SPECIAL REPORT:
DISK AND TAPE MEMORY SYSTEMS

OPTICAL DATA STORAGE TECHNOLOGY
STATUS AND PROSPECTS

MICROFLOPPIES
BATTLE FOR PREEMINENCE
Thaumaturgy.

Graphics miracles right on your desk. Our latest Whizzard™ The 1650 desk top design terminal. Now, anyone can afford the power and performance of our more expensive Megatek Whizzards. Your own design station right at your fingertips. Another product of Megateknology™.

Finally. Everything an engineer or designer could want in desk top computer graphics. Convenience. High quality and powerful performance. VT-100 compatibility.

Functionality. Greatly increased productivity. Shouldn't every desk top design terminal offer this?

Tomorrow's graphics technology on your desk top today... thanks to Megateknology.

*Thaumaturgy (thəˈma tür jē), n., the performance of miracles.

Making History out of State-of-the-Art.

Megaatek Corporation
United Telecom Computer Group

World Headquarters • 3985 Sorrento Valley Blvd., San Diego, CA 92121 • 619/455-5590 Telex: 910-337-1270
CIRCLE 1
Four reasons why you should look at our Winchesters

1. **100% SMD format and interface compatible.**
 Just plug it in and it is ready to accept data.

2. **The best price/performance ratio available.**
 Kennedy can save you an average of $2000.00 per unit over comparable disk equipment.

3. **Immediate availability.**
 Most models are ready to ship 30 days ARO.

4. **Produced by an industry leader.**
 Kennedy has been manufacturing Winchesters since 1978 and its reputation for reliability is known world-wide.

KENNEDY
An Allegheny International Company
1600 Shamrock Ave., Monrovia, CA 91016
(213) 357-8831 TELEX 472-0116 KENNEDY
TWX 910-385-3249

KENNEDY INTERNATIONAL INC.
U.K. and Scandinavia
McGraw-Hill House
Shoppenhangers Road
Maidenhead
Berkshire SL6 2QJ England
Tel: (0628) 79399
Telex: (851) 847871 KEN UKS G

KENNEDY INTERNATIONAL
Koningin Elisabethplein, 8
B-2700 Sint-Niklaas
Belgium
Tel: (03) 777 1962
Telex: 71870 KEN CO

KENNEDY • QUALITY • COUNT ON IT

CIRCLE 2
The ultimate under $1000 printing machine.

The one machine solution to every application.

For word processing, plotting and just plain printing.

Save the expense of a costly daisy wheel. Eliminate the limited capability of cheap matrix printers. And get plotting in the process!! Get the all new, advanced MT 160 multifunctional micro printer. You'll be amazed that such a small printer can house so much horsepower.

Capability? You name it, this printer's got it. A resident Report Package puts you in the Word Processing world...letter quality characters, proportional spacing, margin justification, auto centering. A resident Graphics Package lets you plot whatever your micro wants to portray. The standard print mode lets you generate reports fast—speeds up to 200 lines per minute. Also, print eight different resident character widths.

There's more. Clip-on paper handling attachments let you use fan-fold forms, letterhead, cut sheets or continuous roll paper. The control panel has a "menu select" for machine configuration. When you look under the hood, you'll see what is meant by "solid construction." And the MT 160 is plug compatible to your micro.

In short, the MT 160 is the epitome of engineering excellence. And it should be. After all, Mannesmann Tally is the technology leader in matrix printing.

MANNESMANN TALLY
8301 South 180th St.
Kent, Washington 98032
Phone (206) 251-5524

IN DISTRIBUTION NOW!

WEST
Anacom (206) 881-1113
Byte Industries (415) 783-6272
Kieruff Electronics (213) 725-0325
PGI Distribution (602) 967-1421
Waybern (714) 894-4520
Western Micro Technology (408) 725-1660
Acorn Data Products

CENTRAL
Hall-Mark Electronics (214) 341-1147
Information Systems (312) 228-6480
D.L. MacNeil, Inc. (312) 925-8300
Sysprint (214) 689-3666
Tek-Aids (312) 870-7400

EAST
Computermaxx (904) 878-4121
Digital Solutions (404) 955-4488
Hansen & Hughes (201) 652-7055

US Plus (203) 234-0444
Mannesmann Tally Canada (416) 661-9783
Acquisitions and cooperative agreements

Intelligent Systems Corp has agreed to acquire Quadram Corp, a manufacturer of accessories for the IBM PC, by issuing additional shares of Intelligent Systems stock.

Square D Co, through stock and cash, has acquired U.S. Robots, manufacturer of the MAKER™ line of robots for computer integrated factory automation.

American Microsystems, Inc, a subsidiary of Gould Inc, has announced a cooperative venture between AMI's subsidiary, Austria Microsystems International, Gmbh; and Zeltron, Istituto Zanussi per l'Elettronica S.p.A. Their goal is to form a design center to serve the European custom and semicustom IC market.

Micro Focus Inc will become the main COBOL supplier for Intel Corp's entire line of 16- and 32-bit microprocessors under terms of an agreement. The software will run under the Microsoft XENIX and Intel RMX 86 operating systems and Intel's development systems.

Conferences call for papers

IECON '83, the Ninth Annual Conference on Industrial Electronics (control and instrumentation), will be held Nov 7 to 11 in San Francisco. Proposed papers are welcome on technical aspects of designing, implementing, and testing mini- and microcomputer systems for process control, data acquisition, and instrumentation. Five copies of an 800-word article summary and 40-word abstract should be sent by Mar 1 to R. C. Born, Eaton Corp, Cutler Hammer, 4201 N 27th St, Milwaukee, WI 53216 (Tel: 414/449-7474).

Proposed articles are being accepted for SME's Autofact®5 Conference and Exposition to be held in Detroit, Mich, from Nov 14 to 17. Suggested topics include CAD, CAM, CIM, analysis and simulation, graphics, robotics, and human factors, as they relate to tomorrow's automated, integrated factory. Mail 100-word comprehensive abstracts by Mar 15 to Gregg B. Balco, CASA/SME, 1 SME Dr, PO Box 930, Dearborn, MI 48128 (Tel: 313/271-1500, X368).

Abstracts are being solicited for the Oct 10 to 14 Atlantic City, NJ, Second International Exposition on Local Area Networks (LAN 83). Abstracts should be sent by Apr 1 to Paul Fitzgerald, Information Gatekeepers, 167 Corey Rd, Brookline, MA 02146 (Tel: 617/739-2022).

Authors are invited to submit abstracts for either regular or short papers to the 1983 International Conference on Parallel Processing (Aug 23 to 26 in Bellaire, Mich). Topics can be in any area of parallel/distributed processing. Send four copies of 100-word abstracts (including the full text for regular papers, and 500-word summaries for short papers) by Feb 14 to Howard J. Siegel or Leah J. Siegel, School of Electrical Engineering, Purdue Univ, W Lafayette, IN 47907 (Tel: 317/494-3444 or -3653).

Deadline is July 1 for submitting papers for the Orlando, Fla, Seventh International Conference on Software Engineering (Mar 26 to 28). Suggested paper topics include programming methodologies, software quality assurance, interaction between software engineering and related disciplines, and future directions in software. Five copies of 6000-word maximum papers (full-page figures equal 300 words) should be sent to William E. Howden, Dept of Electrical Engineering and Computer Science, Univ of Calif at San Diego, La Jolla, CA 90293.
Pretriggers

Providing resolution of 200 dots/in, an electrostatic color plotter introduced by Versatec produces a full-color E-size drawing in 8 min, as well as color/monochrome plots in any length. It uses translucent toners in magenta, yellow, cyan, and black.

A drop-on-demand color ink jet process is used by Tektronix for its model 4691 copier. Yellow, cyan, magenta, and black ink cartridges mix droplets to produce red, green, and blue; juxtaposing dots in a “dithering” process produces a full-color presentation.

Super-dense ICs in a 5-chip set fabricated by the NMOS-III process pack the power of a mainframe computer into a desktop-size workstation. Hewlett-Packard’s HP 9000 32-bit computer can be configured with up to 2.5M bytes of main memory. Operating systems are versions of either UNIX or BASIC.

A communications package for 10M-bit Ethernet local area networks that enables data transfers at over 100k bytes/s has been developed by Network Research Corp. The FUSION package is available for several operating systems and handles multiple network protocols.

Data link security in compliance with FED-STD 1027 is accomplished with a Paradyne Corp link encryptor inserted between data terminals and data communications equipment. Info-Lock uses the FIPS-46 data encryption standard algorithm.

An entry level 32-bit industrial automation minicomputer, Data General’s Eclipse MV/4000 supplies performance of 600k Whetstones. It runs under AOS/VS for multi-user applications or AOS/RT32 for dedicated real-time jobs.

Bulk data point to point transmission over mixed media is accomplished by a multihop satellite data transmission system at rates to 6.3M bps. Bunker Ramo’s BR 1720 overcomes database and distribution problems usually associated with satellite signal path delay.

A transportable software system for designing logic arrays gives in-house capabilities for a wide range of automated tasks. Texas Instruments’ transportable design utility now runs on DEC VAX 11/780 and IBM 4341 operating systems.

640- x 480-pixel resolution in a desktop color graphics terminal, plus the ability to simultaneously display and manipulate 16 windows independently, are features of Ithaca Intersystems’ Graphos. A palette of 32,768 colors allows choice of up to 16 displayable colors within each window.

CP/M based machines, ranging from 8-bit workstations to 16-bit standalone systems, bridge the gap between personal computers and minicomputers. Televideo Systems’ microcomputers allow system growth without obsoleting any computer in the network.

Measurement and control systems based on small microcomputers plus hardware and software packages have been developed by Data Acquisition Systems. These systems provide measurement speeds up to 20k data points/s with conversion accuracies of 12, 14, and 16 bits.
Dataram Corporation, the leader in Perkin-Elmer compatible memory, introduces two new memory products for the Perkin-Elmer 3200 — with storage capacities from 256KB to 128MB. A dramatic demonstration of our ongoing commitment to Perkin-Elmer users, these new memory products are the latest in an impressive family of products that has been meeting the memory needs of the minicomputer market since 1967.

Both feature speed, capacity, reliability, performance...and low price. Features you won’t find in memory from any other Perkin-Elmer memory supplier. Products such as high-performance BULK SEMI that are available only from Dataram. All good reasons why Perkin-Elmer users should look to Dataram when they’re looking to perk up their 3200 Series computers.

Dataram 2.0MB DR-330 semiconductor ADD-IN memory operates across the complete range of Perkin-Elmer 3200 Series — 3210, 3220, 3230, 3240 and 3250. Smaller capacities of 1.0MB, 512KB, and 256KB are also available and all are compatible with Perkin-Elmer memory management and ECC. Sockets are standard and a spare on-board RAM is provided. These simple-to-install, highly reliable memory boards are backed up by Dataram’s standard one-year warranty.

Dataram’s new BS-702, the industry’s only high-performance BULK SEMI to interface to Perkin-Elmer’s 3200 Series. With everything you need to get optimum performance from your 3200 system. Compact size — 32 MB in 15¾”. The I/O driver required to support the BS-702. And the impressive capability to drive up to four 32MB chassis...for a whopping capacity of 128MB!

Solid-state speed enables the BULK SEMI to run at the full SELCH rate of 4.0MB/sec. More than that, solid-state technology means high reliability, further enhanced by standard Dataram features like error correcting and off-line test capability.

And when you talk about capability, you’ll talk about the BS-702’s unique dual-port operation that allows you to bring your image processing, array processing, or data acquisition input in on one port and off-load to your 3200 on the other.

Write or call now for more information:
Dataram Corporation,
Princeton Road, Cranbury, NJ 08512
609-799-0071
System technology

22 Control & automation: Fault-tolerant systems lead push for factory automation
35 Test & measurement: Test system debugs embedded computers without diagnostic software
40 Data communications: Serial buses provide small area networks between system ICs and modules
46 Computers: Multiprocessing superminicomputer puts 2 to 10 processors to work under single operating system
54 Peripherals: 3-D color workstation allows solid modeling
54 Software: Relational database system uses Forth language for inter-computer portability

System design

59 Control & automation: Modular protocols improve industrial network control
 by Jack V. Ceferin—Layering communication protocols in shared database process control networks can improve product uniformity as well as network efficiency.
67 Input/output: Voice recognition systems and strategies
 by Brian L. Scott—Word verification is one approach to voice recognition that overcomes the processing and memory-intensive demands of large system vocabularies.
75 Data communications: Effectively link microcomputers with fiber optics
 by John Bliss and Dave Stevenson—Fiber optic technology provides a cost-effective and practical microcomputer networking technique that reduces emi while improving data link security.

ISSCC '83

150 Circuit design, process technologies, and materials will come under scrutiny at the International Solid State Circuits Conference in New York next month. Attendees this year will mark the ongoing diversification of CMOS and GaAs technologies, and the increasing sophistication of dedicated chips.
Special report on disk and tape memory systems

The mass storage demands of today's computer systems seem insatiable. Competition between the different technologies—and between the growing number of smart and aggressive companies in the memory industry—continues to drive down prices, boost performance, and enhance reliability. Each breakthrough in mass storage cost and convenience opens up promising new markets. Yet, the proliferation of memory technology may prove a mixed blessing for system designers unless industry standards emerge to provide a path through the maze. Some of the mass storage trends examined in this month's "Design Frontier" include progress in Winchester disk systems (including the role of tape backup), emerging sub-4" floppy disk drives, and the status of optical storage.

System components

162 Software for Ethernet LANs reaches transport level
164 High speed CMOS microprocessor and I/O controller upgrade family
 Computer is based on standard subsystems
166 Programmable controllers store 10-year memory without external power
 Dual fixed/removable 5¼" Winchester drive meets ANSI specs
168 Full-color graphics added to workstation
 Ink-sheet copier blends color print, thermal transfer techniques
170 Unpatterned faceplate detects continuous X-Y coordinates
 Winchester 5¼" drive packs 140M bytes on eight disks
172 Peripherals
178 Test & measurement
179 Interconnection & packaging
180 Control & automation
186 Software
188 Computers
196 Development systems
198 Power sources & protection
198 Data conversion
203 Microprocessors/microcomputers
205 Integrated circuits
206 Data communications
211 Memory systems
211 System elements

Departments

3 Up front
11 Publisher's perspective
11 February preview
17 Editorial
212 Calendar
214 Literature
216 Designer's bookcase
218 System showcase
220 Advertisers' index
225 Reader inquiry card
225 Change of address card

Designers' preference survey*

191 Computers, graphics & software

*Appearing in Domestic issues only
No analyzer gives you better information or more ways to view it.
You're hot on the trail. You've got the best information the best logic analyzer can isolate. Now it's up to you.
You've got to turn that information inside out. Look at it from every possible angle. Close in on tiny segments and pull back for an overview.
And that's just what you can do with the K101-D. It not only captures and records the most precisely defined samples, it lets you display them in nearly infinite ways. Until you spot the clue that sparks the "Aha!"
Display the data.
Start with a data display. Look at all 48 inputs at once, or select any combination. Format them in binary, hex, octal, ASCII or EBCDIC. Mix formats if you like: display four hex and three binary characters, for example, to analyze a 16-bit bus and three control signals.
Search for specific words in your recording. Enter your search words as complete characters or as individual bits. The display automatically flags each match and tells you how often the word occurred, as well as the first and last places it appeared. Step through each occurrence with a single keystroke.
Compare your current recording to known-good system activity stored in the reference memory. All differences are flagged automatically. The first, last and total number of differences appear at the bottom of the screen.
Edit the reference memory directly from the keyboard to simulate desired program activity or suspected errors. Insert or delete whole lines, particular characters, or even individual bits.
Disassemble execution of microprocessor code into sophisticated mnemonics to speed up software debugging. With each disassembly module (8080, Z80, 8085, 8086, 8088 or 68000), you can see the actual instruction mnemonics, along with the address and object code. Full hardware execution is displayed sequentially, including highlighting of all memory and port activity.
Compare the waveforms.
Press the TIMING key and see up to 24 waveforms at one time. Scroll through 60 with the paging feature. Put any waveform next to any other for quick comparison. Delete waveforms for easier viewing. Expand horizontally and vertically for a closer look. Label individual waveforms with up to a 7-character name, like "READ" or "ADDRESS."
The K101-D gives you two movable cursors, so you can easily determine the timing interval and number of samples between any two events.

IT'S AMAZING HOW A CHANGE OF VIEWPOINT CAN SPARK A FLASH OF INSIGHT.
Plot an overview.
Graph mode gives you a capsule summary of program execution, digitized analog signals, or machine cycle activity. Quickly spot address loops, program ranges, erroneous resets or unusual behavior by displaying your choice of inputs as a graph. Each sample is reduced to a single point with its magnitude plotted versus memory location.

The ultimate logic analysis tools.
The K101-D (48 channels) and the K102-D (32 channels) are designed for the system problems you couldn't solve any other way.
Their 16 levels of trace control let you sort through long programs and record just the relevant portions, even those separated by many hours.
Their advanced clocking capabilities accommodate virtually any system architecture—even multiphased, multiplexed and multi-processor systems. Without building some complicated clocking arrangement of your own.
Both perform high-speed timing analysis to 10 ns resolution. And they're fast enough for TTL, ECL and bit-slice devices.

Uncompromising dedication to high performance.
The Gould Biomation philosophy dictates that every instrument we make be the best for the job it's designed to do.
The impressive trace control, clocking and display capabilities of the K101-D and K102-D are evidence of that commitment to excellence.
For detailed application notes or a demonstration, write Gould Inc., Instruments Division, 4600 Old Ironsides Drive, Santa Clara, CA 95050-1279, Gould Biomation and Gould Millennium Products.
For fastest response, call toll-free: Nationwide (800) 538-9320; in California (800) 662-9231 or (408) 988-6800.

Below are four actual K101-D screen displays—timing, data, mnemonics and graph. On all four, address 2121 is artificially highlighted in red to demonstrate how the same information can be viewed from four different perspectives.
Columbia Data Products' MULTI-PERSONAL® COMPUTER can use software and hardware originally intended for the IBM® Personal Computer... while enjoying the flexibility and expandability of all Columbia Data's computer systems.

Available operating system software includes single-user MS-DOS® or CP/M 86® or multi-user, multi-tasking MP/M 86® or OASIS-16®, with XENIX® available soon, providing users with a host of compatible software packages for personal and professional business and industrial applications. A large selection of higher level languages are also available, including BASIC, FORTRAN, COBOL, PASCAL and MACRO Assembler.

Our standard 16-Bit 8088 hardware configuration provides 128K RAM with parity, two RS-232 serial ports, Centronics parallel printer port, interrupt and DMA controllers, dual floppy disks with 640K storage, Winchester disk and keyboard interfaces, and eight IBM-PC compatible expansion slots... and lists for only $2995. Winchester hard disk configurations, featuring cache buffer controllers for enhanced disk access performance are also available, starting at $4995.

So, when you need to grow, why gamble and hassle with independent third party hardware and operating system vendors which may or may not be compatible... not to mention the hidden expense and frustration of implementing peripheral drivers in the different operating systems and upgrades? Who needs the finger-pointing when things don't work out?

After you review our chart, you will agree... for overall 16-Bit microprocessor superiority, expandability, flexibility, compatibility and real economy, Columbia Data is your total source.

Our Multi-Personal Computer... the 16-Bit system born to grow!

Get yours now.

MAIN FEATURES CDP-MPC IBM-PC* OTHERS

<table>
<thead>
<tr>
<th>Microprocessor</th>
<th>16-Bit 8088</th>
<th>16-Bit 8088</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER Memory</td>
<td>128K-1 Mbytes</td>
<td>16K-256 Kbytes</td>
</tr>
<tr>
<td>IBM-PC Compat.</td>
<td>8 Slots</td>
<td>0</td>
</tr>
<tr>
<td>Expandable Slots Beyond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Configuration¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resident Floppy Disk Storage</td>
<td>Dual 320K (std)</td>
<td>Dual 203 (Opt)</td>
</tr>
<tr>
<td>Hard Disk Storage</td>
<td>30M/10M</td>
<td></td>
</tr>
</tbody>
</table>

OPTIONAL OPERATING SYSTEMS (Supported by Company)²

MS-DOS (PC-DOS)	Yes	Yes
CP/M 86	Yes	Yes
MP/M 86	Yes	
OASIS-16	Yes	
XENIX	Yes	

OPTIONAL HARDWARE EXPANSION BOARD (Supported by Company)³

RS-232 Communications	Yes	Yes
B/W and Color Display Controller	Yes	Yes
Expansion Memory	Yes	Yes
Z-80 CP/M-80 Board	Yes	Yes
Cache Buffer Hard Disk	Yes	Yes
Time/Calendar Board	Yes	Yes
IEEE Bus Controller	Yes	Yes
8" Floppy Disk System	Yes	Yes
8" Hard Disk System Up to 40 Mbytes	Yes	Yes
Tape Cartridge System	Yes	Yes

¹For comparison purposes, typical professional configurations consist of 16-Bit 8088 Processor, 128K RAM with Parity, Dual 320K 5-inch Floppies, DMA and Interrupt Controller, Dual RS-232 Serial Ports, Centronics Parallel Port and Dumb Computer Terminal or Equivalent.

²Columbia Data Products also supports CP/M 86 with an optionally available Z-80 CP/M Expansion Board.

³As advertised in BYTE Magazine, August 1982.

COLUMBIA
DATA PRODUCTS, INC.

Home Office: 5900 Route 12B Columbia, MD 21045
Telephone 301-992-3400 TWX 710-862-1951

West Coast: 3501 MacArthur Blvd.
Suite 211 Newport Beach, CA 92668
Telephone 714-752-6245

Europe: P.O. Box 1118
450 Moenchengladbach 1
West Germany
Telephone 02161-33159 Telex 825452

IBM is the trademark of International Business Machines. CP/M and MP/M are trademarks of Digital Research. OASIS is the trademark of Phase One. MS-DOS and XENIX are trademarks of MICROSOFT.

CIRCLE 7
The design race boils in a lukewarm economy

The proliferation of new product introductions at the recent Comdex, Midcon, and Autofact conventions is a continuing testimonial to the creativity of today's system design engineer. While some proclaim that designers are constantly duplicating each other's efforts in the product race, our editors recognize that these highly motivated and competitive engineers are actually achieving similar design goals in many different ways.

In this month's issue the editorial staff has unearthed some of these latest developments in a Special Report on disk and tape technology. From 3½" (or is it 3 ¾"?) floppies, to 5 ¼" high density Winchester cartridges, the engineering driven product parade marches on. Our editors found that, in addition to cost performance improvements in the disk and tape arena, packaging is playing a very important part in successful product marketing.

With our lukewarm economy, market activity for disk and tape products is centering on the personal and office automation application areas. Here, fortunes are made and lost—sometimes thousands of drives are sold or not sold because of a one-inch package size reduction. For this issue the editors have churned through literally thousands of news releases, attended conferences from coast to coast, met with countless manufacturers, and made Ma Bell quite a bit richer to bring you this important report on disk and tape technology. The report includes major articles on Winchesters, floppies, and optical storage. I hope you enjoy it.

Ronald W. Evans
Publisher

FEBRUARY PREVIEW

Special Report on Advanced Digital ICs
As more and more functions are crammed onto a single chip, the decision between using standard or custom and semicustom LSI and VLSI circuits becomes less and less easy to make. In the February Design Frontier Special Report, Computer Design editors and invited authors will discuss the value of several alternatives and show how cost, quality, and delivery have become increasingly important factors.

Custom/semicustom IC selection strategies: A staff report indicates that, because custom circuits may represent 50% of the semiconductor market by the end of the decade, system designers should learn the new selection strategies and cost tradeoffs.

Plus other major articles including: Core microprocessor speeds chip development...Crafting a custom sorted access memory...Bringing semicustom IC design in-house...Growth of processor family boosts system options...Minimal solutions to logical dilemmas...The common sense of object oriented languages...Can computers really be friendly?...Providing CMOS benefits to peripheral chips...
For the microcomputer software engineer who doesn't have time to make mistakes.
Tek's new Pascal Language Development System supports you from the first line of source code to the last line of debug.

Conventional Pascal has supported only certain phases of microcomputer software design. Until now.

Tek goes all the way with the Pascal Language Development System (LANDS) for the 8560 Multi-User Development System.

A Language-Directed Editor cuts time recompiling.

The Pascal Language-Directed Editor catches and flags syntax errors before they ever reach the compiler.

A Pascal Compiler targets directly to microcomputer design.

The Pascal LANDS Compiler has an extensive array of microcomputer enhancements, including full I/O access and interrupt servicing. Even complete support of I/O simulation during initial emulation and debug. And an optimizer that typically reduces code by 20 to 40 percent compared to other compilers.

An Integration Control System automatically configures the hardware/software interface.

An exclusive from Tek, the Integration Control System (ICS) works from a simple list of user-supplied parameters to generate the hardware/software interface code. Including memory configuration, interrupt handling and initialization/reset code. Integration tasks now take minutes instead of days.

Pascal Debug speeds hardware/software integration.

Pascal Debug completely eliminates time-consuming translations of low-level debug information back into its Pascal counterparts. You can now debug in the same language you programmed in.

Put Pascal LANDS on your design team today.

Contact your local sales engineer or write us at the addresses below.

U.S.A., Asia, Australia, Central & South America, Japan
Tektronix, Inc., P.O. Box 4828, Portland, OR 97208,
Phone: 800-547-1512, Oregon only 800-452-1877,
Telex: 910-467-8708, Cable: TEKTRONIX
European Headquarters, Postbox 827, 1180 AV
Amstelveen, The Netherlands, Telex: 18312
Canada, Tektronix Canada Inc., P.O. Box 6500, Barrie,
Ontario L4M 4V3, Phone 705 737-2700
Use Megalink™ for 1 Megabit/sec DMA transfer between as many as 255 DEC and Intel processors on local networks up to 32,000 feet long.

- Q bus, Unibus, and Multibus compatible units plug directly into DEC and Intel backplanes.*
- Multidrop operation of different processors on single coaxial cable for distributed networks.
- Integral 1 Megabit/sec FSK modem is immune to baseband noise, has better than 1 bit/10¹² error rate.
- Loadable RT-11, RSX-11M, and RSX-11S device drivers available on floppy disk.
- Virtual disk subsystem.
- HDLC protocol implemented in hardware.
- Polled, token pass, or CSMA contention networks possible.

Call Garry Stephens today at (203) 544-9371, or write now for specifications of Megalink DMA Interface Units.
THE MOST POWERFUL MINICOMPUTER FAMILY IN THE WORLD

GOULD CONCEPT/32™

NOW SUPPORTS

UNIX™

Since we’re the price/performance super-minicomputer leader, you’d expect us to offer UNIX on our product line. And we do. The Gould CONCEPT/32 series of 32-bit minicomputers now provides an authorized version of Bell Labs’ 32V UNIX operating system. You get optimum software productivity with processor power up to six times that of our closest competitor.

The compute power and speed that’s put us in front of the competition, a full line of peripherals, and all the advantages of single vendor hardware and software support. You get them all now...with Gould S.E.L. Computer Systems.

Just call our UNIX hotline: 1-(305) S.E.L.-UNIX.

Gould Inc., S.E.L. Computer Systems Division, 6901 West Sunrise Boulevard, Fort Lauderdale, Florida 33313. 1-800-327-9716.

™ CONCEPT/32 is a trademark of Gould Inc. ™ UNIX is a trademark of Bell Labs.
YOU WON'T BELIEVE YOUR EYES!

Introducing the Kratos KM1400 high-resolution color video display:

1024 lines, non-interlaced.
60 Hz refresh (64 kHz horizontal scan rate).
100 MHz video bandwidth.

For more information on the color video display with the highest resolution available today, call or write: KRATOS Display Systems • 101 Cooper Court • Los Gatos, CA 95030 • (408) 395-3700
TELEX 171946

CIRCLE 12
IF THIS IS A BAD ECONOMY...

If this is a bad economy, and Comdex '82 turned out some 1800 exhibitors with about 50,000 attendees, then what is a good economy going to look like? Though many companies in our field are furloughing employees for the last couple of weeks of the year, and freezing salaries and hiring, you certainly couldn't tell from the looks of the show floor that we are still in an economic slump. Besides the lack of a few large, long time exhibitors, about the only indication that something was still wrong with the economy was the absence of headhunters, their hospitality suite notices, and their flyers delivered to hotels.

Japanese vendors, of course, were present in full force, all of them offering at least one microcomputer. Very little software aimed at closing the man/machine gap was exhibited. Although the CP/M people can't be counted out yet, it certainly looks like UNIX (or variations thereof) is well on its way to becoming the 16-bit operating system heavy. It was a decided pleasure to find many vendors talking about the C language as a tool for making system software portable. Many of them already have rewritten, or are in the process of rewriting, their current offerings in C to be readily ported into the 16-bit world.

Microfloppies were also much in evidence, not only in OEM form from just about every peripheral vendor, but also in several microcomputer box level products unveiled at the show. The microfloppy, however, did seem to be in a seriously confused state about whether it is going to take 3", 3.5", or just under 4" media. I know that microfloppy boosters like to think of the diskette as a cartridge-like device, but we really can all live without returning to the front load/top load (and worse) days of the 5440 media. Let's all hope that cooperative intracompany efforts already exhibited in the areas of data communications, graphics, and microcomputer bus structures will lead to a quick resolution among the front runners in the diskette business. Otherwise, it's going to be quite a mess next year. Ironically, just as we are on the verge of having portable (or almost portable) system level software, the disk drive vendors are likely to bring home the point that portability is, after all, in the eye of the beholder.

Saul B. Dinman
Editor in Chief

Best Technical Article of the Month—May
"Compact Code—IA6864 Addressing Techniques"
Stan Mazor and Sandy Wharton, Intel Corp

Best Technical Article of the Month—June
"16-bit Operating Systems, a Whole New Ball Game"
Andrea Lewis, Microsoft

These articles will now compete with other monthly winning articles for the 1982 editorial excellence award.
Let your imagination run wild.
Introducing the Grinnell 2800 Image Processing/Graphic Display System.

Whatever your mind can imagine, the new Grinnell 2800 System can visualize. And it does it at an astonishingly cost effective price.

Power and flexibility in a compact system.

For 512x512, 512x640, 480x640, 1024x1024 and 1024x1280 graphics, image enhancement and image processing, the 2800's exceptionally fast, easily programmed distributed computing architecture (built around a high-speed bit slice processor) puts an incredible repertoire of graphics instructions and image processing capability at your disposal for a wide range of monochrome, 3-color and multi-spectral applications.

Exactly what you need, when you need it.

Because of its unique, modular design, the 2800 System can be sized to your specific needs without sacrificing performance, allowing for multiple, modular processors and controllers for parallel, multi-spectral processing. And each processor is individually programmable, letting you manipulate input, graphics and imaging for simplified operation and maximized throughput.

For added cost-effectiveness, each video controller is associated with an ultra-fast pipeline processor. And should you need it: an optional microprocessor (Motorola MC68000, 512K RAM, 32K PROM) for Command Control Processing.

Programmable for your applications.

With the 2800 System, its microprogrammable System Controller gives you the choice of using standard or special instruction sets, with the option of downloading from the host computer or through the Command Control Processor. The CCP can also be programmed to interface with your choice of interactive control devices and off-load frequently used routines from the host computer. In addition, the system's Intelligent Host Interface offers you several data transfer modes to further enhance throughput.

Now imagine how it can work for you.

Compare its performance to anything on the market. Then, when you compare prices, you'll buy Grinnell. For details, write or call (408) 629-9191. Whether you're an OEM, end user, or involved in educational or industrial research, you'll agree: the Grinnell 2800 lets your imagination run wild, but not your budget.

GRINNELL SYSTEMS

6410 Via Del Oro Drive
San Jose, CA 95119 (408) 629-9191
The Am29116 is no mortal microprocessor. It's the fastest MPU ever made. The Am29116 was designed from day one with the most demanding intelligent peripheral control applications in mind. It's 16-bits. It's microprogrammable. It's made with IMOX, our advanced bipolar process.

Best of all, it's available right now.

THIS IS A JOB FOR THE Am29116.

The Am29116 can control any peripheral. It can do bit manipulation, data merge under mask control, even multiple bit rotate in a single 100ns cycle.

And it's fully supported with a high-speed development system called System 29/10A. Plus all the support circuits you'll ever need.

YOUR COMPETITION WON'T KNOW WHAT HIT THEM.

The Am29116 will put you as far ahead of the competition as we are. And it's just one of our high-performance VLSI circuits.

There are controllers, bipolar and MOS microprocessors, communications and signal processing circuits, and more.

And every part in every family meets or exceeds INT-STD-123, the International Standard of Quality.

Rush into the nearest phone booth and call AMD.

Ask for the chip that flies.

Advanced Micro Devices

901 Thompson Place, Sunnyvale, CA 94086 • For direct factory response call (408) 749-2900.

CIRCLE 14
Fault-tolerant systems lead push for factory automation

Seeking to provide the necessary components for the factory of the future, Hewlett-Packard has announced the first fault-tolerant computer system for process control, machine monitoring and control, communications control, and facilities management. Systemsafe/1000 pairs two HP 1000 Model 60 or 65 minicomputers executing the same software. User transparent data redundancy is made possible with the Datasafe/1000 software package that provides up to 960M bytes of mirrored disk storage. High speed realtime control is possible with the top-of-the-line A900 technical computer. This computer has cache memory and pipelined architecture for a system throughput of 3 million instructions/s (MIPS).

Complementing the processor offerings are the Process Monitoring and Control/1000 software package that supervises and controls continuous industrial processes, and the Programmable Controller (PC) Link/1000-AB that enables HP 1000 systems to monitor and control programmable controllers and any other devices connected to an Allen-Bradley (A-B) Data Highway. The company claims that these products allow manufacturers to get immediate status reports and, if needed, make production changes. Fault-tolerant techniques reduce error detection and recovery in the Systemsafe/1000 by as few as 200 ms, thus assuring continuous operation of realtime processes. A Systemsafe/1000 system includes dual HP 1000 F-Series computers with hardware floating point processor, for 1 MIPS and 200,000 floating point operations/s (flops). Each computer uses HP's RTE-6/VM realtime, virtual memory operating system for high performance system operation, with fault-tolerant functions handled by a new I/O switch subsystem. The Datasafe/1000 software package mirrors disk drives and Datashare/1000 software for user transparent disk file sharing by multiple CPUs. Both systems read all serial input data from selected external devices or processors, but only the primary system is allowed output data or control commands. The backup system functions as a "hot-standby." If a failure is detected in the primary, serial I/O control is switched to the backup and system operation resumes in real time. Datasafe/1000 provides uninterrupted read/write disk access even if one of the mirrored disk drives goes down. A fault alarm signals a failure, and a utilities package provides verification and restoration of a failed drive.

Systemsafe/1000 has a price of $199,000. If purchased as individual system components, the configuration would cost $233,000, including freight, within the United States. Current delivery estimate is 12 weeks ARO, with first shipments expected by April 1, 1983.

A typical Systemsafe/1000 configuration also includes redundant HP 1000 Model 60/65 systems with RTE-6/VM and 2M bytes of error-correcting memory, 19.6M bytes of mirrored disk storage, system console ANSI standard FORTRAN 77, and HP Pascal. Datasafe/1000 is available separately at $5000 for the first copy and $2500 for a right to reproduce version.

For those users who need higher performance, HP promises that systems incorporating the A900 will be available later this year. The A900 is targeted primarily for the OEM market as a very high performance, realtime engine for industrial automation and process applications. It is well-suited for process monitoring and control, high speed data acquisition and image- and signal-processing applications, where the A900's raw computational speed, floating point performance, and sophisticated I/O capabilities are required.

The computer features a high speed 4K-byte cache memory, 2-level pipelined architecture, 3.7M bytes/s peak I/O bandwidth, and a standard floating point processor capable of performing a typical mix of floating point instructions at 560,000 instructions/s. Implemented in Schottky TTL discrete logic, its CPU comes standard with a hardware floating point processor and HP's scientific instruction set (SIS) and vector instruction set (VIS) firmware. The floating point capability is implemented through three LSI chips developed in HP's CMOS/SOS technology. Unlike most processors requiring a separate board for floating point, the A900 floating point chips are designed as an integral part of the CPU for maximum performance and efficiency. When executing the single-precision Whetstone benchmark (b), the A900 is capable of nearly 1.2 MIPS.

To complement its processing power, the A900 supports up to 6M bytes of main memory, available in the latest generation 64k-RAM technology. A single memory array board is offered with 768k bytes of storage. Up to eight boards can be configured in the A900 computer. Add-on memory packages of 768k bytes, 1.5M bytes, and 3M bytes are available for $6000, $10,000, and $16,000, respectively.

Available in both box and system-level products, the A900 is priced in OEM quantities of 100 at $15,500 for the A900 CPU set, 768k bytes of ECC memory, memory controller card with 32-bit memory data bus in a rackmountable chassis with power supply, and 15 available I/O slots. The system price of $42,675 includes the CPU set, 768k-byte ECC memory, serial and HP-IB interfaces, RTE A.1 operating system, HP 2621B CRT terminal, 16.5M-byte Winchester disk drive, desk style cabinet, freight, and installation.

Extending the reach of these systems is the aim of the PC Link/1000-AB that allows users to supervise and transmit information to any device on an Allen-Bradley Data Highway. One HP 1000 computer accommodates up to 1512 programmable controllers on 24 such highways.

Because access to the controllers is "masterless," the system will not be disabled if a machine-level device goes down. A user interface isolates PC Link/1000-AB from the computer's RTE. (continued on page 26)
Spinwriters™ and disk drives with supernatural reliability.

NEC peripherals are amazingly reliable. For example, our Spinwriter™ printers often run two years without a failure. Typically, our Winchesters run more than five years without a failure. One of our diskette drives has a field-proven reliability of 24,000 hours—that's an incredible 12 years in normal operation between unit failures. When the rare failure does occur, usually it can be fixed in less than 30 minutes.

So when you think peripherals, think NEC. For Spinwriter letter-quality printers, band printers and line printers. For Winchesters. For diskette drives. High performance peripherals that just keep running. It's not magic, it's NEC.

Spinwriter is a trademark of Nippon Electric Co., Ltd.
YOU'RE LOOKING AT ALL 96 OF OUR UNIX-BASED MICROCOMPUTER SYSTEMS.
Your eyes are fine. You're just seeing everything in two.
The Plexus P/25.
And the Plexus P/40.
Two complete, UNIX-based microcomputer systems. Being delivered in volume, today.
We're totally committed to the UNIX operating system. Because of its simplicity, flexibility and popularity.
We're also totally committed to performance. Both our microcomputer systems deliver all the power of the largest minicomputer systems.
At two to five times less cost. But where do we get 96 UNIX-based systems?
From disk sizes, RAM sizes and user configurations.
The options available to you, with the P/25 and the P/40.
The P/25 offers 24 possible system combinations. With three disk sizes. (22, 36 and 72 megabytes.) Four memory sizes. (½, 1, 1½ and 2 megabytes.) And two user configurations. (8 or 16 terminals.)
The P/40 offers an impressive 72 system combinations. With its three disk sizes. (72, 145 and 290 megabytes.) Eight memory sizes. (½, 1, 1½, 2, 2½, 3, 3½ and 4 megabytes.) And three user configurations. (8, 16 and 24 terminals.)
All these options are offered with a single vision in mind.
Choice.
With 96 possible system combinations, Plexus gives you the opportunity to custom-build systems to your ideal specifications.
Allowing you to more accurately meet the demands of your customers. With the capability to expand, as their needs grow.
Helping you to more effectively control your costs.
So you can maximize your profits.
We think that shows our far-sightedness.
Contact us. Plexus, 2230 Martin Ave., Santa Clara, CA 95050. (408) 988-1755. TWX/Telex 910-338-2223.
Compare our two systems to the others. Price, performance, delivery, support and configurations. Once you do, you'll see. There's more to Plexus, than what meets the eye.

UNIX is a trademark of Bell Laboratories. Plexus Computers, Inc. is licensed to distribute UNIX under the authority of AT&T.
Fault-tolerant systems
(continued from page 22)

6/VM operating system and automatically handles error conditions. Unsolicited messages, such as a controller signifying an alarm condition or completion of a task, automatically update user programs. The microprocessor based, multiplexed interface card permits full duplex communications at 9600 baud. A “state of health” verifier provides loopback testing of both the interface card and all components of the A-B Data Highway.

