; T. Gilb, Consultant; and L. Druffel, U.S. Department of Defense

Session H1-4: Beyond Productivity: The Future of Office Automation
Thurs 8:30 to 10 am, Salon F
Leader: N. D. Meyer, N. Dean Meyer and Assocs, Inc
Panelists: N. D. Meyer, N. Dean Meyer and Assocs, Inc; E. Sokol, Organizational Research Group; and D. C. Engelbart, Tymshare, Inc

Session H1-5: New Developments in Array Processors
Thurs 8:30 to 10 am, Salon G
Leader: W. J. Karplus, University of California, Los Angeles
Panelists: G. Bekey and D. Cohen, University of Southern California; R. Borgioli, CSP, Inc; R. Tracy, Floating Point Systems, Inc; and W. J. Karplus, University of California, Los Angeles

Session H1-6: Creative Ideas for Systems Development and Measurement
Thurs 8:30 to 10 am, Salon 3
Leader: W. E. Farley, Lee College
H1-6/1 "An Information System for Developing Information Systems"
B. Blum, Johns Hopkins University Hospital
H1-6/2 "A Metric of Estimation Quality"
T. DeMarco, Yourdon, Inc
H1-6/3 "Software Productivity Measurement"
J. S. Collofello, S. N. Woodfield, and N. E. Gibbs, Arizona State University

Session H1-7: Design of 68000 Based Microcomputer Systems
Thurs 8:30 to 10 am, Salon 1
Leader: S. Puthuff, Fortune Systems
Panelists: E. Lupin and R. Mellen, Cromemco; S. Puthuff, Fortune Systems; and T. Gunter, Motorola, Inc

Session H2-6: Multiprocessor Computer Designs
Thurs 10:30 am to 12 noon, Salon 1
Leader: B. Patterson, Intel Corp
H2-6/1 "Intel iAPX 432—VLSI Building Blocks for a Fault-Tolerant Computer"
B. Patterson, Intel Corp
H2-6/2 "Performance Evaluation of the MPIC"
B. W. Arden and R. Ginosar, Princeton University
H2-6/3 "A Multiprocessor with Replicated Shared Memory"
S. L. Lillevik and J. L. Easterday, Oregon State University

Session H2-7: CAD/CAM
Thurs 10:30 am to 12 noon, Salon G
Leader: D. M. Herstad, Arthur Andersen & Co
Panelists: N. P. Jeffries, Center for Manufacturing Technology; J. H. Keller, Rocketdyne; and N. Schweitzer, Computervision
HALF-SIZE
5¼ INCH FLOPPY DRIVES
FROM NSA

Smaller. Faster. Shugart compatible.
With a new standard of reliability.

Introducing a family of super thin, mini floppy disk drives that measures up to the most demanding OEM specifications. NSA's new FB500 Series offers 3 msec. track-to-track access at 96 TPI (6 msec. at 48 TPI). Their compact 41 x 146 x 209 mm size lets you install two in the space normally allotted for a single conventional drive. And their Shugart plug compatibility enables easy integration without hardware or software modifications.

Manufactured by Tokyo Electric Company, Ltd., the drives are virtually maintenance-free. Offer fail-safe disk insertion. One-step ejection. Long-life ceramic heads. Advanced stepping motor design. Direct drive, brushless DC motors. 250–1,000 KB capacity. And a MTBF you'll have to test for yourself to believe. Call or write today for an evaluation unit and complete details.
TOWER™ 1632. IF YOU THINK IT’S BEAUTIFUL IN COLOR, LOOK AT IT IN BLACK & WHITE.

PROCESSOR:
16-bit 10MHz Motorola 68000 processor off-loads I/O functions to as many as six microprocessor-based controllers with Direct Memory Access (DMA) for powerful minicomputer performance. Memory management unit uses full 24-bit addressing. Clear migration path to 32-bit technology.

USERS:
1 to 16, local or remote.

MEMORY:
Up to 2 megabytes ECC memory, in 256K increments.

MASS STORAGE:
10 megabytes to one billion bytes.

OPERATING SYSTEM & SOFTWARE:
NCR enhanced operating system derived from UNIX®. Five user personality levels. Dictionary driven applications generator.

LANGUAGES:
Cobol, Business BASIC, Fortran, C.

INDUSTRY STANDARD INTERFACES:
I/O Bus:
Multibus® IEEE-796.

Magnetic Media:
SA400—5.25” floppy disks, ST506—5.25” Winchester, SMD—high performance 8” Winchester, QIC II—streaming tape.

Communications:
RS232C [ASCII TTY, Bisync (2780/3780)], NCR DLC, SDL/C/SNA, X.21/X.25, Networking.

PRICE:
Under $10,000 in OEM quantities.

In the foregoing sketch you see the outline of the new shape in computing. Tower™ 1632. Now that you know what it looks like in black & white, we invite you to see it in action. Call us at (800) 222-1235.

BUILT FOR SYSTEMS BUILDERS.
TOWER 1632.

NCR
OEM Marketing Division

*UNIX is a trademark of Bell Laboratories. **Multibus is a trademark of Intel Corporation. Products for delivery in U.S.A. will comply with appropriate FCC rules.

CIRCLE 58
As you can't see, the terminal on the left has a low-cost Rockwell R24DC modem built in. It's connected directly to the U.S. dial-up network with nothing more than a standard telephone jack. No acoustic coupler. No phone. No tangled wires.

It's easy to connect the R24DC modem inside your terminal. It's LSI-based, with the entire 2400 bps modem and data access arrangement on a single 5" x 7.85" plug-in card. With power requirements of ±12V and +5V, it consumes only 3 watts.

Rockwell's R24DC integral modems are FCC-registered and both Bell- and CCITT-compatible. And they're widely used in point-of-sale terminals, and for cleaning up PBXs, data concentrators and data communications devices.

To get the inside story on Rockwell modems, call the Electronic Devices Division, Rockwell International at (800) 854-8099. In California, call (800) 422-4230. Or write us at P.O. Box C, MS 501-300, Newport Beach, California 92660.
There's a lot more to display technology than meets the eye, and that's what the Society for Information Display's symposium this May 10 to 12 is all about. Authorities from the United States, Japan, Finland, the Netherlands, Austria, Germany, England, France, and Switzerland will get together at the Marriott Hotel in Philadelphia to take stock of global progress in information display technology and survey an international exhibition of components, accessories, operational equipment, and complete systems.

Pivotal technical advances in fabricating, characterizing, and measuring display devices, panels, and subsystems will be explored over the course of a 2-day tutorial seminar, to be held on the days before and after the conference. Seminar Chair Peter Pleshko, manager of plasma display technology development and manufacturing at IBM's Kingston, New York facility, reports that on Monday May 9, fabrication and characterization will tender equal weight as participants benchmark the three major flat panel technologies: plasma, liquid crystal, and ac electroluminescence. Friday's meetings will be split into two groups. One will cover the historical evolution of the three types of display technology, while the other will deal with image quality perception and measurement.

Keynote speaker Bart Donohue III, executive director of research and development at American Bell, will assess how technical advances in information processing, communication, and storage tie into information management and communications. Donohue's talk, "The Technological Explosion and the Emerging Business Opportunities," will mark the opening of SID's Technical Program during Session 3 on Tuesday at 10:15 am.

Of course, the main conference attraction will be its distinguished Technical Program, which will run the gamut from contrast enhancement filters and ink-jet printers to the latest in simulator displays, optical storage, and thermal recording media. Besides that, three evening "rump" sessions will pitch ideas about portable computer displays, the need for color displays, and the display marketplace in 1990.

Recognizing that displays are a crucial concern in portable and handheld computers, panelists in the first evening session will review system requirements and viable display technologies for the upcoming breed of mobile computers. In addition, now that color has penetrated computer graphics technology, the second evening session will evaluate how color is being used in a variety of technical fields. Panelists will rate how well shadow mask CRTs, beam penetration CRTs, and monochrome displays match user needs. Finally, the third evening panel will earmark market trends, then paint a display scenario for the opening of the last decade in this century. Topics ranging from large screen home displays to teleconferencing and wearable electronics are expected to come up.

For registration information, contact Lewis Winner, 301 Almeria Ave, Coral Gables, FL 33134.
Tel: 305/446-8193

(continued on page 96)
SID '83

(continued from page 95)

Technical Program Excerpts*

Session 4: Electroluminescent Displays
Tues 11 am to 12:15 pm, Commonwealth H
Cochairs: M. R. Johnson, Texas Instruments, Inc; and E. Schlam, U.S. Army ERADCOM
4/1 "Failure Phenomena in ac TFE L Panels"
 L. Tannas, Jr, Aerojet ElectroSystems Co
4/2 "Delamination Mechanism in ac TFE L Panels"
4/3 "Deep Traps and Mechanism of Device Aging in ZnS:Mn ac Thin Film EL Devices"
 K. W. Yang, Tektronix, Inc; and S. J. T. Owen, Oregon State Univ

Session 5: Contrast Enhancement Filters
Tues 11 am to 12:15 pm, Commonwealth J
Cochairs: C. Infante and A. Silzars, Tektronix, Inc
5/1 "Contrast Enhancement and Halo Suppression for CRTs"
 J. Rancourt, Optical Coating Lab, Inc
5/2 "Multilayer Coatings for CRT Panels"
 T. Jones and S. Saulsbury, Optical Coating Lab, Inc

Session 6: Liquid Crystal Applications
Tues 11 am to 12:15 pm, Commonwealth K-L
Cochairs: A. R. Kmetz, Bell Labs; and J. H. Becker, Exxon Enterprises
6/1 "An LCD/CRT Field-Sequential Color Display"
 R. Vatne, P. Johnson, and P. Bos, Tektronix, Inc
6/2 "A \pi-Cell Optical Switch"
 P. Bos, P. Johnson, and K. R. Koehler-Beran, Tektronix, Inc
6/3 "Gray-Scale Imaging on a Multiplexed LCD"
 Y. Suzuki, M. Sekiya, K. Arai, and A. Okhoshi, Sony Corp

Session 7: Large Screen Displays
Tues 2 to 5 pm, Commonwealth H
Cochairs: L. T. Todd, Jr, Projectron, Inc; and R. Tsai, Singer Librascope
7/1 "A 64M-Pel Liquid Crystal Projection Display"
 R. T. Lynch, C. Marinelli, R. W. Schmiedeskamp, and H. M. Sierra, IBM General Products Div
7/2 "Video Projection Systems and Optics"
 B. H. Welham, U.S. Precision Lens, Inc
7/3 "Liquid Crystal Message Center Display"
 J. R. Burns and G. W. Taylor, Princeton Research Assocs, Inc
7/4 "A 70-ft² Message Board Using TFE L Devices"
 J. Duncker, Lohja Corp
7/5 "Three-Color, 8' x 8' Display Using a Laser-Addressed Liquid Crystal Light Valve"
 S. Kubota, S. Sugama, S. Naemura, and N. Nishida, Nippon Electric Co, Ltd
7/6 "A Fiber-Optic Magnifying Display Panel"
 W. E. Glenn, NY Institute of Technology

Session 8: Optical Storage and Thermal Recording Media
Tues 2 to 5 pm, Commonwealth J
Cochairs: R. C. Durbeck, IBM Corp; and J. Mir, Eastman Kodak Co
8/1 "Video Disk Technology—Present and Future"
 K. I. Hagemark, 3M Co
8/2 "Archival Te-Alloy Optical Recording Films"
 L. Vriens, B. Jacobs, D. Broer, and W. de Poorter, Philips Research Labs
8/3 "Cs²Te Thin Films for Optical Disks"
 N. Funkaoshi, Y. Asano, and H. Yamazaki, NTT Tokai
8/4 "Thermal Ink Transfer Printer with Ink Layer Reformation Mechanism"
 S. Nakaya, K. Tanoshima, I. Nose, and T. Takeda, OKI Electric Industry Co
8/5 "Passive Thermal Display"
 S. Nakaya, K. Tanoshima, I. Nose, and T. Araki, OKI Electric Industry Co

Session 9: Color CRTs
Tues 2 to 5 pm, Commonwealth K-L
Cochairs: I. M. Wilson, Zenith Radio Corp; and I. F. Chang, IBM Research Center
9/1 "Resolution of Data Display Tubes"
 P. G. J. Barton, Philips Research Labs
9/2 "Horizontal MTF Analysis for Color CRTs"
 A. Kojima, Sony Corp
9/3 "The Effects of Asymmetric Optics on Spot Size and Deflection Defocusing in Picture Tubes"
 D. J. Bechis, RCA Labs; and H. Y. Chen, RCA Picture Tube Div
9/4 "Expanded Field Lens Design for Inline Color Picture Tubes"
 R. C. Alig, RCA Labs; and R. H. Hughes, RCA Picture Tube Div
9/5 "A High Brightness Shadow Mask Color CRT for Cockpit Displays"
 R. C. Robinder, D. J. Bates, P. J. Green, G. D. Lewen, and D. R. Roth, Tektronix, Inc

*Technical Program sessions are subject to last-minute changes.

(continued on page 98)
WE'VE GOT IT ALL

FROM 7MB TO 330MB IN
5¼", 8" AND 14" WINCHESTER FAMILIES.

Ampex’s Winchester families deliver the performance you need in today’s competitive marketplace. There’s 5¼” Pyxis with up to 27MB; 8" Scorpio with up to 83MB; and 14" Capricorn with up to 330MB. All offer the features you want, like automatic disk and head locking; industry-standard interfaces and packaging; power-up self-test and diagnostics; and capacity expansion. None requires any preventive maintenance.

Our Winchester disk drives are backed by a continuing Ampex commitment to leading-edge technology research, automated processes, and vertical integration beginning with heads and media; by a highly professional worldwide service and support organization; and by manufacturing capacity in excess of a half-million square feet located in four countries.

That’s why you can count on Ampex to deliver whatever you need in Winchester disk drives, today and tomorrow.

Ampex Corporation, Memory Products Division, 200 North Nash Street, El Segundo, CA 90245. 213-640-0150. TWX: 910-343-6243.

AMPEx
Ampex Corporation - One of The Signal Companies

CIRCLE 60
Panel 1: Portable Computers and Displays
Tues 8 pm, Commonwealth H
Moderator: I. F. Chang, IBM Research Center
Panelists: I. F. Chang, IBM Research Center; J. Ellenby, Grid Systems Corp; S. T. Mayer, Atari Corp; P. R. Van Loan, Hewlett-Packard Co; and J. D. Vurich, Axion Corp

Panel 2: The Need for Color in Displays
Tues 8 pm, Commonwealth J
Moderator: J. A. Mays, Systems Research Lab, Inc
Panelists: R. Barbin, RCA; R. Carpenter, USAF Human Research Lab; R. Carter, Naval Biodynamics Lab; L. Silverstein, Boeing Commercial Airplane Co; H. Snyder, Virginia Polytechnic Institute; and G. Spencer, Raytheon Corp

Panel 3: The Display Marketplace in 1990
Tues 8 pm, Commonwealth K
Moderator: A. Silzars, Tektronix, Inc
Panelists: M. Alam, A. D. Little; J. Costellano, Electronic Display World; E. Yamazaki, Hitachi Mobar Works; W. Hughes, RCA Picture Tube Div; C. Slupek, Chrysler Corp; and C. Trish, Gnostics, Inc

Session 10: System Applications and Image Processing
Wed 9 to 11:50 am, Commonwealth H-J
Co-chairs: D. D. Pinsky, Interstate Electronics Corp; and J. Brindle, Naval Air Development Center
10/1 "Radar Image Generation Using a Laser and Fluorescent Pigment Screen"
H. Yamada, M. Ishida, M. Ito, and K. Miyaji, Shibaura Institute of Technology
10/2 "A Modular Large Screen Display System"
J. M. Kaster, Research Institute for Anthropotechnik
10/3 "A Realtime Raster Graphic Display System Utilizing Two Frame Buffers"
E. Piller, Technical Institute of Vienna
10/4 "Representation Protocol for Videotex Systems"
A. W. Mansky, General Instrument Corp, Jerrold Div
10/5 "Computer-Generated Pictures of Protein Structures"
A. M. Leach, Medical Research Council Laboratory of Molecular Biology; and K. D. Hardman, Harvard Univ
10/6 "Multifunction Keyboard Using Programmable LED Matrix Keys"
R. J. Spiger, Boeing Aerospace Co

Session 11: Ink-Jet Printers
Wed 9 to 11:50 am, Commonwealth K-L
Co-chairs: H. L. Funk, IBM Corp; and T. Werner, 3M Co
11/1 "Ink-Jet Printing Using Drop Collision Deflection"
11/2 "High Resolution Full-Color Printer by Microdot Ink-Jet Printing Method"
T. Yamada, Y. Matsuda, T. Doi, E. Yoshino, S. Sagae, and Y. A. Ono, Hitachi Ltd
11/3 "High Resolution Color Ink-Jet Printer"
11/4 "The Influence of Ink/Media Interactions on Copy Quality in Ink-Jet Printing"
C. W. Jaeger, H. Le, and D. Titterington, Tektronix, Inc
11/5 "Dropjet Ejection of ooo Ink-Jet Printer"
M. Kutami, T. Mizo, T. Satoh, and T. Matsuda, Fujitsu Labs, Ltd
11/6 "The Effect of Pulse Shape on the Drop Volume and the Frequency Response of Drop-on-Demand Ink-Jet Transducers"
H. Gerhauser, K. H. Hirschmann, F. Lee, and F. E. Talke, IBM Corp

Session 12: CRT Technology
Wed 2:15 to 5 pm, Commonwealth H-J
Co-chairs: A. Martin, Thomson-CSF; and J. Mays, System Research Labs
12/1 "An Oscilloscope CRT with Meshless Scan Expansion"
B. Janko and N. Franzen, Tektronix, Inc
12/2 "A Quadrupole Scan Expansion Lens System"
N. Frazen, Tektronix, Inc
12/3 "Garnet Phosphor for Heads-Up Display"
B. R. Critchley and J. Lunt, Thorn EMI Brimar, Ltd
12/4 "A 230-MHz Bandwidth High Resolution Monitor"
C. Infante, D. Denham, and B. McKibben, Tektronix, Inc
12/5 "A 7-GHz CRT for Realtime Digital Oscilloscopy"
C. Loty, Electronic Lab of Applied Physics

Session 13: Gas Discharge Displays
Wed 2:15 to 5 pm, Commonwealth K-L
Co-chairs: P. Ngo, American Bell; and P. Pleshko, IBM Corp
13/1 "A 2000-Character Self-Scan Memory Plasma Display"
G. Holz, D. Miller, and J. Ogle, Burroughs OEM Corp (continued on page 100)
Introducing the HP 2627A Color Graphics Terminal.

Now you can have a bright, sharp image that's easy to read. For only $5,975. Which means our compact new color graphics terminal is setting completely new price/performance standards.

You get 8 basic colors, plus hundreds of additional user-defined ones. Including colors that match our plotter pens. On a black screen with 512 x 390 line resolution. You get raster display technology for fast, selective screen updates. You get vector graphics and polygonal area fills, a combination that makes it easy to create complex shapes, symbols, and even typestyles. In a lot less time. With a lot more precision.

Of course, it's also software-compatible. In addition to HP's DSG/3000 and Graphics/1000-II software, the 2627A runs PLOT 10 from Tektronix, SAS's SAS/GRAPH, Precision Visual's DI-3000 and GRAFMAKER, ISSCO's DISSPLA and TELL-A-GRAF.

But that's not all; the 2627A has user-definable softkeys and graphics edit keys that make this one of the easiest-to-use terminals on the market. It even gives you complete alphanumeric capability. In a separate memory. So whether you're interested in business or technical applications, just return this coupon and we'll send you more information. Or call your local HP sales office. We're listed in the white pages.

Price U.S. list: $5,975

Name:
Title:
Company:
Address:
City:
State: Zip

Send to: Hewlett-Packard, D.T.D., Dept. 11159, 974 E. Arques Ave., Sunnyvale, CA 94086
Attn: Tom Anderson, Marketing Manager
(408) 735-1550 ext. 2468

CIRCLE 61
SID ’83

(continued from page 98)

13/2 "Two Equal Brightness On-States in ac Plasma Panels Driven by Conventional Sustain Waveforms”
L. F. Weber and C. N. Steiner, Univ of Illinois, Computer Based Education Research Lab; and M. J. Marentic, Interstate Electronics Corp

13/3 “A Gas Discharge Display”
M. DeJule, A. Sobel, and J. Markin, Lucitron, Inc

13/4 “The Flatscreen Display Construction and Circuitry”

Session 14: Active Matrix Addressing
Thurs 9 am to 12:15 pm, Commonwealth H-J

Co-chairs: D. E. Castleberry, General Electric Co; and T. C. Maloney, Panelvision Corp

14/1 “A Self-Aligned a-Si TFT Matrix Circuit for LCDs”
K. Asama, T. Kodama, S. Kawai, Y. Nasu, and S. Yanagisawa, Fujitsu Labs, Ltd

14/2 “A 220- x 240-Pixel a-Si TFT Transmission Matrix LCD”

14/3 “A Liquid Crystal Matrix Display Using Te-TFTs”
M. Matsuura, Y. Takafuji, K. Nonomura, F. Funada, and T. Wada, Sharp Corp, Central Research Labs

14/4 “A 480- x 480-Element Dichroic Dye MOS LCD”
K. Kasahara, K. Sakai, Y. Komatsu, A. Saito, K. Ide, S. Matsumoto, and H. Hori, Toshiba Electron Device Engineering Lab, Research and Development Center

14/5 “Electrical Properties of CdSe TFTs Prepared by Photolithography”
M. J. Lee, C. P. Judge, and S. W. Wright, Imperial College Thin Film Lab

14/6 “High Voltage Polycrystalline Si TFT for Addressing EL Devices”
T. Unagami and B. Tsujiyama, NTT Ibaraki Electrical Communication Lab

14/7 “A 240- x 240-Element LC Video Display Addressed by Poly-Si TFTs”

Session 15: Human Factors in Video Display Terminals
Thurs 9 am to 12:15 pm, Commonwealth K-L

Co-chairs: D. Hanson, Boeing Commercial Airplane Co; and H. Snyder, Virginia Polytechnic Institute

15/1 “Effects of VOTs on Telephone Directory Assistance Representatives”
S. J. Starr, Bell Telephone Labs

15/2 “Touch Entry Devices and User Performance Part I: Quantifying Display Quality Requirements”
R. J. Beaton, J. H. Schultz, and H. L. Snyder, Virginia Polytechnic Institute

15/3 “Touch Entry Devices and User Performance Part II: Relationship between Optical Quality and User Performance”
J. H. Schultz, R. J. Beaton, and H. L. Snyder, Virginia Polytechnic Institute

15/4 “CRT Symbol Subtense Requirements”
S. P. Roger and J. C. Gutmann, Anacapa Sciences, Inc

15/5 “Brightness and Color Contrast of Information Displays”
G. Murch, M. Cranford, and P. McManus, Tektronix, Inc

15/6 “Color Contrast Effects on Visual Performance”
T. M. Lippert, W. W. Farley, D. L. Post, and H. L. Snyder, Virginia Polytechnic Institute

Session 16: LCD Technology
Thurs 2 to 5 pm, Commonwealth H-J

Co-chairs: P. R. Van Loan and F. Kahn, Hewlett-Packard Labs

16/1 “Black LC Guest-Host Systems for Indoor and Outdoor Applications”
B. S. Scheuble, G. Weber, L. Pohl, and R. E. Jubb, E. Merck

16/2 “A 240- x 320-Element MOS Addressed High Resolution LCD”
S. E. Shields, B. G. Fletcher, and W. P. Bleha, Hughes Aircraft Co

16/3 “Integration of Drive ICs onto LCDs”
P. Streit, Videlec, Ltd

16/4 “Design of Reliable Large Area TN LCDs for Automotive Applications”
F. Matsukawa, H. Arai, and H. Yamane, Mitsubishi Electric Corp; and Y. Inoue, Optrex Corp

Session 17: Simulator Displays
Thurs 2 to 5 pm, Commonwealth K-L

Co-chairs: R. Hennessy, National Research Council; and S. Black, Evans and Sutherland

17/1 “Simulator Evaluation of Color in Pictorial Flight Display”
T. C. Way, Boeing Military Airplane Co; R. E. Edwards, Boeing Computer Services Co; and J. M. Reising, Air Force Flight Dynamics Lab

17/2 “Visual Scene Manipulations for Simulation Training”
G. Lintern, B. Nelson, and K. Thomley, Canyon Research Group, Inc

17/3 “Reducing Apparent Popping in Area-of-Interest Displays”
K. Berbaum, Canyon Research Group, Inc; and J. Allen, Naval Training Equipment Center

17/4 “Evaluation Techniques for 3-D Displays”
J. O. Merritt, Perceptronics, Inc

17/5 “New Technology Applied to Old Ideas in VTOL Displays”
S. N. Roscoe, New Mexico State Univ

17/6 “The Command Flight Path Display”
S. M. Filarsky, Naval Air Development Center; and G. W. Hoover, Systems Associates, Inc
Good news for people who think in color.
You now have a comparably priced alternative to the IBM black-and-white 3250. System 1250 from Spectragraphics.
With a graphics workstation that replaces black-and-white with 16 vibrant colors.

And gives you complete area fill capability, "Fat" line and large point generation, and overlaying.
A 12 Mhz pixel writing rate and 40 Hz refresh rate.
And the ability to add up to 64 workstations—sixty four—anywhere from the next office to two miles away, from a single channel connection.
So if your present IBM 3250 system has you bound hand and cable to black-and-white, take heart.
Because now you can afford to think color. And for a lot less than you thought.

SPECTRAGRAPHICS
Spectragraphics Corporation / 10260 Sorrento Valley Road / San Diego, CA 92121 / (619) 450-0611
The GE3000 printer family.

So many choices, it's the obvious choice.

Speeds from 40 to over 400 cps. Accessible, easily programmable set up by either the operator or the system. Single or dual mode printing. Type quality from EDP to NLQ. Graphics. Multi-color printing. Selectable type fonts. 80 and 136 column models. Plus many more features and options to choose from.

All in a single printer series that's available in a wide selection of models to meet a diversity of needs...from main frames to mini's to micro-based personal computer systems.

Our basic concept is application driven price/performance matching. High parts commonality. Single source supply. Configuration and application flexibility.

At last, you can give your customers just what they need. With the GE 3000 series...printers that give you a choice.

General Electric. We introduced the first fully electronic printer with LSI circuitry in 1969. And our complete line today makes us the industry leader you should look to first.

First In Electronic Printing.

For the solution to your printing needs, call
TOLL FREE 1-800-368-3182

CIRCLE 63
Monolithic Systems Corporation has always been synonymous with Multibus technology. In fact, MSC has the distinction of having designed the first patented single board computer. Other firsts include: the first use of 64K RAM elements, on-board EPROMS, floppy disk controllers, APU's, user selectable addressing and multimaster CPU configurations. These board level accomplishments have benefited OEM's for over 12 years and have culminated into a powerful line of systems, the MSC 8800 series.

For more information about Monolithic Systems Corporation and its Multibus product line call Toll Free 1-800-525-7661.
Thorny problems of user privacy and data security are multiplying as fast as local area networks. Luckily, public key encryption methods offer an extremely secure medium for information exchange.

by Brian Schanning

Increasing quantities of valuable and sensitive data are being digitally stored and distributed within insecure computer systems. This has created a need for effective protection from unauthorized access. But, to be practical, that protection must also be inexpensive. Data encryption, the traditional solution for classified military communications, is one possible answer.

Conventional cryptographic protection in a communications link involves scrambling the data at the transmitter. Usually, the scrambling algorithm is controlled by a key, such as a many-digit variable entered by the equipment operator. An identical key must be present in the receiving equipment to unscramble the data. These keys, kept secret from everyone outside the communications system, must have as much protection as the data they guard.

The usual method for distributing cryptographic keys is to physically carry them to the transmitting and receiving sites, an awkward and expensive process for even the simplest networks. This approach proves totally inadequate for local area networks (LANS) with inherently large connectivity and access to public and private long-haul systems.

Fortunately, the public key cryptographic concept, first proposed by Stanford University researchers Diffie and Hellman and pioneered by Rivest, Shamir, and Adleman at MIT, may supply a sorely needed solution to the problems of key distribution and protection.

Public key systems employ two distinct keys for each user—an encrypting key and decrypting key. The former is available to all members of the network; the latter, a secret code number selected by each individual user, need never be disclosed to anyone (including personnel at other communication sites). The 2-key approach allows any sender to encipher messages through the universally known encrypting key of the intended recipient. However, only the intended recipient can decipher the message, since only he knows the decrypting key. In short, the public key approach allows the secure exchange of messages without prior secret exchange of keys.

For any public key system to succeed, however, prolonged knowledge of the public encrypting key must never compromise the secret decrypting key. By exploiting the complexity of certain classic mathematical problems, this may be achievable. For example, efficiently factoring very large numbers into their component primes is an exercise that has bedeviled leading mathematicians for centuries. Despite the advent of powerful modern computing resources, factoring a general 200-digit composite number, which is the product of two 100-digit primes, can still take over 100 years. The persistent difficulty of this and similar problems has been suggested as the basis on which to effectively prevent computation of the secret deciphering key, despite unrestricted knowledge of the encrypting key. Encrypting algorithms, based on this process, are gaining popularity.

Finding the public key distribution algorithm

First proposed by Diffie and Hellman, the discrete exponential public key distribution (PKD) algorithm is particularly amenable to microprocessor software implementation. Remarkably simple in operation, this PKD system depends on some useful properties associated with the exponential function $F(a, x) = a^x$.
First of all, exponentials can be evaluated very efficiently, even with an 8-bit microprocessor. While at first glance it appears that calculating a^b requires $b-1$ multiplications, it is more sensible to use the repeated multiplication and squaring procedure described by Knuth. For example, calculating 2^{23} could be accomplished by multiplying 27 by itself 22 times. A more rational approach would be to produce $2^{12}, 2^{16}, 2^{16}, 2^{23}$, which actually end up being shifts and "exclusive OR" operations on n-bit words, which ordinary microprocessors can perform very efficiently. PKD computations in GF (2^{127}), using an irreducible polynomial $X^{127} + X + 1$, formed the basis of MITRE's PKD experiments. Exponentiation in GF (2^{127}) with an 8-bit ZSOA takes about 4 to 6 s; 2 to 4 s on a 16-bit LSI-11/23. GF(p) calculations of a similar size can take 10 to 30 s on a PDP-11/45.

The security of all this, however, depends on a third property: the difficulty of computing the inverse function. If $F(a,y) = x = a^y$, the inverse function is known as a logarithm: $F^{-1}(a,y) = x = \log_a y$. If this is easily done, a third party can find out the secret keys of any user and thus compute K_{ij} for any user-pair i, j. The problem of calculating logarithms for large numbers has received much attention lately; the best known procedure appears to be computationally infeasible when number size exceeds about 400 bits (120 digits). While there is no guarantee that this is the best method possible, the simplicity of the underlying problem statement makes it conceivable that some lower bound may eventually be established. Until this occurs, the discrete exponential PKD system will remain an intriguing, but unsanctioned approach to supporting key distribution for conventional 1-key systems.

Actually, the system just described is impractical since raising 100-digit numbers to 100-digit powers could result in a 10^{100} digit number. Consequently, all calculations must be performed in a finite field. Diffie and Hellman originally proposed using a field with p elements, where p is a 100-digit prime number. In such a system all results are reduced by taking the modulo remainder when divided by p. Thus, in a field with 7 elements, $GF(7)$, $2 \times 4 \mod 7 = 8 \mod 7 = 1$. Exponentiation in such a field takes $2 \log_2 p$ multiplications and divisions. The commutative property still holds in such a field. The previous example now becomes $(2^5)^4 \mod 7 = (16 \mod 7)^2 \mod 7 = 2^2 \mod 7 = 4 \mod 7 = 4$ and $(2^5)^4 \mod 7 = (32 \mod 7)^4 \mod 7 = 4^4 \mod 7 = 256 \mod 7 = 4$.

While the discrete exponent implemented in GF(p) will certainly work, a more efficient approach is to use another type of finite field, an extension field GF(p^n). Instead of performing integer arithmetic modulo p, polynomials of degree $n-1$ [with coefficients in GF(p)] are manipulated modulo, an nth-degree irreducible (ie, prime) polynomial. When $p = 2$, these manipulations actually end up being shifts and "exclusive OR" operations on n-bit words, which ordinary microprocessors can perform very efficiently. PKD computations in GF (2^{127}), using an irreducible polynomial $X^{127} + X + 1$, formed the basis of MITRE's PKD experiments. Exponentiation in GF (2^{127}) with an 8-bit ZSOA takes about 4 to 6 s; 2 to 4 s on a 16-bit LSI-11/23. GF(p) calculations of a similar size can take 10 to 30 s on a PDP-11/45.

The security of all this, however, depends on a third property: the difficulty of computing the inverse function. If $F(a,x) = y = a^x$, the inverse function is known as a logarithm: $F^{-1}(a,y) = x = \log_a y$. If this is easily done, a third party can find out the secret keys of any user and thus compute K_{ij} for any user-pair i, j. The problem of calculating logarithms for large numbers has received much attention lately; the best known procedure appears to be computationally infeasible when number size exceeds about 400 bits (120 digits). While there is no guarantee that this is the best method possible, the simplicity of the underlying problem statement makes it conceivable that some lower bound may eventually be established. Until this occurs, the discrete exponential PKD system will remain an intriguing, but unsanctioned approach to supporting key distribution for conventional 1-key systems.

With these two properties in mind, Diffie and Hellman proposed that their PKD system operate in the following manner. (See Fig 1.) Each user independently chooses a large (100-digit) random number as a secret key. For instance, user A chooses X_A; user B separately chooses X_B. Each is kept as a secret key and only known to its respective creators. Each secret key X_i is used to calculate a public key, Y_i, by raising another number "a" to the X_i power. (The number a is a publicly known parameter that everyone agrees to use as a common base, or "medium of exchange.") Users exchange the Y_is. Thus, A knows Y_B and B knows Y_A. Each user then raises the other's public key to his own secret key power. Therefore, user A calculates $Y_B^{X_A}$ and user B calculates $Y_A^{X_B}$. Substituting for the Y_i, it is evident that A has calculated $(a^{X_B})^{X_A}$ and B has calculated $(a^{X_A})^{X_B}$.

Actually, the system just described is impractical since raising 100-digit numbers to 100-digit powers could result in a 10^{100} digit number. Consequently, all calculations must be performed in a finite field. Diffie and Hellman originally proposed using a field with p elements, where p is a 100-digit prime number. In such a system all results are reduced by taking the modulo remainder when divided by p. Thus, in a field with 7 elements, $GF(7)$, $2 \times 4 \mod 7 = 8 \mod 7 = 1$. Exponentiation in such a field takes $2 \log_2 p$ multiplications and divisions. The commutative property still holds in such a field. The previous example now becomes $(2^5)^4 \mod 7 = (16 \mod 7)^2 \mod 7 = 2^2 \mod 7 = 4 \mod 7 = 4$ and $(2^5)^4 \mod 7 = (32 \mod 7)^4 \mod 7 = 4^4 \mod 7 = 256 \mod 7 = 4$.

While the discrete exponent implemented in GF(p) will certainly work, a more efficient approach is to use another type of finite field, an extension field GF(p^n). Instead of performing integer arithmetic modulo p, polynomials of degree $n-1$ [with coefficients in GF(p)] are manipulated modulo, an nth-degree irreducible (ie, prime) polynomial. When $p = 2$, these manipulations actually end up being shifts and "exclusive OR" operations on n-bit words, which ordinary microprocessors can perform very efficiently. PKD computations in GF (2^{127}), using an irreducible polynomial $X^{127} + X + 1$, formed the basis of MITRE's PKD experiments. Exponentiation in GF (2^{127}) with an 8-bit ZSOA takes about 4 to 6 s; 2 to 4 s on a 16-bit LSI-11/23. GF(p) calculations of a similar size can take 10 to 30 s on a PDP-11/45.

The security of all this, however, depends on a third property: the difficulty of computing the inverse function. If $F(a,x) = y = a^x$, the inverse function is known as a logarithm: $F^{-1}(a,y) = x = \log_a y$. If this is easily done, a third party can find out the secret keys of any user and thus compute K_{ij} for any user-pair i, j. The problem of calculating logarithms for large numbers has received much attention lately; the best known procedure appears to be computationally infeasible when number size exceeds about 400 bits (120 digits). While there is no guarantee that this is the best method possible, the simplicity of the underlying problem statement makes it conceivable that some lower bound may eventually be established. Until this occurs, the discrete exponential PKD system will remain an intriguing, but unsanctioned approach to supporting key distribution for conventional 1-key systems.
The office workstation, the user's primary MEMO interface, is a Digital Equipment Corp VT-103 terminal.

The office workstation, the user's primary MEMO interface, is a Digital Equipment Corp VT-103 terminal. Basically, the VT-103 is a modified VT-100 terminal with internal LSI-11 backplane and card cage. The VT-103, when combined with a radio frequency (rf) modem and a Z80-based CSMA communications card (built to a MITRE design), is the standard MITRENET terminal. A number of host computers, accessible by such terminals, include an IBM 3031 (running MV$/$TSO), IBM 4341 (VM/CMS), PDP-11/45 (RSX-11M), four PDP-11/70s (RSTS/E or PWB/UNIX) and a VAX-11/780 (PWB/UNIX). Currently, MITRENET supports 150 such terminals.

Normally, all MITRENET terminals send and receive data in the clear on a single 50.5-MHz carrier. MEMO, on the other hand, is an experimental subnetwork, sending and receiving electronic messages via encrypted data packets.

To accomplish this, the MITRENET terminal was augmented with the DEC KDF11-SE processor option consisting of three dual-width boards: the LSI-11/23 central processing unit (CPU), a 64K-byte random access memory (RAM) board, and a 32K-byte multifunction board. A MITRE designed dual-width DES encryption board is also included. The MEMO VT-103 was purchased with the TU-58 cartridge tape driven option. Fig 2 summarizes the configuration of this MEMO office workstation.

Another major element of the system is the mailbox. In order to conserve funds, a workstation was converted to mailbox duty by adding a CDC 9427H cartridge disk drive and Xylocics dual-width Q-bus controller interface board.

Other support elements in MEMO consist of the PKDC and printer. Each is connected to the MITRENET cable via standalone bus interface units with integral S-100 backplane, Z80A microprocessor, rf modem, and communications card. An S-100 DES card, appropriate RAM, and/or interface cards complete their configuration.

Software to enable security

Software for the office workstation and the mailbox was programmed in MACRO-11 using a PDP-11/45 development facility. Four separate RSX-11 tasks were designed: NETWRK, LOGIN, CRYPTO, and APPL. The first three tasks were common to both the workstation and the mailbox, and the fourth task was tailored to the application of a particular element. Mailbox tasks ran under RSX-11M. For the office workstation, RSX-11S, a memory resident subset of the RSX-11M system, was used. The ability to develop and transport the software between the development PDP-11/45 (running RSX-11M) and the target LSI-11/23b (running RSX-11M or 11S) proved to be a great convenience.

The PKDC and printer software were implemented in Z80 assembler code. Development and testing were done in RAM on an S-100 based CROMEMCO System 3 microcomputer. All code was then "burned" into erasable programmable read only memory and transported to the target machines.

Unfortunately, no Q-bus compatible DES devices are commercially available. Fig 3 depicts the architecture of the board that was designed. It consists of a Western
Fig 3 Data encryption standard board features a 1M-bps encryption chip and an 8085 microprocessor for control. Eight DES keys are available.

Digital DES chip (1M-bps maximum encryption rate) controlled by an Intel 8085 microprocessor. The 8085 was programmed to accept up to eight separate DES keys and operate in the electronic code book, cipher feedback or cipher block chaining modes. The design was similar to the original S-100 based DES board design used in the PKDC and printer. In fact, the Q-bus prototype was developed by first connecting an MDB Q-bus foundation board with our S-100 DES board and bypassing the S-100 bus logic.

From MEMO system definition to integration testing, the entire project took approximately 18 months and involved 3.5 man-years of effort. Approximately 77.8k bytes of PDP-11 and Z80 assembler code were developed. The use of a high order language such as Pascal, especially for the office workstation application software, would probably have reduced this effort considerably.

MEMO has been operating as an experimental subnet-work for over a year. Its use has been confined to the exchange of correspondence among project staff, and occasional visitor demonstrations. Current plans are to operate MEMO as part of a LAN security laboratory, integrating it into other communications, computer, and physical security techniques applicable to the local area environment. Hopefully, the lessons learned in implementing MEMO will be applied to the systems engineering work MITRE traditionally performs for its clients.

Experience with the use of public key distribution techniques combined with conventional data encryption products has been encouraging. Conceptually, the public key approach provides a flexible tool that can be used to build a more distributive key management architecture. Security analyses of the underlying algorithms are necessary before any particular algorithm can be recommended for widespread use. The National Bureau of Standards is currently soliciting a proposed public key cryptographic algorithm standard. In the interim, future data network designers should give increasing attention to the problems of data security. Networks initially designed with a communication security capability in mind will inevitably prove more competitive than networks requiring expensive retrofits or replacements. Network designers should begin to consider security in future product plans. When customers awaken to the very real security risks currently being taken, nothing but the best will be acceptable.

New dimensions in data storage...

Techtran cassette/disc recorders, standard in the industry. They do what you want where you want it—fast.
- High storage to 720K bytes per media
- 110 to 19.2 K bytes with automatic file handling
- Powerful text editor, character string search
- Motor shutoff, programmable commands, self-test
- Single and dual drive models
- Desktop, rack and carrycase mounting
- AC and battery power, RS232 I/O's
- Priced $995 to $2125 with liberal OEM discounts
- Custom designs upon request

Fully compatible to PBX, SMDR, programmable controllers, data loggers, N/C, data instruments, program loading. Call or write us today.

References

Please rate the value of this article to you by circling the appropriate number in the "Editorial Score Box" on the Inquiry Card.
PERIPHERAL TESTING:
MORE THAN A QUESTION
OF PASS/FAIL

Testing any rotating memory device involves more than the simple question of pass/fail. It is a complex set of questions encompassing the how's, when's and why's of testing. Applied Circuit Technology designs and manufactures final production and incoming inspection test equipment that answers the complex requirements of testing. Designed for volume throughput, ACT's equipment has solved the testing dilemma for many manufacturers. We've helped insure the reliable performance of rotating memory devices and assisted the manufacturers in achieving a low 2% return rate of shipped product.

ACT's equipment has tested more 5 1/4” Winchester disk drives than any other system in the world. Our expertise, however, does not stop at Winchester drives. Today, Applied Circuit Technology is involved in floppy systems test, tape systems test, fixed/removable Winchester disk systems test as well as Servo Writers and Spiral Testers.

Whether you are shipping or receiving 10 or 10,000 units a month, Applied Circuit Technology provides the answer to high volume, in-depth, final production testing. If you realize that testing is more than a question of pass/fail, contact Applied Circuit Technology.

ACT
2931 La Jolla Street
Anaheim, CA 92806
(714) 632-9230

Available in first quarter 1983: ACT's new MTS (Modular Test System)
MTOS is a group of FAST, USER-FRIENDLY and extremely VERSATILE multi-tasking executives. When a system requires REAL-TIME response, there is a real need for MTOS.

MTOS SYSTEMS ARE EMPLOYED IN A DIVERSE RANGE OF APPLICATIONS… from industrial process control to medical instrumentation; from petroleum exploration to gas pumps; from telecommunications to intelligent terminals to guidance systems and beyond… applications limited only by imagination.

MTOS software, with all its power and features requires as little as 6K Bytes in certain configurations and applications. MTOS is available for a wide variety of micros and supports multiple processors without requiring changes at the application level. Widely applicable and highly configurable, MTOS is now available in silicon form as well.

The future is closely aligned with the emergence of advancing micro technology. An integral part of that future is MTOS… the multi-tasking O/S so beautifully simple, it's simply beautiful.

MTOS is available for:
- **MTOS-86** for the 8086
- **MTOS-86MP** for the 8086
- **MTOS-80** for the 8080/85
- **MTOS-80MP** for the 8080/85
- **MTOS-68K** for the 68000
- **MTOS-68KF** firmware for the 68000
- **MTOS-68** for the 6800
- **MTOS-69** for the 6809

The future is in hand...
ADAPTING FORTH TO A MULTI-USER WORLD

This latest version of Forth for use on the M68000 processor addresses 16.7M bytes of memory, features improved arithmetic performance, and incorporates system calls into its threaded lexicon.

by Bruce Sweet

Design engineers have good reason to consider Forth for new microprocessor based equipment. Forth's threaded code offers rapid execution speed and low memory overhead—critical advantages in many applications. Further, since there is now a multitasking version of Forth available, the opportunity exists to forge extremely high performance applications in the Forth language.

Forth is particularly powerful when running under a multitasking operating system. This was Forth's original configuration, which was developed to use with minicomputers. It is loaded into random access memory (RAM) from the system disk, but instead of taking over the machine, this version runs concurrently with the operating system. It often uses some of the operating system features to enhance its own power.

In a system using an advanced 16-bit microprocessor such as Motorola's M68000, valuable processing power is wasted if the entire central processing unit and its resources are dedicated to just one task. Since applications usually grow larger and more sophisticated with time, Forth, running under an external operating system, offers increased power and flexibility for such applications.

Hemenway/Forth is aimed at demanding realtime applications in laboratory, industrial automation, data acquisition, and process control markets. Termed a non-standard superset of Forth-79, this 16-bit version of Forth incorporates two unusual and particularly noteworthy design characteristics. First, it incorporates an internal user-transparent 32-bit architecture. Second, it runs concurrently with MSP/68000, Hemenway's real-time, multitasking operating system.

Because of these design innovations, this 16-bit version of Forth provides the user with exceptional power. For example, users can access the complete 16.7M-byte address space of the M68000 microprocessor. In addition, enhanced arithmetic operations are provided, including 32 times 32-bit multiply/divide and modulo instructions in software. Additional 16- and 32-bit arithmetic operations are performed in hardware for high throughput.

Users can extend the Hemenway/Forth word set to include all of the MSP/68000 operating system call routines, thus greatly improving programming efficiency. Shared memory and intertask communication abilities allow users to combine application-specific routines written in Hemenway/Forth with routines written in other languages, including assembler.

Finally, the MSP/68000 operating system, using the random file input/output (I/O) system calls, handles Hemenway/Forth's mass storage operations. The language package incorporates four 1024-byte block buffers. These reduce the number of disk I/O operations, thus increasing throughput. Both hard and floppy disks can be accommodated.

The challenges

Forth's inventor, Charles Moore, originally defined Forth to be based on a 16-bit internal structure capable of addressing 64K bytes. Therefore, adapting the language to the 68000 poses three major software engineering challenges. The 68000 addresses 16.7M bytes, due to its 24-bit addressing architecture. This is much larger than the Forth-79 standard requires, but it
represents a significant performance enhancement. The first challenge is taking advantage of this feature.

The 68000's instruction set includes powerful addressing modes that are perfect for Forth's address interpreter. However, they are based on 32 bits. The second challenge is incorporating the modes into the language. Finally, with all the 68000's power and capability, the third challenge is to implement Forth so that the user can most effectively harness the machine's assets.

In responding to the first challenge, address space, the Hemenway/Forth design team adapted the language to a 32-bit architecture. This enabled it to use the 68000's extended addressing ability. Although current 68000s use only the first 24 bits for their addressing range, it was decided that the Forth design would incorporate all 32 bits of addressing for future versions of the 68000. This immediately made the language nonstandard according to the Forth-'79 specification. But, it also allowed the design team to use all of the processor's addressing modes and its full address space.

These decisions created a 32-bit wide Forth cell, rather than a standard 16-bit cell. Then, the return and data stacks, as well as the address interpreter, were based on this new 32-bit cell. These changes made the 68000 look more like the ideal Forth machine.

A closer look at the Forth address interpreter and the 68000 instruction set shows the reasoning behind this approach. In the standard implementation of Forth, the address interpreter fetches a 16-bit word from memory and uses it to point to an address. But the 68000 uses sign extension in 16-bit fetches to fill the high order word in its 32-bit address registers. For example, a MOVE.W $7FFF,Al instruction loads a $00007FFF into register A1, while a MOVE.W $8000,Al loads $7FFF8000. Consequently, in a system with more than 64K bytes of memory, a 16-bit indirect fetch will not fetch the contents of the next word above $7FFF in the 68000's zero page.

Unless this problem is avoided, what should be one instruction becomes three. Specifically, to execute MOVEA.W (Al)+,A2, one must perform CLR.L D1, then MOVE.W (Al)+,D1, and finally, MOVEA.L D1,A2. Further, this extra code must be included within the Forth address interpreter, the most frequently executed section of the language. Thus, execution speed suffers considerably.

Fortunately, because the design team chose a 32-bit implementation of the language, they were able to meet the second challenge and exploit the power and variety of the 68000's addressing modes. For example, an efficient solution to the problem of an indirect word fetch with paged memory combines three instructions into one. By using the MOVEA.L (Al)+,A2 instruction, the following address interpreter code is produced

```
NEXT MOVEA.L (Al)+,A2 ; Get next instruction, increment
MOVEA.L (A2)+,A3 ; Get parameter address, increment
JMP(A3) ; Jump indirect to code address
```

This solution takes advantage of the fact that the 68000 allows user-defined stacks, and that any of the 68000's address registers can be used as a stack pointer. Specifically, the MOVE.L Rn, (An) and MOVE.L (An)+,Rn instructions are used to push and pop the Forth data and return stacks, respectively.

In addition to extending the Forth address range, this approach provides several advantages. For example, it allows the machine to deal directly with integers as large as $7FFFFFFF. By contrast, in a standard 16-bit stack implementation, double-number words must be used to handle 32-bit integers. Such words must pop the stack twice: first acquiring the high order cell, and then the low order cell. While some 16-bit Forth versions use extended instruction sets to handle double-precision numbers, Hemenway/Forth handles them intrinsically and transparently.

The final challenge posed by implementing Forth on a 68000 based system—how to give the user the maximum benefits of the hardware/software combination—proved most interesting. As mentioned, 8-bit versions of Forth typically run as standalone systems. However, most of the 68000's power is lost when the computer is dedicated to just one application. If the language runs on an interrupt driven, multitasking operating system instead, Forth and other programs can execute concurrently in a realtime environment.

It involved several steps to modify the language to run under such an operating system. The initial transformation was straightforward. Two Forth primitives, KEY and EMIT, were changed. Previously, these primitives performed single-character I/O through asynchronous communications interface adapter hardware drivers. Now, they are calls to the operating system's console drivers.

The operating system's random access file method was used to give Forth mass storage ability. Specifically, each random record on the MSP disk was built to be 1024 bytes—the size of a Forth BLOCK. A Forth block buffer handles loading, editing, and general access to data stored on disk; a simple virtual memory system manipulates the data flow between the disk and this buffer.

To implement virtual memory, Hemenway/Forth uses four block buffers and a least-used buffer protocol. This provides faster direct memory access for data in RAM than more frequent disk I/O operations. The two Forth words, BLOCK and SAVE-BUFFERS, handle the reading and writing of Forth blocks. Within these words, instead of having sector read/write routines, I/O is vectored to the MSP operating system's random record read/write calls. Because the I/O is now bound to the system, Forth is portable to any hardware configuration on which the operating system is running, including those incorporating Winchester disk drives.

Adding new words adds power
Both Hemenway/Forth and the MSP/68000 operating system can be extended. Users themselves can expand the Forth word set. For example, a Forth word can be created to take advantage of the system primitives that deal with multitasking operations and user-added hardware devices. Sharing memory and disk directories between Forth applications and other programs involving various languages or processes is also possible. Additionally, users can take advantage of the different serial and parallel drivers provided within the operating system.

A specific example puts the power of this feature into perspective, while also highlighting how user-written extensions can be implemented. Suppose that access to
the operating system's realtime clock is required to set and display time from within Forth. To do this, one must first generate two new Forth primitives to get and set the system clock. These primitives are called GETTIME and SETTIME, respectively.

GETTIME is an example of how simple most new primitives can be with the MSP/68000's system calls. Constructing a primitive can involve as few as three lines of code. As seen in Table 1, @GETTIM is the system call GETTIM. This call returns the time of day in register D1.L and the Julian date in D2.L. In both cases, the data are binary coded decimal (BCD) bytes. Each register uses only the three lowest order bytes. Thus, if the current time is 2:45:10 168/82, D1.L contains XX024510 and D2.L is filled with XX016882.

The next two instructions simply push the contents of the D1 and D2 registers on the data stack, pointed to by A5. The final instruction in the routine, the fourth line of code, jumps to the address interpreter routine NEXT.

After creating the GETTIME and SETTIME primitives, the user must know how to use them. SETTIME accepts five parameters on the data stack. Thus, to set the time to 10:30:00 168/82 data are entered in the format 10 30 0 168 82 SETTIME.

To display the time, the user must write some Forth code to convert the two BCD parameters into a readable format. The sequence of operations is GETTIME leaves the two BCD parameters on the data stack, with the time of day on top followed by the Julian date. SWAP then interchanges these parameters. Next, 7 ROLL gets the Julian date parameter, which is now the seventh value on the stack, and moves it to the top. BCDCON converts the top parameter to six binary numbers. Finally, 5 DROP gets the Julian date parameter, prints a space and the day of the year, and the operation is finished.

In line 4 of the program listed in the Figure, the new Forth word BCDCON uses the word U/MOD. The U/MOD is an unsigned 32-bit divide operation that first expects a 16-bit unsigned divisor, and then a 32-bit unsigned dividend, to be placed on the stack. When invoked, it leaves the unsigned quotient and remainder on the stack. BCDCON's operation exploits the fact that dividing by 16 is the same as shifting right 4 bits, leaving the BCD digit as the remainder on the stack. Thus, this word basically shifts each BCD digit on the stack as a 32-bit binary number. Then, it drops the leftover high order byte from the data stack.

Line 0 defines the word .NUM. Using the three Forth words < # #S #>, it converts a binary number on the stack into an American Standard Code for Information Interchange (ASCII) string (in this case, only one character per stack entry) and leaves a count and pointer to this string on the stack. Completing this definition, the word TYPE uses the count and pointer as parameters and displays the string on the console. In keeping with Forth's hierarchical structure of programming, line 2 defines .2NUM, which prints two numbers on the console.

Line 5 of the code defines TIME. When invoked, this Forth word displays the time and date in the previously described format. The sequence of operations is GETTIME leaves the two BCD parameters on the data stack, with the time of day on top followed by the Julian date. SWAP then interchanges these parameters. BCDCON converts the top parameter to six binary numbers. Next, 7 ROLL gets the Julian date parameter, which is now the seventh value on the stack, and moves it to the top. BCDCON again converts this parameter to 6 more binary values on the stack, increasing the total to 12 parameters. Finally, the new word .TIM (line 2) takes these parameters and formats them on the display.

To understand how .TIM works, the user must know that the word EMIT prints an ASCII value from the stack. According to the ASCII decimal conversion chart, 58 corresponds to a colon, while 47 converts into a slash. Therefore, .TIM prints the hours, a colon, the minutes, a colon, and the seconds. It then drops the high order 0 byte from the day of the year, prints a space and the day of the year, and ends by printing a slash followed by the year.

In addition to the programming efficiency described in the preceding example, Hemenway/Forth on the 68000 also provides high benchmark performance. Though benchmarks can be, and often are, tailored to supply the results manufacturers want, a good benchmark test will provide insight into processing power. Consider, for example, the Sieve of Eratosthenes algorithm. (See Jim

TABLE 1

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Mnemonic</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000A64 00000007</td>
<td>DC.B 7,'GETTIME'</td>
<td></td>
</tr>
<tr>
<td>00000A6C 00000A38</td>
<td>DC.L ENDDUP</td>
<td></td>
</tr>
<tr>
<td>00000A70 00000A74</td>
<td>DC.L GETTCD</td>
<td>GETTIM SYSTEM CALL</td>
</tr>
<tr>
<td>00000A78 2B02</td>
<td>GETCD @GETTIM</td>
<td></td>
</tr>
<tr>
<td>00000A7A 2B01</td>
<td>MOVE.L D2,-(A5)</td>
<td>PUSH DAY OF YR/YR</td>
</tr>
<tr>
<td>00000A7C 6000 12A4</td>
<td>MOVE.L D1,-(A5)</td>
<td>PUSH HR:MIN:SEC</td>
</tr>
<tr>
<td>00000A80 00000A80</td>
<td>R ENDGTIM EQU *</td>
<td>JUMP ADDRESS INTERPRETER</td>
</tr>
</tbody>
</table>

The screen listing is the Forth code to display time (copyright of Hemenway Corp, 1982).
Forth fundamentals

Forth is a threaded, interpretive language that is written using reverse Polish notation (RPN). It stresses simplicity and enables rapid program development and execution.

Key to the language is the Forth word. In fact, the entire language is composed of primitive and secondary words. A Forth primitive forms the building block for all other words. An example is the address interpreter word, NEXT. Secondary Forth words consist of threads of addresses pointing to either primitive or other secondary words. Eventually, all threads point at an executable primitive.

There is a close correlation between Forth and most assembly languages. For example, the Forth interpretive pointer (IP) corresponds to the assembler program counter (PC). Essentially, the IP points to the PC and executable code.

Forth is infinitely extendable—all secondary words are made up of previously defined words. Words are stored in the Forth dictionary, a linked list of system and user-defined words. This dictionary can be subdivided into application-specific vocabularies, such as the Forth text editor.

The most common method for defining new Forth words is the colon (:) definition. The syntax to define a new word in Forth is: NEWNAME { BODY} ; where NEWNAME is the name of the new word and {BODY} is the word making up the body of the new definition. The semicolon (;) serves as the terminator.

When the Forth text interpreter encounters the colon, it invokes the Forth compiler. Here lies a distinction that sets this language apart from others: Forth is both interpreted and compiled. To see how this is achieved, take a close look at the defining word (:) in the Figure.

Forth's dictionary contains vocabularies that are linked lists of Forth words. Contained in these lists are two pointers, CONTEXT and CURRENT. CONTEXT points at the vocabulary to be searched in a dictionary lookup; CURRENT, at the vocabulary to which the word is to be linked. Upon execution of ;, CONTEXT is set the same as CURRENT. The threaded code of ; next contains the word CREATE, which scans ahead and parses the name of the new definition into a length-significant character format, to be stored in the CURRENT vocabulary (referred to as the header). CREATE also establishes the links in the CURRENT vocabulary. Subsequently, : changes the Forth system from its interpretive mode to a compiling mode by setting a variable called STATE to a nonzero value. Now the system is ready to compile the body of the new word into the dictionary.

When compiling, Forth gets the next word and searches through the dictionary's CONTEXT vocabulary. Finding the word, it checks to see if the word is IMMEDIATE. An IMMEDIATE word has a bit set in its header to indicate immediacy; if the bit is set, the word is to be executed and not compiled. The ; at the end of a definition is an example of an immediate word. (If the word is not IMMEDIATE, the code address is added to the threaded code making up the new definition.)

When the compiler encounters the ;, the definition is terminated by a word called EXIT (a primitive of ;) and the STATE variable is cleared. This returns Forth to the interpretive mode.

Forth's ability to define new words gives it immense power. For example, an entire program can be executed just by entering the word that defines it.