Information collected from these controllers can be managed with the Process Monitoring and Control (PMC) menu-driven software package designed for small to medium scale processes found in both process and discrete manufacturing environments. A large number of process strategies (eg, feed forward, cascade, cross coupled, and nonlinear control) are within its capabilities. They provide a good fit for such sophisticated applications as material and energy balancing. Customizable capabilities include flexible scanning and updating of all measured and controlled process parameters. Control actions include both proportional integral derivative (PID) loop control and Boolean logic control. Standard functions include engineering unit conversions and averaging, accumulation, and ratio computations. Dead-time, filtering, and nonlinear functions are provided, and user defined algorithms can also be accommodated. In the event of an alarm condition, PMC/1000 ensures that appropriate action is taken automatically—from simple operator notification to shutdown of the process. A logging feature for historical data provides long-term graphical trending, as well as information needed for statistical analysis and management reports.

Prices for complete systems, including an HP 1000 computer and PMC/1000 software, start at $130,000. A large HP system capable of controlling 100 loops and monitoring 500 process parameters—including all necessary computer hardware, software, and instrumentation interfaces—would cost $280,000. The PC Link/1000-AB—including software for up to three interfaces, an interface card, a multiplexer panel, and cabling for connection to an Allen-Bradley 1771-KC/KD communications controller—has a U.S. list price of $7200, including freight. Multiple unit discounts are available, and current delivery estimate is eight weeks ARO. Contact local Hewlett-Packard sales offices.

—Joseph Aseo, Field Editor

Circle 240

Machine vision system combines low cost and high performance

The “affordable vision system,” a gray-level image analysis system from International Robomation/Intelligence, provides a resolution of 256 x 256 pixels with 256 gray levels. An OEM quantity price of $4995 results from use of a 12-MHz MC68000 16-bit processor capable of 1 million instructions/s (MIPS). Dedicated hardware logic is responsible for image preprocessing and segmentation functions. An optional coprocessor operates in a single instruction multiple data (SIMD) stream mode to process 30,000 to 50,000 complex algorithms/s.

Gray-level image analysis was chosen because it does not have the limitations of binary vision systems. That is, binary vision systems need sufficient ambient illumination and can only extract information in silhouettes, not in contours or edges. A gray-level image analysis can control and stabilize lighting conditions necessary to hold threshold settings—gray levels that determine whether a pixel is black or white—constant. This is not always possible in such instances, as the inspection of objects passing by on a conveyer belt. Silhouette extraction does not work if the inspected objects overlap, in which case contours of the objects must be identified. A similar problem occurs when edges must be detected, but an insufficient contrast in gray level between the object and its background is present.

The vision system consists of three components: a host MC68000 microcomputer with its own 64k-byte static RAM and a 16k-byte ROM, an image digitizer and preprocessor, and an optional coprocessor. Four camera inputs can be selected under program control, digitized by an 8-bit AD converter, and stored in a 64k-byte frame buffer memory (256k bytes total). Conversion and storage take only a single TV raster frame (20 ms). The frame memory is organized so that four bytes can be written or read simultaneously. The preprocessor operates “on the fly” during image input as it is inserted in the read-modify-write loop of the frame buffer memory. Another DMA channel is dedicated to the coprocessor, complete with special address generation schemes used to perform a variety of operations in SIMD mode.

Preprocessing functions include point transformations of 256 x 256-pixel matrices; equalization of the gray-level distribution of a picture for better contrast enhancement; and setting of multiple thresholds at several arbitrary gray levels. The histogram processor calculates a 127-point histogram simultaneously with preprocessor operations

(continued on page 29)
Avoid being called for interference.

October 1, 1983 is coming fast. That's when the FCC Article 15 RFI/EMI requirements become effective. Lucky for you, the Oak FTM (Full Travel Membrane) is ready right now.

The FTM keyboard has an inherent design that offers an optional shielding system which can be easily designed right in. You don't have to re-design your equipment with cumbersome shielding. Or, wait for other types of keyboards that have added shielding with substantial added expense.

Find out how FTM keyboards block out interference. And they're available now for a surprisingly low cost.

You can't afford not to call Oak.
Phone 815/459-5000, TWX 910-634-3353,
Telex 72-2447

Oak Switch Systems Inc.
An Oak Technology Inc. Company
P.O. Box 517, Crystal Lake, Illinois 60014
IT'S TIME TO TAKE YOUR PLOT 10 IDEAS OUT OF STORAGE.

Give your imagination the benefit of the latest graphics technology, with a D-SCAN dual-microprocessor GR-2412 raster terminal.

For example, the GR-2412's remarkably fast, remarkably accurate 4014 emulation makes it a snap to add color and selective erase to existing PLOT 10 routines.

And its high resolution 1024 x 780 raster display, with exclusive anti-aliasing hardware, means image quality that rivals a storage tube.

If your ideas grow too big for PLOT 10 to handle, you can always take advantage of the GR-2412's unsurpassed collection of standard graphics features. Like local transformations. Closed figure drawing. Up to 768K bytes of local segment memory.

And a software utility package that can replace lines of PLOT 10 code with a single FORTRAN statement.

Something else to consider while you're thinking about the future.

Our past. D-SCAN products have been field proven for over a decade. And every one is crafted by Daini Seikosha Co., Ltd. (Seiko), known worldwide for its precision watches, robots, and computer peripherals.

For immediate information on the GR-2412, contact Seiko Instruments U.S.A., Inc., 2620 Augustine Drive, Santa Clara, California 95051.

Telephone (408) 727-0768.

Because ideas in storage don't get any better. Just older.

D-SCAN
Seiko Instruments U.S.A., Inc.
Affordable vision system
(continued from page 26)
a single read-modify-write cycle (20 ms).
If programmed on the microcomputer,
these operations would each take 200 ms.
The optional coprocessor acts as a
hardware accelerator for software
routines executed in the microcomputer
that typically run 1x to 2x slower. For
example, convolution of the 256- x
256-pixel matrix with a 3 x 3 coefficient
matrix takes 50 ms if performed by the
coprocessor, while a programmed rou­
tine in the microcomputer requires 3.5 s.
Coprocessor operations need only a
single instruction fetched by the micro­
computer for the entire sequence, with
each pixel processed simultaneously
along each axis several times before
returning to the frame buffer memory.
Consisting of a microprogrammed con­
troller; systolic array processor, and
buffer coefficients and intermediate
values; high speed scratchpad memory;
and DMA channel interface, the
coprocessor operates in a pipelined
fashion capable of performing 20 MIPS.
The host processor performs high level
routines such as gray-scale image sub­
traction, fusing and shrinking of images,
stereoscopic image analysis, and color
image analysis. The operating system is
an extended version of UNIX-7 with a
realtime core added to coordinate the
system processors. An extended version
of C is also available for program devel­
opment, with direct access to library
routines.
A basic system consisting of the host
computer and digitizer/preprocessor
boards costs $4995, with the price of the
optional coprocessor available upon
request. Any vidicon or solid state
camera can be used that operates
according to either the EAI 525 line or
European 625 line standards. The camera
must also have an RS-422 interface and an
input for external synchronization.
International Robomation/Intelligence,
6353 El Camino Real, Carlsbad, CA
92008.
—Joseph Aseo, Field Editor

Get your own
If you’re reading someone
else’s copy of Computer
Design, why not get your
own? To receive a
subscription-application
form, circle 504 on the
Reader Inquiry Card.
It takes real nerve to compare our ¼" back-up system with ½" drives.

It also takes 67 megabytes.
HCD-75: so much for so little.

Presenting the only ¼" cartridge back-up system that'll go head to head with ½-inchers in the critical 30-70 Mbyte range.

The reason is simple. The 3M Brand HCD-75 Data Cartridge Drive System gives you 67 Mbyte per cartridge formatted. No other cartridge drive gives you so much capacity.

There's nothing medium about the medium, either. Each Scotch® DC 600HC cartridge is pre-recorded with permanent forward/reverse-reading block keys. They give you block-addressable storage. You get compact recording on all 16 tracks, with a density of 10,000 frpi, without rewinds.

The HCD-75 system, including drive and controller, is about one-fifth the size of a ½" tape drive. You don't have to put back-up and I/O plans on the back burner because of size constraints.

Interchange for the better.

Cartridges interchange quickly and easily. Tape-to-head alignment is ensured by a special sub-routine. It automatically aligns the read-write head and stepper motor controller to the tape edge each and every time the operator puts a cartridge in the system.

There's brain to this back-up, too. First, all its functions are handled through its controller. And second, there's minimal host involvement, so host time can be freed up for more critical functions.

All the reliability without high cost.

You can run one HCD-75 drive off the controller, or two, or three, or four. You still get all the reliability of the high-priced drives. The HCD-75 runs self-test routines to ensure proper operation. It gives you sophisticated error messages when faults are detected.

Advanced error-detection/correction routines keep working to deliver extremely low error rates. The micro-processor controls the drive functions; so potentiometer adjustments are a thing of the past.

Back-ups without back orders.

The whole shooting match—drive, controller, preformatted Scotch DC 600HC cartridges—is ready for immediate delivery. One at a time or in production quantities—you name it. (Also ask about 3M's proven family of 8" Winchester compact disk drives.) Haven't you waited long enough for a reasonable, reliable, truly high-capacity alternative to ½" drives?

As close as your phone.

In fact, if you have been holding off on a back-up decision—or even if you haven't—make us put our back-up where our mouth is.

Call toll-free 800-328-1300. (In Minnesota, call collect: 612-736-9625.) Ask for the Data Recording Products Division. We'll give you the name of the 3M HCD-75 representative in your area. He's just waiting for the chance to show off his latest, greatest back-up.

Or write us at Building 223-5N, 3M Center, St. Paul, MN 55144.

3M hears you...
Professional Books That Help You Get Ahead—And Stay Ahead!

Join the ELECTRONICS AND CONTROL ENGINEERS’ BOOK CLUB and...
- Keep up with current technology
- Sharpen your professional skills
- Be ready for new career opportunities
- Boost your earning power

New members!
Any one of these great professional books for only...
$2.89 as a premium with your 1st selection!
Values up to $75.00

Why YOU should join now!
- BEST AND NEWEST BOOKS IN YOUR FIELD—Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in your field.
- BIG SAVINGS—Build your library and save money too! Savings ranging up to 30% or more off publishers’ list prices—usually 20% to 25%.
- BONUS BOOKS—You will immediately begin to participate in our Bonus Book Plan that allows you savings of between 70%—80% off the publishers’ prices of many professional and general interest books!
- CONVENIENCE—12-14 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and alternate selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing—it will be shipped automatically. If you want an alternate selection—or no book at all—you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin you receive a Main Selection you do not want, you may return it for credit at the Club’s expense.
- As a Club member you agree only to the purchase of three books (including your first selection) during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the first selection plus two additional books.

MAIL THIS COUPON TODAY

Write Code No. of the $2.89 selection here
Write Code No. of First Selection here

Signature ____________________________
Name ________________________________
Address/Apt. _________________________
City/State/Zip _________________________

This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members. Orders from outside the U.S. cannot be accepted.

Copyright © 1984 by McGraw-Hill, Inc.
All rights reserved.

McGraw-Hill Book Clubs
Electronics and Control Engineers' Book Club
P.O. Box 582, Hightstown, N.J. 08520

Please enroll me as a member and send me the two books indicated, billing me for the $2.89 premium and my first selection at the discounted member's price, plus local tax, shipping and handling charges. I agree to purchase a minimum of two additional books during my first year of membership as outlined under the Club plan described in this ad. A shipping and handling charge is added to all shipments. Please allow 4-6 weeks for delivery. Please return this card within 10 days. No purchase necessary. Application not required. Each Club Bulletin contains complete information about all books offered for premium selection. Members may purchase additional books at Club prices and enjoy special discounts on a wide range of print and non-print products for professionals. Club membership is subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members. Orders from outside the U.S. cannot be accepted.

[Image of coupon with McGraw-Hill logo]
Test system debugs embedded computers without diagnostic software

To ease the task of hardware and software integration for systems that have embedded computers, the act 1 (advanced computer tester) from Loral Instrumentation eliminates diagnostic software and special purpose test equipment. The tester provides a window into the memory and registers of the target computer and enables the user to dynamically alter their contents without interrupting normal system operations. It is intended to aid the development of minicomputer applications, such as the ROLM AN/UYK 19 series embedded in the system, without such typical peripheral devices as video display terminals or line printers.

Functionally similar to a logic state analyzer, the act 1 interrogates up to four of the target computer's 16-bit data buses via a personality module unique to that processor. 16k bytes of PROM contain the machine-dependent subroutines required for the act 1 to examine the internal contents, with the needed I/O signal levels provided by signal conditioning circuitry. A typical configuration would include access to the computer data bus, memory address, micro-memory address bus, instruction register, control and clock signals, and synchronization outputs. Programmed breakpoints could be evaluated from these buses, or from external signals monitored by an 8-input clip probe. Such signals can either be functions not already monitored within the four main buses, or system events (eg, switch closure, scale change, message acknowledgment) controlled by the target system. Users can select breakpoints to execute on values less than, equal to, or greater than a specified value with a programmable mask also available to disregard unwanted bits.

Other options include the ability to specify which portion of the instruction cycle (read, write, or execute) to trigger upon and the use of a programmable counter to measure events in microseconds, milliseconds, or seconds. An external event counter measures the machine clock cycles. Detection of the breakpoint condition will either halt the machine or be flagged to the visual display as an asterisk while the target computers continue running. Up to three breakpoints may be logically linked (AND/OR), or used independently.

Three 1k-bit stacks capture data from the 16-bit data bus, 16-bit memory address bus, and 8-input clip probe.

Stacks are loaded when programmed breakpoints occur, selected registers or I/O channels are accessed, or all data from the target computer can be stored. Contents of each stack are viewed through an onboard 7" (17-cm) CRT in groups of 16 locations. Scrolling or modification is possible with the hexadecimal keyboard located on the processor, or with an external ASCII keyboard. Data and address stacks are displayed in hexadecimal format, while clip probe data are displayed as eight binary bits similar to a logic analyzer.

Memory locations within the target computer can be viewed and manipulated as well. Up to 48 consecutive memory locations can be displayed in groups of 16 words, or a work area of 18 consecutive locations can be scrolled to change the contents. Users can also configure an overlay map of the target computer's memory to provide read/write protection, or provide an optional external high speed (70-ns) read/write memory of up to 64k words that can replace or extend the target computer's memory. Finally, a disassembled area of memory can be viewed complete with mnemonics and operands.

Actual runtime execution can be viewed with 40-column trace pages that display the contents of registers, memory locations, and disassembly of programs as they are being executed. Fifty-three commands within the act 1 monitor and modify the target commands. Up to 16 command sequences are stored for loading and execution from the half-inch magnetic tape cartridge drive. These commands are contained in a 16k-byte PROM and executed by an 8080 microprocessor.

Personality modules are available for the Texas Instruments 2520, Applied Technology ATAC 16M, and ROLM 1602/1664/1666 computers at $4500 each in addition to the act 1 price of $19,500 each. Custom personality modules can be designed by the company, or the customer can receive design assistance for his own module. External keyboards are priced at $1500 each, and high speed 16k x 16k-bit memory boards cost $2995 each. Loral Instrumentation, 9020 Balboa Ave, San Diego, CA 92123. Circle 242
THE ONLY LITTLE 32-BIT COMPUTER EVEN WORTH DISCUSSING.

The problem with most low end 32-bit computers is that their usefulness is right down there with their price. So we've come out with a low end 32-bit computer that has up to twice the performance and twice the memory of comparable machines.

Which means it can actually do the kinds of things you want a 32-bit computer to do.

THE ECLIPSE MV/4000™ COMPUTER.
The ECLIPSE MV/4000 has 600K-Whetstone compute power. And an I/O bandwidth of 5 megabytes per second.

And to make that performance easy to perform with, the ECLIPSE MV/4000 has virtual addressability, 16 KB of user microcode space, nine I/O slots, and a rack-mountable OEM chassis version. As well as the ability to handle up to 8MB of memory, 4.7 Gigabytes of on-line storage and 64 terminals. All of which you don't usually find on a low end 32-bit computer.

THE SOFTWARE YOU NEED.
Unlike most low end 32-bit computers, the ECLIPSE MV/4000 gives you a choice of compatible operating sys-
tems: AOS/VS (our interactive advanced operating system with virtual storage). Or AOS/RT 32 (our lean, deterministic, real-time operating system). Plus a wide variety of industry and international standard communication protocols. As well as our XODIAC™ network management system, SNA, CEO™ (office automation) and data base management software. And an array of commercial and technical languages, productivity tools, and third party software packages.

THE COMPATIBILITY YOU EXPECT.

Should you one day need even more of a computer, you can take all your code (and all your peripherals) onto the bigger members of the ECLIPSE family. Because the ECLIPSE MV/4000 is fully compatible with the entire Data General ECLIPSE MV product line.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>600K-Whetstone</td>
<td>8MB Maximum memory</td>
</tr>
<tr>
<td>5MB/sec I/O</td>
<td>Virtual addressability</td>
</tr>
<tr>
<td>Real-time operating system</td>
<td>Storage</td>
</tr>
<tr>
<td>4.7 Gigabytes of On-Line Storage</td>
<td>Multiple I/O slots</td>
</tr>
<tr>
<td>User microcode space</td>
<td>Low Price</td>
</tr>
</tbody>
</table>

Should you find yourself staying with the ECLIPSE MV/4000 system, you’ll find it stays with you. Particularly because of our worldwide network of field service engineers. And partly because of some inherently reliable design considerations. Like extensive self diagnostics on power up. The simple, two board implementation. And the 55°C burn-in test it goes through. In fact, we’re offering an uptime guarantee of 96 to 99%. And a remote diagnostic program.

The way we see it, making a little 32-bit computer is no excuse for making any less of a computer.

Want to discuss the only little 32-bit computer worth discussing? Call your local Data General office. Or write us TPD, F134, 4400 Computer Drive, Westboro, MA 01580.

Data General
Toshiba's Sunnyvale, California plant which opened over two years ago is fine-tuned and fully operational. For starters, the 2,000,000 plus ROMs per month being produced include 16K, 32K, and 64K. Also, at another of our facilities, we're producing the 256K ROM.

The 16K is organized as a 2K x 8 and is pin compatible with the 2716 EPROM.

The 32Ks are 4K x 8. They are pin compatible with either 2732 or 4732 type EPRÔMs.

Our 64Ks are 8K x 8s. They're available in either a 24 pin package or a 28 pin compatible with 2764 type EPRÔMs. Optional features include...
output enable control, up to three programmable chip select inputs and access time to 200 ns. Operating current is 40 mA maximum with 15 mA standby maximum.

256K Our 256K is a 32K x 8 and is available in the standard 28 pin package. It has fast access time of 150 ns. Standby mode cuts current down to 10 mA maximum.

What's also cut down to common sense levels is our lead times, so, delivery's a snap. And the code logistics are quickly and easily handled.

If you would like a copy of our MOS Memory Products Data Book, lead times, or data sheets, write Toshiba America, Inc., 2441 Michelle Drive, Tustin, California 92680, (714) 730-5000 or call your local sales representative.

And we'll get you started.
Serial buses provide small area networks between system ICs, and modules

A recent licensing agreement between Signetics Corp, Philips Corp, and Intel Corp will make Intel 8048 and 8051 microcomputers, fabricated in CHMOS, available in the United States. As part of the same agreement, two new serial bus standards, known as "small area networks" (SANS) are also being introduced in the U.S. Philips introduced SANS in Europe to cope with interconnect and modularity issues in microcomputer based equipment design.

One bus, known as the inter-IC or I²C, has been used in Europe for about two years, and provides for serial data communications between ICs on the same board or within the same box. It is used for distances up to 4 m. The digital data bus or D²B now being introduced, connects systems in a network of up to 150 m. Since both buses operate over relatively short distances, they are able to use fairly simple arbitration schemes to avoid bus contention. In the I²C this means waiting until there is no activity on the bus and then issuing a unique start bit. Units that use the bus issue bits and monitor the bus simultaneously. Thus, if a unit sees a bit other than the one it has just issued, it interprets that bit as a signal to immediately retire from the bus. Immediate retirement is made possible by the short distances that result in short propagation delays.

Both buses distinguish between master/slave and receiver/transmitter units. A master unit can initiate communication with a slave, making those two units transmitter and receiver, respectively. But the master can also request data from the slave, making it the transmitter. In addition, interface logic can be saved in some situations by making certain units slave only devices.

The I²C bus uses only two wires or traces: serial clock and serial data. This allows the designer to distribute functions within a system while paying minimal attention to interconnection problems. Thus, a reduction in the amount of wiring and interconnected routing is one main design savings. In addition, functions can be placed where they are best utilized for display, data sensing, and human interface.

The I²C uses a packet protocol consisting of a start bit, a 7-bit slave address (SADD), an R/W bit that defines slave as transmitter or receiver, an acknowledge bit (ACK) for the preceding field, 8-bit data characters with no preset limit on the maximum number of characters, and a stop bit. The I²C's throughput speed is largely determined by whether it is implemented in hardware or software. An implementation using 64 bytes/message could transfer 10,900 usable characters per second (cps) in hardware or 153 cps in software implementations. The I²C is intended for applications that are shielded from noise, shielded from or insensitive to radiation, and have modularity that can be foreseen at design time. That is, the desired functions are known and need only be placed in the most convenient way. The bus approach avoids function placement dictated by wiring constraints. Thus I²C is meant to be used within a box such as a TV or a keyboard.

Like the I²C, the D²B is a multimaster distributed control bus that uses wire-AND hardware arbitration and ACK bits after each field. It also separates the functions of master/slave and transmitter/receiver. The D²B, however, provides data communications between separate boxes; consequently, it must work over a larger area and be both insensitive to radiation and emit very little radiation itself.

The D²B uses differential signal transmission over a twisted pair that is time multiplexed between clock and data. To accommodate devices with different throughput capabilities, it can operate in three throughput modes. The only requirement is that high speed bus units be capable of switching to lower speeds to communicate with slower devices. All messages on the D²B are restricted to less than 9 ms, but higher data rates can transfer more data within that time. Throughput for mode 0 is 110 bytes/s, 2423 bytes/s for mode 1, and 8282 bytes/s for mode 2.

D²B protocol follows all fields except the start and mode bits with a parity bit. The amount of information contained in data field depends on transfer mode selected. Information must fall within 9.1-ms limit for message duration.
The VISUAL 50 represents a new approach in low cost terminals. Although it costs drastically less, it offers the features you expect from the high priced units.

For example, the VISUAL 50 enclosure is ergonomically designed in light weight plastic and can easily be swiveled and tilted for maximum operator comfort. A detached keyboard, smooth scroll, large 7 x 9 dot matrix characters and non-glare screen are a few of the many human engineering features normally offered only on much higher priced terminals.

Another distinctive feature of the VISUAL 50 is its emulation capability. VISUAL 50 is code-for-code compatible with the Hazeltine Esprit, ADDS Viewpoint, Lear Siegler ADM-3A and DEC VT-52. Menu driven set-up modes in non-volatile memory allow easy selection of terminal parameters.

And you’re not limited to mere emulation. As the chart shows, the VISUAL 50 has features and versatility the older, less powerful low cost terminals simply cannot match.

The VISUAL 50 presents ergonomic elegance and high performance in a low-cost terminal.

$695 list

FEATURE COMPARISON CHART

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>VISUAL 50</th>
<th>Hazeltine Esprit</th>
<th>ADDS Viewpoint</th>
<th>Lear Siegler ADM-3A</th>
<th>TeleVideo® 910</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt and Swivel</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Detached Keyboard</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>N-Key Rollover</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Audible Key Click</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Menu Set-Up Mode</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Status Line</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Full 5 Attribute Selection</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Smooth Scroll</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Line Drawing Character Set</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Block Mode</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Insert/Delete Line</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Bi-Directional Aux Port</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Columnar Tabbing</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Independent RCV/TX Rates</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Answerback User, Programmable</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>OPT</td>
<td>NO</td>
</tr>
</tbody>
</table>
Integrated Ethernet systems. Virtual connection can be established between terminal A and host B or C. Virtual connection supports logical name to physical address name mapping.

Both the communications server and gateway server are based on the company's dual-board MULTIBUS based EC/I Ethernet controller. The controller fully conforms to Ethernet specification version 1.0 and interfaces to the network at the physical and data-link levels. One board is an Ethernet transceiver interface; the other is a shared buffer board. The transceiver interface is connected to the Ethernet transceiver and performs carrier sense, serialization, deserialization, Manchester encoding and decoding, CRC checking and generation, collision detection, address recognition, loopback, interlock checks, and error reporting. It communicates over the MULTIBUS connector to the shared buffer board. The buffer board has an intelligent DMA to transfer packets between the transceiver interface and its 128k-byte dual-ported shared buffer. A 10-MHz, 68000 microprocessor manages the DMA as a buffer, runs the data-link software, and optionally executes user installed protocols or other software. The EC/I controller can be purchased separately.

Hardware modularity is bolstered by the use of the MULTIBUS. Sufficient power supply margin is present to accommodate additional boards in the spare backplane slots. OEMS can easily add value. For example, by using one or more of the spare slots for a special application, a gateway interface module can be added to provide an interface to another kind of local or long-haul network, replacing the Bridge module. A different type of device interface can be used to control devices with interfaces other than RS-232-C. The addition of a disk controller supports disk or file systems not supported by existing Ethernet file servers. A printer controller is able to support specialized printing equipment not currently supported by Ethernet.

Software is also modular. An existing software module can be replaced with a customer's module. Debugging support is available on the central communications processing unit (CCPU), including multibreakpoint capability, program or instruction disassembly, multiple memory inspection modes, and debugger extension support. The CCPU module contains the 10-MHz 6800 and 128k bytes of RAM. Software is downloaded either from a local load device (usually the optional floppy disk unit), from a host, or from the network. If download is from a host, the interface to the host is through the RS-232-C console port using Motorola Standard s Hex format. Typically, software is assembled or cross-compiled on a host.

The 2-board controller set will be available in February and lists at $3000. CS/I will be available in March and is priced at $9900. GS/I is expected to be available in the second quarter of 1983 for $15,000. These prices are for single quantity. Discounts are available for higher volumes. Bridge Communications Inc, 10401 Bubb Rd, Cupertino, CA 95014.

Circle 244

Party line network shares printers and disk drives

System resources such as line printers and disk drives can now be shared between several multi-user systems with a local networking scheme developed by Action Computer Enterprise. Networking software allows any user on a multiprocessor system to assign a remote printer or drive for his dedicated use. Subsequent requests are routed to the DISCOVERY system that actually has the device. For example, user 3 of node 1 can access logical drive D by assigning that particular drive as his own logical drive E. Network information is passed via an RS-422 interface for distances up to 4000' (1219 m) at 100k-baud transmission rates.

With each DISCOVERY system capable of supporting 16 user processors (280 or 8086/8087 based), a network of 10 nodes can support 150 8-bit and 16-bit users, with a single processor at each node dedicated to network communications. This processor is connected to a high speed serial interface that supports the SDLC communications protocol. It is primarily used to arbitrate competing requests for shared remote resources, respond to resource requests from other (continued on page 44)
The Incredible Shrinking 212A!

For High- and Medium-Volume Users — Intelligent Custom 212A Modems on a Card with Incredible Features at Incredible Prices

FOR HIGH-VOLUME USERS — AN INTELLIGENT CUSTOM 212A

The "Make or Buy" decision becomes incredibly easy for high-volume 212A modem users. The answer is "Buy" Racal-Vadic intelligent modems, custom designed to your specifications.

These intelligent custom modems, designed around a new breed of 212A and 103 LSI chips are incredibly small and flexible, incredibly low in cost, and Racal-Vadic takes an incredibly short time from prototype to high-volume production.

Tiny 18- and 24-pin dual in-line chips contain a modulator and demodulator, transmit and receive filters, a carrier detector, automatic gain control, and answer tone generator/detector. Racal-Vadic has added telephone line, user, and control interfaces to these dual in-line chips. And our custom 212A modems are delivered to you FCC Registered and TAP Certified.

And that's just the beginning! A built-in microprocessor gives you all the options you've dreamed of: automatic dialing with stored numbers, Interactive conversation with the data terminal operator, sophisticated diagnostics...and more.

If you need a lot of 212As, each packaged in less than 50 square inches, come to Racal-Vadic. We'll build them to your size, shape and specifications — and deliver them in a minimum of time.

FOR MEDIUM-VOLUME USERS — A STANDARD INTELLIGENT 212A

For medium-volume 212A users, the perfect solution is our VS212P — a standard intelligent modem packaged on an 8.85- by 5.50-inch PC Board. The VS212P fits comfortably inside most terminals and computers, because each modem occupies less than 50 square inches.

The VS212P, which uses the same chips, microprocessor and functional modules that make up a custom 212A, provides 1200 and 0 to 300 bps full-duplex operation with manual and automatic originate/answer. It's FCC Registered and TAP Certified for direct connection to the switched network and has built-in RS232C and TTL interfaces to simplify integration into new or existing systems.

A sophisticated automatic dialer, which allows up to 32 digits to be stored in memory and instantly retrieved by the terminal operator, is included in the VS212P. The modem provides a unique digital or analog input/output capability and can be used in systems where voice and data transmissions are required.

The price is right: Just $420 in lots of 100. Whether you need an incredibly small custom 212A or an incredibly small standard 212A, we've got 'em. And at prices much lower than you ever thought possible.
Do-it-yourself with our WD1010 LSI Winchester Disk Controller.

Your component-level disk controller project will go much smoother and quicker with our WD1010 LSI Winchester controller. It's a 40-pin device with all the control circuitry needed to control ST500/SA1000 type drives and is compatible with most 8- and 16-bit microprocessor busses, handling data rates up to 5MHz.

Buy our board-level disk controllers. Have us build a custom board for you. Or do-it-yourself with our LSI. If you choose the latter, we'll provide schematics, microcode and generous engineering assistance.

We've got all the support components your design needs, too. To wit:
- WD1011: Digital Data Separator
- WD1012: Write Precompensation
- WD1014: ECC
- WD1015: Buffer Manager
- WD1510: LIFO/FIFO external sector buffer
- WD279X: Single Chip Floppy Disk Controller

Interested? Write on your letterhead for a free sample.

WESTERN DIGITAL CORPORATION
Components Group, 2445 McCabe Way, Irvine, CA 92714. 714/966-7827

SYSTEM TECHNOLOGY / DATA COMMUNICATIONS

Party line network
(continued from page 42)

DPC/NET takes advantage of dedicated FIFO buffers for interprocessor communications. Information passes between local user processors, network processors, and other nodes in the network via 800k-byte lines with RS-422 interfaces.

nodes, and transfer data from remote resources to local processors.

DPC/NET transmissions use separate clock and data channels driven at different RS-422 levels. Five-conductor cables are used with independent ground to send wake and identify global messages. These messages are sent to all nodes to initialize the line or request an ID exchange conversation. “Get line” and “send request” obtain line ownership if it is not busy, and then send the request portion of the conversation. “Send request” transmits a request block if line ownership is assumed. Conditional “get request” acknowledges a request block or wake-up and identify. “Don’t receive” signals that receive buffers are full.

The DPC/NET party line permits brief 2-way conversations (typically 5 ms in duration) between two nodes. Requests for data and actual data transmission are regarded as separate conversations. Line ownership is asserted with individual clock signals that differ by duration (node 1 asserts the clock for 1 ms, node 2 asserts the clock for 2 ms, etc). The conversation can last no longer than 15 ms. Nodes that do not respond within this interval are automatically taken out of the configuration list. No conversations are initiated to that node, except in response to a wake-up and identify message.

Low level software implemented with DPC/NET handles collision avoidance, acknowledge, and line turnaround. High level software is responsible for providing the length, local memory address, party line address, and direction for the next message in the conversation. DPC/NET also handles record and file locking resolution among remote users. Remote private directory drives are not accessible. Individual user I/O directories determine whether the request destination will be the network communication processor or the local service processor.

Network commands are passed from user processors to network processors via FIFO buffers. These buffers are contained in the local service processor dedicated to interprocessor communications. Information from remote resources to local user processors is handled the same way. The company claims that because individual users have dedicated CPUs and memories, there will be no noticeable performance degradation as users are added to the network.

Pricing information for DPC/NET networks is available upon request. Action Computer Enterprise, Inc, 55 W DeL Mar Blvd, Pasadena, CA 91105. Circle 245

Share your knowledge
Other system designers face the same problems you've already solved. You could help them by writing a technical article for Computer Design. For a free copy of our Author's Guide, circle 503 on the Reader Inquiry Card.
Introducing a brainy new solution from the Wizards of Winchester Disk Controllers.

We promised you more for less. Our new WDI002 delivers. At $195 (U.S. OEM quantities) it's $50 less than its predecessor, the WDI001.

The big news, though, is that we've made the WDI002 the brainiest disk controller yet, with an abundance of new LSI innovations. Such as our WDI010 single-chip Winchester controller device. It replaces the microprocessor on our earlier boards. And about 25 other devices. Plus we've added the new WDI014 Error Correction device and the WDI015 Buffer Manager device.

Because just about every system with a Winchester has a floppy nearby, we included our new WD279X single chip floppy disk controller, too. So you get a complete, powerful solution on one reliable 5¼" x 8" board. And you're on the upgrade path to our upcoming WDI003 and WDI004 boards.

To make our disk controllers even more irresistible, we'll customize them to your bus and form factor. Or sell you our LSI, along with everything you need to build a controller yourself.

It doesn't take too much brains to see that it's safe, smart and simple to commit your disk-based systems to WD. Call our controller hotline, 714/966-7827 and we'll arrange to sit down with you and get into the details you need.
Multithreading superminicomputer puts 2 to 10 processors to work under single operating system

Linking 2 to 10 processors to shared global memory through a memory bus, the 3200MPS forms a tightly coupled asymmetrical multiprocessor system. Multiplying previous top of the line performance by a factor of 6, Perkin-Elmer's newest creation claims to achieve processing rates of 18.8M single-precision Whetstones/s.

High performance is achieved cost-effectively by adding auxiliary processors to the CPU. Built on 32-bit parallel architecture, the system uses 64-bit floating point arithmetic units with dual 32-bit data paths within the global memory bus. Memory modules, general purpose registers, and writable fixed control store also use 32-bit data paths.

Taking advantage of the multiprocessor architecture, extensions to the OS/32 operating system and FORTRAN 7 language are supported. Under OS/32, user written APUs tasks run unmodified on the CPU unless they contain calls to the APU microprogram. Control mechanisms for the APU and associated tasks are available to both operator and privileged tasks. Task assignments to APU or CPU can be changed during operation from the console or user written program.

Heart of the system is a 32-bit CPU, built using MSL/LSI Schottky TTL. This CPU monitors all system activity, including I/O and memory management. It also loads all tasks and dispatches application tasks to APUs for execution, and it can perform computation, serving particularly well in I/O intensive tasks.

APUs are general purpose processing units, each with arithmetic processor, floating point processor, and global memory interface with its own 4k-byte cache. Each APU also supplies writable control store, shared memory bank controller, and a pair of realtime support modules (RTSMS) for communication with the CPU. Tasks are scheduled through a microprogrammed scheduler in the APU, cutting operating system overhead. Switching between tasks takes only 200 ns.

Each APU maintains a queue of ready tasks that are processed round robin via the microprogrammed scheduler. Tasks are processed until they either complete or generate a request for CPU service. Instead of executing supervisor calls, the CPU then passes control to the CPU for normal processing.

The global memory system supports up to 16M bytes of directly addressable memory. All APUs and the CPU share global memory, which is implemented on 1M- or 2M-byte boards using 64k chips. Organized in 2- or 4-way interleaved banks, memory has a 64M-byte/s bandwidth on the global memory bus. This bus, made up of two unidirectional asynchronous 32-bit buses, transfers addresses and data to be read or written on one bus and uses the other just for reading data. The system also provides error correction, an error logger, and a memory scrubber.

Serving as the control interface between the APU and the CPU, the RTSM supplies additional synchronization and coordination of processing units. The RTSM is composed of interprocessor data link, identification code, real time counter with 1-µs resolution, and eight user-programmable output lines. One RTSM connects to the APU and the second to the CPU's multiplexer bus. The data link is an 8-bit parallel full-duplex I/O line between the CPU and an APU.

A basic configuration of CPU and one APU achieves 4.7M-Whetstone/s performance. Each additional APU raises this number by another 1.8M Whetstones, achieving a total of 18.8M when a full 9-APU configuration is installed. A standard configuration consists of a CPU cabinet and an APU cabinet holding from one to three APUs. Each system supports one shared memory interface through which a number of systems can be tied to an external shared memory system; systems can also be interconnected through the interface.

An entry level system is made up of CPU with 8k-byte cache, floating point processor, writable control store, two communications lines, universal clock, loader storage unit, 2M-byte 2-way interleaved system memory, and I/O chassis; and APU with global memory interface with 4k-byte cache, floating point processor, writable control store, arithmetic processor, shared memory bank controller, and pair of RTSMS. Price is $185,000. Additional APUs are priced at $35,000 each. Perkin-Elmer Corp., Data Systems Group, 2 Crescent Pl, Oceanport, NJ 07757. Circle 246
CIPHER
INTRODUCES
THE 5¼" FORM FACTOR...

...a 1/4-inch streaming cartridge tape drive with 45 megabytes for $800.*

New, powerful, economical—and uniquely Cipher. Choose Cipher for your 1/4-inch tape drives. We've got a product that fits your needs.

*O.E.M. Quantities

45 MB capacity
Easy front loading
O I C-02 interface standard
90 ips tape speed
5-1/4-inch form factor, Model 540-CT
8-inch form factor, Model 440-CT

Cipher Data Products (UK) Ltd.
Compton Place, Surrey Avenue, Camberley, Surrey GU15 3DX, England, Telephone: 0276-682912, Telex: 858329
Cipher Data Products SARL, Fresnes Cedex, France
Telephone: (1) 668 87 87, Telex: 203935
Cipher Data Products GmbH, Munich, West Germany
Telephone: (089) 807001/02, Telex: 521-4094
Fault-tolerant computer systems based on productive redundancy concept

Designed to prevent system failure by automatically compensating for individual downed components, Power$5/55 systems' fault-tolerant architecture serves in online transaction processing. From Computer Consoles, these systems combine multiple central processors, frontend communications processors, and disk subsystems. All elements function independently, yet in parallel, in a multipathing environment. Thus, the system contains multiple copies of the data base.

Up to eight processors, ranging from M68000 microcomputers to 32-bit superminicomputers, can be implemented in a system. Each operates full time, but can compensate for any processor that fails. Processors are linked using a high speed local network and a common operating system.

The entry level family member, Power$1/20 includes a proprietary CPU based on the MC68000 with 4M-byte memory, 35M- or 70M-byte disk, 20M-byte streaming tape, and the capacity to handle 32 RS-232-C communications ports. Mixtures of RS-232 with RS-422; RS-232 and RS-422 with modem control or parallel ports; or links with the company's Data Highway are communications options.

All systems run PERPOS™, the company's proprietary operating system. This UNIX compatible system accommodates a high volume, high throughput transaction environment, while providing a development environment. The systems also support FORTRAN 77, COBOL 74, C, and BASIC; database management; and networking capability.

The subsystem of micro based processors performs the bulk of system computation and handles data access transactions to mass storage. Mass storage subsystems provide a global data base; the CPU/disk interface facilitates efficient sharing of disk resources by CPUS and supports data replication techniques. Consisting of dual coaxial cables interconnecting the CPU, distributed communications applications processors, and interprocessor coordination controller, the Data Highway communications subsystem forms a local area network.

All components throughout the system are compatible with the 32-bit VERSAbus. Every subsystem uses a processor board that enhances microcomputer performance by adding instruction cache, memory management, online diagnostics, and diagnostic ports. Memories are designed using 64k-bit chips, and peripheral controllers are equipped with an onboard microprocessor that is linked to the common bus, allowing direct access to memory.

Each CPU operates independently but in cooperation with the others; they communicate by the Data Highway. Distributed communications/applications processors and disk drives can be directly accessed by any CPU. I/O communications use any available path, eliminating bottlenecks and ensuring high throughput. Synchronization is done by the interprocessor coordination controller (ICC) subsystem; although ICCS are replicated, CPUS can assume

(continued on page 50)
A new, improved way to give your competition headaches.
(System 2000 terminals, $8,250*)

The Lexidata System 2000. In terms of price, it's the most affordable step forward in raster technology since the development of raster technology.

In terms of performance, System 2000 will outdo any terminal near it in price and many that cost considerably more.

The combination of which will give you an edge if you're an OEM. In fact, quite a considerable edge.

And what will it give your competition? Something to keep them awake nights.

More OEM flexibility

There are five processor option slots in a System 2000 terminal. They'll allow you to add more serial ports, and more program memory (up to 1.28 megabytes).