Programs are developed and subsequently saved in a Forth SCREEN. A SCREEN is a 1024-byte block of memory that is displayed on a CRT console in a 16-line by 64-character format. SCREENs can be built by loading a Forth text editor from a previously defined screen. Internally, a SCREEN is interpreted the same as if the data had come from the console input buffer.

A structured language, Forth includes WHILE, REPEAT, and DO loops. These, however, must be defined in RPN. Moreover, in Forth, all looping mechanisms must be compiled. When TENLOOP is compiled, the limit and index are stored as literals in the new dictionary entry. At runtime they will be pushed on the data stack as parameters for the DO. The DO instruction subsequently pushes these parameters onto the return stack and executes the code up to the word LOOP. Then, LOOP performs a checking operation to see if the index is less than the limit. If it is, Forth increments the index and performs another iteration; if the index is at the limit, execution resumes until the end of the definition.
TABLE 2

Sieve of Eratosthenes Benchmark Comparisons

<table>
<thead>
<tr>
<th>The contenders</th>
<th>Execute time for 10 iterations (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68000 based alternatives</td>
<td></td>
</tr>
<tr>
<td>Hemenway/Forth (8 MHz)</td>
<td>27.0</td>
</tr>
<tr>
<td>Assembly (8 MHz)</td>
<td>1.12</td>
</tr>
<tr>
<td>Motorola Pascal (4 MHz)</td>
<td>14.0</td>
</tr>
<tr>
<td>MT Microsystems Pascal (4 MHz)</td>
<td>9.0</td>
</tr>
<tr>
<td>RSI Pascal (4 MHz)</td>
<td>10.2</td>
</tr>
<tr>
<td>Forth versions</td>
<td></td>
</tr>
<tr>
<td>Hemenway/Forth (68000, 8 MHz)</td>
<td>27.0</td>
</tr>
<tr>
<td>Decus Forth (PDP-11/70)</td>
<td>11.8</td>
</tr>
<tr>
<td>Polyforth (Texas Instruments 990/10)</td>
<td>60.2</td>
</tr>
<tr>
<td>JKL Forth MDS (8080, 2 MHz)</td>
<td>440.0</td>
</tr>
<tr>
<td>Fig-Forth (8080, 4 MHz)</td>
<td>85.0</td>
</tr>
<tr>
<td>Forth (6502, 1 MHz)</td>
<td>265.0</td>
</tr>
</tbody>
</table>

Gilbreath’s “A High-Level Language Benchmark,” Byte, Sept 1981, pp 180-198.) This algorithm, which computes all prime numbers from 3 to 8190, avoids division and uses the knowledge that certain numbers (e.g., even numbers and multiples of primes) cannot be prime. It executes quickly and accesses a considerable amount of memory.

Using a Microbar Model DBC68K-80 microcomputer board operating at 8 MHz with no wait states, and running the Forth program shown in listing 9 of the referenced article, Hemenway/Forth executed 10 iterations of the Sieve of Eratosthenes algorithm in 27 s.

Comparative execution times for other types of M68000 code and other versions of Forth are supplied in Table 2. With the exception of high horsepower PDP-11/70 applications, Forth running on Motorola’s M68000 outpaces its competitors.

Such speed, flexibility, and power are key reasons why this implementation of Forth is worthy of consideration. No longer relegated solely to industrial control applications, modern Forth is proving to be an efficient development language. Its extendability and common sense structure are giving Forth an enthusiastic and vocal following. Forth’s debut on 16-bit, multitasking systems should further enhance its fortunes.

Bibliography
R. G. Loeliger, Threaded Interpretive Languages, Byte Books, Peterborough, NH, 1981.

Please rate the value of this article to you by circling the appropriate number in the “Editorial Score Box” on the Inquiry Card.

High 704 Average 705 Low 706

At Last... An Industrial Strength Microcomputer for the OEM

MULTIBOX

At last the OEM has a “super” microcomputer with industrial strength ingredients like UNIX®, MC68000, Multibus®, 1.5Mb memory and Ethernet®. The Multibox has all of the essential ingredients to meet tough mainframe-type applications for the cost of a micro. Add to these ingredients a unique heavy metal constructed cabinet with efficient cooling and up to 200 Megabytes of mass storage memory capacity. No other MC68000-based system on the market today can match Multibox for strength in microcomputing.

For your next tough computer application apply the industrial strength microcomputer... Multibox, the “Super” Microcomputer.
In space. At sea. On the ground. Whether it's word processing or business systems or dataset and multiplexer. Whether it's telephone switching or transmission or microwave. Cannon® connectors help pass the word and carry the load farther:

Goodbye to EMI. So long to ESD.

ITT Cannon is running interference for you with the only connectors on the market offering proven noise-free performance.

Our D Subminiature filter connectors and RFI/EMI D Sub backshells are built to give you and your customers years of silent service.

And because we hate electrostatic discharge as much as you do, we've developed the shrouded D Subminiature connector. It not only solves your ESD problems, but your EMI problems as well.

20780 easy as 1,2,3.

Meeting the strict FCC regulations, like Docket 20780, is simple with Cannon's shielded shrouded backshells. Or our new lower-cost transverse filter designs, available in virtually all types of Cannon connectors. Both designs will keep unwanted transmissions from tampering with your system, at a significantly lower installed cost.

Problems are no problem.

ITT Cannon has already solved many of the connector problems you run up against every day in the development of sophisticated information systems.

Take a look at these:

Our FB18 zero-force edgecard connector not only increases the length of the board, but the life as well.
We manufacture the broadest line of all-plastic D Sub connectors and accessories on the market.

Our P/C connectors are qualified to DIN 41612 (G06) and reverse DIN (G60).

Our microminiature line will let you lower installed costs without giving up a micron of quality.

And our new low-cost, low-profile IC socket (DICF) has two points of contact and no solder wicking. It also offers higher electrical reliability.

But maybe your needs call for fiber optics. Cannon's optical-fiber connectors are lightweight, small in size, provide economy and reliability, and are immune to RFI/EMI interference.

Or maybe your needs dictate a zero-insertion-force DL Series connector. Ours has a guaranteed life of 10,000 mating cycles and is ideal for I/O applications. It offers economy in installation and automatic crimp termination capabilities.

Or maybe your needs are custom. ITT Cannon has custom capabilities for all your non-standard data requirements. (If you can't find it in the catalog, call us.)

We also offer a full line of manual, semiautomatic and automatic tooling.

In other words, if you have a tough connector problem, we have a simple solution.

Free connector guide.

To find out more about our complete line of connectors for information systems, send for our free Information Systems Connector Selector Guide. Contact ITT Cannon, a Division of International Telephone and Telegraph Corporation, 10550 Talbert Avenue, Fountain Valley, CA 92708. Telephone: (714) 964-7400. In Europe, contact ITT Cannon, Avenue Louise 250, B-1050 Brussels, Belgium. Telephone: 02/640.36.00.

CANNON ITT
The Global Connection
If you’re trying to support more than 4 programmers doing 8086 software with stand-alone microprocessor development systems, here’s an offer you’d be crazy to refuse:

Buy our MicroSET-86™ software cross-development tools and a DEC VAX or DG MV/Family system to run them on. You’ll save enough on your first major project to pay for the computer system.

Of course, if you already have access to a VAX (or MV or any IBM-compatible mainframe), you’re that much further ahead.

People with experience in cross-development know it’s the only sane way to tackle big software projects. As for which cross-development tools to use — just remember this astonishing fact:

Of the first 20 companies to try MicroSET-86, not one has bought a competing system.

THE ONLY COMPLETE PASCAL DEVELOPMENT SYSTEM

Our Pascal cross-compiler for the 8086 family is a full systems implementation language; you’ll have little need for assembly language programming. And it’s efficient, too: independent benchmarks (available on request) show a savings of 15% in code size and 31% in execution time compared with Intel Pascal-86.

MicroSET-86 also includes an Intel compatible linker, locator, and assembler.

Just as important as MicroSET’s efficiency is the shortening of the development cycle. Using our high-level Cross-Debugger to control execution on the target system, you can locate, fix, and re-test an erroneous line of code in a fraction of the normal time.

Multiply by a few hundred, and you’ll understand how MicroSET-86 users routinely shave months off typical development schedules — while producing more reliable, more maintainable systems.

TRY MICROSET-86 AT NO RISK

MicroSET-86 supports the entire 8086 family: 8086/8088/186/286 and 8087. It works perfectly with any Intel in-circuit emulators you already own, and has a complete set of host-target communication programs and other valuable utilities that you can’t get anywhere else.

If you’re interested in a dramatic productivity boost for your microprocessor development efforts, call us now to arrange a free, no-obligation evaluation of MicroSET-86 on your own computer.

If you’re like the others who have accepted this offer, you’ll be convinced too: nothing beats MicroSET-86 for software productivity.
AUTHORING A DEDICATED OPERATING SYSTEM IN PASCAL

Designers: Create compact, customized operating system kernels for concurrent realtime applications.

by Christopher DeMers

Traditional operating systems are general purpose in nature. They must function over a wide variety of applications and this very universality makes them less than ideal for dedicated applications.

To design an operating system for dedicated microcomputer applications, a distinction must be made between software development and runtime environments. The development environment resembles the general purpose operating system environment in that it must service people and have efficient tools for software development (e.g., editors, compilers, assemblers, linkers, and debugger utilities). It differs from the general purpose system in that a development environment is used to develop object code for another microcomputer.

The function of the runtime execution environment is to react to the actions of surrounding equipment quickly enough to exercise control. While the development environment is flexible, human oriented, and relatively slow in responding, the runtime environment is rigid, machine oriented, and extremely fast in responding. Because the attributes of these two environments conflict, it is unrealistic to expect that the same operating system can serve both functions efficiently. The Table, "Dedicated and General Purpose Application Distinctions," summarizes these differences.

Christopher DeMers is a technical support specialist at Digital Equipment Corp, 77 Reed Rd, Hudson, MA 01749, where he is responsible for product support for the Technical Volume Group. Mr DeMers holds a BS in computer science from the State University of New York, Potsdam.

Taking parts of the development system and building a truncated operating system is the traditional way of fitting general purpose operating systems to dedicated applications. Because it is difficult to separate the functions of a general purpose operating system (Fig 1), the resultant software product often has a general purpose flavor. Furthermore, since operating system components are not divided into read/write and read only categories, read only memory, programmable read only memory, and electrically programmable read only memory (ROM, PROM, and EPROM) cannot be used in the target system.

Rapid growth of the microprocessor/microcomputer market compelled Digital Equipment Corp to design a total system for the development of dedicated applications. The resultant software system is actually two distinct operating systems—one for development (RT-11), the other for the target application. Specifically designed for a dedicated environment, the application system contains only those services needed by the application (Fig 2). This dedicated operating system is automatically built by developing the application in a higher level language.

MicroPower/Pascal, the software system, represents a synthesis of system implementation language, development environment, and runtime environment. It is a realtime, multitasking modular operating system designed for dedicated microcomputer applications. Operating system access and application programming take place in an extended version of standard Pascal.

The language

Pascal is used as both the application language and the system implementation language. Traditionally, assembly language has been used as a system implementation language to perform hardware-specific functions.
Dedicated and General Purpose Application Distinctions

<table>
<thead>
<tr>
<th>Dedicated</th>
<th>General purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal memory (RAM/ROM)</td>
<td>Large memory (all RAM)</td>
</tr>
<tr>
<td>Software resides in ROM or is loaded from device at power-up</td>
<td>Software resides in mass storage</td>
</tr>
<tr>
<td>Wide range of environments (disk-killers, dust/heat)</td>
<td>Computer room, clean environment</td>
</tr>
<tr>
<td>Operating system exactly tailored to fit each application</td>
<td>Operating system is tailored to satisfy a wide range of needs</td>
</tr>
<tr>
<td>Many hardware interfaces are application specific (custom)</td>
<td>Most hardware interfaces are general purpose and known to the operating system</td>
</tr>
<tr>
<td>Much code is hardware specific, requiring MACRO or other system implementation language</td>
<td>Most code is written in machine independent, general purpose languages (FORTRAN, COBOL, BASIC)</td>
</tr>
<tr>
<td>Target machine is customized for application (debug on target)</td>
<td>Host machine is the target (debug on host)</td>
</tr>
</tbody>
</table>

But MicroPower/Pascal provides the necessary facilities in a high level language. It is standard Jensen and Wirth Pascal, currently tracking the International Standards Organization standard, with extensions to permit concurrent realtime applications and hardware interfacing.

Pascal was chosen because it is a widely used, structured programming language and offers most of the required features. Standard Pascal is block structured, which encourages the grouping of statements into logical components, thus increasing code modularity. It is strongly typed, meaning that all variables must be defined and cannot deviate in definition throughout the program.

Another powerful feature of Pascal is data structure. With Pascal, the programmer extends the language to include whatever combinations of data types the application requires. Consequently, unlike simple data, data structures (e.g., integers, real numbers, and characters) can be combined in one structure called a record.

Finally, Pascal code is easily maintained. The constructs provide partial documentation and strongly typed variables keep the code consistent. Code written by programmers is quite readable, though not exactly self-documenting, and it requires fewer comments.

Standard Pascal does not have input/output capabilities, nor can it perform many of the other functions required for dedicated application programming, such as bit manipulation, concurrency, and/or realtime response. Consequently, extensions must be added to the language to take advantage of the operating system's (the kernel's) features.

Pascal compilers usually require the application code to be written in a single source program. MicroPower/Pascal has separate module compilations that allow the application to be divided into separate programs. Each programmer writes and debugs modules. During integration of the modules, only the linkages (data transfers) need to be tested. Modular construction encourages libraries of commonly used routines to be built for use across different applications, thus freeing programmers for more original work. Separate module compilation increases productivity and efficiency by allowing a programming team to work on the same application.

Extending the language

A number of extensions to MicroPower/Pascal improve efficiency in the runtime environment: concurrency, interrupt handling, exception handling, and data type extension. Concurrency (multitasking) is essential in many dedicated realtime applications since executing code segments can cause significant events to be missed. Typically, operating systems have some method of supporting concurrency, but most application languages do not. FORTRAN, for instance, does not allow two or more subroutines to run simultaneously. If multitasking is required, it has to be done by the operating system working around the higher level language, rather than in concert with it.

MicroPower/Pascal, on the other hand, allows the designer to treat each independent program segment, called a process, as if it is executing concurrently with the others. Because the processor can only run one instruction stream at a time, each process will, in fact, run at different times. The programmer must divide the application into processes and determine their priorities. The MicroPower kernel scheduler switches between the...
processes according to their relative importance (priority). If the processes are identical (ie, the application is managing several identical devices), they can share an instruction sequence but have separate data areas. In this way, MicroPower/Pascal supports reentrant code so that the application is not burdened with extra copies of the code.

Multitasking requires interprocess communication and synchronization. This is accomplished by the use of semaphores and messages implemented by the MicroPower kernel and defined in extended Pascal. Semaphores are the basic mechanisms for synchronizing processes. There are several types of these data structures: binary and counting semaphores control access to shared resources; message semaphores (packet queues) provide interprocess communication (mailboxes); and ring buffers are used for data transfer from one process to another.

Interrupt handling routines are usually written in assembly language since higher level languages do not support them. Device handlers can be written in MicroPower/Pascal, however, allowing the programmer to do the entire application in a higher level language. This is possible because extensions to the language permit access to individual bits. Interrupt routines in MACRO-I(I1 (the PDP-11 assembler) still have slightly more efficient code than Pascal and may be used in time-critical situations. But the small increment gained in execution time will not, in most cases, be worth the loss of programming efficiency.

In many dedicated applications, error conditions can stop the system from running. Designers try to anticipate all such errors and write software routines to handle each type. Unfortunately, because there are so many error conditions that can arise while executing an application, it is impossible to anticipate all of them. Some are hardware detected, such as a parity error or a divide by zero. Other errors, such as reading a floating point number into an integer variable, are detected by specific cases detected by the application software.

Given the multitude of errors possible, it is not surprising that designers occasionally overlook some and thus develop unreliable code.

MicroPower/Pascal simplifies the problem by recognizing most errors and creating a single error reporting mechanism. A single exception handling routine, written in Pascal, can deal with all errors—hardware or software detected, vendor or user defined. However, if different parts of an application require that particular error conditions be handled differently, each can have its own exception handler.

This error detection concept is important in applications that cannot leave parts of the system (eg, valves, motors, and switches) in random states. Because the software can monitor and trap these exception conditions, orderly shutdown of the system is ensured.

Finally, standard Pascal offers strong data typing and can extend the language to support additional data types. MicroPower/Pascal takes full advantage of this and adds data type extensions to enable the designer to describe the entire realtime application. Such extensions include, but are not limited to, UNSIGNED integers, READ ONLY and WRITE ONLY variables, and the attributes AT, PACKED, STATIC, GLOBAL, EXTERNAL, and VOLATILE.

The AT attribute allows the programmer to fix a variable's position at a particular memory location. For example, the location of a device register could be defined in Pascal without using assembly language.

Using the Pascal RECORD construct, each bit or group of bits can be logically assigned to a variable. This eliminates the time-consuming task of calculating AND/OR masks to access the bits. It is even possible to define and access the same memory location with more than one name by making multiple assignments to that location (see Fig 3).

The PACKED attribute is applied to records, sets, and arrays. It induces the compiler to produce efficient code for that particular data structure and therefore conserves memory. Although this attribute is described in the Jensen and Wirth standard, it is often omitted from Pascal compilers because it is difficult to implement. This particular implementation, however, not only saves memory but also allows the designer to describe the required size and position boundaries of the field. In order to access a memory location that has each of its bits defined (as in a control and status register), it is essential that the data access be in packed format.

An integer is normally read as 15 bits plus a sign bit. An UNSIGNED integer permits those cases where all 16 bits should be read as data (eg, a 16-channel parallel interface). UNSIGNED integers also allow description of integers between 0 and 65,535, permitting a program to compare virtual address pointers and to perform address arithmetic calculations.

READ ONLY and WRITE ONLY are used to describe hardware registers with these attributes. If the program tries to change variables so assigned (eg, writing to a READ ONLY register) the compiler will generate an error message at compile time. Such attributes are assigned because of hardware restrictions and/or programming convention and clarity. Following a convention of READ ONLY for a device status register isolates the programmer...
do this. All references to this particular variable must do
processing unit (CPU) general purpose registers for fast
access. The VOLATILE attribute tells the compiler not to
putting variables stored in memory into central pro­
ting generally defined in another module. Conversely,
with other modules.

The VOLATILE attribute is not found in most Pascal
compilers, as it is only used with optimizing compilers.
Optimizing compilers minimize memory references by
putting variables stored in memory into central pro­
cessing unit (CPU) general purpose registers for fast
access. The VOLATILE attribute tells the compiler not to
do this. All references to this particular variable must do
a memory read and must not store data either in a
register or on the stack. This attribute can be used for
writing the interface to a device so that the software will
retrieve the most current status of the device rather than
the old or changed status in the register.

The operating system
Programming dedicated applications requires two
environments—development and runtime. In the case of
MicroPower/Pascal, the development system consists of
PDP-11 or LSI-11, with a minimum of 128K bytes of
memory. Most important, the development system must
run under the RT-11XM operating system. Soon, Micro­
Power/Pascal will be supported under the RSX-11M and
VAX/VMS operating systems.

The target system, any LSI-11 bus microcomputer,
runs under MicroPower—a modular, multitasking
kernel. Because it is modular, only those modules
required by the application become part of the target
operating system. But MicroPower is not a traditional
operating system. Instead of being predefined in system
generation, it is created when the application code is
written. Services needed for the system to run are com­
bined with the application code during the linking phase
on the RT-11-based development system. This creates a
MicroPower/Pascal memory image to be placed in the
target system’s memory.

A realtime application designer can build many diver­
sified applications with the same tools. Build utilities
help the designer customize each application. Included
with the build utilities are the MACRO-II assembler, the
Pascal compiler, and a Pascal symbolic debugger.

Unless requested, the symbolic debugger does not
provide information in hexadecimal or octal form, or in
machine readable code. Instead, information is pro­
vided to the programmer in Pascal and described in the
source program. The debugger resides in the host and
communicates to a small service module (approximately
800 words) in the target system. All debugging is done in
random access memory (RAM). Programs can be com­
mited to ROM after debugging is complete. Although
this may require an additional RAM board, it allows the
designer to examine and alter data as well as to track the
realtime execution of the application in the target sys­
tem. This technique also supports debugging of concur­
tent processes and allows interrogation of the kernel’s
data structure. It understands the language’s data struc­
tures and those defined by the programmer. Furthermore,
it does not require any in-circuit emulation hardware to
be added to the system.

The full MicroPower kernel resides in the develop­
ment system and includes file system, device drivers,
clock process, and other operating system services. Of
these, only the modules required by the application for
its proper functioning are loaded in the target board
memory with the application. Kernel module size is
deliberately small so that designers can choose only the
services needed to support the application. It is possible
to build a minimal function kernel in as little as 2.5K
bytes. The modules are also optimized for execution
speed. This satisfies two crucial realtime application
requirements—small memory and speed.

In addition, the kernel manages the interleaving of
multiple processes, allowing each process to be written
as if it had exclusive use of its own CPU. Such multitas­
king
allows the separate description of different aspects of the application to reduce programming complexity. The designer need only establish priorities and define inter-process communication. The MicroPower kernel scheduler manages execution of each process.

Both the kernel and the application code can be put into ROM. Code not modified during execution can reside in PROM instead of RAM. Using PROM decreases the amount of RAM needed for the application to just the changeable portions (variables). This has several advantages in dedicated applications. First, code can run immediately upon power-up without memory loading or initialization. Second, the code in PROM is naturally shareable (reentrant) since it is not self-modifying. Finally, the requirement for mass storage is eliminated, although the kernel will support such devices when required. Of course, if the designer wants to use RAM instead of PROM, he retains that option.

Efficiency
A skilled assembly language programmer can produce efficient code. Thus, despite its many features, MicroPower/Pascal would be inadequate if it did not also produce efficient code. To do this, the compiler must generate a correct machine language program from Pascal and then optimize it.

Like most compilers, this one performs local optimization (accomplished by looking at a small sequence of instructions). Unlike most compilers, it does the more difficult tasks of global optimization, common sub-expression elimination, jump/branch resolution, and cross jumping or branch tail elimination. The result is a machine language program only slightly less optimized than that produced by a skilled assembly language programmer. Unlike the painstaking work of a human programmer, however, the compiler optimizes code at 400 lines/min. Combining that with Pascal programming’s increased speed offers a great improvement in productivity over MACRO-II coding. In fact, assembly language can be eliminated altogether, since the compiler can directly generate object code without an intermediate MACRO-II step. The user still has the option of generating a MACRO-II listing, if needed, just as the option of writing any part of the code in MACRO-II is retained.

In summary, MicroPower/Pascal uses a structured high level language to build and control a dedicated operating system kernel. That kernel does not exist in its final form until the application code is written on the development system. Build utilities automatically choose the services needed to support the application. Software is debugged in Pascal while running in the target microcomputer. Finally, object code is optimized to produce code nearly as efficient as that of a skilled assembly language programmer. Thus, this extended version of Pascal allows designers to quickly and efficiently program realtime, concurrent tasks for their dedicated applications.

Please rate the value of this article to you by circling the appropriate number in the “Editorial Score Box” on the Inquiry Card.

High 707 Average 708 Low 709
AT 11 A.M.
ON MARCH 2ND
THE VAXTM WAS ECLIPSED.
If you decided to buy a computer system before 11 A.M., March 2nd, it was possible to make a purchase decision without fully considering Data General.

But on that date, the world changed.

At 11 A.M., we introduced the most powerful 32-bit virtual supermini ever produced by a computer company. Our Eclipse™ MV/10000.

Yet the Eclipse MV/10000 is only the most recent in a series of steps we have taken to make Data General computers overshadow Digital's entire line of VAX computers.

So now, if you do a full evaluation of computer systems, the VAX no longer comes out ahead.

PERFORMANCE. The Eclipse MV/10000 executes 2500 kHz/sec. And transfers I/O at 28.6 mb/sec. The VAX 11/780 executes 1200 kHz/sec. And transfers I/O at 13.3 mb/sec. A comparison that's no comparison.

RANGE. With the Eclipse MV/10000, Data General has a broader line of 32-bit computer capability than Digital. Which means a Data General computer will better fit your exact needs. Whatever those needs may be.

PRICE. When you compare Data General Eclipse MV computers against Digital's VAX computers on the basis of price,* you get a very interesting perspective. The Eclipse MV/10000 has the same price as the VAX 11/780, but twice the performance. And the recently announced Eclipse MV/4000 has twice the performance of a VAX 11/730 at the same price.

COMPATIBILITY. We at Data General have made it a top priority to make our system's software and I/O compatible. So if your needs ever change, you can take your investment in software and peripherals onto other Data General computers. Which is something you can’t do with Digital's VAX computers.

GRAPHICS. Also, we fully support our own color graphics terminals, high resolution color workstations, color graphics controllers and standard GKS software. All of which make the job of integrating your total application considerably easier.

SOFTWARE. Data General has the full range of systems software you'll need for whatever you need to do. Including a 32-bit Real Time Operating System. (Something else Digital doesn't have.)

Our systems software covers a wide range of applications – including Data Communications, Networking, Time-Sharing and Office Automation. Plus all the standard development languages. All to industry standards. And third-party applications software for mechanical, electrical and architectural engineering; imaging and process control.

SUPPORT. We do more than make computers today. We work with you to make your projects succeed. By going out of our way to be both accessible and helpful. With things like marketing support, a national phone center and remote diagnostics. In fact, we're offering uptime guarantees of up to 99%.

So when you look at where Data General is today — and where the competition is today — the VAX has been ECLIPSED.

For additional information contact Don McDougall, Director, Technical Products, M.S. FL34, Data General Corporation, 4400 Computer Drive, Westboro, MA (617) 366-8911.

*Sources include trade press articles, Digital literature, industry reporting publications and data supplied by industry reporting services.

CIRCLE 72
A "true" Winchester memory system with no buts about it.

Dual floppies are ok... but micros have already outgrown low-capacity, poor-reliability, slow-access-time floppies.

Winchester with floppy is better... but it's really just a glorified floppy memory system.

Winchester with tape... is as good as floppies... but tape cartridges aren't really right—except for routine archiving.

DMA's 5¼" Winchester solution:

A memory system that makes sense instead of problems. The Micro-Magnum™ fixed/removable disk drive has mass storage, data portability, and backup in one device. The Micro-Magnum 5/5: 5¼" fixed Winchester—backed by a reliable 5¼" industry-standard removable Winchester cartridge.

With 6.5 MBytes fixed and 6.5 MBytes removable (5-and-5 MBytes, formatted), it has enough capacity to handle almost any application. And, Micro-Magnum's access time is just 40 milliseconds.

The right kind of removability and security.

Unlike floppies, Micro-Magnum's cartridge matches the fixed disk capacity one for one. Unlike streaming tapes, the 5¼" cartridge provides random access. Unlike both floppies and tapes, Micro-Magnum provides the same access time, the same data rates, the same zero maintenance schedule for both fixed and removable files. Full disk-to-disk backup takes less than 90 seconds.

The right way to protect data.

Micro-Magnum features a unique retractable head that never touches the disk. Plus a self-sealing clean air system that prevents contaminants from reaching the data—even after thousands of cartridge insertions.

And Micro-Magnum features an embedded servo for reliable cartridge interchange and positioning accuracy.

Just the right size.

Micro-Magnum matches mini-floppy front panel dimensions. The space-saving fixed/removable concept uses only one front panel. And you can adapt existing 5¼" Winchester drive controllers.

We're shipping.

Others promise delivery. Our class 100 manufacturing facility is producing. We're delivering. The Micro-Magnum fixed/removable disk drive: The true Winchester memory system... without any ifs, ands, or buts.

For more information write DMA Systems, 601 Pine Avenue, Goleta, CA 93117. Or call us at (805) 683-3811, Telex 658341.

DMA SYSTEMS
Just what the industry needs.
PARALLEL DATA COMPRESSION FOR FAULT TOLERANCE

When computers operating in software implemented fault-tolerant systems exchange the results of their intermediate error calculations, CRC or checksum based data compression is a must.

by James F. Nebus

Presently, all commercially available fault-tolerant systems use one of two major fault recovery approaches: "hot standby" or majority voting. Majority voting systems can be further classified in hardware and software categories.

The fault-tolerant computers belonging to the software voting group are known as software implemented fault-tolerant (SIFT) systems. In the hardware voting scheme, redundant processors are tightly coupled—they often have continuously synchronized clocks and voting on each bus transfer cycle. In contrast, SIFT computers are loosely coupled—they are usually synchronized only at software checkpoints and vote only on inputs and outputs that are external to the computer.

One advantage of SIFT systems is that their hardware bases may be multiple non-fault-tolerant systems interconnected with some additional support circuitry. This makes it convenient to upgrade a non-fault-tolerant system to a fault-tolerant one without obsoleting hardware or applications software. A disadvantage of SIFT systems is the performance degradation associated with software voting. This voting usually consists of exchanging and comparing input/output (I/O) data among the redundant processors. Performance degradation is not a severe problem in existing SIFT computers, as these computers operate in a process control environment. In this application, the I/O data to be sent and compared usually consist of only a few data words. However, in a general purpose, data processing environment, the quantity of data being exchanged and compared is great.

From an application viewpoint, the amount of I/O data may be as much as several kilobytes for printing a file or painting a cathode ray tube screen. Even small I/O data buffers that write a disk sector or transmit a data link control (DLC) message consist of 256 bytes. This type of I/O operation causes substantial performance degradation in a SIFT system. Therefore, data compression techniques should be used to condense the I/O data to a code that is a fraction of the original buffer length. This code can then be exchanged and voted among the processors.

James F. Nebus is with E & M Columbia at NCR Corp, 3325 Platt Spring Rd, West Columbia, SC 29169. Currently, he is project leader for hardware aspects of Advanced Systems Development Dept projects. Mr Nebus holds BSEE and MSEE degrees from Rutgers University, New Brunswick, NJ.
A checksum is the binary addition of the words in the data block to be compressed. An error in any column of the data block results in either the associated checksum bit column or the carry to the next bit position being in error. For the most significant bit position, the carry bit is lost. As a result, it is more difficult to detect a change in the data block in this column than in the least significant bit position.

In general, the ability to detect an error varies for each column in a checksum. The least significant column provides the most error detection, and the most significant column provides the least. Another disadvantage of checksum data compression is that the checksum calculated is independent of the data values' order in the I/O buffer. This is due to the commutative property of checksum addition.

The first requirement of a data compression method for a SIFT system is that it indicate the existence of a discrepancy in the I/O data buffers of each redundant processor. Overall system reliability is directly related to the ability of the voting to detect such errors.

Another requirement of this method is that the data compression be implemented in hardware, since it takes more time to compress data in software than it does to transmit the original data buffer over a 10M-bps local area network. It is also desirable that the data compression logic be connected directly to the data bus and be driven by direct memory access (DMA) methods. With these methods, the time to perform the data compression is limited by the memory's cycle time. For input from external devices, the data compression logic is activated by the presence of an I/O address or DMA channel acknowledge associated with that input device. In this way, data compression can be performed parallel to the placing of input data in memory, thereby eliminating input operations overhead.

How to compress the data
The two simplest methods of data compression are checksums and CRC codes. Today, these techniques are used primarily for error detection. Checksums are often used to verify the contents of programmable read only memories and are usually calculated by software. CRC codes are used primarily for encoding serial data such as DLC messages and disk sectors. The two most prevalent CRC codes are CRC-16 and the International Consultative Committee's CCITT-16.
register with tristate outputs could be constructed with four 74LS83s, two 74LS273s, and two 74LS244s—a total of eight integrated circuits.

CRC codes and their uses

As mentioned earlier, CRC codes are used primarily for serial data. Data compression using CRC codes is performed by treating the serial data as a polynomial's coefficients. The first bit in an n-bit long serial data stream is the coefficient for \(X^n \), while the last bit is the coefficient for \(X^0 \). For example, the input data 110201021 Hex can be represented as \(X^{32} + X^{28} + X^{21} + X^{12} + X^5 + 1 \). This input data polynomial is used as the dividend in a modulo-2 division process. Choosing the divisor CRC polynomial as \(X^{16} + X^2 + 1 \) results in the quotient \(X^{16} + X^{12} + X^5 + X^2 + 1 \), or 11025 Hex; the remainder is \(X^{14} + X^7 + X^4 \), or 4090 Hex. By definition, the remainder is the CRC code, and the quotient is discarded.

With serial input data, CRC codes are easily generated using shift registers with exclusive OR feedback as shown in Fig 1. The shift register is initialized to 0. As the serial dividend is shifted into the register the quotient's internal state after the last shift. The remainder of \(X^{14} + X^7 + X^4 \) previously mentioned would be represented in Fig 1's circuit by flipflops 14, 7, and 4 being 1, and all others being 0. An alternate divider circuit for the divisor \(X^{16} + X^2 + 1 \) is shown in Fig 2.3

The quotient this circuit produces is the same; however, the register's contents after the division is not the remainder as it is in Fig 1.

After the division, the polynomial value for Fig 2's register is \(X^{14} + X^7 + X^4 + 1 \), or 4091 Hex. Nevertheless, this CRC generator has the same error detecting capabilities as that of Fig 1. If all error patterns are equally likely in a data block of k bits, then the probability that an r-bit-wide CRC code will detect an error is

\[
1 - \frac{2^k - r - 1}{2^k - 1}
\]

As k goes to infinity, this probability approaches \(1 - 2^{-r} \). For a 16-bit CRC register, the probability of detecting an error is 0.999985. This figure is somewhat misleading as all error patterns are generally not equally likely, but rather depend on the digital system's implementation. Several types of errors are more likely than others, however, in a bus oriented microcomputer.

The most elementary type of error is the single-bit error. This fault manifests itself in the SIFT voting scheme as a bit change among \(I/O \) data blocks. A single-bit error would most likely be caused by an intermittent fault. If the intermittent error occurs in a control signal to a device connected to a parallel bus, it might result in a multibit error among the parallel bits over the bus. This type of error could manifest itself as all, or some subset, of the bits in a single word of the data block in error. Crosstalk among bus signals is another fault that causes a multibit error in which all bits in error occur in the same data word.

Another type of multibit error likely in bus oriented systems is one in which the bits in error are in the same columns, or bit positions. This type of error could result from a faulty bus driver or improper bus loading or timing. If all the bits in a certain bit position are in error, the fault will probably be a hard one. An intermittent fault may cause a few bits in the same bit position to err. Of course, many faults will cause the system to go haywire. These catastrophic failures can be minimized with the use of memory protection, bus parity, and error correction code memories.

A watchdog timer is one method of recovering from the remaining failures in a SIFT system. This timer is initialized with a value that is greater than the longest time between synchronization or voting among processors. It is reloaded with this value every time a processor communicates with the others. If a processor's watchdog timer expires, it resets that processor. The processor then goes through a warm startup before attempting to synchronize with the other processors. Each processor has the other processors' watchdog timer output signals as its inputs.

Fig 1 Serial CRC code generator circuit using exclusive OR feedback. Shift registers contain the remainder of modulo-2 division performed on data polynomials. The remainder serves as CRC code used for compression.

Fig 2 Alternate serial CRC code circuit. CRC results are similar and error detection ability is the same as that of the original CRC circuit, though a slightly different operation is used.
CRC fault coverage

How effective CRC codes are in detecting hardware dependent, noncatastrophic faults can be determined. As mentioned, the probability of detecting a data change between two data blocks is $1 - 2^{-r}$, assuming that all changes are equally likely. Note that this formula does not take the divisor polynomial into account, but only the polynomial's degree or the shift register's length. Called the generator polynomial, this divisor polynomial is reflected in the number and placement of shift register feedback taps, which are included in the exclusive OR function. This generator polynomial, $P(X)$, determines the probability at which certain types of errors are detected, assuming that all error patterns are not equally probable.

It is convenient to view the generator polynomial's role in the data compression process as analogous to the hashing function's role in constructing a symbol table. A good hashing function maps similar symbols into different locations in the symbol table. Likewise, a good generator polynomial maps data blocks with different bit positions that are likely to change, as a result of a fault, into different CRC codes.

Some important theorems relate the generator polynomial to the error detecting properties of CRC codes. 4

Theorem 1 states that a generator polynomial with two or more nonzero coefficients detects all single-bit errors. The circuits in Figs 1 and 2 provide different CRC code for each of two data blocks that differ by a single bit, as they are both based on $P(X) = X^{16} + X^2 + 1$.

Theorem 2 states that if $P(X)$ is of degree r and the coefficient of X^0 is 1, then all (r, r) faults are detected using $P(X)$. An (r, r) fault is one in which the erroneous bits are within r consecutive bit positions. At most, r bits can be in error. This theorem addresses the case of a word in the data block that is in error. The polynomial $X^{16} + X^2 + 1$ has a nonzero coefficient for X^0; therefore, it detects all $(16, 16)$ faults.

Theorem 3 states that if each of the irreducible factors of $P(X)$ appears an integral multiple of b times, then as the number of input data bits goes to infinity, the probability of detecting a multibit error in a certain bit position or column is

$$1 - \frac{1}{2^r/b}$$

The polynomial $X^{16} + X^2 + 1$, $P(X)$, can be reduced to $P(X) = P_1(X)2 + P_2(X)2$, where $P_1(X) = X^6 + X^5 + X^3 + X^2 + 1$ and $P_2(X) = X^2 + X + 1$. Both $P_1(X)$ and $P_2(X)$ are irreducible, prime polynomials. Therefore, the probability of detecting a multibit error in a certain bit position or column is $1 - 2^{-16/2} = 0.996$.

Parallel CRC generator applications

Figs 1 and 2 represent implementations of a CRC code generator for serial data. In a parallel bus oriented microcomputer, it is more applicable to have a CRC code generator in which a word of data is clocked into the CRC generator for each bus cycle. It is also important to have parallel combinational logic calculate the next internal state of the CRC register, rather than try to synchronize a shift register clock to each data transfer. The logic equations for this combinational logic can be derived by analyzing the internal state transitions of the serial shift register after each clock pulse.

For analysis' sake, the internal state of the shift register in Fig. 2 is denoted by the vector Y, where $Y_{(1)}$ is flipflop 0, $y_{(0)}$, and $Y_{(6)}$ is flipflop 15, y_{15}. Then the shift register's contents after one shift is TY, where T is a 16 x 16 matrix. Within the T matrix, the first row reflects the exclusive OR feedback in Fig 2, $T_{(1,14)}$ and $T_{(1,16)}$, being nonzero, indicate feedback from y_{13} and y_{15}, respectively. The remaining rows in T are the identity matrix, which mathematically represents the shift operation of the shift register. $T_{(2,1)}$ is the upper left element, and $T_{(16,19)}$ is the lower right element along the diagonal in this identity submatrix.

In forming a CRC code, the shift register is initialized to zero, $Y_0 = 0$. Define Y_n to be the shift register's state after n shifts. Label the n serial input data bits as D_0, first bit, through D_{n-1}, last bit. After the first bit is clocked into the shift register, $Y_1 = D_0Y_0$ where x is an elementary vector. After the second bit, D_1, is shifted into the register, $Y_2 = D_0Tx + D_1x$. When the third bit is clocked into the register, $Y_3 = D_0T^2x + D_1Tx + D_2x$.

Boolean matrix algebraic rules governing this calculation are fairly straightforward. Boolean matrix multiplication rules are exactly like those for real matrices with one exception: the multiplication and addition operators are replaced by the AND and exclusive OR operators in the Boolean case. For example, consider that T is a $p \times q$ Boolean matrix, X is a $q \times r$ Boolean matrix, and Y is the product of T and X ($Y = TX$). Then y is a $p \times r$ matrix in which the element y_{ij} in the ith row and jth column is the exclusive OR of the ith row vector of T ANDed with the jth column vector of X. More specifically,

$$y_{ij} = \bigoplus_{k=1}^{q} t_{ik}x_{kj}$$

In general, the internal state of the shift register after n shifts is

$$y_n = \bigoplus_{k=0}^{n-1} D_{n-1-k}T^kx$$

Apply this result to develop the state transition logic equations for the parallel CRC generator. First, the input data must be relabeled to apply to the 16-bit parallel implementation. Instead of the input data stream of $D_0D_1D_2 \ldots D_{n-2}D_{n-1}$ as in the serial case, the input data for the parallel case can be labeled as $D_0D_1D_2 \ldots D_{14}D_{15}D_0D_1 \ldots D_{14}D_{15}D_0 \ldots D_{15}$. The words in

$$y_{n+16} = D_0T^6x + D_1T^6x + D_2T^6x + D_3T^6x + D_4T^6x + D_5T^6x + D_6T^6x + D_7T^6x + D_8T^6x + D_9T^6x + D_{10}T^6x + D_{11}T^6x + D_{12}T^6x + D_{13}T^6x + D_{14}T^6x + D_{15}T^6x + T^{14}y_n$$

Fig 3 Expansion of next state polynomial. The equation provides information on the next state in terms of present register conditions.

The Dyna-Test Family of Protocol Monitor/Simulators includes four closely related but distinct models. Dyna-Tests are all easy to operate and engineered to get you back on line — fast. Whether you’re locating a defective communication link ... chasing a timing glitch ... or isolating software faults — Dyna-Test will quickly solve your network problems.

That’s because Dynatech Designs Each Protocol Analyzer To Get the Job Done Right. Our unique combination of versatility, operating ease and high performance enables you to isolate faults quickly. Just a glance at the interface display panel may identify the problem. If not, run standard tests by simply depressing a few select buttons — our protocol key stores all operating parameters for seven different communication lines. Or, write your own test program with our simplified menu/macro format. All programs are entered in a non-volatile memory and can be transferred to tape for use with other units.

The Dyna-Test integral tape captures data and control signals — even at data rates as high as 56 kbps. Specific events or character sequences can be recorded and either played back or routed to an external printer for off-line analysis.

Dyna-Test protocol analyzers currently enjoy world-wide use. They support most standard interfaces, protocols (SDLC, HDLC, X.25, 3600) and data codes. Most models are available from stock; special orders for unique interfaces take 30 days.

Let us introduce you to Dyna-Test, our friendly family. Dynatech Network Specialists are eager to demonstrate — on site — the Dyna-Test protocol analyzer best suited to your needs.

For an appointment call or write:

Dynatech
Data Systems

7644 Dynatech Court
Springfield, Virginia 22153
800-368-2210
In Virginia, (703) 569-9000
the data block can be thought of as concatenated to form a serial bit stream with a length 16 times the number of words in the data block. From the preceding formula, the shift register's contents can be expressed as follows when used as a function of their internal state 16 shifts prior to their present state

\[Y_{n+16} = \left[\bigoplus_{k=0}^{15} D_{15-k}T^kX \right] \oplus T^{16}Y_n \]

For the parallel input case, this formula gives the next state, \(Y_{n+16} \), in terms of the present input data, \(D_0 \) to \(D_{15} \), and the present state, \(Y_n \). Fig 3 expands the formula just expressed. Fig 4 lists the state transition equations for each bit position in the parallel CRC polynomial generator. In this figure, \(Y_i \) represents the next state and \(Y_i \) designates the present state of bit position \(i \) in the 16-bit parallel CRC generator register.

Parallel CRCs with PALS

The logic required to generate the exclusive OR of multiple signals, as in the state transition equations, lends itself to implementation with a programmable array logic (PAL). The AND-OR logic array of the PAL can be programmed to perform the exclusive OR function. The exclusive OR of \(n \) signals can be generated with \(2^n - 1 \) input AND gates feeding a \(2^n - 1 \) input OR gate. For example,

\[A \oplus B \oplus C \oplus D = \overline{A}B\overline{C}D + \overline{A}BCD + \overline{A}B\overline{C}D + ABCD + \overline{A}BCD + \overline{A}B\overline{C}D + ABCD + BCD \]

Fig 5 shows the circuit for the parallel CRC generator using PAL family devices. Each PAL implements part of the state transition equations listed in Fig 4. Parallel data are clocked into the register on the rising edge of each data strobe. In order to select only those bus cycles to be included in the CRC calculation, this data strobe must be qualified by an I/O address or DMA channel acknowledge. This circuit assumes that the data are valid 90 ns prior to the data strobe edge, and the CRC register is cleared prior to each data block calculation. Note that the value sent to the data bus is the inversion of the CRC register contents.

Fig 6 illustrates the operation of the parallel CRC generator of Fig 5. Values in Fig 6 are the same as those used in the previous serial CRC generator example. The three words of input data are 0001, 1020, and 1021 Hex. Assuming that the CRC register is initialized to zero, the intermediate results after each data strobe assertion are as shown in Fig 6. After the third data strobe, the parallel CRC register's contents agree with Fig 2's shift register after 48 clock cycles.

Of course, the parallel CRC generator can be used in non-fault-tolerant systems to provide error detection wherever high data integrity is required. It can also be used as a bus monitor to enhance the capability of diagnostics. In this mode, the diagnostics invoke a set procedure within the system. The bus cycles resulting from this procedure can be accumulated in the CRC generator and then compared with a result known to be correct.
In this demanding world of computer interfaces, it's nice to know that your DEC computers carry the clout of a GATEWAY·488 Card. The GATEWAY·488 family gives you the power of your own LSI-11, PDP-11, or VAX-11 computers on any GPIB system, at speeds previously unavailable. This speed capability makes the GPIB a viable communications link for inter-computer transfer of mass data files. National Instruments provides software drivers which are compatible with RT-11, RSX-11, VAX/VMS and UNIX operating systems.

Members of the National Instruments GATEWAY·488 family include:

GATEWAY Unibus

GPIB 11-1
- Programmed I/O
- 60K Bytes/Sec
- Supports RT-11, RSX-11, UNIX

GPIB 11-2
- DMA
- 500K Bytes/Sec
- Supports RT-11, RSX-11, VAX/VMS, UNIX

Need to make your GATEWAY·488 Card go even farther? The GPIB-100 Bus Extender allows separation of GPIB devices up to 300 meters per extension. Other features include:

- High Speed Bit Parallel Transmission up to 250K Bytes/Sec
- Expansion of Devices on GPIB
- Transparent to GPIB

For further information call or write:

The National Instruments GATEWAY·488...

The DEC to GPIB Access Card

UNIX™ is a trademark of Bell Laboratories Unibus™ is a trademark of DEC
Fig 6 Parallel PLA based CRC generator operational steps. Data input at left yields the intermediate results shown. Ease of implementation characterizes the parallel approach.

For data compression, the parallel CRC generator provides more effective error coverage and is simpler to implement than a checksum. The circuit presented provides the hardware support necessary to help alleviate performance degradation due to software voting in SIFT systems. The generator polynomial chosen provides more than adequate error coverage while allowing simple implementation of the parallel CRC generator.

References

Please rate the value of this article to you by circling the appropriate number in the "Editorial Score Box" on the Inquiry Card.

High 710 Average 711 Low 712

IF YOU DON'T TELL US WE'LL NEVER KNOW

Publishing a magazine is a two-way street. We constantly need and always welcome feedback from readers. We want to know what systems level topics you think we should be covering. Do you want more or less on software? What do you like and what would you like to see in this magazine?

Please write to us directly, or take advantage of the space provided on the Reader Service Card to indicate your comments. Take a minute to score the articles. Tell us the topics that interest you particularly, and why. Keep those cards and letters coming.

Talk to us... we're listening.

Saul B. Dinman
Editor in Chief

Michael Elphick
Executive Editor

COMPUTER DESIGN
PennWell Publishing Company, Advanced Technology Group
119 Russell Street, Littleton, MA 01460
It's got all the bases covered.

HP-16C, YOUR PRODUCTIVITY'S UP, AND THE PRICE IS DOWN. Now software engineers and logic designers can spend less time on bit-manipulation, Boolean and base-conversion functions and more time on more productive tasks. Like expanding your own creative potential.

How? Easy.
The HP-16C programmable calculator is capable of converting across four number bases, not only hexadecimal, octal, and decimal but binary as well. And it has the most powerful combination of bit manipulation, word size, and programming capabilities of any pocket calculator in the marketplace to date.

For the authorized HP dealer or HP sales office nearest you, call TOLL-FREE 800-547-3400 and ask for operator 72 (Oregon, Alaska, Hawaii: 503-758-1010).
THIS INTELLIGENT MULTIBUS* SERIAL CONTROLLER SUPPORTS

The next generation in high performance, high capacity, intelligent serial controllers. NOW for the first time, features AND flexibility are available to the MULTIBUS user.

Product Highlights:
- Eight individual channels, programmable for ASYNC, SYNC or BITSYNC.
- Programmable data rates to 38.4K Baud.
- Choose from a wide range of modular interface adapters, each field interchangeable.
 - RS-232
 - RS-422/RS-423
 - Optical Current Loop
 - MIL 188-114
- On-board INTEL 8088 CPU
 - 96K bytes EPROM (using 27128’s)
 - 128K bytes RAM
- Simple “handshake” architecture for user software interface
- Dual Port RAM
 - Supports 8 or 16 bit system accesses
 - 24 bit MULTIBUS addressing
- Standard MULTIBUS architecture
 - One unit load
 - One card slot height
 - Vectored or Non-Vectored Bus Interrupts

The MCS-1062. The capacity has doubled, but the price remains the same. $1,570. ea.**

METACOMP, INC.
7290 Engineer Rd., Suite F
San Diego, CA 92111
619-571-1168
TWX: 910-335-1736 METACOMP SDG

*MULTIBUS is a trademark of INTEL Corporation.
**Quantity 50 price, including RS-232 interface modules.
Price may vary, depending on interface module options.
The advent of VLSI chip sets serving specific data communication protocols like X.25 is resulting in more reliable and less expensive computer communication.

by Alan J. Weissberger

This is the second in a series of two articles on high data link controls. (See Computer Design, March, pp 195-206 for Part I.)

Exception conditions occur as the result of busy situations, transmission errors, station malfunctions, and other operational problems. Fortunately, high level data link control attempts to recover from these situations before notifying the Network layer.

A busy condition occurs when a station temporarily cannot receive or continues to receive information (I) or unnumbered information (UI) frames due to internal constraints such as buffering limitations or processing bottlenecks. The busy condition is indicated by the transmission of an RNR frame containing the receive sequence number $N(R)$ of the next expected I frame. Traffic pending transmission at the busy station can be transmitted prior to or following the RNR. The continued existence of a busy condition must be reported by retransmission of RNR at each poll/final (P/F) frame exchange.

When the internal constraint is eliminated, the busy condition is cleared at the station that transmitted the RNR. Clearing of the busy condition is reported to the remote station by transmission of any one of a variety of frames. A busy condition is also cleared when a primary station transmits an I frame with the P bit set to 1, or when a secondary/combined station transmits an I frame with the F bit set to 1. See Fig 1(a) for an example of busy condition establishment and clearing.

A frame received in error is simply discarded by the receiver without any further action. If the frame is an I frame, the error will either manifest itself later in the form of a send sequence number N(S) sequence error, be detected by means of timeout recovery or checkpoint P/F bit recovery.

N(S) sequence error and REJ recovery

An N(S) sequence exception occurs in the receiving station when an I frame that is received error free contains an N(S) sequence number that is not equal to the receive variable (R) at the receiving station. The receiving station does not acknowledge the frame causing the sequence error, or any I frames that may follow, until an I frame with the correct N(S) number is received. Unless sequence reject (SREJ) is to be used to recover from a given sequence error, the information field of all I frames received whose N(S) does not equal the receive variable (R) will be discarded.

The REJ command/response initiates a sequence error recovery earlier than is possible with checkpoint recovery. The REJ reports the sequence error and calls for retransmission of I frames starting with N(R) - 1. Fig 1(b) illustrates the use of REJ recovery. If a retransmitted I frame is again received in error, then the REJ recovery cannot be repeated due to possible ambiguities. The error situation must be resolved by either checkpoint or timeout recovery.

It is possible to receive a REJ that acknowledges all outstanding I frames; i.e., the N(R) of the REJ frame equals the send variable S. This can occur if station A
Checkpoint recovery is based on a checkpoint P/F bit cycle starting with the transmission of a frame with a P bit set to 1 by the primary/combined station and ending either with the receipt of a frame with an F bit set to 1 or when the response timer expires. For a secondary station, a checkpoint cycle begins with the transmission of a frame with the F bit set to 1 and ends with the receipt of a frame with a P bit set to 1.

If a primary station receives a frame with the F bit set to 1 during a checkpoint cycle in NRM, it initiates retransmission of unacknowledged i frames. Sequence numbers will be less than or equal to the N(S) number of the last i frame transmitted.

In ABM, checkpoint retransmission is only initiated based on frames received with the F bit set to 1, to avoid possible interference with other recovery possibilities. HDLC ABM does not specify under which conditions the P bit has to be set. One strategy is to set the P bit only when it is necessary to query the status of the other station—for example, after the response timer has expired.

There are certain exception conditions that cannot be recovered by HDLC. The Network layer must be notified of these conditions and recovery should be attempted by the Network layer or operator intervention.

Retry or retransmission attempts are counted by the data link control (DLC) station, but after some planned number "n," correct station action is reported as unrecoverable at the data link layer. Those actions that should be retried include attempts to obtain acknowledgment of a set mode command such as SNRM or DISC, resume communications with a busy station, achieve initial online status at a secondary station, or initiate active communications at a secondary station. Other procedural errors requiring higher layer recovery include analysis and recovery from a rejected command specified in the information field of a frame reject (FRMR) response frame, recovery from wrong station identification specified in the information field of an XID response frame, dealing with frames with information field length exceeding maximum length system specified parameter, and handling an incorrect or null information field in a TEST response when a TEST command with information field has previously been sent.

Role of LSI/VLSI
Large scale integration/very large scale integration (LSI/VLSI) circuits have greatly simplified HDLC hardware design, and standardized DLC input/output (I/O) driver firmware. In addition to the basic character assembly/disassembly functions of universal asynchronous receivers/transmitters and universal synchronous/asynchronous receivers/transmitters, modern chips support the HDLC type of bit oriented framing. Features such as flag/abort generation and detection, zero insertion/deletion, cyclic redundancy check/International Consultative Committee for Telephone and Telegraph (CRC)/(CCITT) V.41 generation/checking, and secondary and global address selected reception provide this support. By incorporating HDLC framing chips in terminals and computers, HDLC, synchronous data link control (SDLC), and X.25 hardware have become increasingly cost-effective.
Table 1 traces the history of LSI datacomm circuits. The trend has been to amalgamate many of the hardware functions necessary for one or two binary serial interface(s). Only in 1982/3 is there true intelligence, in the form of onchip firmware, incorporated into VLSI data communication chips.

Presently, there are three categories of HDLC type chips: bit oriented framing, multiprotocol framing, and X.25 link level. Bit oriented framing chips (Intel 8273, Motorola 6854, Western Digital 1933) transmit and receive HDLC frames with single-octet or extended address and control fields. Some chips also feature residual character handling, short frame rejection, IBM SDLC loop mode, nonreturn to zero inverted (NRZI) encoding/decoding, and a digital phase locked loop for receive clock recovery.

Residual character handling provides the means to send and receive characters that do not match the programmed character length. For example, if an integral number of octets are required in a frame, using 6- or 7-bit characters, the information field will have to be padded if the number of bytes (n) is not a multiple of 8. This requires transmission and reception of a residual (short-bit) character. Residual character detection can also determine if received frames are octet aligned. If not, recovery at a higher layer may be required. The CCITT X.25 packet layer is currently being revised to handle a nonoctet aligned information field.

Short frame rejection is the ability to disregard received frames that have not completed their address and control fields. With a 16-bit CRC and single-octet address and control fields, the minimum frame length is 32 bits. There is a 40-bit minimum frame length with extended control; with extended address and control, it is 40 bits plus 8(m – 1), where m is the number of address octets. Most HDLC chips merely discard frames less than 32 bits, but some, like Signetics' 68562 and Rockwell’s 68561 multiprotocol chips, perform rejection of all short frames.

IBM SDLC loop mode support includes repeating received data onto transmit data and the ability to change the go ahead (01111111) bit pattern into an opening flag, which is then followed by the frame to be transmitted. NRZI coding complements the line state whenever a binary 0 is encountered in the data stream. HDLC zero insertion guarantees a 0 after, at most, five 1s. In turn, this ensures a line transition within 6-bit times. These line transitions make it possible to use a digital phase locked loop for clock recovery. Without guaranteed transitions in the data, a phased locked loop would drift, and bit synchronization would be lost. In addition, the phased locked loop permits HDLC equipment to be directly interconnected, or asynchronous modems to be used.

Multiprotocol framing chips handle byte oriented and sometimes asynchronous formatted data, as well as bit oriented framing. The Signetics 2652, SMC 5025, Fairchild 3846/6856, and TI 9903 support one synchronous serial receive and transmit channel. The Rockwell 68561 can handle one synchronous or asynchronous channel while the Zilog Z80-SIO, Z-SCC/SCC, NEC 7201, Intel 8274, and Signetics 68562 support two asynchronous/synchronous serial communication channels. The Z-SCC/SCC is the most advanced chip in this category. In addition to the features previously described, it includes a bit rate generator; digital phase locked loop; choice of nonreturn to zero, NRZI, frequency modulator FM0, FM1, or Manchester encoding/decoding; IBM SDLC mode; local loopback; and automatic echoplex operation. Table 2 highlights the features of the more advanced dual-channel multiprotocol chips.

Multiprotocol chips permit a data communication system to support both character controlled and bit oriented DLCs within the same equipment. For example, a multiplexer or concentrator might service asynchronous or character controlled DLCs on its low speed terminal lines and bit oriented DLCs on its backbone (long haul) lines. Thus, economies of scale may be realized by using a single integrated circuit in different products. The advantages include volume purchasing, single part qualification, simplified incoming inspection, and reduced inventories.

Prevention of hardware obsolescence is another important advantage of a multiprotocol chip. When a new DLC procedure is supported, the same printed circuit board can be used and the DLC chip reprogrammed. This has enabled equipment designed for binary synchronous communication to later support SDLC and X.25 equipment.

A multiprotocol chip can also accommodate an X.21 circuit switched interface. CCITT X.21 requires a character controlled DLC during call establishment and a mutually agreed upon DLC (usually HDLC) during information transfer phase. This is facilitated by changing the chip's protocol from character controlled to bit oriented once the call establishment phase is complete. The link control type of HDLC chip incorporates firmware as well as hardware functions. In addition to line framing and formatting, the procedural elements that
control link operation are implemented in microcode within these chips. Examples of link control functions include link setup, reset, and disconnect; acknowledging commands and I frames; setting and clearing of busy conditions; timeout controls; and retransmission of unacknowledged commands and out of sequence I frames. Link control chips contain a direct memory access (DMA) controller that is used to access control blocks, setup parameters, and buffer tables located in an external random access memory that is shared with the host microprocessor. A memory management scheme and an interrupt control procedure facilitate interprocessor communications.

Western Digital 2501 and 2511 link controllers support X.25 LAP and link access procedure balanced (LAPB), respectively. The Fairchild F1625, although not yet available, promises to support SDLC as well as X.25 LAPB in a single chip. In both cases, the host microprocessor, relieved of all DLC responsibilities, reduces software/firmware development time and cost, and improves system throughput through parallel processing. For example, X.25 packet level code could be executed on the microprocessor concurrently with X.25 link level processing within the link control chip.