A detachable keyboard with integral joystick is standard with pre-programmed peripheral interfaces.

User code may be downloaded to augment the system's capabilities, off-load the host CPU, and increase system response time.

Low price. High performance. And a whole new bend in flexibility.

A new ergonomic policy

On the screen, there are four hardware assisted work spaces. Each with a set of functions that you can call up with simple English commands.

These individual workspaces reduce the overall system cost by eliminating the need for a separate alphanumeric display and a menu space on the digitizer work surface.

This feature, plus the fact that the System 2000 has a multitasking operating system, contribute to two very important aspects of customer concern: Ease of learning and ease of use.

Improves Tektronix® PLOT-10™ four ways

You can put the System 2000 in a PLOT-10 environment very simply. And very quickly, you can improve that environment.

The System 2000 will give you a 62.5% higher resolution on a 1280 by 1024 line screen.

In black and white, the System 2000 will give you steady, flicker-free graphics. At a refresh rate of 60 Hz.

In color, the System 2000 can provide you with 16 simultaneous colors from a palette of 4096 shades of color.

There's more, too. Standard features like zoom, pan, text scroll and independently controlled cursors. And options like an 11" x 11" data tablet and a hard copy interface.

If you're interested in a demonstration of all this call (617) 663-8550 or write to us at 755 Middlesex Turnpike, Billerica, MA 01865. TWX 710-347-1574.

LEXIDATA
The clear choice in raster graphics.

What the 4 workspaces do:
W1 Supports pan and zoom. Ideal for interactive graphics.
W2 Accommodates system-select menus.
W3 Is perfect for processing text.
W4 Is used for logging messages or annotating keyboard function keys.

Note: Each workspace has graphics and text cursors and is adjustable in size.

*PLOT-10 is a registered trademark of TEKTRONIX
* System 2000, black and white model, $8250 in quantities of 50.
System 2000, color model, $11,621 in quantities of 50.
© 1982 Lexidata Corporation
Productive redundancy concept
(continued from page 48)

their functions in case of multiple failure. Contention among CPUs for resources is eliminated by having the ICC function as a slave rather than as a master to the CPUs.

Every component and interconnection in the system has fault detection logic to detect errors before they propagate to other components. Extensive error checking is done between components and subsystems. When a fault is suspected, the CPU initiates a voting procedure in which all other CPUs check for faults. When a fault is nonrecoverable, the failed unit is “contained” and temporarily removed from the system.

Circle 247

Technological and architectural strides produce powerful large scale mainframe

Deriving power from its design, the DPS 88 mainframe computer achieves processing rates 3 1/2 to 4 1/2 times better than its predecessor, the DPS 8/70, and throughput rates 12 times higher. The units' central system components are formed using CML technology and liquid cooled micropackaging. Other attributes are 64k-bit MOS memory chips and 64k-byte fast cache memory.

Architectural features encompass a store into cache policy, a 5-stage instruction pipeline, 4-way memory interleaving, native fault testing, and standalone system support facility. High technology circuits combine with the architecture and network oriented operation to provide power to as many as 2000 timesharing users. Single- and dual-processor models operate under the GCOS 8 operating system and serve as hosts in distributed networks, or handle traditional batch, remote batch, timesharing, and interactive workloads.

Modular hardware within the central system consists of 11 components that allow for expansion. Components consist of the CPU, central interface unit (CIU), main memory unit (MMU), I/O transfer unit (I0X), channel adapter unit (CAU), system support facility (SSF), system support unit (SSU), central system console, maintenance console, and thermal exchange pump.

All processing occurs in the CPU, with the CPU directing information transfers between the CPU, MMU, and I0X. Coupled with the CAU, the I0X provides the interface between the network or peripheral subsystems and the CIU. These components operate synchronously with circuit clocking distributed from the system clock. A freestanding maintenance processor with special hardware and software, the system support facility implements diagnostic and protection features. The system support unit supplies power entry to CPU, CIU, and I0X and houses the system clock.

Responsible for full program execution and all computations, the CPU performs data and instruction fetching, memory addressing and protection, relative and absolute address preparation, and cache memory management. Each major component within the CPU—instruction fetch (IF) unit, central instruction preparation (CIP) and operand fetch unit, instruction execution units, and result collection unit—operates independently and simultaneously. IF and CIP both use a 5-stage pipeline that permits up to 10 operations to be in process concurrently. Parallel operation of the 5-stage execution pipeline and execution units permits up to 16 instructions to be in various stages of completion simultaneously; maximum instruction completion rate is one per machine cycle.

Typically retrieving instruction and indirect words from the 32k-byte instruction cache, the instruction fetch unit also occasionally fetches from the operand cache or main memory. Up to 30 words can be prefetched and stored in the instruction stack that feeds the CIP. By maintaining a record of transfer and

(continued on page 52)
Meet the newest members of our family.

The 1720A Instrument Controller has found a home in a wide range of industrial, factory automation and OEM applications. This powerful microcomputer comes complete with floppy disk, touch-sensitive interface, dual IEEE-488 compatible and RS-232-C interfaces along with our FDOS operating system and enhanced BASIC language.

Since then, our family's grown to include a wide range of new products. All designed to complement the 1720A in your instrumentation system.

Here's a look at what's new.

1780A InfoTouch Display.
This RS-232-C compatible touch-sensitive display allows you to fashion a more effective man-machine interface. Use it as a remote display for the 1720A or integrate it into any kind of computer-based system.

External Floppy Disk.
Additional file storage memory is now available for the development of larger programs and extended data acquisition storage. Store up to 800k bytes on double density doublesided disk drives in either a single or double disk unit.

Bubble Memory.
For higher density mass storage, you can't beat bubble memory. And when you add our new Bubble Memory Module to the 1720A, you have up to 512k bytes of non-volatile file storage that operates in a temperature range of 0°C to 50°C. Helpful when working in hostile industrial installations.

We're speaking your language.
The 1720A's getting smarter with the addition of Compiled BASIC, Assembly, FORTRAN and now PASCAL software languages. Our software is file-transfer compatible, so you can link Assembly, FORTRAN and BASIC routines into one program using our BASIC call feature. Increasing your programmer's productivity in developing software for ATE systems. And to help document it, we added a new printer and plotter.

We won't stop here.
Fluke has committed a large staff of skilled engineers to developing future enhancements to our Instrument Controller line. So when you choose us, you can be sure we'll continue to expand our capabilities and still stay compatible with what you're planning for the future.

So find out more about our family. Invite us in for a demonstration. Or contact us directly for more information.
indirect instructions, the IF unit can accurately predict changes in the instruction sequence to keep the CIP pipeline flowing with minimum interruption.

The CIP unit decodes instructions, generates memory addresses for the data on which to operate, and fetches data from the 32k-byte operand cache or system main memory. The unit's 5-stage pipeline permits 5 instructions to be in preparation simultaneously, allowing data and operations commands to be dispatched from there to an execution unit at a rate of one per machine cycle.

Interacting with the collector, each of the five execution units handles a particular class of instructions at maximum speed. The collector performs the final phase of all instructions, ensures proper instruction sequencing, manages fault handling, participates with the system support facility in instruction retry, and updates operand cache memory.

Cache memory is divided into two segments: one for instructions, one for data. Each block of data in cache consists of eight consecutive main memory words. A program reference to any one word causes the entire block to be read from memory and retained in cache until displaced by another block or cleared from cache by the least recently used algorithm. Cache hit ratio is approximately 95%.

The CPU operates in one of three standard modes: privileged master, master, and slave. With the GCOS 8 operating system, privileged master mode allows unrestricted access to all of memory; master allows access only to authorized portions of memory; and slave is used to restrict user program access. A fourth mode—hypermode—consists of a special set of CPU instructions and related hardware logic. Hyperswitchers, software executing in hypermode in conjunction with SSF software, CPU hardware, and IOX logic, allow the system to divide resources between the operating system and SSF software that controls the functional test system.

Passing information between the CPU, MMU, and IOX, the CIU acts as a traffic controller. Error detection and correction functions are performed in parallel with data flow from the single MMU. Configured with 16M 9-bit bytes expandable in 16M increments to 64M bytes, memory resides in 2 arrays, each having at least 16 memory boards. Four-way interlaced interception allows simultaneous access to up to 32 bytes. As seen by the CIU, memory access time is eight words every 225 ns.

Data transfers between main memory and communications lines, peripheral devices, and system support facility pass through the IO transfer unit that acts in conjunction with the channel adapter. Transfer rates up to 48M bytes/s accommodate multiprocessing and multiprogramming systems.

The dual-processor DPS 88/82 version parallels the single-processor DPS 88/81 configuration, except that two CPUs and two system support units are included. This provides main memory expandability to 128M bytes. Three- and four-processor models to come will operate in tightly coupled multiprocessor mode or as cluster systems accessing command files and single data bases.

Finally there's a system chassis that is designed and manufactured with the thoroughness and care you expect in your Multibus system. It's Electronic Solutions' new Multichassis™.

- 9 slots, 0.6" spacing—or 7 slots, 0.75" spacing
- Hefty 4-output 300W power supply—40A at +5V
- Cool operation even with high-density boards

There's a field-proven card cage and backplane, plus full RFI filtering, locking front panel function switch, power fail detection, and quiet dual cooling fans with quick-change filters.

And best of all, the removable front panel lets you easily customize the Multichassis to match your company color and logo.

So treat your Multibus system to an elegant but affordable new home—the Multichassis by Electronic Solutions. Call us today for full specifications and prices.

Electronic Solutions
5780 Chesapeake Ct.
P.O. Box 85244
San Diego, CA 92138
Call Toll Free
(800)854-7086
in California
(619)292-0242

*Multibus is a Trademark of Intel Corp.
MULTIBUS* MEMORIES

DYNAMIC RAM (IEEE P796-COMPATIBLE)

NEW

MM-8086E
- 512K, 256K bytes
- Error detection and correction
- 1000ₜ boundaries/16 Mbyte address
- Access/Cycle: 300/500 nsec
- CSR/ESR for EDC control and LED error correction indication
- Battery backup option

MM-8086D
- 512K, 256K, 128K, 64K bytes
- For 8 and 16-bit processors
- 1000ₜ boundaries/16 Mbyte address
- Even parity with output selectable to any of bus interrupts
- ACCESS/Cycle: 250/400 nsec

NON-VOLATILE CMOS RAM (IEEE P796-COMPATIBLE)

NEW

MM-8000C
- 128K, 64K bytes
- Data retention (on-board batt.):
 2 weeks rechargeable batteries
 400₀ₜ boundaries/16 Mbyte address
- Access/Cycle: 220/220 nsec
- Battery status line allows monitored battery condition
- Redundant batteries provide improved reliability
- Accommodates 2716 EROM

MM-8086C
- 64K, 32K, 16K bytes
- Data retention (on-board batt.):
 3 weeks rechargeable batteries
 2 yrs. non-rechargeable batteries
- 1000ₜ boundaries/16 Mbyte address
- On-board calendar/clock
- Access/Cycle: 250/250 nsec
- Redundant batteries provide improved reliability
- Accommodates 2716 EROM

NON-VOLATILE CORE MEMORY

MM-8086
- 32K bytes
- For 8 and 16-bit processors
- 1000ₜ boundaries/1 Mbyte address
- Access/Cycle: 375/1200 nsec
- Power monitoring for data protection

MM-8086/16
- 16K bytes
- For 8 and 16-bit processors
- 400₀ₜ boundaries/1 Mbyte address
- Access/Cycle: 280/800 nsec
- Power monitoring for data protection

ONE YEAR WARRANTY ON PARTS AND LABOR
ALL BOARDS TEMPERATURE-CYCLED AND BURNED-IN DURING MEMORY DIAGNOSTICS

9436 Irontale Ave.
Chatsworth, CA 91311
Phone: (213) 998-0070

*Trademark of Intel Corp.
3-D color workstation allows solid modeling

Not only does the CS-3 color graphics workstation allow creation and manipulation of 3-dimensional solid objects, it also provides color shading and antialiasing. The 3-D system from Cubic Systems incorporates 3-D imaging firmware and two 512-x 512-pixel image planes with 12 bits/pixel. It is based on the MULTIBUS (IEEE 796) and uses a 5-MHz 8086 CPU with an 8087 numeric coprocessor. The CPU board also provides an interface to a host computer via an RS-232 serial port or three 8-bit parallel ports.

When the CS-3 is used as an intelligent terminal to communicate with a host, the user can specify a wireframe 3-D object and then fill it in with planar patches. Another method is to build up an object by creating planes and higher order surfaces, interactively scaling and positioning them, and removing hidden lines and surfaces.

A graphics data set and an instruction set are provided. The firmware instruction set consists of 95 primitive function calls that operate on the graphics data set, the graphics work space, the two image planes, the color map, the I/O devices, the host interface, and the memory. These instructions form a complete set and can also be used in a local mode to construct objects without the host's aid.

The system creates images by specifying coordinates, angles, colors, and other attributes as graphics data set elements. Elements in the graphics data set (either integers, groups of integers, or flags) specify attributes in "screen coordinates" (pixel position) or "scene coordinates" (position in 3-D space). Screen coordinates can be from 0 to 511 and scene coordinates can be from -32,768 to 32,768. Firmware instruction can be called from a program or interactively by the user in standalone operation.

The video controller board has a worst-case pixel writing time of 750 ns, or 1.33M pixels/s. This board generates the timing and control signal required by display memory and also contains a MULTIBUS interface that allows the CPU to directly address any individual pixel. Because the system cannot read its content for numeric values, but can only display them on the screen, the color map is write only.

Two features that aid representation of solid objects are antialiasing, or smoothing jagged lines caused by the raster display, and surface shading. Lines can be antialiased at any stage of the process and surface textures of solids can be shaded to reflect their shape. The system is also able to simulate light falling on the object from any specified point. In addition, texture mapping allows text or any form of texture to be mapped into a given polygon. Texture mapping can also paint a partial polygon in the other image plane.

An auxiliary I/O board allows the system to interface with a variety of graphics peripherals such as joysticks and graphics tablets. The system is available in two configurations. Features of graphics terminal version include display memory and processors, color monitor, keyboard, 128k bytes of scratchpad RAM, three RS-232 ports, graphics firmware, and 12-slot MULTIBUS card cage. Price is $9870.

The system can also be expanded into a standalone graphics computer system with the addition of up to 512k bytes of memory with error correction and a disk subsystem. The disk controller board, supplied with the system in its standalone version, allows the addition of up to four drives in any combination of Winchester or floppy. It also provides a DMA controller with 16, 20, or 24 bits of address space. Formatted Winchester storage of 8.4M bytes can be selected. A standalone configuration of the CS-3 uses the CP/M-86 operating system and is priced at $17,870. Cubic Systems, 2372 Ellsworth St, Berkeley, CA 94704.

Cubic System CS-3 block diagram. A total of 718k bytes of display memory are organized as two 512-x 512-pixel image planes with 12 bits/pixel. To upgrade the system from a graphics workstation to a standalone computer, the optional memory, disk controller, and CP/M-86 operating system may be added.

Software

Relational database system uses Forth language for inter-computer portability

Computer Software Design has implemented a relational database system in Forth to provide compact code size (as little as 64k bytes of RAM). Portability to such disparate systems as the Radio Shack Model II, DEC PDP-11/23, and IBM 3330 computers is also provided. DATA ACE can operate under an operating system or standalone with its own integrated operating system.

Forth was selected as the system's implementation language because of its ability to define complex functions (Forth words) in terms of simpler functions/words. DATA ACE uses a version of Forth that requires only a kernel of 13 primary words, defined in machine-dependent code, that varies in size from 200 to 1k bytes. Memory requirements are reduced with the Forth assembler and editor requiring only 16k bytes of memory. A single user version of DATA ACE needs only 48k bytes of memory. Functions are added directly by using the function's name.

As with other relational database systems, data storage is kept separate from the actual application programs. The data remains constant while new applications are developed to manipulate them. Separate query languages manipulate data, fields, and relations (or files). The data interrogation language allows the user to browse through individual records or groups of records and (continued on page 56)
GTCO DIGITIZERS MAKE YOU NUMBER ONE

We're the largest producer of electro-magnetic digitizers. So we can deliver field proven tablets in the quantity you need... when you need them.

Our Digi-Pad family uses new technology to provide unique digitizer features.

- PRESSURE PEN
 The pressure sensing pen option gives the operator a more natural input... perfect for the artist.

- 4D
 The 4D option provides another independent variable proportional to stylus tilt and direction... like a joy stick.

- SELF DIAGNOSTICS
 A 4-tone alarm reports test results for all components including the tablet grid... insuring digitizer integrity.

Every Digi-Pad is compatible. So when you develop your software and interface around our smallest and least expensive Digi-Pad (under $1000), you can interchange any other size Digi-Pad without redesign. Digi-Pad is also compliant with U.L., FCC and many other standards.

Give your system an edge. Choose the number one digitizer from GTCO. Call us at (301) 279-9550 today.

GTCO Corporation
1055 First St. / Rockville, MD 20850
(301) 279-9550 Telex 898471
Relative database system
(continued from page 54)
selectively add, delete, or change these
records by ADD, DELETE, and LIST com-
mands. Record selection also can be per-
formed with logical operators as
$<,>,=,$ and WHERE. A series of com-
mands can be stored in a catalog mode
for speed and simplified access. If a user
wishes to merge groups of records
together, the JOIN command can select
and process data from one relation
(or file) based on the value of the data in
one or more other relations (eg, list the
quantities of components in inventory
that are listed on a bill of materials).

The data definition language allows
users to change the classifications used
to organize the records. Users can define
the fields of records up to 256 bytes in
length as either alphanumeric, signed
binary (single precision or double pre-
cision), decimal, or date. The total
number of records is limited only by disk
storage capacity. As with individual
records, relations can be added, deleted,
or changed with a series of commands.

There is a possibility of naming new
relations for existing groups of records
without modifying programs that access
the names of existing relations. Single-
layer sorts based on one key field are
possible, as is ability to add a group of
numeric fields. Notional relations allow
sorts by alternate paths. The notional
relation has data identical to the original
relation except the order is different. For
example, an inventory relation with
fields component type and supplier also
can be supported by these fields, as well
as by inventory. When a user updates
the original relation, the notional rela-
tions are updated as well.

If a user wishes to manipulate data
and relations beyond what is provided in
the data interrogation or definition
languages, DATA ACE provides a pro-
gramming language based on polyForth.
This language allows users to open up to
12 different relations, input data, move
data between relations, and output the
desired results in user defined formats.
Structured programming statements
include if-then-else, begin-while, begin-
until, case, and do loops. Programs can
be either compiled or interpreted. The
company claims that a compiled pro-
gram, implemented with three relations
and processing both input and output of
several forms, has a size of 2k bytes.

The price for single-user versions of
DATA ACE for use on Z80 based micro-
computers with floppy drives is quoted
at $850, with versions for TRS-DOS,
CP/M, and MSDOS planned. Multi-user
versions of the database manager for
IBM 370/3330 processors running under
VM/CMS, or PDP-11/23 executing RSTS
operating system, will be available later
this year with a projected price of under
$3000. Computer Software Design, 1911
Wright Circle, Anaheim, CA 92806.
Circle 250

Tell us what you like
Did you remember to rate
the articles in this issue of
Computer Design? A special
editorial score box is
provided on the Reader
Inquiry Card.
RAISE YOUR GRAPHICS STANDARD!

A distributed processing graphics terminal with more speed and computational power than has ever been possible before in raster graphics—you've reached the top with the Genisco G-6100 Series.

The G-6100 has the most requested features for CAD, simulation and other scientific and engineering applications—and it offers them all at a cost you would expect to pay for a host-dependent graphics controller.

The G-6100 offloads the host, and allows more terminals to be supported by the host, thanks to its ACM CORE compatible firmware resident operating system, ENCORG.®

The system has many capabilities including segmented display list management, full viewing transformations, user interaction, system monitor, error logging and diagnostics—usually only available in host resident software.

The G-6100 also has the speed needed for CAD—a result of the Genisco-designed Advanced Display Computer, a bit slice/PLA state-of-the-art processor. And it has the highest full bit map resolution—1536 x 1024 addressable and 1392 x 1024 viewable.

All in all, the G-6100 is a complete stand-alone terminal with the design and ergonomics for an office environment, software support that will enable the use of existing databases and simple interface in serial or in parallel for most mini-computers.

It's the top of the field.

So call or write for our new brochure to get complete features on the Genisco G-6100. Raise your graphics standard. Genisco Computers Corporation, 3545 Cadillac Ave., Costa Mesa, California 92626, Telephone: (714) 556-4916

CIRCLE 28
Access the X.25 world. Today.

A Unibus/DMA system that provides DEC minicomputers access to X.25 networks. Great!

Today’s X.25 public networks offer an alternative to the high cost of dedicated lines and the slow speed of dial-up connections. ACC’s X.25 products help major government agencies and Fortune 500 companies take advantage of this alternative.

Our products plug directly into your DEC host’s UNIBUS or LSI-11 Bus. They off-load X.25 protocol processing and transfer data to your host CPU by means of high-speed Direct Memory Access (DMA).

Three DEC/X.25 Interfaces. ACC has three major X.25 products to meet the requirements of your application. All are microprocessor based. All are certified for operation on Telenet and other public packet networks. All comply with CCITT’s Recommendation X.25 for levels 1, 2, and 3. And all are available for delivery today.

1. Terminal Networking. With the IF-11/X.25 PLUS, remote X.25 network terminals can access your host as if they were locally connected. The IF-11/X.25 PLUS can be configured to support any combination of up to 32 local and remote terminals. Additionally, local terminal users have the option of connecting to other hosts on the X.25 network. All PAD (Packet Assembly/Disassembly) functions (CCITT X.3, X.28, X.29) are coded into subsystem firmware, without impacting your host CPU.

2. High Speed File Transfer. The IF-11/X.25 connects your host to an X.25 network. It provides up to 32 full-duplex virtual circuit connections to a VAX or PDP-11, at line speeds of 56 Kbps (with even faster line speeds available). The IF-11/X.25 is ideal for file transfer applications to remote network locations or for any application that needs direct access to an X.25 network.

Access Is Our Business. For over a decade, beginning with ARPANET, ACC personnel have designed and manufactured a variety of systems to access packet-switched networks. ACC’s X.25 products are designed to meet your custom applications. For example, we have customized X.25 systems with the following options: (a) 256 byte packet size, (b) ADCCP frame level, (c) Point to Point capability (DCE version).

If you need access to the world of X.25, phone us at (805) 963-9431. Today.

Accessing the World... Today.

Associated Computer Consultants
720 Santa Barbara Street
Santa Barbara, CA 93101
TWX 910 334-4907
(805) 963-9431
MODULAR PROTOCOLS IMPROVE INDUSTRIAL NETWORK CONTROL

Layering communication protocols in shared database process control networks can improve product uniformity as well as network efficiency.

by Jack V. Ceferin

Microcomputers in today's industrial environments perform a wide variety of tasks, including operating machinery, mixing chemicals, controlling temperatures, and testing products on an assembly line. Most of these tasks require the microcomputer to have access to and control of large data bases of product information. By providing ready access to such data bases, product uniformity and quality control are easier to maintain.

Connecting such process control computers to a larger host via a network is one way to provide database information to the entire system. (See Fig 1.) With such a network, data are stored in a host computer's data bases and accessed as needed by the smaller computers overseeing process control or product testing operations. In some cases, the data can be stored at intermediate levels on minicomputers acting as minihosts for the controlling microcomputers. When new versions of data are needed, the minihost can procure them by communicating with the host. Data uniformity is maintained since all controlling microcomputers enjoy access to the same master data base. Where the minihosts store the data, it is essential that one mechanism control the transfer of updated data bases so that all process control computers are updated simultaneously.

To facilitate the transfer of these data, each network node needs a protocol—a formal set of conventions and formats regulating communication. Ideally, protocols should be uniform throughout the network and incorporate adequate error detection and correction. In addition, protocols should be modular, allowing the construction of protocol subsets. Each microcomputer performing process control can then concern itself with only those functions necessitated by the manufacturing stage it oversees. An added plus of such protocol modularity is that such a scheme is easily expandable. Changes to the network architecture can be easily incorporated without disrupting ongoing operations.

Network protocols

A typical set of protocols that can be used in a factory network with a master data base is illustrated in Fig 2. The protocols are layered in four levels: hardware, physical link control, logical link control, and dialogue.

Jack V. Ceferin is a development engineer in the Computer Aided Manufacture and Test Development Engineering Group at Western Electric Corp, 4513 Western Ave, Lisle, IL 60532. His previous experience includes processor test engineering and circuit pack test development. Mr Ceferin has a BSEE and an MSEE from the University of Illinois.
The 8k-byte portion in PROM includes interrupt service routine addresses, initialization, physical and logical link layers, and a loader routine—with an abbreviated version of the file transfer protocols—to bootstrap the network from a remote node. The 6k bytes of RAM allocated to network operations include jump tables, the file transfer protocol, and utility tasks. Additional RAM contains the application task codes for the manufacturing operation. The RAM software is stored as downline loadable files on the hosts or the minihosts.

To initialize the network microcomputers, the loader must be invoked twice—first to load network software and again to load the manufacturing applications task. The network file name is fixed, while the application code name is partially determined by microcomputer switch settings. This allows each microcomputer to select its particular application program. Once the application code is loaded, it can access the network module if it needs to communicate with its host.

The hardware layer of protocol controls the data transmission/reception over the network's wires. The physical link control performs startup handshaking, message sequencing on individual packets, and 16-bit error correction via cyclic redundancy check. In case of error, packets are retransmitted.

The logical link layer establishes and maintains the communication channels required by the system. Since several logical links can use the same physical link, protocols must ensure that each message is directed to the appropriate receiver. The logical link layer also handles message routing and detection of logical link errors as well as flow control. Flow control ensures that a message is not sent until a process control application task is ready to receive it.

By designing network software in layered modules...a flexible software package for industrial control results.

Loosely defined, the task dialogue layer allows two microcomputer controlled tasks to communicate. Two separate tasks can establish a logical link, then talk to each other using any of a number of dialogue protocols. For example, one protocol may transfer files between nodes. A subset of the file transfer protocol might allow the microcomputer to read, write, append, and delete files and to execute command files on a remote node. Generally, a software designer can add further protocols to the dialogue level without disturbing the other layers.

The software package can be divided into two broad parts: a fixed section—stored in programmable read only memory (PROM)—that provides the basic protocol to bootstrap the rest of the software, and a changeable portion stored in random access memory (RAM) that contains dialogue protocols and manufacturing tasks.

By designing network software in layered modules...a flexible software package for industrial control results.

By designing network software in layered modules...a flexible software package for industrial control results.
tables allow the RAM resident portion to be changed easily without reassembling the PROM resident portion. Changes to the RAM resident portions merely require reassembling the programs and installing the new version on the host or minihost. New network software and appropriate jump tables can be loaded when the microcomputers are rebootstrapped.

User interfaces

In modular software, communications take place via interfaces that provide the structure for passing commands, responses, and data between modules. In the network package described, these interfaces are structured as commands, associated argument lists to the called module, and answer schemes to the requester. Since all microcomputer software is assembled using cross assemblers on the host computers, the macro capabilities of cross assemblers are exploited to simplify the user to network interface. (In this context, a macro is a programmer defined instruction and associated arguments.) Each requested network function is implemented as a macro plus arguments. (see the Table).

For example, $CONECT NODE!, TASK1, FAIL, LINK commands the network to establish a logical link to TASK1 on NODE1. If the request is accepted, the network returns control to the user program, with the local link number in symbolic address LINK. If the request is refused, the network module branches to FAIL. The advantages of using macro commands are threefold: they are simpler than the interface’s argument lists; they can provide defaults for some arguments; and, of course, they request the function with one program statement, leaving the cross assembler to generate inline code.

Information that needs to be sent asynchronously from one module to the user, such as the successful completion of a connect, is handled by a mailbox and

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CONECT</td>
<td>Connect to task</td>
</tr>
<tr>
<td>$DISCO</td>
<td>Disconnect from task</td>
</tr>
<tr>
<td>$TRANS</td>
<td>Transmit message</td>
</tr>
<tr>
<td>$INTRR</td>
<td>Transmit interrupt message</td>
</tr>
<tr>
<td>$RECVE</td>
<td>Enable receive of one message</td>
</tr>
<tr>
<td>$OPENR</td>
<td>Open file for reading</td>
</tr>
<tr>
<td>$OPENW</td>
<td>Open file for writing</td>
</tr>
<tr>
<td>$OPENA</td>
<td>Open file for appending</td>
</tr>
<tr>
<td>$TREC</td>
<td>Transmit record to remote disk</td>
</tr>
<tr>
<td>$RDREC</td>
<td>Read one record from remote disk</td>
</tr>
<tr>
<td>$CLOSE</td>
<td>Close the file</td>
</tr>
<tr>
<td>$CLOP</td>
<td>Close and delete the file</td>
</tr>
<tr>
<td>$DELET</td>
<td>Delete a file</td>
</tr>
<tr>
<td>$SKIP</td>
<td>Skip to next record</td>
</tr>
<tr>
<td>$SCOMF</td>
<td>Open new, temporary command file for execution</td>
</tr>
<tr>
<td>$EXCF</td>
<td>Submit existing command file for execution</td>
</tr>
<tr>
<td>$DCNST</td>
<td>Initialize this node</td>
</tr>
<tr>
<td>$LOAD</td>
<td>Downline load a program file</td>
</tr>
<tr>
<td>$SOLOAD</td>
<td>Overlay load a program file</td>
</tr>
<tr>
<td>$DUMP</td>
<td>Dump a contiguous block of bytes to a file</td>
</tr>
<tr>
<td>$PRINT</td>
<td>Print a message on the terminal</td>
</tr>
</tbody>
</table>

software interrupts. Every time the network package loads the mailbox, a subroutine is called from the user’s program that logs the message for later action or—if necessary—the user’s program takes immediate action. Without the subroutine, an entry in a jump table immediately returns from this call. Then the user must monitor the mailbox so that no messages are missed.

To increase this network’s flexibility, the software includes a number of utility programs. The previously mentioned loader is available for loading files that are specially formatted by a postprocessing program. There are two ways to load a file: normal loading (the file is loaded, and control is returned to the calling program) and overlay loading (the file is loaded, but control is transferred to the loaded program). Dumper—a routine that dumps any contiguous block of memory in a loader compatible format to a host file—is useful when two programs cannot simultaneously reside in memory. Program A is dumped to the host, and program B is overlay loaded in the same RAM area. After program B is finished, it calls loader to overlay load program A again.

Another utility allows a minihost and a microcomputer to pass console messages to each other that are transparent to the application running on the microcomputer. The network debugging technique (NDT) also operates transparently to the application code. Initiated by the host, the NDT allows a programmer to remotely analyze the microcomputer software and to debug it from a host terminal without physically disturbing the microcomputer. This technique provides more complete access to the microcomputer than is possible from the microcomputer’s console. The NDT also examines or modifies bytes, words, or registers; removes and inserts breakpoints; halts the microcomputer and restarts it.
New Series 1874-MUX—a completely new, integrated approach to conditioning and multiplexing analog signals

This is an expansion of the unique Acromag Series 1800 analog signal conditioning system. It provides either a parallel interface (BCD or binary) or serial interface (RS-232-C, 422 or 20 mA loop) to your PC, micro or mini computer.

With the Series 1874-MUX, you can condition up to 64 analog I/O points and interface them directly with your computer or PC.

This new system accepts the entire variety of analog input signals available with the Series 1800, including thermocouples, RTD's, strain gauges, frequency sensors, etc.

Call your Acromag rep. Or write for complete details.

Acromag, Inc., 30765 Wixom Road, Wixom, MI 48096. (313) 624-1541.

CIRCLE 30

Winchester/Floppy Drive Exercisers That Fit the Palm of Your Hand.

Only $520.

Now test both 5 1/4" and 8" Floppies, and many 8 1/4" and 8" Winchester with one lightweight, portable exerciser. Recommended by Shugart, Tandon, and other leading manufacturers, the Model 103D is ideal for incoming inspection, repair depot, and field service use.

AVA
Quality Disk Drive Exercisers Since 1974

8010 Highway 9 Ben Lomond, CA 95005
(408) 336-5048

Layered networking sample

Interfacing computer controlled test equipment to the host where test data reside illustrates one use of layered networking. Such a scheme is accomplished using multiple logical links. Rather than design sophisticated protocols for each device to be tested, a microcomputer is used to interface the network data base with a single test computer. (See Fig 3.) A simple message protocol transfer between the testing computer and the microcomputer—and, consequently, the host—is all that is needed.

According to the philosophy of layered networking, the microcomputer should do as little data manipulation as possible. Instead, it should act primarily as a data transfer medium. Most of the system's intelligence resides in the end processors. In a configuration such as this, the microcomputer merely converts from one protocol to another. Therefore, a test computer operator can command the microcomputer to connect the host over one logical link; this allows the test computer to become a "virtual" terminal providing the benefits of a timesharing terminal. Now, the test computer operator logs in to the host and runs a data transfer task from the host that connects to the microcomputer on a second logical link. Using another level of protocol that is transparent to the network, this data transfer task actually transmits the test files. The test computer operator can now select any number of commands in the host program, including file editing, through the host's own microcomputer controlled terminal link.

By designing network software in layered modules, interfaced by calling routines from one section to another, a flexible software package for industrial control results. This modular approach yields several benefits. First, such an approach is easier to implement than an all-inclusive network software package. Second, the use of downline loadable files makes protocol code changes much easier. Modularity, in union with network utilities, also results in easier and quicker debugging of network software. Finally, by layering network protocols in a modular software implementation, the network gains the flexibility needed to maintain multiple logical links. Operating in unison, such links allow the network to communicate with the host while it transfers data to a microcomputer. The resulting increase in network efficiency can help keep the production line moving.

Bibliography

Please rate the value of this article to you by circling the appropriate number in the "Editorial Score Box" on the Inquiry Card.

High 701 Average 702 Low 703
Something to Build on
Circuit Boards
Available from stock
OK Machine & Tool Corporation
3466 Conner St., Bronx, N.Y. 10475 U.S.A.
Tel. (212) 994-6600 Telex 125091
CIRCLE 32
512 kbyte Multibus™
memory with ECC
(275 nsec access)

CIRCLE 134

512 kbyte Multibus
parity memory
(240 nsec access)

CIRCLE 135

64 kbyte non-volatile
CMOS Multibus
memory
(200 nsec access)

CIRCLE 136

NEW!
1 megabyte
VERSAbus™
memory with
ECC (300 nsec
access)

CIRCLE 137

Multibus is a trademark of Intel
VERSAbus is a trademark of Motorola
If you're on board the Multibus or VERSAbus, we've got the memories you need to get where you're going faster, for less. ECC, parity and non-volatile CMOS. All in stock now, all with one thing in common. Their first name is Plessey. Listen:

512 kbytes with ECC for Multibus: the Plessey PSM-512A memory is perfect for your 8086, 68000 or other 16-bit micro-based systems. Bit errors won't crash your programs since our ECC fixes single-bit errors and flags multi-bit errors without slowing your memory down.

You won't spend any more time than you have to optimizing your software since our price-per-bit is so reasonable.

And you'll love our wait-reduction: access time is 275 nsec and we're shipping from stock.

512 kbytes with parity for Multibus: save a fast buck with our PSM-512P. It's everything that our PSM-512A is, except that access time is a very respectable 240 nsec and it has parity, so it only flags errors. It doesn't fix them. (Great for systems up to a megabyte.)

64 kbytes (non-volatile) CMOS for Multibus: for process control, telecommunications or other critical applications, our Model PSM6463 CMOS memory is it. A super fast 200 nsec access time. On-board rechargeable NICd's for a 350 hour stand-by (8 years with optional lithium). And the same terrific story on price, delivery and backup as our other memories.

1 megabyte with ECC for the VERSAbus: Motorola and IBM use the bus, but may have missed the boat: the Plessey PSM1VA is lots faster and much less expensive than their equivalents. Full 32-bit VERSAbus compatibility with bus parity and a 300 nsec access time make it just the ticket for your systems.

And since Plessey makes them all, they all have high reliability, a one year warranty and Plessey support worldwide.

For more information, just contact Plessey Microsystems, 451 Hungerford Drive, Rockville, MD 20850. (301) 279-2892, TWX 710-828-9815. Irvine, CA: (714) 540-9931.

Or get on board fast by calling (800) 368-2738 today. Your bus ought to be going our way.

Our memories don't take a back seat to anyone.
No other standard SMD interface compatible RM02/RM05/RM80/RP07 Disc Controller offers UNIBUS computers more versatility than the Model DU218. Plus, it features the proven performance and reliability of DILOG's automated design and uP architecture, operating in thousands of installations.

The Disc Controller is DEC PDP-11/04-11/60 compatible. It is likewise media compatible with four Winchester or removable pack disc drives having RM02/RM05/RM80/RP07 for RSTS, RSX-11, IAS and DSM operating systems.

Typical drives include CDC 9762/9766, Memorex 677 and standard drives from Ampex, Ball Computer, Century Data, Fujitsu, Kennedy and Priam.

The controller handles unformatted capacities to 600 megabytes and offers both three sector buffering and dual port capability, 32-bit ECC, 16-bit CRC for header error detection, etc. It also runs standard diagnostics.

Contact your local DILOG sales office for complete details and O.E.M. quantity discount pricing/delivery of the DILOG's Media Versatile Controller for UNIBUS.
VOICE RECOGNITION SYSTEMS AND STRATEGIES

Word verification is one approach to voice recognition that overcomes the processing and memory-intensive demands of large system vocabularies.

by Brian L. Scott

Speech recognition technology, though still imperfect, can be used effectively in many ways. Incorporating a technique called word verification, low cost recognition devices can perform flawlessly wherever the computer expects a specific input. The computer must simply verify that the specific input has occurred. It is, however, important to know the limitations of current speech recognition technology before attempting to design this technology into products.

Speech recognition is a process of matching an unknown utterance against a number of known utterances, and selecting the closest match. (See Fig 1.) The elements required to make an inexpensive, fast, accurate, and simple to use recognition unit are cost-effective acoustic analysis, efficient data reduction techniques, and effective pattern-matching algorithms. The highest performance, costliest recognition systems use linear predictive coding (LPC) for acoustic analysis and dynamic programming (DP)—nonlinear time warping—for pattern matching. DP's strengths are that it does not throw away any data when setting up templates and that it forces the best possible fit with the unknown utterance. Computational speed and memory requirements keep the price of high performance recognizers high. Low cost uses of these techniques have tended to suffer in response time. New chips, however, are being introduced that will soon enable these techniques to be incorporated into low cost, accurate, and fast recognition systems.

Dealing with limitations

There are limitations to LPC and DP. Most LPC analysis is done with fixed sampling intervals that tend to smear fine temporal events. Adding to the problems of temporal smear are the inevitable temporal distortion problems of DP. The strength of nonlinear time warping—forcing the best possible fit—can also be its curse when fine phonetic distinctions often rely so heavily on rapid temporal events.

Memory requirements are another limitation of DP. DP works because it retains a detailed description of each word. Large vocabularies soon become taxing if an
accurate representation of each word must be stored and matched with each unknown. Perhaps the solution to this problem lies in segmentation techniques that allow recognition of the smallest building blocks of speech, the phoneme. Unfortunately, such techniques have yet to be developed.

There are barriers—the most obvious of which is memory—to large vocabulary, connected speech, and speaker-independent recognition systems that fit into a small computer. But that does not mean that current technology, even low cost systems, cannot be effectively used. The trick to effective use lies in understanding, accepting, and intelligently dealing with current state of the art limitations. The first consideration in dealing with these limitations is the price/performance ratio. Zero-crossing analysis (zero signal amplitude) is one possibility that may not work quite as well as LPC analysis for extracting formant data, but with a clear speech signal, it does a passable job. The analysis consists of first dividing the speech signal into two frequency regions. Fig 2 shows oscillograms of a zero-crossing analysis of the words one, two, and three. F1 includes the range from 250 to 1000 Hz, and F2 includes the range from 1000 to 5000 Hz. For each frequency channel, zero-crossings are detected and then integrated by a low pass filter. This inexpensive preprocessor system clearly estimates the major formants of speech. The component cost is minimal.

An alternative to nonlinear time warping is linear time compression. In Scott Instruments Corp's VET* series, an utterance of any length up to 1.5 s is divided into eight equal parts, and an interpolated point at each of the eight spacings is stored as part of the template. A spectral histogram is also generated to compensate for durational differences of utterances without changing the overall length of each template. Variances are calculated and stored for each data point to help account for random variations in the template. This use of linear time compression and feature extraction is simpler than DP, but the associated data reduction may be detrimental to performance. However, an Apple computer can perform realtime recognition using the linear time technique as a background program to a VET system. Response time is fast—typically within 200 ms of the end of the utterance—even with a full vocabulary.