Recently, link control chips for local area networks (LANs) have been announced. These include the Western Digital 2840 and SMC 9026 token bus controllers, the Intel 82526, AMD-MOSTEK 7990, SEEQ 8001, Fujitsu Ungermann-Bass LAN-1 and 2, and Rockwell 68802 Ethernet controllers. Texas Instruments' token ring chip set for the IBM LAN is also included. These chips do not implement HDLC. Instead, they contain microcode for media access control, which is a sublayer of the Open Systems Interconnection (OSI) Data Link layer as defined by the IEEE.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Zilog Z80-SIO</th>
<th>NEC 7201/Intel 8274</th>
<th>Zilog 8030</th>
<th>Zilog 8530</th>
<th>Signetics 8237/820-DMA</th>
<th>Signetics 8237/68450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max data rate</td>
<td>800k</td>
<td>800k</td>
<td>1M</td>
<td>40</td>
<td>40048</td>
<td></td>
</tr>
<tr>
<td>Package pins</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Address and data muxed</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Register addressing</td>
<td>Pointer</td>
<td>Pointer</td>
<td>Direct</td>
<td>Pointer</td>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Interrupt vector compatibility</td>
<td>Z80</td>
<td>8086/8088</td>
<td>Z8000</td>
<td>8086/8088</td>
<td>8086</td>
<td></td>
</tr>
<tr>
<td>Internal interrupt priorities</td>
<td>Fixed</td>
<td>1-bit</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>DMA request/acknowledge pins</td>
<td>2/0</td>
<td>4/1</td>
<td>4/0</td>
<td>4/0</td>
<td>4/4</td>
<td></td>
</tr>
<tr>
<td>DMA implementation</td>
<td>Z80-DMA</td>
<td>Extended daisy chain logic plus B237</td>
<td>Z8016</td>
<td>8237/820-DMA</td>
<td>8237/68450</td>
<td></td>
</tr>
<tr>
<td>Counter/timers</td>
<td>None</td>
<td>None</td>
<td>Two</td>
<td>Two</td>
<td>Two</td>
<td></td>
</tr>
<tr>
<td>Bit rate generators (BRG)</td>
<td>None</td>
<td>None</td>
<td>Two</td>
<td>Two</td>
<td>Four</td>
<td></td>
</tr>
<tr>
<td>Crystal or transistor-transistor logic inputs to BRG</td>
<td>None</td>
<td>None</td>
<td>Two</td>
<td>Two</td>
<td>One</td>
<td></td>
</tr>
<tr>
<td>Local loopback</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Auto echo</td>
<td>No</td>
<td>No</td>
<td>Sync/async</td>
<td>—</td>
<td>Sync/async</td>
<td></td>
</tr>
<tr>
<td>TDRD coding options besides NRZ</td>
<td>None</td>
<td>None</td>
<td>NRZI, biphase (FM)</td>
<td>Manchester encoded data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital phase locked loop</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SDLC loop mode</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>—</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bit oriented procedures</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>All parties address comparison</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Partial SA byte comparison</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Underrun line fill options besides FCS-flag</td>
<td>None</td>
<td>None</td>
<td>Abort</td>
<td>Abort</td>
<td>Abort-flags</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

Dual-Channel Serial Communication Controller Features

140 COMPUTER DESIGN/April 5, 1983
A company that was formed with the sole aim of becoming the specialist in providing systems and subsystems to enhance DEC* computer performance. 2. A company that is currently manufacturing a family of unique products proven to enhance DEC computer performance. e.g. **Peripheral Processor Link Series** including (a) PPL-1 that provides a comprehensive interface between two DEC computer systems with a “memory window” technique newly developed by Ranyan. (b) PPL-2. Same as above but links Q-Bus or Unibus systems with VAX machines. e.g. **Bus Manipulator Series** including (a) BMA-2 Q-Bus To Unibus Adapter which permits DEC users to update older PDP-11 systems to Q-Bus processor performance. (b) BMA-1Q Q-Bus Repeater which doubles the Q-Bus processor load capacity by providing a physical and electrical extension of the standard Q-Bus. (c) BMA-1U Unibus Repeater which provides the same benefits listed above to the Unibus. e.g. **Intelligent Multi-Shared Memory**, a fully integrated subsystem specifically designed to enable memory sharing by up to four DEC computers, thus providing higher throughputs and expanded computing power while eliminating the need to invest in an entirely new system. 3. A company that will continue developing and marketing unique products, such as those listed above, to further enhance the performance of DEC computer systems.

RANYAN

GIVING NEW MEANING TO DEC SYSTEM PERFORMANCE.

RANYAN COMPUTER ENHANCEMENT SYSTEMS · 15239 SPRINGDALE ST. · HUNTINGTON BEACH, CA 92649 · 714-895-5504

Coupon

n. 1. A device at the end of an ad which allows you easy access to further information on the products mentioned in the ad.

PLEASE SEND ME MORE INFORMATION ON THE FOLLOWING: □ Peripheral Processor Link Series □ Bus Manipulator Series □ Intelligent Multi-Shared Memory

Name: ___ Title: ________________________________
Company: __ Phone: ____________________________
Address: ___ City: ____________________________ State: __________ Zip: __________

Mail coupon to: Ranyan Computer Enhancement Systems, 15239 Springdale St., Huntington Beach, CA 92649

CD 4/83
Fig 2 Link control interrelationships, shown in the reference model for OSI/IEEE 802 LAN plan, are served by the new generation of VLSI chips. These result in microcoded protocols and transparent layer interfaces.

802 LAN standards committee. Logical link control, the upper sublayer of the data link layer, is the host microprocessor's responsibility. This interrelationship is shown in Fig 2.

Future of VLSI data communication controllers
Software on silicon controller chips, such as the X.25, SDLC, and LAN chips just discussed, contain I/O firmware as well as hardware functions. The advantages of these chips are many and extend to both the equipment manufacturer and the end user. Software development efforts and associated costs are reduced by the new chips. Because the product design cycle is shorter, new products get to the market faster. Also, increased functional density of VLSI and exhaustive testing (by many customers) of the onchip software improve reliability. The modular structure and predefined software interface facilitate the incremental addition of processing power without needing reentrant or redundant code in the microprocessor. Furthermore, adding processing power will not degrade system throughput nearly as much as if the code were resident in the host microprocessor. Finally, complex protocols such as X.25, SDLC, Ethernet, or token passing are transparent to the system integrator and the end user. This decreases the amount of training required.

To complement software on silicon chips, standardized higher layer protocols could be marketed as solid state software. These protocols, implemented as programs in read only memory, can be executed by a host microprocessor. Examples include the CCITT X.25 packet procedures and IBM Systems Network Architecture path control, transmission control, and data flow control. The European Computer Manufacturers Association (ECMA), National Bureau of Standards, and International Standards Organization (ISO) transport and session protocols; and the file transfer, remote job entry, and virtual terminal protocols being developed by the American National Standards Institute and ISO are other examples of potential solid state software routines.

An appropriate shared memory interface to a link level controller chip would be standardized by the chip vendor. This interface would incorporate control blocks for initialization parameters; data link and higher layer status; retry counts; and setup, disconnect, and reset commands. Memory management and DMA control would be handled by the software on silicon chip while the microprocessor executed the solid state software.

Chip sets, put together by VLSI manufacturers, would make implementation of an X.25 terminal or LAN office product much simpler, more cost-effective, and more reliable (see Fig 3). These chip sets would also facilitate mixed vendor communications over a common transport medium—the ultimate goal of the ISO/OSI Reference Model.

Bit oriented DLCs are, perhaps, the best example of peer protocols for any OSI layer. Although they existed before the work on the OSI/Reference Model began, they are closely aligned with the services and functions in the Data Link layer. In fact, all data link services (except quality of service) and all data link functions (except data circuit chaining) are accommodated in contemporary bit oriented DLCs. Also, LSI and VLSI chips have simplified implementation of bit oriented DLCs in equipment designed for local area and wide area networks.

This is a clear example of what can be done within the context of OSI. Hopefully, the same degree of functionality for the high layer peer protocols now being developed by ISO, ECMA, and CCITT will be forthcoming. If these higher layer protocols find support within the end-user community, a huge market for packaged VLSI solutions will emerge.

As data communications becomes more important to computer, data processing, and office automation users, the need for VLSI solutions will be more acute. Today, microprocessor manufacturers can meet this challenge by starting to plan, define, and design silicon software components and chip sets for specific data communication applications.
The system builder's best choice for color graphics is a CSSOOO color system from SCION. Its basic component is MicroAngelo, the single board graphics display computer that has revolutionized monochrome display capability with low cost 512x480 pixel graphics resolution and 40 line by 85 character text capacity. When MicroAngelo boards are combined, they create high resolution color graphics that have a unique advantage. The displayed image is a combination of transparencies. So you can add, modify or delete images by transparency rather than as an entire image. SCION's Series CS5000 builds an image with up to 8 bit planes, each generated by a MicroAngelo board. You select the assignment of those bit planes to transparencies. Each transparency can display $2^n - 1$ colors where n is the number of bit planes it uses... 2 bit planes would make a three color transparency, 8 bit planes would make a 255 color transparency. Once each transparency has been defined, your host can work with it independently, generating and modifying its graphics and text without interacting with the others. The independent transparencies are combined by the Color Mixer board which also assigns one of 16.8 million possible colors to each color of each transparency.

Add Multi-Transparency Color Graphics to Your S-100 or Multibus System

Your computer talks to the SCION Color System in SCREENWARE™, SCION's high level display firmware language. SCREENWARE commands are used by the computer in each MicroAngelo bit plane to generate graphics and text primitives. User interface is made simple with prompted system set-up using SCION's Color Pak. MicroAngelo based color graphics systems are easy to use. Just plug the boards into your Multibus or S-100 host. Or use the freestanding work station configuration with its RS-232 interface. In each case, you get high resolution color graphics for such a low price you can't afford to design your own.

Think SCION for your graphics display needs. Think MicroAngelo. Call us at (703) 476-6100.

System shown is a Model CB5050S
* A trademark of Intel Corp.

if the image is important.

12310 Pinecrest Rd./Reston, VA 22091
(703) 476-6100 TWX: 710-833-0684

CIRCLE 79
TANDON IS THE LAST WANT TO BUY

Because once you buy from Tandon, you’ll realize there’s no reason ever to buy from anyone else.

We’re the world’s number one source for 5½” floppies, 8” ThinLine™ floppies, and 5½” Winchesters. For three very good reasons: our three producing divisions.

Each of our divisions is a specialist in its field. That means they can concentrate their energies on producing what they know best. It’s as if we owned three disk drive companies. All named Tandon. All with the same stable financial backing and forward-thinking corporate direction. All a world leader in their particular product line.

Tandon’s 5½” floppy division is the world’s largest producer of 5½” floppies. They produce more drives every month than anyone else. For some of the biggest names in the computer industry.

We introduced the 8” ThinLine drive to give you traditional 8” storage capacity in
PLACE YOU'LL EVER A DISK DRIVE.

half the space. Our 8" ThinLine division is by far the world's largest producer of these popular drives.

Our Winchester division is now delivering 5 1/4" drives in both open-loop and high performance closed-loop models. They have current capacity to produce 40,000 drives a month.

All our divisions share Tandon's dedication to constant improvements in technology, productivity, and efficiency. With a degree of vertical integration no other company even approaches. That means higher quality control and lower costs to you.

That's the Tandon story. It's made us the most successful disk drive companies you ever heard of. And the last place you'll ever have to go to buy a disk drive.

THE MOST SUCCESSFUL DISK DRIVE COMPANIES YOU EVER HEARD OF.
Digital's new multi-user, multitasking Micro/PDP-11™ gives you all the microcomputer you need to solve your application problems. At a price almost anyone can afford—$9,200.* The Micro/PDP-11 is a powerful micro that's small enough to fit just about anywhere. It's available in rack mount, floor mount, and table top versions. And includes CPU, a 10 Mb 5¼" Winchester, 800 Kb floppy back-up, and auto-self diagnostics for I/O, CPU and mass storage.

But what puts the Micro/PDP-11 in front of all the others is what's behind it.

More software. Over 2,000 developed applications are available for laboratories, factories, offices, and other businesses. And thousands of PDP-11 trained programmers ready to write even more.

A wide choice of operating systems. Including RSX-11, RSTS/E, RT-11, DSM-11, MicroPower/Pascal, and UNIX.**

A variety of languages such as BASIC, FORTRAN-77, COBOL-81, C, DATATRIEVE, PASCAL and DIBOL.

Thousands of peripheral hardware interface products.

And the support of Digital's worldwide team of over 18,000 sales and service professionals. Ready to answer any question. Or solve any problem.

The Micro/PDP-11. No other micro can stand up to it.

For more information, send in the coupon. Or call 800-225-9222 and ask for information package CA-127.

More than a micro.

*Quantity one, U.S. Prices only
**UNIX is a trademark of Bell Laboratories.
No other micro
can stand up to the Micro/PDP-11.
Meet HP's new 1630 Logic Analyzer... and ecstatic when we

From now on it makes no sense to buy an analyzer that offers timing and state measurements only. Not when you can have these capabilities plus interactive analysis and software performance measurements too. All for less than the cost of a good timing and state machine alone.

That's what you get with HP's new 1630A/D Logic Analyzer. It delivers advanced hardware and software testing and debugging power. Plus the ability to quickly spot software bottlenecks and inefficiencies. And a way to resolve hardware/software fingerpointing conflicts. With one low-cost instrument.

HP's new 1630 extends the power of logic analysis to span most of the development cycle. And productivity gets a big boost. Because the 1630's simple interface, combined with low-cost peripheral compatibility, speeds setups and documentation. Best of all, it's affordable for even the smallest lab.

At $8,600, the 1630A gives you 35 channels of state (to 25 MHz), 8 channels of timing (to 100 MHz), or, in the interactive mode, 27 state and 8 timing.

For $10,630, the 1630D offers 43 channels of state or 16 timing. In the interactive mode, you have a choice of 35 state and 8 timing or 27 state and 16 timing. Both models include software performance analysis.

Here's what all that capability can do for you.
You'll be amazed when it shows you show you the price.

Software Performance Analysis

Ever had a software bottleneck? A routine that takes too much time? Those problems won't stand in your way with this powerful new analysis mode. Histograms of time-interval distribution eliminate guesswork by showing you best case, worse case, and average time between any two events you define...nonintrusively...while your system is operating. Great for benchmarking. And spotting out-of-spec modules.

Interactive Measurements

Now there's a logical way to resolve hardware/software fingerpointing feuds. The 1630 lets you monitor bus activity in the state mode, trigger on a given bus pattern, then view asynchronous status and control line activity in the timing mode. This quickly unravels problems such as I/O port malfunctions. Similarly, you can establish trigger conditions based on timing parameters, then view state activity. This correlates hardware malfunctions to software errors. For example, a false reset due to a glitch.

Timing and State Analysis

In traditional operating modes, the 1630 delivers new sequencing, triggering, and store qualification power. For timing analysis, this includes pattern triggering ANDed with a transition or glitch, edge or glitch triggering, and time qualification of pattern triggering. In the state mode, four user-defined terms can be used in any combination to define sequence, store qualification, trigger and restart conditions. With these resources, you get right to the problem. Without sorting through tons of data.

But that's not all. The 1630 makes it easier yet by talking your language. You can assign alphabetic labels to input channels and status or control line patterns. Measurements are then displayed in your system's terminology. In addition, the 1630, with low-cost peripherals, performs inverse assembly. So you see listings in target microprocessor mnemonics. From now on, you needn't struggle with time-consuming conversions.

Get all the details on this advanced analyzer. See how it takes the drudgery out of logic testing, debugging and analysis, speeding your project to completion. Call your local HP sales office listed in the telephone directory white pages. Ask for an HP field engineer in the electronic instruments department.

* U.S.A. list prices only.
Em-Pac® software lets you

Squeeze μP development support out of your CP/M-80 system.

Get more performance from your personal microcomputer system.

Next time you plug in your CP/M-80 based computer, plug in Applied Microsystems’ powerful microprocessor development support. Adding our new Em-Pac® software to one of our EM-Series Diagnostic Emulators will turn your personal computer into a powerful microprocessor development system. With many of the features you’d expect from a system costing three times as much.

Symbolic debugging saves time.

Em-Pac software lets you download and debug software using the same labels and symbols used in the program. Any values, like the one defining breakpoints or memory addresses, can be referenced against the symbol names. This speeds up debugging and reduces the time you spend integrating hardware and software.

Greater flexibility shortens the engineering schedule.

English language commands simplify the programming process. You can also define a long string of commands for the emulator to execute with only one command. And Applied Microsystems can provide support for the 8048, Z80, 8080 and 8085 families of microprocessors. So you don’t have to learn a completely new system next time you want to change microprocessors.

Find out more . . .

Contact Applied Microsystems for more information on our new CP/M-80 or ISIS-II compatible software. Call us TOLL FREE at 800-426-3925, or write Applied Microsystems, 5020 148th Ave. N.E., P.O. Box 568, Redmond, WA 98052.

Applied Microsystems

Em-Pac is a registered trademark of Applied Microsystems Corporation.
SPECIAL REPORT ON
SYSTEMS DEVELOPMENT
AND TESTING

As a result of the ever-increasing use and complexity of microprocessors, the functional
density of most digital equipment is at a point where development and testing at the logic
gate level play a minor role in system design. Design efforts today require joint hardware
and software teams working in terms of higher level languages and functions.

This hardware/software nature puts a two-fold burden on team members and their
instrumentation. First, hardware designers need specialized instrumentation such as logic
analyzers, waveform digitizers, and traditional-type instruments that still allow the
hardware technician to find, isolate, and examine a suspected fault in detail. Software
designers have similar needs. High level languages on development systems must still
allow the programmer easy access to generated code.

Second, and most difficult, hardware and software designers must communicate with
each other beyond the integration stage. Thus, it is insufficient for hardware
instrumentation and software to be mutually exclusive. Rather, software must be
correlated with hardware at a high level.

While communication among all levels of test and development is vital, managing
information—that most precious commodity—is becoming paramount. Communication
and information management needs feed one another. Moreover, software development
systems and hardware instrumentation are becoming linked in LANS to share resources.
Therefore, smooth flow, organization, and version control are essential for coordinating
design team efforts.

Logic analyzers represent an active instrumentation area. Issues affecting the newer
logic analyzers’ design, and the incorporated features, distill issues impacting overall
digital design. Based on microprocessors themselves, logic analyzers are being applied to
microprocessor based systems. They have both the need and the capability to look at and
correlate events in hardware and software. The complexity of their applications demands
that logic analyzers be easy to set up and use, and that they enable users to rapidly find
and interpret necessary data. Because they stand between lower level hardware
instrumentation and higher level software, they can bear a great part of the
communications and compatibility burden.

Communication functionality and compatibility impact two vital measures of
productivity—design time and cost. The modern development and test operation will
combine hardware and software tools. Incorporated in this will be standalone capabilities
suited to team members’ individual functions, as well as instruments such as development
systems with integrated logic analyzers, and large multi-user systems for high level
software development.

Thomas Williams
West Coast Managing Editor
The Dolch 4850A Logic Analyzer has what it takes to analyze your 16 bit microprocessor.

Friendly, yet powerful, personality
Our Trace Module connects the 4850A directly to your 16 bit operating system. Signal interfacing and clock formatting are already done. (In the 68000 and 8086/88 systems, the Trace Module separates instructions executed by the microprocessor from all of those that were “prefetched” into the instruction queue.) The 4850A then disassembles and displays the operations in assembly language mnemonics. It’s that easy.

Plus Some Powerful Pluses

300 MHz Sampling: Besides having 48 channels, for state or timing analysis, you can overlay 16 more at 300 MHz. The 3.3 ns resolution lets you spot short glitches and resolve critical timing sequences.

Advanced Triggering: Multi-level, multifunction triggering gets you to your data — and analysis — quickly.

Area Tracing: You can limit data tracing to specific areas of interest in your system's memory — there’s no need to record unwanted data.

Competitive Price: Price is a real plus over any other analyzer.

For more reasons why the 4850A is ideal for 16 bit (and 8 bit!) microprocessors see a demonstration. Call (800) 538-7506; in California, (408) 998-5730. Or write: 230 Devcon Drive, San Jose, CA 95112.
Special report on systems development and testing

155 Logic analyzers rise to the challenge of microprocessors
by Tom Williams—In the total picture of cost efficiency for a design operation, the advanced logic analyzer assumes vital importance by aiding both hardware and software development.

169 Simulation testing zips datacomm products to market
by Adrian Warren, Michael Leigh, and Philip Black—Protocol simulation languages avoid prolonged beta testing as they approximate real-world error conditions in the privacy of the designer’s own lab.

185 Time after time, logic analyzers get the job done
by Sandra Jumonville—Dual timebase logic analyzers enable designers to debug as never before—providing, of course, that the right triggers are pulled.

197 An information management tool for system designers
by Joseph F. Blazewicz—There is no reason why computer based information system designers must be the last to incorporate productivity enhancers into their professional lives. The system described proves just that.
Here's an LA that's immediately understandable... the PM 3551 from Philips. Cursor prompting and soft-key entry give you intelligence at your fingertips. You can exploit the power of more than 250 functions the very first time you switch on, because all functions are clearly labelled above the softkeys. You can therefore setup in seconds, without reference to the manual.

Expandable operation. You can start, for example, with a 35-channel model which will comfortably handle 8- and 16-bit multiplexed processors. As and when you need to handle minis and 16-bit non-multiplexed processors you can make a simple expansion to 59 channels. Other performance options include a 300 MHz timing card, interfaces (RS232 and IEEE 488) plus disassemblers.

Triggering that thinks. The IF, THEN, ELSE structured language enables complex sequences to be specified easily and efficiently. And for testing polling routines, the 'trigger on sequence break' is invaluable.

Memory deeeepth. The PM 3551 lets you capture blocks of data that are followed, or separated, by a specific sequence of events. This capability effectively stretches the pre-trigger memory depth to infinity.

Megaword timing. With the 'transitional timing' facility two 20 ns pulses, occuring up to 5 secs apart, can be captured and displayed with a 20 ns resolution. This eliminates the old dilemma of trading off resolution against memory depth and opens up new application areas e.g. disk drives.

Processor support. Manufacture orientated disassembly packages give you full family support for the same price as competitors' single processor package.

For nationwide sales and service information call 800-631-7172 except in Hawaii, Alaska and New Jersey. In New Jersey call collect (201) 529-3800, or write Philips Test & Measuring Instruments, Inc., 85 McKee Drive, Mahwah, NJ 07430.

For Rental Information Call 800-527-4334.

From Philips, of course
LOGIC ANALYZERS RISE TO THE CHALLENGE OF MICROPROCESSORS

In the total picture of cost and efficiency for a design operation, the advanced logic analyzer assumes vital importance by aiding both hardware and software development.

by Tom Williams,
West Coast Managing Editor

Tracking the ever increasing complexity of microprocessor based digital circuits, the logic analyzer is evolving toward a versatile, cost-effective, and relatively easy to use instrument that will fit efficiently into the overall design and engineering operation. While logic analyzers do not perform analysis, they store data produced by logic circuits that the human operator must manipulate and interpret. Thus, a logic analyzer’s effectiveness as an analysis tool can be measured by its effectiveness in capturing data of interest, and then processing and manipulating that data to be presented in a variety of meaningful ways. The analyzer’s effectiveness can also be measured by how easily the operator can set up and use the instrument.

Additionally, logic analyzers are finding their place in the overall design process of advanced hardware/software systems, most of which incorporate microprocessors. This role imposes the need for flexibility and modularity on the instruments. It also requires that they communicate and work smoothly with other instruments, as well as with computers that can be used to oversee the design and debugging operation. Since today’s logic analyzers are microprocessor based, they possess the microprocessor’s adaptability. The ability to work in concert with development systems and other instruments will be vital in the total design effort.

Digital design task requirements have forced the logic analyzer to have standalone, single user capability, and a price considerably below that of a full-blown microprocessor development system. At the same time, however, the logic analyzer must have some of the characteristics usually associated with the development system, such as access to the processor and mnemonics capability. The logic analyzer must allow the user to look from his level of analysis of hardware and software, and see what is happening at a higher level in software.
The Dolch Atlas 9600 system can accept 2 plug-in preprocessors in its mainframe and control 12 others, be they logic analyzer, trace, emulation, or word generation modules. The flip chart on the keyboard relates soft key definition to the various modules.

With the increasing feature density of designs, both hardware and software design are reaching past the integration phase—where the twain have traditionally met—and are borrowing information from each other for use in their own tasks. Thus, the hardware end wants to know how to most efficiently implement the functions called for by software, and the software end wants to know what effects its microprocessor programs are having on the logic circuits they control.

In the days of 4- and 8-bit processors, it made sense to write and debug programs in assembly language on a development system that used in-circuit emulation in the debugging stage. A logic analyzer was then used—perhaps with a link to the microprocessor—to test and debug the hardware. Today's 16-bit microprocessors are simply too complex for that. Often, a software design team writes programs on a multi-user minicomputer in a high level language such as Pascal. They are then cross-compiled into the processor's native code and downloaded to a development system for emulation, debug, and integration.

As a standalone instrument, the logic analyzer must fit into this process. In a development lab, one or two workstations may be full-blown development systems with logic analyzers integrated into them, but the expense of such systems makes it impractical for every design team member to have one. The logic analyzer must fit between the development system and lower level hardware instrumentation (e.g., oscilloscopes, digital multimeters, and waveform digitizers).

Capturing data
A logic analyzer's first task is to efficiently acquire and store the data of interest for the specific problem the user is trying to solve. Gone are the days of "faster, wider, and deeper" when the instrument was merely expected to quickly grab as much data as it could from as many channels as possible. The size of today's programs makes selectivity a key feature of a logic analysis tool.

Since most advanced microprocessors run at less than 20 MHz, a sampling rate five or ten times that is usually adequate. Some analyzers do provide special high speed channels for asynchronous clocking such as the K500-D from Gould, Inc's Instrument Div (Santa Clara, Calif), which has eight channels that clock at 500 MHz, and the DAS 9100 from Tektronix, Inc (Beaverton, Ore), which has two 660-MHz channels. Similarly, memory depth is generally sufficient at 1024 bits per channel, but some analyzers, such as the KLA series from Kontron Electronics Inc (Redwood City, Calif), provide an expansion option up to 2048 bits per channel. All modern analyzers prefer to rely on selectivity rather than raw memory depth.

The Series 200 logic analyzer from Racal-Dana. The microprocessor pod allows the analyzer to handle 8-bit processors. A family adapter then reads the specific pins of the chip, which are interpreted and disassembled by ROMS in the instrument.
The Kontron Logic Analyzer/Slave Emulator (LASER) has combined the KLA 64 logic analyzer with a development system and emulation. The front panel keyboard on the analyzer folds down to reveal up to 1.2M bytes of floppy disk storage.

The need for input flexibility is a well recognized, expanding area. In addition to 48 data inputs, the K101-D from Gould’s Instrument Div features 12 external clock inputs: 6 are sample edge-sensitive clocks and 6 are level-sensitive latch enable clocks. Latch enable clocks can be used in a DEMUX input mode to gather and correlate data that occur at different times, and then to display the data as a single 24-bit word. This word is obtained from an 8-bit multiplexed bus, using only 16 probes, and contains 16 bits of low and high order address information, plus 8 bits of data.

Gould’s newest member of the K100-D line, the K105-D, can be set up with 32 or 64 main (20-MHz) state and timing sample inputs, 8 or 16 high speed (100-MHz) inputs, and up to 8 external clock inputs that can be combined into 4 Boolean expressions. As well as defining specific word patterns and system operation segments for recording and analysis, these inputs can be linked with the microprocessor disassemblers to analyze memory flow, and with high speed events elsewhere in the target system.

Triggering is a selection method that has developed an increasing number of variations. The ability to trace a given event or trigger word is a natural development of triggering capability. To conserve memory, and not waste time on nonevents, a number of instruments trigger on signal transitions only. This gives a compact recording of state conditions, showing only those program lines or addresses where something occurred. In the timing analysis mode, however, analyzers like the Kontron KLA series and the PM 3551 from Philips Test & Measuring Instruments, Inc (Mahwah, NJ) do count the clock cycles so that they can accurately reconstruct timing waveforms by inserting clock cycles on the display.

Once trigger capability has been established, however, it is desirable to trigger on a large number of possible conditions including a sequence of events, the occurrence of a given address or input/output (I/O) port, a break in a defined sequence of events, a given set of clock conditions, or even higher level software symptoms. Logic analyzer manufacturers are racing to incorporate what they deem to be the most useful combinations of triggering features.

Sequences of events, or trigger levels, are usually available to define relatively complex qualifications for initiating data acquisition. The Philips PM 3551 includes a "trigger on sequence break" feature that allows the user to define a loop such that the analyzer will trigger when the program does not successfully complete the loop. In a technique that combines triggering and tracing, the same instrument allows selective data acquisition. Each successive occurrence of the trigger will cause capture of a number of following samples. This allows rapid overview of branch addresses, for example, and where they lead in the program flow.

In addition to capturing data initiated by a given trigger event, it is often desirable to examine what happened immediately prior to that event, especially if the trigger is an error condition under investigation. The Series 200 analyzers from Racal-Dana (Irvine, Calif) include a pretrigger feature that shows the data preceding the trigger event as up to 50 negative line numbers. This allows the operator to readily see where in the program flow the error occurred and what conditions may have caused it.

Gould, Inc’s K500-D logic analyzer can use three events to control the measurement window. The arm event, controlled from the front panel, allows the analyzer to look for an enable event. This, in turn, allows the instrument to seek the trigger event. The trigger event defines the end of memory and thus determines how many words are recorded prior to the trigger. The enable event, even though it may not be recorded, can be used as a reference (ie, it had to have happened prior to the trigger event).
Along with multiplexed buses and prefetching (things that tend to confuse the true nature of timing relationships), the advent of systems using multiple microprocessors that communicate asynchronously adds another duty to the logic analyzer—time correlation. Such relationships require multiple clocks to handle data and addresses, and some use a clock qualifier to strobe into memory only the data associated with a given event, such as an I/O operation.

Microprocessor adapter modules and personality probes do much of the bus demultiplexing and microprocessor disassembly. The probes allow the analyzer to display the processor’s mnemonics, along with data from the system under test. Several manufacturers, such as Dolch Logic Instruments (San Jose, Calif) and Gould’s Instruments Div, provide disassembly in the probes themselves. In such an arrangement, the personality probe for a specific microprocessor connects to the processor socket and then to the logic analyzer’s channel lines. A variation of this, the Racal-Dana product line, supplies a standard 8-bit probe and adapters for various microprocessor families. Information is taken into the instrument in the form of ones and zeros, and disassembly is done by disassembler programs plugged into read only memory (ROM) sockets in the logic analyzer. One advantage of this approach is that the user can easily switch between mnemonic display of processor instructions and binary, hexadecimal, and other formats.

The Tektronix DAS 9100 system takes a mainframe approach to microprocessor interfacing. Its PMA 100 personality module adapter connects the specifics of a processor to the DAS’ data acquisition, triggering, and Define Mnemonics facilities. To use the DAS with a new microprocessor, the user plugs the new personality module into the PMA 100 and loads a tape with that processor’s characteristics, via the tape drive, in the 9100 mainframe.

Also from Tektronix, the 1240 logic analyzer incorporates a dual timebase that allows concurrent, synchronized data acquisition from two separate timebases. The trigger can be defined using information from both timebases, and data are displayed in a time correlated manner. Similarly, the DAS 9100 system features an “arms” mode that allows simultaneous acquisition of synchronous and asynchronous data, then correlates them for display in either timing or state mode.

Capturing glitches is another important area in data acquisition. Approximately 5-ns signal transitions are generally regarded as glitches. They are displayed as small spikes in timing displays or noted with some symbol in the state display. One danger with this is that a pattern of glitches might be mistaken for a trigger word. The Gould K500-D, for example, has a trigger delay of 1800 words.
filter that requires a glitch to exist for more than three clock cycles before a pattern in that time frame may be considered as valid data. As a corollary, many analyzers can be programmed to trigger on a glitch or a pattern of glitches since these are often significant sources of malfunction. To avoid problems associated with asynchronous data sampling, the Dolch 4850 instrument allows definition of timing tolerances via a skew window of ±9 clock samples. Thus, the user can set up timing conditions or windows, in which another transition could occur.

One of the newer features being incorporated in logic analyzers is pattern generation to stimulate the logic circuits under investigation. Recognizing that stimulation patterns are often needed (other than microprocessor outputs), the Racal-Dana 202 and the Tektronix DAS 9100 include word generation modules. The DAS 9100 module contains 16 output channels plus 2 programmable strobes, while the Racal-Dana 202/205 can convert 16 of its logic analyzer inputs into word generator outputs.

Tracing modes are useful in monitoring a set of inputs, an I/O port, or an address. Racal-Dana has a post-trace capability that lets the instrument capture up to 16 states of data after the trigger condition. Thus, a trace word and its results can be observed repeatedly. Similarly, Dolch's LAM 4850 has a trigger trace monitor in which a realtime word recognition counter keeps track of the trigger sequence. An occurrence count of various sequences, providing statistical information on portions of the program, is thus made possible. This trigger trace monitor feature is indicative of the type of performance analysis capabilities that are beginning to appear in advanced logic analyzers.

Interpretation and presentation
Considering logic analyzers as a class of instruments, the issues of data processing and ergonomics—ease of setup and use—tend to blend together. Once data are acquired and determined to be of the most interest, this data must be presented for analysis in a meaningful form (ie, readily readable in terms of the functions of the system under test). One of the fundamental requirements is to format data in the commonly accepted modes: binary, hexadecimal, octal, and decimal. Almost all current logic analyzers provide a timing display. Also, it is becoming ever more important to display mnemonics.

Mnemonic capability is not only important for following a microprocessor program, but it is also useful in easily identifying groups of signals or program sections. In the case of proprietary or bit-slice processors, the system designer must first determine the names of processor instructions. The 1630 logic analyzer from Hewlett-Packard (Palo Alto, Calif), for instance, allows the user to define up to 5-character labels to identify each channel in terms of its connection to the target system. In addition, the 1630's microprocessor-specific preprocessor performs inverse assembly to display instructions as they appear in the original source code.

With the DAS 9100's Define Mnemonics feature, the user can define his own language by labeling data words up to 10 characters long. Data words are matched to an assigned mnemonic and displayed in the state table. Code can be quickly verified by first assigning mnemonics to events that are expected to occur, and then checking the state table. Up to 256 mnemonics can be stored and assigned to a single group of 256, or spread over 16 different groups of 16 each. Groups can be turned on and off as desired for selective examination of system operation.

Once data have been selectively captured and labeled, there is still quite a bit of information in the instrument's memory to deal with. The user needs a convenient method to find what he is looking for. Scrolling and paging through memory are obvious methods, but so are SEARCH and FIND commands. Racal-Dana's 200 series provides all four options and an auto-add feature to capture data. In this mode, it will capture the first 250 words the first time the program is run. The next time it will wait through the first 250 before capturing the next 250, and so on. Thus, the same trigger word can be used to capture different occurrences even though the program starts running from the beginning every time.

Windowing is a particularly useful feature in the timing analysis mode, as an address list is not handily displayed. A number of instruments provide a small graphic line representing the total memory space, with an indicator showing how much of memory is presently being displayed and where that window is located in the total memory space. When the display resolution is increased, the total amount of memory space presented on the screen decreases, and vice versa.

For timing measurements, it is necessary to have a visual picture of the timing relationships (represented by waveforms on the screen) and an exact measurement of timing down to the actual clock resolution of the instrument. Users can measure relative time between events (eg, a trigger cursor and one or more reference cursors) by positioning cursors, which cross all the waveforms,
An example of performance analysis on the Hewlett-Packard 1630. Label histograms display activity as a function of address space to quickly identify the distribution of program activity among software modules.

over the timing display. In addition, with analyzers from Philips, Tektronix, Gould, Hewlett-Packard, and others, this measurement can then be displayed as a delta time number on the screen.

Color in logic analyzers made its first appearance with the Color DAS 9129 from Tektronix. To make items of interest easier to find in a long state table listing, for instance, the 9129 highlights the trigger position in red. Glitches in the timing display appear as small green spikes on yellow waveforms and cursors appear as red lines. Setup and other reference information are displayed in green characters or green reverse video.

In addition to testing and debugging hardware and software, logic analyzers are being used in the software optimization process. By using performance analysis features, the user can see software bottlenecks and pinpoint areas that affect overall system performance. Hewlett-Packard’s 1630, for example, uses nonintrusive methods to perform time interval distribution measurements and provide a histogram of time taken between two user-specified events. Displaying the average execution time of a module of code, along with the minimum and maximum times, is one option. In another approach, the user can take advantage of the ability to assign labels to various address ranges and perform label distribution measurements to display histograms of address space use.

Putting theory into practice

If the instrument does not lend itself to straightforward setup and configuration, however, all data acquisition and display features will only lead to frustration. Efforts in designing ergonomic setup procedures focus on defining the setup in terms of the functions of the target system. Since setup can be an involved process, a number of analyzers provide a means of storing setup parameters, along with a certain amount of test data.

Use of menus is, by far, the most common way to ease the tedium of configuring the instrument. The new instruments made by Hewlett-Packard, Gould, Tektronix, Kontron, and others can detect what plug-in modules and options are attached to them and display their power-up configurations to the user. The user’s first task, then, is usually to group and label the available channels to suit the specific situation.

Most logic analyzers—at least those not integrated into development system workstations—avoid using a full ASCII keyboard. Even those that do have a keyboard, such as the Dolch Atlas, provide a number of programmable soft keys to lead the user through the configuration menus and perform many of the functions used during measurement operations.

In addition to the six soft keys next to the screen, the Dolch Atlas system has another row of programmable keys (“flip keys”) along the top of its ASCII keyboard. The ROM-based operating software in each of the Atlas plug-in modules determines the functions of the flip keys. The name “flip key” is applied because each module comes with a page that can be added to a flip chart situated above the row of keys. The user simply flips to the page corresponding to the module in use and reads the key functions for that module.

Programmable soft keys are also used in Philips and Tektronix machines. In addition, Tektronix, in its 1240 logic analyzer, has introduced a touch-sensitive screen on which the user can see valid options highlighted in reverse video and make menu choices by touching them. To select numeric values, such as a signal level, the user turns a scroll knob on the front panel until the desired value appears.

Both Kontron and Racal-Dana narrow some of the menu options the user must choose from by incorporating process operator prompts into the menu. At each stage of the setup, these prompts present the user with only the pertinent questions. Hewlett-Packard’s 1630, for example, helps in establishing measurement conditions by displaying options in bracketed fields, like transistor-transistor logic (TTL), and emitter-coupled logic (ECL).
Our new 8086-88 Stand Alone Emulator offers you things that you can't get with any stand alone emulator or for that matter, most µP developments systems. With our ICD-178/8086-88 Emulator you get real time 8086 emulation to 10 MHZ and 8088 emulation to 8 MHZ, PLUS 8086-8087 and 8088-8087 co-processor emulation. Just a few of our standard features include 128K of static memory (expandable to a full 1 Megabyte), 13 breakpoints, and in-line assembler for code patching, full upload/download to host computers with no special software, displays in hex/ASCII or disassembled code, and a 2X X 64 real-time trace buffer. We also run in either the MIN or MAX modes. There are 20 different debugger commands to make your job of software debug and system integration much easier. Call us on our toll free number 800-421-0982 for literature or if you would like a demonstration by one of our representatives.
The panorama
Logic analyzers, though microprocessor based, have become computers in their own right, and as such need their own peripherals. Besides a keyboard and display, some kind of mass storage device is obviously needed. The Kontron KLA series has gone the farthest in this direction by incorporating one or two 5 1/4" floppy disk drives behind the fold-down keyboard. The disks are used to store not only setup parameters and test data, but also to hold all the operating system software for the logic analyzer itself. This makes instrument upgrades and modifications mostly a matter of programming.

Tektronix and Hewlett-Packard have opted for micro cassette tape drives, while Racal-Dana selected nonvolatile memory chips, electrically erasable programmable read only memories, to store setup data. Moreover, they also store patterns produced by the analyzer's word generator option to be used in stimulating the target system.

The logic analyzer's computer nature includes another attribute—communications capability—that will make it even more versatile as a standalone instrument within the overall design effort. The ability to store and share data via local area networks and to work closely with software development efforts is at hand, but the need remains for logic analyzers to be standalone instruments within this picture.

In July 1982, Tektronix surveyed 458 engineers (see the Tektronix histogram). This revealed that over 60% of the design teams found their efforts evenly divided between hardware and software (solid line). When individual activities (broken line) were examined, however, 24% of those surveyed said they spent 100% of their time on hardware, while 25% spent 100% of their time on software. When overlaps were considered, 39% of the engineers spent more time on hardware, and another 39% spent more time on software. This study reveals a specialization that still must be served by specialized tools, while an integrated tool also fits into the total picture.

As logic analyzers develop more computer-like characteristics, it is reasonable to expect them to fit smoothly into the software development realm. As opposed to the specialized computer (ie, the logic analyzer), the full computer can marry in-circuit emulation to logic analysis. Such integrated workstations are already making their appearance in the form of the Hewlett-Packard 64000 Logic Development System, the Dolch Atlas system, the Kontron Logic Analyzer/Slave Emulator, and the Gould 9516 Microsystem Integration Station.

Recognizing the need for communication between software emulation and hardware analysis, Hewlett-Packard supports a broad range of configurations in the 64000 system. But also recognizing that such a system cannot be justified for every member of a design team, the company is fully behind cost-effective standalone analyzers such as the 1630. In some instances, corporate mergers have been reflected in integrated products aimed at that part of the design team's efforts devoted equally to hardware and software.

Kontron's Logic Analyzer/Slave Emulator marries emulation and analysis by incorporating Kontron's KLA analyzer with the FutureData (Culver City, Calif) development system. Software development and debugging in high level languages is thus possible. Moreover, the long sought-after ability to correlate events in hardware with what is happening in high level software is now closer to reality. Gould's 9516 incorporates a dual bus architecture with a 160-ns emulation bus and a Multibus control bus. In addition, a 32-bit expansion bus is provided for future 32-bit microprocessors.

The Dolch Atlas system takes the effort toward integrating instrumentation functions in the design process even further. One CP/M based control computer can handle up to 14 plug-in instrumentation frontend processor modules. The system's logic analyzer modules are essentially plug-in versions of Dolch's standalone logic analyzers. However, the Atlas system supports trace and emulation modules and word generation. Signature analysis modules are said to be coming soon. One of the more forward-looking aspects of the Atlas system is its orientation toward local area networking, which allows communication between computers and other instruments. It also provides a means to download the results of large scale software development projects into an instrumentation environment, where integration and debugging can be done with easy communication between all levels of complexity.

As indispensable as these emerging emulation/analysis workstations will be for the design team, they will not replace the standalone logic analyzer (because
High speed data acquisition can be a real headache. Especially during peak I/O rates when transfer can exceed the CPU's capacity and key bits of information go off in thin air.

So we developed a DR11-W module. First for the Unibus. Now for the Q-Bus. Both feature our exclusive DMA Throttle that efficiently regulates data flow down to average rates to maximize overall CPU performance. But that's not all.

Additional design features make it a cure for many other troublesome Unibus or Q-Bus system ills. For example, it offers:

- Edge mounted LED's to illuminate performance status
- Micro-sequencer driven, self-test diagnostics
- Long lines capability
- Switch selectable 22-bit addressing (Q-Bus)

- Bus Address Extension for memory transfer throughout the 4 megabyte range (Q-Bus)
- Switch selectable, 4-level or single level interrupt arbitration (Q-Bus)
- Compatibility with 16, 18 and 22-bit backplanes (Q-Bus)

This high speed, digital input/output device is prescribed for such typical applications as:

- High speed graphics
- Digital data acquisition
- Parallel information processing
- Interprocessor linking between a Unibus and Q-Bus

There's more. And we're anxious to spell out all that the DR11-W and our complete line of computer interfaces can do for you. Call or write today and ask about full year warranty. Available under GSA contract #GS-00C-03330.

Now for Q-Bus* users too.

*TM Digital Equipment Corp.
Gould, Inc's K500-D logic analyzer features a 2000-word memory and eight high speed inputs that clock at 500 MHz. In addition to time and data domain analysis, the K500-D has an input for an analog waveform digitizer.

of cost) nor the high level minicomputer in the software development phase (because the complexity of today's software tasks requires multiple programmers sharing files, dividing duties, and working in high level languages).

On the other side of the coin, one that is not often brought into the glamorous light of computer systems, is the need for the logic analyzer to communicate with lower level hardware instrumentation. When glitches occur, it is desirable to see exactly what kind of waveform has produced that glitch (which usually only appears as a spike or some other symbol on the logic analyzer's display) and to look at that waveform in its analog form.

One of the most significant of these is the digital oscilloscope, or waveform analyzer. The NPC-764 logic analyzer from Nicolet Paratronics Corp (San Jose, Calif) offers an analog waveform analyzer with a 1000-word memory that can be triggered by trigger conditions set in the NPC-764. Gould, Inc's 4500 digital oscilloscope not only stores waveforms when triggered by the KD series logic analyzers, but it has a floppy disk option to store the waveform data. Theoretically, such stored data can also be submitted to a computer for further analysis, thus completing the instrumentation cycle.

Please rate the value of this article to you by circling the appropriate number in the "Editorial Score Box" on the Inquiry Card.

High 716 Average 717 Low 718

AN 8-INCH HARD DISK DRIVE PROVIDING UNMATCHED RELIABILITY

- 22 megabytes of storage
- thermal tolerance, 0° to 50°C
- 11 megabytes ANSI removable cartridge

For more information contact: Vermont Research Corporation, Precision Park, North Springfield, VT 05150. Tel: 802/688-2256. TWX: 710/363-6533.
In Europe call or write: Vermont Research Ltd., Cleeve Road, Leatherhead, Surrey, England. Tel: 0372 376221. TLX: 23280.

See us at COMDEX, April 26-29
Booth #3026 & 3127
Atlanta, GA

VRC Memory Products for Systems That Can't Stand Failure
You won’t find this kind of software versatility anywhere else

When it’s time to buy an Instrument Controller/Computer for your next automated test system, software is one of the most important considerations. And that’s the reason you should look to Fluke for PASCAL, FORTRAN, two kinds of BASIC and Assembly software. Languages designed to make your system building task easier.

Here’s how:

Our BASIC is anything but

The 1720A comes standard with an interpretive BASIC. It, along with the optional Compiled BASIC, features 28 extensions specifically written to control IEEE-488 programmable instruments. For instance, Fluke BASIC has 7 types of interrupts to signal a variety of external events. We’ve written the code and embedded it in the language so you don’t have to.

Plus, to take full advantage of our mass storage peripherals, this BASIC utilizes Virtual Arrays, a software feature usually found only on larger, more expensive systems.

For more complex tasks—try our new PASCAL

Many programmers favor PASCAL because of its ability to easily support complex data structures. Fluke’s PASCAL combines this feature with three extensions which tailor the language to the programmable instrument environment. These extensions are:

- Real-time run mode that allows the 1720A to react to any external asynchronous event.
- Seventeen IEEE-488 predeclared bus procedures imbedded in the language for simplified programming.
- Powerful file handling capabilities that allow the user to take full advantage of Fluke’s Virtual Arrays memory system.

Special Edition FORTRAN and Assembly Languages

Our FORTRAN and Assembly have all the features of these standard programming languages, but with a little extra. Built-in routines allow use of the IEEE-488 bus and other convenience features. And with our BASIC’s linking feature, you can combine any FORTRAN or Assembly routine with any BASIC program. You’ll save time in programming and running your systems.

Find out more

For more information on these languages or the Fluke Instrument Controller family, contact your local Fluke Sales Engineer, write to us at the address below, or phone us direct at 1-800-426-0361.

IN THE U.S. AND NON-EUROPEAN COUNTRIES: John Fluke Mfg. Co., Inc. PO. Box C9090, M/S 250C Everett, WA 98206 (206) 356-5400 Tlx: 152662

IN EUROPE: Fluke (Holland) B.V. P.O. Box 5053, 5004 EB Tilburg, The Netherlands (013) 673973, Tlx: 52237

□ Send information on 1720A Software Languages.
□ Send information on the 1720A Instrument Controller.
□ Please have a Sales Engineer call.

Name
Title
Company
Address
City State Zip
Telephone () Ext.

Circle 93 for Technical Data
Imagine a logic analyzer sophisticated enough to sort through countless megabytes of program flow and store just the occurrences that caused a particular system failure.

One that wouldn't limit you to capturing a single, contiguous segment of your program activity, but would store relevant slices separated by minutes or even hours. In a single recording.

Think of the time and frustration you'd save tracking down hardware and software relationships in your system design with such a powerful instrument. That instrument is the K101-D (48-channel) or K102-D (32-channel) logic analyzer.

Now, with the trace control capabilities of these Gould Biomation logic analyzers, you can find solutions to problems you couldn't solve any other way. In applications ranging from 8- and 16-bit microprocessor systems to a multi-user, multi-tasking mainframe or communications environment.

The K101-D and K102-D feature 16 separate conditional trace control levels, each with four powerful conditional commands. Each command is executed based on the occurrence of words and/or delay conditions, which are different for each trace level. So you can define precisely the windows or areas in your software execution where you want to concentrate your efforts. You minimize gathering of unnecessary data. And determine what caused the failure, not just where the failure occurred.

Capture multiple subroutines in a single pass.
With trace control, you can record the execution and timing of many different subroutines in a single pass, without tracing or timing the execution sequences in between.

For example, in a numerically controlled mill, A is a port-reading subroutine for measuring a motor's position during the calibration cycle. B is the arithmetic subroutine that calculates the required calibration change. C outputs the new motor position, and D displays and prints the adjustment. The time between each subroutine is substantial but the data is irrelevant.

[Diagram]

With trace control, you can record from the entry point of each routine to its exit point, without losing the initial information or wading through the unwanted data between the subroutines of interest. Up to 512 samples in each recording can be allocated as you choose, for truly flexible data capture.
Find unknown execution errors in real time.
The K101-D or K102-D continuously monitors system execution, in real time, and displays a trace level status message. When a problem occurs, you can often identify the faulty sequence area immediately, just by reading the trace level status. This allows you to dynamically test multiple execution points, narrow down the problem area and simplify your debugging job.

Uncover obscure system integration problems.
Often an apparent software error is only the symptom of a much more obscure hardware or system integration problem. Perhaps the real culprit is, for example, a brief drop in power.

At the end of the recording, a built-in DVM stores the current voltage level and a 24-hour clock stores time to the nearest second. So you can see at a glance if the voltage dropped when the system failed.

Other features also offer unique perspectives, which often provide the key to creative problem-solving. For example, one counter monitors the master clock frequency and a second counter stores the total trace time of each recording.

Uncompromising dedication to high performance.
The Gould Biomation philosophy dictates that every instrument we make be the best for the job it’s designed to do. The impressive trace control capabilities of the K101-D and K102-D are evidence of that commitment to excellence.

For detailed application notes or a demonstration, write Gould Inc., Instruments Division, 4600 Old Ironsides Drive, Santa Clara, CA 95050-1279, Gould Biomation and Gould Millennium Products. For fastest response, call (408) 988-6800.

How to find the ticking time bomb.
In the diagram below, the failure indicated in red occurs intermittently and only when the execution route in green is taken. Yet the actual cause may be hundreds or thousands of megabytes back in time. Such “time bombs” can be nearly impossible to isolate using a conventional logic analyzer. Trace control lets you capture and examine several possible “cause” areas in one compact recording, when the specified route is executed and the failure actually occurs.
The ultimate tool for software debugging your real-time operating system! Loral Instrumentation’s act® 1 with its unique interface eliminates diagnostic software while allowing the user to monitor the operating program execution in real-time.

Breakpoints, Stack, Trace, Disassemble, Change, Insert, Move, Save, Load, Display and even Memory Substitution are all features and commands that make the act 1 the most versatile computer analysis tool on the market.

And, it’s easy to use! Loral’s friendly man-machine interface is unsurpassed for speed and ease of operation. No accident or afterthought, this menu prompted English language control method has been developed through several generations of Loral Instrumentation’s equipment.

Loral’s act 1 gives you a real-time window into your computer.
SIMULATION TESTING
ZIPS DATACOMM
PRODUCTS TO MARKET

Protocol simulation languages avoid prolonged beta testing as they approximate real-world error conditions in the privacy of the designer's own lab.

by Adrian Warren, Michael Leigh, and Philip Black

As the demand for greater communication ability in small, inexpensive computer systems continues to grow, communication innovations rely more and more on software. Unfortunately, a noticeable time lag exists between the introduction of innovative hardware and the software capable of fully using it. The cost of creating completely new application software is rising, resulting in increased pressure on software design teams to quickly complete an expanding list of research and development tasks. The areas suffering most are regression testing and live environment (beta) testing stages. Avoidable errors that are expensive, embarrassing, and time-consuming to correct often go undetected until picked up by a disgruntled customer.

A protocol simulation language, however, can create the live environment needed in a data communication project to develop and test systems effectively. Simulation provides a major advantage over a real customer/real environment test, i.e., by introducing abnormal operating conditions, of any specific type, at will. With such a language, beta testing time is saved because full error recovery capabilities can be designed, installed, and tested in advance; money is saved because fewer after-the-fact design changes are necessary.

Protocol simulation languages are merely vehicles for constructing and simulating protocols accurately, quickly, and cheaply. They can be driven by any host.

Adrian Warren is a senior systems designer for Tekelec Inc, 2932 Wilshire Blvd, Santa Monica, CA 90403. Originally from England, where his own software company helped the British Post Office on packet-switched network projects, Mr Warren's background is in network communication. He has an advanced level degree in computer science from Christ's College, London.

Michael Leigh is Tekelec Inc's marketing manager. He is a computer marketing specialist, having represented data communication companies in Europe and the United States. Born and educated in London, he has a degree in marketing from the Communications Advertising and Marketing Education Foundation. Mr Leigh also holds a graduate level degree from the London College of Distributive Trades.

Philip Black, president of Tekelec Inc, has pioneered several communication network projects and is involved in the preparation of ANSI Standard X3.535/125 (data communication performance parameters) and the U.S. CCITT workshop on the integrated services digital network (ISDN).
machine, but they are generally of more value when used in conjunction with a data communication protocol analyzer/simulator. Protocol simulation languages can be used from the initial design phase, through the various stages of creation and testing, to the product's field site maintenance. Greatly varying levels of knowledge are inherent in the job functions associated with these project stages.

Since BASIC is widely understood and relatively easy to learn, it is an appropriate choice as the lingua franca of protocol simulation languages. BASIC provides a ready user interface since the user does not have to know where or how cyclic redundancy checks (CRCs) or block check counts are generated to test and to transmit a specific frame of information. This approach allows the running of menu-driven test programs by nontechnical staff. In addition, test results can be easily gathered, analyzed and distributed, which speeds feedback to research and development (R&D) engineers and makes it more meaningful because errors are easily documented and specific bug ridden modules quickly identified.

Simulation languages provide . . . a comprehensive kit of development and debugging tools . . .

Different protocols demand different features in simulation languages. For instance, in the world of bit oriented protocols, high level data link control (HDLC) and synchronous data link control (SDLC) are the most common at the link level. They, in turn, are often incorporated into multilevel protocols based on the 7-layer model International Standards Organization’s Open System Interconnection (ISO OSI). HDLC is part of the International Consultative Committee for Telephone and Telegraph (CCITT) X.25 multilayer protocol (the frame level). SDLC is predominantly IBM's replacement for its bisynchronous protocol, referred to as bisync, or binary synchronous communication (BSC), in IBM system network architecture (SNA). In each case, a simulation language must provide a means of thoroughly testing each protocol.

Protocol simulation languages provide original equipment manufacturers (OEMs) with a comprehensive kit of development and debugging tools. For the first time, a battery of negative, "what-if-something-goes-wrong" tests can be carried out before product completion and subsequent beta site testing. By making use of simulation techniques, it is possible to build full-error recovery into a new system, regardless of whether the error is in the hardware, in the software, or is operator induced. This recovery ability is not attained easily by other means. Even the equipment that a product will eventually run in conjunction with only provides a source of positive testing; little in the way of negative testing is possible. The dangers of this situation are illustrated in the following hypothetical situation.

A firm manufactures plug-compatible IBM look-alike 3276 cluster controllers. Even though the firm has access to a real IBM 3705 frontend processor with all the hardware and software necessary to drive it, the manufacturers are still unable to find out what happens when the system receives an invalid SNA/SDLC command because the 3705 is incapable of generating erroneous commands. Compounding the problem is the fact that documentation in this area is often incomplete.

Using simulation in the design process

Simulation techniques can be used effectively by OEMs in many facets of data communication applications, including system, hardware, and software design and testing, and quality assurance (QA) and customer support test procedure design. The major criterion for deciding whether or not to use simulation is the project's use of communication protocols. Simulation is needed when two or more intelligent devices communicate—with or without packet or circuit switching. Link protocols that can be simulated include SNA/SDLC; X.25 levels 2 (HDLC), 3, and above; BSC 3270; and many more.

The steps involved in taking a project from concept to completion include these broadly defined modules: identifying the application; creating specs (including selection of protocol to be used); selecting hardware/software parameters; translating the specs into logic diagrams and software tasks; allocating tasks to the various hardware/software teams; testing the modules prior to integration; integration/integration testing; regression testing; QA testing; and beta site testing/ongoing customer support. Each creative use of specialized simulation software can help designers achieve goals faster, more comprehensively, and sometimes with significantly less capital outlay in the last five modules.

Prior to integration, each of the modules, in the absence of simulation, must be tested in isolation. Specialized interface routines must be written to accomplish this. Delays during the integration stage of the project may be encountered by several design teams trying to use limited test resources. Additional software must be written to drive the various modules once the interface routines are completed. Apart from these drawbacks that waste time and money, problems arise when the team that writes the application software under test also writes the test procedure software. Undiscovered errors can be unknowingly mirrored and introduced into the test software.

When a protocol simulation language is used, flow control testing that avoids unnecessary, repetitive programming is easily achieved. A specific module's functions can be isolated and examined in normal operation as well as in forced-error states that have been set up. Tests are created in an easy to write, flexible format that uses proven language syntax and standard industry mnemonics.

Another important advantage of simulation testing at the module stage is that each group can test its modules as soon as the code is finished. This freedom to systematically complete one task, thoroughly test it, and then proceed immediately to the next is invaluable. During the course of an entire project, this process saves many engineering hours.

Integration testing, of course, is a must. Once a system is integrated, it becomes much more difficult to
find and test error conditions due to the possibility of subtle inter-module communication errors. Creating an established test procedure for each stage of integration is important because if the need to rewrite one or more modules arises, the whole integration process has to be repeated. This stage of testing must be designed in conjunction with the initial system design.

Once each module has been fully tested for optimum performance, the integrated system can be isolated by function, or groups of functions, and tested as a complete system. If bugs occur, the events causing errors can be recorded on disk and reintroduced once modifications have been made. This is the essence of continuous regression testing.

Although by no means guaranteed, a flawless design is more likely if simulation is used from the start.

Regression and QA test plans are important in the initial planning stage. These tests must be performed to ensure that each cell of the various state matrices that is subsequently modified can be easily retested. New or modified modules must not cause further errors. It is therefore essential that the test plan be flexible enough to allow additional test procedures without requiring extensive revisions to existing tests. Using simulation software, it is easy to adapt a set of integration tests from modulo 8 to modulo 128. It is just as simple to change from standard 8-bit HDLC addressing to expanded 16-bit addressing or to take a set of tests designed to measure the performance of an HDLC device and adapt these tests to fit an SDLc device, as can be seen in the case study that follows. Through the use of simulation software, the integration testing stage can be repeated as often as necessary, using consistent benchmark programs.

Many problems that occur when the QA test team starts testing a new product stem from the fact that test team members often do not have the same programming background as the R&D engineers. Frequently, the QA team has to rely on test procedures written by a programming team—that is, by necessity, the same team that programmed the new equipment in the first place. This may cause tunnel vision test flaws. Delay and test errors result because of insufficient communication or the inability to translate requirements from one group to another.

QA engineers need no longer rely on the programming department because of the creation of a high level language, founded on BASIC, that has been extended for protocol simulation. With even a relatively low level of programming knowledge, QA engineers can develop a comprehensive range of tests in order to check out all facets of the new project. QA testing can be performed quickly and consistently, and protocol violations can be introduced for response testing.

Beta site testing—a polite expression for a company that volunteers to be a guinea pig in return for new technology and expanded customer support—is an important aspect of any new product development. This field test can last a few weeks to a year or more, depending on the product's complexity, and can uncover flaws that have not materialized during lab development. These bugs are often evident only in abnormal conditions that occur in a real-life environment.

Although by no means guaranteed, a flawless design is more likely if simulation is used from the start. Not only can a complete barrage of creative negative testing be completed and the necessary modifications made sooner, but individual tests can be revised quickly while other benchmark measurements remain consistent. Because the regression/reintegration test stages are completed faster and more thoroughly, a highly reliable product goes to beta testing sooner, and beta testing may, in turn, be completed sooner.

A case study

FRAMEM, Tekelec’s FRAME level EMulation software, is an extension of the BASIC programming language (Table 1). (For all practical purposes, emulation and simulation should be considered the same.) While FRAMEM was designed specifically for use on the link

TABLE 1

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLIST</td>
<td>MLIST</td>
<td>Display user defined frame control mnemonics</td>
</tr>
<tr>
<td>DELETE</td>
<td>DELETE "name"</td>
<td>Remove "name" from the frame control mnemonic table</td>
</tr>
<tr>
<td>DEFINE</td>
<td>DEFINE "name" = x</td>
<td>Add "name" to frame control mnemonic table, x = value of frame control</td>
</tr>
<tr>
<td>DEFSUB</td>
<td>DEFSUB "name" = x</td>
<td>Define a subroutine to be called when "name" frame is received; x = line number of subroutine</td>
</tr>
<tr>
<td>DISP</td>
<td>DISP</td>
<td>Display the last frame received or transmitted</td>
</tr>
<tr>
<td>REC</td>
<td>REC</td>
<td>Receive a frame from the line if one is available</td>
</tr>
<tr>
<td>TRAN</td>
<td>TRAN</td>
<td>Transmit a frame</td>
</tr>
<tr>
<td>TPRINT</td>
<td>TPRINT</td>
<td>Print a trace of received and transmitted frames</td>
</tr>
<tr>
<td>CLEAR</td>
<td>CLEAR</td>
<td>Clear trace buffer</td>
</tr>
<tr>
<td>SET</td>
<td>SET xxx = 1</td>
<td>Set interface signal xxx to logical 0 or 1</td>
</tr>
<tr>
<td></td>
<td>SET xxx = 0</td>
<td></td>
</tr>
<tr>
<td>TEST</td>
<td>TEST xxx = 1</td>
<td>Test if interface signal xxx is at specified level (logic 0 or 1)</td>
</tr>
<tr>
<td></td>
<td>TEST xxx = 0</td>
<td></td>
</tr>
</tbody>
</table>
level, higher language levels may be included in the data stream, even though they will remain transparent to FRAMEM.

The hardware on which FRAMEM runs is a protocol simulator called the Chameleon. When coupled with the Chameleon, FRAMEM allows a user to customize an HDLC/SDLC type of link control protocol. As a result, a user can emulate a specific device, such as a 3276 cluster controller, or test a specific device by supplying either valid or invalid prompts/replies. FRAMEM also allows a user to certify that a compatible device does indeed adhere to the protocol that it is using.

FRAMEM was designed to allow for specific manufacturers’ deviations from standard protocols. To this end, FRAMEM employs a set of special variables (Table 2) that are used to hold frame information (such as sequence numbers, frame control fields, and poll/final bit); some special transmission, reception, and pin level interrogation and setting commands; plus a set of commands used for timing control. In addition, a BASIC language approach minimizes the time that a user spends becoming familiar with program syntax and structure.

After a simulation language has been mastered, users can perform many tests specific to their projects. The following two scenarios are common to many projects, while the third situation in this series illustrates how easy it is to change simulation programs to suit new criteria.

In the first scenario, FRAMEM programs the Chameleon to perform like a 3705 IBM-type front end processor. The purpose of this test is to ensure that a 3274 controller, in normal response mode, will respond correctly—by transmitting a frame reject (FRMR)—to the following illegal commands: reception of an unimplemented command; invalid Ns; buffer overrun, that is, when an I-frame has an I-field greater than 256 bytes. Table 3 lists the FRAMEM program and comment lines required for the negative testing of a 3274 controller.

In the second scenario, FRAMEM is used to program the Chameleon to perform like either side of an X.25 link. This example illustrates how a link is established, how eight I-frames are transmitted with the correct sequence numbers, and how the link is disconnected. Table 4 lists the code and comments pertinent to an X.25 simulation.

The flexibility of protocol languages is further demonstrated by showing how easy it is to make changes in the coding of the second scenario, just described. If a new line of code, such as 3 EXTEND, is added at the start of the test, the 8-bit address field is automatically changed to the expanded 16-bit HDLC mode address field. If another line, 5 MOD 128, is added, the number of frames sent/received (Nt and Nr) values are automatically changed from modulo 8 to modulo 128. Either or both of these changes could be implemented. If lines 20, 70, and 230 were changed so that 20 = SNARM; 70 IF RXFCTL = NSA GOTO 90; and 230 IF RXFCTL = NSA GOTO 1000, then the scenario will have been changed from an HDLC to an SDLC protocol with a great savings in time and energy for QA test engineers.

With regard to the X.25 simulation of the second scenario, it is possible to use an automatic simulation software package that requires no user programming. One reason this is possible is that the CCITT X.25 protocol can be defined within fixed parameters in levels 2 and 3. An exception is level 1, the physical interface, which offers the choice of X.21 or X.21 bis. The latter is more commonly known as the American National Standards Institute (ANSI) RS-232-C. The physical link option therefore calls for two alternatives, both available “off the shelf,” that have few differences. RS-232-C is by far the most common in the United States; however, the 15-pin X.21 plug is the most commonly used in Europe and may be seen in the United States on many of the new public branch exchange offerings.

It is possible to use an automatic simulation software package that requires no user programming.

Level 2 uses the European Computer Manufacturers Association subset of transparent Bisync or HDLC link level control. Although link access procedure (LAP) and LAP balanced (LAPB) (two different acceptable link access protocol methods) are documented and differentiated by their mnemonics and flow control, both have the same fixed-bit parameters. The flags, the control field, and the address field are always 8 bits (extended mode HDLC is not included in the X.25 spec but does apply to X.75 and allows for 16-bit addressing), and the frame-check sequence is always 16 bits. Although the information field can be any length, this has no bearing
CONCEIVED BY INNOVATORS
DESIGNED AND BUILT BY EXPERTS
USED BY PROFESSIONALS

THE EASYCOLOUR 4000 SERIES

In the world of computer graphics, today's impossibility is often tomorrow's reality. The TDS Easycolour 4000 series was conceived and designed to match this phenomenal growth.

The entire 4000 family evolved through extensive co-operation with customers, resulting in a colour display system offering extreme flexibility, low cost and a high level of picture quality.

To engineers, systems designers and end users alike, the TDS Easycolour 4000 series offers a unique combination of advanced technology, proved performance and complete reliability.

Full technical and descriptive literature is yours for the asking. Please write direct to TDS at the address below. Find out for yourself why life's so easy with TDS Easycolour.

Terminal Display Systems Inc., 1901 Royal Lane, Suite 100, Dallas, Texas 75234, USA. Tel: 214 8690000.

Our technology... your success
TABLE 3

3274 Simulation Code and Comments

<table>
<thead>
<tr>
<th>Code</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CLEAR</td>
<td>Clears the trace memory</td>
</tr>
<tr>
<td>20 TXADDR = &CO</td>
<td>Sets the address field to CO Hex</td>
</tr>
<tr>
<td>30 TXP/F = 1</td>
<td>Sets the poll bit to on</td>
</tr>
<tr>
<td>40 GOSUB 400</td>
<td>Executes a subroutine that sets the controller in normal response mode and waits for an NSA response</td>
</tr>
<tr>
<td>50 TXFCTL = &FF</td>
<td>Sets the frame control field to FF Hex</td>
</tr>
<tr>
<td>60 GOSUB 300</td>
<td>Executes a subroutine that transmits a frame and waits for a response</td>
</tr>
<tr>
<td>70 IF RXFCTL # FRMR GOTO 250</td>
<td>Checks that an FRMR was received and if not will go to the end of the test</td>
</tr>
<tr>
<td>80 GOSUB 400</td>
<td>Executes a subroutine that will set the controller in normal response mode</td>
</tr>
<tr>
<td>90 TXFCTL = IFRAME</td>
<td>Sets the frame control field to an I-frame</td>
</tr>
<tr>
<td>100 TXN(S) = 0</td>
<td>Sets N_s to 0</td>
</tr>
<tr>
<td>110 TXN(R) = 2</td>
<td>Sets N_r to 2</td>
</tr>
<tr>
<td>120 TXIFIELD = ASC > ABCDEFGHIJKLMNOPQRSTUVWXYZ</td>
<td>Defines an I-field equal to the ASCII equivalent to the alphabet from A to Z</td>
</tr>
<tr>
<td>130 GOSUB 300</td>
<td>Executes a subroutine that transmits the frame and waits for a response</td>
</tr>
<tr>
<td>140 IF RXFCTL # FRMR GOTO 250</td>
<td>Checks that an FRMR was received and if not will go to the end of the test</td>
</tr>
<tr>
<td>150 GOSUB 400</td>
<td>Executes a subroutine that will set the controller in normal response mode</td>
</tr>
<tr>
<td>160 TXIFIELD = HEX ></td>
<td>Clears the I-field</td>
</tr>
<tr>
<td>170 FOR A = 1 to 300</td>
<td>Is a loop that creates an I-field 300 bytes long</td>
</tr>
<tr>
<td>180 TXFIELD + ASC > A</td>
<td>Is a loop that creates an I-field 300 bytes long</td>
</tr>
<tr>
<td>190 NEXT A</td>
<td>Is a loop that creates an I-field 300 bytes long</td>
</tr>
<tr>
<td>193 TXN(R) = 0</td>
<td>Sets N_r to 0</td>
</tr>
<tr>
<td>194 TXFCTL = IFRAME</td>
<td>Sets the frame control field to an I-frame</td>
</tr>
<tr>
<td>200 GOSUB 300</td>
<td>Executes a subroutine that transmits the frame and waits for a response</td>
</tr>
<tr>
<td>210 IF RXFCTL # FRMR GOTO 250</td>
<td>Checks that an FRMR was received and if not will go to the end of the test</td>
</tr>
<tr>
<td>220 PRINT</td>
<td>Prints a blank line on the terminal</td>
</tr>
<tr>
<td>230 PRINT "TEST PASSED"</td>
<td>Prints a message to say that the controller passed the test</td>
</tr>
<tr>
<td>240 GOTO 270</td>
<td>Transfers control to line 270</td>
</tr>
<tr>
<td>250 PRINT</td>
<td>Prints a blank line on the terminal</td>
</tr>
<tr>
<td>260 PRINT "TEST FAILED"</td>
<td>Prints a message to say that the controller failed the test</td>
</tr>
<tr>
<td>270 TPRINT</td>
<td>Prints a trace of the traffic</td>
</tr>
<tr>
<td>280 STOP</td>
<td>Terminates the program</td>
</tr>
<tr>
<td>300 TRAN</td>
<td>Transmits a frame</td>
</tr>
<tr>
<td>310 REC</td>
<td>Checks if a frame has been received</td>
</tr>
<tr>
<td>320 IF RXFRLEN = 0 GOTO 310</td>
<td>Checks the variable RXFRLEN, which indicates the length of a frame received, and if it is 0—ie, no frame received—will loop until a frame is received</td>
</tr>
<tr>
<td>330 IF RXP/F # 1 GOTO 300</td>
<td>Checks that the final bit is set in the frame received and if not will transfer control to line 300</td>
</tr>
<tr>
<td>340 RETURN</td>
<td>Is the end of the subroutine</td>
</tr>
<tr>
<td>400 TXFCTL = SNRM</td>
<td>Sets the frame control field to an SNRM</td>
</tr>
<tr>
<td>410 TRAN</td>
<td>Transmits the frame</td>
</tr>
<tr>
<td>420 REC</td>
<td>Checks if a frame is received</td>
</tr>
<tr>
<td>425 IF RXFRLEN = 0 GOTO 410</td>
<td>Checks the variable RXFRLEN, which indicates the length of a frame received, and if it is 0—ie, no frame received—will loop until frame is received</td>
</tr>
<tr>
<td>430 IF RXP/F # 1 GOTO 410</td>
<td>Checks that the final bit is set in the frame received and if not will transfer control to line 410</td>
</tr>
<tr>
<td>440 IF RXFCTL # NSA GOTO 400</td>
<td>Checks that the frame received is an NSA and if not transfers control to line 400</td>
</tr>
<tr>
<td>450 RETURN</td>
<td>Is the end of the subroutine</td>
</tr>
</tbody>
</table>
Table 4
Code and Comments for X.25 Simulation

<table>
<thead>
<tr>
<th>Code</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 TXADDR = 03</td>
<td>Sets the address field to 3</td>
</tr>
<tr>
<td>20 TXFCTL = SABM</td>
<td>Sets the control field to an SABM</td>
</tr>
<tr>
<td>30 TXP/F = 0</td>
<td>Sets the poll bit to 0</td>
</tr>
<tr>
<td>40 TRAN</td>
<td>Transmits the frame</td>
</tr>
<tr>
<td>50 REC</td>
<td>Checks if there has been a frame received</td>
</tr>
<tr>
<td>50 IF RXFRLEN = 0 GOTO 50</td>
<td>Checks the variable RXFRLEN and if 0 (ie, no frame has been received) loops to line 50</td>
</tr>
<tr>
<td>70 IF RXFCTL # UA GOTO 40</td>
<td>Checks that a UA response has been received and if not loops back to line 40</td>
</tr>
<tr>
<td>100 TXFCTL = IFRAME</td>
<td>Sets the control field to an I-frame</td>
</tr>
<tr>
<td>100 IF RXFLEN = 0 GOTO 140</td>
<td>Defines the I-field in Hex</td>
</tr>
<tr>
<td>120 FOR TXN(S) = 0 to 7</td>
<td>Is the start of a loop that will increment TXN(S) from 0 to 7</td>
</tr>
<tr>
<td>130 TRAN</td>
<td>Transmits the frame</td>
</tr>
<tr>
<td>140 REC</td>
<td>Checks if there has been a frame received</td>
</tr>
<tr>
<td>140 IF RXFRLEN = 0 GOTO 140</td>
<td>Checks the variable RXFRLEN and if 0 loops back to line 140</td>
</tr>
<tr>
<td>160 IF RXFCTL # RR GOTO 1000</td>
<td>Checks that an RR frame was received as a response and if not transfers control to the error routine at line 1000</td>
</tr>
<tr>
<td>170 IF RXN(R) # TXN(S) + 1 GOTO 1000</td>
<td>Checks that the correct value of N, was received and if not transfers control to the error routine at line 1000</td>
</tr>
<tr>
<td>180 NEXT TXN(S)</td>
<td>Is the end of the loop</td>
</tr>
<tr>
<td>190 TXFCTL = DISC</td>
<td>Sets the control field to a DISC</td>
</tr>
<tr>
<td>200 TRAN</td>
<td>Transmits the frame</td>
</tr>
<tr>
<td>210 REC</td>
<td>Checks if a frame has been received</td>
</tr>
<tr>
<td>220 IF RXFRLEN = 0 GOTO 210</td>
<td>Checks the variable RXFRLEN and if zero (ie, no frame received) loops back to line 210</td>
</tr>
<tr>
<td>230 IF RXFCTL # UA GOTO 1000</td>
<td>Checks that a UA response was received and if not transfers control to the error routine at line 1000</td>
</tr>
<tr>
<td>240 PRINT "TEST O.K."</td>
<td>Prints a message that the test was correct</td>
</tr>
<tr>
<td>250 STOP</td>
<td>Terminates the program</td>
</tr>
<tr>
<td>1000 PRINT "TEST FAILED"</td>
<td>Prints the message that the test failed</td>
</tr>
<tr>
<td>1010 STOP</td>
<td>Terminates the program</td>
</tr>
</tbody>
</table>

In this true simulation, the software performs exactly as the real equipment would—providing that the host computer drives it correctly. Flow control at the frame and packet levels, errors and error recovery, data generation and reception, as well as all protocol timers and counters, are all handled automatically. No programming is necessary unless deviation from the standard protocol is designed in order to test error recovery procedures thoroughly. If an operator wants to alter the protocol, the amount of programming required is proportional to the amount of deviation. Standard X.25 mnemonics are used to address the specific parameter or series of parameters. Prepackaged GTE Telenet type certification procedures with which to test the equipment’s compatibility are available.

Finished simulation scenarios in the SNA/SDLC world are created by the user from a simulation language. (Strictly speaking, this language is actually an emulation.) The reason that automatic simulation is not possible in SNA/SDLC is that many user-defined variables are available. Although the flag, address field, and control fields are always 1 byte long, the transmission on the structure of the actual protocol. Within the control field, N, and N, and the poll/final bit all remain in constant position.

Similarly, level 3 (the packet level) retains a constant format in terms of its address and control fields. Also, the general format identifier (GFI) logical channel group (LCG) and logical channel number (LCN) and the packet-type identifier remain constant. Fig 1 shows the X.25 frame and packet level structures.

The simulation software for X.25 applications is an exact mirror image of the frame/packet structure depicted in Fig 1. A terminal manufacturer can set this software up in a host computer to function exactly like an X.25 network. A network equipment manufacturer can make the software function like a number of simultaneous subscribers sending correctly structured traffic. A modem manufacturer can simulate both sides of the link and choose whether to give or receive the clock. This choice refers to the data terminal equipment/data circuit terminating equipment (DTE/DCE) relationship in an X.25 network. A DTE receives the clock, while the DCE provides the clock.
By introducing various negative fault states into the frame structure through a simulation language, data terminal equipment manufacturers can see how their designs perform in the real world.

Fig 1 X.25 frame and packet level structures. By using a specific Bisync simulation package, the user can fully support the protocol. Check counts, acknowledgments (ACKs), and negative acknowledgments (NAKs) can be handled automatically. All control codes are available in mnemonic form for both Extended Binary Coded Decimal Interchange Code (EBCDIC) and ASCII. Multiple data blocks can be created and transmitted under program control.
BJW-3
The Battery JUST WRAP™ Tool just keeps going & going

This revolutionary new battery powered tool will wrap insulated wire around 0.25" (0.63mm) square terminal posts without the need for pre-cutting and pre-stripping. Allows daisy chain, one-level wire-wrapping strings. Tool has built-in cut-off mechanism to end string at any time.

Supplied complete with bit and 100 ft. (30.4m) 30 AWG (0.25mm) wire.
- Fast and simple operation
- Daisy chain or point-to-point wiring
- Complete with bit and sleeve
- Automatic feed mechanism
- Cuts off wire at end of string
- Convenient wire refill spools

REPLACEMENT WIRE ROLLS

<table>
<thead>
<tr>
<th>COLOR</th>
<th>100 ft. (30.4m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>R-JW-B-100</td>
</tr>
<tr>
<td>White</td>
<td>R-JW-W-100</td>
</tr>
<tr>
<td>Yellow</td>
<td>R-JW-Y-100</td>
</tr>
<tr>
<td>Red</td>
<td>R-JW-R-100</td>
</tr>
</tbody>
</table>

OK Industries Inc.
3455 Conner St, Bronx N.Y. 10475 U.S.A
Tel (212) 994 6600 Telex 125091

CIRCLE 97
Fig 2 SNA/SDLC frame structure. Simulation of such complex frames demands simulation software that is flexible, powerful, and predictable. If any of these criteria are not met, simulation accuracy is in question.

host. However, the hardware has usually been developed with a high level communication capability built in. The hardware usually has a split-screen display to show traffic on both sides of the link. It should have multiprocessor architecture with specific protocol handling components to allow such things as automatic CRC calculation for a number of protocols. If simulation software is run on an alternative device, some of the advanced features of the software will most likely be lost due to the lack of hardware communication features. It is also possible to lose compound triggering analysis functions and introduce error conditions unknowingly. In addition, new application packages and software upgrades will not be easily adaptable.

Therefore, if the project is large, the cost of software-specific simulation hardware is justified. A price of $20,000 for a fully equipped high speed (128k-bps) machine, complete with different language packages for low level/high level work, is about the norm. A machine with low speed simulation ability may cost $14,000 plus software. Costs should be weighed against the enormous time/expense savings and increased reliability that simulation provides. Remember that some simulation hardware is expandable and adaptable to other projects, such as Teletex or local area network development. This adaptability allows the amortization of cost over several projects.

The buyer should make sure that the hardware vendor whom he selects has a strong background in communication protocols and network communication. Further, by asking the right questions of vendors, designers often find that an existing protocol is already
REQUEST/RESPONSE UNIT

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>2 BYTES</th>
<th>1 BYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X .31</td>
<td>Format/Type</td>
<td></td>
</tr>
<tr>
<td>FM Profile</td>
<td>TS Profile</td>
<td>FM Data Usage (PLU)</td>
</tr>
<tr>
<td>FM Data Usage (SLU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM USAGE COMMON LU PROFILES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACING SLU TO PLU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX RU FROM SLU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACING NCP TO SLU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX RU FROM PLU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACING PLU SEND COUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACING PLU RECEIVE COUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS VALUE CHARACTERISTICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRYPTO OPTIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRYPTO ENCRYPT MODE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRYPTO KEY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REQUEST/RESPONSE UNIT KEY

- **BYTE 0**: X .31
- **BYTE 1**: Format/Type
- **BYTE 2**: FM Profile
- **BYTE 3**: TS Profile
- **BYTE 4**: FM Data Usage (PLU)
- **BYTE 5**: FM Data Usage (SLU)
- **BYTE 6**: And
- **BYTE 7**: FM Usage Common LU Profiles
- **BYTE 8**: Pacing SLU To PLU
- **BYTE 9**: Pacing NCP To SLU
- **BYTE 10**: Max RU From SLU
- **BYTE 11**: Max RU From PLU
- **BYTE 12**: Pacing PLU Send Count
- **BYTE 13**: Pacing PLU Receive Count
- **BYTE 14**: LU Type
- **BYTE 15**: 25: PS Value Characteristics
- **BYTE 26**: CRYPTO OPTIONS
- **BYTE 27**: CRYPTO ENCRYPT MODE
- **BYTE 28**: CRYPTO KEY

Floppy Disk Drives

TEAC FD-55 Series

AT 1½” HIGH, TEAC FD-55 SERIES 5 ¼” FLOPPY DISK drives use half the space and run cool at half the power of conventional drives. High-reliability, low-noise brushless DC motors provide an MTBF of over 10,000 hours, backed by a one-year parts and labor warranty.

- **FD-55A**
 - 48tpi
 - 40 track
 - 250KB
 - Single side

- **FD-55B**
 - 48tpi
 - 40 track
 - 500KB
 - Single side

- **FD-55E**
 - 96tpi
 - 80 track
 - 500KB
 - Single side

- **FD-55F**
 - 96tpi
 - 80 track
 - 1MB
 - Double side

Power Requirements:

- DC +12V ±5% 0.3A typical, 0.7A max.
- DC +5V ±5% 0.5A typical, 0.7A max.

Phone, write or wire TEAC Corporation of America for complete technical data, price and delivery.

Please rate the value of this article to you by circling the appropriate number in the “Editorial Score Box” on the Inquiry Card.

- High 719
- Average 720
- Low 721
Introducing the money-making micro-mini DEC-UNIX-CP/M-M-MUMPS universal 16-bit workstation.

(Whew!)
If you're selling small business systems and software, you're leaving money on the table. Because you could pick up a lot more of what we're all here for with the Plessey Series/6000 Small Business Computers.

Your business is our business.

With the 16-bit Plessey Series/6000, we've made it our business to support your business. Our computers are based on DEC's LSI-11™ micros, so you start with proven hardware that's in thousands of systems world-wide. We've made them available in a wide range of configurations, so you can provide exactly the power your customers need.

Start with the low-cost System 6100, a 64 kbyte single-user workstation. Or for multi-users, choose the economical System 6200 with 256 kbytes of main memory (expandable to a full megabyte). Both use the Q-bus and come in a compact 5½" chassis available in desktop and rackmount configurations.

And for the big jobs, go to our System 6600 and System 6700 to get the full power of a 22-bit minicomputer. From 256 kbytes to 4 megabytes of main storage. An 84 megabyte 8" Winchester disk. Q-bus for communications and other peripheral interfacing. And all in a 10¼" chassis at a price that's easy to take.

Or choose anything in between, with or without floppy, hard disks, streamer tapes, terminals, communications and any peripherals you need. (Peripherals are also available alone.)

All the Plessey Series/6000 computers support whatever you're doing (or will be doing) in software: DEC operating systems like RSX-11M/M+™, RSTS/E™ and RT-11™ or TSX-Plus™, UNITY™ (System III UNIX) and the new crop of software. M-11 (MUMPS) and hordes of public domain applications. And even CP/M and all those low-cost programs.

You can use BASIC, COBOL, DIBOL™, C, PL/I, FORTRAN and MACRO™ languages.

And the programs you develop on the single-user system are just as useful on the most powerful Series/6000 configuration, so your customers have an easy growth path.

The bottom line.

Plessey Series/6000 Small Business Computers are a quick way to improve your profits because they're reliable, versatile and cost up to 30% less than the DEC equivalents.

And they'll reduce your after-sale headaches because they're supported by our own international sales and service network.

For more details, contact Plessey Peripheral Systems, 17466 Daimler, Irvine, CA 92714.

Or better yet, call (800) 854-3581 or (714) 540-9945 in California today. Because we all know that time is money.

CIRCLE 99
Kontron KDS
The Ultra-productive Multifunction Development System

Producing the next wave of smart products isn't enough. You've got to be first! To be first and stay there you need a development system that makes your designers more efficient, a system that speeds up the time-consuming task of developing and integrating hardware and software.

The ultra-productive environment you need is available now in the KDS. Kontron's field-proven CPU, mass storage, slave in-circuit emulation and logic analysis capabilities are perfectly blended in this user-configurable, ergonomically designed workstation. The KDS solution starts with stackable, card-configurable modules that may be located wherever convenient. Add the detached keyboard and adjustable CRT, and a truly productive working environment emerges. You can tilt, swivel, raise or lower the CRT to suit your viewing angle. The detached keyboard gives you control over all systems and the ability to display all functions on the extra-large (15-inch), easy-to-read screen. Two 5¼" floppy disk drives are incorporated in the CPU; an optional 10 Mbyte hard disk plugs in if you need it. Software, emulation and logic analysis are fully integrated.

You have complete control over up to four KSE slave emulators and one KSA logic analyzer. Emulation support is available for most popular 8- and 16-bit chips. You can select the 32-, 48- and 64-channel logic analyzer (to 100 MHz) that suits your needs for timing and state analysis.

KDS comes complete with all the applications software you need. Editors, linkers and assemblers are provided for assembly language programming and for use with Pascal compilers. Software developed on other Kontron systems can be ported to the KDS via an RS-232 link. Industry-standard operating systems* make KDS even more versatile, opening the door to third party software and many new applications. Find out how much more the KDS Multifunction Development System can do for you. Write for a demonstration, or call 1-800-EMULATE.

In the United States:
KONTRON ELECTRONICS
630 Price Avenue
Redwood City, CA 94063
TWX: (910) 328-7202; (910) 378-5207
(800) EMULATE; (800) 227-8834
In California:
(213) 641-7200; (415) 361-1012

In Europe:
Kontron Messtechnik GmbH
Breslauer Straße 2
8057 Eching West Germany
(0 89) 31901-1
Telex: 05 22 122

*CP/M® available now; 68000/UNIX® available in June 1983.

**CP/M is a registered trademark of Digital Research, Inc.
**UNIX is a trademarked product of Bell Laboratories.
Pro-Log. Rushing slowly into Systems with our new ABL-1™

We're taking the plunge into the systems business, one toe at a time.

Our first packaged solution is called ABL-1. ABL stands for “Auto-BIOS™ Logic,” new firmware that lets you run thousands of existing CP/M®-based applications software packages. Just plug in the software and run it — without the need to write or modify the CP/M®-BIOS (Basic I/O System).

ABL-1 is a general purpose, fully integrated STD microcomputer system which you can use either as a cost-effective software development tool or as your target system. ABL-1 is ideally suited for developing your application software for use on STD BUS-based systems. Integrate your hardware and software quickly and easily — without the need for emulators or analyzers.

Until now, you've spent time and money putting together pieces from Pro-Log. Now there's ABL-1: all the bits and pieces in one piece. An instant solution instead of an eventual one.

You know we don't rush into things, so you know that all the pieces, and the new ABL-1 package, really work. No one ever called us 'racy,' even when we invented the STD BUS a few years ago (our design is now a worldwide industry standard), so ABL-1 isn't a quick fix. It's a reliable packaged solution. We're in the systems business now: anyone wanna race?

Rack mountable or stand-alone
Built-in modular self-test
Dual eight-inch floppy drives
Separate CRT and printer ports
Removable I/O panel

Two-year warranty
Six-month warranty on drives
64K memory
8085A and 280A CPUs

PRO-LOG CORPORATION
2411 Garden Road
Monterey, California 93940
408-372-4593 TLX 171879
Toll-Free 800-538-9570

Steady Pace Wins The Race

Visit our Booth #1638 at ELECTRO in New York

*C/P/M is a registered trademark of Digital Research Incorporated.

©1983 ADGroup International PL-018A
TIME AFTER TIME, LOGIC ANALYZERS GET THE JOB DONE

Dual timebase logic analyzers enable designers to debug as never before—providing, of course, that the right triggers are pulled.

by Sandra Jumonville

Most logic analyzers to date have been designed as data acquisition rather than data analysis tools. To make debugging easier, modern logic analyzers offer faster acquisition speeds, more channels, larger memory, and a better human interface. Unfortunately, while laudable, this is far from what is needed to solve today's complex design problems. Pattern generation, for instance, can also be a very useful tool to provide the engineer with more control and modeling of both the design and debug of the system.

Software is an increasingly important part of the design effort. Luckily, the modern logic analyzer is finally addressing software debug issues by offering mnemonic disassembly of processors, extensive data qualification, and sophisticated triggering that facilitates tracking program flow. Most recently, the logic analyzer has joined with the development system to offer support of both design and debug exercises. However, neither system hardware nor software functions are autonomous. The system integration process brings together these two design phases. Solving the complex problems that appear during system integration consumes enormous amounts of design time.

If the logic analyzer really "analyzed" during the system integration process, then the integration phase would be far less time-consuming. It is in this area that the logic analyzer can be improved.

Hardware debug demands bandwidth

Regardless of which technology is chosen, there are two generic problems related to hardware design: parametric and functional. Parametric problems deal with specification tolerance such as threshold sensitivity, operational temperature, transient rise and fall times, and setup and hold times. Functional problems deal with performance and include faulty components, high
frequency noise, ground planes, circuit loading, propagation delays, and component operational characteristics that differ from vendor specifications. The intricacy of hardware problems is a direct function of the types of components chosen. Often, the hardest problems to isolate are combinations of parametric and functional flaws.

A typical hardware design problem might arise from combining standard transistor-transistor logic (TTL) components and 100k series emitter-coupled logic (ECL). Vendors specify minimum and maximum operating voltages for both parts’ families, yet in reality, such parts do not always operate at specified limits. The hardware engineer is concerned with sensitivity to different threshold voltages, but he must also take into account operating temperatures and resultant speed differences.

To aid the design effort, a logic analyzer needs sufficient resolution to monitor ECL-type components. It must also provide auto update of the display for monitoring realtime activity. This allows threshold sensitivity checks to be performed on multiple components. Since ECL parts are specified in nanoseconds, a designer will not be able to detect high speed timing errors or high frequency race conditions if the logic analyzer is a 50-MHz type.

In the case of glitches or intermittents, the logic analyzer must actually trigger on the glitch. Latching the glitch into memory tells nothing about when the glitch actually occurred because the time delay between acquiring the data, latching the glitch, and displaying it could be several sample periods. A logic analyzer must thus be able to observe intermittents or glitches between sample clocks since erroneous signals often occur unexpectedly.

Other hardware debug problems involve timing parameters between various modules or peripherals. For example, typical machine cycle times for Schottky TTL parts are around 40 ns. This is slow compared with the machine cycle time of the microcode in a mainframe central processing unit (CPU), which is approximately 8 ns. But stepper motors for line printers can be as slow as one revolution per second. Accommodating this range of timing problems need not require a specialized test equipment array. One good logic analyzer can do it all.

A logic analyzer needs sufficient resolution to monitor ECL-type components.

The dual-port random access memory (RAM), when used as an interprocessor communication device, is a good example of a timing problem source. (See Fig 1.) If data contents are incorrect, it can be assumed that the RAM was being read too soon by one of the processors.

It would be tedious to isolate the problem if a traditional logic analyzer were used because one would have to logically OR the two processor clocks, then AND them with the OR of the two select lines. One would have to be assured that the clock edges were far enough apart (within the sampling resolution of the logic analyzer) to sample them correctly. If “select” is high on one processor and the other clock gets an edge, then the data acquired are invalid. In any case, getting the right data to analyze can prove difficult. Most crucial is the timing of the two ports. Since this clocking scheme does not guarantee when events actually occur, it is not very useful for timing analysis.

Using a dual timebase logic analyzer is a better approach to this problem. This analyzer has two completely separate sampling mechanisms that acquire data from two interdependent processes. Data are then time correlated and displayed. By connecting each side of the RAM to the analyzer and associating each with a separate time base, one can monitor activity on both sides of the RAM to determine where problems exist. This demands that the analyzer be capable of time correlating the activity between its two time bases. The Tektronix 1240 is one such logic analyzer.

Software debug

Lack of prototype hardware often hampers software debugging. In this case, the same computer is used for both writing and debugging the code. A major problem is that not all the support tools (eg, emulators) are available for the processors being used. To run software, for the most part, integrated development systems and large host computers are and will continue to be used.

Standalone logic analyzers do have some of the features required to debug code, such as data qualification, sophisticated triggering, and range recognition. But most logic analyzers do not have enough memory to accommodate several routines, symbolic debug, and general purpose fetch prediction. Logic analyzers must ultimately address these issues to be useful for software design.

Software debug problems usually result from inefficient coding, overwritten of the stack, misplaced pointers, improper use of program variables, and unpredictable software interaction with the hardware. A classic example of a software problem is depicted in Fig 2. Here, a typical processor stack is divided into frames. The frame pointer points to the subroutine return address currently being executed. The stack pointer points to the location that contains the subroutine variables. If the stack is pushed, the last
More than 60 different analog/digital I/O boards provide a variety of off-the-shelf, plug-in quick solutions for sensor-to-microcomputer bus compatibility. Designed - proven in Intel Multibus™, Motorola Micromodule, DEC LSI-11 and Zilog MCB/MCS (and others), these boards offer the important features that save you time and money in designs, hardware and testing. Consider:

- Simple software requirements - many of our I/O boards need only one instruction per conversion
- Versatile, memory-mapped designs
- 10mV to 10V analog input operation
- I/O's powered from the microcomputer's supply
- Up to 64 input channels per board
- Analog inputs and outputs on the same board
- 8- or 12-bit resolution
- Software programmable gains from 1 to 1024V/V (on-board RAM sets gain for each channel addressed)
- Relay outputs for power switching
- Isolated digital input and output
- Input overvoltage protection

You'll find this combination of features, options, availability - and our low prices - described in a new Microcomputer I/O Board brochure now available. Ask for it!

Data Acquisition and Control Systems Division
3631 E. 44th Street, Tucson, AZ 85713
(602) 747-0711

Burr-Brown®
Putting Technology To Work For You
Software debugging often centers around the stack. Here subroutine A calls Q which, in turn, calls R. If Q pushes the stack too often, the stack pointer will be overwritten and the return address lost. By observing the pointer status during subroutine execution, the logic analyzer can aid in detecting overwrite.

In the stack of Fig 2, subroutine A calls subroutine Q which, in turn, calls subroutine R. During the execution of Q, the stack is popped too many times. Q calls R, which executes and returns to Q when it is finished. However, Q cannot return to A because the return address was lost when the stack was popped. Using a logic analyzer, debugging this problem can be accomplished by waiting for a call to the particular subroutine in question. Then, the analyzer can be triggered on a write instruction to the frame pointer location.

Another typical software problem, yet more difficult to solve, is the monitoring of a simple read/write process such as an interrupt cycle between a controller processor and an input/output processor (IOP). (See Fig 3.) The controller processor asserts an interrupt and the IOP responds with an interrupt acknowledge. While the controller processor has the bus, the IOP continues processing on its asynchronous bus while continuously polling the central bus to see if there are more data available. If the IOP requests a bus grant and then continues to process before the CPU returns the handshake, the IOP may erroneously conclude that it has control of the bus. Obviously, it does not. The CPU can interrupt again and the IOP will never know what happened. The result is a hung processor.

Interrupt cycle problems between processors can be easily detected with a dual timebase analyzer. By tracking address, data, and control lines of both processors via independent triggering (Ping-Pong), interprocessor timing subtleties become obvious. Processor efficiency, or lack of it, is also painfully clear.

A dual timebase logic analyzer provides the best debugging solution for this situation. With such an analyzer, all the address, data, and control lines for both processors can be monitored. By creating a trigger condition that follows both processes and tracks back and forth between time bases (“Ping-Pong triggering”), data can be acquired and observed in a time-correlated manner. Some very interesting graphics can be generated using performance analysis on this data. Performance analysis provides statistical information on the amount of time each device spends processing or stuck in wait states.

System integration
In any project, system integration consumes the majority of time. Designs are becoming so complex that they must be subdivided into functional blocks. While this simplifies debugging individual modules, integrating those functional blocks becomes more difficult. During system integration, when the most difficult problems surface, quickly identifying problem causes is paramount. Is the code not performing as intended, or is hardware timing off, causing instructions to execute improperly?

As an example, consider a typical video game. Here, a CPU drives a video controller chip. Upon inspection, the game display might reveal a line segment that has no data. Determining where in the game's circuitry the problem originates can be extremely difficult. Is the horizontal ramp to the display getting intermittently destroyed? Did the controller processor send the wrong
Our Gate Arrays Will Save You Money

You already know of the many indirect ways that CMOS Gate Arrays save money in your system:
- Dedicated functionality
- High performance
- Low power
- Low chip count
- High reliability
- Fast system development
- Low design risk

Direct savings are also significant and in this ad we are presenting technical and pricing details of our G70250 gate array to you to evaluate specific savings available for your application.

THE G70250 CHAMPIONCHIP
International Microcircuits makes more than 33 master gate array products covering a wide range of densities and speeds. The G70250 characteristics are typical of many of our larger devices. It is an inexpensive, high-speed, low-power, gatearray built with advanced oxide-isolated silicon-gate CMOS technology. The part has 40 interface cells and a core array containing 250 logic cells that can implement the equivalent of 375 two-input gates (either NAND or NOR). Other arrays in our product lines range from 20 to 116 interface cells and from 75 to 7500 gates in density.

LOGIC DENSITY
The G70250 can be used effectively in a wide variety of logic jobs. Example: six synchronous up/down four-bit binary counters and some miscellaneous control logic, will easily fit on the chip. Example: a 32-bit ripple adder with carry out would still leave about 20 cells for other logic. Example: for a Garbage Collector application, you could collapse 16 control flip-flops, eight exclusive-OR gates, a 12-bit counter, eight two-input NOR gates, ten three-input NAND gates, six inverters, a 16-bit shift register, two-three-to-eight binary decoders and all the wiring that goes between them. To estimate how much of your current logic problem can be included on the G70250, use the table in Figure One. You should always expect to be able to take advantage of at least 90 to 95% of the available chip logic cells due to our advanced automated design tools and techniques.

DEVELOPMENT INTERFACE
Many arrays are available to accommodate your interface signal needs. The G70250 chip will fit in standard dual in-line packages like those used for DIPs. This means you may be able to use your present interface circuitry and performance characteristics without any changes. You can send in your drawing or specifications; we will be glad to quote you:
- the converted physical logic drawing
- the pin assignments
- the converted logic drawing
- test program development
- an Applicon 860 graphics system supporting several design terminals, a sophisticated CAE workstation for schematic capture and simulation, plus a VAX II 7500 system running a variety of software for layout, checking, simulation and verification.

CHIPS
At International Microcircuits we use several computer tools and programs during development and at each step we always keep experienced designers in the loop. Compared to so-called fully automatic layout, this gives us some key advantages:
- Better control over chip performance
- Higher gate utilization
- Smaller chips
- Lower production prices

This approach is only viable with the independent layout verification provided by our software tools. Our present hardware setup includes an Applicon 860 graphics system supporting several design terminals, a sophisticated CAE workstation for schematic capture and simulation, and a VAX II 7500 system running a variety of software for layout, checking, simulation and verification.

PACKAGE
About 35% of all production here at International Microcircuits is for applications requiring MIL-STD-883B screening or tighter. The procedures, processing, design and discipline necessary for such business carry over into all of our products and have helped us earn a reputation for parts of excellent quality. Our standard commercial parts are quite good and their level of reliability can be enhanced even more using any or all of the extra screening and quality assurance methods available.

DEVELOPMENT INTERFACE
There are many ways you can interface with us to accomplish the development of your particular logic solution. We have implemented more than 650 arrays since we started in 1974 and our experience indicates that it is usually best for us to do all the development engineering with your original logic drawing and test vectors as the starting point. We normally take full responsibility for the complete chip development from your specifications. If you give us:
- the final functional logic drawing in your format
- test vectors and a timing diagram
- operating environment and package specifications;

Then in three to five weeks we will give you:
- the package pin assignments
- the converted physical logic drawing
- critical path simulation results
- the layout verification net list
- the layout verification net list

Two to three weeks later, we will send you 50 packaged and tested parts for your approval. We are then ready for your production order.

FACTORY LOCATIONS
International Microcircuits, Inc.

TELEPHONE: 408 727 2280 • **TWX:** 910 338 2032
3350 SCOTT BLVD • BUILDING 37 • SANTA CLARA, CA 95051

CIRCLE 103
It is technically impossible for one individual to be an expert in all areas of design.

information? Did the interprocessor bus timing get delayed in response to an interrupt, such that the data were not held long enough to get latched in? The answer could be any of these.

A single timebase logic analyzer with sophisticated triggering and enough channels to monitor both state and timing signals is not enough to debug this problem. An analyzer is required that will demultiplex the CPU; monitor handshaking; and simultaneously observe the vertical, horizontal, synchronous, and pixel data. A dual timebase logic analyzer can accomplish these diverse tasks with ease.

Why is logic analysis the best tool?
Projects today are so complex that it is technically impossible for one individual to be an expert in all areas of design. Design must therefore be divided into hardware and software tasks, then subdivided into functional blocks, making total design a team effort. This process demands high-tech tools as well as talents. It is not cost-effective to have many separate tools for each engineer. A logic analyzer is the one tool that meets the high performance criteria and can be used for most tasks by all of the design team members.

Good logic analyzers with an adaptable human interface and the sophistication to solve complex problems can be extended to areas such as manufacturing and service. Since test technicians must often perform the same tests as engineers, the mass storage of logic analyzer setups and reference memory are extremely helpful. The same options are of value to service teams. In addition, the added ability to communicate remotely can greatly facilitate their roles. Finally, in addition to the technical features outlined, good logic analyzers must be portable for those times when the technical mountain will not come to the engineering Muhammad.

Please rate the value of this article to you by circling the appropriate number in the "Editorial Score Box" on the Inquiry Card.

High 722 Average 723 Low 724

The Bad News Is . . .
Your IBM Just Crashed

The Good News Is . . . Auscom's 8041 Channel Data Recorder Locates the Problem

AUSCOM
2007 Kramer Lane
Austin, Texas 78758
512/836-8080

When all or part of your IBM system crashes, you need to find the problem, and find it fast. The new AUSCOM Model 8041 Channel Data Recorder will pinpoint the problem, and report its location quickly and accurately. Attaching directly to any IBM or IBM compatible channel, the 8041 monitors and records events on the IBM Bus and Tag lines. The 8041 derives great flexibility from its Recorder Channel Registers. These registers determine which event combination causes the 8041 to start or stop recording channel events. AUSCOM's 8041 is operable as a stand-alone unit, or can be externally controlled via terminal or computer connected to the rear panel serial port.

See Us at NCC '83, Booth #P8124.
INTRODUCING LARGE-DISK PERFORMANCE IN DRIVES HALF THE SIZE

MODEL 9715 FSD. With 160 Mbytes in a sealed module, you get the same capacity, speed and performance as the CDC® Mini Module Drive (MMD) in a unit one-half the size.

MODEL 9710 RSD. With 80 Mbytes in removable data packs for unlimited storage. Has the same capacity, speed and performance as a CDC Storage Module Drive (SMD) in a unit one-half the size.

AUTOMATIC CARRIAGE AND SPINDLE LOCKS allow for quick set-up, prevent HDA damage during shipment.

NO SCHEDULED MAINTENANCE. Built-in reliability also includes high parts commonality and universal power supply (100-240V, 50/60 Hz) for easy installation worldwide.

HIGH TORQUE BRUSHLESS DC DRIVE MOTORS. They deliver a higher degree of data integrity by providing rapid disk acceleration with minimum head drag.

Both 9710 and 9715 Drives use LSI circuitry for all read and write, fault, transmitter/receiver functions and a µP for servo control, for full performance in half the space. For more data call your local Control Data OEM Sales Representative or write: OEM Product Sales, HQW08X, Control Data Corporation, PO. Box 0, Minneapolis, MN 55440.

Both MFD, ULS, CSA, VDE STANDARDS FOR A STAND-ALONE UNIT.

THE FSD™ / RSD™ SERIES

CONTROL DATA

Information Hot Line 1-800-621-1776
in Illinois 1-800-572-6724
CIRCLE 105
The first solderless transmission cable assembly protects your signals, and your costs.

The unique AMP connector mass terminates transmission cable far faster than soldering—and solderless design means you eliminate high cost, high-temperature cable. You can even forget tooling costs because we supply the assembly to your specifications.

The receptacle connector handles 100, 95, 75 and 50 ohm cables with signal conductors on .050" centers. It automatically commons the grounds to your specified pin out. It physically separates and electrically isolates grounds from signal conductors. What's more, pinfield and SLT types are available, and all come in your specified length and with your specified cable.

To get the crosstalk—and the cost—out, specify AMP transmission assemblies.
AMP Facts

Typical Mechanical/Electrical/Environmental Properties

Mechanical
- Mating Force: 8 oz. max./contact
- Unmating Force: 1½ oz. min./contact
- Mating and Unmating: 200 cycles
- Vibration: 15 G's, 10-2000 Hz
- Physical Shock: 100 G's, 6 millisecond

Electrical
- Current: 1 ampere max./contact
- Contact Resistance: 25 milliohms max.
- Insulation Resistance: 5000 megohms min.
- Dielectric Withstanding Voltage: 500 volts RMS (sea level)

Environmental
- Temperature: -65°C to 105°C
- Thermal Shock: 5 cycles: -65°C to 105°C
- Moisture Resistance: 10 days, 25°C to 65°C, 80-98% R.H.
- Salt Spray: 5% solution, 48 hours
- Industrial Gas: 10% SO₂, 24 hours

For more information, call the AMP Transmission Cable Assembly Information Desk at (717) 780-4400.

AMP Incorporated, Harrisburg, PA 17105.

AMP is a trademark of AMP Incorporated.

AMP means productivity.
We started out
giving you more terminal
for your money.
We still do.

We know where we started, and
we know where we’re going. We first
entered the terminal market by
offering high quality terminals with
more features and functionality for less
money. Our approach helped reshape
the entire industry, making TeleVideo
the world’s leading manufacturer of
computer terminals.

But these days a good combination
of price and performance is expected.
Manufacturers must provide more in
order to be taken seriously. So we’ve
extended the lead of our entire product
line through innovation. From the
economical 910 PLUS, through our
advanced design 925 and 950 series,
up to today’s revolutionary 970, we
continue to anticipate and deliver
exactly what you want in your terminals.

Though the world changes around
us, we always stay ahead. But our
philosophy of providing more terminal
for less money does not change. For
information, call toll-free 800-538-8725
(in California call (408) 745-7760), or
send us this coupon.

TeleVideo Systems, Inc.
Dept. 219E
1170 Morse Avenue
Sunnyvale, CA 94086

Yes, I’d like to know more about
TeleVideo’s family of terminals:

Name______________________________
Address____________________________
City___________________________State________Zip________
Telephone__________________________

Santa Ana/California 714-557-6095
Sunnyvale/California 408-745-7760
Atlanta/Georgia 404-399-6464
Dallas/Texas 214-980-9978
Chicago/Illinois 312-351-9350
Boston/Massachusetts 617-668-6891
New Jersey/New York 201-267-8805
Woking, Surrey/United Kingdom 44-9905-6464

TeleVideo Systems, Inc.
Graphos™ from Ithaca, represents new innovation and a technological breakthrough in the design of sophisticated color graphics terminals. And it's available at a surprisingly affordable price . . . less than $8,000.

Independent Manipulation of Up to 16 Windows
- Graphos is the first terminal to provide a multiple, 16 window display that can be connected to any computer system.
- Individual windows can emulate different system protocols.

Flexibility, Versatility, 32,768 Colors, 640 x 480 screen resolution
- Each of the 16 windows is supported with independent scroll, pan, and zoom.
- Graphic primitives are supported with full 2D transformations (scale, rotation and translation) as well as polygon attributes (texture, solid, hollow).
- The terminal can display 256 colors at once from a palette of 32,768.
- Graphos' World Coordinate System eases applications programming and off loads host processing.

Intelligent Terminal . . . Motorola MC 68000™
- The Graphos is the first terminal, in its price range, to implement high quality graphics capabilities.
- Graphos supports a host and most input/output devices . . . truly device independent.

"Shiftable Cell”™ Unique Display Architecture and Design Synthesis.
- The heart of Graphos' design is Ithaca's "Shiftable Cell" concept combining alphanumeric and bit mapping architecture. "Shiftable Cell" enables advanced alphanumericics and graphics hardware to complement resident core graphics firmware.
- Combined with local intelligence and high level software, Graphos is the most versatile and cost-effective graphics system available today. Its expansion capabilities provide the growth potential needed for tomorrow.
- It's perfect for multi-task business systems, architecture, drafting, CAD/CAM, video graphics, animation, interior design and education.

Graphos from Ithaca, a stroke of genius.

For immediate information on Graphos, call toll-free (800)-847-2088.
Ithaca is backed by Docutel Olivetti nationwide service.
AN INFORMATION MANAGEMENT TOOL FOR SYSTEM DESIGNERS

There is no reason why computer based information system designers must be the last to incorporate productivity enhancers into their professional lives. The system described proves just that.

by Joseph F. Blazewicz

In the earliest stages of microcomputer based system design, the designer is encumbered with reams of information. End-user requirements, system variables, hardware alternatives, speed, memory criteria, costs, and schedules are all factors to be reckoned with early in the system design. The system designer’s first job is to organize this information, then communicate it as needed to all engineers and managers involved in the project.

A system design tool, built around a core of information common to most facets of microprocessor based designs, easily facilitates this process. If the information core is faithfully maintained as an American National Standard Code for Information Interchange (ASCII) data file, a series of data flow diagrams and reports can be readily generated. Further, this development aid is a project organization tool used and created predominantly by the system designer. It guides software designers in the first 30% to 40% of a project’s lifetime. After this, depending on further technical developments, the data files and flow diagrams can be frozen or updated. The data file can be continually sorted and recombined to provide reports needed by project personnel. In the system described, such a file based development aid is implemented with a single command to the computer, giving the designer access to any of five reports from the information core file.

These reports consist of a project status report, a file sorted list, a memory type sorted list, the executive task sequencing requirements, and a runtime estimate report. The ease with which these reports are created ensures that accurate information is instantly available. In addition, telephone modem connections to local terminals supply customers and subcontractors with the same information.

After the developing data file has reached maturity, program design language (PDL) tools using the data file mnemonics structure the next stage of project development.
PDL development frequently leads to revision of the core data file, and screen text editors with global search and substitute abilities simplify further development.

Significant productivity increases have been noted on projects in which this simple method of information control has been used. Project personnel often say that the available information is logically interconnected, plus easy to use and maintain.

Key to the method of solving design problems is the host computer. This machine's ability to massage large quantities of evolving design data is crucial. To create an effective system, the designer needs a logically organized framework in the form of an ASCII file on a host computer. As additional information develops, this framework fills with data, and the file's overall structure iteratively changes to accommodate new developments. A data flow diagram is developed and maintained parallel to the core file development. This diagram gives visibility to the development process and is a convenient key to point to groups of framework entries in the core file.

An overview of the methodology is shown in Fig 1. Within the host computer, the system designer uses a text editor to construct tabular listings that define the framework in which developing project information is stored. Two 132-character tabular listings—the main mnemonic list and the program module list—form the heart of the system.

Experience with the system has shown that the listings develop most rapidly when certain stipulations are met. First, the system designer must have a cathode ray tube terminal located at his or her work area. Next, the text editor (screen type) must permit rapid, simple global searches, preferably using special function keys. Finally, the host computer must provide many conveniently located terminals for project personnel to use. This last stipulation, the provision of many terminals, often spawns arguments from cost-conscious purchasing directors. A convincing argument can be made for the purchase of terminals, however, if hidden project costs are exposed.

With enough terminals, that unwelcome task . . . the meeting, is not required as often . . .

There are many sources of hidden costs. One is the need for frequent printouts of developing data in the absence of terminals. With a sufficient number of terminals, printouts are practically eliminated. Another hidden cost is the time spent shuffling through printouts and doing visual searches. Screen text editors save large amounts of time in small increments. Further, with terminals, the files are always at the latest stage of development, so other employees can access the files as needed. More money is wasted using central, marked-up documents that require employees to constantly recheck for the latest information. With enough terminals, that unwelcome task of all project managers, the meeting, is not required as often since 2-way verbal communication is minimized.
Break the Pencil Input Bottleneck... With Low Cost Bar Code Terminals

Fast, accurate, "direct-to-CPU" data collection at every workstation is practical now! Low cost, operator friendly, Microterminal™ terminals give you display plus keyboard and bar code inputs in a tough 8-1/2" x 4-1/2" x 1-1/4" waterproof package that fits almost anywhere. You can set the reader for any of five standard bar codes with a rear panel switch. Five 50-character buffers handle bar code inputs. Using industry standard interfaces, up to 63 Microterminal terminals can work on a single serial line to interface with most computers.

TM71B - alphanumeric entry keyboard - and **TM77B** - numeric entry keyboard - are expanded versions of industry tested/accepted TM71 and TM77 Microterminal models. With integral bar code reader decoder and wand, units are priced at $950 in 100's!

Request full information on these feature-loaded 100% solid state terminals that can replace bulky CRT's and printers or work where these fragile devices can't.

Data Acquisition & Control Systems Division
3631 E. 44th Street, Tucson, AZ 85713 (602) 747-0711

BURR-BROWN
Putting Technology To Work For You
From theory to reality
The system discussed here uses a VAX 11/780 computer, which services other nondesign projects within the facility. In addition, a DEC EDT screen type editor is used because it requires minimal operator training. Almost like a word processor, this editor provides powerful file merging and global editing commands that are easily grasped by nonprogrammers and can also be taught to employees unfamiliar with computer programming. DEC VT100 terminals or similar units are sufficient for the purposes of file maintenance.

Data flow diagrams of the microbased design are drawn parallel to the developing files and provide project workers the visibility they need in the developing design. The five report types shown in Fig 1 are created automatically by the system. These reports are created by using a resident VAX sorter program that sorts tabular lists via simple 1-line commands. The file sorted list, memory type sorted list, and executive task sequencing requirements reports are each created with a single command to the VAX sorter program. Project status and runtime estimate reports are created by simple FORTRAN routines. These routines extract information from the tabular main mnemonic list and program module lists and calculate sum totals of parts of the lists.

Data flow diagrams of the developing project are valuable in providing project development visibility. The worth of these diagrams is evident during design reviews, customer subcontract communications, assignment of development tasks, and training of new developers and users. During design reviews, action items can be keyed to the diagrams' serialized blocks.

The data flow diagrams, similar to hierarchical input/process/output (HIPO) diagrams, are a roadmap to the evolving system and can be developed and maintained by employees with either hardware or software backgrounds. The diagrams fall into two categories: major data flow paths and multiple use modules.

Fig 2, an example of a major data flow path, is typical of 10 to 40 pages of diagrams that can develop from

Fig 2 System data flow diagram provides visibility to the total system task and modularizes the effort to permit assigning development tasks. Note that interprocessor communications of specific files can be seen. Ten to 40 pages of such diagrams can develop on a medium-sized microcomputer application project.
The big difference in VMEbus hardware from one company to another is the company.

The VMEbus is making a tremendous impact internationally. Through our involvement, we've learned that all VMEbus products appear to be pretty much alike, but there are important differences.

Take it from us, when you're buying VMEbus equipment you're really buying the manufacturer. His services, standards, prices and promises.

Products can be virtually the same. It's the company that makes the biggest difference. And that's why BICC-Vero hardware is recognized by international companies for its remarkable performance, reliability, precision, and compatibility.

Our extensive inventory and efficiency guarantees you immediate delivery on all VMEbus products. Orders are handled by our world-wide network of subsidiaries and distributors to ensure prompt service and customer satisfaction.

BICC-Vero offers these VMEbus products from stock right now: IEC connectors, prototype boards, backplanes, extender cards, power supply with power monitor module, card frames and front panels.

When you need VMEbus equipment, turn to us. Our hardware is as fine as anybody's. It's the company that's better.

BICC-VERO
ELECTRONICS INC.
A BICC Company
171 Bridge Road
Hauppauge, NY 11788
(516) 234-0400
TWX: (510) 227-8890

TELEPHONE: UNITED KINGDOM (04215) 66300 • FRANCE (4) 402.46.74
• WEST GERMANY (0421) 828 18 • SOUTH AFRICA 53-7846/7 • CANADA (613) 384-1142

CIRCLE 110
Recurring module notations simplify the system data flow diagram. Program modules or files that are accessed frequently by many parts of the system can be grouped together. Self-test result files, A-D input drivers and files, and bus communication link drivers are typical modules.

application efforts on a small- to medium-sized microprocessor. Most of the diagram is made using three symbols. The square boxes represent program modules that operate on data modules. The curved boxes represent data modules, and the offpage connectors (pentagons) represent connections to data paths on other sheets of the diagram. The solid and dashed lines between the modules indicate the direction of information flow between them.

If good data entry habits are established early, the information system is easy to maintain.