Reducing vocabulary size
Of all the factors involved in making the technology work, perhaps the most important for the system designer is vocabulary size. In fact, vocabulary size is the only one under the designer's control. A small vocabulary is easy to use, easy to remember, less prone to errors, and does not necessarily limit applications. Computers, after all, only understand "yes" and "no."

Larger vocabularies should only be used when the end user is willing to take the time to learn how to talk effectively to a machine. Individuals must learn to speak consistently and tailor their vocabulary for maximum effectiveness. Because of the learning required to talk effectively to a computer, the user must be strongly motivated before voice is an acceptable alternative to keyboard or touch-sensitive screen input. Handicapped persons who have lost motor control of one or both hands have benefited considerably through voice control. The time it takes to learn voice control is trivial when voice is the primary means of operating the computer.

The simplest way to improve performance in speech recognition is to limit the effective vocabulary size—the number of allowable words at any point in time.

*VET™ is a trademark of Scott Instruments Corp.
However, the smaller the active vocabularies, the more stilted the user speech and the more difficult the software design. This is a critical point for the designer. Although the best system for the current technology is one that limits active words to two or three at once, the best recognition system for the user has the maximum vocabulary. That is, operators want to talk to the computer in their own language, but the computer is most comfortable with "yes" and "no."

The crux of the problem—and the reason that so many speech recognition applications have failed—is that the speech habits of the system operator are not yet compatible with the needs of the machine. The attraction of voice is that it allows a natural mode of communication—human language. But that natural, overlearned mode of communication is not easily modified. The machine's need for a simple language makes it seem primitive to users. When the human response to input problems encountered with touch-sensitive screen technology or bar-code systems is compared with the response elicited by voice input systems, the problem becomes more understandable. When the touch-sensitive screen does not work, it is assumed to be the operator's fault. The operator adapts to the bar-code reader or perhaps goes back to the instructions to find out exactly how to hold the wand. If the bar-code reader errs, users ask what they did wrong. But no machine is going to indicate that the operator spoke incorrectly. The point of this analogy is that when new methods of input are learned, users assume errors are their fault. But users cannot tolerate errors when the machine begins to tread on their area of expertise—natural language.

System designers should realize that voice data entry is not the only application for recognition devices.

One way to combat this basic psychological barrier to speech recognition technology is through word verification. (See Fig 3.) Word verification actually represents a shift in thinking about the use of voice. As discussed above, most applications to date have attempted to place the user in control of the computer through speech. The computer must struggle in vain with its limited vocabulary and capabilities to discern the operator's desires. When using word verification, the computer calls the shots and checks to see if the operator understands by verifying computer-selected keywords.

Word verification techniques
Word verification is based on the 1-word vocabulary. That is, regardless of total vocabulary size, only one word or phrase is acceptable at a time. If there is only one active word, then the task becomes to verify the active word, not to select the correct word from among several as is done in most speech recognition applications. Word verification is much simpler for the recognizer than word selection, a fact that makes the system much more effective. More data can be kept on each word, and more processing time can be devoted to the single word. The vocabulary becomes completely

disk based and the limitations on the total vocabulary size are dictated solely by the mass storage capabilities of the system. Thus, the technical advantages of word verification are improved accuracy (the task is simpler), faster response time (only one word to process), and an extended disk based vocabulary.

An experimental system called voice-aided wirewrapping is an example of word verification. Hand wirewrapping is a tedious task that requires constant checking and rechecking. A common technique for reducing errors is to supply voice prompts of the locations to be wrapped via a tape recorder so that the operator need not continually glance from board to list. The problem comes when the user needs to have a location repeated. Rewinding the tape is time-consuming and inaccurate, and magnetic recording in general gives no indication of the person's performance.

Voice-aided wirewrapping can be accomplished with an Apple computer that has voice input and output capabilities. The user sits in front of the board to be wrapped and activates the system. The computer speaks the location of the first integrated circuit (IC). The user locates the IC and repeats the number. Upon verifying the correct IC number, the appropriate pin number is spoken by the machine. The operator locates the pin number and repeats. The computer then tells the operator where to wrap the other end of the wire, and the process continues. The system—rich in checks and rechecks—focuses the user's attention on the operation at hand and works because the computer sets the rhythm of speech and because it always knows what to expect. Improvements in performance can be expected because the computer will not allow the operator to advance to the next step until it has verified the current command. If the machine hears an incorrect command, it will continue repeating the same command, thereby drawing the user's attention back to the last step.

This application's effectiveness stems from the overall system design. Speech recognition is not the key feature of the system. It is one of several techniques for error reductions. If the recognizer is only 80% accurate at rejecting errors, the error rate has still been significantly reduced. In addition, the use of voice adds a method of pacing the machine and asking for repetition if the command is not understood. These factors alone help reduce error rate.
Another application of word verification is illustrated in Scott Instruments' VBLS™ system. This voice based learning system is a software/hardware package designed for education and training. The idea behind this system is that the computer asks the questions and the user answers them. The Scott system is actually an authoring system that enables the computer novice to generate educational courseware. The system is straightforward and easy to use. Any application where some repetition learning strategy is required can benefit immeasurably from voice input. When one considers that the option to voice in this application is multiple choice or direct keyboard input, the value added through voice recognition is obvious.

The training of speech recognition systems is always considered a problem. In the VBLS system, training becomes part of the user's learning process. For example, when used to aid the training of foreign languages, the VBLS system can be installed in the traditional language lab. The student hears the word or phrase from the tape recorder and repeats it, as always. However, this repetition is then used by the computer as the training template. After completing the traditional lesson, the student can then practice the new vocabulary while being drilled by the computer on translations and pronunciation. The strength of this system is that voice is integrated into a complete system where the computer demands performance of the user rather than vice versa.

System designers should realize that voice data entry is not the only application for recognition devices. In fact, given current technology and short term prospects for speech recognition, voice data entry may be one of the poorest applications. The designer may be much better off considering systems that use the computer to guide users through a complex task, such as voice-aided wirewrapping. Other possibilities include data verification where error-free data are critical, a redundant check on input, or many training applications.

Speech recognition may still be in its infancy but, even today, it is good and inexpensive enough to be cost effective. The keys to cost effectiveness are understanding what voice can and cannot do and developing user friendly systems that accentuate the positive aspects of speech recognition while recovering gracefully from errors.

*VBLS™ is a trademark of Scott Instruments Corp.

Please rate the value of this article to you by circling the appropriate number in the "Editorial Score Box" on the Inquiry Card.

High 704 Average 705 Low 706
Name one microsystem with

- multi-user capability
- a real-time operating system
- 1 MIPS performance
- integrated disc storage
- 3-D interactive graphics software
- 4.27 Mbytes/second I/O bandwidth
 - 12 interfaces
- memory expandable in 128kb, 512kb or 1Mb increments
- data base management software
- powerful networking capabilities
- a starting price of just $8,021.
The HP 1000 Model 6.
You'll be amazed at how much you can do with such a little computer. Because the HP 1000 Model 6 is only small in size and cost. When it comes to performance, it's another story.

By using our range of plug-in cards, you can easily put together a wide variety of configurations. You could, for example, plug in 8 terminals, 12 instruments, a plotter, printer, hard discs, machine tools and communications links with other computers—and have them all running at the same time.

Mostly because of the way our multitasking operating system—RTE—takes advantage of the hardware, and delivers big system power. As a result, we can give you virtual memory capability. Dynamic memory positioning. And multiple real-time ways to schedule programs—by event, time, or operator. Not bad for a system that starts at only $8,021.

And because it's a complete system, you don't have to hassle over compliance with the increasingly tight RFI regulations. Or go through all the paperwork it takes to get UL approval. Or lie awake nights worrying whether the hardware and software will work together. When you use the HP Model 6, all those problems are behind you.

Even better, the architecture and operating system give you so much flexibility that you can fine-tune our micro to your application as if you'd built it yourself.

It's so fast it makes you faster.
To get 1 MIPS performance, you'd expect to have to pay for a much more expensive minicomputer. But that's the kind of speed we're talking about in the HP Model 6 microsystem. So you don't have to spend time optimizing your application. And with all the system integration, government testing, and government approvals already taken care of, you can get your system to market a lot faster.

With high-speed Direct Memory Access (total I/O bandwidth up to 4.27 Mbytes/second) and a powerful memory system, you're really flying. And our wide range of interfaces gives you 12 ways to communicate with the outside world. There's even an I/O processor built into every single interface. This takes a big load off the CPU, freeing it for more important tasks. By distributing intelligence in this way, our micro turns in macro performance.

A growth path that's easy to follow.
HP offers the widest range of instruments and peripherals to fit into your system. They were all made to interface easily, and stand up to a lot of hard work.

And since the Model 6 is based on our A600 processor, it's easy to upgrade. Just move up to our A700 with optional floating point hardware and microprogramming. Both processors are 100% software compatible. That's another powerful argument in favor of HP microcomputers. And our competitive pricing discounts are another example of our commitment to OEMs.

For more information about the HP 1000 Model 6, call your local HP sales office listed in the white pages of your telephone directory. Ask for a technical computer representative. Or write for our OEM Information Kit to: Hewlett-Packard, Attn: Joe Schoendorf, Dept. 12152, 11000 Wolfe Road, Cupertino, CA 95014.

Prices U.S.A. list in OEM quantities of 100.
Includes A600 processor, 128 Kb memory, RTE-A.1 license, dual minifloppy drives, 2623A graphics terminal.

This is the one.

HEWLETT PACKARD
Run Intel’s Software on the IBM Personal Computer

What a BRILLIANT IDEA!

If you use Intel’s Series-III MDSs to develop software for the 8086, 8087, 8088, 8089, 80186 or 80286, you will be excited to hear about ACCESS. ACCESS is a software package that allows the IBM Personal Computer to run Series-III software. This includes PLM86, ASM86, PASCAL-86, FORTRAN-86, LINK86, LOC86 and LIB86.

ACCESS combined with an IBM Personal Computer and a hard disk gives you additional development systems for less than a third the price of Series-III systems. Imagine: a complete development system for just $8,000! Compare this to $28,900 for a hard-disk Series-III system.

ACCESS combined with your Intel software and the IBM PC provides a complete development package. ACCESS provides you with a Series-III operating system simulator (UDI), support for Intel’s sBSC-957 debugger, and a data link program for transferring files between the IBM and Intel systems. ACCESS and the IBM PC with a hard disk are also faster than a Series-III with a hard disk.

Call Genesis today to order your ACCESS package!

Genesis Microsystems
(408) 241-3727
P.O. Box 70280 • Sunnyvale, CA 94086
EFFECTIVELY LINK MICROCOMPUTERS WITH FIBER OPTICS

Fiber optic technology provides a cost-effective and practical microcomputer networking technique that reduces emi while improving data link security.

by John Bliss and Dave Stevenson

As microcomputer control becomes more common in industrial environments, the engineer’s concern about electromagnetic interference rises. Electromagnetic interference can result in lost information or the transmission of erroneous information. It can also cause computer controlled machinery to fail. In an automated environment, such factors create a serious safety question. A practical technique that drastically reduces interference problems, if not eliminates them, is to interface hardware with a serial fiber optic communication line.

Although fiber optics dates back to the seventies, its expense made it untenable as a solution to data communications problems. However, thanks to improved manufacturing techniques and higher volume production, the present cost of a fiber optic line is competitive with coaxial cables of equal transmission capability. In fact, short distance, low data rate (tens of kilobits per second) communications systems, using plastic fiber that sells for less than thirty cents a meter, can be designed. Plastic, field-installable connectors are available at about twenty-five cents per termination; light sources and detectors cost one to two dollars; higher quality glass fibers and appropriate connectors for long range, high data rate systems are not appreciably higher in cost.

Besides cost-effectiveness, fiber optic line has a number of advantages over twisted pair or coaxial wire: electromagnetic interference (emi) immunity, broad bandwidth, security, size, and weight. Because optical fibers neither radiate nor pick up emi, crosstalk between signals and radio frequency interference errors are eliminated. Fiber optic line can be installed adjacent to high voltage cables without fear of interference. This emi immunity also eliminates the need for expensive shielding or conduit pipe required by most electrical codes. The use of optical fibers is well within the recent FCC regulations restricting the magnitude of emi...
Since optical fibers are extremely difficult to tap, data transmitted optically are secure.

that frame. The data continue to pass down the loop whether a terminal has acted or not.

Secondary stations are given an opportunity to transmit local data when the central terminal transmits a poll command. If a secondary station desires loop control, the host must grant it by a "go ahead" flag following the poll command.

The network illustrated operates from the Motorola EXORbus, which interconnects a group of EXORterm 155 terminals with an EXORcisor development system. The system uses a fiber optic network interfaced with an MEX6854 advanced data link controller (ADLC) supporting the transmitter and the receiver. The fiber optic transmitter and receiver are interfaced to the ADLC in the clock recovery and loop-through circuit (Fig 2). The clock recovery circuit synchronizes a 1-MHz oscillator (divided down to the 62.5k-bps data rate) to the incoming data from the receiver. Both the data and separated clock information are delivered to the ADLC. The data rate clock then routes data back to the transmitter to be sent to the next station.

In the event of a power loss to any terminal in the loop, a separate power supply or battery pack operates the transmitter and receiver circuits. This allows the loop-through control to repeat its information to the rest of the network during one terminal's power-down.

The fiber optic transmitter uses an MFOE1200 light emitting diode (LED) [Fig 3(a)]; the receiver is an MFOD1100 p-i-n (intrinsic semiconductor diode) photodiode [Fig 3(b)]; the driver circuit for the transmitter uses an MC74LS04 inverter and one discrete driver transistor. The circuit can drive the LED at a 1M-bps data rate.

Fiber optics line networking

The basic network architecture of a fiber optic line uses a full-duplex transmitter and receiver connected by a pair of optical fibers. The transmitter-receiver pair can be used for either two terminals or multiple terminals. A multiterminal network requires a looping configuration (Fig 1).

The primary or host station initiates the data flow. Data are then passed serially through the secondary terminals and back to the primary. The result of this loop arrangement is that each terminal operates in a half-duplex, 1-direction mode; that is, each secondary station receives optical data, feeds them to its terminal, and retransmits the data to the next terminal.

As data pass around the loop, any secondary terminal recognizing its address in the address field of the information frame reads and acts on that frame. The data continue to pass down the loop whether a terminal has acted or not.

Secondary stations are given an opportunity to transmit local data when the central terminal transmits a poll command. If a secondary station desires loop control, the host must grant it by a "go ahead" flag following the poll command.

The network illustrated operates from the Motorola EXORbus, which interconnects a group of EXORterm 155 terminals with an EXORcisor development system. The system uses a fiber optic network interfaced with an MEX6854 advanced data link controller (ADLC) supporting the transmitter and the receiver. The fiber optic transmitter and receiver are interfaced to the ADLC in the clock recovery and loop-through circuit (Fig 2). The clock recovery circuit synchronizes a 1-MHz oscillator (divided down to the 62.5k-bps data rate) to the incoming data from the receiver. Both the data and separated clock information are delivered to the ADLC. The data rate clock then routes data back to the transmitter to be sent to the next station. In the event of a power loss to any terminal in the loop, a separate power supply or battery pack operates the transmitter and receiver circuits. This allows the loop-through control to repeat its information to the rest of the network during one terminal's power-down.

The fiber optic transmitter uses an MFOE1200 light emitting diode (LED) [Fig 3(a)]; the receiver is an MFOD1100 p-i-n (intrinsic semiconductor diode) photodiode [Fig 3(b)]; the driver circuit for the transmitter uses an MC74LS04 inverter and one discrete driver transistor. The circuit can drive the LED at a 1M-bps data rate.

Fig 1 Loop configuration. Loop controller on primary station repeats data, serially, to each secondary station.

Fig 2 Clock recovery and loop-through circuit. ADLC interfaces to fiber optic transmitter and fiber optic receiver in clock recovery circuit. Power backup on board prevents network crash, should one terminal fail.
Although the optical fiber is impervious to emi, the actual receiver circuit is not. It is shielded, therefore, to prevent noise pickup. At 100k bps, the receiver has a bit error rate of 10^{-9}.

Analyzing the link's performance

The fiber optic's performance should be evaluated by calculating first a flux budget and then a rise time budget. The fiber optic link is not immune to flux loss, which occurs in two ways: fiber attenuation and connector loss. Fiber attenuation is power loss due to material properties, impurities, or mechanical imperfections within the fiber. This loss varies with wavelength. For this calculation, the link uses Siecor Twin S-155 Super Fat Fiber™ cable. This cable contains two all-glass fibers, each having core diameters of 200 µm. Fig 4(a) shows the attenuation due to wavelength, while Fig 4(b) shows the cable's numerical aperture at different lengths.

Connector losses occur in a variety of ways throughout the link: numerical aperture (NA) loss, gap loss, axial misalignment loss, Fresnel loss, and angular loss.

NA loss. Although a calculated NA suggests a sharp cutoff of emission or acceptance angle for a fiber optic element, a measured plot of the emission or acceptance pattern usually results in a bell curve. This analysis defines the NA relative to the point at which the emission or acceptance is down 10 dB. If a source of optical power has a larger NA than that of the element receiving the power, some of the energy will be lost. The magnitude of this loss is given by

$$\text{NA loss} = 20 \log \left(\frac{\text{NA}_1}{\text{NA}_2} \right)$$

In the case of coupling from a lower NA source into a larger NA fiber, the equation goes to zero.

Gap loss. Ideally, the optical source (the LED) and the fiber are joined so that no gap exists between them. In practice, however, a small gap is intentionally maintained to prevent mechanical damage to the glass surfaces. Motorola’s devices, together with AMP and Amphenol connectors, are designed to hold this gap to 0.05 mm (Fig 5).

Axial misalignment loss. If the core area of the receiving fiber is not concentrically aligned to the projected beam, a loss of coupled power occurs. As might be expected, the magnitude of loss varies with both the fiber’s diameter and the NA (Fig 6). In the case of coupling to fibers with core diameters either much larger or much smaller than the emitting device, the axial misalignment loss is insignificant.

Angular loss. Angular loss occurs if the surfaces of the source and the receiving fiber are not parallel. Angular loss increases with the fiber’s NA (Fig 7).

Fresnel loss. Whenever light passes through an interface, a portion of the total energy passes through, and the remainder is lost by reflection and scattering. This is Fresnel loss. The magnitude of the loss depends on the refraction index of the materials forming the interface and the quality of the surface polish. For a high quality polished fiber to air interface, the Fresnel loss is a fairly consistent 0.1 to 0.2 dB/interface. Index matching fluids can reduce this loss, but the improvement is usually not worth the extra trouble.
Summary of Losses in a Typical Fiber Optic System

<table>
<thead>
<tr>
<th>Loss Parameter</th>
<th>Loss (dB)</th>
<th>Cumulative Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED-fiber gap loss</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>LED-fiber misalignment loss</td>
<td>0.50</td>
<td>0.80</td>
</tr>
<tr>
<td>LED-fiber angular loss</td>
<td>0.40</td>
<td>1.20</td>
</tr>
<tr>
<td>Fiber input Fresnel loss</td>
<td>0.20</td>
<td>1.40</td>
</tr>
<tr>
<td>Fiber attenuation</td>
<td>17.50</td>
<td>18.90</td>
</tr>
<tr>
<td>Fiber exit Fresnel loss</td>
<td>0.20</td>
<td>19.10</td>
</tr>
<tr>
<td>Fiber-determined gap loss</td>
<td>0.30</td>
<td>19.40</td>
</tr>
<tr>
<td>Fiber-determined misalignment loss</td>
<td>0.50</td>
<td>19.90</td>
</tr>
<tr>
<td>Fiber-determined angular loss</td>
<td>0.40</td>
<td>20.30</td>
</tr>
<tr>
<td>Total link loss</td>
<td></td>
<td>20.30</td>
</tr>
</tbody>
</table>

Formulating the microcomputer link flux budget.

Once the elements of loss are defined, it is possible to formulate an accurate flux budget analysis for a single terminal to terminal fiber optic link 500 m in length. The calculation assumes the following mechanical parameters for each connection (LED to fiber, fiber to detector):

- Gap = 0.05 mm
- Angular deviation = 1.0°
- Misalignment = 0.05 mm

The coupling loss incurred because of these factors is determined by consulting the loss graphs (Figs 5 to 7).

- Gap loss = 0.30 dB
- Angular loss = 0.40 dB
- Misalignment loss = 0.50 dB

A further Fresnel loss occurs at the input fiber surface, which is assumed to be 0.20 dB.

According to its data sheet, the LED has a -10 dB NA of 0.30, and the Siecor fiber has an NA of 0.40. Because the source has a smaller numerical aperture, no loss will result from the NA mismatch. At the detector end of the fiber optic link, there are again losses due to gap, misalignment, angular deviation, and Fresnel loss. The p-i-n diode has an acceptance -10 dB NA of 0.50. Again, because the source element—in this case the fiber (NA = 0.40)—has the smaller NA, there is no loss due to NA mismatch.

Fiber attenuation is the final system loss to be included. The LED emits at a peak wavelength of 812 nm. The attenuation curve for the Siecor fiber power required by the detector in a 5-V receiver is 0.75 µW. This sustains a data rate of 62.5 kbps. Converting this to dBm results in

\[P_{\text{min}} = 10 \log_{10} \left(\frac{0.00075 \text{ mW}}{1 \text{ mW}} \right) = -31.2 \text{ dBm} \]

By adding the total link loss to the minimum required detector signal, the necessary LED output is determined

\[P_0 = P_{\text{min}} + 20 \text{.3} = -10.9 \text{ dBm or 81 µW} \]

This, however, leaves the link without a built-in safety factor. If the assumptions about connector gaps are off and if the LED degrades over time or is affected by temperature, the link is somewhat marginal at 81 µW. To protect the link, a degree of margin—typically 3 to 5 dB—should be added to the budget. If 5 dB are added to the LED output (−10.9 + 5), the required source power is −5.9 dBm or 257 µW. According to its data sheet, the MFOE1200 LED requires a current of 20 mA to reach the required 257 µW.

Calculating the rise time budget. The network rise time—the time required for a pulse to reach maximum amplitude—is defined as the square root of the sum of the squares of the rise times of the link’s components:

\[(t_r^2_{\text{system}}) = (t_r^2_{\text{LED}} + t_r^2_{\text{fiber}} + t_r^2_{\text{det}}) \]

This could be broken down further to the components within the transmitter and the receiver, but that would be unnecessary for the link’s relatively slow data rate. This analysis assumes that a 62.5 kbps network must exhibit a rise time (10% to 90%) of about 5.6 µs (\(t_r = 0.35/\text{bandwidth} \)) to effectively discern 1s and 0s.

The Siecor fiber has a length/bandwidth product of 5 MHz/km. This equates to a fiber rise time of 70 ns/km. Since our link is 500 m long, the fiber rise time is 35 ns.
How do Unibus* users spell peak I/O rate relief?

High speed data acquisition can be a real headache. Especially during peak I/O rates when transfer can exceed the CPU’s capacity and key bits of information go off in thin air.

So we developed a DR11-W module. First for the Unibus. Now for the Q-Bus. Both feature our exclusive DMA Throttle that efficiently regulates data flow down to average rates to maximize overall CPU performance. But that’s not all.

Additional design features make it a cure for many other troublesome Unibus or Q-Bus system ills. For example, it offers:

- Edge mounted LED’s to illuminate performance status
- Micro-sequencer driven, self-test diagnostics
- Long lines capability
- Switch selectable 22-bit addressing (Q-Bus)

This high speed, digital input/output device is prescribed for such typical applications as:

- Bus Address Extension for memory transfer throughout the 4 megabyte range (Q-Bus)
- Switch selectable, level or single level interrupt arbitration (Q-Bus)
- Compatibility with 16, 18 and 22-bit backplanes (Q-Bus)

There’s more. And we’re anxious to spell out all that the DR11-W and our complete line of computer interfaces can do for you. Call or write today and ask about full year warranty. Available under GSA contract #GS-00C-03330.

Now for Q-Bus* users too.

*TM Digital Equipment Corp.
This is insignificant in comparison to the 5.6 μs total system rise time and can therefore be ignored.

Thus, using this calculation, the network's rise time is limited by its electronics. In particular, the limiting rise time comes from the amplifier components in the transmitter and the receiver. The LED has a rise time of about 8 ns, and the p-i-n diode has a rise time of about 1 ns.

Extending the length of the system

The link between the terminals described above is only 500 m. It would be helpful to know what the maximum length of this network can be using the same components and cable. Since the maximum continuous current rating for the MFOE1200 is 100 mA, an assumed duty cycle of 50%—depending on the coding scheme used—would operate at a peak current of about 200 mA. The MFOE1200 power output at that current is 1500 μW or 1.76 dBm. The total link loss, excluding fiber attenuation, is 2.8 dB. Adding a 5-dB power margin and subtracting the total from the minimum power required at the detector, the equation yields

$$-31.2 + (2.8 + 5.0) = -23.4 \text{ dBm}$$

Subtracting the power output of the LED and dividing by the loss of the fiber (35 dB/km), the maximum network length is determined

$$(-23.4 - 1.76) \text{ dB} / 35 \text{ dB/km} = 719 \text{ m}$$

If this is still below the desired length, the link can employ a higher power LED, such as the MFOE1202, yielding a maximum system length of 787 m.

Another option for extending a network's length is to use a lower loss fiber. If a different fiber is used, the various connector fiber—gap, misalignment, angle—must be recalculated.

It is clear from the foregoing example that a functional fiber optic network can be built at a reasonable cost. With fiber optic technology in place, falling component costs can only add impetus to the use of fiber optic techniques in tomorrow's networks. In light of this, the future of fiber optic network applications seems bright indeed.

Bibliography

J. Bliss, Basic Concepts of Fiber Optics and Fiber Optic Communications, Motorola Application Note AN-846, 1980.

Introduction to Fiber Optics and AMP Fiber-optic Products, AMP, Inc, HB 5444.

A Real Time Clock, I/O Controller and Software Security System.

Until now, no reliable time keeping device existed for WANG 2200 Computers that did not consist of sand or springs. RTC2200 changes that by providing full time and date information to the WANG 2200 Computer on demand. However...the RTC 2200 is much more than a mere timepiece. When inserted into any I/O slot of your WANG 2200* minicomputer (T, VB, SVP, MVP or LVP), you have added a Real Time Clock with battery back-up / Alarm clock / Stopwatch and countdown timer / Intelligent calendar / Date entry verification / Software license validation / Dual, bidirectional serial I/O controller with BAUD rates and frame sizes independently programmable by software / Parallel printer controller. Typical applications include: Providing correct time and date information where accuracy is crucial / Expansion of I/O capability without wasting precious I/O slots / Controlling access to sensitive data files / Time-oriented software such as typing skills exams and event duration logging for laboratory testing / Protection of software STOP PIRACY COLD!

Call Computer Concepts and learn more about this board and other products for WANG 2200*.

*WANG 2200 is a product of WANG Laboratories, Inc.
WE'VE GOT IT ALL

FROM 7MB TO 330MB IN
5¼”, 8” AND 14” WINCHESTER FAMILIES.

Ampex's Winchester families deliver the performance you need in today's competitive marketplace. There's 5¼" Pyxis with up to 27MB; 8" Scorpio with up to 83MB; and 14" Capricorn with up to 330MB. All offer the features you want, like automatic disk and head locking; industry-standard interfaces and packaging; power-up self-test and diagnostics; and capacity expansion. None requires any preventive maintenance.

Our Winchester disk drives are backed by a continuing Ampex commitment to leading-edge technology research, automated processes, and vertical integration beginning with heads and media; by a highly professional worldwide service and support organization; and by manufacturing capacity in excess of a half-million square feet located in four countries.

That's why you can count on Ampex to deliver whatever you need in Winchester disk drives, today and tomorrow.

Ampex Corporation, Memory Products Division, 200 North Nash Street, El Segundo, CA 90245. 213-640-0150. TWX: 910-343-6243.
The new 970 from TeleVideo.
Nothing else looks like it.
Nothing else performs like it.

Productive office work depends on people and their equipment working efficiently together. That's why we have engineered the exciting, new TeleVideo 970 to perform better than any other terminal.

For instance, only our "natural balance" tilting mechanism lets you easily adjust the screen at a touch, so you avoid neck-craning, straining and glare.

Our unique keyboard is designed to avoid user fatigue. We've created a natural palmrest, sculpted keys and the best ten-key accounting pad in the industry. Our non-volatile function keys save time and energy.

Like every feature of the new 970, the screen is designed for ease of use. Our non-glare 14-inch green screen is restful on the eyes, and its 132 column display can format more information. All in highly legible double-high, double-wide characters.

Our communications protocol is the industry standard ANSI 3.64.

As you probably know, most terminal downtime is caused by overheating that results from extended use. There's no such problem with our unique vertical convection cooling tower.

And because we wanted to extend the life of your CRT, we've installed a screen saving feature that automatically turns it off after fifteen minutes of idle time.

Naturally, like all TeleVideo terminals, service is available nationwide from General Electric's Instrumentation and Communication Equipment Centers.

The new 970 from TeleVideo. Nothing else looks like it and nothing else can perform like it.

For more information about TeleVideo's new 970, call 800-538-8725; in California 408-745-7760.

Television Systems, Inc.
Dept. #219C
1170 Morse Avenue
Sunnyvale, CA 94086

Yes, I'd like to know more about the unique 970 from TeleVideo:

NAME	______________	
ADDRESS	______________	
CITY	__________	
STATE	__________ ZIP	__________
TELEPHONE ()	__________	

California/Santa Ana 714-557-6096; Sunnyvale 408-745-7760; Georgia/Atlanta 404-255-9338; Texas/Dallas 214-983-9738; Illinois/Chicago Area 312-551-9390; Boston/Massachusetts 617-668-6991; New York/New Jersey 201-267-8805; United Kingdom/Woking, Surrey 44-9905-6464

CIRCLE 41
My dad worked a lot of overtime the month he bought me my first mechanical drawing set. Even so, we couldn't really afford the set I wanted. But he bought it anyway.

He said, “Quality always pays for itself.”

Later, when I was a senior in high school, the designs I drew with that set won me a four year scholarship to college. I've never forgotten that lesson. And now, when I design a computer system, quality is everything to me. For disk drives, I come to Fujitsu.

One expression of quality: Fujitsu's 14-inch, 335 Mbyte Winchester disk drive.
When early mass storage systems were developed, few people could foresee the dense data storage requirements that exist today. In the days of batch processing with punched cards, it would have taken a small army of keypunch operators to prepare the records to fill, say, only a megabyte of storage. Also, of course, early disk and drum systems were extremely expensive. Therefore, computer systems emphasized processor-intensive rather than memory-intensive operations.

Today, a few thousand dollars can buy a powerful desktop computer system with over a megabyte of removable floppy disk storage. Several thousand dollars more buys a Winchester drive with maybe a hundred megabytes of storage. And large mainframe systems can work with gigabytes of stored data.

People who predicted that semiconductor technology would displace magnetic storage techniques have, so far, proved wrong. Instead, semiconductor developments have pushed memory technology onward and upward. Microprocessors created a need for fast random access memory that was filled by semiconductors. This, in turn, created a need for high density removable storage filled by relatively inexpensive floppy disks. The pressure then was on manufacturers of fixed media mass storage systems—such as those using hard disk or optical techniques—to lower their costs and remain competitive.

All this progress has left a few technological casualties along the way. Charge coupled devices, of course, were run over by the semiconductor RAM bandwagon, which was propelled by the competitive bit densities, lower cost, and faster access of RAMs. Magnetic bubble devices found themselves squeezed by simultaneous progress in semiconductor RAMs and floppy disks. As a result, today’s bubble technology has been relegated largely to portable and ruggedized applications. Magnetic tape, because of slow random access, now tends to be used for backup rather than for primary storage. Even this backup role for tape may be threatened by such developments as low cost removable disk cartridges for Winchester systems. Optical storage, though not a casualty of the dramatic progress of magnetic storage, has been forced to wait in the wings while it gets its act together. However, thanks partly to accelerated research into optical techniques for video recording, optical storage may soon be ready to play its destined role of providing extremely high density storage for archival files.

More dramatic improvements—such as vertical recording for disks—are just around the corner. But the booming market growth that supported the research may be slowed by a lack of industry standards. Or—possibly worse—progress may be halted by hastily drawn standards that fail to meet the real needs of system designers.

Michael Elphick
Executive Editor
We think these are the best ideas you’ve ever had.

AT GE, YOUR IDEAS WERE THE KEY TO THE IDEAL OEM PRINTER.

Is there such a thing as an ideal OEM printer?
We'd like you to take a close look at the GE 3000 family. A compact, lightweight, functionally styled family of printers. A single line of eight basic tabletop matrix printers that offer cost effective solutions to virtually all your printing requirements.

SINGLE-DESIGN SIMPLICITY. FLEXIBILITY. PRICE/PERFORMANCE LEADERSHIP.

The GE 3000 family of printers is a multi-model concept which eliminates the application limitations of single-model product lines. So you can solve your customers' needs efficiently and effectively. All from a single-source supplier. All with high parts commonality. All with reliable, worldwide GE service.

DISCOVER THE ALL IN ONE PRINTER FAMILY.
Select standard print quality from 180 to more than 500 cps. Near letter quality printing from 45 to 200 cps. We have 80 and 136 column models.

Our full range of standard features includes 72 x 72 dot/in. graphics with precision paper movement, self-threading paper load mechanism, close tear-off, six part forms capability, optional popular parallel and serial interfaces, local and downline configuration selection with non-volatile storage. Plus a range of options and paper handling accessories for office and factory applications.

We're proud to say we think you've thought of everything.

OF COURSE, INNOVATIVE IDEAS ARE NOTHING NEW TO GE.

Our roots go back to Thomas Edison. It was in his tradition that in 1969 we introduced the first electronic data printer with modern LSI circuitry. Since then, we've continued in that inventive spirit, supplying OEM's with the finest in advanced printer solutions. What other printer supplier offers that much experience?

General Electric. We're the industry leader in electronic printing. After all, we pioneered the industry in the first place.

First In Electronic Printing.

For the solution to your printing needs, call TOLL FREE 1-800-368-3182.
Special report on disk and tape memory systems

89 Winchester disk technology spins into new orbits
by Michael Elphick and Richard Parker- To meet an insatiable demand for more data storage in smaller systems, designers of hard disk systems continue to find better ways to cram in the bits.

107 Tailor the Winchester to the system
by Larry Jacob- By analyzing performance needs with an eye on future system requirements, designers can build mass storage options into dedicated designs.

119 Microfloppies battle for preeminence
by Robert Abraham and Ron Munro- Designers face big decisions about tiny disk drive formats and standards. The reason: there is a large number of contenders about to slug it out in the sub-4" arena.

133 Optical data storage technology status and prospects
by Alan E. Bell- Many critical technical issues have been solved, and progress continues in diode lasers and storage media.
With more than 20,000 delivered, Micropolis is the world leader. Nowhere else can you get time-proven, high-performance, high-capacity, 8-inch Winchesters, available with three different interfaces.

SA-1100 Interface
Using your existing controllers and software, replace your 8-inch floppies - or expand your SA-1000 based Winchesters. Our SA-1100 compatible interface will do it, with its industry standard data density, data rate, and disk rpm.

For the highest performance 8-inch Winchesters with your interface option, contact Micropolis today! We're delivering!!

ANSI Interface
ANSI is the emerging industry standard because it permits drives of varying performance, even different vendors, to be integrated into a single system. Like the other options, the ANSI Interface uses our 1200 series mechanics, respected for superior quality and high performance.

<table>
<thead>
<tr>
<th></th>
<th>ANSI</th>
<th>1200ANSI</th>
<th>1200SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unformatted Capacity (Mbytes)</td>
<td>44.6</td>
<td>44.6</td>
<td>34.3</td>
</tr>
<tr>
<td>Average Access (ms, ½ stroke)</td>
<td>42</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>Data Transfer Rate*</td>
<td>7.37S</td>
<td>7.37S</td>
<td>4.333</td>
</tr>
</tbody>
</table>

*Mbits per second.

MICROPOLIS ™
21123 Nordhoff Street • Chatsworth, California • (213) 709-3300 • Telex 651486
European Operations • 210 Elgar Road, Reading, Berks • U.K. RG2 OPJ • (734) 751-315 • Telex 848591

CIRCLE 44
WINCHESTER DISK TECHNOLOGY SPINS INTO NEW ORBITS

To meet an insatiable demand for more data storage in smaller systems, designers of hard disk systems continue to find better ways to cram in the bits.

by Michael Elphick, Executive Editor and Richard Parker, Contributing Editor

Of all mass storage technologies, Winchester magnetic disk drives enjoy the greatest performance advances. As testimony to the ongoing dynamic activity in Winchester technology, witness the number of companies in the field and the multitude of Winchester disk drive shapes and sizes on the market. Putting more and more storage capacity onto the same, if not smaller sized disks, leads to lower cost per megabyte of stored data. Winchester disk drive storage capacities have been soaring into the gigabyte range on larger 14" types.

It began in 1973 with the 14" Winchester disk drive from IBM Corp (the 3-platter 70M-byte model 3340). Now modern 14" Winchester disk drives can provide up to 5G bytes of storage capacity. Within the 14" club, Winchester disk drives range in storage capacity from 5M bytes to 5G bytes, with a large number aimed at the 200M-byte to 1.5G-byte range. Even smaller 8" Winchesters are moving upward in storage capacities, ranging from 5M to 200M bytes. And the hottest action is in 5 1/4 " mini Winchesters that sport storage capacities of 2M to almost 150M bytes.

Smartness is in with Winchester disk drives, thanks to microprocessors. Spurred by the need for better interfaces and more self-diagnostics, an increasing number of Winchester disk drive manufacturers are building microprocessors in their products. The more intelligent systems make drive interfacing simpler and easier. And given the large number of Winchester disk drive shapes and sizes, all with different mechanical and electrical parameters, such intelligent interfacing is welcome news.

The same driving forces pushing advances in other mass storage technologies are stimulating progress in Winchester disk drive technology. They include a proliferation of distributed processing; the spread of desktop, small business, and personal computers; the increased intelligence of computer terminals; and the general flow of computer technology out from the domain of the specialists and into the hands of average people (eg, businesspeople, professionals, students, academicians, and consumers).

High capacity progression

One look at the XT-1105 5 1/4 " mini Winchester disk drive from Maxtor Corp (Santa Clara, Calif), with a gigantic storage capacity of 105M bytes (unformatted data), shows how far Winchester disk drive storage capacities...
thin-film read/write heads and thin-film media for increased storage bit densities. Plated thin-film media offer durability advantages over conventional oxide-coated media, besides higher recording densities. For example, the thin-film media can better withstand damage due to read/write head and media contact, a common problem known as head crashing. The thin-film disk resists gouging of the magnetic particles on the disk's surface, and is less prone to wedging, whereby the magnetic material becomes thicker on the outside, a major problem with standard oxide coatings.

Furthermore, unlike oxide-coated media, which require a protective lubricating film, the thin-film media with its metallic finish can simply be wiped clean with a fluorocarbon solvent if inadvertently touched during the manufacturing process—leading to lower manufacturing costs. With thin-film coatings, tighter track densities are possible on the disk's surface because plated media have more uniform magnetic characteristics.

On conventional oxide-coated media, one can typically obtain about 8000 magnetic flux reversals per inch (fr/in), a figure that jumps to 12,000 fr/in with plated thin-film media. Using thin-film read/write heads can further increase this figure.

One reason why Vertex Peripherals Inc (San Jose, Calif) can offer storage capacities of 72.3M bytes of unformatted data in a 5 1/4" mini Winchester disk drive is the drive's thin-film media. The V170 drive employs conventional manganese-zinc-ferrite read/write heads. Vertex also uses thin-film media on its smaller capacity 31M-byte V130 and 51.7M-byte V150 5 1/4" mini Winchester disk drives.

Another firm using thin-film media on its 5 1/4" Winchester disk drives is Evotek Corp. The company offers it on its ET-5000 line of drives that span storage capacities of 7.81M bytes to 51.6M bytes (unformatted data). The drives have 49-ms average access times and are available in 5M-bps and 8.2M-bps data transfer rate versions.