Program and data code that perform utility functions such as data conversion, hardware and software control, self-test routines, operator panel interface, bus communication, and data logging can be written as multi-user modules.

Both hardware and software data paths and connections are shown in Fig 2. Program modules that use common data buses and serial links are shown by off-page connectors and dashed lines. The MB1 and MB2 off-page connectors in Fig 3 are defined as data paths that require use of a Multibus portion of this particular design. Simple sums of columns in the data files, created later, are used to obtain bus loading analysis information to ensure that bus data transfer rates are not exceeded.

All program and data modules are arbitrarily serialized with PXXX and FXXX numbers as shown. These serial numbers are used in the data files to define specific details of these modules' contents.

F001 in Fig 2 is a data module that contains unscaled process input data. The information's source is the analog to digital (A-D) input driver module P002 in Fig 3. The Multibus is used for this data transfer. In Fig 2, the information in F001 is used by program module P021 for the digital to analog (D-A) self-test, and also for P020 (A-D self-test) and P002 (input signal scaling and conversion). Program module P002 uses the information in F001 and the input scale factor data in file F029. Files F029 and F030 are random access memory (RAM) files preliminarily loaded from core files F002 and F004 by program modules P027 and P028, respectively. The II off-page connector to Fig 3 shows that P027 and P028 are controlled by program module P015 as one of the microprocessor's power-on initialization operations.

As the design matures, several of the program modules are likely to require further refinements. For
Who says SMD Controller design is so r-r-rough?

Introducing our new WDI050.

When you make the Wizards of Disk Controllers your design partners, there's no cause to approach any disk interface task with trepidation. Because now, in addition to our industry standard floppy disk controllers and ST500/SAI000 Winchester disk controllers, Western Digital delivers a single chip solution to SMD, CMD, MMD, LMD and FHT interfaces. Oh my!

It's the WDI050, a 64-pin VLSI controller/formatter. That's one chip, instead of up to 40 MSI devices and a microprocessor. And instead of innumerable nights and weekends of software drudgery.

How powerful is the WDI050? Powerful enough to handle eight high level macro commands, auto format/verify with programmable interleaving, single/multiple record operation, hard sector formatting, CRC checking with external ECC compatibility and a 16-bit direct buffer access interface for disk drive-to-buffer data transfers.

Systems builders already following our Yellow Brick Road of disk controller solutions know that our ongoing LSI innovations soon turn into cost effective board level products for those who prefer 'buy' to 'build'.

Starting today, though, adding the extra capacity and higher performance of SMD compatible drives to your system doesn't take courage. Just the brains to start with our new WDI050.

The next step is yours. Call our Controller Hot Line, (714) 966-7827 for more details. Or write on your letterhead.

Components Group 2445 McCabe Way, Irvine, CA 92714, (714) 557-3550
example, data module P004 (the reasonability check module) in Fig 3 needed a page of data flow diagram information to define data flow and interaction within itself. On first iterations of the design, data modules are assumed to be separate groups of memory. Further design developments and memory storage monitoring needs from the project status report and the file sorted list might dictate that files such as F001, F003, and F005 require overlaying of the same RAM area to keep the memory or design cost reasonable.

Diagrams assign development tasks. For example, software developers can be assigned specific program modules to develop with conventional programming flowcharts or PDL. These developments in turn are labeled with the serial number as a shorthand notation for indexing the developing documentation.

The computer mnemonic list

In parallel with the developing data flow diagrams of Figs 2 and 3, the main computer mnemonic list shown in Fig 1 is being developed as an ASCII data file. Table I is typical of a partially completed mnemonic list, sorted alphabetically by the name of the mnemonic to be used in the final assembly or higher level code. The eight columns represent typical design interests: mnemonic name, math symbol for equations, variable description, arbitrarily numbered memory type, applicable notes in a

note file kept on the computer, data module serial numbers from the data flow diagrams of Figs 2 and 3, number of storage bytes for each mnemonic, and the mnemonic's engineering units range.

This file is created and maintained by a screen text editor. A small- to medium-sized design may require 10 to 20 pages of this file including 500 to 1000 variables. This file represents the basic framework into which developing information is deposited; software developers and users will employ it later for system maintenance.

As development continues, the list grows rapidly and the discipline required to maintain it is rewarded when the list is sorted and summarized by various support programs. Scanning the list for open entries in the various columns gives a preliminary indication of project design status. For example, with a single 1-line command to a system sorter routine, the file sorted list mentioned in Fig I is obtained. The result is that the main mnemonic list is sorted by file storage number (data module number), and within this number sort, each of the mnemonics is sorted alphabetically. As a result of this sort, all identical file storage numbers in the file storage number column of Table I are grouped together, and all computer mnemonics within the same grouping of a file number in the computer mnemonic column are alphabetically sorted. This sorted list now becomes a report that defines the contents of each of the file blocks or data modules shown in Figs 2 and 3.

Manually scanning this file sorted list and totaling the number of bytes in each file provides file size information. The system as implemented includes an automatic scan via a simple 27-line FORTRAN routine to supply this system sizing information.

Sorting Table 1 by memory type provides another useful report as a memory type sorted list. Typical memory types used on a controller project appear in Table 2. Sorting Table 1 by the applicable notes column produces a listing with all variables affected by specific notes grouped together. Notes are any information that must be keyed to specific variables. For example, the maximum rate of change of an input variable can be listed in a note at the end of the list.
Designed for the OEM. Finally — Mini-MAP! A powerful array processor board set designed for the system integrator. Mini-MAP — brought to you by CSP!, the array processor specialists with fourteen years of experience and over 500 worldwide MAP installations. A perfect fit for PDP-11 based systems. Four hex boards that plug into your PDP-11 backplane, consume only 125 watts of power and provide full 32-bit floating point precision.

Shared Memory. Mini-MAP interfaces directly to UNIBUS for simplified programming and unprecedented throughput. The PDP-11 and array processing unit share memory to eliminate host/array processor DMA transfers and to minimize overhead.

Arithmetic Power. The wide dynamic range and precision of 32-bit floating point arithmetic, along with 7 MFLOPS of number crunching power, offers cost/performance advantages for OEMs. For example, a 1024 point Real FFT is done in 4.2 milliseconds — that's Mini-MAP math.

Software Support. Mini-MAP supplies: a scientific subroutine library of 150 FORTRAN callable routines ... an exclusive MCL/FORTRAN compiler and linker for combining subroutines into convenient host-callable modules ... a relocatable assembler for creating applications subroutines ... and a full set of user-friendly debugging tools and diagnostics.

Modularity. Mini-MAP is expandable. You can select additional memory boards beyond the basic 64 KByte data memory, for up to 16 MBytes. And we can supply a wired backplane for your PDP-11 or provide a self-contained development system in a DEC*-compatible enclosure complete with power supply and UNIBUS cables.

Get The Facts. Find out why Mini-MAP is the most cost-effective number crunching solution for your next product development. Call or write for complete specifications or for applications assistance.

*DEC, PDP-11 and UNIBUS are trademarks of Digital Equipment Corp.
TABLE 3
Program Module List

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Program Module Name</th>
<th>Memory Type</th>
<th>Executive Task Number</th>
<th>Estimated Time (ms)</th>
<th>Actual Time (ms)</th>
<th>Storage Bytes</th>
<th>Folder Involved</th>
<th>Buses Involved</th>
<th>Bus Loading Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>P001</td>
<td>A-D input selector</td>
<td>03</td>
<td>021</td>
<td>0.0001</td>
<td>0</td>
<td>00053</td>
<td>10279</td>
<td>02</td>
<td>1.2</td>
</tr>
<tr>
<td>P002</td>
<td>Input signal select, convert, and scale</td>
<td>03</td>
<td>1.2000</td>
<td>1.563</td>
<td>01240</td>
<td>11002</td>
<td>02</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>P003</td>
<td>Signal filtering module</td>
<td>03</td>
<td>023</td>
<td>11.8</td>
<td>14.7</td>
<td>00720</td>
<td>12456</td>
<td>02</td>
<td>88.2</td>
</tr>
<tr>
<td>P004</td>
<td>Reasonability check module</td>
<td>03</td>
<td>023</td>
<td>21.0</td>
<td>8.43</td>
<td>12365</td>
<td>02</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>P005</td>
<td>Process control discrete input module</td>
<td>035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00098</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information concerning the program modules in Figs 2 and 3 is included in a computer file as shown in Table 3. The 10 columns of this program module list include a program module number, name, memory type in which the module is stored, executive task number assignment, and other, more specific information. In fact, all columns may not be applicable to each program module.

Sorting this list by executive task number provides a sequence of events list of module execution. Scanning that list for execution times allows the system designer to efficiently estimate the length of critical time paths in the design. Sorting the list by memory type allows a scan to be made that obtains memory storage requirements imposed by the program modules on the system's various memory types. This information is automatically included in a project status report and is useful to the hardware and software designers involved.

Finally, a global data module list is maintained that is used as a list of data modules within Figs 2 and 3. This list is primarily an index to the data flow diagrams and, when used with Table 1, gives the software designer the title of the module within which specific variables are stored.

After the basic lists and data flow diagram have matured, detailed design of the program modules can begin. This usually starts with a preliminary requirements text for each program module. A PDL processor is useful in these early stages to organize the developing text. Table 4 is an example of a PDL table of contents that is automatically created from Table 3's computer file.

TABLE 4
PDL Table of Contents

<table>
<thead>
<tr>
<th>Data Module</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P001</td>
<td>A-D input driver</td>
<td>3</td>
</tr>
<tr>
<td>P002</td>
<td>Input signal selection, scaling, and conversion</td>
<td>4</td>
</tr>
<tr>
<td>P002.1</td>
<td>Linear input conversion and scaling</td>
<td>5</td>
</tr>
<tr>
<td>P002.2</td>
<td>Flow input conversion and scaling</td>
<td>6</td>
</tr>
<tr>
<td>P002.3</td>
<td>Signal selection</td>
<td>7</td>
</tr>
<tr>
<td>P003</td>
<td>Signal filtering module</td>
<td>8</td>
</tr>
<tr>
<td>P004</td>
<td>Reasonability check module</td>
<td>9</td>
</tr>
<tr>
<td>P004.1</td>
<td>Gross sensor check</td>
<td>10</td>
</tr>
<tr>
<td>P004.2</td>
<td>Ringback check</td>
<td>11</td>
</tr>
<tr>
<td>P006</td>
<td>Process analog output scaling</td>
<td>12</td>
</tr>
<tr>
<td>P009</td>
<td>Density compensation</td>
<td>13</td>
</tr>
<tr>
<td>P011</td>
<td>Controller</td>
<td>14</td>
</tr>
<tr>
<td>P012</td>
<td>Operator control input reader</td>
<td>15</td>
</tr>
<tr>
<td>P013</td>
<td>Manual setpoint calculations</td>
<td>16</td>
</tr>
<tr>
<td>P014</td>
<td>Operator control display driver</td>
<td>17</td>
</tr>
<tr>
<td>P015</td>
<td>Power-on initialization, input processor</td>
<td>18</td>
</tr>
<tr>
<td>P016</td>
<td>Technician interface for input processor</td>
<td>19</td>
</tr>
<tr>
<td>P017</td>
<td>Technician interface for control processor</td>
<td>20</td>
</tr>
<tr>
<td>P018</td>
<td>Controller coefficient save/initialize</td>
<td>21</td>
</tr>
<tr>
<td>P020</td>
<td>A-D self-test</td>
<td>22</td>
</tr>
<tr>
<td>P022</td>
<td>ROM self-test, input processor</td>
<td>23</td>
</tr>
</tbody>
</table>
WINCHESTER DRIVE TEST SYSTEM
PRICED UNDER $10,000.00

WINCHESTER DRIVE TEST "COURSE"

T-650 SURFACE TEST BYTE LEVEL
T-650 TIME OF DAY
EARLY/LATE WINDOW MARGINS T-650

EXCELLENT DRIVES WINNER
FINISH

WHEN YOUR WINCHESTER DRIVES PASS OUR TEST "COURSE" THEY ARE EXCELLENT DRIVES!

Sales/Service Centers - Around the World

ADC APPLIED DATA COMMUNICATIONS

14272 Chambers Rd. 50 Mall Rd. 2540 Walnut Hill Ln. 2000 Wyatt Dr.
Tustin, CA. 92680 Suite 209 Suite 158 Suite 17
(714) 731-9000 Burlington, MA. 01803 Dallas, TX. 75229 Santa Clara, CA. 95050
(617) 273-4844

2000 Wyatt Dr.
(214) 352-4012

7927 Jones Branch Dr.
(408) 748-8686

McLean, VA. 22101-1300
(703) 356-7450

ALSO: TOKYO • FRANKFURT • PARIS • LONDON • STOCKHOLM • OSLO • MILANO • COPENHAGEN • SYDNEY

CIRCLE 113
TABLE 5
Automated Project Status Report

System Variable Quantities

<table>
<thead>
<tr>
<th>No of system variables</th>
<th>672</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of variables assigned to files</td>
<td>249 (37%)</td>
</tr>
<tr>
<td>No of variables assigned to memory types</td>
<td>185 (28%)</td>
</tr>
<tr>
<td>No of variables assigned to engineering units</td>
<td>48 (7%)</td>
</tr>
</tbody>
</table>

Assigned Data and Program Storage Requirements by Memory Type

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Processor</th>
<th>Memory Description</th>
<th>Data Storage (No of bytes)</th>
<th>Program Storage (No of bytes)</th>
<th>Total No of bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Input</td>
<td>Core</td>
<td>280</td>
<td>782</td>
<td>1062</td>
</tr>
<tr>
<td>02</td>
<td>Input</td>
<td>RAM</td>
<td>2413</td>
<td>2413</td>
<td>2413</td>
</tr>
<tr>
<td>03</td>
<td>Input</td>
<td>ROM</td>
<td>6320</td>
<td>6320</td>
<td>6320</td>
</tr>
<tr>
<td>04</td>
<td>Communications</td>
<td>RAM</td>
<td>1220</td>
<td>1220</td>
<td>1220</td>
</tr>
<tr>
<td>05</td>
<td>Communications</td>
<td>ROM</td>
<td>2137</td>
<td>2137</td>
<td>2137</td>
</tr>
<tr>
<td>06</td>
<td>Control</td>
<td>ROM</td>
<td>470</td>
<td>470</td>
<td>470</td>
</tr>
<tr>
<td>07</td>
<td>Control</td>
<td>Battery RAM</td>
<td>3140</td>
<td>3140</td>
<td>3140</td>
</tr>
<tr>
<td>08</td>
<td>Control</td>
<td>Battery RAM</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
</tbody>
</table>

Program Module Quantities

<table>
<thead>
<tr>
<th>No of program modules</th>
<th>183</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of program modules assigned to memory types</td>
<td>19 (10%)</td>
</tr>
<tr>
<td>No of program modules with estimated time</td>
<td>12 (7%)</td>
</tr>
<tr>
<td>No of program modules with measured time</td>
<td>6 (3%)</td>
</tr>
<tr>
<td>No of program modules with storage requirements</td>
<td>54 (30%)</td>
</tr>
</tbody>
</table>

Bus Time Loading Information

<table>
<thead>
<tr>
<th>Bus No</th>
<th>Percentage Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>6</td>
</tr>
</tbody>
</table>

Creating a project status report

The typical project status report shown in Table 5 is part of the final output of this system design and reporting tool. It demonstrates the application of computer resources to organizing microprocessor based designs. Information in this report is automatically extracted from the core information files. Using the command file capabilities of the VAX computer, and simple [FORTRAN](https://en.wikipedia.org/wiki/FORTRAN) routines for searching and totaling files, a system that accepts one command and produces all the sorted lists discussed can be easily developed. The project status report can then be created using simple [FORTRAN](https://en.wikipedia.org/wiki/FORTRAN) subroutines. Thus, all sorted files and reports are accessible to all project employees, and the ease of creating data speeds up the design process.

A framework within which design information can be gathered and efficiently organized is crucial to the success of any microprocessor based project. The method discussed improves design productivity in the formative stages of a project. And, if good data entry habits are established early, the information system is easy to maintain. Advantages of the system are that it allows easy assignment of development tasks and that it helps maintain continuity even with changes in personnel.

The automatically created status reports are produced at no charge and keep designers, managers, customers, and users aware of developments. Further, the system can be assembled in small, no-risk pieces and then continually expanded. Even if development stops at the core data file and data flow diagram stages, significant advantages are gained without implementation risk.

The question of whether to freeze the design information or continue updating it can be decided jointly with customers. Updated information files are useful for user training, and the customer can elect to maintain the records after the original intent of guiding early software development has been fulfilled.

Further enhancements to the proposed system include automatic scanning of final machine code files to create structure diagrams, lists of actual mnemonic names, PDL mnemonic to actual code mnemonic cross-reference lists, and actual memory storage requirement quantities. Regardless of the sophistication of the information management system, the value designers gain by employing the fruits of their labor is obvious. A computer based design information system can improve productivity as well as communication.

Acknowledgments

The author wishes to thank Don Wolfe and Robert Partlow for their efforts in making this report possible.

Please rate the value of this article to you by circling the appropriate number in the "Editorial Score Box" on the Inquiry Card.

| High 725 | Average 726 | Low 727 |
Six reasons why you should have an Array Processor from Floating Point Systems.

1. More computing power for the money.

At Floating Point Systems, we offer five array processors to meet a range of scientific and engineering applications. Attach one to your host computer and offload numerically-intensive calculations easily and cost-effectively... all for prices starting at $40,000 (U.S.) for 38-bit products. Our 64-bit systems start at less than $300,000 (U.S.)

2. Greater precision for greater accuracy.

For large, high-precision applications, the 64-bit FPS-164 offers 15 decimal digits of precision. Our 38-bit array processors provide up to 8 decimal digits of precision — 2 digits greater than 32-bit formats — ideal for signal, image and geophysical processing applications.

3. FORTRAN and more, for flexible programming.

For the FPS-164, our ANSI 77 FORTRAN Compiler generates code that optimizes use of the FPS-164's architecture. Our new Single Job Executive (SJE) supports complete job processing in the FPS-164. Our FPS-164 math library offers over 400 FORTRAN-callable subroutines for additional performance.

Our 38-bit array processors — the FPS-100, AP-120B, AP-180V and AP-190L — are supported by a comprehensive math library that offers over 450 FORTRAN-callable subroutines for signal, image, geophysical processing and other applications.

4. Solutions in minutes instead of hours, hours instead of days.

Because of their unique parallel pipelined architecture, our array processors provide high-speed computational throughput — up to 12-million floating point operations per second, assuring faster project turnaround time.

5. Large main data memory for bigger calculations.

The FPS-164 offers up to 58 Megabytes of main data memory (directly addressable), with a Disk Subsystem for up to 3,000 Megabytes of storage. Our 38-bit array processors also have large main data memory — these range from a maximum of 64K words for the FPS-100 to a maximum of 44K words for AP-190L. You can add on 80- or 300-Megabyte disk storage systems, and a General Purpose Intelligent I/O Processor to control A/D and D/A equipment for real-time applications.

6. Superior reliability and worldwide support.

Our array processors have established impressive records for reliability and maintainability, and provide our customers with long-running, dependable operation. The FPS-164 features error-correcting memory, internal diagnostic system with a diagnostic microprocessor.

Behind this reliability stands our strong support: service facilities at key locations throughout the world, remote diagnostics, documentation, installation, training and more.

For further information, write today or call our nearest Sales Office... or our toll free number, (800) 547-1445.

The world leader in array processors.
THE UNPersonal

UNEqualled Price/Performance
UNLimited Configurations
UNSurpassed Reliability
UNMatched Ergonomics
AND UNIX-Optimization

Meet the Series 2000 business system. We call it the UnPersonal Computer because it offers you the multi-user, multi-tasking performance and configurability that you can't get from any "personal computer."

The Series 2000 can start out as a powerful, single-user desktop system, and then become very "unpersonal" as you add intelligent workstations to share a common database. UNIX-optimized, this multi-user system streamlines business computing in any environment—from a one-man shop to the busy department of a large company.

Besides intelligent workstations, the highly-configurable Series 2000 includes optional Multibus™ attachment, and a choice of disk storage modules and high-speed dot-matrix printers.

The Series 2000 gives you, the OEM, many unfair competitive advantages:
PRICE/PERFORMANCE. Series 2000 costs less per workstation than a multiple configuration of personal computers. And you don't have to worry about incompatibilities, hidden upgrade costs or performance degradation when you need to expand.
UNIX-OPTIMIZED. Series 2000 has been optimized for the UNIX operating system. The hardware was designed with overlapped, high-speed disk operation and large memory capacity to run UNIX more efficiently.

CHOICE OF SOFTWARE. The UNIX operating system comes with the C compiler and a host of utilities as standard. Language processors, such as COBOL, FORTRAN, BASIC interpreter, and BASIC compiler, are optional.
HIGHLY CONFIGURABLE. Series 2000 expands easily—from single-user to multi-user operation. And there’s a wide choice of disk storage modules and high-speed printers to optimize the selected configuration.

FASTER DATA ACCESS. The Series 2000 main processor breaks the access bottleneck by using tightly-coupled multiple microprocessors for concurrent processing, disk access and workstation access. Totally overlapped data transfer and processing means shorter response times and better throughput. If it’s desktop power you want, we can really crunch numbers with our 8-MHz 8086 and its optional 8087 arithmetic coprocessor.

WORKSTATION POWER. Series 2000 workstations are available with 16 to 64 kbytes of user memory. Microprocessor-controlled, each station is capable of receiving down-loaded programs from the main processor to further improve response time.

CHOICE OF DISK STORAGE. Disk storage up to a total of 60 Mbytes may be attached to the Series 2000 main processor.

PRINTERS. Zentec-supplied dot-matrix printers operate at speeds from 180 to 500 characters per second, or, for near-letter quality, from 100 to 125 characters per second. Options include high-resolution graphics, multiple character sets and forms handling capabilities.

A NAME TO RELY ON.

Our long experience serving demanding OEMs has made us aware of how important it is to maximize system uptime. Zentec has built its reputation as a supplier of reliable, high-quality products with some of the highest MTBF numbers in the business. For more information, contact our headquarters, or call any of the sales offices listed below.

ZENTEC Headquarters,
2400 Walsh Avenue,
Santa Clara, CA 95050
(408) 727-7662.

Sales Offices:
Fort Lee, NJ (201) 944-0670
Long Grove, IL (312) 634-9550
Playa Del Rey, CA (213) 822-0278
Richardson, TX (214) 690-9265
Santa Clara, CA (408) 727-7662
Waltham, MA (617) 890-7915
West Palm Beach, FL (305) 684-8898.

UNIX is a registered trademark of Bell Laboratories.
Multibus is a registered trademark of Intel Corporation.
Shown are IBM-PC® compatible programs. The Columbia MPC runs MS-DOS® plus six other operating systems.

THE COLUMBIA MPC WORKS WITH A WORLD OF SOFTWARE. $3,000 WORTH COMES FREE WITH THE SYSTEM.

World Headquarters:
8990 Route 108
Columbia, MD 21045
(301) 992-3400
TWX 710-862-1891

West Coast:
3901 MacArthur Blvd.
Suite 211
Newport Beach, CA 92663
(714) 752-5245
Telex 277778

Europe:
Littenstr. 94
4050 Moenchengladbach 2
West Germany
Phone 02161-33159
Telex 852452

Call our distributor nearest you.

Access Systems
Wellesley, MA
(617) 237-7743

Advanced Management Systems
Aurora, CO
(303) 752-2972

N.I.D.I. (National Instrument Distribution Inc.)
Dayton, OH
(513) 438-4303

RPC Electronics
Cleveland, OH
(216) 461-2280

Central Microcomputer Distributors
Montreal, Quebec, Canada
(514) 843-7533

Distributors in Australia, Austria, Belgium, Colombia, Denmark, Hong Kong, Israel, Italy, Malaysia, Netherlands-Antilles, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, Venezuela.
Today, the Columbia MPC takes on hundreds of IBM-PC compatible software programs and IBM-PC add-ons or peripherals.

What's more, six other Columbia-supported operating systems are available — CP/M-80, CP/M-86, Concurrent CP/M-86, MP/M-86* (OASIS-16* and XENIX* available soon) — stretching the Columbia MPC's software compatibility beyond any other personal computer.

Farther, faster, for far less.

The Columbia MPC is shipped with fully supported software that will save you $3,000. Included is the entire self-teaching Perfect Software family: Perfect Writer, a word processor; Perfect Speller, a 50,000 word dictionary; Perfect Filer, a data base manager; and Perfect Calc, a financial calculation system.

In addition you get MS-DOS, CP/M-86, Macro/86 Assembler, BASICA, Asynchronous Communications Support, Diagnostics and the Columbia Tutor program. This means your Columbia MPC is up and running right out of the box. Space Commanders and Fast Graphs show off the Columbia MPC's full-color graphics.

Way out front in value and performance.

With a list price of $3,995—including 128K RAM, 640K in dual disk drives, 8 IBM-PC compatible expansion slots, 2 serial and 1 parallel I/O, IBM-PC compatible keyboard, and color graphics monitor controller—the Columbia MPC is ready to go. And a complete 12MB hard disk system lists for $5,995—software included! B/W or color monitors and printers optional.

Made in U.S.A.—supported worldwide.

All Columbia hardware and software are backed by the “Call for Columbia” national service program. So, call us or our distributor for the dealer nearest you—and start looking at the Columbia MPC. It'll show you a whole new world of performance and value.

COLUMBIA DATA PRODUCTS, INC.

Commerical Computer Sales
Atlanta, GA
(404) 256-9190

Empire Micro Products
Rochester, NY
(716) 626-3660

MP Systems
Dallas, TX
(214) 385-8885

Mid Tech Associates
Desoto, KS
(913) 441-6565

Mid Tech Associates
Florissant, MO
(314) 837-5200

Mytec, Inc.
Sanford, FL
(305) 321-2301

Renaissance Technology Corp.
Concord, CA
(415) 676-5737

Southeastern Data Products
Lynchburg, VA
(904) 327-6286

Tek-Aids Industries
Arlington Heights, IL
(312) 570-7401

Tele-Terminals
Brooklyn Park, MN
(612) 328-3072

Waybern Corporation
Garden Grove, CA
(714) 534-4520

Perfect Software, Perfect Writer, Perfect Speller, Perfect Filer, and Perfect Calc are trademarks of Perfect Software, Inc. IBM is a trademark of International Business Machines. CP/M and MP/M are registered trademarks of Digital Research, Inc. OASIS is a trademark of Phase One. MS-DOS and XENIX are trademarks of MICROSOFT.

CIRCLE 115
Small computer caters to professional uses

Growing with the demands for more professional personal computers, Texas Instruments has taken several steps away from the game machines with its entry of the TI Professional Computer. This expandable system combines internal diskette and Winchester drives, enhanced communications, ergonomically precise keyboard, internal modem, and high resolution displays. In addition, voice management and English language command capabilities—usually available only on large mainframes in artificial intelligence labs—will be introduced for the computer this year.

The compact system unit houses an 8088 16-bit CPU and 64K-byte RAM that is optionally expandable to 256K in 64K-byte increments. The computer's 8K-byte system ROM is expandable to 16K. A 320K-byte built-in diskette drive is standard; an optional 5M- or 10M-byte Winchester drive, or a second 320K diskette, can be installed internally by users. Also featured as part of the main unit are diskette controller, 5-slot expansion bus, keyboard interface, parallel printer port, power supply, speaker, and monochrome or color CRT controller with 4K-byte video display memory.

High resolution data are presented on a 12" (30-cm) green phosphor monochrome display or on the optional 13" (33-cm) color display. Both CRTs use a 25-line x 80-col format and 720 x 300 pixels with the graphics controller option. Applications programs, even with extensive graphics, can operate with either display unit without modification. No reprogramming is required when changing displays.

Communications options provide a variety of protocols needed for smooth interaction with other computers and data bases. Both TTY and 3780 emulators are available for the computer in network environments. Standalone 3270 SNA, clustered 3270 BSC/SNA, 3101 emulation, and communications to TI's Business Systems minicomputers will be supported as part of the third-quarter 1983 enhancements. Either a 300- or 300/1200-bps internal direct connect modem, with auto-dial/answer capabilities, provides communications to other peripherals or data bases over ordinary telephone lines.

The low profile 97-key keyboard contains a 57-key typewriter layout, 18-key numeric keypad, 5 cursor control keys, and 12 special function keys. Upper- and lowercase characters and a selection of international character sets are available. The standard 256-character set is expandable to 512 for scientific and business use.

Omni impact printer model 850, as a companion to the system, prints at 150 cps and provides a variety of fonts, compressed print, and enhanced print options. The 850 also features raster graphics ability, which can be used to directly print graphics from the computer's display.

By supporting MS-DOS, CP/M-86, Concurrent CP/M-86, and UCSD p-System operating systems, the computer is compatible with BASIC, Pascal, FORTRAN, and COBOL. More than 100 third-party software applications, including a range of accounting, financial modeling, database access and management, graphics, and word processing packages are available. In addition, the computer has access to the large data base of programs written for CP/M-80 using a softcard supplied by Xedex Corp. Advanced integrated applications are already under development by third parties for introduction during 1983.

Also planned for this year is the natural language user interface. Derived from TI's research in artificial intelligence, the interface combines common English words and phrases into computer commands. Users construct sentences from word groups shown in a set of windows displayed on screen. Selected items from each window appear at the bottom of the video screen as standard English sentences describing the functions to be performed. The computer can also recognize and respond to voice commands through the voice management system. Combining speech processing, voice recognition, and telephone management functions in a single integrated internal unit, the 32-bit signal processing microcomputer based system recognizes an unlimited number of spoken words or phrases.

TI is also planning to increase user memory and add other I/O devices by year end. The computer is currently selling for $2595 for basic equipment. Texas Instruments Corp., Data Systems Group, PO Box 402430, H-651, Dallas, TX 75240.

Circle 261
Multiwire permits greater component densities with fewer signal levels. Using polyimide-insulated wire to form interconnections, Multiwire boards accommodate component densities of 2.0IC's per in² and greater.

Multiwire delivers better electrical performance. Our boards outperform multilayer in all applications requiring tight-tolerance on impedance controlled transmission lines.

Multiwire shortens the design cycle by weeks. We can design your board from as little input as a schematic or net list, reducing your in-house design time. And when you make revisions, you'll get new boards back in days instead of weeks.

Revising Multiwire designs costs thousands less. Instead of redrawing costly artmasters, we just key the change into our computer.

Introducing our Advanced Manufacturing Group. Multiwire technology provides the most advanced circuit boards. But sometimes even our leading edge designs are not enough for your requirements. That's why Multiwire has established the Advanced Manufacturing Group—a new facility with design and manufacturing specialists dedicated to solving the interconnection problems for your next generation of products. To learn more, just fill out and return the coupon.

MULTIWISE®
DIVISION
KOLLMORGEN CORPORATION
MULTIWISE NEW YORK-31 Sea Cliff Ave., Glen Cove, NY 11542 (516) 448-1428; MULTIWISE WEST-200 East La Palma Ave., Anaheim, California 92807 (714) 632-7770
MULTIWISE NEW ENGLAND-41 Simon St., Nashua, NH (603) 889-0083; MULTIWISE/ADVANCED MANUFACTURING GROUP-10 Andrews Rd., Hicksville, NY 11801 (516) 938-2000
MULTIWISE is a U.S. registered trademark of the Kollmorgen Corporation.
Visit our booth #1110-1112 at Electro/83
Flame retardant resins tailored to application designs

To meet UL flame retardant requirements for computer and business equipment enclosures, General Electric has provided four new resins tailored to increase design choices of materials without mandating overspecification. The new resins are derived from NORYL[®] N190 resin, a modified polyphenylene oxide-based thermoplastic. Introduced in 1964, N190 has become a commonly selected material for equipment housings. It does not corrode tooling as does flame retardant acrylonitrile-butadiene styrene (FRABS) material and thereby eliminates the cost of mold cleaning.

The resins provide low specific gravities (1.06 to 1.09, ASTM method D792) and thin-wall capacities down to 0.6" (1.5 cm) without sacrificing the UL listings. An ultraviolet grade resin also affords color stability under office lighting. Each resin combines high impact strength, rigidity, low gloss finish, broad processing window, and no corrosive plate-out during molding. The resins meet flammability requirements of UL STD 478 for computer room equipment and UL STD 114 for office and business equipment. All materials covered under these standards must also pass a mold stress relief test, during which the part is exposed to a 10 °C temp greater than the operating temp, or 70 °C for seven hours. The enclosure must not soften, warp, or distort. In addition, a 5 ft/lb falling-ball impact test must be satisfied.

As a replacement for the higher priced FRABS, CRT-200 resin is UL listed at 94 V-1/V5, UL STD 478. The resin also satisfies UL enclosure requirements for stationary business equipment and provides a heat deflection temp (93 °C at 264 psi, ASTM method D648) and impact strength that is superior to FRABS. Price in truckload quantity is $1.37/lb or 5.4 cents/in³. PC-180 resin, for personal/portable computers, is UL V-2 listed. Low specific gravity (1.09), greater tensile and impact strengths than FRABS, and a $1.20/lb or 4.7 cents/in³ cost are featured.

Low voltage machines that are not intended for computer room use and that operate at under 42 Vdc or 30 Vac can be designed with HB-235 resin. The material meets the less stringent UL HB flammability specs. Heat deflection temp is 235 °F (113 °C), which makes the resin comparable to both ABS and ABS/polycarbonate blends. The resin is $1.29/lb or 4.9 cents/in³.

UV-180 resin can solve the problem of ultraviolet light degradation of equipment under fluorescent lights. It is $1.49/lb or 5.9 cents/in³.

With the exception of the UV stabilized grade, all resins being introduced are priced below NORYL N190 or comparable materials; the UV grade has a $0.02/lb premium. General Electric Co, NORYL Products Div, One Noryl Ave, Selkirk, NY 12358. Circle 262

Computer puts printer, modem, CRT, and keyboard in one package

Access portable computer system integrates more peripherals into a single compact unit than other comparable systems, while keeping its retail price at $2495. Power packed system performance is derived from five high speed microprocessors. Included as standard features are a printer, internal communications modem, CRT monitor, two double-density 5¼" disk drives, keyboard, 64K user memory, operating system and software package, multiple I/O ports, storage compartment for 10 diskettes, and leather carrying case.

The full 64K RAM easily handles most software programs. Access is CP/M 2.2 compatible and comes with "Perfect Software," an integrated package with virtual memory programs that accommodate documents larger than the system's memory. Up to seven files can be simultaneously worked on, or any two files displayed on a split screen. Four programs equip users with word processing, spreadsheet, spelling correction, and database management capabilities. M BASIC from Microsoft and C BASIC from Digital Research are also included.

The built-in bidirectional printer delivers hard copy at 80 cps in four type sizes, including a condensed font with up to 132 chars/line output. In addition to the full 96 ASCII character set, the impact dot matrix printer provides full graphics capabilities and software driven type styles.

Communications links use an internal modem either through the direct connect modular phone jack for online operation, or through the acoustical coupler for telecommunications from any standard telephone. Transmitted data are simultaneously printed. The modem is adjustable from 0 to 300 baud, and includes manual originate and answer, auto-dialing, and directory support operating modes.

Detachable from the main unit, the low profile typewriter style keyboard has 15 function keys, cursor controls, and numeric pad. The amber 7½" (18-cm) CRT displays 80 characters on 24 lines and a 25th status line. Selectable attributes include inverse, blink, blank, underline, double underline, and half and full intensities.

Peripherals are easily interfaced to the Centronics compatible or bidirectional parallel port, to the two RS-232-C serial ports with software selectable baud rates to 9600, or to the fully implemented IEEE 488 port. An onboard controller/interface for standard 8½" floppy drives is included, along with a composite video jack for access to an additional monitor. The two 5¼" single-sided, double-density drives provide 184k bytes of storage per diskette. Optional are double-sided, double-density drives yielding 736k bytes of diskette storage.

An internal UPS gives up to one hour of portable system operation, and can be recharged from any standard household outlet at 12-V battery. The computer operates from 110 or 220 V. Access Matrix Corp, 2159 Bering Dr, San Jose, CA 95131. Circle 263
Low cost, high performance PCB CAD system

Performance equivalent to or better than that of most high performance minicomputer and mainframe based systems, but at lower cost, is promised for Cadnetix' CDX 3000 and 5001 microcomputer based CAD systems. The more sophisticated model 5001, a standalone workstation with 32-bit internal architecture, up to 3.5M bytes of RAM, 19" (48-cm) color display, 40M-byte 5¼" Winchester disk drive, and 1M-byte mini-floppy disk drive is priced at $74,500, including all software. However, the model 5001, with only 0.5M bytes of RAM and a 20M-byte Winchester starts at $59,500. This system is without advanced features such as automatic component placement and automatic trace routing. Both include a detachable low profile keyboard that meets ergonomic standards and a mouse input device. In addition to the components shown in the photo, a floor based card cage contains such peripherals as the disk drives, power supply, and capability cards.

Software packages provide an interactive schematic generator supporting hierarchical design, automatic component placement optimization, and high speed automatic trace routing. Interactive editing of automatic component placement, trace routing for manual control of critical areas, continuity and design-rule checking, automatic generation of PCB artwork and NC tapes for production, and automatic generation of design documentation are also software elements. The present operating system is a UNIX lookalike, but a UNIX compatible OS is planned for later introduction.

The system incorporates design verification/design-rule checking for automatic, continuous checking as designs progress. An improved router technique provides faster trace routing than the technology used in other systems. The object oriented approach to the user interface results in almost immediate productivity gains, instead of the typical 6-month learning curve on some other systems. The "undo" key lets the user immediately correct mistakes and prevents accidental loss of data due to operator error. It can reverse single instructions or a queue of wrong instructions. A fast-response graphics system reduces designer's wait time.

Future systems will include optional Ethernet communications interfaces that will connect the workstation to 20M bytes of online storage. Cadnetix Corp, 5797 Central Ave, Boulder, CO 80301. Circle 264

Latched EEROMs supply upward migration and 1-ms write time

A comprehensive 3-member family of EEROM chips pushes Seeq Technology's 1-year-old, 5-V memory devices to include an advanced set of expandable I/O functions, a variety of memory densities, and a complete 5-V system with onchip latches and the fastest available write time. The 2-micron EEROMS include 16K-bit model 52813, 32K-bit model 52823, and 64K-bit model 52833.

All are produced via dry plasma etch processing to compound density while cutting size. This scaled I2 oxynitride technology employs wafer stepper lithography and plasma metal etching, giving the 52833 a 64K-bit die area of less than 35k mil2. Through these processes, the 52833 chip can use a 4-transistor memory cell that measures 168 micron2. A minimum drawn channel length of 3 microns, coupled with a 6-micron pitch for metal and diffusion, are combined to produce a cell that is 60% smaller than that used in Seeq's earlier EEROM model 5213.

Such reduced cell size and increased density over 64K-bit nonvolatile memories make the 52B family EEROMs a viable alternative to EPROMs. At a die size equivalent to typical 64K EPROMs, a price per bit crossover becomes a new competitive advantage.

To achieve bus independence, the EEROMs have integrated system latches that are four times as dense and 45% smaller than 16K EEROM 5213. The need for system level components such as address, data, output, and chip enable latches are eliminated by providing these functions as an integral part of the memory chip. At the falling edge of write enable, the signals are latched internally to free all system bus lines for other operations. Write enable is the only signal required to remain valid for 1 ms during programming. One-ms write and erase times are billed as industry firsts for EEROMs and are also claimed to be 10 times faster than speeds provided by comparable EEROMs and EPROMs. A 250-ns read access time guarantees compatibility with most high speed microprocessors.

In addition to byte-clear and byte-write operations, the entire EEROM array can be cleared in a single 5-V only operation. The 52823 32K and 52833 64K chips also feature 5-V chip erase. Other EEROMs typically use in excess of 12 V, which is not readily obtainable in TTL level systems. Each 52B EEROM operates on a 5-V TTL level in read, write, and erase modes. Each byte may be erased or written up to 10k times.

Silicon Signature, Seeq's data traceability feature approved by JEDEC, is stored in ROM in every die and contains onchip device and programming information. Seeq's DiTrace feature stores production flow data to the wafer level on bits outside the normal addressable array.

The 16K model 52813 is available for $27.90/100 units. The 32K 52823, at $71, and the 64K 52833, at $185, are available in prototyping quantities. Seeq Technology Inc, 1849 Fortune Dr, San Jose, CA 95131. Circle 265
RS-232-C handheld telecomputer

Model TC 103 telecomputer system for hard-wired LAN installation in fixed or portable locations plugs directly into an RS-232-C port. System has a QWERTY-style full alphabetic keyboard, with control and shift functions to generate the full 128-char ASCII code set. User friendly help keys facilitate development of computer-initiated dialoguing software to reduce or eliminate operator training. A 16-char LCD display, variable scroll rate from 2 to 30 cps, and repeat key to allow review of the last 80 chars received are included. IXO, Inc, 6041 Bristol Pkwy, Culver City, CA 90230. Circle 266

Bell compatible, 1200-bps modems

DF03 series Bell 212A/103J compatible 1200-bps modems for rack mounting connect directly to public or private telephone networks and public switched telephone networks. RS-232-C/RS-423-A interface circuits are used. The DF100 mounting rack ($850) with internal 120-Vac supply accommodates all DF series modem modules. It can accept a redundant power regulator option that assumes the power load should the primary regulator malfunction. Modems are $750 for a basic unit and $950 for an autocall version that originates dialing from unattended stations. Digital Equipment Corp, Maynard, MA 01754. Circle 267

Rapid poll modem

MP-96 9600-bps modem can be set up in 20 ms while maintaining full-speed operation for both outbound polls and inbound responses. This operating mode extends the economies of multipoint operation, avoiding protocol sensitivity, load unbalance, and split-speed limitations. Modem can also operate 1 or more drops at 7200 or 4800 bps. Unit resumes operation immediately after short line interruptions. Paradyne Corp, PO Box 1347, 8550 Ulmerton Rd, Largo, FL 33540. Circle 268
CREATIVE MIXING OF LOGIC & POWER

Sprague BiMOS ICs Simplify Interface Designs

Sprague BiMOS Latch/Drivers can be advantageously employed in a variety of sink and source drive applications: relays, solenoids, stepping motors, LED or incandescent displays, thermal print heads, vacuum fluorescent displays, and many more.

These IC's incorporate CMOS inputs, latches, and control circuitry to provide minimum loading and compatibility with CMOS, PMOS, NMOS, and TTL. The bipolar Darlington outputs are suitable for use with a wide variety of high-voltage or high-current loads. The bipolar/MOS combination provides extremely low-power with maximum interface capability.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>V_{OUT}</th>
<th>V_{DD}</th>
<th>I_{OUT}</th>
<th>Engineering Bulletin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCN-4401A</td>
<td>4-Bit Latch/Driver</td>
<td>50V</td>
<td>18V</td>
<td>500mA</td>
<td>26180</td>
</tr>
<tr>
<td>UCN-4801A</td>
<td>8-Bit Latch/Driver</td>
<td>50V</td>
<td>18V</td>
<td>500mA</td>
<td>26181</td>
</tr>
<tr>
<td>UCN-4805A</td>
<td>Latched Decoder/Driver</td>
<td>60V</td>
<td>18V</td>
<td>40mA</td>
<td>26182</td>
</tr>
<tr>
<td>UCN-4806A</td>
<td>Latched Decoder/Driver</td>
<td>60V</td>
<td>18V</td>
<td>40mA</td>
<td>26183</td>
</tr>
<tr>
<td>UCN-4810A</td>
<td>10-Bit Serial-input, Latched Driver</td>
<td>60V</td>
<td>18V</td>
<td>40mA</td>
<td>26184</td>
</tr>
<tr>
<td>UCN-4815A</td>
<td>8-Bit Latch/Source Driver</td>
<td>60V</td>
<td>18V</td>
<td>40mA</td>
<td>26185</td>
</tr>
<tr>
<td>UCN-4821A</td>
<td>8-Bit Serial-input, Latched Sink Driver</td>
<td>50V</td>
<td>15V</td>
<td>350mA</td>
<td>26186</td>
</tr>
<tr>
<td>UCN-4822A</td>
<td>8-Bit Serial-input, Latched Sink Driver</td>
<td>80V</td>
<td>15V</td>
<td>350mA</td>
<td>26187</td>
</tr>
<tr>
<td>UCN-4823A</td>
<td>8-Bit Serial-input, Latched Sink Driver</td>
<td>100V</td>
<td>15V</td>
<td>350mA</td>
<td>26188</td>
</tr>
</tbody>
</table>

For the name of your nearest Sprague Semiconductor Distributor, write or call Sprague Products Company Division, North Adams, Mass. 01247. Tel. 413/864-4481.
Multifunction intelligent terminals

Access intelligent terminal product line provides simple terminal emulation to advanced local and wide area network systems. Included are clustered and standalone terminals, library of emulators and application programs, and software tools to support application development. LAN software operates under the Scott Environment Management System. Basic terminal starts with 64K-byte memory, expandable to 1M byte. Based on the 8088, each terminal has 1 microprocessor to execute the application program and a second micro to support network communications. Memory options include dynamic RAM, UVPROM, and nonvolatile RAM. Scott Systems, Inc, One Metropolitan Corporate Center, Marlboro, MA 01752.

Circle 269

Switch selectable concentrator

Micro8060 Concentrator Switch connects up to 8 Micro800/2 Data Concentrators, and operates as the logical hub of a network to allow any async channel on 1 concentrator to communicate with any other channel on that or any other concentrator. Add-on networking functions include switching, channel contention, queuing, and centralized management. Matrix, fixed destination, local, and class selection switching types are provided. Four-composite model is $2550; 8-composite version is $3250. Micom Systems, Inc, 20151 Nordhoff St, Chatsworth, CA 91311.

Circle 270

Combined multiplexer/statistical concentrator

Statcon series 11 brings software transparent remote statistical concentration to the company's CS11 line of multiplexers. Special microprogramming provides demultiplexing required to funnel remotely concentrated data into a single RS-232 computer port. Up to 64 local/remote lines can be connected to any DEC PDP-11 or VAX-11 system via a single backplane slot and without any modification of std software. Each remote link plugs into 1 local RS-232 port; remaining RS-232 ports can be allocated to local async line applications. Existing CS11 configurations can be converted to include Statcon 11 capability via PROM set change. Emulex Corp, 3545 Harbor Blvd, PO Box 6725, Costa Mesa, CA 92626.

Circle 271

Bus compatible protocol converters

Three bus compatible protocol converters for the LSI-11 Q-bus, Multibus, and S-100 bus feature 2 I/O ports, 8085 based microprocessors, and LED indicators and test switch under program control for diagnostics. The PCU-40 PCU-42/48, and PCU-52 have programmable controllers to serve a range of peripheral devices, connecting via RS-232 or Burroughs' direct connect (TDI) circuits. Options include baud rates from 50 to 19.8k bps and word lengths of 5 to 8 bits with odd, even, or no parity for sync/async data. Air Land Systems, 2710 Prosperity Ave, Fairfax, VA 22031.

Circle 272

Fiber optic communications system

Wavelink broadband fiber optic communications system transmits analog signals over 2 km using an LED source and FM transmission method. FM method operates with an ON/OFF action of the transmitting device to ensure system linearity. Unit is not susceptible to intermodulation distortion or diminished signal to noise ratio. An avalanche photodiode is incorporated for its photoelectric effect. Data option is built on a plug-in board that is fully interchangeable with audio boards. Serial async data is input via RS-232 interface. The Grass Valley Group, Inc, a Tektronix Co, PO Box 1114, Grass Valley, CA 95945.

Circle 273

Talk to the editors

Have you written to us lately? We're waiting to hear from you.
Digi-Data Cartridge Systems
Don't Care
Which Bus You're On.

Select just about any popular microcomputer. Digi-Data has a Series 70 Cartridge tape drive that's ready to go, adding up to 30 Mbytes of unformatted storage capacity to your system. Delivering data reliability through proven conservative electro-mechanical design. Performing now . . . without additional hardware or software design.

Cartridge tape drive systems are available in standard or serpentine configurations to record on ANSI standard 1/4" data cartridges and are supplied as a small, attractive desk top unit.

Model 70R systems house their controller within the desk top unit, and interface with any RS-232C port having asynchronous protocol emulation.

Models 70S, 70M and 70Q include single board imbedded controllers for S-100, Multibus * and Q-bus ** processors respectively. Compatible interface software is included for S-100 and Multibus configurations operating under CP/M *** or MP/M ****.

Model 70Q emulates DEC** TM11/TU10 magnetic tape subsystems, and is supported by RT-11V4, RSX-11M/4.0 and RSTS/ EV7.0 operating systems without modification. The Q-bus controller occupies one quad-slot.

So take the easy road to microcomputer bus-compatible storage. Select a Series 70 system from Digi-Data.

If you need conventional 1/2" tape systems, investigate our Series 40 start/stop line and our Series 2000 streamer, the best value in large volume Winchester drive back-up.

Three-way port sharing switches
Models 8351-D and 8352-D, RS-232 A, B, and C switches provide the capability to share 1 computer port among 3 peripherals. Model 8351-D ($160) switches 12 of the most required RS-232 interface signals and is sufficient for most port sharing applications. Model 8352-D ($180) switches all signals at the RS-232 interface and will satisfy any 3:1 sharing application. All desktop unit connections are made via 4 female 25-pin EIA connectors on the rear panel. The speed/code transparent switches require no power. Electro Standards Laboratory, Inc, PO Box 9144, Providence, RI 02940. Circle 274

Two DSU buffers and upgraded LADDs
The 832 and 835 digital service unit (DSU) buffers join Bell System dataphone digital service (DDS) links. DSU 832 interconnects DDS links operating with an RS-232 interface at data rates of 2.4k, 4.8k, or 9.6k bps. DSU 835 interconnects DDS links operating with a CCITT V.35 interface at 56k bps. The units are $1750 each. Added features to the family of local area data distributors (LADDs) provide MIL-188/114 interface capabilities for the 2200 and 2300 LADDs that now operate at rates to 2.5M bps. The 2300 LADDs can be interconnected to terminal equipment operating at 772k bps with a Bell 11 carrier operating at a line rate of 1.54M bps. The 2370 feature is available on all 2300 models operating with a V.35 interface at 1.54M bps. Avanti Communications Corp, Aquidneck Industrial Park, Newport, RI 02840. Circle 275

Multiprotocol converter
SNA/SDLC protocol converter SMRTE ONE (sync/async multiprotocol remote terminal emulator) allows use of both bit-oriented and char-oriented protocols, either separately or combined. Four serial ports and 1 RO printer parallel port are provided. Any serial port can be used as the main 110 while others are configured as required by attached hardware. The 24-char LCD calls up the main menu, which includes protocol desired, port location, baud rate, device selection, and diagnostic routines. All menu item selections can be set up from the front panel via push buttons. Unit price is $3995. Modemsplus, Inc, 217 E Trinity Pl, Decatur, GA 30030. Circle 276

Get your own
If you're reading someone else's copy of Computer Design, why not get your own? To receive a subscription application form, circle 504 on the Reader Inquiry Card.
The Architectural Breakthrough

The latest development in digital image processing is here! It's a major breakthrough in systems architecture from Vicom Systems, Inc. And it combines patented hardware and software features you've been waiting for to give you unequalled speed and flexibility in a variety of applications.

The Fully-Integrated System The VICOM Digital Image Processor is a versatile computing tool... the first to use the architecture of the Motorola 68000 microcomputer. The entire system—lookup tables, image pixels, registers, array processor, and RAM memory—resides in the direct address space of the 68000, providing the ultimate in accessibility and efficiency.

The VICOM system can operate as a real-time scene analyzer, a peripheral processor to a host computer, or a stand-alone digital image processor.

Image Processing... Without Programming The VICOM Digital Image Processor is easy and fast to operate. You can perform complex operations and make changes simply, without having to write a program.

The VICOM Image Processing Software package (V.I.P.S.) includes over 100 high-level interactive commands that significantly reduce project implementation and execution time.

Experience the VICOM Breakthrough for yourself. Call or write for more details and a demonstration.

Vicom Systems Inc.
2307 Bering Drive
San Jose, California 95131
(408) 946-5660 (800) 538-3905
Telex 171603 VICOM SYS

Vicom. The next generation in image processing.

Circle 123 for immediate interest
Circle 91 for information only
Compact 103J compatible modem
A Bell 103J compatible modem, the VS103P is mounted on a 24 in² PCB and features RS-232-C and TTL interfaces. Zero to 300-bps full-duplex operation with manual or automatic originate/answer capabilities are provided. The modem is FCC registered and TAP certified for direct connection to the switched network. Pulse or tone automatic dialer option stores up to 32 digits in memory. It is priced at $165 in lots of 100. Racal-Vadic, 222 Caspian Dr, Sunnyvale, CA 94086. Circle 277

Universal programmable current loop converter
Model 64 allows any computer to interface with current loop peripherals or utilize their internal current loop interface circuitry to drive remotely located RS-232 based peripherals. Current loop interfaces can be half-duplex/passive loop, full-duplex/passive loop, half-duplex/active loop, and full-duplex/active loop. The RS-232 port is switch selectable to support DTE or DCE interface. The converter provides for 20- or 60-mA current loops and operates from dc to 9600 bps. Remark Datacom Inc, 4 Sycamore Dr, Woodbury, NY 11797. Circle 278

Fiber optic plug compatible data link
Series of fiber optic RS-232-C data links are plug compatible replacements for most 4- and 9-wire EIA RS-232-C extension cables. Extending cables beyond the 50' (15-m) limit of a std RS-232-C cable, the links provide emi/rfi resistance, data security, reduced error rate, and also eliminate ground loops. Full-duplex async data rates from dc to 56k bps with less than ±4-µs pulse-width distortion over −20 to 80 °C range on cable lengths to 328' (1 km) are accommodated. Module HFM 505 kit ($165) contains fiber optic transmitter/receiver module and a cube power supply. DCE/DTE switch provides 1 module type for both DTE and DCE equipment. Honeywell Inc, Optoelectronics Div, 830 E Arapaho Rd, Richardson, TX 75081. Circle 279

Let's hear from you
We welcome your comments about this issue. Just jot them on the Reader Inquiry Card.
GTCO DIGITIZERS MAKE YOU NUMBER ONE

We're the largest producer of electromagnetic digitizers. So we can deliver field tested tablets in the quantity you need...when you need them.

Our Digi-Pad family uses new technology to provide unique digitizer features.

- PRESSURE PEN
 The pressure sensing pen option gives the operator a more natural input...perfect for the artist.

- 4D
 The 4D option provides another independent variable proportional to stylus tilt and direction...like a joystick.

- SELF DIAGNOSTICS
 A 4-tone alarm reports test results for all components including the tablet grid...insuring digitizer integrity.

Every Digi-Pad is compatible. So when you develop your software and interface around our smallest and least expensive Digi-Pad (under $1000), you can interchange any other size Digi-Pad without redesign. Digi-Pad is also compliant with U.L., FCC and many other standards.

Give your system an edge. Choose the number one digitizer from GTCO. Call us at (301) 279-9550 today.

GTCO Corporation
1055 First St. / Rockville, MD 20850
(301) 279-9550 Telex 898471
Multibus compatible datacom boards

MZ-80 processor board uses a 6-MHz Z80B CPU and has 32K-byte RAM and 4K-byte ROM. The Multibus compatible board is $960 in OEM quantities. MZ-MMB multipurpose memory board ($515) adds 32K bytes of 150-ns static RAM. MZ-MSIO ($800) I/O board provides 4 independent RS-232 serial I/O channels. MZ-SIO8 board features 8 independent serial I/O channels and is available in RS-232 ($640) and current loop ($1040) versions. MZ-RMC MZ-80 processor board uses a 6-MHz Z80B holds up to 8 boards and has dual, low noise fans and 150-W switching power supply. Thomas Engineering Co, 1040 Oak Grove Rd, Concord, CA 94518. Circle 280

Software emulates star microcomputer network

InfoShare communications package provides data exchange between remote microcomputers running either CP/M or MP/M and a central MP/M system. The remote micro can also be operated as an MP/M console in the same system. Security utility protects the host system from unauthorized entry. Protocol transfer of ASCII and binary files, simple ASCII file transfer between nonrelated terminal programs, communications with timeshare systems, and echo to printer are possible. ASCII commands can be passed to an auto-dial/answer modem. One-time system license charge is $250. The Information People, 443 Hudson Ave, Newark, OH 43055. Circle 281

Smart modem links computers at 1200 bps

MDM-1200 intelligent modem/dialer incorporates an 8-bit microprocessor and communicates data over telephone lines at speeds to 1200 bps. The full-duplex, direct connect modem ($1495) has a single RS-232-C port that controls the microprocessor's functions before entering data mode and transferring data to/from the telephone after entering data mode. Unit can be connected to either a CRT terminal or directly to a computer system. Simultaneous transmission/reception of serial binary data is at either 0 and 300 bps or at the fixed rate of 1200 baud for both synch/asynch formats. Cromenco, Inc, 280 Bernardo Ave, Mountain View, CA 94043. Circle 282

Floating point library

The 8051 FPAC/DPAC floating point libraries process floating point numbers in the proposed KCS IEEE single- and double-precision formats. They are delivered in optimized source assembly language form. In addition to std arithmetic operations and floating point conversion routines, the library includes functions to compute sine, cosine, tangent, arctangent, square root, common and natural logarithms, exponentiation, and floating point number to integer power. ASCII to floating point and floating point to ASCII conversions are also included. U S Software, 5470 NW Innisbrook Pl, Portland, OR 97229. Circle 284

C compiler with CP/M and UNIX compatibility

A complete systems implementation of C gives application program compatibility with both CP/M and UNIX OS. The C compiler, designed for 16-bit 8068 and 8088 based machines, works with the company's 16-bit utilities, and includes a relocating linker and assembler as part of the package. The compiler also has built-in features of the UNIX error checking LINT program. Digital Research, PO Box 579, 160 Central Ave, Pacific Grove, CA 93950. Circle 285

Tell us what you like
Did you remember to rate the articles in this issue of Computer Design? Turn to the Editorial Score Box on the Reader Inquiry Card.
For DEC* Computers, 100% Compatible.

For DEC Owners and Users, 100% Essential.

Thousands of New Products. 100% DEC-Compatible.

All the latest hardware, software, services and supplies designed to run on your DEC computer. All the DEC-compatibles you’ve read about, heard about, but have never seen demonstrated. Plus, thousands more. Newer and better than anything on the market today. More DEC-compatibles than at any other show in the world!

Over 250 Vendors. 100% DEC-Friendly.

Meet the vendors who can help your DEC system reach a new standard of performance. Because you never have to ask, “Is it DEC-Compatible?” you get fast answers to the really important questions. It’s the one Show for everyone who owns, manages, or uses a DEC computer. So bring the entire decision-making team: top management, financial management, DP management and senior staff.

Especially for DECUS* Conference Registrants. 100% Free.

It’s easy to attend DEXPO East 83. And hard to miss. Especially for DECUS members attending the St. Louis conference. Free shuttle buses will take you from the Show to the conference in just five minutes. And conference attendees will be able to use their DECUS badges to enter the Show without paying a registration fee.

DEXPO™ East 83

The Third National DEC-Compatible Industry Exposition

Kiel Auditorium, St. Louis
May 22-24, 1983

MAIL TODAY FOR MONEY-SAVING REGISTRATION INFORMATION

☐ I want to save time and money on my DEXPO East 83 registration, air fare, hotel accommodations and car rental. Send complete information.