As for thin-film read/write heads, IBM Corp (San Jose, Calif) was the first to use them on its series 3300 14" Winchester disk drives. Now Memorex (Santa Clara, Calif) has introduced thin-film read/write heads on its models 3690 and 3689 14" Winchester disk drives that also use special thick-substrate particulate media for increased storage densities. The Memorex drives are plug compatible with the IBM 3370 and 3380 drives.

New 5 1/4" fixed/removable disk drives from DMA Systems provide higher storage capacities than earlier versions in the Micro Magnum family. Total unformatted storage capacities are 19.5M bytes and 26M bytes, respectively, for models 5/10 and 5/15. Of the total capacity, 6.5M bytes are on the removable cartridge for each drive version.
A thick particulate media on the Memorex drives was needed to make the disk’s surface less prone to vibration and wobbling, since the thin-film read/write head flies much closer to the disk’s surface than a conventional ferrite read/write head would. The thin-film read/write head flies just 10 µm above the disk’s surface.

Thin-film read/write heads provide higher storage capacities than conventional ferrite read/write heads. This capacity increase results from the much smaller size of the former, which allows the drive system to write much smaller flux reversals per inch of disk surface. For a 14" Winchester disk drive, a thin-film read/write head can typically have about one-half the head-gap length and about one-half the head-gap width of a conventional ferrite read/write head. Such factors, along with the thin-film head’s smaller dimensions (about one-fifth the volume of a ferrite read/write head) and lighter weight (less than one-twentieth of a ferrite head’s weight) allow a thin-film read/write head to fly at half the distance from a disk’s surface, as compared to a ferrite head.

Conventional ferrite read/write heads can provide maximum storage and track densities of approximately 9000 bps and 480 tpi, respectively. Compare that with the 15,000-bpi bit densities and 480-tpi track densities that thin-film read/write heads can attain.

Experts predict that, together with plated thin-film media, thin-film read/write heads will provide storage densities on the order of 50M bits/in² by the mid-1980s, and 100M bits/in² by the end of this decade. Such media/head combinations will make possible Winchester disk drives with 3000 tpi and 20M bpi. According to industry experts, the future of magnetic disk technology will be largely driven by thin-film read/write heads.

Despite all this, few Winchester disk drive manufacturers are using thin-film read/write heads on their products, primarily due to the higher cost and lack of multiple sourcing of heads. Many Winchester disk drive manufacturers argue that it is foolish to jump headlong into an advanced storage technology that will cost quite a bit more, because a gap between such a high-end technology and what is already available on the market may be filled at a lower cost. Nevertheless, some firms like Seagate Technology have applied thin-film read/write heads on its 12M-byte Winchester disk drive-instead, the 12M-byte ST412 uses conventional manganese-zinc ferrite read/write heads.

Apparently, the key to widespread use of thin-film read/write heads lies in lower unit costs, which mean higher manufacturing yields. Lower costs are attainable because thin-film heads can be made photolithographically, much like semiconductor integrated circuits. Memorex reports that it can fabricate 700 thin-film read/write heads on a 3" diameter wafer and that, on a pilot production basis, 400 such heads are functional.

Two paths to head positioning
With so many form factor and storage capacity similarities among Winchester disk drives, it is difficult if not impossible to differentiate between them. One area, however, where some drives stand above the others is in head positioning method. In this area at least, Winchester disk drive manufacturers are trying to outdo one another.

There is intense activity in more advanced read/write head positioning developments for Winchester disk drives, particularly for the smaller mini and micro (under 5¼") drives. Closed loop and open loop control are the two main head positioning methods.

With closed loop control, the read/write head senses its location on the disk from reference data stored on the disk's surface. Reference data are then fed to an actuator that more precisely positions the read/write head on the right disk track.

In an open loop system, the read/write head has no reference data to guide it. Instead, it relies on the actuator mechanism's mechanical accuracy to find the right track. Either a rotary voice-coil actuator mechanism or, more commonly, a stepper-motor mechanism positions the read/write head on the proper track. A voice coil allows continuous read/write head movement, leading to increased positioning accuracy and higher track densities. But it is also more expensive than a stepper-motor actuator.

Because of its operational simplicity, an open loop control system offers less expensive and usually more reliable operation than a closed loop control system, which has many more components. A single stepper motor, motor controller, amplifier, and a radial armature (to connect the stepper motor to the read/write head) often suffice for an open loop control system.
With this split-band capstan head positioner, Computer Memories solves the shock and vibration problems that affect open loop disk drive systems. The positioner assembly is used in the firm's CMS500 series of 5 1/4" Winchester drives. The read/write head assembly is at the end of an arm that pivots around a setpoint, allowing the assembly to more easily absorb shock without moving the head.

On the other hand, an open loop system's positioning accuracy is limited to the accuracy of the stepper motor and to the precision of the mechanical radial armature. Furthermore, open loop systems are prone to vibration and thermal-expansion effects, which lessen their accuracy. Overcoming differences in thermal-expansion characteristics between various drive components is difficult. For example, a steel head-flexure mechanism and the aluminum disk with which it interfaces have different first order thermal-expansion coefficients, thus restricting track densities and storage capacities.

Additional problems can result from stepper-motor hysteresis, drive spindle run-out, and stepper-motor settling time. Because of these factors, open loop control systems are usually found in lower capacity Winchester disk drives—namely those drives with track densities of 200 to 300 tpi.

One firm, Computer Memories (Chatsworth, Calif), has solved shock and vibration problems in an open loop system by using a split-band capstan head positioner in its CMS5000 series of 5 1/4" mini Winchester disk drives. The read/write head assembly is placed at the end of a rotary arm that pivots around a setpoint, allowing the head positioning assembly to more easily absorb lateral shock without translating any movement to the read/write head. The CMS5000 Winchester disk drives span storage capacities of 6.4M to 19.1M bytes (unformatted data), with 72-ms average access times, and a 625k-bps data transfer rate. A closed loop version (the CM5640) has 40M-byte (unformatted data) storage capacity, 40-ms average access time, and a 625k-bps data transfer rate. This drive employs an optical sensor in the closed loop servo arrangement.

Voice-coil actuated drive systems provide faster average access times than stepper-motor designs, though not all disk drive experts agree on the relative importance of this. With voice-coil actuated mechanisms, a host of Winchester disk drives now have average access times under 30 to 40 ms. Though some experts claim that average disk access time with a voice-coil actuator is not that much faster than one with a stepper-motor actuator, the difference in speed becomes more noticeable if several tracks of data were moved instead of one or two. In addition, the kind of host computer operating system and the number of workstations sharing a disk drive may require the higher performance provided by a voice-coil actuator. Operating systems like UNIX, for example, require efficient rapid access times.

For the most accurate head positioning, closed loop systems are the answer. Because of their better positioning accuracies compared to open loop systems, they offer higher track densities. Closed loop systems, also known as servo systems, are most often found in Winchester disk drives with high track densities of up to 600 tpi. Though there are many variations of closed loop systems, the dedicated and the embedded servo systems are the two main approaches.

The SQ306 from SyQuest is the smallest removable-cartridge Winchester drive available. Fitting the standard half-height 5 1/4" space requirements, the unit has a 3.9" platter in its removable pack and provides 6.38M bytes of unformatted data storage.

So-called voice-coil actuators for Winchester recording heads are much faster than conventional stepper motors, as shown in data prepared by Vertex. The graph compares the two techniques in terms of average access time and the total time to perform 10,000 random seeks while transferring one 256-byte sector per seek.
Introducing the first ergonomically engineered 16-bit intelligent terminal that's as bright as it looks. And prices start as low as $975.

When Wyse introduces a new terminal, you expect a lot. And our newest family of 8088-based terminals — the WY-200, 210 and 220 — delivers just that.

The list of features is long, but definitely worth your consideration if you're thinking about a multi-functional intelligent terminal.

For example, operator comfort is paramount in the design of the WY-200 family. Its fully tilting/rotating display and detached keyboard let you work the way you work best.

Its green phosphor screen is easy on the eyes.

It comes standard with both 80 and 132 column modes.

And multiple split screen capability allows you to program horizontal and vertical split screens independently to a variety of sizes. Plus you get smooth scroll.

With a standard 256 character set, you can program additional character graphics or foreign character sets as needed by simply replacing the EPROM.

You can even have double-high, double-wide characters on a line basis.

The WY-200 has 105 keys so you get more functionality with less key strokes. You even get a 14-key numeric pad to simplify data entry.

Compared to the competition, the WY-200 family's functionality is very flexible. You get a soft set-up mode with battery back-up that lets you set up the terminal functions via the keyboard. Plus soft keyboard and escape sequence tables that allow you to emulate other terminals as needed.

The WY-200 comes standard with 32K bytes of RAM that can be used either as page, program, or data memory, while the WY-210 and 220 have 128K bytes of RAM. And since you can down line load from the host computer and execute programs in RAM, you can tailor the WY-200 family to a wide variety of applications.

You'll also find two independent asynchronous communication ports (both can be programmed in a synchronous mode) on the WY-200 and 210, and one RS-232 port and one high-speed RS-422 port on the WY-220.

As we said earlier, the list is long. To find out even more about this highly intelligent terminal family, including OEM pricing, call or write us today.

3040 North First St., San Jose, CA 95131
(408) 946-3075 TLX 910-338-2251
In the East, call (516) 293-5563
Outside California, 800-538-8157 ext. 932
Inside California, 800-672-3470 ext. 932

UL and FCC approved. ©1982 Wyse Technology, Inc. *WY-200 Quantity 100 Price

CIRCLE 45
Track densities for both open loop and closed loop servo disk drives are increasing. The latter type of control system can provide higher track densities (b) than open loop types (a) since it provides greater read/write head positioning accuracy. Source: Seagate Technology.

In the dedicated type, one surface of the disk is reserved for reference information. A servo head that flies over that surface senses this information. The servo head is physically attached to the disk's read/write head, which senses track data on the other side of the disk. Although a dedicated closed loop servo system offers higher tracking accuracy than an open loop system, reserving an entire disk surface for reference information seriously limits the disk drive's storage capacity. Furthermore, environmental and mechanical stresses can cause erroneous read/write head tracking. For example, the servo head may be exactly on track, but the physically attached read/write head can be off track very slightly due to misalignments between both heads.

Embedded closed loop servo systems eliminate these mechanical and environmental stress problems. Here, reference data are stored on the same disk track that holds the stored data. Now both sides of the disk can be used for data storage, increasing the disk drive's storage capacity. Furthermore, environmental and mechanical stresses can cause erroneous read/write head tracking. For example, the servo head may be exactly on track, but the physically attached read/write head can be off track very slightly due to misalignments between both heads.

Despite this drawback, many disk drive experts foresee the embedded servo approach as promising future high capacity and high density Winchester disk drives. They are certainly more accurate than dedicated servo systems. As 5¼" and sub 5¼" Winchester disk drives gain storage capacity, requirements for more accurate track positioning for the read/write heads will increase. The embedded closed loop servo approach appears to be one feasible alternative that carefully balances storage space requirements with system access time.

Denser encoding methods abound
Many Winchester disk drive experts believe that more efficient encoding schemes are needed for a dramatic increase in disk drive storage capacity. One common disk drive encoding technique is the modified frequency
The Zenith name on a hybrid circuit is your assurance of quality.

What's in a name? When the name is Zenith, it means that each hybrid circuit is backed by more than 60 years' experience in electronic engineering, and over 15 years' experience in thick film network technology. It means that any hybrid circuit, custom-made exactly to your specifications, is state-of-the-art engineering. And it means high-volume manufacturing capability, so you can be sure that your production requirements will be met.

For information about hybrids, or any other of our OEM components, please contact:
Zenith Radio Corporation
CRT & Components Operations
1000 Milwaukee Avenue
Glenview, IL 60025.
Or call (312) 391-7733.
modulation (MFM) encoding method—a scheme that is being examined for improvements as higher bit densities in ever smaller Winchester disk drives emerge.

A more recent approach is the RLL encoding scheme as practiced by Rotating Memory Systems and Evotek Corp on their Winchester disk drives. RLL codes promise to boost Winchester disk drive storage capacities by 50%, given the same physical drive hardware and read/write heads. With RLL codes, larger amounts of data are represented on the disk's surface for the same number of flux reversals than with an MFM code.

Unlike MFM encoding, which requires a one to one data storage overhead, RLL codes require a smaller overhead and are therefore more efficient. That is, an RLL code for one bit of data actually consists of two bits, one for the data, and one for clocking information. Thus, four data bits would be represented by eight RLL bits. With an RLL encoding scheme, on the other hand, the four data bits can be represented by just five bits.

The tradeoff is that the RLL code requires precise synchronization and more sophisticated error correction and detection circuitry than used in MFM encoded systems. In an RLL encoded system, even a 1-bit shift in the decode frame due to synchronization offsets can cause massive system errors. Furthermore, much higher clock rates than the typical 20-MHz clock rate for disk drives are required—on the order of 400 MHz.

Perpendicular recording—a promising technique

Since 1975, perpendicular-magnetic-recording research has been going on at Tohoku University in Japan. The results of that research promise a dramatic increase in Winchester disk drive storage densities and capacities. Capacity increases of 50 to 100 times are being routinely predicted for perpendicular magnetic recording.

Moreover, the level of research has reached the point where linear recording densities of at least 200k bpi (400k bpi unofficially), track densities of 12.5k bpi, and storage densities of 12.5G bits/in² have been reported. Experts predict that with perpendicular magnetic recording, 3M to 5M bytes of data can be stored in a microfloppy disk drive as small as 3½" (platter diameter).

Indeed, research is under way in a number of locations, and Winchester disk drives of that type are being readied for introduction. It should be emphasized, however, that a disk drive with a perpendicular-magnetic-recording surface costs about twice as much as a similar capacity disk drive with conventional recording techniques.

Vertimag Systems (Minneapolis, Minn) and Japan's Toshiba appear to be the closest to bringing out Winchester products with perpendicular magnetic recording. Vertimag, funded by Sweden's telecommunications giant L. M. Ericsson, has announced that it will provide 5M- and 10M-byte Winchester disk drives with perpendicular-magnetic-recording technology in 1983. Toshiba has already announced a 3½" microfloppy disk drive with 3M-byte storage capacity using such recording. And Ampex Corp (Redwood City, Calif) is working on a thin-film process that will allow prototype Winchester disk drives with perpendicular magnetic recording by 1984.

Lanx Corp (San Jose, Calif) and France's CU-Honeywell Bull are also researching perpendicular magnetic recording. The French firm is working on glass-based materials that can support perpendicular magnetic recording, where magnetic particles are embedded within the glass. This approach reportedly offers higher track densities, more magnetic flux reversals per inch, and better media durability than is now possible.

With conventional longitudinal recording techniques used on oxide-coated and plated thin-film media, the recorded magnetic fields resemble an array of bar magnets lying end to end. With no change in the binary data being recorded on the disk drive, no transitions occur between the magnetic fields and no signals are generated in the read/write heads that effectively rotate above the fields. (Actually, of course, the disk itself rotates beneath the read/write heads.) When a change occurs in the binary data, the poles of the magnetic field are reversed horizontally, creating a flux transition that is picked up by the read/write heads. The resultant output voltages are generated at the heads. The sharper the...
This New Fiber Optic Modem will Extend a DCE Interface to Any Point in Your Local Area Network.

Plus a whole lot more.
• Can also be used for standard modem applications
• Automatically accepts or supplies DCE/DTE clocks
• Fully supports all EIA handshaking signals
• Provides secondary data channel

In short, you can use our new fiber optic modem between any two plug compatible units in your local area network. And it won’t require any jury-rigging or looping clock and interface signals. That’s because, from an operating standpoint, our fiber optic modem looks just like an EIA cable; whether you’re going from a long-haul modem to a remote terminal or from a CPU port to a printer. And it’s just about as easy to install as a cable — we even provide two separate connectors (DTE and DCE) on each modem. YOU determine how our modem will function simply by selecting which connector you use!

Once our fiber optic modem is installed and operating it’ll really begin to shine. You’ll benefit not only from the advantages inherent with fiber optics (traffic security plus noise immunity) but also from the exceptional operating performance. Our very low error rate and continual signal quality monitoring means that you’ll operate with a higher throughput and less downtime than ever before.

Versitron manufactures a complete line of fiber optic products for Local Area Networks. Our 20 years’ experience in fiber optic is reflected in the performance capabilities of our products.
output voltage levels, the better the data integrity and the higher the data capacity. However, there is a limit to how many magnetic fields can be crammed closer together (for more bit transitions) per linear dimension, before such techniques as write precompensation prove ineffective.

With perpendicular magnetic recording, the poles of the magnetic field are stood on end and arranged like bars in a row. When no magnetic field transition occurs, data are clocked off the disk drive. Transitions that do occur provide for sharper and narrower voltage pulses at the read/write heads. Much higher recording densities result.

Backing up with cartridges

Backing up a Winchester to preserve the data in case of system failure is one of the most widely discussed issues in disk drives. And, as Winchester disk drive designs proliferate, backup becomes increasingly important. Backup candidates include floppy disk drives, reel-to-reel tape, streaming tape drives, and even Winchester disk drives themselves (in the form of removable cartridges).

A host of 5¼" and 8" mini Winchester removable disk cartridges are offered by DMA Systems (Goleta, Calif), Seagate Technology, Western Dynex Corp (Phoenix, Ariz), Dicom Industries (Sunnyvale, Calif), New World Computer Co (Irvine, Calif), Cynthia Peripheral Corp (Palo Alto, Calif), Advanced Electronics Design, Inc (Sunnyvale, Calif), and Data Peripherals (Milpitas, Calif). Even larger 4" removable Winchester disk cartridges are offered by Control Data Corp (Minneapolis, Minn), Ampex Corp, Ball Computer Products Inc (Sunnyvale, Calif), Vermont Research Corp (N Springfield, Ver), IBM Corp, Data General Corp (Westboro, Mass), Wang Laboratories Inc (Lowell, Mass), and Western Dynex Corp.

SyQuest Technology (Fremont, Calif) offers the smallest removable Winchester disk cartridge in its half-height SQ06R, a 3.9" platter removable pack with 6.38M-byte storage capacity (unformatted data) arranged in 8192 bytes/track, 32 sectors/track, and 256 bytes/sector. The Seagate compatible drive is a tiny 8"x 4.8"x 1.625" that can transfer 5 M bps (the cartridge itself has dimensions of just 4.41"x 4.33"x 0.43").

First to exploit the idea of removable Winchester 5¼" cartridges was the New World Computer Co in 1981 with a drive that offered both fixed and removable storage. Model 52/2 with one fixed and one removable recording surface, each of which stored 2M bytes of unformatted data, was an interim step to the all-cartridge removable Winchester disk drive. New World Computer later added model 4/2 with 4M bytes of fixed and 2M bytes of removable storage capacity for unformatted data (two fixed and one removable surface), and model 4/4 with 4M bytes of fixed and 4M bytes of removable storage capacity for unformatted data (two fixed and two removable recording surfaces). In the company's design, the cartridge contains the recording platter, the read/write head, and the control arm.

However, the first to offer a truly removable 5¼" Winchester cartridge media in which only the media were removable (not the read/write head and control arm) was DMA Systems. Micro Magnum 5 has a 6.75M-byte storage capacity (unformatted data) in a removable cartridge, with a 40-ms average access time and a 5-M-bps data transfer rate. Its companion Micro Magnum 5/5 employs an extra fixed platter with an additional 6.75M bytes of storage capacity (unformatted data). Recently, the company introduced versions of the Micro Magnum with higher storage capacities.

Others, like Century Data Systems, followed with even higher capacity fixed/removable Winchester disk drives with cartridges. The firm's C8048 is an 8" Winchester disk drive with three fixed recording surfaces that can store 33.45M bytes of unformatted data, and one removable surface in a cartridge capable of storing 16.73M bytes of unformatted data.

Using Winchester removable cartridges to back up other fixed Winchester disk drives is gaining favor. This is because the technique simplifies the system integrator's job. Instead of having both primary disk and backup tape technologies operating differently—the former with random access and the latter with sequential access—the same mass storage technology is provided for primary and backup storage. However, Winchester removable cartridges cannot yet compete with streaming tape drives—at least on a low cost per bit level—nor can they store the massive amounts of data that tape can. On this score, though, storage capacities for Winchester removable cartridges are rapidly improving.

System purging is an important aspect of removable Winchester cartridges. Since the read/write heads fly very close to the disk's surface, the drive system must be purged of any dirt or contaminant after the media have been removed and reinserted. Otherwise, a system crash could result. Even the smallest of dirt particles have

Half-height 5½" drives from Discron store 25.5M bytes (model 520) or 42.5M bytes (model 640). Both versions have a 40-ms average access time. Head positioning employs voice-coil and closed loop servo technology.
Why is ROLM first to deliver the complete Ada® solution?

Because only ROLM delivers...
• a full 1982 ANSI Standard Ada compiler
• a complete Ada Development Environment
• a fully configured Ada Work Center
• a complete family of target Mil-Spec processors
• extensive hardware and software support
...And it's all available TODAY!

With ROLM's ADA/82 you start programming now using a compiler which fully implements the 1982 ANSI Standard and Mil-Spec 1815 (A).

ROLM's Ada Development Environment (ADE™) is an integrated set of software tools that provides configuration controls, user-friendly programming utilities, and general purpose application libraries. ADE also supports the creation of reusable application packages that preserve your long term software investment.

Powerful hardware to increase throughput. ROLM delivers a complete hardware configuration that will immediately support your application software development. The system centers on the powerful MSE/800, a 32-bit super-mini-computer with 2 MB of main memory (expandable to 8 MB) and 8 ports for interactive Ada development terminals (extendable to 128).

Target processors to meet any application. Ada application programs developed on the ROLM Ada Work Center are easily transported to a wide range of ROLM 16-bit and 32-bit Mil-Spec processors.

Now, it's your turn to be first. Ada is happening now...and now is the time to gain a competitive edge by becoming immediately productive in Ada. If you want to lead the market in Ada Program Development, there is only one complete solution. The ROLM Ada Work Center. Don't wait, call or write:

ROLM MIL-SPEC Computers

One River Oaks Place, M/S 110
San Jose, CA 95134 (408) 942-8000

ROLM GmbH, 6052 Muehlheim/Main, Muehheimer Strasse 54, West Germany, (06108) 60935

ROLM U.K. Limited, Catherine House, 63 Guildford Road, Lightwater, Surrey GU18 5SA, England, (0276) 76363

® Ada is a registered trademark of U.S. Department of Defense
ADE is a trademark of ROLM Corporation.

CIRCLE 48
caused read/write head crashes with a resulting data loss—not to mention possible disk surface damage due to the head/media collision. These purging requirements, however, have led to complex system drive mechanisms and delays.

SyQuest Technology claims to have eliminated the usual purge cycle in removable Winchester cartridges with its SQ306R micro Winchester cartridge. It has achieved this by coating the thin-film media surface of the 3.9" diameter platter with a special lubricant that reportedly eliminates head crashes. With the SyQuest Winchester cartridge, the drive spins up to speed as soon as the cartridge is inserted in the drive. The actual purge cycle occurs as the drive initially comes up to speed. This contrasts with all other removable Winchester cartridge drives that require a wait of about 1.5 to 2 min after a cartridge is inserted before the purging operation is completed.

Groping for standards
Most industry disk standards are informal and revolve around disk drive dimensions. As each new disk drive is introduced, the manufacturer attempts to establish it as a de facto standard, particularly if it has an unusual or unconventional size or features. Many manufacturers have followed Shugart Associates (Sunnyvale, Calif), the disk drive industry leader.

One area in need of standardization is the disk drive interface. In this area, many disk controllers of the device-dependent variety have hitherto adopted different hardware and software specifications. Device-dependent controllers burden the host computer’s central processing unit (CPU) with mundane tasks (eg, controlling the drive itself, formatting the data, and providing error detection and correction). This situation led to the emergence of intelligent controllers. These controllers are based on microprocessors that perform housekeeping chores for the disk drive, lighten the CPU’s load, and provide for an intelligent host computer interface. An example of this is the Shugart Associates Systems Interface (SASI).

SASI is an 8-bit parallel bus containing control/status and data lines. It offers a high level command set for the host computer to use, regardless of the drive type. SASI defines a set of hardware and software specifications that allow a host computer’s CPU to interface directly with any peripheral device, regardless of type (eg, disk drive, tape drive, printer, and communications device). SASI seems to be rapidly developing into an industry standard. ANSI currently has the SASI specifications under consideration before its X3T9.2 committee as a proposed standard. However, another ANSI committee (X3T9.3) is looking at an alternative proposal known as IP! or Intelligent Peripheral Interface. SASI-compatible Winchester disk drives incorporate within the drive system many functions normally found on separate controllers. SASI can support up to eight devices, including host processors, in any combination.

The SASI document defines a 50-pin connector for each of up to 8 bus ports. Each port has nine data lines and a timing line. In addition, software command and message protocols are specified along with a logical interface. A SASI controller interface has open-collector lines or differential driver/receiver lines. Seagate Technology has also established a de facto standard for 5½" mini Winchester disk drives with its ST506 drive.
Introducing the World's Most Versatile Vector-to-Raster Converter

The KMW VP-30 Vector Processor

Benson, or Versatec. With a storage capacity of a million vectors, the VP-30 is capable of driving even the largest electrostatic printer/plotter at full speed... a feat no other vector-to-raster converter or electrostatic plotter controller can match. The VP-30 features switch selectable support for the full range of electrostatic plotters.

Connect Your Electrostatic Plotter to IBM

A variety of host input configurations are available including IBM, CDC, and Univac channel interfaces, mag tape, high-speed communications including IBM Bisync and SNA/SDLC, as well as a Dataproducts front-end for attachment to mini-systems. In all, there are nine host input options available and KMW is constantly developing new options to serve the electrostatic user.

Eliminate the Software Overhead Associated with Electrostatics

The VP-30 eliminates the need to burden the host computer with the time consuming and expensive vector-to-raster data conversion task. The VP-30 accepts random vectors, symbols, and other graphic data from the host mainframe, reduces it to raster form and outputs it to the electrostatic plotter.

Operate the VP-30 in Either Dedicated Mode or as a Fully Interactive Remote Graphics Workstation

By simply attaching any CRT/keyboard console, the VP-30 can be used as a fully programmable workstation utilizing the popular CP/M® operating system.

Other Important VP-30 Features Include:

- Multiplot overlay capability
- High speed, high capacity (up to 1 million vectors)
- Variable line thicknesses
- Erase mode (reverse polarity)
- Variable area pattern fill, with a variety of patterns and shades
- Trace sequential (seismic) data input capability

For the complete story on the industry recognized leader in vector-to-raster conversion and electrostatic plotter control, contact:

KMW SYSTEMS CORPORATION
8307 Highway 71 West Austin, Texas 78735 512/288-1453 TWX: 910-874-2005 / CABLE: KMWSYS

*CP/M is a trademark of Digital Research, Inc.
The Seagate Technology interface connector pinout for 5 1/4" Winchester disk drives (a), is based on Seagate Technology's ST506 5 1/4" Winchester disk drive. Interface lines to the host computer are shown in (b).

Mechanical interchangeability of Winchester disk drives has generally been less of a problem than electrical interfacing. Therefore, for example, many so-called ST506-compatible drives do not meet all of the ST506's electrical interfacing requirements.

If a Winchester disk drive is Seagate compatible, it should strictly adhere to the specified Seagate data transfer rate of 5M bps. This assumes that the drive uses an MFM encoding scheme and has a spindle that spins at 3600 rpm. It must also have a recording density between 7690 and 9074 bpi, and an average latency time of 8.3 ms ± 1%. Without all of the aforementioned features, software incompatibility could result. In reality, few Winchester disk drives on the market are totally Seagate compatible.

Even more dismal is the removable Winchester cartridge arena—absolutely no standards exist for either dimensions or type of disk. DMA Systems has proposed a 130- x 40-mm cartridge with a conventional ferrite medium as a standard (currently under consideration by ANSI). Other Winchester removable cartridge manufacturers are also preparing designs that conform to the DMA Systems proposal.

Western Dynex Corp, for example, has opted to conform to the proposed DMA Systems standard with its WDS55 5 1/4" 6.38M-byte (unformatted data) removable Winchester cartridge. The cartridge has a 35-ms average access time.

On the other hand, the Seagate Technology ST706 removable 5 1/4" Winchester cartridge at least meets the DMA Systems cartridge's dimensions. However, unlike the DMA Systems cartridge, which uses an embedded closed loop servo system, the Seagate cartridge works with an open loop servo system. Furthermore, the Seagate product uses a plated thin-film media.

Certainly, Winchester technology has come a long way in its first decade. The many advances include efforts to implement thin-film read/write heads on disk drives, developments in head positioning and tracking techniques, better circuits, denser encoding methods, and significant progress in perpendicular magnetic recording. While these and other changes in Winchester technology have allowed dramatic improvements in storage density, reliability, and cost, they make the need for industry-wide standards that much more urgent. Progress in this area would avoid unnecessary duplication of effort, as well as simplify system design.

Please rate the value of this article to you by circling the appropriate number in the "Editorial Score Box" on the Inquiry Card.

High 710 Average 711 Low 712
Browne Disc introduces hard disc capability with the convenience and low cost of a floppy.

Only Brown Disc offers processing technologies normally associated with hard disc manufacturing: An exclusive spin coating technique produces a thinner coating with high bit integrity for ultra-hi densities. A special overcoat and primer layer are used to increase adhesion, disc life and head life. Plus individual stress relieving improves substrate stability.

We offer higher-than-standard linear densities for present drive technology and provide engineering support for all new drive technologies. For the first time you can take dead aim on the Winchester or backup marketplace.

For the OEM, we can provide a truly high quality state-of-the-art floppy to market under your label. For Software Houses, you can put your program on a floppy that's reliable. And for Distributors and Retailers, you can show serious mini and micro-computer users that you stock the media they'll be asking for.

If you want hard disc technology in a floppy, you can't be flexible about where to get it: you've got to come to Brown Disc.

For more information write or call Brown Disc Manufacturing, Inc., 1015 Garden of the Gods Road, Colorado Springs, CO 80907, (303) 593-1015.

Select the type you need from the chart below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Coating</th>
<th>Thickness</th>
<th>Coercivity</th>
<th>Bit Density</th>
<th>Typical Storage (Double Sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHR-I-II</td>
<td>120 µ in.</td>
<td>300 oersted</td>
<td>6,200 BPI</td>
<td>1.0 megabyte</td>
<td></td>
</tr>
<tr>
<td>UHR-I</td>
<td>60 µ in.</td>
<td>300 oersted</td>
<td>10,000 BPI</td>
<td>3.2 megabyte</td>
<td></td>
</tr>
<tr>
<td>UHR-II</td>
<td>45 µ in.</td>
<td>600 oersted</td>
<td>10,000-18,000 BPI</td>
<td>5.0 megabyte</td>
<td></td>
</tr>
</tbody>
</table>

We've taken a hard look at disc technology, and decided to be flexible.
OUR NEW 8" DRIVES PUT US IN A TIGHT SPOT.
They're half the height of a conventional 8-inch floppy.

The exact depth of a standard 12-inch CRT terminal.

And actually capable of squeezing 8-inch drive performance into desktop systems that haven't room for full size 8-inch drives.

Because they're compatible with our industry standard SA801/851 8-inch drives. Same mounting holes. Same internationally recognized DC power supply. Same controller interface. And all the jumper options you need to build in the features you need.

They're also compatible with the existing user base of over 200 million 8-inch diskettes.

And the SA810 and SA860 offer distinct advantages over 5¼-inch drives, including more capacity. In the case of the SA860 (1600 kilobytes), 60 percent more than a double-sided 96-TPI minifloppy. With faster access times (89 msec versus 158 msec average). And faster transfer rates (500 versus 250 kilobits per sec).

They also offer a bundle of features not found in conventional 8-inch drives.

The rapid start DC motor, for example, eliminates the need for belts, pulleys, and head-load solenoids. So reliability is substantially increased. Media wear is reduced. And overall operation is much quieter.

All of which makes our new SA810/860 drives the smart solution for a wide range of high performance desktop applications— from word processing to distributed network systems.

All backed by the industry's largest and most experienced engineering, sales and service organizations.

For more details, contact Shugart Associates, 475 Oakmead Parkway, Sunnyvale, CA 94086, (408) 733-0100 (Hamilton/Avnet, authorized distributor).

And see if you can squeeze us in.

What's more, they're Shugart's newest family members— our SA810 single-sided and SA860 double-sided floppy disk drives.

These half-height 8-inch drives offer the OEM more design flexibility, while providing an attractive new alternative to today's minifloppies.

Unlike other reduced height drives, only Shugart's SA810/860 series eliminates the need for major redesigning of hardware. And software. And controllers.
Digi-Data puts 30 Mbytes of disk backup in less space than your 5 1/4" disk.

Digi-Data Corporation proudly introduces the industry’s first full-function 1/4" cartridge tape drives to fit within a 5 1/4" disk footprint. Small in size (3.25 × 5.75 × 6.90"), but large in performance, these drives provide up to 300% more storage capacity than other available start/stop or streaming drives. Their 30 Mbytes of unformatted capacity will handle the backup requirements for most 5 1/4" and 8" Winchesters using a single cartridge.

Both start/stop and streaming modes give the OEM system designer flexibility not found in ordinary drives. Used in start/stop mode for on-line transactional backup or selective data-base editing, the drive will store 25.1 Mbytes of formatted data in under 15 minutes. Streaming mode storage of 29.5 formatted Mbytes can be achieved in less than 12.8 minutes.

Standard or serpentine head configurations, and industry standard I/O, as well as small size and dual-mode operation, make it easy to design these drives into your present or future systems.

ANSI and ECMA interchangeable media versions are also available, with somewhat lower storage capacity at 6400 BPI.

Digi-Data’s commitment to high performance peripherals extends to its full line of 1/4" start/stop and streaming tape drives and subsystems as well, all offering the OEM user the best price/performance ratio in the industry.

DIGI-DATA CORPORATION
8580 Dorsey Run Road
Jessup, MD 20794
(301) 498-0200
TWX 710-867-9254

In Europe contact:
Digi-Data Ltd.
Kings House, 8 King Street
Maidenhead, Berkshire
England SL6 1EZ
Tel. No. 0628 29555-6
Telex: 847720

CIRCLE 52
TAILORED THE WINCHESTER TO THE SYSTEM

By analyzing performance needs with an eye on future system requirements, designers can build mass storage options into dedicated designs.

by Larry Jacob

Providing high capacity and low cost/megabyte, Winchester disk drives are a logical choice for a multi-user/multitask environment. The designer's next choice is the specific type of Winchester and interface to use. Defining system requirements begins this Winchester selection process.

The three fundamental system configurations—single user/single task (SU/ST), multi-user/multitask (MU/MT), and single user/multitask (SU/MT)—all have different mass storage requirements (see Table I). Networks or distributed processing installations are really hybrids of the SU/ST and MU/MT types. High powered workstations—frequently part of a network—can be thought of as SU/MT systems. In an SU/MT system, a single user may have several different programs (tasks) running in parallel. These tasks might include word processing, compiling a BASIC program, plotting financial information, and sending or receiving an electronic mail message.

Six types of original equipment manufacturer (OEM) Winchester disk drives serve the three system types. These Winchester drives are built in one of the three currently available disk diameters (14", 8", and 5 1/4"). Each uses either one of the two basic actuator systems—the low performance, open loop stepper motor and the high performance, closed loop voice-coil motor (VCM). Table 2 shows the typical capacity and access time range characteristics.

Mapping systems into drive types

To assist in choosing an appropriate Winchester disk, a mapping of the three system configurations into the basic drive types has been developed (see the Figure). The SU/ST small size and capacity, low cost, and light duty cycle storage requirements best fit the 5 1/4" stepper motor Winchester. However, if the SU/ST system is to grow into an SU/MT system, plans must be made now for using a 5 1/4" VCM later. Today, several years after low capacity (under 10M bytes) 5 1/4" drives were introduced, high capacity 5 1/4" drives in the 40M- to 55M-byte range have made their entrance.

Moderate capacity, performance, and very small size storage requirements of the SU/MT best suit the 5 1/4" VCM Winchester. However, production quantities of these drives are not available, and the product and vendors still need to be field proven. For capacity and performance in a small package size in 1983 (maybe even 1984), it is safe to stay with an 8" VCM.

The MU/MT high capacity, low cost/megabyte, and heavy duty cycle storage requirements are most appropriate for the 14" VCM Winchester, except where size is more important than large storage capacity. In this case,
the 8" VCM should be considered, as most 14" drives include space for a power supply and 8" drives do not. If an 8" drive is chosen, the drive power supply must be considered in space planning.

The capacity needs of the SU/ST and SU/MT applications are growing beyond the range of 5¼" drives. However, if 5¼" drive capacity reaches what is projected, and if these drives become available in volume, 5¼" drives will eventually supplant 8" drives in some systems. This will happen first at the low end (open loop stepper motor) segment of the 8" market. At the opposite end of the scale, the portion of large existing size-sensitive MU/MT applications is also likely to grow, leading to increased use of compact 14" VCM and floppy-size 8" Winchesters.

Future system storage requirements will not necessarily coincide with 8" and 14" stepper motor Winchesters. Though the physical size of such Winchesters may fit the MU/MT system, their access time, duty cycle, and storage capabilities are more suited to SU/ST systems. Thus, the use of these Winchesters by system designers will decline.

Attention must be paid to the growth capacity of the chosen device. Lateral growth paths (ie, where the device's physical size remains the same) are relatively easy to implement without changing interface or system packaging. Vertical growth paths (ie, where the physical size of the drive changes) occur less frequently due to the relentless capacity increases in the 5¼" and 8" disk sizes. Nevertheless, both growth paths are important due to the increasing propensity of system manufacturers to repackaging successful systems for different markets. For example, standalone machines are souped up to serve multi-user markets, and multi-user systems are downsized to serve desktop markets. In both cases, travel along a growth path, where the drive interface is common, is much easier than if interface, power, and software changes are required.

A checklist for high performance

To evaluate high performance Winchesters, several other issues need to be addressed. These include system architecture, system integration, reliability, vendor viability, and total ownership cost.

Drive performance, which is key in MU/MT applications, is affected by system architecture. Small changes in disk drive specifications or system timing requirements can drastically affect total system performance. Consider a microsecond change in the time required to switch heads. This change could preclude reading the next disk sector, causing tens of milliseconds to be added to a multi-sector operation. Similarly, an increase in data rate could cause sectors to be missed because of a sub-optimal interleaving factor, again adding tens of milliseconds to each operation.

When evaluating system performance with different Winchester drives, it is important to verify that the disk is not constrained by a system parameter (like interleave factors). In most disk drive applications, a significant portion of the total transfer time is spent in seeking and waiting. These times are overlapped and minimized as much as possible in a well-designed system. Many variations have minimal effect. When a boundary is approached, however, performance often changes suddenly and drastically.

TABLE 1

Mass Storage Requirements for Three Popular System Types

<table>
<thead>
<tr>
<th>SU/ST</th>
<th>MU/MT</th>
<th>SU/MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated data base</td>
<td>Shared data base</td>
<td>Dedicated/shared data base</td>
</tr>
<tr>
<td>Up to 20M bytes</td>
<td>30M to 400M bytes</td>
<td>20M to 50M bytes</td>
</tr>
<tr>
<td>Low cost per unit is key</td>
<td>Low cost/megabyte is key</td>
<td>Both cost/unit and cost/megabyte considerations</td>
</tr>
<tr>
<td>Slow data access acceptable</td>
<td>Fast data access required</td>
<td>Moderately fast data access required</td>
</tr>
<tr>
<td>Light duty cycle imposed on actuator</td>
<td>Heavy duty cycle</td>
<td>Moderate duty cycle</td>
</tr>
<tr>
<td>Small size is key: used in portable desktop systems, floppy disk cavities</td>
<td>Small size is helpful: used in pedestal or rackmount systems</td>
<td>Small size is key</td>
</tr>
</tbody>
</table>

TABLE 2

Six Basic Types of Winchester Disk Drives

<table>
<thead>
<tr>
<th>Disk Size</th>
<th>Stepper Motor (low performance, open loop)</th>
<th>Voice-coil Motor (high performance, closed loop servo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5¼"</td>
<td>Up to 20M bytes, 85 to 200 ms</td>
<td>20M to 50M bytes, 35 to 50 ms</td>
</tr>
<tr>
<td>8"</td>
<td>10M to 40M bytes, 70 to 80 ms</td>
<td>30M to 100M bytes, 30 to 50 ms</td>
</tr>
<tr>
<td>14"</td>
<td>30M to 40M bytes, 70 to 80 ms</td>
<td>30M to 300M bytes, 30 to 50 ms</td>
</tr>
</tbody>
</table>
The Sorensen Selection.
73 LAB power supplies at their best.