☐ Send ________ extra copies for my associates.

NAME ____________________________

TITLE ____________________________

COMPANY _________________________

ADDRESS _________________________

CITY ____________ STATE ______ ZIP ______

☐ I am interested in exhibiting in the Show. Call me at () ________.

*DEC and DECUS are registered trademarks of Digital Equipment Corporation.
Development software for TMS9900
System-99 enables any CP/M-80 microcomputer to serve as a software development station for TI's TMS9900 microprocessors. The software encompasses the TI 990/10 and 990/12 assembly languages with extensions to treat the TMS9940 processor. A macro assembler, interactive editor/assembly, text editor, and cross-reference generator are featured. System programs must be offloaded to the target processor for test as a direct transfer from memory via byte stream over a CPU port or via .COM or .HEX disk files. Individual diskette systems are $150. Allen Ashley, 395 Sierra Madre Villa, Pasadena, CA 91107. Circle 286

Ada and Pascal under UNIX
An Ada compiler for the Concept/32 family of 32-bit computers provides for application software development under UNIX. Future validated versions of the compiler will accept the programs without modifications. The Pascal compiler, which also runs under UNIX, is compliant with international standards. Both compilers generate machine code via the c compiler for Concept/32 computers. Object programs execute directly at raw machine speeds. Ada, Pascal, and c subprograms can be mixed in a single program. Usage charges are $10,000 for Ada and $6000 for Pascal. Gould Inc., S.E.L. Computer Systems Div, 6901 W Sunrise Blvd, PO Box 9148, Ft Lauderdale, FL 33310. Circle 287

Application program development for 68000 based systems
ASM-68000 structured macro cross assembler and the Link-68000 relocating linkage editor package can be used for 68000 based microcomputer applications development. ASM-68000 assembler translates assembly language source statements into relocatable object code for the Link-68000 linker. The code is then combined into an absolute load module for loading into the Mostek AIM-68000 in-circuit emulation module. This module works with the Radius remote access development system for use in a host computer environment. Package is $3000; a software license agreement is required. Mostek Corp, 1215 W Crosby Rd, Carrollton, TX 75006. Circle 288

CP/M communications via HASP
Haste software package allows CP/M based microcomputers to communicate via the IBM HASP bisynchronous protocol. Incoming data can be directed to a disk file, console, printer/plotter, or any combination of these units. Screen-oriented text editor allows jobs of 17 lines or less to be entered and sent without leaving Haste. System requires 64K memory, CP/M-80, interrupts, and synchronous modem. Haste disk and manual is $500. Florida State University, Computing Center, Tallahassee, FL 32306. Circle 289

Talk to the editors
Have you written to us lately? We're waiting to hear from you.
The MSP-3000 32-bit floating point array processor provides a level of programmability that other array processors don't. It includes a large Fortran callable library containing vector, matrix and signal processing functions. Additional mini-programming and microcoding levels simplify and speed easy development of special algorithms. Available programming tools include a symbolic assembly language, cross assembler, loaders and debuggers.

Complete systems, including 256 kilobytes of memory, array library and support software for the LSI-11*, PDP-11*, or VAX* are under $25,000 in ten-unit quantities.

The DPG raster display controller attaches directly to the MSP-3000 internal bus. A high resolution display of up to 1024 x 1024 pixels is refreshed from the MSP-3000 data memory. The host bus need not be tied up to transfer processed data to the display.

Specifications
- **Speed**: Five million floating point operations per second
- **Memory**: 256KB, 512KB, 1MB, 1.5MB, 2MB
- **Display Format**: 1282, 2562, 5122, 10242, 1, 2, 4, 8, 16, 32, 48 bits/pixel
- **Options**: Parallel I/O, joystick, color or b/w monitor

*LSI-11, PDP-11 and VAX are trademarks of Digital Equipment Corporation.
BINARY CODED DIP SWITCH

Linear Action; 10 or 16 station

The pacesetter in DIP Switch design does it again—a unique linear actuation concept that offers new options in circuit control.

The actuator moves along the primary axis of the switch, connecting appropriate terminals to common for each switch position. The result is a BCD output in a 10 station switch, and a hexadecimal output in a 16 station switch. The switch is rated to make and break 10 mA at 30 mVDC for 2,000 cycles (one complete operation back and forth through all switch positions); 25 mA at 6VDC, or 50 mA at 30VDC for 1,000 cycles.

Other linear action models include 10 or 16 station tap switches with common bus, and 10 or 16 station switches that selectively close adjacent contact pairs.

Like all Grayhill DIP Switches, these new linear action models are available off the shelf from the factory or from your Grayhill distributor. Call or write for your FREE catalog of DIP Switch specifications and prices.

NEW
GRAYHILL
BINARY CODED
DIP SWITCH

In-circuit emulator forms development systems

"The Emmy" universal line of in-circuit emulators can be tied to existing computers or can be purchased as packaged systems, with a DEC Professional 325 small computer for single-user applications or a DEC PDP-11/23 for multi-user environments. Hardware includes a central 2-port RS-232 controller and pod for 8086/8088 and 8051 devices. Controller passes data from the terminal to Emmy software, which monitors and controls execution of microprocessor programs during debugging. Software includes OS, text editors, and microprocessor cross assemblers and cross simulators. Existing PDP-11 applications remain effective. Station with controller, 8086 pod software, and CRT terminal is $5200. Digital Automation Corp, 2 Fifer Ave, Corte Madera, CA 94925. Circle 290

CP/M compatible STD bus microcomputer

ABL-1 general purpose, CP/M compatible STD bus 8-bit system has 64K-byte static RAM, 2 thin-line 8" floppies (up to 3.2M-byte double-density storage capacity), a single-density controller that supports up to four 8" double-sided floppy drives, and two RS-232-C ports. Both 4-MHz Z80A and 6.144-MHz 8085 CPUs are available. ABL-1 Auto-BIOS firmware is 2732A PROM resident and includes bootstrap routine and hardware self-test programs. All metal ABL-1 ($6295) comes in a RETMA 19 x 7 x 48 cm rack with optional side panels for table mount. Pro-Log Corp, 2411 Garden Rd, Monterey, CA 93940. Circle 291

Realtime software analysis

The 91A24 data acquisition module for the DAS 9100 digital analysis system provides realtime analysis of software operation during software development and integration. Module has extended Define Mnemonics feature for microcomputer systems operational analysis. Data collection and disassembly of software flow functions can also be specified. Up to 4 modules/system permit a maximum of 96 channels of synchronous software acquisition with bus cycles down to 100 ns. For multiplexed address and data buses, the module accepts the address, then the data, at intervals down to 50 ns. Async acquisition is selectable in rates from 100 ns to 5 ms. Price is $5500. Tektronix, Inc, PO Box 500, Beaverton, OR 97077. Circle 294

Automated custom IC design

ZyPAWS (ZyP automated workstation) for automated design of custom ICs based on standard cell libraries uses the 32-bit virtual memory Prime 2250 computer, which runs under the PRIMOS OS and supports up to 20 users. Model ZyPAWS is a frontend workstation for logic and circuit simulations, and test program generation. ZyPAWS II fully integrated workstation has color graphics capability for automatic cell placement and routing. ZysPICE enhanced circuit simulation program based on SPICE version 2.E includes small geometry transistor models. ZyPSIM proprietary event driven logic simulator yields silicon level timing predictions to guarantee delivery of ICs that correspond to the ZyPSIM output. ZyTEST proprietary software modules convert simulator output into Sentry series compatible automatic test programs. ZYPART propriety programs automatically generate cell placement and routing directly from the ZyPSIM network file. ZyMOS Corp, 477 N Mathilda Ave, Sunnyvale, CA 94088. Circle 292

Low cost emulation support for 68000

ES-68000 provides the MC68000 16-bit micro and 8080 Z80, and Z8000 families with in-circuit emulation, running the user's system in real time up to 10 MHz (12.5-MHz capability planned). Emulation debugging requires no space, uses no I/O ports, does not interfere with interrupts, and requires no modification to the system under test. Unit also features a 2046 step x 72-bit wide trace history, breakpoint system, and optional 16-channel logic state analyzer. The emulator can stand alone or run from a remote computer. Price with options is $9950. Applied Microsystems Corp, 5020 148th Ave NE, PO Box 568, Redmond, WA 98052. Circle 293
New Amdek

3” micro-floppydisk drive system!

AMDISK-III ... the engineer's choice:

- New 3” hard plastic encased diskette.
- Up to 1 megabyte storage. (unformatted)
- Plug-in compatible with 5¼” drives.
- Compatible with IBM-PC.

Specifications

- Capacity
 - Unformatted Per Surface: 250K
 - Media: 2
 - Tracks: 80
- Recording
 - Max Recording Density: 8946
 - Track Density: 100
 - Transfer Rate: 250K
- Access Time
 - Average Access Time: 55
 - Track-to-Track: 3
 - Setting Time: 55
 - Average Latency Time: 100
 - Motor Start Time: 1
 - Disk Speed: 300
- Reliability
 - Error Rates: 10^-3
 - Soft Error: 10^-3
 - Hard Error: 10^-3
 - Seek Error: 10^-3
- Media: 3 inch Cartridge
- Drive Interface: Plug compatible with 5.25 inch FDD

External Interface

- Connector: 37 pin “D” shell connector

Evaluation samples $480

Includes two-drive Amdisk unit with built-in power supply, 4 diskettes and application literature. Call (312) 364-1180.

The AMDISK-III Micro-floppydisk System is an engineering breakthrough in disk size, storage capacity, media protection and user convenience. Designed for microcomputers for many applications, the Amdek system is ruggedly constructed to provide years of trouble-free operation. Warranty is 90 days (parts & labor).

Put the new AMDISK-III to test ... its recording format, data transfer rate and disk rotation speed are compatible with 5¼” floppy disk drives. Call, or write for evaluation samples at only $480.00 ... or circle the reader service number for full technical details.

See us at NCC/83 Booth P7638
2201 Lively Blvd. • Elk Grove Village, IL 60007
(312) 364-1180 TLX: 25-4786

Amdek ... your guide to innovative computing!

CIRCLE 131
At last, plug-in parallel processing in a 32-bit supermini system.

Perkin-Elmer announces the Model 3200 Multiple Processing System, an exciting new concept for demanding real-time applications.

Room to grow
The Model 3200MPS gives you extraordinary system expandibility. You can start with a host CPU and one auxiliary processing unit (APU). Then as your needs grow you can plug in more performance by adding as many as eight additional APUs.

Should you need even more horsepower, plug-in parallel processing lets you add exactly what you need as you need it—from a single APU to a whole fleet of multiple processing systems.

And no matter what the size of your configuration, a central point of control and management is provided by a single copy of our field-proven OS/32 operating system.

Design flexibility
With parallel-processing APUs you can take advantage of application segmentation and structured programming techniques to speed system development. You can segment your application into multiple task modules, with each APU performing a set of related functions. To further optimize system performance, you can easily re-allocate tasks among the APUs.

Your Model 3200MPS provides maximum flexibility for software development, reliability, and system maintenance. To incorporate new design changes or correct problem modules, simply work on the problem module while your system continues to operate. And the Model 3200MPS can be structured to permit continued system operation though one or multiple APUs may fail. When so structured, the APUs can receive immediate maintenance attention while the system continues to run or they can wait for routine scheduled maintenance.

And our state-of-the-art universally optimizing FORTRAN VIIZ enables you to use modular programming techniques without sacrificing real-time efficiencies.

To find out more about how you can plug into all the advantages of plug-in parallel processing minis, mail the coupon or call today: The Perkin-Elmer Corporation, Two Crescent Place, Oceanport, NJ 07757. Tel: 800-631-2154. In NJ, 201-870-4712.
In-circuit emulator for MK68000 microprocessor

AIM-68000 in-circuit emulator for the MK68000 16-bit microprocessor works with Mostek's Radius and Matrix development systems. The 2-board set features realtime emulation at clock speeds to 10 MHz with no wait states, and allows operation in standalone mode for software debugging without the target system. Flexible breakpoints trigger from hardware, timer, or software. Single-step emulation with break on register contents using non-realtime emulation is also possible. The emulator features a non-realtime emulation register trace memory plus 16K words of emulation memory that can be mapped into eight 2K-word blocks addressable on any 2K-word boundary. Mostek Corp, 1215 W Crosby Rd, Carrollton, TX 75006.

Circle 295

Low cost 80286 software development

The DV286 80286 software development vehicle ($2495) works with CP/M-80 and CP/M-86 based development systems, or Intel development systems running the 8086 assembler. A MACRO286 (80286 instruction macro package) and execution vehicle (IEEE 796 compatible board with iAPX286 microprocessor and full virtual memory capability) must be installed. Software can be developed on the host and then loaded to the execution vehicle over an RS-232 port. PROM based DEBUG286 provides single-instruction execution, breakpoint setting, memory disassembly, and examine/modify of memory, I/O, and registers. Microbar Systems, Inc, 1120 San Antonio Rd, Palo Alto, CA 94303.

Circle 296
Following the successful lead of our International linear series, these all-new, high-quality switchers are designed specifically for products sold throughout the world...resulting in easier international marketing and bigger profits for you.

Multiple Outputs, With Worldwide Capabilities

Depending on the model, the new International Series offers up to 5 outputs to accommodate today's most popular applications...including small computers, terminals, peripherals, word processors, disk drives, Winchesters, and printers. At present, eleven models are available, ranging from 40 to 250 watts. Each has worldwide AC input capabilities which are field selectable.

Meets Domestic & International Safety Standards

Our new switchers are designed to meet VDE, UL, IEC, CSA, as well as most other regulatory agencies worldwide. We use VDE-approved components where required, in addition to the appropriate creepage, insulation, and clearance distances. The International switchers also meet the emissions limits of FCC Docket 20780 Class A, and VDE 0871/6.78 Class A. All of which adds up to easier system approval for products targeted for major international electronics markets.

Lightweight, Small Size, and Efficient

Incorporating the very latest state-of-the-art in switching technology, the new International Series switchers offer all the benefits of switching power supplies — high efficiency, low heat dissipation, light weight, small size and simple construction. Add these advantages to POWER-ONE's traditional quality and low cost, and there's no better buy in the world...or for the world!

Send for our new brochure!

<table>
<thead>
<tr>
<th>MODEL</th>
<th>+12V</th>
<th>-12V</th>
<th>+5V</th>
<th>+24V</th>
<th>OUTPUT POWER</th>
<th>CASE SIZE (inches)</th>
<th>PRICE SINGLE QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPL40-4000</td>
<td>2.00</td>
<td>3.92</td>
<td>6.30</td>
<td>$105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL53-4000</td>
<td>2.00</td>
<td>3.92</td>
<td>6.30</td>
<td>$125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL65-5000</td>
<td>2.10</td>
<td>4.25</td>
<td>8.25</td>
<td>$150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL130-4000</td>
<td>2.45</td>
<td>5.00</td>
<td>10.50</td>
<td>$198</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL200-4000</td>
<td>2.45</td>
<td>5.00</td>
<td>13.00</td>
<td>$270</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Innovators in Power Supply Technology"

POWER-ONE Quality - Now in Switchers

POWER-ONE, Inc. • Power One Drive • Camarillo, CA 93010 • Phone: 805/484-2806 • 805/987-3891 • TWX: 910-336-1297

Outside California Call Toll Free 800/235-5943

CIRCLE 134
Eight gang EPROM/EEPROM programmer

Model 8204 programs or verifies from 1 to 8 EPROMS or EEPROMS. As a free standing unit it performs blank tests, compare, and copy operations with a master. Two-way data transmission is provided for up/downline loading from a computer via RS-232-C serial interface. Virtually all EPROMS are programmable. If a fault is detected, power shutdown occurs automatically, the condition is displayed, and a fault alarm is audibly indicated. All functions are performed without personality modules or other accessory devices. Operating voltage is 110/220 Vac ±15%, 50/60 Hz. Sherman Pirkle, Inc, 3 Captain Parker Arms, Lexington, MA 02173.

Circle 297

Low cost 6502 microprocessor system analyzer

Interactive microprocessor in-circuit system analyzer for 6502 software development, the DA6502-A is $279 in single quantity. The portable analyzer allows the user to easily examine processor registers, read/modify memory locations, halt a program at a specific address, step-through a program, and stop a program at a location after a number of loops have been completed. The standalone, clip-on microprocessor analyzer has an 8-digit hex display. Microprocessor is keyboard accessed with 24 switches. Unit is approx 6.25" x 7.5" x 3.5" (15.88 x 19.1 x 8.9 cm). DA-TECH Corp, 92 Steamwhistle Dr, Ivyland, PA 18974.

Circle 299

VERSABUS MEMORIES

MICRO MEMORY MEETS YOUR REQUIREMENTS

HIGH DENSITY DRAM

MM-68000D
- 512K bytes
- 400 nsec cycle time
- On-board real time calendar/clock
- Module selection on 1000 boundaries up to 16 Mbytes
- Write-protect in 32K byte increments

NON-VOLATILE CMOS

MM-68000C
- 128K bytes
- 250 nsec cycle/access time
- On-board real time calendar/clock
- 2 years data retention with on-board non-rechargeable batteries
- 2 months data retention with on-board rechargeable batteries

First in add-in memories for microprocessor systems

9436 Irontdale Ave.
Chatsworth, California 91311

Telephone: (213) 998-0070

CIRCLE 135 COMPUTER DESIGN April 5, 1983
Take this:

Add this:

dc to 150 MHz bandwidth
10 ns settling
time to 0.2%

With the revolutionary new CLC103 op amp, all you need is one gain setting resistor and ±Vcc. The feedback resistor from output to inverting input is internal. There’s no extra circuitry to design. No compensating networks either. And the bandwidth (-3dB) will hold for gain settings from one to 40, inverting or non-inverting. What’s more, the CLC103 delivers an impressive 6 V/ns slew rate, flat gain-phase response from dc to over 100 MHz, plus unconditional stability... without external compensation. And in 100 piece quantities, it’s priced at just $115.

Choose from an industrial or military version. But be sure you choose the CLC103. Because you won’t find a fast settling, wideband op amp that’s higher performing... or easier to use.

For complete details, call (303) 669-9433. Or, write Comlinear Corporation, 2468 E. 9th St., Loveland, CO 80537.

Comlinear Corporation

CIRCLE 136

SYSTEM COMPONENTS/TEST & MEASUREMENT

Signature analyzer with HP-IL
HP 5066A signature analyzer ($995) provides full-option programmability on HP’s interface loop (HP-IL). Fully programmable HP-IB (IEEE 488) option ($300) helps suit it to signature measurement for automated test stations. Composite signature function sums individual node signatures. The 25-MHz clock rate extends measurement capability to high performance digital circuits. CMOS logic and TTL thresholds are featured. Display and unstable light are latchable to catch intermittent faults and unstable signatures. Contact local Hewlett-Packard sales offices.

Circle 300

Benchtop analyzer tests linear/digital parts
LTS-2012 benchtop component test system evaluates linear, data conversion, and digital ICs and provides 16-bit overall system measurement accuracy, dual-floppy drives, integral alphanumeric keyboard and display, and BASIC and menu-style programming. Disk drives have 368K-byte storage. Std software for lot yield analysis, lot parametric distribution, and test datalog and library of turnkey test programs written to manufacturers’ specs are available for all device families. Boards are available for DACs, ADCs, op amps regulators, digital devices, and a user prototype board for custom device testing. Calibration board verifies internal 16-bit accuracy. Base price is $31,500. Analog Devices Inc, Rte 1 Industrial Park, PO Box 280, Norwood, MA 02062.

Circle 301

Low cost, modular logic analyzer
NPC-748 logic analysis system has 32 state channels and eliminates the integral floppy disk drive and its associated disk controller board. However, all items are self-contained modules that can be readily plugged back into the NPC-748 to upgrade it to an NPC-764 analysis system. All test/measurement features and accessories available for the NPC-764 are identical for the NPC-748. These include 16 channels of timing analysis, dedicated microprocessor probes, high speed analog waveform recording, bidirectional RS-232 analysis, and counter-timer/signature analysis. Functions can be used individually or internally linked. NPC-748 is $11,500; NPC-764 is $16,900. Upgrade kit is $6200. Nicolet Paramonics Corp, 201 Fourier Ave, Fremont, CA 94539.

Circle 302

Magnetic bubble memory tester

WJ-1455 magnetic bubble memory test system for virtually all magnetic bubble memories features expanded error logging capabilities and remote diagnostic functions. Characterization software package, graphics capability, automatic temp chamber control, and networking of test systems for centralized data collection/analysis are also featured. All previous magnetic bubble memory test software from the company will operate unmodified with WJ-1455. Watkins-Johnson Co, 2525 N First St, San Jose, CA 95131.

Circle 303

Bandwidth test set
Model 70 portable bandwidth tester measures end to end frequency domain bandwidth of a fiber optic cable system. The self-contained transmitter and receiver are available in 3 wavelength options: 850, 1300, and 850/1300 nm. Frequency range is 10 to 400 MHz. At 850 nm, with 50-micron core graded index fiber, the tester can handle fiber losses of 34 dB at full bandwidth, and 40 dB at 100 MHz bandwidth. At 1300 nm, allowable losses are 20 and 26 dB. Using peripheral equipment, frequency range can be extended to 1 GHz and allowable losses increased by 10 dB. Siecor Corp, 610 Siecor Park, Hickory, NC 28603.

Circle 304
Our new Esprit III™ is a plug-to-plug replacement for the TeleVideo TVI-950. Same command set. Same keyboard layout. The same features. Even the same user-PROM capability.

But Esprit III goes TVI-950 one better. And that one important difference is price. Esprit III costs $300 less. In fact, it costs $100 less than TeleVideo's far less capable TVI-925.

Look at the numbers. TVI-950 performance for less than TVI-925 cost. You'll agree. Esprit III is the best one.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Esprit III</th>
<th>TVI 925*</th>
<th>TVI 950*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffered mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Programmable function keys</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Line graphics</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Page/line transmit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Smooth scrolling</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Price</td>
<td>$895</td>
<td>$995</td>
<td>$1,195</td>
</tr>
</tbody>
</table>

*Trademarks of TeleVideo Systems, Inc.

Esprit Systems, Inc., Hazeltine Terminals Division, 500 Commack Road, Commack, NY 11725 (516) 462-5598

See us at NCC Booth W6288
Enhancements for small computers
Optional binary synchronous communications adapter attaches the IBM PC to host systems or other IBM PCs via switched or leased line networks using BSC protocols. Installable in 1 of the 5 system expansion slots, it operates up to 9600 bps. An external modem must be connected between the adapter and telephone line. Price is $300. Binary synchronous 3270 emulation, version 1.0 software, when used with the BSC adapter, allows the IBM PC to act as a terminal that can communicate with a host system as if it were a BSC 3270 device. It requires 128K bytes of user memory. Price is $700. IBM Corp, System Products Div, PO Box 1328, Boca Raton, FL 33432.

Circle 305

Enhanced supermicrocomputers
Supermicro 64X and 32X multiprocessor microcomputers support 64 and 32 concurrent users. Model 64X has 136M-byte disk capacity that is expandable to 272M bytes. Model 32X has 60M-byte disk capacity expandable to 240M bytes. Both systems feature Z80B based file processor with 256K RAM and double bus transfer rates of 400K bytes/s. The X series application processors (Z80A 64K processing boards) are also available ($995). Basic Supermicro 64X with 136M-byte disk, 500K-byte floppy, and 32 application processor slots lists for $22,995. Supermicro 32X with 60M-byte disk, 500K-byte floppy, and 32 processor slots lists for $18,995. Molecular Computers, 251 River Oaks Pkwy, San Jose, CA 95134.

Circle 306

CP/M processor card for DEC computers
Model 100 CP/M plug-in processor card for PDP-11 and LSI-11 computers contains a 6-MHz, Z80 processor, 64K-byte RAM, and computer interface to either the Unibus or Q-bus. When the CP/M OS is running, host computer serves as an I/O processor for the Z80. Diskettes in CP/M format may be read to and written from directly. Virtual CP/M disks can be to 33M bytes. Users can easily switch between RT-11 and CP/M. Card with CP/M software, license, and RT-11 control program is $1250. Decmation, 930 Tybalt Dr, San Jose, CA 95127.

Circle 307

Proportional Joysticks
Small Size
Big Performance

They're only a little over an inch long and weigh under an ounce, but their performance is king-size.
Operation is easy and natural, promoting higher speed and accuracy in positioning and tracking tasks. Resolution is infinite, with continuous output and no dead zone. Rugged construction allows flawless operation even in severe environments. And mean time between failures is 200,000 hours, with a minimum of 10,000,000 cycles.
Small wonder these joysticks have been used so successfully in computer graphics, visual displays, fire control systems, hoists, vehicle control and robots, among other applications. Chances are they could be useful to you, too.
Want to find out? Just call or write us for more information.

Measurement Systems, Inc.
121 Water Street, Norwalk, CT 06854 203-838-5561

High end, 8-bit CMOS microprocessors
HD630IX series of CMOS 8-bit microprocessors in 1-, 1.5-, and 2-MHz versions ($28, $34, and $41) incorporate 4K-byte ROM and 192 bytes of RAM, which are both externally expandable to 64K bytes. Units provide synch/asynch serial communications interface circuitry, baud rate generator, and three 16-bit and one 8-bit timer/counters. Series is software compatible with the company’s CMOS 8-bit HD6301V microprocessor, and upward compatible with NMOS HD6801S and HD68000. Features include 45 I/O lines, 8 output lines, memory interface, 88 instructions, error detection, and sleep/standby power save modes. Hitachi America, Ltd, 1800 Bering Dr, San Jose, CA 95112.

Circle 308

CMOS single-chip microcomputers
TMS7000 and TMS7020 microcomputers have typ power dissipation of 30 mW at 5 V and also feature a wakeup mode that dissipates 4 mW and a halt mode that typ requires 2 mW. TMS7020, a CMOS version of the TMS7020 NMOS microcomputer, has 128 bytes RAM and 2K bytes onchip ROM. Features include 32 I/O lines, 1 internal and 2 external prioritized interrupts, an 8-bit timer with programmable 5-bit prescaler, 64K-byte address space, and a stack for control and data storage. The CMOS TMS7000 ROM-less 8-bit micro is available for software development. Both devices are in 40-pin, 600-mil, plastic DIPs. Texas Instruments, Semiconductor Group, PO Box 401560, Dallas, TX 75240.

Circle 309

Floating point hardware for MC68000
SKYFP for MC68000 microcomputers running on the Multibus or VME-bus is a single-card processor capable of 3-msec floating point add/subtract/multiply operations on 32-bit single-precision data, and 12-msec operations for 64-bit double-precision data. Square root, logarithmic, and trigonometric functions on IEEE std 32-bit single-precision data and 64-bit double-precision floating point data can also be performed. Completely transparent to the user, processor requires no modification to existing FORTRAN, Pascal, or C programs. Runtime modules can replace existing software emulation subroutines. Price is under $1000 for OEM quantities. Sky Computers, Inc, Foot of John St, Lowell, MA 01852.

Circle 310
Rugged magnetic amplifier regulated switch-mode power supplies provide state-of-the-art efficiency plus power fail circuitry.

Elpac's 23 years of proven experience provides the MASS-300 (300 Watts) - the first in a new family of multiple output, switch-mode power supplies.

Check these features:
- Typically 80% efficiency.
- State-of-the-art design employing high frequency, magnetic amplifier regulators for auxiliary outputs.
- High efficiency regulated auxiliary outputs result in saving storage energy in the input filter capacitors, therefore providing longer hold-up time.
- Power fail circuit monitors stored energy in the input filter.
- Power limited and thermally protected against excessive power conditions.

Now, check these specifications:
- **MASS-300** - The "Ultimate" of switching regulators at an affordable price of under $1.00 per watt in OEM quantities.
- Packaged in a convenient 1.6 watts per cubic inch (15.00" x 4.95" x 2.50") open or enclosed chassis.
- AC Input of 90-132/180-264 VAC at 47-440 Hz.
- DC Outputs: 5v, 25A (30A Peak); 12v, 4A (6A Peak); 12v, 4A (6A Peak); 24v, 4A (6A Peak).
- All outputs regulated.
- Full rated to 55°C with air flow.

Complies with Safety Specifications:
- UL 478/1012*
- CSA 22.2-154*

For detailed specifications on our new MASS-300 or for a free catalog or applications assistance on our full line of power supplies and low power DC-DC converters, call or write today!

Elpac Power Systems
3131 S. Standard Ave.,
Santa Ana, CA 92705
(714) 979-4440 • TWX 910-595-1513

*Recognition pending.

Elpac has a reputation where reliability comes first. We've done it again with MASS-300. Plus, a worldwide network of over 200 distributors providing fast, responsive delivery at an affordable price.
User programmable, single-chip microcomputer

A user programmable version of the F3870 single-chip microcomputer, F38F70 is a complete 8-bit microcomputer on a single MOS IC with 2K-byte PROM replacing the 2K-byte ROM on the F3870. Programming is via a std PROM programmer and programming board. ROM code can be easily transferred to the F3870. The F38F70 ($29.70) executes the F8 system and F387X family instruction set of more than 70 commands and features 64 bytes of scratchpad RAM, a programmable binary timer, and 32 bits of TTL compatible I/O. Fairchild Camera and Instrument Corp, 3420 Central Expressway, Santa Clara, CA 95051. Circle 311

Convection cooled single-board computer

DS1-4/6 single-board computer is packaged in an all-metall enclosure that measures 3.5" x 7" x 14" (8.9 x 18 x 36 cm) and meets or exceeds all FCC Class A requirements for RFI shielding, as well as UL specs. Convection cooled enclosure acts as a heat sink. Unit requires no fan. The 280 based microcomputer has 64K RAM, boot ROM, parallel printer and hard disk ports, up to 4 RS-232 ports, and disk controller. Controller interfaces with 5/4" and 8" drives in either single- or double-density formats. Series is available with either 4-MHz Z80A or 6-MHz Z80B microprocessor. In quantities of 500 or more, unit is $492.75. Davidge Corp, 1951 Colony St, Mountain View, CA 94043. Circle 312

Expanded R6500 microprocessor family

R650IQ microprocessor contains separate address and data buses, 192 bytes of RAM, and can be used with external ROM or EPROM to implement a 2-chip system. Compatible with all R6500 family members, the micro uses an enhanced R6502 CPU with 4 new Boolean bit manipulation instructions—memory bit set, or reset and branch on bit set or bit reset. The 64-pin part provides 32 I/O pins via four 8-bit ports, two 16-bit programmable timers, a full-duplex serial port with programmable baud rates, and 10 interrupts. Sample quantity price is $28.20. Rockwell International, 4311 Jamboree Rd, PO Box C, Newport Beach, CA 92660. Circle 313

Like to write?
The editors invite you to write technical articles for Computer Design. For a free copy of the Author's Guide, circle 503 on the Reader Inquiry Card.
Introducing Zilog's new generation of CPU's—the Z8003 with virtual memory. It lowers the cost of resident system memory, extends program-code portability and provides a convenient interface for large auxiliary storage. It's the ideal microprocessor for those big system applications.

The Z8003's virtual memory eliminates the need for program overlays, as well as the physical memory size constraints found in other chips. Programmers can design as if they had 16MB of physical memory. And users can run large programs more economically than previously possible with any other microprocessor.

A new Z8015 Paged Memory Management Unit (PMMU) adds dynamic memory relocation and protection capabilities to Z8003 systems. Each Z8015 handles sixty-four 2,048-byte pages of logical address space which map into 16 MB of physical memory.

The Z8015 contains additional features that assist the Z8003 in efficient implementation of virtual memory systems.

The Z8003 is the world's first 16-bit CPU with a 32-bit general-purpose register set. All arithmetic operations (including multiply and divide) are performed at remarkable speeds of up to 14 MHz. It brings you one step closer to Zilog's 32-bit CPU—a single chip which will have all the features of the Z8003 and Z8015.

To find out how the Z8003 virtual memory CPU and the Z8015 PMMU surpass what you're currently using, fill out the coupon and mail to: Zilog, Inc., Components Tech. Publishing, 1315 Dell Avenue, Campbell, CA 95008. Or call TOLL-FREE (800) 272-6560.
Draw Your Own Conclusions.

RESOLUTION
800 dot horizontal by 480 vertical high speed quality graphics.

TEKTRONIX 4014 EMULATION
Most all the Tektronix features are supported including:
4010 and 4014 Emulation, Plot 10 Compatible, 4096 by 4096
Addressable Plot Area, Variable Line Types, Point Plot, Vector
Plot, Incremental Plot, and Write Through Mode.

SPECIAL FEATURES
Selanar Native Mode Command Structure, Area Fill, Circle, Arc
and Box Commands.
Also variable scale factor for changing image size, relocatable
origin, special write modes, switchable video, and built in
crosshair feature and more.

SINGLE BOARD DESIGN
The SG480 is a small single board design (4.5 by 5
inches) and simply plugs into the VT100 STP port.
Only one small cable is required. The SG480
comes with a replacement CRT tube and
attached yoke – simple installation without
critical adjustments.

DEC TERMINALS SUPPORTED
VT 100, VT132
In addition Selanar has comparable pro-
ducts for the VT101 and VT102 plus other
products for the VT100, VT103, VT105, and
VT180.

HARDCOPY
Hardcopy is available for several printers,
including DEC LA34 format. Options
currently available are for C.Itoh, Epson,
Data South, Texas Instruments, and
Selanar’s SG120 PLUS with DEC’s LA120.

Call Selanar Today.
Tomorrow’s Already in the
Works.
For more information about our
revolutionary 480 VT100 Graphics Feature
—or any of the Selanar graphics
retrofit products —
give us a call.
Low cost
graphics
never
looked so
good.

CIRCLE 142

Sales and Marketing: 4212 N. Freeway Boulevard, Sacramento, CA 95834 (916) 921-9700
Corporate Headquarters: 437-A Aldo Avenue, Santa Clara, CA 95050
European Headquarters: Selanar GmbH, Ahastrasse 5, 6100 Darmstadt, West Germany
Tektronix and Plot 10 are registred trademarks of Tektronix, Inc. DEC, VT, and LA are trademarks of Digital Equipment Corporation. SG and Selanar Graphics are trademarks of Selanar.
Half-height Winchester

Cogitator series slimline Winchester disk drives include model 906, which stores 6.38M bytes on 1 platter, and model 912, which stores 12.76M bytes on 2 platters. Compatible with the ST506/412 std interface, both drives have average access time of less than 85 ms, including settling. Thin-film plated media are utilized and dynamic braking systems stop the disk within 4 s after head touches down. Mn/Zn composite R/W head is mounted on an IBM 3370 type suspension. Packages measure 1.625" x 5.75" x 8 std interface, both drives have average access time of less than 85 ms, including settling. Thin-film plated media are utilized and dynamic braking systems stop the disk within 4 s after head touches down. Mn/Zn composite R/W head is mounted on an IBM 3370 type suspension. Packages measure 1.625" x 5.75" x 8" (4.128 x 14.61 x 20 cm) and are powered by std dc voltages.

Wang compatible memory boards

The VM and VS series memory cards provide all main memory requirements for Wang VS-30, -80, -90, and -100 central processors. Memory capacity of VS-30 and -80 can be expanded with the VM-8 128K-byte and/or the VS-12 256K-byte card. Larger VS-90 and -100 machines are expanded with either the 1M-byte VS-4A, 512K-byte VS-2A, or 256K-byte VS-1A cards. All cards are hardware/software compatible with the Wang host processor. They are interchangeable with the Wang memory boards, require no modifications, and are installable in less than 15 min.

LSI-11 add-in memory with calendar/clock

Compatible with LSI-11/2 and LSI-11/23 microcomputers, MM-1123C family of add-in memories provides up to 64K bytes of nonvolatile storage and an onboard calendar/clock. Family operates with 16-, 18-, and 22-bit address Q-bus backplane and is available in either rechargeable or nonrechargeable battery versions. Realtime calendar/clock also provides programmable periodic interrupt that is switch selectable on 16-byte boundaries of the I/O page. Board's battery status line can be jumpered to 1 of 256 locations in the I/O page for host computer monitoring of battery condition. The MM-1123CC/64 64K-byte rechargeable memory board is $875. Micro Memory, Inc, 9436 Irondale Ave, Chatsworth, CA 91311.

Nonvolatile 64k x 8 RAM module

NVR64 64k x 8 nonvolatile memory module measures 4" x 2" x 1" (10 x 5 x 3 cm) and features 135-ns cycle time. With 10-year data retention, an unlimited number of R/W cycles, and 5-V operation, this internally buffered unit connects directly onto the microprocessor bus. Up to 8 units fit on an s-100 card, or 4 on a Eurocard. Up to 0.5M-byte memory can be added without significant system redesign. Greenwich Instruments Ltd, 22 Bardsley Ln, Greenwich, SE10 9RF, London, England.

256K-bit CMOS RAM module

HM-92560 low power 256K-bit CMOS RAM module is built using 16 synchronous HM-6516 2K x 8 CMOS RAMs. Devices are packaged in LCCs and mounted on a multilayer ceramic substrate. Module is organized as two 16K x 8 CMOS RAM arrays sharing a common address bus. Separate data I/O buses and chip enables allow the user to format the module as either a 16K x 16 or 32K x 8 array. Ceramic substrate capacitors reduce noise and minimize need for additional external decoupling. Address access time is 170 ns, operating current is 30 mA/MHz max, and standby current is 500 µA guaranteed over industrial and military temp ranges. The 48-pin DIP has 0.1" (0.3-cm) centers between pins. Prices range from $605 to $2332. Harris Corp, Semiconductor Group, PO Box 883, Melbourne, FL 32901.

JOIN THE PROFESSIONALS

RTCS Products give your PC/MDOS computer, professional program development capabilities, just like Intel's Series III or System 86/330.

RTCS offers a family of Operating System Development Tools.

- **RTCS UDI**
 - The UDI allows your PC to execute Intel's Compilers, Assemblers and Utilities. $995.00
 - Features
 - Memory Management
 - File Management
 - PC/MDOS File Structures
 - 8087 Support

- **RTCS PC/RMX**
 - The RTCS PC/RMX lets your PC run under Intel's Real-Time Operating System, iRMX. $2250.00
 - Features
 - Up to 65536 tasks
 - Hierarchical Directories
 - Multi-User Capability
 - Supports IBM Peripherals
 - Hard Disk Support
 - Ethernet Support

- **RTCS UDEBUG**
 - The RTCS UDEBUG is a powerful system debugger. 8087 support. Symbolic debugging. $750.00

- **RTCS PC/SBC Execution Vehicle**
 - The PC/SBC allows your PC to control the execution of any of Intel's SBC Computers. Both download and upload capability. $750.00

MOOS is a trademark of Microsoft Corp.
SBC & IRMX are trademarks of Intel Corp.

JOIN THE PROFESSIONALS

RTCS Products give your PC/MDOS computer, professional program development capabilities, just like Intel's Series III or System 86/330.

RTCS offers a family of Operating System Development Tools.

- RTCS UDI
 - The UDI allows your PC to execute Intel's Compilers, Assemblers and Utilities. $995.00
 - Features
 - Memory Management
 - File Management
 - PC/MDOS File Structures
 - 8087 Support

- RTCS PC/RMX
 - The RTCS PC/RMX lets your PC run under Intel's Real-Time Operating System, iRMX. $2250.00
 - Features
 - Up to 65536 tasks
 - Hierarchical Directories
 - Multi-User Capability
 - Supports IBM Peripherals
 - Hard Disk Support
 - Ethernet Support

- RTCS UDEBUG
 - The RTCS UDEBUG is a powerful system debugger. 8087 support. Symbolic debugging. $750.00

- RTCS PC/SBC Execution Vehicle
 - The PC/SBC allows your PC to control the execution of any of Intel's SBC Computers. Both download and upload capability. $750.00

MOOS is a trademark of Microsoft Corp.
SBC & IRMX are trademarks of Intel Corp.

JOIN THE PROFESSIONALS

RTCS Products give your PC/MDOS computer, professional program development capabilities, just like Intel's Series III or System 86/330.

RTCS offers a family of Operating System Development Tools.

- **RTCS UDI**
 - The UDI allows your PC to execute Intel's Compilers, Assemblers and Utilities. $995.00
 - Features
 - Memory Management
 - File Management
 - PC/MDOS File Structures
 - 8087 Support

- **RTCS PC/RMX**
 - The RTCS PC/RMX lets your PC run under Intel's Real-Time Operating System, iRMX. $2250.00
 - Features
 - Up to 65536 tasks
 - Hierarchical Directories
 - Multi-User Capability
 - Supports IBM Peripherals
 - Hard Disk Support
 - Ethernet Support

- **RTCS UDEBUG**
 - The RTCS UDEBUG is a powerful system debugger. 8087 support. Symbolic debugging. $750.00

- **RTCS PC/SBC Execution Vehicle**
 - The PC/SBC allows your PC to control the execution of any of Intel's SBC Computers. Both download and upload capability. $750.00

MOOS is a trademark of Microsoft Corp.
SBC & IRMX are trademarks of Intel Corp.
Low cost, 1/2" tape drive alternative
CacheTape 75 1/2" 75-ips tape drive provides file sort capabilities and tape processing. Online backup functions allow continuous primary processing without interruption, while the tape provides background file save/restore functions. The tape drive backs up 80M- to 300M-byte Winchester. A 3200-bpi version provides 93M bytes of unformatted capacity on a std tape reel. It is fully software transparent with existing vacuum column and tension arm software. OEM quantity price is $2820.

Cipher Data Products, Inc, 10225 Willow Creek Rd, PO Box 85170, San Diego, CA 92138. Circle 320

5 1/2" Winchester drives
removable, fixed, and dual media
Cardiff family of 5 1/2" fixed and/or removable media Winchester drives are fully compatible with available microcomputers and controllers in size, power requirements, interface, and data transfer rate. Voice coil linear motor configuration makes possible high speed dynamic positioning of the r/w heads with no increase in drive depth over std 5 1/4" floppies. Embedded servo information allows 3 times greater track densities than is possible with open-loop stepper positioning systems. Five models are available, ranging in unformatted capacities from 20M to 80M bytes. Formatted capacity is 15M bytes/disk. Innovative Data Technology, 4060 Morena Blvd, San Diego, CA 92117. Circle 321

Low cost SMD compatible 14" Winchester
AMS 513 14" 513M-byte Winchester disk drive is SMD interface compatible and combines a 32k-byte/track capacity with a 5-platter configuration that utilizes 19 data heads reading 10k bpi. Unit includes a basic drive, power supply, and desktop enclosure. Selectable dual access is optional. Sealed contamination controlled disk compartment, ventilated spindle, spin motor brake, carriage lock, and dedicated landing zones are featured. Drives are priced at $7900 for OEM 50 to 99 quantities. Century Data Systems, 1270 N Kraemer Blvd, PO Box 3056, Anaheim, CA 92803. Circle 322

Super thin floppy disk drives
Half-size 5 1/4" floppy FB500 series drives have an unformatted storage capacity range from 250K to 1K bytes. Track to track access for double-density 96-tpi model (S170) is 3 ms. Single-density 48-tpi model (S112) has track to track access of 6 ms. Dimensions are 41 x 146 x 209 mm. Shugart plug compatible interface is included. Stepping motors, direct drive brushless dc motors, and Mn-Zn Fe ceramic heads are used. Nissei Sangyo America, Ltd, 40 Washington St, Wellesley Hills, MA 02181. Circle 323

5 1/4" hard disk subsystem
for S-100 computers
Built around the company's HDC-100I error correcting hard disk controller board, a 5 1/4" Winchester disk subsystem for S-100 microcomputers is available in 5M-, 10M-, 20M-, and 40M-byte configurations. Controller board has an onboard microprocessor and provides control for up to 4 drives and up to 8 r/w heads. Data separation is built in, and the subsystem provides up to 5M-byte/s data rates, 256 sector addressing range, CRC generation/verification on ID fields, unlimited sector interleave, auto-retry on all errors, and auto-restore and reseek on seek error. Subsystem comes with the controller board, connector cable, CP/M BIOS disk, and hard disk drives. Advanced Digital Corp, 12700 B Knott Ave, Garden Grove, CA 92641. Circle 324
GET THE POWER YOUR Q-BUS SYSTEM WAS DESIGNED TO GIVE

It's Plug-In Simple with Remarkable DEC-Compatible Technology from Andromeda Systems

The WDC11 Triple Function Compatible Controller: Its Power is Amazing Versatility

Interfaces with 8- and 5¼-inch Winchester and floppy disk drives, and includes an intelligent bootstrap ROM. This LSI-11 compatible Controller emulates these standard DEC devices: RK-05, RL-01/2, RP-02, RX02. That's only a sampling of the freedom of selection you have with the WDC11 Controller. It adds performance to your LSI-11 computer system. Easily and cost-effectively.

Winchester Add-On Subsystems: Their Power is Speed, Storage Capacity, Reliability, Compactness, and Low Cost

Get major throughput gains from your LSI-11 floppy-based system at a cost you can live with. Andromeda's popular MDS series, with a 5¼-inch Winchester drive, has a data transfer rate over eight times that of an RX02 floppy! Standard DEC emulations are available. Includes built-in bootstrap and formatting.

All Andromeda Winchester Subsystems will quickly and conveniently cover your mass storage needs for today and tomorrow.

Complete Turn-Key Computer Systems: Their Power is Big Overall Performance for Small Space and Cost

One totally integrated package includes computer and disk drives. For example, the 11/M1-W (pictured) holds a standard 5¼-inch Winchester disk drive, 2 x 5 card cage, control panel, and power supply.

Andromeda Turn-Key Computer Systems are easily expandable, and may be custom-configured to fit your processing requirements, space constraints and budget. Specify 8-inch disks if you wish, or dual drives, or floppies...or a combination.

Andromeda is the Q-Bus specialist. Our single objective is to develop fine products that unleash the power that is inherent in your DEC LSI-11 system.

Call or write today for more information. We'll be in touch.

Andromeda Systems, Inc.
9000 Eton Avenue
Canoga Park, CA 91304
Ph: [213] 709-7600
TWX: [910] 494-1248

DEC, LSI-11, RK-05, RX-02, RL01, RP02 are trademarks of the Digital Equipment Corp.

CIRCLE 145
3" floppy drive evaluation samples
Micro-Floppydisk 3" drive system and 4 Micro-Floppydisk cartridges can be evaluated by OEMs for $480. The dual-disk drive system provides 1M-byte unformatted storage, has built-in power supply, and accommodates two 3" floppy disk cartridges. Recording format, data transfer rate, and disk rotation speed are compatible with 5¼" std floppy. Recording capacity is 125k bytes single sided or 250k bytes double sided, with double-density (500k bytes) capability. Write protect mechanism ensures read only status for recorded data. Amdek Corp., 2201 Lively Blvd, Elk Grove Village, IL 60007.

1.4G-byte disk drive with 12M-byte/s transfer rate
Model 1400 1.4G-byte disk drive transfers at 12M bytes/s and is based on the company's proprietary thin-film media with modified ferrite heads. Density is greater than 15k bpi. Onboard microprocessor allows self-test diagnostics that operate automatically during power-up and continuously monitor the drive's operating condition. With an auxiliary embedded servo, drive provides dynamic track following adjustments while in warm-up mode. Initial shipments are scheduled for first quarter 1983. IBIS Systems, Inc., 1850 Evergreen Dr, Duarte, CA 91010. Circle 326

32K-byte CMOS RAM for STD bus
Multiwire mil spec high density circuit board combines area density of wire-wrap with minimal thickness of PCBs for discrete pin to pin insulated wire without the pin wrapping for termination. Using Multiwire, the 6" x 4" (15- x 10-cm) STD bus RAM card provides 32K bytes, onboard rechargeable battery backup, write protect switch, 4k boundary protect switches, and low power consumption. Kennor Holdings Pty Ltd, Kennor Computing Div, 38 McCoy St, Myaree, PO Box 94, Applecross, Western Australia, 6153. Circle 327

Winchester upgrades floppy based Q-bus systems
Mini Disk System (MDS) family of Winchester mass storage subsystems provides storage capacities of 5M, 10M, 15M, and 20M bytes. Subsystems are fully compatible with LSI-11/2, -11/23, and -11/23-Plus processors. Package includes the WDCll dual-width controller card, 6' (2-m) cable, and drive chassis. Chassis can be used desktop or mounted behind the host system. Controller emulates RK05, RL01/02, and RP02 disks. Intelligent bootstrap for startup and RLV12 compatible 22-bit DMA are included. Prices range from $3995 to $5700. Andromeda Systems, Inc, 9000 Eton Ave, Canoga Park, CA 91304.

Introducing LSI-50
A STREAMER FOR PROFESSIONALS
Alloy's LSI-50 is a high performance cartridge tape drive designed for LSI-11 users who can't waste space, data—or time.

Use it for disk backup, spooling storage or program load. However you use it, you'll find the LSI-50 gives you performance unmatched in the industry. You can buy either the controller or the complete subsystem which includes Alloy's LSI-50 controller, CDC Sentinel streaming cartridge tape drive, 8-foot data cable and table-top cabinet.

You'll get exceptional capabilities. Like 44 megabytes of capacity compared to the typical 4.5 megabytes. And 2 Mb/Min. transfer rate. And file-oriented backup/restore under standard DEC utilities at streaming speeds. Plus overlapped disk and I/O activity.

You also get certified tape cartridges, 48-hour "hot-spare" warranty, off-the-shelf delivery and a level of support that's made Alloy the most trusted name in magnetic media controllers and subsystems.

For more information, write or call Information Services, Alloy Computer Products, 12 Mercer Rd, Natick, MA 01760. (617) 655-3900. TWX: 710-346-0394.
WINCHESTER BACKUP/ DATA BASE MANAGEMENT!

Model 451 — serpentine write
Model 450 — standard write

Back-up your Winchester with the new Model 450 or 451 cartridge tape drive. With the capability of a full tape peripheral, the new Qantex drive can be used to perform file search, update records, and edit/reformat data.

Designed for disk backup as well as archival storage or data logging applications, the 450/451 packs 17.2 megabytes on a single data cartridge, with a packing density of 6400 bpi and 192,000 bits per second transfer rate.

Both models incorporate a rugged transport mechanism with a precision servo motor. Model 450 offers a standard, and Model 451 a serpentine recording head. Read-after-write dual gap and selective erase are standard features of both models.

The serpentine tape drive features a special read-after-write recording head that provides bi-directional tape operation avoiding time-consuming rewind time.

The new Model 450/451 is available now! Contact us today for complete details!

Qantex*
Division of North Atlantic Industries
60 Plant Avenue
Hauppauge, NY 11787
(516) 582-6060
(800) 645-5292
TWX 510-227-9660
*Registered Trademark of North Atlantic Industries

See us at COMDEX Booth #1500

CIRCLE 147
Take a Few Minutes to HELP OUR EDITORS HELP YOU

YOU MAY WIN A VALUABLE PRIZE IN THE PROCESS

In every issue of Computer Design you’ll find a bound-in survey questionnaire entitled “Designer Preference Survey.” Your participation in these surveys is important. Your answers are significant. They tell our editors what’s going on in the marketplace, what kinds of systems you are designing, how your product choices are shaping up, what products, subsystems, equipment and components you are using or would like to use.

The answers you supply can guide our editors in selecting the topics, features, and technical data that will be on target with the kinds of projects you are working on.

The questionnaires also alert manufacturers to your needs. The inputs you give us help them to develop products with the speeds, ranges, capacities, etc. that you require.

As an added incentive, each questionnaire returned gives you a chance to win a valuable prize. Drawings are made each month, with a grand prize drawing at year end.

MONTHLY DRAWING
HP 41C PROGRAMMABLE CALCULATOR
The HP 41C offers advanced problem-solving power yet is easy to use. Communicates in words as well as numbers. Can be programmed to meet your specific needs. Fifty-eight popular functions, 130 total operations in function library. You can add peripherals and extension modules to expand capabilities.

ANNUAL DRAWING
HP 85 DESK TOP COMPUTER
This portable (20#) unit includes an alphanumeric keyboard, tape drive, thermal printer, built-in 56 K byte memory, CRT screen, and 150 built-in HP BASIC language commands. You can add peripherals and software packages to expand system capability. A $2800 value!

COMPUTER DESIGN
The only computer magazine that concentrates on design. The only design magazine that concentrates on computers.
“Over 2 minutes at 100,000 A/D samples per second and LAB-DATAX hasn’t missed a data point.”

Fred Molinari, President

LAB-DATAX is a microcomputer based data acquisition system built for the most demanding laboratory environments. As you can see, this system is capable of continuous data input (or output) at high speeds for extended periods of time. For shorter stretches, it can achieve aggregate rates of up to 250,000 samples per second to or from memory.

LAB-DATAX is very flexible. It can go fast or it can go slow. It can handle up to 256 analog input channels of high level or low level signals, with up to 16-bits of resolution.

And because LAB-DATAX is LSI-11/23 based, it offers the performance of DEC’s hottest microprocessor. And it’s compatible with the LSI-11 family of products. Including over 50 of our analog I/O peripherals and our DTLIB, CPLIB, RSXLIB, and DTBASIC software packages.

Naturally, LAB-DATAX comes with complete diagnostics, full documentation, and comprehensive warranty and service support.

This system was designed by the most innovative company in analog I/O. There’s none to match it.

LAB-DATAX CAPABILITIES

<table>
<thead>
<tr>
<th>Throughput to Memory</th>
<th>250 kHz at 12 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput to Winchester Disk</td>
<td>100 kHz at 12 bits</td>
</tr>
<tr>
<td>High Level Language Support</td>
<td>BASIC and FORTRAN</td>
</tr>
<tr>
<td>A/D Capability</td>
<td>Up to 256 channels, 12-14-16 bits resolution</td>
</tr>
<tr>
<td>D/A Capability</td>
<td>Up to 32 channels at 12 bits</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>Up to 64 channels input/output</td>
</tr>
<tr>
<td>Package Design</td>
<td>BNC connections, complete separation of analog and digital signals</td>
</tr>
</tbody>
</table>

And because LAB-DATAX is LSI-11/23 based, it offers the performance of DEC’s hottest microprocessor. And it’s compatible with the LSI-11 family of products. Including over 50 of our analog I/O peripherals and our DTLIB, CPLIB, RSXLIB, and DTBASIC software packages.

Naturally, LAB-DATAX comes with complete diagnostics, full documentation, and comprehensive warranty and service support.

This system was designed by the most innovative company in analog I/O. There’s none to match it.

DATA TRANSLATION

World Headquarters: Data Translation, Inc., 100 Locke Dr., Marlboro, MA 01752 (617) 481-3700 Tx 951-646
European Headquarters: Data Translation, Ltd., 430 Bath Rd., Slough, Berkshire SL1 6BB, England (06286) 3412 Tx 849-862

LSI-11 and DEC are registered trademarks of Digital Equipment Corporation. LAB-DATAX is a registered trademark of Data Translation, Inc.

CIRCLE 155
Fiber optic wavelength multiplex/demultiplex couplers

WC4200 series of wavelength multiplex/demultiplex fiber optic couplers can transmit 2 channels over 1 optical fiber. Two low cost moderate speed transmitters can be used in place of 1 high speed transmitter. The couplers feature low insertion losses and high port to port isolation for low crosstalk between optical channels in dupplex links. The 0.5" x 0.5" x 3.2" (1.3- x 1.3- x 8.1-cm) unit is PC mountable. Prices start at $1450 in 2 to 8 quantities. American Photonics, Inc, Milltown Office Park, Rte 22, Brewster, NY 10509.

Male connector

A male connector that mass terminates with flat cable and mates with a socket connector, and I/O interface. Ten to 60 contacts are featured; unit is available with/without mounting ears. Temp range is -55 to 105 °C; current rating is 1 A dc; contact resistance with socket is 20 mΩ max at 6 Vdc, 0.3 A. Insulation resistance is 1k MΩ min at 500 Vdc. Wire size is 0.05" (0.13-cm) spacing, 28 AWG stranded or 30 AWG solid. The 10-position connector is $4.36. Cooper Industries, Inc, Belden Electronic Div, PO Box 1980, Richmond, IN 47374.

Insulated IDC ribbon cables

A line of ribbon cables insulated with Gore-Tex® Expanded PTFE (a dielectric material that is 70% air and 30% pure polytetrafluoroethylene) is on 0.05" (0.13-cm) centers. In 2 to 64 conductor widths, the cables are compatible with all mass termination connection systems. They are suited to flex environments up to 50M cycles, airborne electronics, high temp cable routing, and where chemical immunity is needed. The cables provide low dielectric constant, low crosstalk, light weight, fast signal speed, and a low dissipation factor. W. L. Gore & Associates, Inc, 1505 N Fourth St, PO Box 1389, Flagstaff, AZ 86002.

New...concepts and techniques, real-life system examples, and a design methodology for configuring reliable computing structures.

The Theory and Practice of Reliable System Design

Designed for practicing professionals and advanced undergraduate and graduate students, The Theory and Practice of Reliable System Design is divided into two sections. PART I introduces a broad range of concepts, techniques, and issues in reliable computer hardware design. Topics covered include how to combine economics with design, and cost modeling with reliability modeling. PART II illustrates these concepts and techniques by examining twelve real-life reliable designs, ranging from commercial to high availability to avionics systems. Described by the actual designers, reliability features are covered for such systems as the VAX and the Intel 432. The final chapter offers a methodology for reliable system design and illustrates how this methodology can be applied in an actual design implementation (the Intel 432).

1982, hardbound, 736 pages

Please send me __________ copies of The Theory and Practice of Reliable System Design ($55.00). Postage and handling free when your order is prepaid by check or charge card. Ten percent discount when ordering two or more copies. Return to: Digital Press Order Fulfillment, Digital Equipment Corporation, 12-A Essex Road, Billerica, MA 01862.

Charge Card Acct No. __________
Expiration Date __________
Authorized Signature __________

Fiber optic connector uses no adhesive

Fiber optic connector system completes termination of glass fibers in 3 to 5 min and has unitized design for 200/250-µm, 100/140-µm, and 50/125-µm fibers. Need for adhesives to retain the fiber is eliminated. Preassembled plug includes a metal retaining assembly (MRA) and a resilient ferrule. Ferrule has insert that houses 3 metallic rods to form fiber clamp. Cable's strength members are captured between a jacket retention ring and the MRA when a crimp is applied to the rear of the plug assembly. Another crimp on the MRA barrel forms and activates the metal rods of the fiber clamp for a mechanically stable grasp on the stripped fiber. AMP Inc, Harrisburg, PA 17105.

Multibus card rack with noise immunity

A 12-position Multibus compatible card rack runs all signal lines between 2 parallel ground lines. A ground line runs directly under the signal on the other side of the backplane. Effects of cross-talk between critical signals and ringing are minimized. Backplane also features parallel priority, -5 V regulator, and reset switch options. PCB hold-down bars secure plugged-in cards and can be slid aside for easy card removal. Numbered card slots are on 0.6" (1.5-cm) centers. Sideplate kit accommodates 19" (48-cm) cabinet mounting and cooling fans. Mupac Corp, 10 Mupac Dr, Brockton, MA 02401.
Put a little tape backup in your DEC microcomputer.

SMS' DSX-11 is a complete DEC microcomputer with 80Mb Winchester and ¼" cartridge tape backup. With over 20Mb per tape cartridge, Winchester backup has never been so easy. Emulating DEC's latest TS11 tape device, standard RT-11 and RSX-11M software makes disk backup, system boot, media interchange, archiving and software distribution a snap!

- 256Kb main memory (expandable 4Mb)
- Expansion space for 15 dual height modules.
- LSI-11/23 16 bit CPU with memory management.
- 4 Serial ports.
- Advanced disk controller with ECC, flaw management, bootstrap, error retry and non-interleaved data transfer.
- PDP-11* architecture compatible with RT-11, RSX-11M and UNIX** software.
- 7.8Mb, 35.6Mb or 71.2Mb Winchester disk.
- Self test with LED display of system faults.
- Start/stop tape supports file operations.
- Compact 3M Cartridge.

Scientific Micro Systems, Inc.
777 E. Middlefield Road
Mountain View, California 94043
(415) 964-5700

AUTHORIZED SMS DISTRIBUTOR FOR DEC Q-BUS PRODUCTS: FIRST COMPUTER CORPORATION 312-920-1050

SMS SALES OFFICES:
Phoenix, Arizona 602-978-6621; Boston, MA 617-246-2540; Atlanta, Georgia 404-296-2029; Morton Grove, Illinois 312-966-2711; Yorba Linda, California 714-993-3768.

CIRCLE 150
Polyester DIN connectors withstand 220 °C

Series STV-B (2-row) and STV-C (3-row) connectors, molded from polybutyleneterephthalate (PBTP), meet DIN 41612 specs and withstand soldering up to 220 °C. The glass-filled polyester material combines electrical characteristics with high resistance to chemicals and solvents. Socket spring elements provide low, constant contact resistance and high contact pressure with low friction. Polarized bodies prevent accidental mismating and enclosed contact areas prevent damage to contacts. ERNI Components Corp, 1235 E Davis St, Arlington Heights, IL 60005. Circle 335

Smart optical mouse positioner

OptoMouse cursor controller encloses 2 rocker switches that roll on the X-Y axes of a flat surface, and communicates its movements to the computer and interface by a tail-like cord. Custom optical imaging system is incorporated for superior resolution. Unit requires only 5 V from the host system. Controlled by its own microprocessor, it is designed with min parts count and can emulate existing graphics protocols such as Tektronix Plot 10 and Summagraphics bit pad. Host interface is via RS-232-C serial port. USI International, 71 Park Ln, Brisbane, CA 94005. Circle 336

Graphics terminal compatible with Template software

The G-1000 high resolution 16-bit microprocessor based raster graphics terminal is compatible with Megatek’s Template software. The host-independent software package supports both batch and interactive applications and features a large subroutine library. Template allows writing of a software driver, which takes advantage of the terminal’s hardware features to offload the host computer. Template exploits G-1000 features like textured lines, 4 char sizes, point/plot mode, scroll, user-defined initial cursor position for input, selective erase by vector/area, and alphanumeric overlay. Genisco Computers Corp, 3545 Cadillac Ave, Costa Mesa, CA 92626. Circle 337

Tailless mouse

Without an attached cable, the Datawafer system mouse cursor can be moved, unhindered, above the 0.2" (0.5-cm) position detector. Positioning information is transmitted any time the mouse is moved 3" (8 cm) on or above the desk wafer surface. Cursor-positioning system contains a battery powered mouse, a wafer embedded with all passive position detecting elements, and optional electronic circuitry for signal conversion and interface with data processing equipment. Display Interface Corp, 525 Post Rd, Milford, CT 06460. Circle 338

Color graphics CRT

CD-203ID 20" (51-cm) color CRT monitor uses self-convergence, inline technology, and a 0.31-mm dot pitch matrix. The TTL CRT produces red, green, blue, yellow, magenta, cyan, and white colors. Horizontal sweep frequency is 24.2 kHz; vertical sweep is 54 Hz. Recommended display density is 3040 chars in a 7 x 9 dot pattern. Text processing density is 38 lines of 80 chars. Built-in circuitry includes CRT block, RGB video amplifier, horizontal/vertical deflection circuits, high voltage supply, power supply with voltage regulator, high voltage limiting circuit, and autodegaussing circuit. Max power consumption is 150 W. Nissei Sanyo America, Ltd, 40 Washington St, Wellesley Hills, MA 02181. Circle 339

Reduced price printer

Dual-mode printer D-92 is available for $399/unit, a 42.5% price decrease over the previous cost. Modular design enables specific upgrade selections by users. Dual-mode operation uses a 7 x 9 matrix font and an 11 x 9 matrix for near letter quality documents. Features include 100-cps bidirectional printing, short line seeking logic, friction paper feed, parallel interface, 800-char buffer, 6 char sizes with each printing mode, 100M-char reusable printhead, and a 5M-char continuous loop ribbon cartridge. Full ASCII char set prints both upper- and lowercase chars at 40, 48, 66, 80, 96, or 132 chars/line. Options include RS-232-C serial interface, adjustable tractor feed, dot addressable graphics, 9600-baud operation, 2K buffer, X-ON/X-OFF, control X/Y, and single-sheet feeder. Data Impact Products, Inc, 745 Atlantic Ave, Boston, MA 02111. Circle 334

160-cps, 4-density printer

FX-80 bidirectional printer has 160-cps print speed and software selectable choice of elite (12-cpi) or pica (10-cpi) print spacing. Users can download special fonts into memory from the computer system. The 9 x 9 dot-matrix print has the same 1:1 graphics scale vertically as horizontally. Dot-addressable graphics capability and 2K-byte buffer are provided. Printer ($699) provides chars with full descenders and is downward compatible with the Epson MX printer series. Proportional spacing, pin and friction-feeds, and standard parallel communications interface (serial or IEEE 488 interfaces optional) and 4 printing densities are featured. Epson America, Inc, 3415 Kashiwa St, Torrance, CA 90505. Circle 341
Not just more capacity; more capability

Motorola's 68000 is a winner, and using this popular microprocessor in a VERSAbus/VERSAboard configuration is a smart move. Dataram's new single-board 1.0 MB DR-680 can make it even smarter. Increased single-board memory capacity means lower power, less space, higher reliability, and lower cost...and the DR-680 provides a lot more!

More speed: Ability to perform match cycles reduces access/cycle times by allowing immediate reading of data registers when adjacent words/bytes are accessed.

Advanced error handling: The DR-680 provides an on-board control and status register (CSR) which allows program control of ECC functions and contains the diagnostic information required for error analysis. The CSR can be read or written via the VERSAbus. Additionally, the DR-680 greatly increases reliability by performing error "sniffing" and error "scrubbing" during refresh operations.

Availability: Best of all, the 1.0 MB DR-680 is available now. And it comes with Dataram's standard one-year warranty.

For more information, send in the adjacent coupon or, for faster response, call Dataram today at (609) 799-0071.

VERSAbus and VERSAboard are registered trademarks of Motorola, Inc.
Low cost optical mouse
Summa:Mouse combines a solid state optical system with microcomputer processing to eliminate slips/skips. User need not press down or rock the mouse during operation. Fully compatible with the company's MM series digitizers, the mouse also offers Bit Pad, MM series, and Tektronix PLOT 10 formatted protocols. The handheld unit has 3 push buttons for tactile feedback. Auto-baud feature sets serial transmission rate to that of its host, or presets to a 300- to 9600-baud range. RS-232 and TTL level outputs are available without external hardware. Summagraphics Corp, 35 Brentwood Ave, Fairfield, CT 06430. Circle 342

Half-inch tape with extended gap start/stop performance
Vindicator ¼" streaming tape drive is an auto-loading, drawer mount transport with extended gap start/stop performance suitable for nonstreaming applications. Extended gap feature is front panel selectable from 0.6" to 10" (1.5 to 25 cm). Tape provides either 46M- or 92M-byte unformatted capacity. Auto-power restart and load online commands bring the drive back to ready state after a power failure. Data transfer rates are 40k bytes/s (25 ips, 1600 cpi) to 160k bytes/s (100 ips, 1600 cpi). Nominal access time in 100-ips mode is 240 ms read or write. Price is $2825; volume discounts are available. Pertec Peripherals Corp, 9600 Irondale Ave, Chatsworth, CA 91311. Circle 343

The CompuDAS® Family from ITHACO
Process Control & Data Acquisition in a language that won't be Greek to you
When you can't afford the limitations of ladder diagrams or the months it takes to learn complicated computer software—you need DABIL™ ITHACO's unique BASIC language derivative, resident in every CompuDAS system.
DABIL is a language developed by process engineers like you. In a matter of hours, you can learn to use CompuDAS with confidence, even if you've had no previous programming experience.
Whatever your industry or application, CompuDAS will get you on-line on time. Call or write us. We'll send you our DABIL language summary—FREE. It'll show you how CompuDAS speaks your language.

ITHACO
...A MEASURABLE DIFFERENCE.
Relief for terminal headaches.

Panasonic believes that terminal ergonomics should begin at the CRT screen. Fuzzy characters, excessive brightness, distracting glare and reflections can all lead to operator discomfort and "terminal headaches." That's why our newest monochrome and high resolution color CRTs are available with a team of innovations designed with "human factors" in mind: our new Super Dark high contrast screen and the famous Panasonic Direct Etch anti-reflection surface.

The Super Dark screen has been specially engineered for a high-contrast display that reduces operator fatigue caused by excessive brightness. The high contrast screen provides acceptable viewing at low brightness levels, so the CRT beam current is minimized and resolution is maximized. Characters are sharp, clear and easy to read. And the Super Dark screen helps reduce reflectance, while hiding normal long term screen burning too.

You can combine the Super Dark screen with our optional Direct Etch anti-reflection surface (available on most models), which effectively diffuses distracting ambient reflections without the drawbacks of bonded faceplates and plastic overlays. To minimize resolution loss, the screen glass is etched close to the phosphor; in tandem with the lower beam currents allowed by our Super Dark screen, resolution can actually be better than that of most conventional polished glass tubes. And operator comfort is much greater.

Super Dark Screen and Direct Etch are available on all popular-sized Panasonic data display tubes, including our affordable new high resolution in-line color CRTs. We're the CRT source to relieve everyone's terminal headaches. For prices and complete information, write Panasonic Industrial Company, Electronic Components Division, One Panasonic Way, Secaucus, NJ 07094; or call (201) 348-5278.

Panasonic CRT screen ergonomics:
Super Dark Screen and Direct Etch.™

Panasonic®
just slightly ahead of our time

CIRCLE 154
Since its introduction in late 1981, the innovative Centronics technology behind the Printstation 350 Series has received OEM praise for its paper handling and reliability. With new Printstation family additions, we now offer new capabilities and higher speeds. Now, more than ever, the Printstation 350 family will provide OEMs with the flexibility to meet all their printing needs. Bar code printing, Large characters, Color, Graphics, More Multipass fonts, More speeds, from 50 cps (Multipass) to over 400 cps (10 cpi), and more efficiency with an outstanding new breakthrough: a 1-, 2-, or 3-bin automatic sheet and envelope feeder option.

Add these new capabilities to proven Printstation 350 innovations such as true multi-function paper-handling, and family design with 80% parts commonality—and you have the ideal OEM printer choice for all three information processing categories.

DATA PROCESSING.
Printstation 350 means exceptional throughput—approaching line printer speeds in DP applications such as: Program listings ▪ Business reports ▪ Data logging ▪ Spread sheets ... using full 6-part, single sheet or fan-folded forms ... and capable of operating at 100% duty cycle.

BUSINESS PROCESSING.
Whether in an office or on a loading dock, whatever a business needs, a Printstation 350 will print: Bar code tickets ▪ Mailing labels ▪ Insurance forms ▪ Purchase orders ▪ Sales charts & graphs ▪ Invoices ... on business cut sheet, instant tear-off and sprocket-feed forms ... with graphics ... and without afterthought options.

WORD PROCESSING.
A Printstation 350 means complete job flexibility with a choice of fixed pitch or proportional fonts for: Business correspondence ▪ Office memos ▪ Proposals ▪ Personalized and form letters ▪ Envelope addressing.

And with our new automatic sheet/envelope feeder you can maximize operator productivity at an amazingly low cost.

Attractive and quiet enough for every office but right at home in a warehouse, teller station or shipping department. That's Printstation 350. From Centronics—the first choice of OEMs worldwide. For a copy of our new Printstation 350 brochure, write Centronics Data Computer Corp., One Wall Street, Hudson, N.H. 03051.

Tel. (603) 883-0111

See us at COMDEX Booth #1500
Tektronix compatible graphics added to VT100 terminals

DQ650 series GEN.II Retro-Graphics terminal enhancements for the entire VT100 family of video terminals are programmed with 32k bytes of local software. The enhancements provide bit-mapped imaging, Tektronix 4010 graphics terminal emulation, and monochromatic emulation of graphics functions on Tektronix’s 4027 color graphics and 4014 graphics terminals. Pixel resolutions are 800 x 480 (DQ650M) and 800 x 240 (DQ650S). Prices range from $1230 to $1715. Digital Engineering, Inc, 630 Bercut Dr, Sacramento, CA 95814.

Circle 345

Monochrome graphics monitors

Family of high resolution monochrome CRT monitors provides up to 1100 lines at 60-Hz noninterlaced refresh rate and either 70- or 120-MHz video amplifiers. The 70-MHz amplifier accepts TTL, linear, or ECL levels; the 120-MHz amplifier interfaces to differential ECL. Vertical refresh rates to 90 Hz, interlaced or noninterlaced, and horizontal rates from 30 to 65 kHz are available. All monitors have stator yoke, regulated high voltage, and dual-axes dynamic focus. Units are available with any JEDEC phosphor, contrast enhanced faceplates, and anti-reflection coatings. Prices for the 70-MHz 15", 17", and 19" (38-x 43-x 48-cm) monitors are $685, $767, and $799. U.S. Pixel Corp, 125 Irving St, Framingham, MA 01701.

Circle 346

Bar code scanning wand with memory

Datawand scanner reads, decodes, stores, and transmits bar coded data independent of data entry terminal. The handheld unit has 4K digits of low power CMOS memory for data storage. Scanner firmware is stored in onboard microprocessor memory. Rechargeable NiCad batteries are provided. When not in use, unit rests in a recharger module that also serves as an interface for data transfers over phone lines, into an MSI handheld computer, or into a host computer system via an RS-232-C type connector. Price is $199 in quantities of 100 or more. MSI Data Corp, 340 Fischer Ave, Costa Mesa, CA 92626.

Circle 347

Fast Service On

Magnetic Tape Heads

For your design, Vikron tape heads offer superior performance with critical parameters such as crosstalk rejection, wear life and low core losses. Work with us on your design, prototype and production of heads for plastic cards, paper cards, magnetic strips and tape.

- CARD READER HEADS
- DIGITAL READ/RECORD HEADS
- GENERAL DIGITAL HEAD

Call (717) 483-3233

FREE HEAD SELECTION GUIDE

Name_________________Title_________________
Company_________________________
Address_________________________
City________________State________Zip________

VIKRON

P.O. Box 737
520 Blanding Woods Rd. So.
St. Croix Falls, WI 54024
Phone (715) 483-3233
Telex 291099

CIRCLE 156 COMPUTER DESIGN/April 5, 1983 261
Ergonomic terminal emulates VT100/52 family

Model TDV-2230 smart terminal emulates the DEC VT100/52 terminals and also provides as std features alternate char attributes, printer port, local echo, modem control support, host editing, local editing, and buffered line mode transmission. Four operational setup menus list control options for cursor/keyboard, screen/terminal, and communications modes. Selections can be made from the keyboard or the host computer and are stored in nonvolatile EAROM. Other menus store code sequences and control setup of tab rack. Base price is $1875. Tandberg Data, Inc, PO Box 99, Labriola Court, Armonk, NY 10504. Circle 348

Digitizing pad

An electromagnetic 11" x 11" or 20" x 20" (28- x 28-cm or 51 - x 51-cm) digitizing tablet features user specified output data in absolute measurement or in min increments of 0.001" (0.25 cm). Metric or English measurements are switch selectable. Dual RS-232-C, bit parallel, or IEEE 488 interfaces can be output in either std serial or packed binary format. Pad operates in point, stream, incremental, or switch stream modes and measures up to 200 points/s. Firmware for self-diagnostics, matrix menuing, and host override are included. Button cursors, axis rotation, and scaling are optional. Numonics Corp, 418 Pierce St, Lansdale, PA 19446. Circle 349

Panel mount thermal printer

PL20RM 20-col panel mount thermal printer comes with switch selectable TTL parallel or serial interfaces. Input power can be either ac or 12 Vdc. The 96 ASCII chars are std with 5- x 8-dot char matrix with descenders. A 39-char input buffer is furnished, and 120-line/min throughput is achieved. Normal and inverted print modes can be implemented. Underscore is via software control. Both 200' (61-m) and 150' (46-m) paper rolls are available. Prices range from $460 to $575, depending on quantity. Telpar, Inc, PO Box 796, Addison, TX 75001. Circle 350

DISK SYSTEMS

$ SPECIAL • LOW PRICES • SPECIAL $

CI-1240-WF 42 megabyte Winchester disk system with controller. 42 megabytes fixed and 2 megabytes floppy backup. $6995.00

CI-1220-TF Dual drive, double density, double sided, 2MB capacity floppy, plus DMA LSI 11 controller, occupying 3½" of vertical space. $2695.00

CI-520 10MB 5¼ Winchester with 2MB 5¼" floppy, RX02/RL02 or RX50/WD50 emulation. $3995.00

DONT ASK WHY WE CHARGE SO LITTLE, ASK WHY THEY CHARGE SO MUCH.

Chrislin Industries, Inc.

31352 Via Colinas • Westlake Village, CA 91362 • 213-991-2254

TX 910-494-1253 (CHRISLIN WKVG)

LSI 11 is a trademark of Digital Equipment Corporation.

COMPUTERS

Single-board array processor

APB-3000 single-board Multibus version array processor computes number arrays using virtually any known algorithm. Standard routines include FFTs, power spectral density, correlation, digital filtering, and deconvolution. Full dual-port memory access to both program and data memory allows custom software algorithm development. Branches and break points can be set to facilitate debugging. Instruction execution time is 100 ns. Board is fully pipelined for max throughput. Host processor can access data in onboard memory cache at any time. Marinco Inc, 11760 Sorrento Valley Rd, San Diego, CA 92121. Circle 351
On the perception of elegance.

Artist, engineer and scientist alike can’t help but share a passionate appreciation for the forms of nature. Regard the exquisite symmetry of the nautilus shell. It is only one of nature’s expressions of grace in shape and line. And it was achieved through a development program aimed entirely at function.

Around Honeywell, Undersea Systems Division scientists occasionally speak warmly of the elegance of algorithms encountered along the way to significant breakthroughs in software design. We do enjoy working with people who find pleasure in technical solutions embodying that special simplicity called elegance.

Right now we’re searching for a few such software specialists with a BS/MS and background in structure design, field testing, or real time/time-control applications for test and diagnostic hardware. Experience with UYK-20, AYK-14, or CMS-2 would be most welcome.

Here’s vigorous challenge, coupled with the opportunity to discover certain elegances of style among the Vikings, the North Stars, and other elements of good living unique to the Twin Cities area of Minnesota—the vigorous quality-of-life capital of the U.S.

For prompt, confidential consideration call George Bills collect at 612/931-6713. Or send resume to: George Bills, Engineering Manager, MN 11-102 0D, Undersea Systems Division, Honeywell, 600 Second Street N.E., Hopkins, MN 55343. Honeywell is an equal opportunity employer.

Honeywell

Making a world of difference.
SYSTEM COMPONENTS

Computer to printer interface
Printer adapter interface ADA 1800 allows the Commodore Pet and CBM computers to output to parallel interface printers. Supporting 8 bits, the $129 adapter works with the Commodore disk and operates via BASIC commands. It is addressable and does not tie up the bus; address is switch selectable. A 4' (1-m) cable with std 36-pin Centronics connector is provided. Switch selectable upper/lowercase, upper/lowercase reversed, uppercase only, and graphics are featured. Power is obtained from the printer or externally. Connecticut micro-Computer Inc, 36 Del Mar Dr, Brookfield, CT 06804.
Circle 352

Intelligent graphics controller
MLZ-VDC graphics controller has Z80A CPU, DMA controller, 132-byte FIFO on the Multibus for buffering command flow, and up to four 28-pin sockets allowing up to 32K EPROM/ROM and 16K RAM. It provides 24-bit addressing with complete master/slave or multimaster capabilities. Bus map defines board position. One Intel compatible isax expansion module connector, upD720 graphics display controller for graphics and character generation, and 512K bytes of onboard memory are included. Programmable lookup table displays 16 colors from a palette of 4096. Integral lighten interface is available. Heurikon Corp, 3001 Latham Dr, Madison, WI 53713.
Circle 335

Floppy disk interface
22800 single-card floppy disk interface features a Z80A processor with 2K RAM and 4K ROM, and floppy disk and RS-232-C ports. Supplied firmware duplicates DEC TU-38 cassette drive protocol; jumper selectable executive program enables development of custom interface. Memory is expandable to 40K RAM/ROM. A second RS-232-C port with selectable baud rates and stop bits is available. Disk port accommodates single- or double-sided, single- or double-density floppy disks. IBM 3740 and IBM 40 formats are standard. Single-quantity price is $195. Greco Systems, 10020 Prospect Ave, Santee, CA 92071.
Circle 354

Intelligent controller for single, multi-user systems
HD/CTC interfaces two STS06 compatible 5 1/4" hard disk drives and a Streaker cartridge tape drive to an S-100 system. The intelligent controller has a Z80A (optional Z808) CPU, 8K-byte RAM, and 16K-byte ROM to remove I/O control from the system CPU. Other hard disk and cartridge drive sizes can be accommodated with minor alterations to the onboard hardware/firmware. Teletek Enterprises, Inc, 9767F Business Park Dr, Sacramento, CA 95827.
Circle 355

Controller interfaces LSI-11s with 5 1/4" Winchesters
DQ614 disk controller interfaces 1 or 2 5 1/4" Winchesters with LSI-11, -11/2, -11/23, and -11/23 PLUS microcomputers. System operates directly from the Q-bus without additional boards and emulates up to 4 RL01 or RL02 disk drives, giving formatted capacities to 41.6M bytes. Occupying a single dual-wide slot in any LSI-11 backplane, the controller is totally transparent to RT-11, RSX-11, and RSTS operating systems. It operates with drives that incorporate an STS06 interface. A microprocessor based universal formatting system compensates for drives with varying number of heads, transfer rates, surfaces, and capacities. The controller will handle 5 1/4" drives to 50M bytes. Price is $1695. Distributed Logic Corp, 12800 Garden Grove Blvd, Garden Grove, CA 92643.
Circle 356

Video I/O processor for Multibus
Video digitizer boards VAF-512 and QVAF-512 work with the firm's RGB-GRAPH and QRGB-GRAPH frame buffers, providing a complete Multibus or Q-bus 512- x 512- x 8-bit imaging system. VAF-512 board has a 800-s/pixel hardware vector generator and RAM based 16M color look-up table. Onboard 10-MHZ A-D flash converter and contrast control circuit are provided. Frames can be software programmed as continuous or 1-shot "freeze frame." Alphanumeric or graphic overlays can be implemented via additional video controller boards. Prices start under $2150 for a 4-bit unit and $3150 for an 8-bit unit. Matrox Electric Systems Ltd, 5800 Andover Ave, T.M.R. Quebec, H4T 1H4, Canada.
Circle 357

STD-280 bus compatible universal systems interface
Designed to interface the STD-280 bus to peripherals via the SASI bus, MDX-SASI2 STD bus host adapter interchanges peripherals without affecting either the host microcomputer interface or host software. Featuring up to 4-MHZ operation, the 5-V card ($249) has mode 2 interrupt capability and occupies 1 I/O port addresses. Block of 8 contiguous addresses can be any of 32 or 64 I/O addresses. Data bus is 8 bits bidirectional; address bus is 16 bits plus optional I/O expansion. Card has a fast DMA controller and provides for DMA daisy-chaining via an additional connector. Mostek Corp, 1215 W Crosby Rd, Carrollton, TX 75006.
Circle 358

Share your knowledge
Other system designers face the same problems you've already solved. You could help them by writing a technical article for Computer Design. For a free copy of our Author's Guide, circle 503 on the Reader Inquiry Card.
Give your imagination the benefit of the latest graphics technology, with a D-SCAN dual-microprocessor GR-2412 raster terminal.

For example, the GR-2412's remarkably fast, remarkably accurate 4014 emulation makes it a snap to add color and selective erase to existing PLOT 10 routines.

And its high resolution 1024 x 780 raster display, with exclusive anti-aliasing hardware, means image quality that rivals a storage tube.

If your ideas grow too big for PLOT 10 to handle, you can always take advantage of the GR-2412's unsurpassed collection of standard graphics features. Like local transformations. Closed figure drawing. Up to 768K bytes of local segment memory. And a software utility package that can replace lines of PLOT 10 code with a single FORTRAN statement. Something else to consider while you're thinking about the future.

Our past. D-SCAN products have been field proven for over a decade. And everyone is crafted by Daini Seikosha Co., Ltd. (Seiko), known worldwide for its precision watches, robots, and computer peripherals.

For immediate information on the GR-2412, contact Seiko Instruments U.S.A., Inc., 2620 Augustine Drive, Santa Clara, California 95051. Telephone (408) 727-0768.

Because ideas in storage don't get any better. Just older.

Plot 10 and 4014 are trademarks of Tektronix, Inc.

CIRCLE 159
Printer mechanism

Model 8-FMC matrix printer mechanism has all mechanical elements for an 80-col printer, including stepper motor for paper advance coupled to adjustable tractors for use with fanfold perforated paper. The 9-needle, free-flight matrix printhead is driven by a bidirectional motor with an encoder assembly on the rear extension of the shaft. Head travel speed is 25 ips; print rate is 250 cps (1200 Hz) at 10 cpi through 6-part forms. Reloadable ribbon is driven continuously from the reversing head drive motor. List price is $295. Practical Automation, Inc, Trapp Falls Rd, Shelton, CT 06484.

Circle 359

7.5° stepper motor with 26 oz-in holding torque

Series M-82801 stepper motors have a 26 oz-in holding torque and running torque starting at 16 oz-in. Step angle is 7.5° (48 steps/revolution) and step angle noncumulative tolerance is ±0.5° for accurate rotary positioning. Motor features permanently lubricated self-aligning bronze sleeve bearings. Self-aligning ball bearings are optional. Case size is 2.33" x 1.4" (5.92 x 3.6 cm). Price is less than $10 in 1k quantity. Airpax Corp, Cheshire, CT 06410.

Circle 360

Mini joystick

MJ series miniature proportional rate joystick has die-cast aluminum frame, nickel-plated steel bales and brackets, and anodized aluminum mounting bezel. Control features replaceable potentiometers for easy field repairs. Std pots are conductive plastic. Wire wound pots, special resistances, and shaft and body seals can be specified. Other options include Deadman switches, control shaft length, and Z axis. Cost is approx $57/unit in quantities of 500. Bowmar Instrument Corp, 8000 Bluffton Rd, Fort Wayne, IN 46809.

Circle 362

Miniature PC mount push-button switches

DPDT "Push Push Switch" for PC mounting features a selection of redundant contacts and precious metal switching surfaces. Low resistance contacts are self-cleaning. Switches provide an audible click tone and tactile feel during switching. Switchcraft, Inc, 5555 N Elston Ave, Chicago, IL 60630.

Circle 363
Here's why we're Number One.

When it comes to logic probes, more people purchase Global Specialties! Because you can spend twice as much and not get the speed, precision, flexibility and accuracy offered by our four logically-priced probes—including our remarkable new 150 MHz ECL Probe. Not to mention the versatility, reliability and durability we've become famous for.

But we don't stop there. When it comes to logic testing, Global Specialties does the complete job. With our DP-1 auto-sensing digital signal injector—for fast, easy stimulus-response testing, at an economical $83.00*. Plus a line of multi-channel Logic Monitors that provide an inside picture of circuit activity at up to 40 nodes simultaneously. And each product has an idea-filled applications manual—as well as an unmatched line of highly-functional accessories, to extend its versatility still more.

With Global Specialties, there's no need to compromise on performance or value. Discover for yourself why we're the number-one logical choice!

Easy-to-use Memory and Pulse functions

Full readout indications—HI, LOW, PULSE

Overload and AC-line-protected high-impedance input

Linear input impedance eliminates errors due to non-uniform loading

Complete line of interchangeable probe tips and grounding wires, including easy clip, banana plug, alligator clip, jumpers and variety of power cords

Compact, high-impact, human-engineered case

True multi-family performance: DTL, TTL, CMOS, or ECL!

Interchangeable thin-profile power cords (instead of awkward, heavy or coiled cords)

Unsurpassed reliability—performance proven

All specs conservative and guaranteed

Half the price for equal (or better) performance

Circuit-powered with reverse-voltage protection

Standard LP-1, only $50.00*, with latching memory—captures pulses as fast as 50 nsec, to 10 MHz, guaranteed

Economy LP-2, $32.00*, guaranteed to 50 nsec, 1.5 MHz

High-speed LP-3 with memory, only $77.00*, guaranteed to 10 nsec (6 nsec, typical) and 50 MHz!

New ECL LP-4, $150.00* the new industry standard—with memory, guaranteed to 4 nsec (2 nsec, typical) at 150 MHz!

*LP-4 probe exclusively for use with ECL. For DTL, TTL or CMOS, select LP-1, -2 or -3.

GLOBAL SPECIALTIES CORPORATION

Call toll-free for details 1-800-243-6077 During business hours

1973 – 1983

70 Fulton Terr., New Haven, CT 06509 (203) 624-3903. TWX 710-465-1227
OTHER OFFICES: San Francisco (415) 648-0611. TWX 906-327-7992
Europe: Phone Saffron-Walden 0799-21682, TUC 817477
Canada: Len Finkler Ltd., Downsview, Ontario

1600-line/min thermal printhead
SM 2000 20-col thermal printhead prints up to 1600 char lines/min of a 5 x 7 matrix text. A square dot design and close coupling between adjacent energized dots form highly legible chars. The prinheads can be ganged to obtain 40, 60, 80, or more cols. Intended for fixed head printers, the prinheads can utilize a constant speed paper drive. An integral heat sink thermistor preheater and connector terminated cable make the unit ready to use. Prices range from $171.75 to $274.80. Gulton Industries, Inc, 212 Durham Ave, Metuchen, NJ 08840.
Circle 364

DIP PC mountable relay
G4D PC mountable DIP double-pole relay is provided as a std DPDT version, and high capacity DPDT and DPST-NO single silver contact types for midrange switching of 5-A loads. The CSA certified series includes UL TV-2 rated DPDT models that also offer nominal 800-mW power consumption and flux tight construction for flow soldering. Features include creepage distances of more than 0.12" (0.30 cm) and extended operating life. Min load requirement is 100 mA at 5 Vdc. Coil voltage ratings range from 5 to 24 Vdc. Omron Electronics, Inc, 650 Woodfield, Schaumburg, IL 60195.
Circle 365

Combined transistor/resistors for built-in bias networks
DTA124(PNP)/DTC124(NPN) digital trans­istor contains a PNP or NPN transistor combined in a single package with 2 completely isolated thin-film bias resistors. The digital transistors implement bias networks and eliminate 2 external resistors in each interface circuit application. Because the built-in bias resistors are completely separated from each other and from the transistor, no interaction can occur between the devices. Bias levels can be set up in both positive and negative directions. Five different bias resistor combinations and 5 package styles are available. ROHM Corp, PO Box 19515, Irvine CA 92713.
Circle 366

Bicolor LEDs
Super-brite bicolor LEDs can be any combination of red, amber, and green; or high efficiency red, amber, yellow, and green. Cartridge packages come with std mounting hardware and either flying leads or std terminals. The LEDs are available with/without built-in resistors for selection of 2.4- to 28-V operation. The 2-terminal devices change color by reversing the polarity of the dc excitation voltage. If low voltage ac is used, a third color can be created. In 1k-piece quantity, price is $2.20 without resistors, $2.45 with resistors.

Data Display Products, 303 N Oak St, Inglewood, CA 90302.
Circle 367

Microminiature relays
Series of PCB mountable relays allows 2 FBR 20 relays to be mounted in the space used by a single FBR 211 relay. Contact arrangement is SPDT. Contact ratings are 24 Volts/1 A and 120 Vac/0.5 A. Max carrying current is 2 A. Std contacts are single gold overlay silver. Optional model uses bifurcated gold overlay silver-palladium alloy contacts. Drive voltages range from 1.5 to 24 Vdc with a rated power consumption of 0.3 W. Relays measure 9.8 x 7.4 x 9.8 mm and have a pin length of 4 mm. Prices are $0.99 each/1k lot. Fujitsu America, Inc, Component Div, 918 Sherwood Dr, Lake Bluff, IL 60044.
Circle 368

Sealed miniature code switches
"Roto-Dip" sealed and washable miniature code switches for direct mounting on PCBs provide either BCD or hex outputs. Gold-plated contacts and a 0.38" (0.95-cm) cube package are featured. Both configurations are available in vertical and horizontal versions. Either screwdriver slot or extended shaft with mini-knobs for easy insertion can be specified. Each version can be further specified for shorting or non-shorting switching modes. ELMA Switch Corp, 1581 Reynolds Ave, Irvine, CA 92714.
Circle 369

Talk to the editors
Have you written to us lately? We’re waiting to hear from you.
Nothing else measures up.

Our sleek 3½" Micro Floppydisk system is every inch a Sony. So why would one of the world's most prestigious computer manufacturers decide to make it their standard?

Because in less than half the volume of a regular 5¼" disk drive you get twice the capacity: 437.5 KBytes. And because Sony gives you all that extra storage without charging any extra.

And because Sony offers the Auto Shutter™ disk shield system to more fully protect the media.

But most of all, Sony was chosen because our Micro Floppydisk systems are up and running—reliably. And that's the standard against which to measure all other micros.

For more input write Sony Data Products, Department A, Sony Drive, Park Ridge, N.J. 07656. Or call 201-930-6030.
PCB mountable LEDs
The 53S0 series of indicators positions LEDs at right angles to the PCB and has a lead spacing of 0.1" (0.3 cm). The 5370 series has LEDs positioned parallel to the PCB and a lead spacing of 0.2" (0.5 cm). Indicators can be stacked adjacent to each other. Both series are available with red, green, or yellow LEDs; red LEDs can also be specified with built-in impedance for 5-Vdc operation. Units require no external current limiting resistors and are TTL compatible. Price is $0.56 each in 1K quantity. Industrial Devices, Inc, 7 Hudson Ave, Edgewater, NJ 07020.

Circle 370

Thick-film, thermal printheads
S200 series thick-film printheads provide 2-ms/line max thermal response, and recordings of 8 horizontal and 7.7 vertical dots/mm with models S216-8, S256-8, and S296-8. Models S215-12 and S258-12 have 12-dots/mm resolution. Recording widths range from 216 to 296 mm. An onchip high speed 32-bit shift register driver is provided. A 32-bit switching diode array is used with the heating elements and the shift register driver on a single substrate. A single 40-pin connector is used for all drive connections. Mitsubishi Electronics America, Inc, 991 Knox Ave, Torrance, CA 90502.

Circle 371

Telecommunications Industry Market Research Reports
Frost & Sullivan has recently published analyses and forecasts of the following Telecommunications industry segments:

□ 1142 Advanced Business Communications (U.S.) Price $1,300
□ 1091 Videotex & Teletext (U.S.) Price $1,250

For free descriptive literature, including a detailed table of contents, check the above reports of interest.

□ Please call me I have questions about these reports

Name & Title: __
Company: ___
Address: ___
City: ___________________________ State: ________________
Zip: ___________________________ Phone #: ______________

Frost & Sullivan 106 Fulton Street
New York, New York 10038 (212) 233-1080

CONTROL & AUTOMATION
High performance DMA controller
HD68450 64-pin DIP DMA controller has an advanced silicone mainframe channel I/O capability and 4 independent channels. Capable of a sustained throughput of 4M bytes/s, the controller also includes 32-bit architecture, vectored interrupts, bus exception handling, and 16M-byte HD68000 CPU address space. Hardware array and linked list chaining, bus matching between 16/32-bit memory accesses, 8-bit peripheral chips, and programmable bus bandwidth utilization are featured. Speed selections are 4, 6, and 8 MHz. Hitachi America, Ltd, 1800 Bering Dr, San Jose, CA 95112.

Circle 373

Microcomputer analog expander board
MP8418-EXP microcomputer analog input expander for Multibus MP8418 analog I/O boards increases differential input capacities from 15 to 63 channels and single-ended input from 31 to 127 channels. Board features 12-bit resolution, overvoltage protection to 25 Vdc, and optional software programmable amplifier providing 11 binary weighted gains. Control signals and power are passed to the expander from the MP8418. Analog input signal is passed from the MP8418 to the expander. Multiplexer channel addresses are latched on the expander board. Price is $495. Burr-Brown Research Corp, Box 11400, Tucson, AZ 85734.

Circle 374

Temperature controller
Microprocessor based temperature controllers series 5000 have 2 digital displays, touch key operation, software linearized and stabilized thermocouple input with 3-mode PID heating, cooling controls, and dual alarms. Features include °F to °C conversion; alarms that can be energized for temp rise or fall and are selectable as process or deviation type; and program restart circuit that eliminates program lock-up due to transient voltage spikes or line brown out. Program automatically restarts within 20 ms after condition passes. The controllers are available in J or K type thermocouple calibrations. Prices start at $395. Omega Engineering, Inc, PO Box 4047, Stamford, CT 06907.

Circle 375
Our $395 OEM unit price says it all. And then some. Because you can't find a better combination. Of price for you. And performance for your customers. The Freedom™ 50 is built for OEMs only. With features built-in that mean your customers reap benefits found in pricier VDTs. 9 cursor control keys. 5 separate function keys. Column and field tabs. A choice of 7 video attributes, assigned by character, that require no display space. A 24 x 80 display format. A 25th status line. 7 x 9 dot matrix within a 9 x 12 field. Baud rate to 19.2K. And more. There's the human touch, too. A 12-inch diagonal etched green phosphor screen. A detached keyboard. And 5 screen tilt positions. All help make work easier. And more productive. The Freedom 50 marks the new high in low cost VDTs. Only for OEMs. Only for $395 (*1K quantity). Only from Liberty, manufacturer of the standard Freedom™ 100. Call our San Francisco headquarters at (415) 751-7560.
1M-bit CMOS ROM
A 1M-bit CMOS ROM measuring approx 49 mm² utilizes a NAND cell design for its double-density capacity. The ROM is organized 128K words x 8 bits and uses 2-micron technology. Operating on a single 5-V supply with ±10% tolerance, the ROM has 3-ms max access time. Power dissipation is 60 mW max. It draws 12-mA max power when active and 10 µA in standby mode. A 52-pin flat pack and 40-pin DIP are available. Price is $70 each. NEC Electronics U.S.A. Inc, Electronic Arrays Div, 550 E Middlefield Rd, Mountain View, CA 94043.

Circle 376

Programmable, single-supply op amps
TLC251 and TLC271 op amps are fabricated with TI's Sigate Lincmos technology that allows operation from a single power supply and provides highly stable input-offset voltages. Low power consumption, high input impedance, and low input bias and offset currents of std metal-gate CMOS op amps are maintained. Typ drift for both devices are 0.1 µV/month and 0.7 µV/°C at low bias. The op amps are available as an A version with 5-mV and B version with 2-mV tight end, guaranteed input-offset voltages. TLC251 operates from a supply range of I to 16 V; TLC271 operates from 4- to 16-V supplies. Texas Instruments Inc, Semiconductor Group, PO Box 401560, Dallas, TX 75240.

Circle 377

PSK modem filter complies with Bell 212A
XR-2120 PSK CMOS switched capacitor, 22-pin filter fulfills Bell 212A transmit/receive filtering requirements. The self-contained bandpass filter set requires external crystal and a single resistor. The CMOS IC contains autoswitching between answer/origin functions. Modem includes digitally programmable gain amplifier, input anti-aliasing filter, switched capacitor bandpass filters at 1200 and 2400 Hz that provide compromise line equalization, and RC active output filters. Unit is powered by either 6 or 12 Vdc, in either single- or split-supply configurations. Consumption is typ 0.2 W. Both 22-pin plastic ($29.02) and ceramic ($30.59) packages are available. Exar Integrated Systems, Inc, 750 Palomar Ave, PO Box 62229, Sunnyvale, CA 94088.

Circle 378

Digital lock/address decoder circuit
Available as either a 2-push-button digital lock (LST229) or an address decoder (LST228) that accepts dual-train pulse input from electronic keying, the MOS/LSI circuit employs a 9-bit code, allowing two or more chips to be cascaded for more than 512 combinations. Both versions have 2.5- to 15-Vdc voltage range. The 2-push-button chip eliminates need for keyboard, and code can be entered without seeing the buttons. An anti-bounce network is also incorporated. Price is $1.25 each in 1k quantity. LSI Computer Systems, Inc, 1235 Walt Whitman Rd, Melville, NY 11747.

Circle 379

Sigate CMOS gate array
TM 4030 silicon gate 300-gate array carries a 10-kpiece price of less than $4 in die form, and has typ gate propagation delays of 5 to 15 ns. One-to-12-V power supply, low power consumption, TTL and CMOS 1/O compatibility, static charge protection on all inputs, pullup tabs, and pull-downs on all inputs are featured. Quick CAD turnaround time is guaranteed. The uncommitted logic array can directly replace the RCA 4000 series and 7400 TTL std logic families. Packaging varieties include die form, LCC, flat packs, 8-pin mini-DIP, cerdips, ceramic, 40-pin DIPS, and custom specified. Telmos Inc, 740 Kifer Rd, Sunnyvale, CA 94086.

Circle 380

CMOS gate array
Series 7CM 1440-gate array features 3-micron geometry for 1- to 3-ns gate delay performance. Array uses a double-level metal, Sigate CMOS process design. It is provided in a 40-pin side-braze, or 64/68-pin cerdip. Other family members include the 7CL 600-gate array and the 7CK 1920-gate array. Storage Technology Corp, 2270 S 88th St, Louisville, CO 80028.

Circle 381

Tell us what you like
Did you remember to rate the articles in this issue of Computer Design? Turn to the Editorial Score Box on the Reader Inquiry Card.

15-bit ADC for bus and UART interface
TSC800 proprietary 15-bit plus sign, bus compatible, primary output ADC requires only 6 external components and voltage reference. Two data transfer modes allow the ADC to easily transfer data to a microprocessor/microcomputer data bus or UART. Data can be transferred in two 8-bit bytes or as one 16-bit word. Data valid signal indicates when converter data latches are being updated. Handshake mode actively controls data transfers to peripherals. Operating control features also include resolution dynamic range, low power, and less than $1/bit cost. Device is available in 40-pin plastic packages and cerdips. Teledyne Semiconductor, 1300 Terra Bella Ave, Mountain View, CA 94043.

Circle 384

8-bit DAC
Monolithic 8-bit DAC AD9768 features typ settling time of 5 ns to ±0.2% and operation in either 2-quadrnt multiplication with bandwidths to 40 MHz or in fixed reference applications using the onchip voltage reference. Capable of 100-MHz update rates, the device is ECL compatible and provides 20-mA full scale current output. Multiplying capability can be used in either voltage or current modes. Transmission lines can be driven directly with high current output; internal bandgap reference reduces support circuitry requirements. The DAC is $32.20. Analog Devices, Inc, Rte 1 Industrial Park, PO Box 280, Norwood, MA 02062.

Circle 383

CRT controller ICs
SY6845R, SY6845E, and SY8045 CRT controllers are 5-V only, 40-pin ICs that are pin compatible with std 6845 devices. These controllers adapt to most 8-bit microprocessor systems. SY6845R ($5.95) has full alphanumeric and limited graphics capabilities. It covers a fully programmable display, interleaved or noninterlaced scan, and lightpen interface. A 16k-char video display RAM can be addressed. SY6845E ($6.89) has all features of SY6845R and adds optional row/col or straight binary addressing of video display RAM, transparent addressing, and status register. SY68045 ($3.50) ROM programmed controller is a low cost replacement for SY8045R. E. Synerk, a sub of Honeywell, 3001 Stender Way, Santa Clara, CA 95054.

Circle 382
WE SOLVE PROBLEMS!

Meet some of our new problem solvers.

High performance, innovative design data displays in 9", 12" and 15" screen sizes, for system designers like you. And they're all available in integrated, chassis or kit versions.

Using these basic displays, our engineers become your engineers! They custom design a display for your specific application, meeting your particular system design requirements. Scanning frequencies to 32 KHz and more. Up to 1200 line resolution. TTL or composite video. 120 or 240V AC, or 12 or 24V DC. Give us your specifications and we'll solve all your display problems. And we'll deliver on time, when you want them.

Audiotronics has been solving problems for over 25 years, designing hundreds of custom data displays for important customers, large and small. Call today. Turn our engineers loose with your display system problems.

North Hollywood California 91605 (213) 765-2645

CIRCLE 163
32k ROMs with electrostatic protection

Models 909413B/C/D 32K ROMS feature electrostatic discharge protection and MOS N-channel Siganle ion-implanted technology. The 4096 x 8 organized ROMS have fully static operation, single 5-V ± 5% operation, and TTL compatibility. Access times are 450 ns (9094132B), 300 ns (9094132C), and 250 ns (9094132D). Inputs meet 2.3 kV per MIL-STD-883 method 3015.1. Three-state outputs are under control of 2 mask programmable chip selects, and can drive 1 std TTL load each. Pricing in 10k lots ranges from $1.65 to $1.82. General Instrument Corp, Microelectronics Div, 600 W John St, Hicksville, NY 11802. Circle 385

CMOS parallel interface circuit

Programmable CMOS peripheral interface 82C55A is a pin-for-pin and TTL compatible replacement for the NMOS 8255A. It operates in a 5-MHz 50°C/85°C system with no wait states and features 55-µW standby power dissipation and 10-µA standby current. Bus hold circuitry is provided on each I/O pin for all three 8-bit parallel ports. High I/O port output drive capability of 2.5 mA/output eliminates need for external bus drivers. Available in 40-pin 0.6" (1.5-cm) center cerDIP, industrial temp grade is $10.05 each, and mil temp grade is $30.37 each. Harris Corp, Semiconductor Group, PO Box 883, Melbourne, FL 32901. Circle 386

Video power op amps deliver 4 A, dissipate 70 W

PA09 and PA09A video power op amps operate with dual power supplies up to ±40 V or single supplies up to 80 V. Output currents are ±4 A. Output stage has complementary MOSFET pair that slews at 500 V/µs and settles to 0.1% in 300 ns. Output transistors have thermal resistance of 1.6 °C/W and full electrical isolation from the 8-pin TO-9 package. Max power rating is 70 W at 25 °C. PA09 has dual FET front end. Prices range from $99.50 to $164.35. APX Microtechnology Corp, 1130 E Pennsylvania St, Tucson, AZ 85714. Circle 387

Let's hear from you
We welcome your comments about this issue. Just jot them on the Reader Inquiry Card.

Microprocessor compatible 8-bit, 8-channel CMOS DAS

MP7581 contains an 8-bit successive approximation ADC, an 8-channel multiplexer, an 8 x 8 dual-port RAM, 3-state data drivers for interface, address latches, and microprocessor compatible control logic. Device interfaces directly to 8080, 8085, 8086, 6800, and other microprocessor systems. Conversion time is 67 µs; data are never older than 533 µs. The data acquisition system is completely transparent to the microprocessor. Output signal can be decoded by external circuitry to derive conversion related timing information for microprocessor interrupts. In 28-pin plastic DIP, the 100- to 499-piece price is $13.60. Micro Power Systems, Inc, 3100 Alfred St, Santa Clara, CA 95050. Circle 388

16K bipolar ECL RAM

HM10480 16K-bit bipolar ECL RAM has a 25-ns max address access speed and requires only 750 or 0.05 mW/bit. Low power consumption ensures that HM10480 based storage devices have reliable operation with little increase in temp. Area/memory cell is 52% smaller than the company's 4K-bit 2.5-micron ECL RAM. The chip is housed in an industry standard 20-pin cerDIP. Sample price is $140 per unit. Hitachi, Ltd, c/o Hitachi Information Services, 22 E 49th St, New York, NY 10017. Circle 389

Microcomputer controlled power conditioners

Three-phase power conditioners have an internal microcomputer that continuously monitors input voltage, determines required correction, then initiates the needed response during power fluctuations. Correction is made within 1 cycle of line frequency. Voltage variations of 20% above or below nominal are accepted and reduced to within 5% of nominal. Power line noise suppression is achieved via low pass filters, peak limiting circuits, resistor-capacitor snubber circuits, and dynamic clamping circuits. The UL listed units in 50- and 60-Hz versions and in ratings from 10 to 100 kVA start at $6950. Topaz, Inc, 3855 Ruffin Rd, San Diego, CA 92123. Circle 391

Triple-output 60-W switchers

Delta series switchers have a 100-kHz switching frequency providing 60 W of dc power from both 120- and 240-Vac lines. Multi-output is available from 5-, ±12-, or ±15-Vdc fixed outputs. Soft start, isolated output, 50% foldback, ±0.1% regulation, 80-dB transient rejection, up to 80% efficiency, and conformance to FCC, UL, and CSA standards are featured. PCB, open frame, or full enclosure models are available. Energetics Systems, Inc, 2204 Wellington Ct, Lisle, IL 60532. Circle 392

DC-DC converters

Series 200Z modular power supplies with single or dual outputs can deliver up to 12 W of output power. Output voltages can be varied ±20% by adjusting an externally accessible potentiometer. Options include output shutdown and preset voltage reduction capabilities. Customizing features include input voltages from 4 to 30 V, and dual-polarity, single-ended positive, and dual-positive output configurations. Dual outputs can be separately specified. Regulation is rated at ±3%. Op temp range is 0 to 70 °C. Efficiency at full load is typ 70%. Sprague Electric Co, 555 Marshall St, North Adams, MA 01247. Circle 393
INTRODUCING INTERC™ AND INTERPAS.™
A NEW CONCEPT IN CROSS-COMPILERS THAT SUPPORTS ANY POINT OF VIEW.

InterC and InterPas are the world’s most versatile and most retargetable multi-language cross.compiler systems available to run on the most popular development hosts. They reshape embedded microprocessor software development standards by protecting your software investment and by providing new flexibility in your choice of microprocessor design strategies.

They’re designed to let you hit your embedded microprocessor software bull’s eye every time, even when the target changes.

InterC and InterPas let you develop on the user-friendly PDP-11™ (RSX-11M™ or UNIX™) and VAX™ (VMS™ or UNIX™), in Version 7 C and ISO Pascal for the 8086 and 68000.

Supported by features like re-entrant, ROMable code for multi-tasking, separate compilation, realtime orientation optimized for speed of execution, code and data separability, user defined data locations and shared global data.

Support your embedded microprocessor point of view today. And tomorrow. With InterC and InterPas. Call Intermetrics, Inc., Software Products Division, 733 Concord Avenue, Cambridge, MA 02138. 1-800-543-1300, toll free, ask for Operator 274.

SEE US AT THE MINI/MICRO NORTHEAST-’83.
BOOTH NUMBERS 4027 AND 4029.

INTERMETRICS
SHAPING THE EMBEDDED SOFTWARE STANDARD

UNIX™ is a trademark of Bell Laboratories.
PDP-11™ RSX-11M™ VAX™ and VMS™ are trademarks of Digital Equipment Corporation.
Multi-output, open frame linear power supplies

LT series of linear, multi-output power supplies features full output ratings to 50 °C, 115- and 230-Vac inputs, and remote sense. Foldback current limiting overload protection, overvoltage protection, reverse voltage protection, and oversized components to run cooler are included. Seven case sizes with output voltage combinations from 5 to 24 V and 0.5 to 12 A are available. Line regulation is ±0.05% for a 10% change and load regulation is ±0.05% for a 50% change. Ripple is 5 mV pk-pk; dc outputs can be adjusted ±5% min. Price range is $69.95 to $126.95. Bikor Corp, 1504 W 228th St, Torrance, CA 90501. Circle 394

Computer grade isolation transformers

Computer Grade and Ultraguard isolation transformers provide 2 levels of power line noise protection and are available in std 15- to 500-kVA ratings. Ultraguard provides the greatest degree of noise protection and advantages of lightning arrester and surge suppressor. The transformers have over 98% typ efficiency and very low ac audible noise. Adaptable for outdoor use, the UL listed units are copper wound with electrostatic shield system with -120 to -140 dB typ attenuation. Compensation is provided for third harmonic problem caused by switching regulator power supplies. Emergency Power Engineering, Inc, 3580 Cadillac Ave, Costa Mesa, CA 92626. Circle 395

Single-output switching power supplies

“A” series single-output switching power supplies have MTBF of 65 k h and fully anodized metal enclosure to resist abuse and rfi. Short circuit and overload protections are provided; normal operation resumes when overload is removed. Soft start protects critical semiconductors. Line input is 85 to 132 Vac, and line regulation is 0.1% max for 10% change. Converter frequency is 50 kHz. Efficiency is 75% and op temp range is -10 to 50 °C. Series includes 5-, 12-, 15-, and 24-Vdc output versions. L-com Inc, 1545 Osgood St, North Andover, MA 01845. Circle 396

UL recognized, multi-output, 65-W switchers

ME series of UL 48 recognized, multi-output 65-W switching power supplies provides up to 4 outputs and accepts a dual-input that is jumper selectable, 85 to 132 Vac and 170 to 264 Vac, 47 to 440 Hz, and 240 to 360 Vdc. Units can include up to two 1-A max separate regulators for individual outputs. Line regulation is down to 0.2%; load regulation is down to 0.3%; ripple and noise is 1% of 75 mV, pk-pk. Overcurrent, overvoltage, and short-circuit protections are provided. Op temp range is 0 to 50 °C without derating. Prices start at $80 each for a 4-output unit. Panasonic Industrial Co, One Panasonic Way, Secaucus, NJ 07094. Circle 397

Switching power supplies for small computers

XL50 family of 4-output switching power supplies delivers 60 W in a std 4.25" x 7.75" x 2" (10.80-x 19.69-x 5-cm) form factor. Proprietary current controlled feedback network yields tight regulation and low ripple/noise. All models have short circuit protection, input surge protection, 20-ms hold-up time, and 90- to 132-Vac or 180- to 264-Vac user selectable input voltage. The supplies operate with no power derating in a 50 °C ambient range and have overvoltage protection on the 5-V output. In 1k lots, price is $60. Boschert Inc, 384 Santa Trinita Ave, Sunnyvale, CA 94086. Circle 398

EMI protection

EMI/RFI shielding tape

Cho-Foil electrically conductive copper foil tape with conductive pressure sensitive adhesive has a 0.003-Ω/in² electrical resistance. Conductive particles are unaffected by extreme conditions, and typ adhesive peel strength per ASTM D-1000 is 23 oz-in. In addition to emi/RFI shielding applications, the tape can also be used to improve grounding to conductive materials that resist soldering. The tape is provided in 36- and 72-ya (36- and 66-m) rolls, and in widths from 0.5" to 24" (1.3 to 61 cm). Chomerics, Inc, 77 Dragon Ct, Woburn, MA 01888. Circle 399
More Room
You get more room for extra cards without increasing overall size, because our design gives you greater inside dimensions.

More Models
We have more models than all our competitors combined. Choose a cage with 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 20, 24 or 26 slots for the right solution to your problem. We have models with either 0.6” or 0.75” card centers and can even accommodate wirewrap cards.

More Reliability
All cages are constructed of sturdy, durable anodized aluminum with a single mother board backplane...a concept that increases reliability and minimizes interconnections.

Rack Mounting Too!

More Warranty
A three year warranty is your assurance of quality.

More Information?
Call our toll free number (800) 854-7086
In Canada Call: Transduction Ltd. (416) 625-1907

Electronic Solutions
5780 Chesapeake Ctr., San Diego, CA 92123
(619) 292-0242
Telex II (TWX): 910-335-1169

Note, Multi-Cage is a registered trademark of Electronic Solutions Multibus, Intel and iSBC-80® are trademarks of Intel.
CONFERENCES

MAY 2-5—Test and Measurement World Expo, San Jose Conv Ctr, San Jose, Calif. INFORMATION: Meg Bowen, 215 Brighton Ave, Boston, MA 02134. Tel: 617/254-1445

MAY 9-13—SID (Society for Information Display) Internatl' Sym, Marriott Hotel, Philadelphia, Pa. INFORMATION: Lewis Winner, 301 Almeria Ave, Coral Gables FL 33134. Tel: 305/446-8193

MAY 10-12—Mini/Micro-Northwest, Portland Coliseum, Portland, Ore. INFORMATION: Jerry Fossler, Electronic Conventions, Inc, 8110 Airport Blvd, Los Angeles, CA 90045. Tel: 213/772-2965

MAY 10-12—Northcon, Portland Coliseum, Portland, Ore. INFORMATION: Jerry Fossler, Electronic Conventions, Inc, 8110 Airport Blvd, Los Angeles, CA 90045. Tel: 213/772-2965

MAY 16-18—Electronic Components Conf, Contemporary Hotel, Orlando, Fla. INFORMATION: Don L. Williard, Bendix Corp, Dept 867 MF39, PO Box 1159, Kansas City, MO 64141

MAY 16-19—NCC (National Computer Conf), Marriott Hotel and Anaheim Conv Ctr, Anaheim, Calif. INFORMATION: AFIPS, 1815 N Lynn St, Arlington, VA 22209. Tel: 703/558-3624

MAY 18-20—MIPRO (Microprocessors/ Microcomputers Course/Conf), Congress Ctr, Hotel Adriatic, Opatija, Yugoslavia. INFORMATION: P. Dragolovic, MIPRO Secretariat, Trg P. Togliatti 4, 51000 Rijeka, Yugoslavia. Tel: +38 51 31 211 X424 (am); +38 51 741 494 (pm)

MAY 25—Automating Intelligent Behavior: Applications and Frontiers, Nat'l Bureau of Standards, Gaithersburg, Md. INFORMATION: Marvin Denicoff, Trends and Applications B5, PO Box 639, Silver Spring, MD 20901. Tel: 202/696-4302

JUNE 14-16—Ohmcon, Cobo Hall, Detroit, Mich. INFORMATION: Jerry Fossler, Electronic Conventions, Inc, 8110 Airport Blvd, Los Angeles, CA 90045. Tel: 213/772-2965

JUNE 19-23—Computer Vision and Pattern Recognition (formerly Pattern Recognition and Image Processing) Conf, Crystal City Hyatt, Arlington, Va. INFORMATION: IEEE Computer Society, PO Box 639, Silver Spring, MD 20901. Tel: 301/589-8142

JUNE 25-30—NCGA, McCormick Pl, Chicago, Ill. INFORMATION: Nancy LeFebvre, Nat'l Computer Graphics Assoc, 8401 Airport Blvd, Fairfax, VA 22031. Tel: 703/698-9600

JUNE 27-29—Design Automation Conf, Fontainebleau Hilton, Miami Beach, Fla. INFORMATION: Charles E. Radke, IBM Corp (ZIP-47A), Rte 52, Hopewell Junction, NY 12553. Tel: 914/897-4682

JULY 11-13—Computer Simulation Conf, Hyatt Regency Vancouver, Vancouver, BC, Canada. INFORMATION: Society for Computer Simulation, PO Box 2228, La Jolla, CA 92038. Tel: 714/459-3888

AUG 8-11—World Congress on the Human Aspects of Automation, Univ of Michigan, Ann Arbor, Mich. INFORMATION: Pat Van Doren, Technical Activities Dept, Society of Manufacturing Engineers, One SME Dr, PO Box 930, Dearborn, MI 48128. Tel: 313/271-1080 X369

AUG 23-26—Internatl' Conf on Parallel Processing, Shanty Creek Lodge, Bellaire, Mich. INFORMATION: IEEE Computer Society, PO Box 639, Silver Spring, MD 20901. Tel: 301/589-8142

SEP 13-15—Autofact Europe, Palexpo Conf and Exhibition Ctr, Geneva, Switzerland. INFORMATION: Automated Systems Assoc, Society of Manufacturing Engineers, One SME Dr, PO Box 930, Dearborn, MI 48128. Tel: 313/271-1500

SEP 13-15—Midcon, O'Hare Expo Ctr and Hyatt Regency O'Hare, Rosemont, Ill. INFORMATION: Jerry Fossler, Electronic Conventions, Inc, 8110 Airport Blvd, Los Angeles, CA 90045. Tel: 213/772-2965

SEP 13-15—Mini/Micro-Midwest, O'Hare Expo Ctr, Rosemont, Ill. INFORMATION: Jerry Fossler, Electronic Conventions, Inc, 8110 Airport Blvd, Los Angeles, CA 90045. Tel: 213/772-2965

SEP 13-15—Peripherals, Moscone Ctr, San Francisco, Calif. INFORMATION: Cahners Expo Group, Cahners Plaza, 1350 E Touhy Ave, PO Box 5060, Des Plaines, IL 60018. Tel: 312/299-9311

SEP 26-29—Compon Fall, Marriott Gateway, Crystal City, Arlington, Va. INFORMATION: IEEE Computer Soc, PO Box 639, Silver Spring, MD 20901. Tel: 301/589-8142

SEP 26-29—ISA (Instrumentation Society of America) Internatl' Conf and Exhibit, Rivergate Exhibition Ctr and Louisiana Superdome, New Orleans, LA. INFORMATION: ISA, 67 Alexander Dr, PO Box 12277, Research Triangle Park, NC 27709

SEP 26-28—Macon, Kansas City Conv Ctr, Kansas City, Mo. INFORMATION: Jerry Fossler, Electronic Conventions, Inc, 8110 Airport Blvd, Los Angeles, CA 90045. Tel: 213/772-2965

WORKSHOPS

MAY-JUNE—Microcomputer Workshops, various cities and dates. INFORMATION: Intel Corp, Customer Training, 1350 Shorebird Dr, Bldg B, Mountain View, CA 94043. Tel: 415/940-7800 (San Francisco); 312/981-7250 (Chicago/Dallas); 617/256-1374 (Boston/Washington)

Our Past Is Your Future

Ikegami Technology
For systems applications requiring high quality, dependable CRT display monitors, Ikegami brings you the technology of the future, today.
An innovator in video technology for over 36 years and the world’s leading producer of high quality broadcast camera systems and monitors, Ikegami has applied its unparalleled experience to the design and production of display monitors for the computer industry. Put Ikegami’s Emmy award-winning digital techniques for automatic setup to work for you.