Sorensen is coming on strong.
1 Models—DCRB Series.
High power, single-phase input lab power supplies. 0-7V to 0-600 Vdc, 400 to 2700 watts.

1 Models—DCRA Series.
Very high power, three-phase input lab power supplies. 0-20V to 0-600 Vdc, 5 to 20 kW.

4 Models—SRL Series.
Medium power, variable programming lab power supplies. 0-10V to 0-60 Vdc, 250 to 2100 watts.

7 Models—ORD Series.
Medium power, high speed programmable. 0-15 to 0-60 Vdc, 0.75 to 4A.

2 Models—QRL Series.
Medium power, dual output, high-speed programmable with two digital panels. 0-7.5 to 0-40 Vdc, 1.5 to 6A.

3 Models—ACR Series.
Solid-state ac line voltage regulators. 0.5 to 15 kVA.

Sorensen, a pioneer and consistent leader in LAB power supplies, puts an incredible selection of power units at your command—73 in all. They give you precise control, exceptional accuracy, programming ease and reliability—from standard packages to custom assemblies.

Total IEEE-BUS compatibility.
Using the Sorensen 488 DAP two-channel interface, every Sorensen LAB power supply and most other analog supplies can be GPIB controlled.

Sorensen leaves nothing to chance.
Our Total Quality Assurance Concept has been field-proven on over 225,000 Sorensen power supplies used by companies all over the world. We perform comprehensive testing of all components and every completed unit. What's more, Sorensen is a Raytheon Company, so you are doubly assured of uncompromising support. No wonder our 5-year warranty is the strongest protection you can get.

Sorensen Power instruments have been setting industry standards since 1943. The seventy-three LAB power supplies and 488 BUS interface now in our line represent the most proven technology available today and new products and technology are constantly emerging from the Sorensen lab. We're out front, and we plan to stay there. So look to Sorensen for power instruments.

To receive a free copy of our 128-page catalog, showing over 400 Sorensen LAB and OEM supplies, contact:

Sorensen Company
676 Island Pond Road
Manchester, NH 03103
(603) 668-4500
Telex: 94-3459 RAYEX MAN

SEND FOR ME!

CIRCLE 53
The interface—a critical choice

Choosing the Winchester is just the first step in system integration. Making it work in a prototype and then in production systems is more difficult. The interface is intrinsic to this task. More decisions have to be made regarding a new system design than an enhanced or redefined system. In either case, the interface options must be evaluated on the basis of functional integrity, application requirements (perhaps emulation), controller availability, and projected longevity of the interface.

Choosing the disk drive interface may be a bigger commitment than choosing a particular drive capacity level because of the rapidly changing storage market. Projecting disk requirements for the future of a product line is an important factor, especially assuring that the interface choice will remain appropriate. In the long run, a high level interface makes the most sense; floppy-like, external data separators make the least. Also, because the market is changing so quickly, choosing an intelligent controller or a memory subsystem may accelerate the product to production.

Higher level interfaces have technical advantages—they all contain data separators. In truly high performance products, the data separator is fundamental to data integrity. Thus, it is advantageous to the OEM to have the disk vendor responsible for an appropriate data separator design. Another advantage of higher level interfaces is their ability to deliver diagnostic status information.

Interfaces can be very simple, unsophisticated, and merely approximate floppy disk drive control capabilities. They grow more sophisticated in capability and intelligence until the drive, with its interface, actually constitutes a disk subsystem. In such a subsystem, many sophisticated disk controller functions are added to the drive’s data storage capability. For example, a low cost, low function interface provides the user with modified frequency modulation (MFM) data and bit oriented command and status information. Although this interface is the most difficult to use, it is the most economical. It may be attractive to the SU/ST large volume, cost-sensitive user who has substantial engineering and manufacturing resources, and is capable of designing, testing, and controlling the data separation circuitry required to process MFM data of higher and higher data rates.

An early OEM disk interface provides nonreturn to zero (NRZ) data (i.e., data separation is performed onboard the drive). Commands are byte oriented; status is bit oriented. Control Data Corp’s SMD interface, developed in the early 1970s, has become a standard interface for larger systems. Though most designers consider it technically obsolete (it is cumbersome to use and costly to implement), the wide range of disk drives available with the SMD interface contribute to its continuing popularity with system designers.

Making a designer’s life easier

A modern disk bus interface has an NRZ data stream like its predecessor, but both command and status information are byte oriented and the interface is typically microprocessor driven. The modern disk bus interface costs a little more than the low cost, low function interface, but is substantially easier for the system designer to use. It provides better data integrity since the data separator circuitry is onboard the drive and thus defined by the disk drive supplier. Examples of this interface include the American National Standards Institute standard and Priam interfaces.

Intelligent bus interfaces such as ISI, SCSI, and SMART are indicative of the trend toward dispersing intelligence to components of computer systems and making disk drives easier for system designers to use. Using a microprocessor to provide broad control at low cost, the intelligent bus interface is completely byte oriented and is designed to adapt readily to commonly used microprocessor input/output buses. High level versions of the intelligent bus include disk formatting and defect mapping, implied seeks, daisy chaining capabilities, selectable sector sizes, automatic alternate sector and track assignment, overlapped commands, data buffering, error correction, nonbuffered data transfers at disk speed, interleaved formats, backup device support, and logical or physical sector addressing.

Choosing the disk drive interface may be a bigger commitment than choosing a particular drive capacity level...

When OEM systems use bus interfaces, integration problems are reduced and data integrity is improved. Moreover, the OEM system gets running and into production three to four times faster using fewer resources. With the economies of scale available through volume manufacture of intelligent interfaces, the disk manufacturer can cost-effectively bring this type of product to the system manufacturer.

Reliability is Winchester technology’s key attribute. Some supporting areas need to be considered as well, since the term “Winchester” has many definitions. The essential ingredients of the IBM 3350’s original Winchester technology consisted of low mass, low force heads with contact start/stop capability, fixed media, and a sealed environment. The most common causes of
Consider the products and prices below:

You’ll soon see that Emulex is as unbeatable on price as we are in quality and performance. Included are two new Winchester disk controllers with remarkably high performance and reliability (MTBF over 70,000 hours).

All Emulex Q-bus tape and disk controllers have the same microprocessor architecture and all the key features of our PDP-11 and VAX-11 products, including error correction, microdiagnostics, and software transparency. Price our performance. Write or call: Emulex Corporation, 2001 Deere Ave., Santa Ana, CA 92705; (714) 557-7580; TWX 910-595-2521.

Outside Calif.: (800) 557-7580.

big SMD drives on your -11.

Links Q-bus with 1-2 SMD-3 drives. Software transparent media compatible with DEC 02, RM05, RP06. Features 3-4 data buffer, 32-bit ECC, to half a billion bytes capacity, or 1500 units in service!

Price each in 100 quantities. All Emulex tape, and communications products be combined to reach quantity prices.

SC02 (RL01/02, RP02/03, RK06/07)
Now $1480*

New! ANSI interfacing for 8" Winchester.
Supports up to 8 drives per single quad-board controller. Fits into any single LSI-11 back plane quad slot. Same design, performance, and high reliability as the SC02.

SC04 (RL01/02, RP01/02, RK06/07)
Now $1480*

Q-bus embedded dual-density tape controller.
Handles all open-reel half-inch tapes – 800/1600 bpi, operating at 12.5-75 ips. Compatible with DEC’s TU10/TM11. Daisy-chain up to 4 drives. Firmware includes a self-test and extended diagnostics. Fully embedded.

TC01 (NRZ) Now $1150*
TC01 (PE) Now $1470*

EMULEX
The genuine alternative
CIRCLE 54
By the end of the 1980s, storage of up to 60M bits/in² of disk surface is anticipated...

failure in pre-Winchester disk drives were improper handling of the packs and cartridges by computer operators, and exposure of disk packs and cartridges to hostile environments (including the office). Today, disks and heads are permanently enclosed in most Winchester drives. This design is vital to the Winchester’s improved reliability.

Where reliability is concerned, the terms “high performance” and “stepper motor” are almost mutually exclusive. Stepper motors typically have shorter lives in the heavy duty cycle applications of MU/MT systems. VCMs designed for this kind of use last longer. Moreover, data recovery is not as affected by temperature or vibration in drives using closed loop servo voice-coil positioners. Open loop systems are more sensitive to the effects of temperature change and external vibration. Sampled data systems usually take care of temperature effects, but not the instantaneous effects of shock or vibration, which may be induced by simply bumping a desktop system.

Analyzing a vendor’s track record before committing considerable resources to that firm is an important consideration. The vendor must not only be able to support the prototype systems, but also the follow-on production that will be put in place. The manufacturer’s technical support staff is of basic importance in providing application assistance and servicing the disk drive products once on the market.

Worth the price
While some drives cost more initially, they may have more inherent reliability, and thus require fewer service calls or repair incidents in the long run. A higher initial cost drive may, in fact, have a lower life cost of ownership.

It is predicted that improvements to disk drive technology will vastly increase disk density. By the end of the 1980s, storage of up to 60M bits/in² of disk surface is anticipated through the use of plated or sputtered disk surfaces, new recording techniques, and thin-film heads. This potential for improvement in sealed disk drive technology ensures that disk drives will provide the most economical and reliable means of storing and retrieving large amounts of data in the future.

Please rate the value of this article to you by circling the appropriate number in the “Editorial Score Box” on the Inquiry Card.

High 713 Average 714 Low 715
DEI Beats the Cartridge Tape Drive Myth:

MICROTAP® ¼ INCH CARTRIDGE DRIVES FIT THE 5¼ INCH FOOTPRINT

A 5¼ inch cartridge tape device to back up a new Micro-Winchester is no fairy tale. At DEI it's a fact. The new DEI Microtape® ¼ inch cartridge tape drives have a compact 5¼ inch form factor and accept an ANSI standard ¼ inch tape cartridge. Models are available with DEI's unique end-load or side-load designs and in multiple mounting attitudes, therefore virtually any system size or configuration requirements can be met.

Furthermore, Microtape® drives come in a streaming version, an industry-standard stop/start and a serpentine stop/start model. Each of these drives features significant technological advances—a culmination of the engineering features of DEI's two previous lines of cartridge tape drives which are represented by over 100,000 units in the field. The result of this proven technology is a simple reliable product—the ideal tape peripheral.

So stop searching for the tape drive to fit your system. You've found your footprint. Microtape® from DEI. Call or write today for more information. Data Electronics, Inc., 10150 Sorrento Valley Road, San Diego, CA 92121. Telephone (714) 452-7840, Telex #69-7118.

DATA ELECTRONICS, INC.
It isn't just plug-compatible, it's software-compatible.

Introducing AMS 315, the first Winchester precisely designed to the storage specifications of 300-MB removable pack drives. So for the first time you get all the advantages of a 300-MB Winchester without rewriting your software. Or redesigning your interface.

We're truly SMD compatible.
Century's AMS 315 has the same 20,160 bytes per track.
Same 19 tracks per cylinder.
Same 823 cylinders per spindle.
Same 3,600 RPM rotation.
All in one-third the space.
Using less than half the power.
At about two-thirds the initial delivered cost.
Plus you get more than twice the reliability and eliminate preventive maintenance so the on-going cost of ownership is less, too.
Expand your mass storage alternatives with Winchester technology. You'll see the difference right away. Your system never will.
Call to arrange a test drive.
Century Data Systems, Marketing Communications C1-10, 1270 N. Kraemer Blvd., Anaheim, CA 92806, (714) 999-2660.
AMD House, Goldsworth Road, Woking, Surrey, England, GU 21 1JT, 44-4862-27272.
Finally, a Winchester that goes head-to-head, track-to-track, cylinder-to-cylinder, byte-to-byte with 300-MB removable pack drives.

Century Data Systems
AMS 315
IF OTHER WINCHESTERS HAD THESE,

VERTICAL INTEGRATION

PRODUCTION

R&D

STORAGE CAPACITY
They could give you this.

Nobody can match our prices because nobody builds Winchesters the way we do. We make more of our own critical drive components than any other manufacturer. That helps us keep quality up and costs down.

We also keep our production capabilities at least 50% above our order level. So we can always deliver. Right now, we have the facilities in place to produce 40,000 Winchesters a month. And we're planning to expand.

To ensure that we stay ahead of the market in technology as well as low prices, we have committed ourselves to the most aggressive R&D program in the industry. We spend millions every year on pure product research.

As you can see, we're into Winchesters in a big way. With a wide range of drives, including both open and closed loop models.

They start with the world's lowest priced 5¼" family — the TM500 Series: 1, 2, & 3 platter drives, 5MB (formatted) per platter. TM500 Series drives have 306 cylinders and 345 tracks/inch and are virtually temperature-insensitive. The top of our line is the TM703, a closed-loop, high capacity 31MB drive with 600 tracks/inch. And we're working on a variety of new products, so you can continue to grow with us.

Since we're the world leader in 5¼" floppies, you can fill all your small drive needs from one source. In whatever volume you want. Backed by an impressive 105% guarantee.

No wonder we're the hot shop for Winchesters. Nobody's drives give you more. For less.

The most successful disk drive company you ever heard of.
We specialize in the kind of disk drive R&D you can bank on: Response and Delivery.

MPI is one company that hasn't forgotten how it achieved its position as a solid third in a highly competitive market.

First, we got there by offering you floppy drives that are every bit as reliable as we are. Because producing top-quality, top-performing drives has always been our number one commitment.

Our 3½" line comes in three different densities (48 TPI, 96 TPI, 100 TPI) to match your application. They're single and double-sided drives with capacities from 250 Kbytes to 1 Mbyte. And our Slimline™ series, at 2" thick and 11.5" deep, are quite simply the smallest 8" disk drives ever made.

Second, we understand that even the world's best-performing drives aren't much good if you can't get them when you need them. So we've created our own second source: Singapore's first computer peripheral manufacturing company, a plant that mirrors our plant in California and duplicates its high-precision output.

Third, when you need help, we're always ready to respond. And we think that's important. It's why we've made our product support group part of top management. Consequently, they've seen to it that our field support has grown as fast as our sales.

What all this adds up to is Response and Delivery, the only kind of R&D you can bank on. And that's what we specialize in at MPI.
MICROFLOPPIES BATTLE FOR PREEMINENCE

Designers face big decisions about tiny disk drive formats and standards. The reason: There is a large number of contenders about to slug it out in the sub-4" arena.

by Robert Abraham and Ron Munro

System designers and integrators have a new random access data storage system to consider—the sub-4" disk drive. Because its diameter is under 4" and its volume is about one fourth the standard 5 1/4" drive, these disk drives are destined for such applications as small computer systems, programmable instrumentation, electronic typewriters—any application where small physical size is a prime consideration. The first of the expected rush of competing designs and technologies has already been introduced, and drive and media manufacturers, as well as the American National Standards Institute (ANSI), are attempting to standardize media size and characteristics, drive capacity and configuration, and interface compatibility.

A major design goal for many computer systems has been smaller storage devices at lower costs. Now that floppy disk dimensions have shrunk to less than 4" in diameter, disk incompatibility is one of the key issues being confronted by the disk drive industry. Standardization is essential if interchangeability, second-sourcing, and software transportability are going to be possible. Media questions, such as oxide coating thickness, protection, centering techniques, and packaging, need to be answered. Manufacturers are also dealing with such drive performance standardization issues as rotational speed, capacity, data transfer rates, physical configuration, and interface compatibility. Although one focus of the standardization effort is the ANSI committee, just as in the past the marketplace is helping to sort out the manufacturer's various alternatives.

The Microfloppy Standards Committee (MSC) consists of representatives from media manufacturers—Verbatim, Xidex, Brown Disk, and BASF—and drive manufacturers—Shugart, MPI, and Olivetti. Tandon, Seagate, HP, and Sony, once original members, withdrew for various reasons. The MSC diskette proposal incorporates much of the Sony diskette design, is based on a 3 1/2" oxide-coated, hard-jacket diskette, and could be used by numerous drive manufacturers. Its specifications include 136 tracks per inch (tpi), 8178 bits per inch (bpi) linear density, 500k-byte storage capacity, 80-track single-sided format, and 500k bits per second (bps) transfer rate.

The diameter of the disks used in this generation of computer-grade sub-4" disk drives will be selected from at least five competing configurations. By late 1982, four sizes, all under 4" in diameter, had surfaced: Hitachi, 3"; Tabor/Dysan, 3 3/4"; Sony, 3 1/2"; MSC, 3 1/2"; Canon, 3.8".

Disk diameters affect system parameters such as capacity, packaging, and access time. When compared to its larger 5 1/4" and 8" cousins, the sub-4" disks provide higher density in a smaller package while offering similar performance. This phenomenon—higher track density on a smaller diameter disk—is due to the basic thermal and hygroscopic properties of the coated Mylar media.

In normal operation, a Mylar disk expands and contracts due to changes in ambient temperature and...
Sony Corp introduced the first sub-4" disk drive and diskette almost two years ago. Based on their own 3½" diskette, Sony's OA-D30V disk drive was originally aimed at Sony's office equipment market. Sony has since proposed a modified version of their diskette to ANSI that encompasses many existing 5¼" floppy characteristics. This new version, which should be available this spring, features an 80-track single-sided format. The diskette is encased in plastic, and has a metal hub that is intended to prevent wear and eliminate chucking error. A spring-loaded aperture cover opens automatically when the disk is inserted into the drive. Upon removal, it closes automatically preventing damage to the media. Sony indicates that the diskette can support a 1.6M-byte storage capacity—equal to that of an 8" drive—and is compatible with the original 70-track version.

The recording device is a magnesium-zinc crystal ferrite head that uses video recording techniques. A tunnel erase head with a narrow 125-micron track width is instrumental in achieving high density. A stepper motor and lead screw comprise the positioning elements of the head.

Published performance characteristics of the Sony 70-track drive include an average access time of 365 ms, a track to track access time of 15 ms, a head settling time of 15 ms, and an average latency of 50 ms. Drive dimensions are 2" high by 4" wide by 5½" deep (5 x 10 x 12 cm).

Two configurations of Tandon's TM36 microfloppy have been designed to promote standardization of two classes of peripherals. TM35-4 is compatible with Sony's OA-D30V micro-floppy disk drive in three areas—interface, software, and diskette—but differs from the Sony OA-D30V drive in physical dimensions, mounting holes, and the fact that it is a double-sided recording drive.

The Tandon TM35-4 disk drive stores 875k bytes on a 3½" disk. It accesses data in an average time of 85 ms and moves from track to track in 3 ms. The Tandon TM35 occupies a space only 1⅛" high by 4" wide by 6½" deep. The Tandon TM35-4 has 88% of the sub-4" disk drive market.
the data storage of a standard 5 1/4" floppy drive, yet takes up only 25% of the volume. Moreover, this new 3 1/2" floppy drive records more than half as much data as a standard 8" drive's 1.6M-byte capacity, while occupying 13% of the space.

The Tandon TM35-4 disk drive uses a 3 1/2" Sony-type diskette with a rigid case, a hard metal hub, and an oxide coating. The diskette achieves 437.5k bytes/surface with standard frequency modulation/modified frequency modulation encoding. The cost is commensurate with a 5 1/4" diskette and has the added value of a firm jacket and a hard centering hub. A recording density of 7610 flux reversals/in has been achieved on the 3 1/8" diameter disk. The capacity of 437.5k bytes/surface is achieved with 135 tpi, and 70 tracks/side. This compares to 5877 flux reversals/in, 96 tpi, and 80 tracks/side for a comparable 5 1/4" drive.

Tandon's second microfloppy configuration, the TM35-2 is compatible with the 5 1/4" industry standard interface. This allows systems integrators who have existing 5 1/4" controllers and software to incorporate the new 3 1/2" disk drive by simply making a change in the package. No controller redesign or software changes are required. Furthermore, the Tandon TM35-2 produces a disk format written as if it were a 5 1/4" disk, with 70 tracks/side, double-sided recording, 250k-bps transfer rate, and 500k-byte capacity. Read/write and control electronics are functionally similar to that of a 5 1/4" drive but occupy less space. An onboard Intel 8048 microprocessor controls the spindle motor, head positioning, power-up initialization, and some diagnostics.

Because of the smaller disk diameter in the 3 1/2" drive and use of standard motor speeds in both Tandon drives, the bit density is adjusted to achieve the desired data transfer rates. The disk spins at 300 rpm in the TM35-2 to attain 250k bps and double-density, and at 600 rpm in the TM35-4 to achieve a transfer rate of 500k bps. The motors are direct-drive, brushless units mounted directly below the disk.

A variation of the patented Tandon double-sided floppy recording head is used. The original design features a fixed button-shaped head for recording on the bottom side of a floppy disk and a movable slider-type head for the top surface. The top head is mounted on a pivoted, low-mass, spring-loaded arm. This arm gently forces the head against the disk while recording, without causing undue wear on the disk or head. It also minimizes head settling time. For the TM35, a manganese-zinc head has been selected to match the narrower recording tracks. A band drive positions the head, and a track to track access time of 3 ms is achieved. This is up to five times faster than the speed attained with lead screws or other devices. The band-drive positioner is virtually frictionless, assuring accurate track positioning.

The TM35 drive provides a fail-safe feature that prevents improper loading of the diskette. An automatic shutter that will be available on the diskette will close over the exposed portion of the disk when it is not in use, keeping out dust and other contaminants. Since the TM35 is dc powered, it can be used in either domestic or overseas operations without making changes in the drive. Less than half of the power is required, and less heat is generated by this drive than by drives requiring both ac and dc power.

Hitachi has proposed a microfloppy drive based on a diskette with a 3" diameter. Drives utilizing the same 3" diskette will also be manufactured by Matsushita/Panasonic and Sankyo. The media will be manufactured by Hitachi/Maxell and TDK. The 3" diskette cartridge has been designed to be compatible with Japanese standard postal dimensions to avoid charges for odd-sized documents. The diskette features an automatic aperture shutter that prevents damage to the media. Its index can be detected optically by an index hole or mechanically by an index notch that is part of the hub. Thus, the diskette can be used in a variety of memory architectures.

The double-sided diskette format will feature 100 tpi, 8946-bpi linear density, 40 tracks/side, and a 0.5M-byte capacity. The media employs a 3-mil substrate and a 60-μin oxide coating. Future double-sided versions of the diskette reportedly are planned that will feature 200 tpi, 9000 or 15,000 bpi, 80 tracks/side, and 1.0M- or 1.6M-byte capacity. It is reported that the 1.6M-byte diskette will use a new substrate material that has improved thermal and hygroscopic characteristics.

The Hitachi drive is characterized by an average access time of 55 ms, track to track access time of 3 ms, head settling time of 15 ms, and an average latency of 100 ms. Transfer rate is 125k bps for single-density and 250k bps for double-density. The Hitachi drive is interface-compatible with 5 1/4" floppy drives.

Tabor Corp, a startup disk drive company, split off from the original MSC. The company proposed a 3 1/2" diskette to ANSI to be manufactured by Dysan. Seagate Technology has reportedly agreed in principle to manufacture the Tabor drive under manufacture license. The diskette cartridge is rectangular, measuring 3.268" by 3.425". A soft, folded jacket similar to that used in 5 1/4" diskette encases the media. The diskette employs a self-indexing metal hub similar to the Sony diskette. Media coating is 600-oersted, 60-μin oxide coating on a 3-mil substrate. The Tabor drive has a capacity of 500k bytes. The format is 80 double-sided tracks, and the transfer rate is 250k bps. Disk rotation speed is 300 rpm. The drive will be interface-compatible with 5 1/4" floppy drives.

Canon Electronics has developed its CMD500 disk drive around a 3.8" diskette. Drive dimensions are 2.91" high by 4.29" wide, and the diskette is housed in a flexible jacket. A capacity of 40k bytes is the smallest of the computer-grade drives offered. As such, the CMD500 appears to be designed for program loading functions. Recording density is 2792 bpi, track density is 25.4 tpi. There are 16 recording tracks. The disk rotates at 100 rpm, permitting a data transfer rate of 33.32k bps. Rotational latency is 300 ms, and head settling time is 60 ms. The head positioning mechanism is a steel band, driven by a stepper motor. A belt drive is used for disk rotation. Developed as an extension of the floppy disk drive, the Canon CMD500 has an interface similar to a 5 1/4" mini-floppy drive.
humidity. A data track can physically wander within a certain tolerance on a disk and still be read accurately. However, beyond this allowable tolerance, the recording head—which steps across the disk to preset track positions—cannot recover the data. The magnitude of the thermal expansion increases proportionally with disk size—the smaller the disk, the less expansion and the higher the achievable track density.

A comparison of the recording areas available on 3⅛", 5¼", and 8" disks is shown in Fig. 1. The 3⅛" disk packs 437.5k bytes into a 135-tps and 70-tracks/surface configuration. The 5¼" disk achieves only 13% more capacity—500k bytes—from a 96-tps and 80-tracks/surface format. The 8" offers less than 50% more capacity—800k bytes with a 48-tps and 76-tracks/surface layout.

What is the optimal diameter and resulting track count for microfloppies? Sony chose the 3⅛" diameter.

Fig 1 Radial positions of disk areas available for recording. Comparison reveals that density can be increased on smaller disks due to reduced thermal and hygroscopic properties of Mylar media.

Originally a 70-track configuration, the disk has a linear density of 3805 bpi single-density and 7610 bpi double-density. Unformatted capacity per side is 218.8k bytes single-density and 437.5k bytes double-density. Unfortunately, this configuration is not compatible with the 5¼" mini-floppy disk drive controllers or software.

The 3⅛" disk diameter, however, has enough area (4.1 in²) to accommodate 80 tracks/surface at 135 tpi, making a 125k-byte/side, single-density capacity possible. Tandon, using the Sony 3½" diskette in its TM35-2 disk drive, obtains this 5¼" compatible format. Sony is expected to introduce a product in early 1983 that uses an 80-track/side configuration and double-density recording. Drives with 250k-byte, 500k-byte, or 1M-byte capacities can be easily designed that are the exact capacities of existing 5¼" disk drives. A 1.6M-byte capacity on a 3½" surface is also possible. This capacity—the same as that of a standard 8" disk—could be achieved by a combination of closer track spacing and increased linear density on improved disk substrate and coating.

Hitachi’s 3" diskette dimension results in a somewhat smaller—2.76 in²—disk area. This 3" diskette is capable of recording 40 tracks/side with a 100-tpi track density. With this format and area, a 1M-byte capacity/disk is not as easily achievable.

The Canon 3.8" diskette has the most available area of the announced disks. However, the drive using this disk employs a 16-track layout and a track density of 25.4 tpi, and offers a recording density of 2792 bpi and a capacity of 40k bytes. Although program loading is apparently an application for this disk drive, the Canon drive falls short of the higher storage capacities that are expected from sub-4" drives.

In addition to disk size, the thickness of both the oxide coating and the substrate are under scrutiny in the standardization effort. The MSC is recommending a coating that is 40- to 50-μm thick and a 650-oersted level of coercivity. Sony is proposing a 100-μm and 500-oersted coating. Media interchangeability between drives would be furthered by a coating standard.

The packaging of the microfloppy diskette is yet another standardization issue. Two basic packaging schemes exist. The first uses a hard jacket to encase the disk. The second uses a flexible jacket, similar to that used on mini-floppies. Sony is the leading advocate of the hard jacket—their OM-D30V diskette is encased in hard plastic. Hard jackets reduce friction between the moving disk and its stationary envelope and protect the recording medium from damage during handling. Hard jackets also benefit prerecorded floppy disks because the jackets allow greater yields and easier automated handling in recording equipment. The flexible jackets, on the other hand, offer user familiarity, minimal cost, and minimum storage space requirements.

The MSC favors incorporating an automatic shutter into the hard disk jacket. Sony, which introduced its diskette with a manual shutter, is expected to add a spring-loaded aperture cover. The shutter will then open automatically when the disk is inserted in the drive and close automatically when the disk is removed. Dust, dirt, fingerprints, and other performance inhibitors are kept out. Hitachi’s 3" diskette also features an automatic shutter.

The dimension of the centering hole is an issue. A metal centering hub, part of Sony’s 3⅛" diskette, allows accurate track positioning without causing eccentricity or wear. Fig. 2 compares conventional mechanisms and Sony’s disk chucking mechanisms. The MSC is recommending a 3-mm hole, 1 mm smaller than the hole in the Sony diskette. Two disk rotational speeds are contending for acceptance as the standard, and data transfer rates will be determined by the choice made. The 5¼" standard speed of 300 revolutions per minute (rpm) allows a sub-4" drive to transfer data at 250k bps—the same rate as that of a 5¼" mini-floppy drive. Compatibility with the existing 5¼" software base is an obvious benefit. A 600-rpm rotational rate—the second contender—doubles the data transfer rate to 500k bps. This rate coincides with 8" floppy rates and provides the higher surface...
Literate IC’s for your Winchester disk drive.

SSi’s first read/write Winchester IC developed in 1976.
In 1976, Silicon Systems developed its first read/write monolithic bipolar integrated circuit for the IBM-type 3350 Winchester disk drive. Dubbed the SSI 104, it integrated all of the required read/write, control, and data protection functions on one chip in a flat pack that could be mounted directly on the head arm assembly. The SSI 104 soon became the industry standard.

Now meet the SSi family of IBM-type Winchester IC’s.
Today, SSi offers a whole family of IC’s for the IBM plug-compatible Winchester market. The SSI 104 and 105 read/write circuits and associated servo amplifier are available now for use with the IBM-type 3340/3350 ferrite-head series; and two circuits, the SSI 114 and 116, have been introduced for the IBM-type 3370/3380 thin-film-head series. SSi’s “literate” chips not only read and write data on the disks, but they also detect fault conditions and provide for head selection.

IC’s for micro’s, mini’s, streamers, and tape drives too.
For the rapidly expanding 5¼-inch micro and 8-inch mini-Winchester market, Silicon Systems offers its SSI 115 and 117, 5 and 6 channel read/write IC’s; and for 8 and 14-inch IBM non-compatible drives there’s the SSI 108. In fact, SSi has also developed more than a dozen custom IC’s for rotating memories of various designs, including floppies, streamers, and tapes. So if we don’t have the exact chip you need—we’ll make a custom IC for you.

Please call me.
Please send me product information on your SSi family of disk drive read/write IC’s.
Please send me a copy of your “Custom Integrated Circuits” brochure.
If you’re in a hurry, call (714) 731-7110, Ext. 168.

Name
Company
Address
City State Zip
Phone
Silicon Systems incorporated
14351 Myford Road, Tustin, CA 92680
CIRCLE 60
velocities and data transfer rates needed in future office systems that will be using small storage peripherals. In an attempt to satisfy diverse market needs, Tandon offers drives capable of operating at both speeds.

A concerted effort to make the emerging sub-4" microfloppy disk drive compatible with existing 5¼" drives is underway. The MSC recommended to ANSI that both software and controller compatibility be standardized. The large 5¼" software base and huge population of 5¼" drive users will be available to the microfloppy supplier. As the comparison chart in the Panel shows, 5¼" compatibility is built into the majority of sub-4" drives. Tandon's TM35-2, for example, is compatible with the 5¼" industry standard interface, transfer rate, and software.

This interface (Fig 3) uses a 34-pin edge connector to standardize the communications between the controller and the disk drive. The controller signals the selection of the drive, motor startup, head movement, data to be recorded, write enabling, and disk-side selection through predetermined pin assignments. (See the Table.) Drive to controller signals move through the remaining pins. They communicate ready status, index location, position of the first track, read data, and write protection status.

Fig 2 Disk centering techniques used on conventional (a) and Sony (b) hubs. Surrounding disk centering hole with rugged metal ring prolongs disk life, improves centering accuracy, and ultimately reduces inner track errors.

Fig 3 Tandon TM35 microfloppy disk drive interface lines. The 34-pin edge connector used in interface provides compatibility with 5¼" disk drives.
Who says SMD Controller design is so r-r-rough?
Introducing our new WD1050.

When you make the Wizards of Disk Controllers your design partners, there's no cause to approach any disk interface task with trepidation. Because now, in addition to our industry standard floppy disk controllers and ST500/S1A1000 Winchester disk controllers, Western Digital delivers a single chip solution to SMD, CMD, MMD, LMD and FHT interfaces. Oh my!

It's the WD1050, a 64-pin VLSI controller/formatter. That's one chip, instead of up to 40 MSI devices and a microprocessor. And instead of innumerable nights and weekends of software drudgery.

How powerful is the WD1050? Powerful enough to handle eight high level macro commands, auto format/verify with programmable interleaving, single/multiple record operation, hard sector formatting, CRC checking with external ECC compatibility and a 16-bit direct buffer access interface for disk drive-to-buffer data transfers.

Systems builders already following our Yellow Brick Road of disk controller solutions know that our ongoing LSI innovations soon turn into cost effective board level products for those who prefer "buy" to "build":

Starting today, though, adding the extra capacity and higher performance of SMD compatible drives to your system doesn't take courage. Just the brains to start with our new WD1050.

The next step is yours. Call our Controller Hot Line, (714) 966-7827 for more details. Or write on your letterhead.

Components Group 2445 McCabe Way, Irvine, CA 92714, (714) 557-3550

Western Digital Corporation

CIRCLE 61
Interface Pin Assignments

Input control lines
(Controller to disk drive)

<table>
<thead>
<tr>
<th>Ground</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Connector clamp</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Spare</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Drive select 3</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>Drive select 0</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>Drive select 1</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>Drive select 2</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>Motor on</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>Direction select</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>Step</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>Composite write data</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>Write enable</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>Side one select</td>
</tr>
</tbody>
</table>

Output status lines
(Disk drive to controller)

<table>
<thead>
<tr>
<th>Ground</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>Index/sector</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>Track 0</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>Write protected</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>Composite read data</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>Connector clamp</td>
</tr>
</tbody>
</table>

Software compatibility is also a goal in mating the micro- and mini-floppy worlds. A system designer determines capacity and software format, then organizes the disk into sectors. In “soft sectoring,” one index hole provides the beginning of a track timing pulse. Sectoring is then determined by the disk controller and operating software, allowing the system designer to define the sectors. The number of sectors vary, but for interchange purposes, the industry standard 5½ " floppies is 16/track—a standard that can be adopted for the sub-5½ " floppies.

Present momentum is nudging the sub-4 " disk drive industry toward the adoption of the 3½ " media dimension. Sony’s choice of media and packaging is accepted by designers and manufacturers as well as performance oriented users. Ultimately, the market itself may determine the sub-4 " disk configurations that will be called “standard.” It is not, however, beyond the realm of possibility for several standards to coexist in the short term. In fact, there may eventually be a need for two standard configurations of sub-4 " disks: one for high capacity applications and one for lower capacity, less costly installations.

Please rate the value of this article to you by circling the appropriate number in the “Editorial Score Box” on the Inquiry Card.

High 716 Average 717 Low 718
The 100mm Winchester.
Removable. Half Size.
Half Price. Full Performance.

It's here. Winchester capacity and performance at half the size, half the price. And yes, available in removable or fixed disc drives.

The SyQuest 100mm (3.9") SQ306 packs five megabytes (formatted) in half the height of a 5½" Winchester. And when the Q-Pak™ cartridge is full, just slip in another one. It's the best of both worlds—the reliability of Winchester with the transportability of removable cartridges.

A better drive.
SyQuest drives give you a better fit. Mount SyQuest drives almost anywhere. Under a keyboard. In your terminal. Fit two in one minifloppy space. SyQuest drives are only 1.625 inches high, 4.8 inches wide, and 8 inches deep.

Easy integration. The SQ306 has the same pin-outs, timing, data transfer rates, and track/sector formatting as industry-standard 5½" Winchester drives. Use standard Winchester controllers and interfacing procedures, standard minifloppy DC power supplies.

Better price/performance. SyQuest delivers five megabytes with proven Winchester heads, positioning, brushless motors and air filtration. Buffered seek reduces average seek time to 75 msec. But the cost is half of comparable 5½" Winchesters.

Q-Pak™—a better cartridge.
Better reliability. Closed-loop servo with imbedded digital servo (Digilok™) ensures cartridge interchangeability while allowing variable sectoring. Chromaflux™ graphite coated thin film metallic alloy discs protect against contamination. No long purge cycle required.

Available now.
SyQuest is shipping. In 1983 we will deliver more than 250,000 drives. Second sources will be available. So order your evaluation units today. For more product information, circle our readers' service number. For delivery and pricing information, write or call Larry Sarisky, SyQuest Technology.

It Fits.
Microcomputer selection is more than CPU and memory choices. SMS is a leader in integrating software, peripherals, and packaging into reliable microcomputer systems. Now SMS extends its microcomputer product line to give you an even wider choice!!

A CAPACITY CHOICE. Choose the MDX series 5½" Winchester microcomputer with up to 15 Mbytes of storage, or choose the DSX series 8" Winchester microcomputer which can be expanded to over 75 Mbytes! An 8" floppy for backup, software updates, and data interchange is also included.

A CONFIGURATION CHOICE. Choose DEC's LSI-11 Q-bus architecture or the IEEE 796 Multibus architecture. Industry standard single board computers such as the LSI-11/23, 8086 Multibus, Z8000 Multibus and M68000 Multibus are plug compatible with SMS' MDX and DSX series products. MDX configurations support over 1 Mbyte of memory while DSX configurations support over 3 Mbytes!

A SOFTWARE CHOICE. Choose industry standard software like single user operating systems CP/M-86 or RT-11 or multi-user multitasking iRMX-86 or RSX-11M. Software compatibility between MDX and DSX is guaranteed! Industry standard DEC and Multibus operating system software run a wide variety of application software. DEC application development software includes TSX (a multiuser RT-11), RTFILE data base management, WP SATURN word processing, Dynix (based on Unix V7.0), and VENIX (real time UNIX).

A PACKAGE CHOICE. Choose the compact MDX or the larger DSX package. The MDX weighs only 40 lbs, measures 11.2"H by 9.5"W and has a four quad slot Q-bus or five slot Multibus backplane. The DSX weighs only 80 lbs, measures 10.5"H by 17.5"W, and has an eight slot Q-bus or Multibus backplane.

STANDARD FEATURES. Some features are standard, such as: State-of-the-art controllers with ECC, automatic error retry, Winchester flaw management, and up to 427 Kbytes/sec data transfer; DEC, INTEL and IBM floppy format compatibility; convenient "Minute-per-Megabyte" Winchester image backup; modular construction, minimal parts count and on-board diagnostics; and, of course—SMS field proven system reliability.
compatible microcomputers

Scientific Micro Systems, Inc.
777 E. Middlefield Road
Mountain View, California 94043
(415) 964-5700

AUTHORIZED SMS DISTRIBUTOR FOR DEC
Q-BUS PRODUCTS: FIRST COMPUTER
CORPORATION (312) 920-1050

SMS SALES OFFICES:
Phoenix, Arizona (602) 978-6621;
Boston, MA (617) 246-2540; Atlanta, Georgia
(404) 296-2029; Morton Grove, Illinois (312)
966-2711; Yorba Linda, California (714) 993-3768.

CIRCLE 64
Seagate's ST400 Series is the most popular family of Winchester disc drives ever offered. And no wonder. These 5 1/4" Winchesters deliver more value for your money. More quality. More reliability. More performance. And all at a better price.

The ST400 Series offers the right capacities. 6.38, 12.76 or 19.14 megabytes (unformatted). All use the same industry-standard ST506 controller and matching mini-floppy form factor for easy upgrade.

The right features.
All use manganese-zinc heads, advanced stepper motor, metal band actuator, open loop head positioner, and patented air flow spindle pump. An onboard microcomputer provides buffered seek and fast step algorithm for an average seek of 85 milliseconds, including settling time.

The right quality.
Seagate backs the ST400 family with a full one year warranty, our industry-leading "105% Seagate Guarantee," and the world's biggest support team devoted entirely to 5 1/4" Winchesters.

Meeting special needs.
Looking for faster, more reliable removable storage? Go with our new ST706

The ST400 Series

<table>
<thead>
<tr>
<th>ST406</th>
<th>ST412</th>
<th>ST419</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unformatted capacity (MB)</td>
<td>Formatted capacity (MB)</td>
<td>Average access time (ms)</td>
</tr>
<tr>
<td>6.38</td>
<td>12.76</td>
<td>19.14</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>$610</td>
<td>$735</td>
<td>$890</td>
</tr>
</tbody>
</table>

Seagate Technology

360 El Pueblo Road, Scotts Valley, California 95066 (408) 438-6550, TELEX 172114 SCVL
Regional Sales Offices: Hopkinton, Massachusetts (617) 435-6961; Newport Beach, California (714) 951-9964; Dallas, Texas (214) 783-6711
European Sales Office: Krellerstrasse 21, 8000 Munich 80, West Germany, 89-43-13-900, TELEX 5 213 379
Authorized U.S. Distributor: Arrow Electronics.

"Turning the tide in disc technology"
Em-Pac® software lets you

Squeeze μP development support out of your CP/M-80 system.

Get more performance from your personal microcomputer system.

Next time you plug in your CP/M-80 based computer, plug in Applied Microsystems' powerful microprocessor development support. Adding our new Em-Pac software to one of our EM-Series Diagnostic Emulators will turn your personal computer into a powerful microprocessor development system. With many of the features you'd expect from a system costing three times as much.

Symbolic debugging saves time.

Em-Pac software lets you download and debug software using the same labels and symbols used in the program. Any values, like the one defining breakpoints or memory addresses, can be referenced against the symbol names. This speeds up debugging and reduces the time you spend integrating hardware and software.

Greater flexibility shortens the engineering schedule.

English language commands simplify the programming process. You can also define a long string of commands for the emulator to execute with only one command. And Applied Microsystems can provide support for the 8048, Z80, 8080 and 8085 families of microprocessors. So you don't have to learn a completely new system next time you want to change microprocessors.

Find out more . . .

Contact Applied Microsystems for more information on our new CP/M-80 or ISIS-II compatible software. Call us TOLL FREE at 800-426-3925, or write Applied Microsystems, 5020 148th Ave. N.E., P.O. Box 568, Redmond, WA 98052.

Applied Microsystems

Microprocessors Supported:

8035 Z80
8039 Z80A
8040 Z80B
8048 MK3880
8049 MK3880A
8050 8085A
8748 8085A-2
8749 8080A
8080A-1
8080A-2

*Em-Pac is a registered trademark of Applied Microsystems Corporation.
Many critical technical issues have been solved, and progress continues in diode lasers and storage media.

by Alan E. Bell

Research and development of high density optical data storage began almost 20 years ago, shortly after the laser's invention. A fundamental property of laser (i.e., coherent) light is that it can be tightly focused to form an extremely small spot with a very high light-power density. Peak intensities of a few megawatts/square centimeter within a micron-sized write spot are not unusual in optical recording systems. The industry has recognized that this single property of laser light offers the potential for optical data storage systems with exceptionally high density. Indeed, this potential has been the driving force behind research and development.

In recent years prototype optical data storage systems have been demonstrated that use focused optical read/write (R/W) beams with a diameter of one micron or less to store data at densities of 10^8 bits/cm^2 or more.\(^1,2,3\) Active programs in the United States, Japan, and Europe are expected to lead to optical storage product introductions across a broad segment of the cost/performance spectrum during the next three years.

Optical data storage: its scope and status

Like magnetic storage technology, optical storage technology encompasses a family of configurations that address the many requirements of data storage products' end users. In optical storage technology three configurations exist: read only, write once (archival), and erasable (reversible). The system design of these configurations is quite similar, reflecting the fundamental issues of optical recording and retrieval of data that are stored at densities of 10^8 bits/cm^2 or beyond. On the other hand, the general types of optical storage media are uniquely defined by the functional classification of the optical storage devices; the fabrication of acceptable optical storage media in general presents a broad challenge in the areas of materials and process science and technology.

Read only optical storage systems are already available. The video disk\(^4\) and the recently introduced digital audio disk (DAD)\(^5\) are examples of products that employ factory replicated media for the low cost distribution of large volumes of prerecorded video and digital audio information. In these cases the media are plastic disks that contain the prerecorded information in the form of micron-sized pits embossed or molded into their surfaces. By way of comparing this kind of information storage, consider that the 1-h playing time for the consumer video disk represents an equivalent informational capacity in excess of 500 bytes. Even taking into account that the error rate requirement for a video (analog) channel is far less stringent than that demanded by a digital channel associated with a data processing system, the digital storage potential of optical media is enormous.

The read only optical disk has clear applications in such areas as low cost program and data base distribution, particularly with respect to the flourishing field of small-system and personal computers. A single 5\(\frac{1}{4}\)" read only optical disk offers a data capacity of a few hundred megabytes, coupled with a media replication cost of significantly less than $10 and a drive cost consistent with extremely large markets. In this application area, the optical read only memory's cost/performance cannot be approached using current magnetic storage device configurations.
Several corporations around the world are involved in programs aimed at the introduction of write-once optical storage systems planned for 1983 to 1985. At the high performance level, these products are expected to offer single-surface 14" removable disks with capacities in the 20- to 40-byte range, data transfer rates of 3M bytes/s, and access times of less than 100 ms. In the middle range, products offering double-sided 12" removable disks with capacities of about 1G byte, data transfer rates of about 0.3M bytes/s, and access times of 150 to 250 ms are forthcoming. The lowest cost write-once optical storage peripherals, offering perhaps 200M bytes on a removable 5¼" disk, will be introduced as market volume growth for optical data storage devices permits reduction of the manufacturing cost of certain key components, such as the R/W laser and associated optics.

The materials proposed for the data storage medium of write-once optical disks vary from thin metal films to organic media and multilayer structures. The optimal design and fabrication of write-once optical media are sufficiently complex that no consensus toward standardization has yet emerged. However, several proposed media appear to satisfy the basic requirements of sensitivity and playback signal to noise ratio, leaving defect density and media lifetime as the most contentious and critical issues. The initial price for these media is expected to range from $50 to $100/gigabyte.

Through the sixties and early seventies, optical data storage media research was almost exclusively directed toward those materials that offered hope of reversibility. This fact reflects the previous higher cost of conventional magnetic storage, whose erasability was an important factor for increasing its cost effectiveness. The initial research of reversible optical storage media was not completely successful, and during the seventies activity in this area was significantly reduced. In the past few years, a resurgence of interest in reversible magneto-optic data storage has taken place, largely fueled by new developments in magneto-optic media reported by certain Japanese companies.7

The new magneto-optic media are certainly at an earlier development stage than the write-once media; however, the cultural and software barriers—ie, access methods—to a reversible magneto-optic memory are considerably smaller than those confronting write-once optical peripherals. As a result, once reversible optical memory is developed, its acceptance could be extremely rapid.

Optical data storage systems

The major functional elements within an optical data storage system consist of the laser source and associated R/W spot-forming optics (ie, the optical R/W head), electro-optical systems for the detection and correction of positional errors between the R/W spot and the data track, the R/W data channel encode/decode and error correction and control (ECC) electronics, the optical data storage medium or disk, and the drive unit itself. A schematic of the basic functional elements of an optical data storage system is shown in Fig 1. In this example, the R/W light source is a semiconductor diode laser.

In order to record the nonreturn to zero (NRZ) input data, the signal first passes through the ECC and modulation encoding circuitry to directly modulate the diode laser's light output. This high intensity modulated light output is collected by the optics, collimated, and directed via the tracking mirror to the focusing lens, which is mounted within a voice-coil type actuator. The focusing lens is similar in principle and optical quality to a high power microscope objective with numerical apertures between 0.45 and 0.65, and focuses the modulated record beam to a spot approximately one micron in diameter at the data storage medium plane. As the storage medium passes beneath the intensity modulated write spot, the stream of optical pulses causes a circular data track to be written. The data track consists of a string of physical "marks" burned in the storage medium by the recording pulses. In the simplest case of a metallic thin-film medium, the marks would take the form of micron-sized melted or ablated holes, and the presence or absence of the melted hole would represent a binary 1 or 0 stored along the data track. From this point of view, the optical disk is nothing more than an extremely high density punched card. If such a disk were expanded to yield the same storage density as a punched card, its diameter would approach one-quarter of a mile.
In order to read the stored data, a relatively low dc voltage is applied to the diode laser, resulting in a correspondingly low power and constant amplitude light continuous wave (CW) output. The read beam power level is deliberately chosen to be less than the storage medium’s recording threshold to prevent degradation of the stored data track during readout. As before, the read beam is focused into a micron-sized read spot at the data storage medium. The presence of the optical marks along the data track results in an intensity modulation of the reflected component of the incident read beam. The intensity modulated reflected beam is collected by the focusing lens and directed via the tracking mirror to the quarter-wave plate and polarizing beam splitter optical components. The diode laser’s output beam is plane-polarized, allowing the quarter-wave plate/polarizing beam splitter combination to separate the returning reflected component of the read beam and direct it to the photodetector elements. A semitransparent mirror divides the reflected read beam between the data photodetector and the position error sensing photodetector. In practice these two photodetectors can be combined into a single-quadrant type detector, making the beam division at the semitransparent mirror unnecessary.

A generic problem that must be resolved...is the positional accuracy of the R/W element....

The playback signal appears at the data photodetector output. After data detection, demodulation, and ECC, the playback data stream is directed to the optical memory system output. The modulation scheme adopted for optical data storage will probably be a run-length limited (RLL) code, such as the (2,7) code favored in current magnetic storage devices. In this case, the stored data are determined by the location of the optical marks along the data track—that is, they are dependent on timing rather than on the simple presence or absence of the marks—allowing more than one bit to be stored per optical mark. The optical analog of the magnetic transition or flux reversal—the optical transition—is the edge of the optical mark, since this is where optical properties of the data track change abruptly and the transition from high to low reflectivity occurs.

A generic problem that must be resolved by any data storage technology that proposes to store data at 10^8 bits/cm^2 is the positional accuracy of the R/W element with respect to the truly microscopic dimensions of the data location (on record cycles) or stored data bit (on read cycles). Indeed, the practical employment of position sensing and correcting transducers and actuators is crucial in enabling significant advances beyond the data storage density levels available in today’s magnetic storage devices. These issues were squarely confronted during the optical video disk’s development in the late sixties through early seventies. A number of techniques were devised to optically detect both focus errors and radial tracking errors with a very high degree of precision—a small fraction of the R/W spot diameter. In brief, the consumer read only video disk systems, currently retailing for about $500, contain servo control elements that maintain the read spot’s plane of focus to within approximately ±1 micron of the data storage plane, and the read spot’s radial position to within a few tenths of a micron of the data track center. This level of low cost positional accuracy is even more impressive considering that the data storage medium in this case is a low cost, mass-produced plastic disk that can be removed and replaced in the drive at whim.

In the R/W system shown in Fig 1, the positional error signals are generated from the portion of the reflected read beam that is directed to the position error photodetector array. The focus error signal is fed back via the focus servo circuitry to the voice-coil actuator where the focusing lens is mounted. The tolerable closed loop or residual focus error for R/W systems is significantly less than that for optical read only systems, since the error content of the recorded data is more sensitive to residual focus errors than is the detected read signal. As a consequence, R/W systems must have a residual focus error less than a few tenths of a micron, and the focus servo bandwidth must extend to a few kilohertz (unity gain) for disk rotational velocities of 30 revolutions/s.

The radial tracking error signal in Fig 1 is fed back from the position error photodetector via the tracking servo circuitry to the tracking mirror. An extremely small angular rotation of the tracking mirror causes a substantial radial displacement or deflection of the R/W spot. The minuscule rotational inertia of the tracking mirror permits relatively high gain (about 30 dB), high bandwidth radial tracking servos of a few kilohertz at unity gain. The existence of practical high performance optical track following servos is the most important factor in making possible removable optical storage media. Because of them, relatively large track eccentricities—caused by centering errors after remounting the disk—can be tolerated by the optical data storage system.

The shaded area in Fig 1 contains the optical R/W head components. Considerable progress has been made in integrating and miniaturizing such heads, by designing them around a semiconductor laser R/W source. Designs have been created with external head dimensions reduced to a rectangular prism measuring 4 x 1 x 1 cm and with total mass reduced to 50 g. Low total mass for the optical R/W head is an important factor in determining the optical storage system’s access times. In addition, a low mass for the radial beam deflection elements minimizes the local seek time (± 10 tracks, ≤ 1 ms) and maximizes the radial tracking servo bandwidth. Compact physical dimensions for the optical R/W head permits configurations with multiple heads/data surface—which will somewhat lessen the access bottleneck associated with any data storage technology that stores 1G byte or more on a single disk surface.

None of the system components discussed so far are expected to critically affect plans for optical storage products. Rather, these issues largely concern clever engineering design aimed at the joint goals of cost effectiveness and reliability. There remain, however, important technical issues to be resolved regarding the R/W lasers and the storage media.

The availability of relatively high power, long-lived semiconductor lasers is not yet certain, particularly with respect to high performance systems operating with a R/W rate of about 3M bytes/s. In addition, it is generally accepted that the most critical element in the entire data
Lasers and media for optical data storage

In order for optical data storage to become widely accepted, the semiconductor diode laser must be employed as the R/W source. (See Fig 2.) The reasons are as obvious as they are compelling: extremely small size, light output that can be directly modulated, low input power requirements (<0.5 W) and relatively high electro-optic conversion efficiency (about 10%), batch fabrication process leading to potential low cost, solid state device leading to potential long life (10,000 h), and reliability.

![Diagram of semiconductor diode laser](image)

Fig 2 Output beam from semiconductor diode laser is strongly divergent due to diffraction that occurs at extremely small region of emitting facet. Slot-shaped geometry of emitting facet gives rise to divergent beam with an elliptical cross-section.

The recently introduced read only DAD systems incorporate relatively low power semiconductor lasers with a few milliwatts of output, CW, in the read head. Since the read head's optical efficiency can be 50% or greater, the disk's incident read beam power is approximately 1 mW or greater—more than adequate for such a read only application. The current sensitivity of write-once or erasable optical storage media is such that in order to write at a data rate of 3M bytes/s, a semiconductor laser rated for long-term (10,000 h) CW output in the 15- to 30-mW range is required. Such devices have recently become available in sample quantities, but they are still costly and largely unproven. This situation may result in those initial optical data storage products targeted for high performance applications having gas laser R/W sources to ensure reliability. However, R/W products designed for operation at reduced data rates (<1M byte/s) will undoubtedly incorporate semiconductor lasers from the outset.

An important potential for optical data storage systems is the use of integrated arrays of semiconductor laser R/W sources. Although research in this area is still in its infancy, a recent paper describes the performance of an array with 16 diode lasers that can be modulated independently, each providing an output beam of up to 10 mW CW. Using such an array, a single optical head could focus 16 independent R/W spots onto the optical data storage medium to provide a total channel capacity/head in excess of 25M bytes/s. There is presently no analog in magnetic data storage to the multiple channel R/W head designed around the integrated semiconductor laser array.

The design and fabrication of optical data storage media is seen as the single most critical factor in determining the ultimate usefulness of high density optical data storage. For data processing applications, this fact reflects the current status of all three media classifications—read only, write once, and erasable—albeit to different degrees.

When the goal is to store media in densities of about 10^8 bits/cm2, there are several critical issues that generically affect media of all types, not just optical storage media. These issues must be addressed and resolved independent of the particular data storage technology chosen.

Media resolution and noise is one such issue. At 10^8 bits/cm2, each bit occupies only one square micron of the storage medium. The media must be capable of sustaining such microscopic marks, and also resolve their location to a somewhat higher degree of precision, as was previously discussed in connection with the use of RLL coding of the data. The resolution issue, and to a greater extent the media noise requirements, tend to favor vacuum deposited or plated media. Unless the particles are extremely small (<10 nm) and uniformly dispersed, particulate media—optical or magnetic—may contribute excessive noise to the playback data signal.

Media microdefect density is another issue that must be considered. A media defect such as a pinhole or dust particle of one square micron will result in a single-bit error at storage densities of 10^8 bits/cm2. The current residual or uncorrectable bit error rate (BER) requirement for data processing applications is 10^{-12}. In order to limit the ECC overhead to proportions of less than 25% of raw disk capacity, for example, the raw BER due to media microdefects should be about 10^{-5} or less. That is, one square centimeter of data storage surface should contain fewer than 1000 defects larger than approximately 0.5 microns; furthermore, this average must be maintained across the entire disk surface—some 100 square inches for a 14" disk.

The ability to verify data during the recording cycle, and to immediately rewrite erroneous characters in specially reserved segments of the track, represents an important element in the overall strategy to control errors resulting from media microdefects. In optical R/W systems the direct read after write (DRAW) function is readily implemented using a secondary read only laser source, mounted within the optical head to form a CW read spot that trails the primary R/W spot by several microns. (See Fig 3) Approximately 1 μs after the data are recorded, the trailing beam reads the data and verifies that they are correct. If a write error has occurred, the data are rerecorded at some alternate and predesignated area along the track. Using this DRAW approach, the residual BER after recording and verification can be reduced several orders of magnitude below that of the intrinsic media microdefect density.

Particularly in the area of write-once optical data storage media, the issue of media microdefect density and associated BER as a function of time looms large.
From the Spinwriter People:
The new NEC FD 1165 diskette drive.

Half the space/twice the capacity.
Boost your profit margins and add new capabilities to your system with NEC's new Model FD 1165 diskette drive.

Using half the space of conventional double-sided, double-density 8-inch drives, you can put two drives—3.2 megabytes— in the same area where 1.6MB used to fit. And get extra user benefits like disk sorting, storage backup, and archiving, all at less cost per drive.

The Model FD 1165 drive uses the same interface as your current floppies, so you can add this product advantage with no additional cost.

Get the usual NEC product extras.
Technical features. NEC's patented microprocessor-controlled head loading mechanism. Microprocessor control of spindle speed, head positioning and internal diagnostics. A unique cam that loads heads softer on the diskette surface to extend media life. A special direct drive motor that eliminates belts and pulleys, uses only DC voltage, and cuts power and power supply costs. These are just a few of the technical extras you get.

Reliability. An MTBF of 24,000 hours—over 5 years usage at normal duty cycles—an MTTR of 30 minutes and a 60% parts reduction, make the Model FD 1165 the most reliable product in its class.

Ease of installation. Vertical or horizontal mounting. Without modification.
By now you get the idea.
Find out more about NEC's new Model FD 1165 diskette drive. Call your nearest NECIS sales office to order an evaluation unit today.

NEC Information Systems, Inc.
Home Office: 5 Militia Drive, Lexington, MA 02173, (617) 862-3120,
Eastern Office: 36 Washington Street, Wellesley, MA 02181, (617) 431-1140,
Central Office: 551C Tollgate Road, Elgin, IL 60120, (312) 931-1850,
West Coast Office: 8939 S. Sepulveda Blvd., Suite 102, Los Angeles, CA 90045, (213) 670-7346.

NEC's new Model FD 1165 diskette drive doubles your storage capacity—from 1.6MB to 3.2MB—without doubling your space.
Since the main feature of this class of media is the permanence and nonalterability of the stored data, the selection of intrinsically stable materials presents a great scientific and technical challenge. Realtime testing of the proposed candidates has been limited to about two years, and although the results of accelerated aging tests are in some cases quite impressive, data of this kind are notoriously difficult to interpret quantitatively.

The high density data storage medium must play an additional key role. It must provide the necessary positional references—that is, embedded servo information—to close the loop on the positional error control system. In the case of optical data storage media this is quite straightforward in principle, and can be accomplished by embossing the optical disk substrate surface. It is thus possible to provide embedded positional reference information that can control the positional accuracy of the R/W spot in all the vertical (focus), radial (tracking), and longitudinal (timing) spatial dimensions, to a very high degree of accuracy and with no reduction of the user capacity of the disk. Formatting information such as sector and block addresses can also be included in the embossing procedure. This format information is represented by embossed data pits with $\lambda/8$ (about 100 nm) depth so that, in the detection channel, it can be readily distinguished from the user data.14

To maintain focus, servo control reference information is contained directly in the reflectance associated with the data storage media layer. The reference information necessary to control the radial tracking error is generated by embossing the entire disk substrate with a pattern of circular and concentric grooves, separated just enough to reduce intertrack crosstalk to acceptable levels—about -35 dB for a digital channel. The grooves' location is optically detectable regardless of the presence or absence of recorded data within the grooves. This approach allows random accessing and a high degree of radial position control during both the record and read cycles. For maximum sensitivity to off-track positional errors, the groove depth is chosen to be about one-quarter of the R/W beam wavelength—about 200 nm with a diode laser R/W source. A further refinement of the embossed data groove, namely a small amplitude (approximately $\lambda/20$ or 40 nm) periodic modulation of the groove depth, provides an embedded timing signal that serves as a built-in reference for data detection clocking and drive motor speed control. The periodic groove depth modulation generates a small amplitude modulation of the detected playback data signal. The groove depth modulation’s frequency is low compared to the data transfer rate, and is carefully selected to fall at a frequency that does not correspond to a component within the data signal spectrum.

Meeting the material requirements

Optical media have to deal not only with the generic issues of high density data storage media discussed thus far, but must also address some basic requirements of material properties that are unique to optical data storage. In view of the current status of high power semiconductor lasers, optical storage media must be sufficiently sensitive to permit optical marking or recording with an approximately 50-ns light pulse ($\lambda = 800$ nm) having a total power of 15 mW or less focused into a one square micron write spot. This level of sensitivity is required to make a recording rate of about 3M bytes/s with available diode lasers. A single recording pulse of these specifications thus delivers about 0.75 nJ of energy to the data-bit location, corresponding to a required media write sensitivity of 75 mJ/cm2 or better at the diode laser wavelength. Several of the proposed media meet this requirement. Considered greater issues are media lifetime and fabrication cost.

The fundamental noise source in the optical storage system’s data detection or playback channel is that due to the photon shot noise inherent in optical data sensing. In order to achieve an acceptable “soft” or read BER, the wideband playback signal to noise (S/N) ratio must exceed a well-defined level of about 20 dB, derived solely from the fundamental statistics of the data detection process. This S/N ratio requirement dictates a minimum power level for the CW read beam and, obviously, the optical media must be able to withstand indefinitely long or repetitive read cycles at this read spot intensity with no degradation in the stored information.

As long as a media damage threshold intensity exists for the R/W spot, and as long as this threshold is above the level at which the read spot yields the minimum required playback S/N ratio, then the optical storage media will be acceptable from the signal level’s point of view. Thus, the basic issues of shot noise limited playback S/N ratio can, in principle, rule out the use of arbitrarily sensitive optical media. The proposed media are less sensitive by one or more orders of magnitude than the critical values for a 3M-byte/s data rate, leaving some room for improvement in sensitivity. With this in mind the proposed options for the materials and configuration of optical data disks can be discussed.

The materials system of the optical data disk15 in Fig 4 consists of three main, strongly interactive subsystems: the disk substrate, which provides the mechanical integrity, dimensional precision, and stability; the storage medium, where the data are recorded; and the encapsulation, which protects the storage medium from the degrading effects of ambient atmospheres and the accumulation of microscopic particulate matter. Overall disk configuration performance and suitability is limited by its weakest characteristic, and a sophisticated tradeoff between the desirable properties is needed to

![Fig 3 The principle of DRAW data verification. Focus lens is used to form two spots at surface of storage medium. Primary high power modulated beam records data. Secondary low power CW read beam trails recording beam and verifies accuracy of recorded data.](image_url)
A STRONG STATEMENT ABOUT OUR STREAMER'S ACCURACY AND RELIABILITY.

We're standing on our streamer to show you just how well Tandberg's 3200 family of 20 MB and 45 MB \(\frac{3}{4}" \) cartridge drives are engineered. Of course, we didn't design them to be stepstools.

DESIGNED FOR DATA INTEGRITY.

Unlike most other drives, the 3200's body is fully cast to keep drive mechanisms stable and accurate. What's more, Tandberg's exclusive 3-point positioning and cartridge locking system ensures that cartridges are always correctly loaded and can't be jarred off track.

And while others still use less accurate mechanical referencing to locate the edge of the tape, Tandberg's exclusive Floating Head System finds this reference point dynamically using a signal seeking method. A precision, microprocessor-controlled stepping motor then locates the desired track—with better than 16 track accuracy. (Since our 20 MB and 45 MB units have 4 and 9 tracks respectively, the system is at least twice as accurate as it needs to be.)

Tandberg's system completely eliminates interchangeability problems caused by cartridge wear, drive wear, and mechanical tolerance build-up. It's the main reason why our streamer gets more reliable performance from \(\frac{3}{4}" \) cartridge tapes than anyone else in the industry.

A HEAD ABOVE THE COMPETITION.

Our 20 MB drive has the same cast body, the same cartridge lock, the same head positioning system as our 45 MB unit. Even the standard features are the same: QIC compatible interface, expandable circular FIFO buffer (up to 16 KB) for increased throughput, and full saturation recording. So what's the difference between our 20 and 45?

The head.

One screwdriver and one 9 track head are all you need to upgrade our 20 to 45 MB—with no mechanical adjustments whatsoever.

So if you're looking for a streamer that's accurate, reliable, and extremely flexible, step up to the only one you can stand on.

Tandberg.

For more information contact, Tandberg Data Inc., DATA STORAGE DIVISION, 571 North Poplar, Suite H, Orange, CA 92668/(714) 978-6771.
Materials system of optical disk includes encapsulation, data storage layer, and disk substrate. Arrive at the most practical solution. The performance of a given disk system is strongly dependent on the disk drive characteristics, a fact that requires the resolution of a further level of system optimization.

Glass was the first substrate that could be prepared with an adequately high surface quality to satisfy beginning of life BER requirements, but this quality was overshadowed by its relative expense, bulk, and fragility. Surface quality, i.e., microdefect density of molded polymeric substrates, is inherently limited by the molding surface's quality. However, the ability to directly pattern the polymeric substrate surface with positional reference information provides a significant motivation to develop the required level of fabrication technique and control. Considerable experience, albeit for less stringent applications, is being gained by manufacturers of injection-molded consumer video disks. With experience and knowledge, the surface quality of fully patterned polymeric substrates should permit a microdefect density in the 10⁻⁵ to 10⁻⁶ range.

The aluminum disk substrate used in Winchester drives represents an intermediate cost alternative to glass and polymeric substrates, while offering excellent dimensional and chemical stability. Using a spin-coated surface layer can enhance the surface quality. However, the format and positional control information has to be “burned in” directly after disk fabrication—a time-consuming and potentially costly procedure.

In practice, the media must also be protected from contamination. The main function of encapsulation is to keep particulate matter away from the plane of focus at the information storage layer in order to minimize its effect on playback signal quality, particularly BER. A second but equally desirable function of encapsulation is to shield the storage layer from potentially corrosive materials, primarily water vapor, in the disk ambient.

The two major methods of optical data disk encapsulation are shown in Fig. 5. Fig. 5(a) shows the direct or in-contact approach in which a thin coat of a transparent polymer—about 200 µm—is applied directly onto the storage layer surface. This approach protects the storage layer from its surroundings fairly well, particularly when the chosen polymer exhibits a low water vapor solubility. However, this is no substitute for using an intrinsically stable storage medium.

Fig. 5(b) shows the air-sandwich approach in which the substrate and overcoat layer functions are combined. The air-sandwich configuration is essentially two optical disks bonded face to face with a small air gap maintained through spacer rings at the inner and outer diameters of the data storage band. Since both recording and playback functions take place through the substrate, the substrate disk must have excellent optical properties, in addition to its other chemical and mechanical requirements.

Practical difficulties of maintaining uniform thickness and optical quality of the substrate/overcoat disks make the air-sandwich approach most suited to middle or low performance applications that call for moderate data rates (≤1M byte/s) and capacities (≤1G byte/disk). The direct encapsulation approach, with its thinner overcoat requiring minimal mechanical integrity, is most suited to high end systems. However, in order to ensure adequate environmental protection of the data storage layer, the disk will probably be contained within a dust-proof cartridge.

Research into optical data storage media in the early sixties was, for the reasons already discussed, centered on the search for a viable, reversible data storage material. More vigorous research into write-once media, begun in the early seventies, has since represented the major thrust of research and development in the field. Recent developments in reversible magneto-optic materials, however, have resulted in a strong revival of interest in erasable optical storage.

Candidates for a data storage material
In write-once optical data storage media, the simplest data storage layer configuration consists of a single light-absorptive thin film about 30 nm thick deposited directly onto the substrate disk's surface. The optical markings that represent the stored data consist of micron-sized holes formed by the localized ablation of the thin film layer [see Fig 6(a)]. The melted holes' reflectivity is less than that of the undisturbed regions of the disk, resulting in the modulation of the reflected component of the incident read spot. Tellurium based alloy materials appear to offer the best combination of properties including sensitivity adequate for diode laser source implementation, playback signal S/N ratio and BER adequate for digital applications, and an archival lifetime estimated at 10 years or more. Tellurium based media are most often combined with the air-sandwich configuration.

Multilayer thin-film antireflective structures have also been proposed, as in the two examples shown in Fig 6(b) and (c). The advantages of these structures are twofold. First, the medium's low reflectivity allows a high fraction of the recording beam energy to couple...
ZAX!

MICROPROCESSOR DEVELOPMENT TOOLS
Quality, Price and Performance You've Been Waiting For...

ICD-178 Series
Z80 and 8085 In-Circuit Emulators the way they should be. Small and compact with features found only in µP Development Systems costing ten times our price. Some of our features include: Full 64K of mappable memory, 2K x 32 real-time trace, full upload/download with host computers, 11 breakpoints, displays in Hex or Symbolic Code, in-line assembler, plus... All this and more for only $3995.00.

Micro Communicator 177 III
The MCC is the field service-man's dream. Equipped with a full ASCII keyboard, 16 character display, 32K Byte ANSI Cassette, 32 Column Printer, EPROM Programmer, and RS232 Serial Port for communications. All this and small enough to fit into a brief case.

The "BOX"
The Box is a CP/M* based 8-Bit microcomputer that includes 64K of RAM, 2 Double-sided double-density floppy disks, 4 RS232C Serial ports (to 19.2K baud), 1 Centronics printer port, EPROM and E'ROM programmer and all the software support needed to make it a very powerful µP Development System. Add our ICD-178 Emulators and you have a development system for under $10,000.00. If you need more features, you can add another 8" floppy disk and 5/4" floppy disk, up to 40MBytes of Hard Disk, a full function GB-16 Bus controller with 400KBytes/second DMA transfer, Bank Memory Module with 768K of RAM, a System Expansion Module with 4 RS232 Ports, 192K of RAM and Hard Disk Interface, and much more... .

QUICK-E Prom Eraser
The "Quick-E" erases an EPROM in just 4 seconds. That's right 4 seconds. Using the latest in strobe technology, the "Quick-E" is guaranteed for 1 million flashes. Built-in safety lock switches insure UV light will not escape the safety seal when you erase your EPROM. You don't have to wait anymore for EPROM's to erase then cool down before reprogramming. The "Quick-E" is hand-held and priced at just $429.00.

Zax Corporation
8311 Westminster Ave., Westminster, California 92683 Telephone: (714) 898-2373

* CP/M is a Trademark of Digital Research, Inc.
HIGH REFLECTIVITY

LOW REFLECTIVITY

STRONGLY ABSORPTIVE
RECORDING MEDIUM

MODERATELY ABSORPTIVE
RECORDING MEDIUM

ALUMINUM REFLECTOR

APPROX $\lambda / 4 n$

APPROX $\lambda / 4 n$

TRANSPARENT SPACER

ALUMINUM REFLECTOR

$\lambda n = 125$ nm WHEN $\lambda = 800$ nm ASSUMING A REFRACTIVE INDEX ($n) = 1.5$

Fig 6 Proposed configurations for optical data storage medium. Single layer (a) offers simplicity; antireflection bilayer (b) and trilayer (c) structures broaden range of useful materials and recording mechanisms.

with the active layer, resulting in higher sensitivity. Second, since the structure is essentially “tuned” to capture the incident R/W beam, a variety of recording mechanisms can be employed to disrupt the optics of the tuning and yield a high reflectivity for the optical mark, leading to a high playback signal amplitude. The antireflection structures’ active component can be an organic material such as a dye in the binder, or a metallic material. Recording mechanisms include simple melting or evaporation, bubble formation, or more subtle structural changes in the active layer’s atomic configuration. The general characteristics of antireflection structures favor their use in high performance optical data storage systems, although their adoption in more moderate performance systems is also possible. As discussed previously, the most critical issues in the development of practical write-once optical storage media are those of lifetime and user media cost in cents/megabyte.

Magneto-optic materials are the leading candidates in the development of erasable, reusable optical data storage media. In magneto-optic media (Fig 7) the thin film is first uniformly magnetized perpendicular to the disk substrate plane (the up direction in Fig 7). In this respect magneto-optic media have strong similarities to the perpendicular magnetic media currently under development for use in conventional, that is, magneto-inductive, magnetic data storage. On recording, an external dc magnetic bias field is applied to the data storage layer, and the temperature rise due to the localized absorption of the optical write spot energy triggers a reversal to the down direction in the magnetization vector of the micron-sized exposed mark. The optical mark in magneto-optic media is very similar to the bubbles created to represent the data in magnetic bubble storage devices.

On playback, the presence of the reversed magnetization mark is detected by its effect on the polarization angle of the reflected component of the incident plane-polarized read beam. Somewhat more complex arrangements for the data photodetector are required to implement this scheme. To erase, the data track is reexposed to the high power write spot, this time with the external dc magnetic bias field applied in the opposite direction, and the magnetization of the magnetic domain is returned to its initial direction. The erasure mode for a magneto-optic memory system will probably be sequential rather than direct overwrite. The existing data in the block to be modified are first erased; then, the updated data can be recorded on the next disk revolution.

Since the magneto-optic effects upon which the data detection scheme is based are relatively small, the playback S/N ratio for such media has always been the most critical parameter. Recent developments in both

Fig 7 Magneto-optic data storage media and recording principle. Direction of magnetization in magneto-optic thin film is reversed by combined action of optical write spot and externally applied magnetic bias field.
IF YOU WANT OEM COMPUTER BUSINESS
YOU'D BETTER GO TO
BOSTON...FORT LAUDERDALE...
DALLAS...ORANGE COUNTY...
PALO ALTO...DENVER...HOUSTON...

INVITATIONAL COMPUTER CONFERENCES

Time was when you could display your products in one huge arena anywhere in the country and talk to all the prospects you could handle. But those days are gone forever! Seasoned sales people follow the golden rule: Go where the customer is... make it easy for the customer to know you, understand your product and buy.

The Invitational Computer Conferences are designed to bring you face-to-face with your prospects and customers where they live and work. In one day, in each of ten OEM locations throughout the United States, you can display your operating equipment, entertain your prospects and customers and support your local sales representatives, all at a low, low cost.

These savvy companies will be at the ICCs during the 1982/83 series:

- Advanced Electronics
- Design, Inc.
- Alpha Microsystems
- Archive
- AVT Corp.
- Braemer Computer Devices
- Charles River Data Systems, Inc.
- CIE Systems, Inc.
- Cipher Data Products
- Computer Memories, Inc.
- Control Data Corp.
- Custom Systems
- Cynthia Peripheral Corp.
- DEC
- Data Electronics, Inc.
- Dataproducts
- Dataram
- Distributed Logic Corp.
- Emulex Corp.
- Fujitsu America Inc.
- Hazeltine
- Hewlett Packard
- Integral Data Systems, Inc.
- International Memories, Inc.
- Iomega Corp.
- C. ITOH Electronics
- Kennedy Company
- 3M Corporation
- Megavault
- Memorex Corporation
- Micro Peripherals, Inc.
- MiniComputer Technology
- Monolithic Systems Corp.
- NEC Information Systems, Inc.
- Okidata Corporation
- Pericom Computer Corp.
- Pioneeer Magnetics
- Plessey Peripheral Systems
- PRIAM
- Printronix
- Quantum
- Remex
- Rotating Memory Systems
- Scientific Micro Systems
- Siemens Corporation
- SONY Corporation
- Tandberg Data, Inc.
- TEC, Inc.
- TEKTOR, Inc.
- TRILOG
- Universal Data Systems
- XYLOGICS

Shouldn't You Be Among Them?

Date	Location
1982	Sept. 8 Newton, MA
Sept. 28 Chicago, IL	
Oct. 11 Westchester, NY	
Nov. 3 Palo Alto, CA	
Nov. 8 Denver, CO	
1983	Jan. 20 Orange County, CA
Feb. 1 Dallas, TX	
Feb. 3 Houston, TX	
Feb. 28 Atlanta, GA	
Mar. 29 Ft. Lauderdale, FL	

Call for more information or to reserve your space:
B.J. Johnson & Associates, Inc.
3151 Airway Avenue, #C-2
Costa Mesa, California 92626
Telephone (714) 957-0171

CIRCLE 70
materials and the use of antireflection trilayer structures have produced some very encouraging results, although it seems that magneto-optic memories will offer somewhat reduced data rates (about 1M byte/s) and capacities (about 1G byte) compared to their write-once counterparts. Recent reports of development prototypes for magneto-optic disk memories claim a data rate of 0.5M bytes/s and a 5¼" disk capacity of 200M bytes. In this instance the magneto-optic medium was described as being an amorphous magnetic film integrated into the encapsulated bilayer antireflection structure on a glass substrate disk.

Issues that must be resolved before the introduction of magneto-optic data storage media include all those discussed in connection with archival write-once media. In addition, it is probable that a higher degree of disk fabrication process control will be necessary, suggesting a somewhat higher cost of magneto-optic media in cents/megabyte.

Optical mass storage systems

The first wave of optical data storage products will use the archival write-once optical disk. A significant amount of revision and further development of system software, primarily the access methods, is needed before such devices can achieve widespread use. The utility of write-once data storage media depends entirely on the archival lifetime and the cost of stored data/megabyte. Some argue that if truly archival storage media were cheap enough, then the most effective strategy for data storage would, in fact, be once nonalterable data storage media. With this method the entire history of revisions of a given data file is maintained and available for the user’s review.

Optical data storage media will certainly not be free. However, its extremely low cost (< $0.10/megabyte), coupled with disk-like random access (< 100 ms), makes archival write-once optical storage technology quite appropriate for applications involving very large data bases (> 1 terabyte) that require infrequent changes or updates. For these applications it is possible to configure optical mass storage systems (MSS) with online capacities of 1 or more terabyte. Offline data capacities of 100 or more terabytes are also feasible. The volumetric storage density and unit cost of system modules and media should provide an attractive alternative to current MSS configurations based on magnetic disk and tape media.

Fig 8 shows one possible configuration of an optical MSS, backed up by a very large capacity disk library. The MSS contains a controller and intelligent database management processor. In view of the enormous volume of data it is important that the logical control of the placement of records on disks, and disks into racks or into the library be performed to as large a degree as possible at the MSS level, rather than at the host processor level. The first level of MSS storage hierarchy takes the form of one to five optical disk drives. Each drive consists of a single, double-sided disk with 10G-byte capacity and less than 100-ms access time. The second level of storage, still within the MSS unit, takes the form of one to five disk racks, each holding 128 disks with about a 1-terabyte data capacity. A single disk rack’s dimensions could be 40 x 40 x 125 cm. The access mechanism required to select a disk from a rack and mount it on a drive is similar to that of a jukebox, with a possible disk mount/demount access time of 5 s or less. The tertiary level of data storage is represented by the disk library—a large ensemble of disk racks placed on shelves—that resembles existing magnetic tape libraries. A single corridor 9’ (3-m) wide could contain the automated disk rack retrieval mechanism and allow access to two walls of disk racks. Assuming that four rows of racks are mounted on each wall, such a corridor would offer a data storage capacity of about 20 terabytes/10’ (3.3 m) of corridor length.

Prototype optical MSS jukeboxes containing a single optical drive and a single disk rack are being developed and could become available soon after the introduction of the single-disk optical data storage devices.

Prospects for optical storage

Optical data storage is the most advanced technology in terms of read only or archival write-once data storage at densities in the 10⁸ bits/cm² range. During the next few years optical storage products of this type are expected to be commercially introduced by several manufacturers. The introduction of optical MSS and reversible optical memories could follow in a relatively short time. Read only and archival write-once optical disk systems represent new opportunities to increase machine readable digital data storage applications into areas that are not cost effective with existing data storage technology. The storage of digitized images and office documents is one example. In short, reversible optical data storage systems will offer strong competition to magnetic data storage of the next decade.
Introducing the first removable Whitney technology disk drive for OEMs.

Cartridge convenience with fixed media performance and reliability in an 8-inch, fixed/removable drive.

- 50 Mbytes Total Storage
- 25 Mbyte ANSI Standard Cartridge
- 35 msec average access
- CDC Lark™ compatible SMD interface
- 8-inch floppy envelope

Now there's a disk drive with the combination of speed, capacity, reliability and packaging efficiency to complement your high-performance mini- or microcomputer based system. It's the Arapahoe 7110 from Amcodyne.

Arapahoe features advanced Whitney head suspension and read/write technologies derived from the latest generation of mainframe disk drives. Improved aerodynamic stability, superior head/disk compliance and higher signal-to-noise ratio result in data reliability that is substantially better than that attainable with Winchester technology.