HDM Series
Ultra high resolution for your most demanding graphics systems. Ikegami’s HDM Series color and monochrome display monitors utilize a delta-gun, raster-scan CRT and superb quality wide band, high speed scan, video amplifiers to provide the precision you need (up to 1280 x 1024 pixels interface mode), plus the long life and easy maintenance you demand from a top quality graphics display. Available in 19V and 25V CRT sizes.

The CD Series (CDA/CDB)
Quickly becoming our most popular line of high resolution in-line gun color CRT display monitors. If your requirements are for high resolution (up to 1024 x 1024 pixels interface mode), stable operation and very low maintenance, the CD Series may be your solution. Available in 13V and 19V analog or digital models, the compact-size CD Series is perfect for simulation, medical, CAD/CAM and other high resolution applications.

The UD Series
Medium resolution, digital drive, color display monitors for business graphics systems. The Ikegami UD Series provides high performance (615 x 240 or more pixels interface mode) at a very economical price.

Easy Interface. Easy Maintenance.
Ikegami display monitors are designed to interface with your equipment, quickly and easily. There’s no complex rework . . . no hassle. Ikegami’s sophisticated design virtually eliminates maintenance problems, so you know your Ikegami displays will continue to bring out the best in your systems, year after year.

For more information on high-performance CRT display units designed to meet your needs, today and tomorrow, write or call Ikegami today.

Ikegami
We are the future.

CIRCLE 166
Power supplies and accessories
Catalog covers a range of modular supplies and custom systems, including laboratory and test equipment; detailed specs, dimensional drawings, and product/price index are included. Lambda Electronics, div of Veco Instruments, Inc, Melville, NY. Circle 410

Discrete semiconductor chips

Multiple-access LAN
Data sheet examines Cinch Pac primary automation controller and Cinchnet network, which connects 125 devices and coordinates 2000 analog inputs plus 8000 digital data points or 2000 analog control loops; communication speeds reach 28.8k baud up to 4000' (1219 m). Iconix Corp, Control Logic Products Group, Natick, Mass. Circle 412

Elastomeric connectors
Application note introduces a silicone elastomer connector material, detailing electrical and physical properties of high density connectors for interconnecting plasma displays to PCBs; the solderless devices are also being used for display-device testing, burn-in, soft assembly, and prototyping. Tecknit, Cranford, NJ. Circle 413

Digital LSI modem products
Booklet introduces development, test, and support for MP 14.4 and MP 16.0 microprocessor and LSI modems, which provide 14,400 and 16,000 bps, respectively, over voice grade circuits. Paradyne Corp, Largo, Fla. Circle 414

Voice synthesis module
User's guide describes features and operation of the VSM2128-A12, which incorporates the SP0256 speech processor and a single-chip N-channel MOS/LSI circuit that synthesizes English language phrases through allophone concatenation. General Instrument Corp, Microelectronics Div, Hicksville, NY. Circle 415

Stepper and timing motors
Booklet specifies permanent magnet, hybrid, and variable reluctance 4-phase stepper motors and timing motors; detailed diagrams and performance characteristic graphs are included. Inland Motor, Specialty Products Div, Sierra Vista, Ariz. Circle 416

Flat/planar cables
Brochure profiles planar construction of round and flat conductor, jacket shielded, groundplane, and flat woven cables; parts numbering guide identifies insulation types, conductor materials, and cable configurations. Phalo Corp, a Translon Co, Shrewsbury, Mass. Circle 417

Fiber optics for computer graphics
Technical bulletin examines configuration and operation of wideband T/R-201X series optical communication systems, in long distance remoting of high resolution RGB and monochrome graphics workstations; CAD/CAM, process control, and image processing applications are illustrated. Artel Communications Corp, Worcester, Mass. Circle 418

16-bit microprocessors with support peripherals
Leaflet examines SAB 8086 microprocessor family, made with N-channel silicon-gate technology in industry standard 40-pin package; applications and technical data are given for associated peripheral configurations. Siemens Components, Inc, Special Products Div, Iselin, NJ. Circle 419

Linear output Hall sensors
Application notes detail how to effectively use the 955 linear output Hall effect transducer (LOHET), which produces an output voltage proportional to the magnetic field; illustrated with charts, wiring diagrams, and cutaway drawings, the notes review position sensing and techniques for interfacing the LHET with comparators and op amps. Micro Switch, div of Honeywell, Freeport, Ill. Circle 420

Transistorized inverter UPS
Data sheet highlights Transivert® static uninterruptible power supply systems ranging from 2.5 to 50 kVA, and details components and operation. UPSystems, Inc, Paramount, Calif. Circle 421

Switching power
Foldout pamphlet provides power ratings and voltage/current outputs for 40- to 750-W equipment, along with dimensional drawings and ordering information. Datapower, Inc, Santa Ana, Calif. Circle 422

DEC compatible peripherals
Product summary introduces disk and tape controllers, along with communications controllers and multiplexers, for DEC minis and micros. Emulex Corp, Santa Ana, Calif. Circle 423

Upgrades for IBM Personal Computer
Brochure introduces MicroCard software compatible with Z80, 8086, 68000/Unix, iAPX 286, and 16032 processors, as well as VersaCard and RAM Module memory expansion up to 512k bytes. Sritek Inc, Cleveland, Ohio. Circle 424

Data communication devices

Power supplies
Catalog covers encapsulated modular models with vacuum impregnated transformers and switching power supplies, covering ranges from 1.5 to 500 W. Calex Mfg Co, Inc, Pleasant Hill, Calif. Circle 426

Membrane keyboards
Pamphlet explains how membrane switching works and charts construction, circuitry, graphics, termination, and key arrays. Cherry Electrical Products Corp, Waukegan, Ill. Circle 427

Assorted electronic components
Condensed catalog gives complete electrical and mechanical specs for OEM products such as potentiometers, resistor networks, PCBs, connectors, backplanes, hybrid circuits, DIP and rotary switches, and core memory systems. CTS Corp, Elk hart, Ind. Circle 428

Video display monitors
Catalog specifies color and monochrome monitors and interface cables for small computers, with compatibility charts. Amdek Corp, Elk Grove Village, Ill. Circle 429
Protect your sensitive IBM data with our new Fiber Optic Link

- Plug compatible with IBM series 3250, 3270A, and 3270B equipment.
- Replaces coaxial cable with fiber optic cable.
- Up to 1 Km operating range – virtually immune to electromagnetic interference.

Versitron’s FDH-1 (fiber optic digital hybrid) was designed to replace the coaxial transmission path in systems equipped with the IBM 3250 or 3270 series equipment. The simple installation of a fiber optic link provides two very important benefits to the user. First of all, the security level of the transmission link is greatly improved since fiber optic cables are inherently immune to conventional wire-tapping techniques. Secondly, the system operating capability will be enhanced since fiber optic cables are impervious to virtually all types of electromagnetic interference. This includes, of course, interference from heavy duty manufacturing equipment and noisy adjacent cables.

Versitron’s FDH-1 combines the high speed capabilities of a coaxial cable with the inherent advantages of a fiber optic cable. By interfacing directly to the coaxial cable, the FDH-1 appears totally transparent to the rest of the system; thus eliminating any operating restrictions.

If you’re currently transmitting high speed data over a coaxial cable and you’re concerned about data security, give us a call at (202) 882-8464 and get all of the details on how our FDH-1 will not only protect your data; but may also actually increase the operating efficiency of your entire system.

The FDH-1 is available in a variety of different enclosures, including a sealed unit specifically designed for EMI/RFI suppressed applications.
Fiber optic connectors
Installation sheet gives step by step instructions for complete termination of 0.9-dB (100-µm core) typical connector to connector losses. Augat Inc, Interconnection Systems Div, Attleboro, Mass. Circle 430

Microprocessor analyzer
Data sheet describes CDS 460 analyzer for 8-bit microcomputers, which gives direct hexadecimal display of address data for debugging and troubleshooting system hardware and software. Chemical Data Systems, Inc, Oxford, Pa. Circle 431

Uninterruptible power system
Spec sheet tabulates engineering data for 750-VA to 30-kVA models, including frequency output amps and harmonic distortion. Clary Corp, San Gabriel, Calif. Circle 432

Multilayer backplanes
Pamphlet describes wide range of backplanes and connector systems available for special applications; information on quality control, testing capabilities, turnarounds, and consultation services are included. HADCO Corp, Backplane Div, Salem, NH. Circle 433

DC motors
Series 1200 and 1300 models are introduced in separate technical bulletins that summarize performance characteristics; dimensional drawings are included. Harowe Servo Controls Inc, sub of Bowmar Instrument Corp, West Chester, Pa. Circle 434

Power protection systems
Folder gives features and specs, illustrating typical construction and panel details for uninterruptible power systems, sinusoidal ferroresonant regulators, and ultra isolation systems. Hitran Corp, Flemington, NJ. Circle 435

Low profile keyswitch
Pamphlet features SN series SilverLock® technology, a sealed contact design that uses a silicone rubber tube to protect high performance silver contacts from environmental conditions. Mechanical Enterprises Inc, Herndon, Va. Circle 436

Power conditioning technology
Leaflet discusses Mini-Rups rotary uninterruptible power system for 12- to 50-kVA requirements and compares its performance with static type UPS. Computer Power Products, div of Sweinhart Electric Co, Inc, Gardena, Calif. Circle 437

Hi-res interactive graphics display
Full-color brochure depicts how System 1000's RCC-1000 controller pans, zooms, flips the display, and splits the viewing screen into four independent areas without redrawing the image. IGC Inc, Commack, NY. Circle 438

Process control power
Technical data for laboratory and instrumentation process control power supplies cover models in 10- to 1000-V range with 1- to 50-A currents; output capacities are 100 W to 2 kW. Fincor, Incom International Inc, York, Pa. Circle 439

Enclosed, nonventilated servos
Pamphlet features series C400 dust- and oil-sealed dc servos with continuous torque of 15 to 60 lb-in, in addition to heavy-shafted series F560 with continuous torque of 75 to 300 lb-in; general specs and applications in automated factories are covered. Contraves Georz Corp, Motion Control Div, Pittsburgh, Pa. Circle 440

Low cost D-subminiatures
All-plastic straight and 90° connectors PD®N and PD®S are described for computer, multiconductor, and telecommunications applications. Cannon Electric Div, IT&T Corp, Fountain Valley, Calif. Circle 441

VLSI controller for Ethernet
Booklet highlights Am7990 LANCE/Am7991 SIA Ethernet node, which optimizes performance and ensures compatibility among components in an Ethernet local area network. Advanced Micro Devices, Inc, Sunnyvale, Calif. Circle 442

Fiber optic kits
Data sheet 80-593 describes six kits: one builds six complete data links; one builds two 20M-baud, full-duplex transceivers; and four contain interconnection components for assorted system hookups. AMP Inc, Harrisburg, Pa. Circle 443

Wire assemblies
Color folder presents line of electrical wiring harnesses, multiconductor cable assemblies, terminated wire, and electrical/electromechanical assemblies. Custom Wire Assemblies, Inc, Muskego, Wis. Circle 444

Sockets, contactors, and carriers
Catalog specifies proprietary IC products, including burn-in, test, and screw machine sockets, in addition to contactors and carriers for flat pack, quad pack, DIP, and TO-5 devices. Wells Electronics, Inc, South Bend, Ind. Circle 445

Fiber optic transmitter
"Understanding the FOT110 Fiber Optic Transmitter" contains detailed charts, performance specs, and explanations of input and output; reference is aimed at applications design and cable/connector selection. Burr-Brown Research Corp, Tucson, Ariz. Circle 446

16-Bit hybrid S-D converter

Streaming tape handbook
"Streaming" covers tutorial and background information on Winchester technology, along with streaming software and system considerations; one section compares mass storage technologies. Request on company letterhead (for $14.95) from Archive Corp, 3540 Cadillac Ave, Costa Mesa, CA 92626. Circle 448

High temp fiber optics
Data sheet lists optical and mechanical specs for fiber optics in three operating ranges: type X to 260 °C, type XUH to 430 °C, and type XSUH to 650 °C. Dolan-Jenner Industries, Inc, Woburn, Mass. Circle 449

LED cluster indicator
Catalog describes 1" (2.54-cm) dia, grouped-LED unit, which continues operating with reduced luminescence when a failure occurs within the light; chart compares LED with incandescent lights. R. Stahl, Inc, Woburn, Mass. Circle 449
Take a Few Minutes to
HELP OUR EDITORS HELP YOU
YOU MAY WIN A VALUABLE PRIZE IN THE PROCESS

In every issue of Computer Design you'll find a bound-in survey questionnaire entitled "Designer Preference Survey." Your participation in these surveys is important. Your answers are significant. They tell our editors what's going on in the marketplace, what kinds of systems you are designing, how your product choices are shaping up, what products, subsystems, equipment and components you are using or would like to use.

The answers you supply can guide our editors in selecting the topics, features, and technical data that will be on target with the kinds of projects you are working on.

The questionnaires also alert manufacturers to your needs. The inputs you give us help them to develop products with the speeds, ranges, capacities, etc. that you require.

As an added incentive, each questionnaire returned gives you a chance to win a valuable prize. Drawings are made each month, with a grand prize drawing at year end.

MONTHLY DRAWING
HP 41C
PROGRAMMABLE CALCULATOR
The HP 41C offers advanced problem-solving power yet is easy to use. Communicates in words as well as numbers. Can be programmed to meet your specific needs. Fifty-eight popular functions, 130 total operations in function library. You can add peripherals and extension modules to expand capabilities.

ANNUAL DRAWING
HP 85
DESK TOP COMPUTER
This portable (20#) unit includes an alphanumeric keyboard, tape drive, thermal printer, built-in 56 K byte memory, CRT screen, and 150 built-in HP BASIC language commands. You can add peripherals and software packages to expand system capability. A $2800 value!

COMPUTER DESIGN
The only computer magazine that concentrates on design.
The only design magazine that concentrates on computers.
CIRCLE 475
for rates and information

LOW EMI AC DIP RELAY
Teledyne's 645V meets FCC and VDE stds. Features 3.8 to 32V input and TTL logic compatibility, up to 1 amp switching at 250VRMS, back to back SCR output, low leakage current of 1 mA RMS, 3750VRMS VDE level optical isolation, low insertion factor of $\pm 1.5V$, high noise immunity, and virtually no switching transients. $6.35 ea for 5000 pcs. TELEDYNE RELAYS, 12525 Daphne Ave, Hawthorne, CA 90250. Tel: (213)777-0077

CIRCLE 476

STORE 4K BYTES IN 10 mSEC?
That's right! The PM2212A STD-BUS Nonvolatile RAM card can safely store ALL of its 4K byte RAM array into EEPROM in just 10 milliseconds. Long waits between byte writes are eliminated. No complicated software...two I/O commands control data STORE and RECALL. No batteries to fail or corrode. 10+ years data retention. Available NOW in 1K, 2K & 4K versions. PENN MICROSYSMS, INC., 2318 WEST EIGHTH ST, ERIE, PA 16505. Tel: (814) 452-4005.

CIRCLE 477

LOW COST ADVERTISING
You can market your products to over 90,000 systems builders

- Hardware
- Software
- Services
- Consulting

For only $595.00 your ad will be typeset, laid out, and appear in this space. Sales leads will automatically be sent to you as we receive them.

Start today! Call Maureen Sebastian for details on how to start a low cost advertising program. Your sales results will tell you that it is the best decision you have ever made.

(800)225-0556 (Outside Mass)
(617)486-9501

CIRCLE 478

OUR REAL TIME LOGIC ANALYZER
could become your most valuable accessory. Easily attaches to any oscilloscope to compare 8 ± 15 volt signals simultaneously. Make accurate timing and phase relation measurements from DC to 8 Mhz. Low power design takes power directly from circuit under test. Complete with 30 inch E-Z-Microhook probe set, manual and full 1 year warranty for only $819.95. Send Check or money order to HEAVISIDE INDUSTRIES, PO Box 2742, Westport, CT 06880-0742.

CIRCLE 479

68000 'VERSABUS™' SUPER BOARD
- 8, 10, 12MHz OPERATION—NO WAIT STATES
- 256K DUAL PORT RAM W/BYTE PARITY
- ON-BOARD OPTIONAL MMU
- 64K ROM, 2 FLEXIBLE SERIAL PORTS,
- BUFFERED PARALLEL PORT, TIMERS,
- POWERFUL INTERRUPT STRUCTURE
- 'SASI™' BUS DISK/TAPE INTERFACE
- FULL VERSABUS IMPLEMENTATION
- RUNS UNIX, ADA, PASCAL, CP/M 86K
- COMPLETE ST AND ALONE, OR MULTI-
- PROCESSOR SYSTEM
BRI, 748 Cascadilla St, Ithaca, NY 14850. Tel: (607)273-3300.

CIRCLE 480

WIREMASTER
Whip your wire wrap and PC layout problems with WIREMASTER

WIREMASTER is a software tool for design, layout, and assembly of hardware. Your schematic is led to WIREMASTER, which produces network maps, cross-references, wire and parts lists, and debug checklists. CHANGEMASTER keeps track of fixes and updates. PLOTBOARD and PRINTBOARD give pictures of the layout. Post-processors for wirewrap machines available. Runs on 8 and 16 bit CPM, CP/M, and MSDOS. $195.

AFTERTHOUGHT ENGINEERING 7266 Courtney Dr, San Diego, CA 92111, (619)279-2866.

CIRCLE 481
LACK BOX R Catalog

The LACK BOX R Catalog of Data Communication Devices contains 282 unique, useful and low-cost products for computer system installation, expansion, and operation in one free catalog. Complete descriptions, photos, diagrams, and prices make selection and ordering easy. Product categories include switches, cables, test sets, protocol and interface adapters, modem minimators, short haul and limited distance modems, multiplexors and more.

BLACK BOX R Catalog, Dept. ST, PO Box 12800, Pittsburgh, PA 15241. Tel: (412) 261-2910 TWX (510)697-3125.

CIRCLE 482

FREE MICROPROCESSOR CATALOG

42 page catalog of 8800-family single-board computers, interface modules and development systems. Also, resident and cross software including assemblers, compilers, BASIC interpreters and operating systems. To qualify for your free copy, call or write on your letterhead to: WINTEX CORPORATION, 1801 South Street, Lafayette, IN 47904.

CIRCLE 484

ANALOG-DIGITAL DUAL CONVERSION MODULES

For additional details about the AD-100-4 and other fine California Data Corporation 100% individually tested, high reliability products, circle the reader service card number below or for faster response write or call us.

CALIFORNIA DATA CORPORATION
3475 Old Conejo Road . Suite C-10
Newbury Park , CA 91320
(805) 498-5651
CIRCLE 485

CIRCUIT DIGITAL ANALOG

SOFTWARE GAIN CONTROL

For details, contact Bob Dromgoole at COMPUTER DESIGN, 119 Russell St, Littleton, MA 01460. Tel : (800)225-0556. In MA: (617)486-9501.

CIRCLE 488

MATRIPHERED DIRECT MAIL LIST

The most Precise, most Versatile, Cross-Matrixed list of computer Based Systems Designers ever offered for bulk or custom selection. You can rent the entire list, or pinpoint the exact engineers you want to reach. NEW 48-HOUR EXPRESS PROCESSING.

For details, contact Bob Dromgoole at COMPUTER DESIGN, 119 Russell St, Littleton, MA 01460. Tel: (800)225-0556. In MA: (617)486-9501.

CIRCLE 489

COMPUTER DESIGN'S HOTLINE A kHz ACTION CARDS

A NEW AUDIENCE

MORE HOT SALES LEADS...

Computer Design's Hotline Action Cards are mailed to a special list of 65,000 readers including the most recent inquirers to our new product editorial items. Rates start at $895 per card. If you run 2 or more cards in Computer Design's regular Direct Action Card Mailings your Hotline Card costs only $795.00-A $100 saving! Closings: May 21, August 21, October 21. Contact Shirley Lessard, COMPUTER DESIGN, 119 Russell St, Littleton, MA 01460. Tel: Toll Free (800)225-0556.

CIRCLE 487

VMEbus 68000 BOARDS and SYSTEMS

IV 1600 SBC - SYSTEM FOUNDATION MODULE w/ 12 Mhz 68000, 256K DUAL PORT RAM, ROM, SIO, PIO, RTC, SAD BUS
IV 1611 - 512K 256K RAM w/ BYTE PARITY
IV 1620 - IEEE 488 INTERFACE
IV 1650 - GRAPHICS DISPLAY SYSTEM
IV 1650/D - COMPLETE DEVELOPMENT SYSTEM w/ CR/NUM and "C" COMPILER, 10MB Winchester, 1MB Floppy, in DESK-TOP or RACK-MOUNT
BOARDS and SYSTEMS AVAILABLE NOW!

IRONICS INCORPORATED
117 Easton-His Drive, PO Box 356
14850
14850
CIRCLE 490

DISCOVER CHEYENNE!

NO—Corporate Income Tax
NO—Personal Income Tax
NO—Inventory Tax
NO—Tax on In-transit Goods
NO—Tax on Intangibles
NO—Problems!

• 2 Industrial Parks • 2 Major Railroads
• 9 Truck Lines • "Right-to-Work" State

Locate your corporate HQ, master distribution warehouse, or manufacturing plant in CHEYENNE, WYOMING

HAROLD M MILLER, Ex Director
Industrial Development Assn. of Cheyenne
Municipal Building. 2101 O'Neil Ave.
Cheyenne, WY 82001 - 307-637-6385

CIRCLE 483

HANDBLED CONTROL/DISPLAY TERMINALS

Brochure from Termiflex Corp. shows versatile line of standard and custom hand-held terminals used both as control panels and field service tools. Terminals offer displays of 16 to 80 characters. Operating temperature ranges include -18°C to +50°C and -40°C to +50°C. Terminals described interface with host computers in much the same way as a CRT terminal. TERMIFLEX CORP, 18 Airport Rd, Nashua, NH 03063. Tel: (603) 889-3383, TWX: (710)228-7345.

CIRCLE 489

COLOR GRAPHIC VT 100 R

A fully interactive, 7 color high resolution 13" or 19" ANSI/ASCII standard display terminal that is available with or without an ISC8001 GR emulator. The unit is capable of displaying 24 or 48 lines, non-interlace. The 87 key detachable keyboard has 24 programmable function keys. Additional graphic capabilities and light-pen are optional. Volume prices as low as $2200.

COLORGRAPHIC COMMUNICATIONS CORP, PO Box 80448, Atlanta, GA 30366. Tel: (404)455-3921.

CIRCLE 486

VMEbus 68000 BOARDS and SYSTEMS

IV 1600 SBC - SYSTEM FOUNDATION MODULE w/ 12 Mhz 68000, 256K DUAL PORT RAM, ROM, SIO, PIO, RTC, SAD BUS
IV 1611 - 512K 256K RAM w/ BYTE PARITY
IV 1620 - IEEE 488 INTERFACE
IV 1650 - GRAPHICS DISPLAY SYSTEM
IV 1650/D - COMPLETE DEVELOPMENT SYSTEM w/ CR/NUM and "C" COMPILER, 10MB Winchester, 1MB Floppy, in DESK-TOP or RACK-MOUNT
BOARDS and SYSTEMS AVAILABLE NOW!

IRONICS INCORPORATED
117 Easton-His Drive, PO Box 356
14850
14850
CIRCLE 490

COMPUTER DESIGN'S FAST EFFECTIVE NEWSLETTER

A NEW AUDIENCE

MORE HOT SALES LEADS...

Computer Design's Hotline Action Cards are mailed to a special list of 65,000 readers including the most recent inquirers to our new product editorial items. Rates start at $895 per card. If you run 2 or more cards in Computer Design's regular Direct Action Card Mailings your Hotline Card costs only $795.00-A $100 saving! Closings: May 21, August 21, October 21. Contact Shirley Lessard, COMPUTER DESIGN, 119 Russell St, Littleton, MA 01460. Tel: Toll Free (800)225-0556.

CIRCLE 487
AD INDEX

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Micro Devices</td>
<td>20, 21</td>
</tr>
<tr>
<td>Keyel/Donnia/Pearsstein</td>
<td></td>
</tr>
<tr>
<td>Afterthought Engineering</td>
<td>284</td>
</tr>
<tr>
<td>Alloy Computer Products</td>
<td>248</td>
</tr>
<tr>
<td>Mansur Advertising</td>
<td></td>
</tr>
<tr>
<td>Alps Electric (USA)</td>
<td>52, 53</td>
</tr>
<tr>
<td>Industrial Marketing Associates</td>
<td></td>
</tr>
<tr>
<td>Amdek Computer Systems</td>
<td>233</td>
</tr>
<tr>
<td>George Drake & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>American Automation</td>
<td>226</td>
</tr>
<tr>
<td>AMP</td>
<td>192, 193</td>
</tr>
<tr>
<td>The Atkin-Kynett Co Inc</td>
<td></td>
</tr>
<tr>
<td>Ampex, Memory Products Div</td>
<td>97</td>
</tr>
<tr>
<td>Amanda Systems</td>
<td>247</td>
</tr>
<tr>
<td>Applied Circuit Technology</td>
<td>109</td>
</tr>
<tr>
<td>Cube 4</td>
<td></td>
</tr>
<tr>
<td>Applied Data Communications</td>
<td>207</td>
</tr>
<tr>
<td>Applied Microsystems</td>
<td>150</td>
</tr>
<tr>
<td>Benton/Taucher Marketing Communication</td>
<td></td>
</tr>
<tr>
<td>Audiotronics</td>
<td>273</td>
</tr>
<tr>
<td>Auscom</td>
<td>190</td>
</tr>
<tr>
<td>Bournet Mclean Advertising</td>
<td></td>
</tr>
<tr>
<td>Ball Electronic Display Division</td>
<td>81</td>
</tr>
<tr>
<td>Red Barron Inc</td>
<td></td>
</tr>
<tr>
<td>BICC/Vero Electronics</td>
<td>201</td>
</tr>
<tr>
<td>Just Frank Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Bio Research</td>
<td>284</td>
</tr>
<tr>
<td>Black Box Catalog</td>
<td>285</td>
</tr>
<tr>
<td>Ender Advertising</td>
<td></td>
</tr>
<tr>
<td>Braemar Computer Devices</td>
<td>226</td>
</tr>
<tr>
<td>Dewey Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Burr Brown</td>
<td>187, 199</td>
</tr>
<tr>
<td>Curt Anderson Corporate Adv Mgmt</td>
<td></td>
</tr>
<tr>
<td>Calcomp</td>
<td>70, 71</td>
</tr>
<tr>
<td>California Data</td>
<td>285</td>
</tr>
<tr>
<td>Cal Switch</td>
<td>48</td>
</tr>
<tr>
<td>Galusha & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Canon USA</td>
<td>123</td>
</tr>
<tr>
<td>Don Alt & Associates</td>
<td></td>
</tr>
<tr>
<td>Centronics</td>
<td>260</td>
</tr>
<tr>
<td>G Anderson Advertising</td>
<td></td>
</tr>
<tr>
<td>Chrislin Industries</td>
<td>262</td>
</tr>
<tr>
<td>Chromatics</td>
<td>16</td>
</tr>
<tr>
<td>Nuclor/IC</td>
<td></td>
</tr>
<tr>
<td>Cipher Data Products</td>
<td>44, 45</td>
</tr>
<tr>
<td>Richter & Carr Communications</td>
<td></td>
</tr>
<tr>
<td>Colorgraphics Communications</td>
<td>285</td>
</tr>
<tr>
<td>Design & Visual Effects</td>
<td></td>
</tr>
<tr>
<td>Columbia Data Products</td>
<td>212, 213</td>
</tr>
<tr>
<td>Comliner Corp</td>
<td>238</td>
</tr>
<tr>
<td>Computer Design & Application</td>
<td>231</td>
</tr>
<tr>
<td>McKinney/New England</td>
<td></td>
</tr>
<tr>
<td>Computer Graphics World</td>
<td>292</td>
</tr>
<tr>
<td>Computer Sciences Corp</td>
<td>291</td>
</tr>
<tr>
<td>Bernard Hodes Advertising</td>
<td></td>
</tr>
<tr>
<td>Computrol Div of kidney Automated Systems</td>
<td>14</td>
</tr>
<tr>
<td>Galusha</td>
<td></td>
</tr>
<tr>
<td>Control Data Corp</td>
<td>191</td>
</tr>
<tr>
<td>E H Brown Advertising Agency Inc</td>
<td>205</td>
</tr>
<tr>
<td>CSPI</td>
<td></td>
</tr>
<tr>
<td>Amsterdam Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>CTS Corp</td>
<td>35</td>
</tr>
<tr>
<td>Kennedy Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Cubit</td>
<td>24</td>
</tr>
<tr>
<td>Cuesta Systems</td>
<td>264</td>
</tr>
<tr>
<td>Johnson Design Associates</td>
<td></td>
</tr>
<tr>
<td>CYB</td>
<td>115</td>
</tr>
<tr>
<td>Data General</td>
<td>124, 125</td>
</tr>
<tr>
<td>Clarke, Goward Carr & Fitz</td>
<td></td>
</tr>
<tr>
<td>Dataram Corp</td>
<td>5, 257</td>
</tr>
<tr>
<td>Loszimms Communications Inc</td>
<td></td>
</tr>
<tr>
<td>Data Systems Design</td>
<td>58, 59</td>
</tr>
<tr>
<td>Tyler • Fultz • Bellack</td>
<td></td>
</tr>
<tr>
<td>Data Translation</td>
<td>253</td>
</tr>
<tr>
<td>Quinn & Johnson Inc</td>
<td></td>
</tr>
<tr>
<td>Datricon Corp</td>
<td>65</td>
</tr>
<tr>
<td>Jack Ramsey Agency</td>
<td></td>
</tr>
<tr>
<td>Dialight Corp</td>
<td>65</td>
</tr>
<tr>
<td>Greenstone & Rabasca Advertising Inc</td>
<td>223</td>
</tr>
<tr>
<td>Digi-Data Corp</td>
<td>223</td>
</tr>
<tr>
<td>Business Marketing Inc</td>
<td></td>
</tr>
<tr>
<td>Digital Engineering</td>
<td>51</td>
</tr>
<tr>
<td>Digital Equipment Corp</td>
<td>146, 147</td>
</tr>
<tr>
<td>Emery/Perkins Parker Jakuc</td>
<td></td>
</tr>
<tr>
<td>Digital Press</td>
<td>254</td>
</tr>
<tr>
<td>DMA Systems</td>
<td>126</td>
</tr>
<tr>
<td>Jansen Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Doehl Logic Instruments</td>
<td>152</td>
</tr>
<tr>
<td>Murphy Advertising</td>
<td></td>
</tr>
<tr>
<td>Dynatech Data Systems</td>
<td>131</td>
</tr>
<tr>
<td>Patrice Inc</td>
<td></td>
</tr>
<tr>
<td>Electronic Programming</td>
<td>246</td>
</tr>
<tr>
<td>Stephen G Grossman Inc</td>
<td>277</td>
</tr>
<tr>
<td>Electronic Solutions</td>
<td></td>
</tr>
<tr>
<td>Bowen & Associates Inc</td>
<td>277</td>
</tr>
<tr>
<td>Elpac Power Systems</td>
<td>241</td>
</tr>
<tr>
<td>EEI Advertising</td>
<td>239</td>
</tr>
<tr>
<td>Esprit Systems</td>
<td></td>
</tr>
<tr>
<td>Expoconsul International</td>
<td>229</td>
</tr>
<tr>
<td>Cycon Communications Inc</td>
<td></td>
</tr>
<tr>
<td>First Systems</td>
<td>118</td>
</tr>
<tr>
<td>Nathanson Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Floating Point Systems</td>
<td>209</td>
</tr>
<tr>
<td>Mark Knolls & Mangles Inc</td>
<td></td>
</tr>
<tr>
<td>John Fluke Mfg Co</td>
<td>165</td>
</tr>
<tr>
<td>Franklin Electric</td>
<td>224</td>
</tr>
<tr>
<td>Marken Communications</td>
<td></td>
</tr>
<tr>
<td>Frequency Control Products</td>
<td>230</td>
</tr>
<tr>
<td>ANR Advertising Agency Inc</td>
<td></td>
</tr>
<tr>
<td>Frost & Sullivan</td>
<td>270</td>
</tr>
<tr>
<td>General Electric</td>
<td>102, 103</td>
</tr>
<tr>
<td>Cabell Eanes Advertising</td>
<td></td>
</tr>
<tr>
<td>Genesis Microsystems</td>
<td>10</td>
</tr>
<tr>
<td>Genstar Rental Electronics</td>
<td>235</td>
</tr>
<tr>
<td>Warr Foote & Rose</td>
<td></td>
</tr>
<tr>
<td>Global Specialties Corp</td>
<td>267</td>
</tr>
<tr>
<td>RRR Advertising</td>
<td></td>
</tr>
<tr>
<td>Gould, instruments Div</td>
<td>12, 13, 166, 167</td>
</tr>
<tr>
<td>Tycer • Fultz • Bellack</td>
<td></td>
</tr>
<tr>
<td>Gould SEL Computer Div</td>
<td>15</td>
</tr>
<tr>
<td>Group 3he Advertising Corp</td>
<td></td>
</tr>
<tr>
<td>Grayhill</td>
<td>232</td>
</tr>
<tr>
<td>Stral Advertising Company Inc</td>
<td></td>
</tr>
<tr>
<td>Grinnell Systems</td>
<td>82, 83</td>
</tr>
<tr>
<td>Berthold Fillhardt & Wright Inc</td>
<td></td>
</tr>
<tr>
<td>GYCO</td>
<td>227</td>
</tr>
<tr>
<td>Yates Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Heaviside Industries Ltd</td>
<td>284</td>
</tr>
<tr>
<td>Hewlett Packard</td>
<td>135</td>
</tr>
<tr>
<td>J Walter Thompson Company</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard/Colorado Springs Logic</td>
<td>148, 149</td>
</tr>
<tr>
<td>Talanti/Yates Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard/Major Co</td>
<td>99</td>
</tr>
<tr>
<td>Wilton Coombs & Collett Inc Advertising</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard/TCG</td>
<td>73, 74, 75</td>
</tr>
<tr>
<td>Wilton Coombs & Collett Inc</td>
<td></td>
</tr>
<tr>
<td>Honeywell USD</td>
<td>263</td>
</tr>
<tr>
<td>The Burns Group Inc</td>
<td></td>
</tr>
<tr>
<td>Ikagami Electronics USA</td>
<td>279</td>
</tr>
<tr>
<td>Bon Advertising Agency Inc</td>
<td></td>
</tr>
<tr>
<td>Imaging Technology</td>
<td>268</td>
</tr>
<tr>
<td>Cooper/GK</td>
<td></td>
</tr>
<tr>
<td>Industrial Development Association of Cheyenne</td>
<td>285</td>
</tr>
<tr>
<td>Ray Lansing Advertising</td>
<td></td>
</tr>
<tr>
<td>Industrial Programming</td>
<td>110</td>
</tr>
<tr>
<td>Cooper-Cameron Inc</td>
<td></td>
</tr>
<tr>
<td>Infoscribe</td>
<td>77</td>
</tr>
<tr>
<td>Donald S Smith Associates</td>
<td></td>
</tr>
<tr>
<td>Inmos</td>
<td>26, 27</td>
</tr>
<tr>
<td>Taliant/Yates Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Intermetrics</td>
<td>275</td>
</tr>
<tr>
<td>McKinney/New England</td>
<td></td>
</tr>
<tr>
<td>International Microcircuits</td>
<td>189</td>
</tr>
<tr>
<td>Ad Design</td>
<td></td>
</tr>
</tbody>
</table>
Some magazines, we're sorry to say, keep their readers undercover. They steadfastly refuse to let BPA (Business Publications Audit of Circulation, Inc.) or any other independent, not-for-profit organization audit their circulation records.

On the other hand, over 900 publications (like this one) belong to BPA. Once a year, BPA auditors examine and verify the accuracy of our circulation records.

This audit provides the name, company, industry and job title of every reader each publication reaches. The information helps advertisers to determine if they are saying the right thing to the right people in the right place.

It also helps somebody else important: you. Because the more a publication and its advertisers know about you, the better they can provide you with articles and advertisements that meet your informational needs.

BPA. For readers it stands for meaningful information. For advertisers it stands for meaningful readers. Business Publications Audit of Circulation, Inc.

We count, so your ads will.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersil</td>
<td>2</td>
</tr>
<tr>
<td>Evey Utley & McManus Advertising</td>
<td></td>
</tr>
<tr>
<td>Lithaca Intersystems</td>
<td>196</td>
</tr>
<tr>
<td>Signet Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Lithaco-CompuDAS</td>
<td>258</td>
</tr>
<tr>
<td>Northrup & Teel Inc</td>
<td></td>
</tr>
<tr>
<td>Ironics</td>
<td>285</td>
</tr>
<tr>
<td>TTI Cannon Electric</td>
<td>116, 117</td>
</tr>
<tr>
<td>Albert Newhoff & Burr Inc</td>
<td></td>
</tr>
<tr>
<td>Kennedy Co</td>
<td>1</td>
</tr>
<tr>
<td>R L Thompson Advertising</td>
<td></td>
</tr>
<tr>
<td>Kontron Electronics</td>
<td>182, 183</td>
</tr>
<tr>
<td>Gausha & Associates</td>
<td></td>
</tr>
<tr>
<td>Liberty Electronics</td>
<td>271</td>
</tr>
<tr>
<td>Wylie Wilson & Munn Inc</td>
<td></td>
</tr>
<tr>
<td>Loral Instrumentation</td>
<td>168</td>
</tr>
<tr>
<td>Bowen and Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Lundy</td>
<td>33</td>
</tr>
<tr>
<td>Lundy House Advertising Agency</td>
<td></td>
</tr>
<tr>
<td>Matrox Electronic Systems Ltd.</td>
<td>242</td>
</tr>
<tr>
<td>MDBB</td>
<td>163</td>
</tr>
<tr>
<td>Measurement Systems</td>
<td>240</td>
</tr>
<tr>
<td>Richard Lawrence & Associates</td>
<td></td>
</tr>
<tr>
<td>Memorex</td>
<td>76</td>
</tr>
<tr>
<td>The Advertising Co of Offield & Broker</td>
<td></td>
</tr>
<tr>
<td>Metacom</td>
<td>136</td>
</tr>
<tr>
<td>Micro Memory</td>
<td>237</td>
</tr>
<tr>
<td>Momentum Computer Systems</td>
<td>86</td>
</tr>
<tr>
<td>The Advertising Co of Offield & Broker</td>
<td></td>
</tr>
<tr>
<td>Monolithic Systems</td>
<td>104</td>
</tr>
<tr>
<td>Dan Meinerz Graphics</td>
<td></td>
</tr>
<tr>
<td>Mostek</td>
<td>56, 57</td>
</tr>
<tr>
<td>Crume & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Multiwire</td>
<td>215</td>
</tr>
<tr>
<td>Greenstone & Rabasca Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>National Instruments</td>
<td>133</td>
</tr>
<tr>
<td>Bonner McLane Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>National Semiconductor Corp</td>
<td>37-41</td>
</tr>
<tr>
<td>Reiser Williams DeYong</td>
<td></td>
</tr>
<tr>
<td>NCR Corp</td>
<td>92, 93</td>
</tr>
<tr>
<td>Reiser Williams DeYong</td>
<td></td>
</tr>
<tr>
<td>NEC Information Systems</td>
<td>31</td>
</tr>
<tr>
<td>The Strayton Corp</td>
<td></td>
</tr>
<tr>
<td>Nicolet Paratronics Corp</td>
<td>55</td>
</tr>
<tr>
<td>Nissei Sanyo America Ltd.</td>
<td>87, 89, 91</td>
</tr>
<tr>
<td>Weber Temple Magruder Inc</td>
<td></td>
</tr>
<tr>
<td>Numerix</td>
<td>Cover III</td>
</tr>
<tr>
<td>OK Industries</td>
<td>177</td>
</tr>
<tr>
<td>Camden Advertising Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Panasonic</td>
<td>259</td>
</tr>
<tr>
<td>Sommer Inc</td>
<td></td>
</tr>
<tr>
<td>Penn Microsystems</td>
<td>284</td>
</tr>
<tr>
<td>D E Wendelboe Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Perkin-Elmer</td>
<td>234</td>
</tr>
<tr>
<td>Marguardt & Roche Inc</td>
<td></td>
</tr>
<tr>
<td>Philips Test & Measuring Instruments</td>
<td>154</td>
</tr>
<tr>
<td>Henry J Kaufman & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Plessey Peripherals</td>
<td>180, 181</td>
</tr>
<tr>
<td>Pawliuk Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Power One</td>
<td>63</td>
</tr>
<tr>
<td>Spectrum Marketing Associates</td>
<td></td>
</tr>
<tr>
<td>Power One</td>
<td>236</td>
</tr>
<tr>
<td>Courtney/Wilson Advertising</td>
<td></td>
</tr>
<tr>
<td>Pro-Log</td>
<td>184</td>
</tr>
<tr>
<td>The Ad Group International</td>
<td></td>
</tr>
<tr>
<td>Qantex</td>
<td>249</td>
</tr>
<tr>
<td>Richard H Margulis/Marketing Communications</td>
<td></td>
</tr>
<tr>
<td>Ramtek</td>
<td>Cover IV</td>
</tr>
<tr>
<td>Pinne Garvin & Hock Inc</td>
<td></td>
</tr>
<tr>
<td>Raveny Computer</td>
<td>141</td>
</tr>
<tr>
<td>DeSpain & Co</td>
<td></td>
</tr>
<tr>
<td>Raster Technology</td>
<td>46, 47</td>
</tr>
<tr>
<td>G Anderson Advertising</td>
<td></td>
</tr>
<tr>
<td>Real-Time Computer Science Corp.</td>
<td>245</td>
</tr>
<tr>
<td>Rockwell International</td>
<td>94</td>
</tr>
<tr>
<td>Ketchum Advertising</td>
<td></td>
</tr>
<tr>
<td>Rosscomp Corp</td>
<td>85</td>
</tr>
<tr>
<td>LeAnce and Herbert</td>
<td></td>
</tr>
<tr>
<td>Scientific Micro Systems</td>
<td>255</td>
</tr>
<tr>
<td>Scion Corp</td>
<td>143</td>
</tr>
<tr>
<td>Business Marketing Inc</td>
<td></td>
</tr>
<tr>
<td>Seagate Technology</td>
<td>60, 61</td>
</tr>
<tr>
<td>Lutut Betty & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Seiko Instruments USA</td>
<td>265</td>
</tr>
<tr>
<td>Doug Gobinoff & Co</td>
<td></td>
</tr>
<tr>
<td>Selanar</td>
<td>244</td>
</tr>
<tr>
<td>The Advertising Co of Offield & Broker</td>
<td></td>
</tr>
<tr>
<td>SGS</td>
<td>25</td>
</tr>
<tr>
<td>Mertz & Associates</td>
<td>18, 19</td>
</tr>
<tr>
<td>Shugart Associates</td>
<td></td>
</tr>
<tr>
<td>Chiat/Day Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Sony Video Products</td>
<td>269</td>
</tr>
<tr>
<td>Waring & LaRosa</td>
<td></td>
</tr>
<tr>
<td>Specialized Products</td>
<td>266</td>
</tr>
<tr>
<td>TNT Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Spectragraphics Corp</td>
<td>101</td>
</tr>
<tr>
<td>Spectrum Control</td>
<td>220</td>
</tr>
<tr>
<td>Barickman Advertising</td>
<td></td>
</tr>
<tr>
<td>Sprague Electric Co.</td>
<td>221</td>
</tr>
<tr>
<td>The Harry P Bridge Co.</td>
<td></td>
</tr>
<tr>
<td>Switchcraft</td>
<td>67</td>
</tr>
<tr>
<td>Prophet Associates</td>
<td></td>
</tr>
<tr>
<td>Systems Strategies</td>
<td>88</td>
</tr>
<tr>
<td>Tandon Corp</td>
<td>144, 145</td>
</tr>
<tr>
<td>Reiser Williams DeYong</td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>173</td>
</tr>
<tr>
<td>June Whitworth & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>TEAC</td>
<td>179</td>
</tr>
<tr>
<td>TVC Ads</td>
<td></td>
</tr>
<tr>
<td>Techtran Corp</td>
<td>108</td>
</tr>
<tr>
<td>J L Newman & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>8, 9</td>
</tr>
<tr>
<td>Tektronix Advertising</td>
<td></td>
</tr>
<tr>
<td>Telecommunication Products + Technology</td>
<td>217, 218</td>
</tr>
<tr>
<td>Teledyne Relays</td>
<td>284</td>
</tr>
<tr>
<td>Michelson Advertising</td>
<td></td>
</tr>
<tr>
<td>TeleVideo</td>
<td>194, 195</td>
</tr>
<tr>
<td>Dancer Fitzgerald Sample Inc</td>
<td></td>
</tr>
<tr>
<td>Termilux</td>
<td>285</td>
</tr>
<tr>
<td>Spencer Bennett Nowak Inc</td>
<td></td>
</tr>
<tr>
<td>Trilog</td>
<td>68, 69</td>
</tr>
<tr>
<td>Jansen Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Unitronix</td>
<td>222</td>
</tr>
<tr>
<td>Advertising/Marketing Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Universal Data Systems</td>
<td>23</td>
</tr>
<tr>
<td>Dayner/Hall Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Vermont Research Corp</td>
<td>164</td>
</tr>
<tr>
<td>Northgate Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Versitrion</td>
<td>228</td>
</tr>
<tr>
<td>Pallace Inc</td>
<td></td>
</tr>
<tr>
<td>Vicom Systems</td>
<td>225</td>
</tr>
<tr>
<td>M R Bolin Inc Advertising</td>
<td></td>
</tr>
<tr>
<td>Visual Technology</td>
<td>43</td>
</tr>
<tr>
<td>Blackwood Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Wangtek</td>
<td>78</td>
</tr>
<tr>
<td>R L Couch & Co</td>
<td></td>
</tr>
<tr>
<td>Western Digital</td>
<td>203</td>
</tr>
<tr>
<td>Larry Pao Design</td>
<td></td>
</tr>
<tr>
<td>Western Peripherals</td>
<td>Cover II</td>
</tr>
<tr>
<td>Darryl Lloyd Inc</td>
<td></td>
</tr>
<tr>
<td>Wintek Corp</td>
<td>285</td>
</tr>
<tr>
<td>ZAX</td>
<td>161</td>
</tr>
<tr>
<td>Sales Management International Inc</td>
<td></td>
</tr>
<tr>
<td>Zentech</td>
<td>210, 211</td>
</tr>
<tr>
<td>Cortani ▪ Brown ▪ Rigoli</td>
<td></td>
</tr>
<tr>
<td>Zilog</td>
<td>243</td>
</tr>
<tr>
<td>Pinne Garvin & Hock Inc</td>
<td></td>
</tr>
</tbody>
</table>
SOME PEOPLE RETIRE WITH MORE THAN JUST A GOLD WATCH.

You work hard all your life and what do you get? Well, depending on where you work, you could get cancer. Asbestos has been proven to cause cancer. Certain toxic chemicals like formaldehyde and freon are being investigated. If you've worked with radioactive particles or even worked near them, your risk is greater.

And even if you've worked nowhere hazardous, it wouldn't hurt to get a checkup. Because the incidence of cancer after the age of 45 to 50 increases rapidly.

Over the next several years the American Cancer Society will be conducting more research into certain lifestyles and exposures which could increase cancer mortality.

So know the risks.
Don't smoke.
Watch what you eat and drink.
Look for the warning signs of cancer.
And retire not only with a gold ticker. But a healthy one, also.

AMERICAN CANCER SOCIETY
How you live may save your life.
New Directions in Computer Design: Systems, Software and Architectural Trends for the 80's Volume 1, by Saul Dinman

HOW TO ORDER:
15-DAY FREE EXAMINATION
(U.S. AND CANADA ONLY)
Simply circle the appropriate number(s) on the Reader Inquiry Card at the back of this magazine.
Your book will be sent to you for your 15-day free trial. If you are satisfied, keep the book and an invoice will follow. Otherwise return the book by the end of the 15-day period, and owe nothing.

Microcomputer Systems by Ivan Flores and Christopher Terry

Until now, microcomputer books simply told how to buy a microcomputer and then summarized what was available, discussed specific computer language and operating systems, or described families of integrated circuits. But this one-of-a-kind guide on microcomputer systems clearly explains both how each part of the system works and how they all fit together.
208 pp, 6 x 9, $22.50, April Circle 456

Musical Applications of Microprocessors by Hal Chamberlain

Immediately acclaimed as a classic! Covers all current electronic and computer music performance techniques as they apply to microprocessors. Signal-processing techniques are presented in nonmathematical language and applied to newer, more powerful 16-bit microprocessors.
#5753-9; 688 pages; Hayden Book Co., Inc.; $26.95 Circle 457

The S-100 Bus Handbook by David Bursky

Exclusively discusses S-100 bus computer systems and how they are organized. Covers computer fundamentals, basic electronics and the parts of the computer. Explains all operating details of commonly available S-100 systems. Each major system board detailed as to its operation and how it connects to the rest of the system.
0897-X, 272 pages; Hayden Book Co., Inc. $15.75 Circle 458

Operating Systems A Pragmatic Approach by Harry Katzan

Computer pro Harry Katzan provides here authoritative coverage of the construction, functions, and terminology of operating systems. He fully explains such areas as dynamic loading and address translation, use of public and private storage, and virtual memory, data sets, and access methods. "A valuable addition to any computing library."
374 pp, 6 x 9, $10.95, February Circle 459

DATA COMMUNICATIONS a user's guide by Kenneth Sherman.

A BRAND NEW quick and effective source for pinpointing and eliminating system malfunctions, discovering new, more efficient data movement, learning effective troubleshooting, ensuring strong, clear signal transmission and achieving maximum performance and value. Put these all new ideas and many others to work for you!
348 pages; 95 illustrations; Reston Publishing Company Inc; $21.95. 1981. Circle 460
You are an experienced professional in the information sciences field. Your desire is to broaden your experience and enhance your career growth. You know the significance of finding just the right company to satisfy your requirements.

We’re the Systems Division of CSC. Our Information and Management Systems activity is involved with the analysis design and development of embedded Computer Systems with financial, accounting, personnel, logistics and telemetry applications to the civilian and military community both in the United States and abroad.

The available services range from analytical studies to full implementation of an operating system. Our continued growth in these areas have created on-going openings in EQUIPMENT EVALUATION, SYSTEMS DESIGN AND ENGINEERING, CONFIGURATION MANAGEMENT, MODELLING AND SIMULATION, SOFTWARE DEVELOPMENT AND TECHNICAL DOCUMENTATION. These openings are in the areas of office automation, command and control, intelligence and flight test data processing.

If you are interested in a company that offers multiple career paths and many avenues for upward mobility; a company whose people are always encouraged to learn new skills and seek out the project and work location that best suit their interest and career goals, find out more about your future with Computer Sciences Corporation.

Computer Sciences Corporation
Systems Division (MC 218)
6565 Arlington Boulevard
Falls Church, VA 22046

Equal Opportunity Employer
Yes, I want to save 20%. Enter my one-year subscription
□ USA $24.00 □ Canada/Mexico $28.00 □ International $32.00
□ Payment enclosed □ Please Invoice □ Visa □ MC Card
Account Number ___________________________ Expiration Date _________________
Cardholder's Signature _____________________
Name __________________________ Title __________________________
Company _________________________________
Type of Business ____________________________
Address ________________________________ City __________ State __________ Zip __________

Fill in the coupon below and return to COMPUTER GRAPHICS WORLD, P.O. Box 122, Tulsa, OK 74101.

or

Circle the reader service number below.

or

Call toll free 1-800-331-5959 (in Oklahoma call 918-835-3161), and tell us you want to save 20%

Home Office
Director of Marketing
Gene Pritchard
Direct Marketing
Shirley Lessard
List Rental
Robert P. Dromgoole
Classified Advertising
Maureen Sebastian
Account Representative
119 Russell St.
Littleton, MA 01460
(617) 486-9501

New England and Upstate New York
Regional Manager
Barbara Arnold
Account Representative
Maureen Sebastian
119 Russell St.
Littleton, MA 01460
(617) 486-9501

Middle Atlantic States, Long Island and Southeastern States
Dick Busch, Inc.
Richard V. Busch
6 Douglass Dr., R.D. #4
Princeton, N.J. 08540
(201) 329-2424
Eleanor Angone
74 Brookline Ave.
E. Atlantic Beach, NY 11561
(516) 432-1955

Midwestern States and Colorado
Berry Conner Associates
Berry Conner, Jr.
88 West Schiller St.
Suite 2208
Chicago, IL 60610
(312) 266-0008

Western States and Texas
Buckley/Boris Assoc., Inc.
Tom Boris
John Sabo
Terry Buckley
2082 SE Bristol
Suite 216
Santa Ana, CA 92707
(714) 957-2552
(408) 866-8735
Terry Buckley
M. Patricia Shay
P.O. Box 278
Campbell, CA 95009
(408) 866-8735
(714) 957-2552
1K Complex FFT in 0.5 msec and faster...

MARS-232 Array Processors Support the User
who needs:
Signal Processing
with programmable high-speed arithmetic, logical, and decision-oriented operations for real-time applications.
Data Acquisition
directly into the processor at sample rates up to 20 MHz via a prioritized multi-port bus structure.
Standard I/O Interfaces
using 32-bit digital I/O, A/D and D/A modules with speeds up to 5 MHz, all with software support for ease of integration.
Architectural Modularity
to configure ultra-high-performance multi-processor systems reaching to 300 million arithmetic operations per second and beyond.
OEM Capabilities
where, as a development system, the MARS-232 supports low-cost ROM-based MARS-132's or customized user-defined VLSI implementations.

MARS-232 Array Processor Features Include:
- 1K Complex FFT Performance
- 1.05-msec Single Data Processor
- 0.5-msec Dual Data Processor
- 100-ns Clock
- DMA Transfers at I/O Bus Rates of 20 Mbytes/second
- Modularized 16- or 32-bit Arithmetic Units
- Multiple Processor Configurations for Application Flexibility
- Low-cost OEM Configurations
- Full Software Support at Systems/Utilities/Applications Levels

MARS-232 Array Processor Software
In today's world it is not enough to have outstanding hardware. Our interactive software system, GSP, allows hands-on assembly/disassembly, loading, debugging, and diagnostic services - with multiple processor support built-in. For the real-time environment, we use ESP, a host-resident executive. It provides intelligent supervision for host programs that call applications library or user-defined subroutines, without compromising the speed of MARS.

MARS-232 Applications
With its high computational capacity and low cost, the MARS family provides solutions for a broad range of application areas - on-line video inspection and image analysis; front-end data acquisition, compression, and formatting; spectral analysis, filtering and thresholding.

MARS-a new world of performance for medical, seismic, radar, sonar, and communications systems.

For additional information on the MARS Family of High Speed Array Processors, write or call:
Numerix Corp., 320 Needham Street, Newton, MA 02161 Tel. 617-964-2500
CIRCLE 173
THE BEST HAS JUST BECOME THE BEST DEAL.

Ramtek's popular 6211 Colorgraphic Terminal is now just $4995*. This versatile desk-top unit is ideally suited for the majority of color graphic applications in CAD, science, business, and control systems. Rack mounted (without monitor), it's even more of a value at just $3995.

Need data terminal functions, too? The companion 6221 with full VT 100™ compatibility is priced at just $5995. Plus, a discount is available on 6211 and 6221 systems when both a color printer and 35 mm slide camera are purchased.

The price of quality has never been lower. Volume discounts are also available. For details, call our office nearest you. Or, contact us at 2211 Lawson Lane, Santa Clara, CA 95050. (408) 988-1044.

OUR EXPERIENCE SHOWS.

World Headquarters—Santa Clara, CA (408) 988-2211 European Offices—Amsterdam (31) 2968-5056; London (8956) 76211; Cologne (2234) 78021 U.S. Offices—Dallas, TX (214) 422-2200; Los Angeles, CA (714) 979-5351; Seattle, WA (206) 575-1600; Chicago, IL (312) 397-2279; Houston, TX (713) 774-2233; McLean, VA (703) 893-2020; Denver, CO (303) 694-0758; Cleveland, OH (216) 524-1882; Upper New York/Canada (716) 425-1742; New Jersey (201) 238-2090; Florida (303) 643-0780; Boston, MA (617) 273-4590; Atlanta, GA (404) 252-5066.

*Light pen sold separately.

VT 100 is a registered trademark of Digital Equipment Corporation.