Arapahoe incorporates a microprocessor-controlled/embedded-servo system to eliminate the head/disk alignment problems which handicapped early cartridge disk drives. The microprocessor directs all head-movement operations and computes the runout profile for each cartridge. The result is fast, accurate seeks and absolute tracking accuracy for cartridge interchangeability.

Reliability is further assured by Arapahoe's proprietary head-loading mechanism and positive-pressure clean-air system. When a cartridge is loaded, Arapahoe's heads are held off the disk until the cartridge is purged to a fixed-media cleanliness level. Only then are the heads lowered into flying position. Together, these features mean you can employ Arapahoe with confidence in a wide variety of office, laboratory or industrial environments.

For Arapahoe product specifications and a free monograph on Whitney, the technology that's replacing Winchester in high performance disk, contact Amcodyne.
This disk was qualified with ADE RVA gages.

This disk was not.

Any Questions?

The only way to test memory storage disks is the ADE RVA way. Disk run-out, velocity and acceleration measurements are essential to qualify a disk for life.

With 2 microinch tolerances can you really trust your disks to anything but the best? The world's leading disk peripheral companies always qualify the ADE RVA way. Ask us for more details.

ADE Corporation
77 Rowe Street
Newton, Massachusetts 02166
Tel. (617) 969-0600 Telex 922415

References

Please rate the value of this article to you by circling the appropriate number in the ‘Editorial Score Box’ on the Inquiry Card.

High 719 Average 720 Low 721
After shipping more than 15,000 controllers in the last 18 months, we have learned a lot about 5¼-inch disk controllers. And we've put all that experience into our second generation. We've enhanced performance, compacted board size, and reduced the number of chips from 127 to 56 for even better reliability. And all at a new low price. Our new DTC-510A supports two 5¼-inch Winchesters. Our DTC-520A supports two Winchesters and two mini-floppy drives.

Use our controllers with any 5¼-inch drive using an ST506-type interface and standard 5-megabit transfer rate. Use them with most popular microcomputers. Programmability enables easy evaluation, characterization and selection of multiple drive sources.

We're delivering now. Available through Arrow, Kierulff and distributors worldwide. Major OEM contracts and discounts available direct. Second sources available. Circle our readers' service number for a new product bulletin with complete specifications for both controllers. For fast action, call (408) 496-0434.

FEATURES:
- One compact board (5.75" by 8.0" by .49") 510A (5.75" by 10" by .49") 520A
- Uses single voltage from drive power supply
- Buffered/slew seek modes
- Automatic seek and verify
- Automatic head and cylinder switching
- 256/512 bytes per sector (33 or 18 sectors per track, jumper selectable)
- Full sector buffering
- Odd parity checking
- Logical sector addressing and interleaving
- Autonomous error detection and correction
- Extensive fault detection and error monitoring
- Integral proprietary data separators
- Alternate track assignment
- High speed data/command transfers
- No adjustments
- Programmable disk parameters

Data Technology Corporation
2775 Northwestern Parkway
Santa Clara, California 95051
Phone: (408) 496-0434, TWX: 919-338-2044
East Coast (617) 275-4044
Disctron offers you more capacity, higher performance, and easier integration in 5¼-inch Winchester. With capacities to 40 megabytes, with average access times as low as 55 ms. And with special features—electronically damped actuator, buffered step mode, electrical spindle brake, integral microprocessor control and built-in AGC.

Easy integration. Slip these 5¼-inch drives into an existing minifloppy cavity. Use standard minifloppy voltages. Use standard ST506/ST412 interfacing. These drives are ready to go.

Plug in the Disctron difference in 5¼-inch Winchester.
Disctron has it all. Fixed and removable Winchesters with capacities to 160 megabytes. Thin film media, Internal diagnostic, Self-contained shock mounting. Internal carriage lock, SMD and ANSI-standard interfacing. DC power. CI Plug in 10.6 megabytes on an ANSI-standard, transportable cartridge. Linear voice coil, embedded servo and microprocessor control provide precise head positioning and reliable data access.

Plug in the Disctron difference in 8-inch Winchester.

Only Disctron offers a complete family of 5¼-inch and 8-inch Winchesters in fixed and removable, proprietary head technology and manufacturing, high volume manufacturing, and the solid financial foundations of CCT’s more than $75 million in assets.

More than megabytes. Discover the Disctron difference. For more information, circle our readers’ service number. Or call us direct at (408) 946-6692.

Disctron, Inc.
A Subsidiary of CCT

CIRCLE 74

1701 McCarthy Boulevard Milpitas, California 95035
Telephone: (408) 946-6692 TWX: 910382068 DISCTRON MPTS
European Representative: Micro Memory Systems Ltd. England 635-40405-Tel: 8482777 Telex
Long the conference to watch for vital signs of progress in the computer industry, ISSCC gives semiconductor manufacturers worldwide a forum in which to compare notes on their latest prototypes, as well as to debate untested ideas. At this conference as at no other, semiconductor researchers put their ideas on the line to vie for a place in the solid state circuit lexicon—the core of the computer industry.

Industry analysts predict that by the mid-1980s, CMOS will be the preferred MOS technology. Synthesizing advances in logic and memory design, moreover, CMOS is popping up more frequently alongside traditional approaches to both analog and digital ICs. The shift to CMOS will gain momentum—in great part from CMOS's key advantage of low power dissipation—as circuit integration levels spiral upward. However, manufacturers will have to confront a range of production issues in CMOS that have already been resolved for NMOS. Further fragmentation in CMOS technology is imminent as new approaches are developed for isolation, interconnection layers, and soft error immunity.

Memory design continues to be the proving ground for many developments in semiconductor and processing technologies, and high bit-density, fast-access CMOS RAMS are nearing center stage. Mitsubishi Electric's 8k x 8 n-well CMOS static RAM, for instance, slices access time to 50 ns while dissipating 100 mW. A divided word line architecture reduces column current and word line delay. On the processing side, designers will explain their choice of molybdenum silicide as a substitute for the second polysilicon layer. Then Intel will present a 64k dynamic RAM with 70-ns access time and 150-mW power dissipation. The chip is made via n-well CMOS technology with 137-µm², double-polysilicon p-channel memory cells.

CMOS memory is also keeping abreast of the trend to put more functionality onchip. Nippon Electric Co will report on a 64k CMOS RAM with auto data retention mode, which is made via a double-level aluminum process technology. A split power control technique reduces active power in this 10-mW battery-backup device; access time is 80 ns.

Nonvolatile memory is getting into the CMOS act with a 64k, n-well EPROM. Developed jointly by Signetics and Philips Research Lab, this chip has an 80-ns typical access time with 1-µW quiescent power dissipation. Onchip test circuits cut testing and reliability screening times.

CMOS has not cornered the memory market yet, however. ISSCC '83 will bring out a bumper crop of faster, denser circuits, and 256k dynamic RAMS may be the pick of the harvest. Nippon Electric has applied its double-level aluminum processing to a 256k dynamic RAM with 90-ns RAS access. Design rules for the 34-mm² chip are a lean 1.3 µm, and effective oxide thickness is 160 Å in a 66.5-µm² cell area.

Nippon Electric is keeping pace with a 100-ns, 256k dynamic RAM that operates in both page and nibble mode—distinguished internally by CAS precharge time. The chip is immune to voltage bumping and incorporates laser programmable redundancy. Motorola Semiconductor will talk about its 90-ns, 256k dynamic RAM, which operates in a 15-ns, 4-bit nibble mode. Shared sense amplifiers, booted word lines, active restore, and vertical process scaling to improve alpha immunity will be detailed.

Toshiba chose molybdenum silicide gate transistors for its 256k MOS dynamic RAM. Dividing the chip into eight blocks gives 34-ns CAS access, 94-ns RAS, and 170-mW active power. Fujitsu adopted triple-polysilicon processing and 2.5-µm layout rules for its 256k dynamic RAM, which offers nibble mode and CAS before RAS refresh. Die size for this one is 34.1 mm².

Sacrificed density when cutting access time continues to be a dilemma for memory designers, but Intel is making inroads with an
80-ns, 64k dynamic NMOS RAM that boasts a 65-ns fast-page-mode cycle time. The chip incorporates a conventional 77-µm², 1-transistor cell with 150-Å capacitor oxide and double field oxidation to reduce "bird's beak." Across the ocean, IBM Labs in Boeblingen, Germany is developing an experimental 8k x 8 I^2MLT static RAM with 25-ns access and 50-ns cycle times. The chips need less than 1 µW for data retention, and dissipate 8 mW standby and 210 mW selected.

Two ECL compatible, bipolar static RAMs are queuing up for the 16k league. Hitachi’s 16-ns, 150-mW chip is made using oxide isolated polysilicon walled emitter transistors. Cell size is 569 µm²; die size is 16.4-mm². Fujitsu will describe its 15-ns, 700-mW device, which incorporates a 750-µm² active pnp load cell. It is made using a 21.4-mm² die.

For designers bent on speed first, it will be hard to beat Bell Labs’ 5-ns, 4k NMOS static RAM, which dissipates 400 mW. Scientists will report on bootstrapped word drivers, per-column buffers, and 0.5- to 0.8-µm channel lengths formed with single-level TaSi/n⁺ polysilicon. The chip also carries a 120-µm², 6-transistor depletion-mode load cell.

CMOS and bipolar VLSIs can already fit tens of thousands of circuits on a chip, and with improved system architecture and software engineering, designers hope to put a million active elements onto that same space. An ad hoc discussion on logjams that keep designers from reaching the theoretical limits will top off a session on working VLSIs. Conference goers will join industry leaders in thrashing out design tradeoffs between scaling and reliability, circuit complexity and design tools/equipment, voltage thresholds, and development costs.

Juggling numbers like that demands flexibility, and configurable VLSI circuits promise to meet that need. CMOS leads the pack for such applications, because its lower (i.e., than NMOS) power dissipation simplifies cooling and packaging problems while offering designers transistors of both polarities on the same chip. Hitachi is taking a modular approach to building a variable-sized memory for 10k to 20k CMOS VLSI chips. RAM and ROM sizes can be altered to facilitate custom high speed and automated design. In addition, Nippon Electric Co is making headway on a 20-ns, 4368-gate array with 2304 bits of configurable memory fabricated using 1.5-µm design rules. The memory’s word and bit configurations can be altered to increase the gate array function.

Bipolar master slice LSI will be in attendance, with a 5000-gate array from NTT Musashino Electrical Communication Lab and a 4-level, 10,000-gate configuration from IBM with customized onchip logic array. NTT’s circuit is fully ECL compatible and has a loaded gate delay of only 500 ps, with power dissipation under 6 W. A 1.5-µm design rule bipolar process using three metallization levels is behind this chip.

In digital ICs where flat-out performance is the top design criterion, engineers often turn to GaAs technology. However, despite their gigahertz clock rates, GaAs digital ICs have yet to match silicon IC functional complexity. At ISSCC ’83, leading manufacturers will debate near-term applications for GaAs digital ICs, arguing both sides of a crucial system design question: Can the high speed system segments be divided into a few medium scale functions, or must the entire system be constructed on GaAs on one chip?

Meanwhile, an assortment of prototypes for high speed GaAs digital ICs will characterize the range of present solutions, culminating with two 1k GaAs static RAMs. One, from Fujitsu, uses self-aligned tungsten silicide gates and ion implantation, and reports a 4-ns access time with 58-mW power dissipation. The other, from NTT Musashino Electrical Communication Lab, uses a self-aligned MESFET and low temperature, 2-level IC technology. This E/D DCFL 1k device runs a 2.6-ns access time with 291-mW power dissipation.

Other highlights of ISSCC ’83 will include a session on high speed microprocessors. The computer-on-a-chip has come a long way since Intel’s 4004, and this year’s additions reinforce the trend toward dedicated functions. One, from National Semiconductor (Israel), is a virtual memory management chip with program debugging support for a 32-bit microprocessor. The 20k-transistor NMOS chip accesses memory based translation tables in under 100 ns, and maintains 32 translation entries in an associative cache memory.

Intel’s 16-bit memory management and protection chip whizzes through 1.5M instructions/s. This microprocessor packs 120k transistors onto 334 x 340 mil², and runs a 242.5-ns data access at pin end by an 8-MHz clock. Another 16-bit chip, reported by Fairchild Advanced Research and Development Labs, fits 160k transistors onto an 1PL chip measuring 128,000 mil². Fairchild has picked a 20-MHz clock to time 200-ns adds and 1.85-µs multiplies. The chip also handles floating point instructions, 16 interrupt levels, and 2 timers. Last but not least, IBM Federal System Div will detail its 55k-transistor, NMOS microprogrammable microprocessor. The 7.2-mm², 16-bit silicon-gate chip uses 80-bit microinstructions and simulates several computers at up to 900k instructions/s.

—Deb Highbberger, Associate Editor

For registration information, contact Lewis Winner, 301 Almeria Ave, Coral Gables, FL 33134. Tel: 305/446-8193.
Technical Program Excerpts*

Session 1: Telecommunication Circuits
Wed 9 to 11:45 am, Imperial Ballroom A
Chairman: H. E. Mussman, Bell Labs
1/1 "A Single-Chip Telephone Circuit"
M. F. Akram and W. D. Pace, Motorola, Inc
1/2 "A Subscriber Line Interface Circuit with an Internal Switching Regulator"
1/3 "A 2-Chip Subscriber Line Interface Circuit with Ringing"
P. J. Meza, D. P. Laude, R. C. Strawbrich, and R. M. Sirsi, Harris Semiconductor
1/4 "A CMOS SLC with an Automatic Balancing Hybrid"
M. Shibukawa, E. Amada, Y. Hasegawa, and M. Shirasu, Hitachi Central Research Lab; and F. Fuji and K. Yasunari, Hitachi Device Development
1/5 "A Fully Adaptive Transversal Canceler and Equalizer Chip"
E. J. Swanson, R. J. Starke, G. F. Gross, K. H. Olson, C. J. Waldron, R. A. Copeland, S. A. Surek, R. J. Ribble, and A. J. Vera, Bell Labs

Session 2: High Speed Microprocessors
Wed 9 to 11:45 am, Imperial Ballroom B
Chairman: D. A. Patterson, University of California, Berkeley
2/1 "A 16-Bit Microprocessor with Onchip Memory Protection"
G. Louie, T. Ho, J. Slager, and D. Vannier, Intel Corp; and L. Gindraux, Daisy Corp
2/2 "A Virtual Memory Management Chip with Program Debugging Support"
Y. Lavi and A. Mizrahi, National Semiconductor
2/3 "A 16-Bit Microprocessor for Realtime Applications"
H. Hingarh, S. Mor, M. Vora, D. Wilnai, and T. Longo, Fairchild Advanced Research and Development Labs
2/4 "A 55k-Transistor NMOS Microprogrammable Microprocessor"
B. Grant, IBM Federal System Div

Session 3: GaAs High Speed Digital ICS
Wed 9 to 11:45 am, Royal Ballroom
Chairman: L. J. Nevin, Hewlett-Packard Co
3/1 "GaAs E/D Logic Circuits"
M. R. Namordi and W. A. White, Texas Instruments, Inc
3/2 "Depletion-Type GaAs MSI 32-Bit Adder"
3/3 "A 4-GHz, 25-mW GaAs IC Using Source-Coupled FET Logic"
A. Shimano, S. Katsu, S. Nambu, and G. Kano, Matsushita Electronics Corp
3/4 "A GaAs 1k Static RAM Using Tungsten Silicide Gate, Self-Aligned Technology"
N. Yokoyama, T. Ohnishi, H. Onodera, T. Shinoki, A. Shibatomi, and H. Ishikawa, Fujitsu Labs, Ltd
3/5 "GaAs 1k-Bit Static RAM Using Self-Aligned FET Technology"
K. Asai, K. Kurumada, M. Hirayama, and M. Ohmori, NTT Musashino Electrical Communication Lab

Session 5: Keynote Address
Wed 2:05 to 2:45 pm, Imperial and Royal Ballrooms
Chairman: L. M. Terman, IBM Research Center
"Long-Range Research Investments for a Semiconductor Systems Future"
G. E. Pake, Xerox Corp

Session 6: CMOS Memory
Wed 3:30 to 6 pm, Imperial Ballroom A
Chairman: J. Lohstroh, Philips Research Labs
6/1 "A 70-ns, High Density 64k CMOS Dynamic RAM"
6/2 "A 64k-Bit, Full-CMOS RAM with Divided Word-Line Structure"
6/3 "A Battery Backup 64k CMOS RAM with Double-Level Aluminum Technology"
6/4 "A Sub 100-ns, Static 64k CMOS EPROM with Onchip Test Functions"
M. W. Knecht, P. Keshthod, and G. H. Simmons, Signetics Corp; and M. H. Manley, Philips Research Labs/Signetics Corp

Session 7: Circuits for Digital Communications
Wed 3:30 to 6 pm, Imperial Ballroom B
Chairman: G. L. Baldwin, Hewlett-Packard
7/1 "A Single-Chip NMOS Ethernet Controller"
A. G. Bell and G. Borriello, Xerox Research Center
7/2 "A CMOS Adaptive Delta Modulation CODEC Chip for PBX Applications"
R. Gregorian and G. Wegner, American Microsystems, Inc; and S. D. Flanagan and J. G. Ford, United Technologies/Lexar
7/3 "A CMOS Switched Capacitor Variable Line Equalizer"
T. Suzuki, H. Takatori, and H. Shirasu, Hitachi Central Research Lab; N. Kunimi, Hitachi Device Development Center; and M. Ogawa, Hitachi Totsuka Works
(continued on page 154)
FINALLY—HIGH CAPACITY PLUS DATA INTEGRITY IN 1/4-INCH CARTRIDGE STREAMERS.

STANDARD FORM FACTOR.
Sentinel is packaged in an 8" floppy footprint.

OPTIMUM SPEED.
55 ips operating speed ensures full capacity load/restore time of less than 20 minutes without compromising cartridge or data integrity.

HEALTH CHECK
verifies operational readiness on power-up and/or host request.

FULL MEDIA INTERCHANGE.
Use of an automatically recorded servo reference stripe ensures cartridge interchangeability.

HIGH CAPACITY.
48 MB of formatted data on standard 450-foot cartridge.

CARTRIDGE CHECK FEATURE
detects potentially degraded cartridges before data are recorded on them.

THE SENTINEL

The Model 92190 Sentinel cartridge streamer delivers the data capacity needed to back up even today's higher-capacity 8" fixed disk drives. With a data rate (55 KBS) optimized for system requirements. Plus an optional ECC feature for applications requiring extremely high data integrity. For more information, call your local Control Data OEM Sales Representative or write: OEM Product Sales, HQN08H, Control Data Corporation, P.O. Box 0, Minneapolis, MN 55440.

CONTROL DATA

Addressing society's major unmet needs as profitable business opportunities

CIRCLE 75
ISSCC '83

7/4 "Peripheral Board Controller for Digital Exchange Systems"
L. Lerach, G. Geiger, and M. Strafner, Siemens AG

Session 8: Modeling and Technology
Wed 3:30 to 6 pm, Royal Ballroom
Chairman: R. D. Bartelsch, General Electric Corporate Research
8/1 "Inverter Chain Test Structure for Yield Improvement and Projection"
H. H. Berger, IBM Labs
8/2 "Modeling Redundancy in 64k- to 16M-Bit DRAMS"
C. H. Stapper, IBM Corp
8/3 "Correlating the Channel, Substrate, Gate, and Minority-Carrier Currents in MOSFETs"
C. Hu, S. Tam, F. C. Hsu, and R. S. Muller, University of California, Berkeley, and P. Ko, Bell Labs
8/4 "An 18-V, Double-Level Poly CMOS Technology for Nonvolatile Memory and Linear Applications"

Informal Discussion: Near-Term Applications for GaAs Digital ICs
Wed 3:30 to 6 pm, Versailles Ballroom-Versailles Terrace
Moderator: D. H. Phillips, Aerospace Corp
Panel: F. A. Blum, Gigabit Logic; B. K. Gilbert, Mayo Clinic; C. F. Krumm, Hughes Research Labs; G. Nuzzillat, Thomson-CSF; T. M. Reeder, Tektronix, Inc; G. A. Works, Texas Instruments, Inc; and N. Yokoyama, Fujitsu Labs

Informal Discussion: Joint R and D—Current and Future Plans
Wed 8 pm, Imperial Ballroom-Royal Ballroom
Moderator: G. A. Pake, Xerox Corp
Panel: G. E. Moore, Intel Corp; W. J. Sanders III, Advanced Micro Devices; E. Bloch, IBM Corp; J. W. Lacy, Control Data Corp; and J. D. Meindl, Stanford University

Session 9: Fast RAMs
Thurs 9 am to 12:15 pm, Imperial Ballroom A
Chairman: W. W. Herndon, Fairchild Research
9/1 "An 80-ns, 64k DRAM"
A. Mohsen, P. Madland, C. Simonsen, E. Hamdy, G. King, J. McCollum, and A. Wood, Intel Corp
9/2 "A 5-ns, 4k x 1 NMOS Static RAM"
K. J. O'Connor and R. A. Kushner, Bell Labs
9/3 "A 16-ns, 16k Bipolar RAM"
y. Kato, M. Odaka, and M. Oglue, Hitachi Device Development Center, and H. Miwa and K. Matsumura, Hitachi Microcomputer Engineering, Ltd
9/4 "A 15-ns, 16k-Bit ECL RAM with a PNP Load Cell"
9/5 "A 25-ns, 8k x 8-Bit Static MTUI2L RAM"
S. K. Wiedmann and K. Heuber, IBM Labs

Session 10: Speech Recognition
Thurs 9 am to 12:15 pm, Imperial Ballroom B
Chairman: T. Foxall, Pacific Microcircuits, Ltd
10/1 "An Architecture for a Speech Recognition System"
M. Lowy, H. Murveit, D. M. Mintz, and R. W. Brodersen, University of California, Berkeley
10/2 "A Speech Recognition Processor"
T. Iwata, H. Ishizuka, T. Hoshi, M. Watari, Y. Kawakami, and M. Mizuno, Nippon Electric Co, Ltd
10/3 "A Monolithic Data Acquisition Channel"
R. K. Hester, K. S. Tan, and C. R. Hewes, Texas Instruments, Inc
10/4 "A 2-µm NMOS 256-Point Discrete Fourier Transform Processor"
J. L. van Meerbergen and F. J. van Wyk, Philips Research Labs
10/5 "A Switched-Capacitor Adaptive Lattice Filter"
R. D. Fellman and R. W. Brodersen, University of California, Berkeley

Session 11: Design Techniques
Thurs 9 am to 12:15 pm, Royal Ballroom
Chairman: A. R. Newton, University of California, Berkeley
11/1 "Automatically Generated Area, Power, and Delay Optimized ALUS"
R. K. Montoye and P. W. Cook, IBM Research Center
11/2 "A Circuit Design Methodology for CMOS Microcomputer LSI"
H. Nakamura and H. Maejima, Hitachi Research Lab, and T. Kihara, Hitachi, Ltd
11/3 "An Interactive, Integrated, Hierarchical CAD System for Microprocessor Design"
P. J. Cavill, H. M. Chesney, A. Fuge, G. Harriman, J. Jakson, and R. Shepherd, INMOS Ltd
11/4 "A Fault-Tolerant MOS LSI for Train Controller Applications"

Informal Discussion: Wideband Microwave/Millimeter Wave Solid-State Amplifiers
Thurs 9 am to 12:15 pm, Versailles Ballroom-Versailles Terrace
Moderator: H. Huang, RCA Labs
Panel: Y. Ayasli, Raytheon Research; J. Kukielka, Avantek; S. Nambo, Matsushita Electronics Corp; J. Obregon, Laboratoire d'Electronique; F. Sechi, RCA Labs; and H. Q. Tserng, Texas Instruments, Inc
(continued on page 159)
THE WIZARDRY OF IDI PRESENTS...
Unequaled power and performance for under $100,000.
Choosing the right CAD system used to present a real problem. You either had to pick one that met only your immediate requirements and offered no ability to grow, or a more costly one with an abundance of power initially but reduced performance in expanded configurations. One way or the other, it always seemed you got trapped by the system.

At IDI, we’ve developed the solution. A system that gives you all the computing and graphics power you need now. Plus, virtually unlimited growth potential for future expansion and networking with no sacrifice in performance.

We call it CADalyst®, a whole new approach to CAD that provides all the graphics hardware and application software you need to satisfy your design, drafting and illustrating needs its very first day on the job.

Just take a look at the power and flexibility built into CADalyst and see how our wizardry can work for you.

32-bit parallel processing system architecture.
CADalyst’s unique modular design employs seven independent, high-speed processing subsystems—each of which contains its own local program and data storage facilities. The efficient and independent operation of these subsystems results in performance features virtually unparalleled in the market today.

Vector Display Processor—state-of-the-art vector refresh graphics processor that displays 60,000 vectors at 60Hz refresh rate with up to 256Kbytes display memory, light pen and data tablet operation, automatic screen partitioning, and special DMA access to the floating point processor for instantaneous screen dynamics.

Raster Display Processor—high-resolution color raster display generator supporting 512Kbytes display memory, 32 active colors from an extensive color palette, color video imaging devices, and contextual overview from the vector display.

Main Memory—high-speed Random Access Memory with ECC providing up to 16 Mbytes of program and data storage.

Floating Point Processor—48-bit extended precision processor with up to 256Kbytes of program memory, 256Kbytes of data memory, and DMA channel to both the vector display processor and advanced disk processor (exceeding the floating point capability of the VAX 11/7)

Advanced Disk Processor—the disk processor supports
Two Input Options — user can input with light pen or data tablet—or both.

Mag Tape — 100 ips streaming front load.

Disk — Winchester-type with fixed removable media.

First CAD system beat the system.

2Kbytes track buffer, 16Kbytes program and data memory, and separate DMA to the floating point processor for instantaneous screen response requiring disk access.

Communications Processor— supports all communications to the outside world; system peripherals such as plotters, line printers and phototypesetters, synchronous and asynchronous data communications and protocols, and the INET™ local area networking facilities.

Distributed Control Processor — employing the system’s internal bus, this 32-bit microprocessor allocates tasks and program execution to appropriate system processors, thereby creating a true parallel processing environment within the system.

User-Proven Software.

Since 1975, IDI has been developing graphics and application software packages highly regarded for ease of use and operational effectiveness. Complete programs for Technical Publishing, A&E/C, Mechanical and Electrical Design Drafting have been integrated into CADalyst, and are ready to start working immediately.

CADalyst supplies new operating system support to these industry-accepted packages, enhancing their performance and opening the way to new applications previously reserved for supermini and mainframe computers.

Unlimited system flexibility with no degradation of performance.

INET Local Area Networking — inter-unit communication allows data and drawing exchange throughout a distributed network of CADalyst systems.

Local Peripheral Support — peripherals such as plotters, printers and telecommunications equipment are supported with no central computer required.

Host Computer Compatible — interconnection with a mainframe enables centralization of many engineering and database management functions at a single location.

Wizardry that works by design.

IDI’s CADalyst 200 Series modular design means you never have to worry about CAD system obsolescence. CADalyst has the power to meet your current system requirements, plus the flexibility to grow and expand right along with your needs. To learn more about this unique approach to CAD and how our system can help you beat the system, call toll free: 800-835-2246, ext 504, in Kansas 800-362-2421 ext 504.
CADalyst™ comes with a full complement of start-up, training and support services.

IDI's comprehensive customer service begins with trained specialists who help determine and plan for your individual space requirements. Only after this in-depth assessment is the CADalyst system installed to your specifications, ensuring the optimum graphics environment and maximum comfort for operators.

Installation is quick, minimizing interruption and downtime. Start-up is smooth and completely under control. A Systems Training Specialist is assigned to your account to evaluate your specific needs and then gear a formal training program to meet them in total. This same Systems Specialist will provide training on site, assist in defining graphic standards, customize symbol libraries, and answer any questions you may have about the documentation accompanying the system.

Best of all, IDI's relationship with CADalyst owners doesn't end in the start-up stage. We offer ongoing training programs, hardware support, special applications assistance, periodic software updates, a 24 hour—7 day Customer Response Center with a toll free number, and we strongly encourage continuous customer feedback.

There's nothing magic about it—just a complete, hardworking customer service program that makes sure your CADalyst system works hard for you. That's the Wizardry of IDI.
ISSCC '83

Session 12: Gate and Programmable Logic Arrays
Thurs 1:30 to 5 pm, Imperial Ballroom A
Chairman: H. Borkan, Electronic Technology and Devices Lab
12/1 "A 20-ns CMOS Functional Gate Array with Configurable Memory"
12/2 "Building Block Approach and Variable-Size Memory for CMOS VLSI"
T. Obha, K. Koioe, K. Ikuzaki, and M. Fujita, Hitachi Device Development Center; A. Masaki, Hitachi Central Research Lab; and M. Kato and S. Murata, Hitachi Kanagawa Works
12/3 "A 5000-Gate Bipolar Master Slice LSI with 500-ps Loaded Gate Delay"
M. Suzuki, S. Horiguchi, and T. Sudo, NTT Musashino Electrical Communication Lab
12/4 "A 10,000-Gate Bipolar VLSI Master Slice Utilizing Four Levels of Metal"
12/5 "A 4-ns Laser-Customized PLA with Preprogram Test Capability"
D. W. Still, Honeywell Information Systems, Inc

Session 13: Nonvolatile Memory
Thurs 1:30 to 5 pm, Imperial Ballroom B
Chairman: R. Pashley, Intel Corp
13/1 "A 200-ns, 256k HMOS II EPROM"
M. F. van Buskirk, W. Fisher, M. Holler, and G. Korsh, Intel Corp
13/2 "A 5-V Only, 64k EEPROM with Internal Sample and Hold"
A. Lancaster, R. Johnstone, J. Chrutz, G. Talbot, and D. Wooten, INMOS Corp
13/3 "A 5-V Only, 16kEEPROM Using 1.5-µ Lithography"
V. K. Dham, K. H. Gudger, Y. W. Hu, S. Nieh, J. Olund, and D. Oto, Intel Corp
13/4 "A 5-V Only, 32k EEPROM"
D. D. Donaldson, E. H. Honnigford, and L. J. Toth, NCR Corp
13/5 "A 5-V Only, 4k Nonvolatile Static RAM"
N. Becker, V. K. Dham, Y. W. Hu, D. Lee, A. Schlafly, and J. Skupnjak, Intel Corp
13/6 "A 40-ns Junction-Shorting PROM"
T. Fukushima, K. Ueno, Y. Matsuzaki, and K. Tanaka, Fujitsu, Ltd, Memory-Bipolar Divs

Session 14: Data Acquisition and Conversion
Thurs 1:30 to 5 pm, Royal Ballroom
Chairman: J. McCreary, Intel Corp
14/1 "An 8-Bit/60-ns Monolithic ADC with Internal Sample and Hold"
R. A. Blauschild, Linear Design, Inc
14/2 "A Monolithic Sample and Hold Amplifier for Digital Audio"
R. J. van de Plassche and H. J. Schouwenaars, Philips Research Labs
14/3 "A Monolithic 12-Bit System DAC"
B. Harvey, Advanced Micro Devices
14/4 "A Trimless 14-Bit/20-µs Dual-Channel ADC for PCM Audio"
S. Sugawara, M. Ishibe, S-I. Majima, S. Komatsu, and H. Yamada, Toshiba Research and Development Center
14/5 "A 16-Bit Monolithic DAC with Voltage Output"
J. R. Naylor, Burr-Brown Research Corp
14/6 "A 60-ns Glitch-Free NMOS DAC"
V. W-K. Shen and D. A. Hodges, University of California, Berkeley

Session 15: Microwave Circuits
Thurs 1:30 to 5 pm, Versailles Ballroom-Versailles Terrace
Chairman: A. F. Podell, Podell Assocs
15/1 "A 2.2-dB NF, 30- to 1700-MHz Feedback Amplifier"
N. Nishiama, S. Katsu, S. Nambu, M. Hagiio, and G. Kano, Matsushita Electronics Corp
15/2 "A 19.7- to 21.7-GHz Amplifier"
W. Kennan, P. Chye, C. Huang, and M. Pardo, Avantek, Inc
15/3 "A 20-GHz HEMT Amplifier for Satellite Communications"
M. Niori, T. Saito, S. Joshi, and T. Mimura, Fujitsu Labs, Ltd
15/4 "A GaAs Dual-Gate Power FET for Operation up to K Band"
B. Kim, H. Q. Tserng, and P. Saunier, Texas Instruments, Inc
15/5 "A 33-dB Gain Monolithic X-Ku-Band Power Amplifier Module"
Y. Tajima, P. Miller, R. Mozzi, and E. Tong, Raytheon Research Div; and T. Tsukii, Raytheon Electromagnetic System Div
15/6 "A 1.0· x 1.6-mm 2 GaAs, 4-GHz Receiver"
S. Jamison, M. Helix, J. Culp, R. Lokken, L. Almstead, and C. Chao, Honeywell; and A. F. Podell, Podell Assocs
15/7 "Reduced fm Noise GaAs FET Microwave Oscillators"
J. S. Joshi and B. T. Debney, Plessey Research (Caswell), Ltd

Informal Discussion: CMOS Technology Directions
Thurs 8 pm, Imperial Ballroom A
Moderator: T. J. Rodgers, Advanced Micro Devices Panel: R. Davies, Texas Instruments, Inc; G. Hwang, IDT; S. Kohyama, Toshiba; A. London, National Semiconductor; Y. Kosa, Hitachi; Ltd; Y. Okuto, NEC VLSI Lab; and R. J. Smith, Intel Corp
Informal Discussion: Practical vs Theoretical Limits of VLSI
Thurs 8 pm, Imperial Ballroom B
Moderator: J. D. Meindl, Stanford University
Panel: H. J. Boll, Bell Labs; Y. A. Elmansy, Intel Corp; F. H. Gaensslen, IBM Research Center; W. R. Huber, General Electric Microelectronics Center; F. M. Klassen, Philips Research Labs; N. Sasaki, Nippon Electric Co; and A. F. Tasch, Jr, Motorola, Inc

Informal Discussion: Speech Recognition
Thurs 8 pm, Royal Ballroom
Moderator: G. Doddington, Texas Instruments, Inc
Panel: J. Baker, Dragon Systems, Inc; S. Chiba, NEC System Research Lab; W. Hartwell, Bell Labs; and B. Warren, Auricle

Informal Discussion: Analog vs Digital Design
Thurs 8 pm, Versailles Ballroom
Moderator: J. Solomon, National Semiconductor
Panel: R. Apfel, Advanced Micro Devices; R. Brodersen, University of California, Berkeley; P. Holloway, Analog Devices; J. M. Huggins, Intel Corp; M. McMahan, Texas Instruments, Inc; and N. Sevastopoulos, National Semiconductor

Informal Discussion: Complex vs Reduced Instruction Set Computers
Thurs 8 pm, Versailles Terrace
Moderator: P. Verhofstadt, Fairchild
Panel: D. Bhandarkar, Digital Equipment Corp; J. L. Hennessy, Stanford University; P. Lu, Bell Labs; D. Patterson, University of California, Berkeley; and G. Radin, IBM Corp

Informal Discussion: Are Static RAM Techniques Converging?
Thurs 8 pm, Georgian A Ballroom
Moderator: R. C. Foss, Mosaid, Inc
Panel: J. Barnes, Motorola; A. Dantec, Matra-Harris; K. Hardee, imOS; K. Kokkenen, Intel Corp; T. Masuhara, Hitachi Central Research Lab; T. Tanaka, Mitsubishi Electric Co, Ltd; and S. K. Wiedmann, IBM Labs

Session 16: 256k DRAMS
Fri 9 am to 12:15 pm, Imperial Ballroom A
Chairman: R. C. Foss, Mosaid, Inc
16/1 "A Sub 100-ns, 256k-Bit DRAM"
16/2 "A 90-ns, 256k x 1-Bit DRAM with Double-Level AI Technology"

16/3 "A 100-ns, 256k DRAM with Page-Nibble Mode"
16/4 "A Sub 100-ns, 256k DRAM"
J. D. Moench, A. J. Lewandowski, B. L. Morton, F. A. Miller, and J. R. Yeagar, Motorola Semiconductor

Session 17: Precision Analog Components
Fri 9 am to 12:15 pm, Imperial Ballroom B
Chairman: C. R. Hewes, Texas Instruments, Inc
17/1 "A Monolithic Conditioner for Thermocouple Signals"
A. P. Brokaw, Analog Devices Semiconductor
17/2 "A Precision Curvature-Compensated cmos Bandgap Reference"
B-S. Song and P. R. Gray, University of California, Berkeley

17/3 "A Bi-mos Signal Processor for VCR Audio"
I. Fukushima and K. Kuwahara, Hitachi Consumer Products; K. Itoigawa, Hitachi Microcomputer Engineering; K. Hoya and N. Horie, Hitachi Takasaki Works; S. Ichimura, Hitachi Tokai Works; and M. Nagata, Hitachi Central Research Center
17/4 "Fully Integrated Active rc Filters in mos Technology"
H. Banu and Y. Tsividis, Columbia University/Bell Labs
17/5 "High Frequency cmos Switched Capacitor Filters"
T. Choi, R. T. Kaneshiro, R. W. Brodersen, and P. R. Gray, University of California, Berkeley
17/6 "A 600-MHz Transconductance Amplifier Using Cascop Feed Forward Error Correction"
S. Simpkins and W. Gross, Tektronix, Inc

Session 18: Imaging and Signal Processing
Fri 9 am to 12:15 pm, Royal Ballroom
Chairman: R. P. Khosla, Eastman Kodak Co
18/1 "3533-Element Quadrilinear ccd Imager"
L. S-P. Sheu, N. Kadekodi, T. Ngo, and A. Ibrahim, Xerox Corp
18/2 "A 256- x 256-Element, Si Monolithic IR-ccd Image Sensor"
M. Kimata, M. Denda, N. Yutani, and N. Tsubouchi, Mitsubishi Electric Corp; and R. Tsunoda and T. Kanno, Japan Defense Agency
18/3 "A 10-MHz ccd Time-Integrating Correlator"
18/4 "An Image Signal Processor"
T. Fukushima, Y. Kobayashi, H. Hirasawa, and T. Bandoh, Hitachi Research Lab; M. Ejiri, Hitachi Central Research Lab; and H. Kuwahara, Hitachi Ohmika Works
18/5 "An 80-MHz Bipolar Dot Rate Generator"
A. Lechner and H. Jeremias, Microelectronic Development Center; and B. Scheckel, Siemens AG
See 4x more resolution for $3,995* with the Datacopy bit mapped display.

Isn't this the bit mapped display you've always wanted? Higher 1728 by 2200 resolution viewable display and matching image buffer. Big 15 or 19" diagonal monitors. Landscape or portrait orientation. Ergonomically designed tilt base. With interfaces for digitizers, output devices, and computers. And all available for $3,995.*

Display 38,400 characters on-screen at one time, a full newspaper page, including pictures, or your most complex drawing with revealing detail. Display characters as small as 4-point. Even picture 3-D objects. Inspect and measure any object (i.e., a 0.020" pin), view it on-screen, perform computer analysis, then make a copy for record. Call up a drawing, notate changes, and send via data communications to another user. See more, do more, with Datacopy very high resolution display.

Datacopy very high resolution displays and digitizing cameras can help you see what you've been missing. Circle our readers' service number for specs and application literature. Or call us at (415) 493-3420.

DATACOPY
1070 East Meadow Circle
Palo Alto, California 94303
(415) 493-3420

*1000 Unit Quantity
Internet Transport Protocol (ITP) NS4200 software packages from Interlan, Inc, provide task to task communications over Ethernet local area networks (LANS) for VAX/VMS and RSX-11M systems. The packages are claimed to be the first commercially available implementation of Xerox's higher level Network Systems' Ethernet transmission protocols that operate on DEC computers. The software provides reliable, flow controlled, interprocess communications between Ethernet connected systems.

In addition to supporting high bandwidth communications over an Ethernet LAN, an internetwork router facility is included for reliable end to end delivery between systems residing on different LANS. These LANS can be geographically distant and interconnected by long-haul channels or networks, or can consist of differing media such as baseband CSMA/CD, baseband token ring, or broadband token bus that are bridged together.

Transmission protocols were specified for use on an Ethernet channel, allowing the protocol's design to take advantage of Ethernet's packet addressing, error detection, and delay bandwidth characteristics. As a result, each ITP package provides a high bandwidth virtual circuit communications service to a user's application task with minimum host CPU loading. The NS4200 ITP is specified to the Xerox Network Systems' Internet Transport Protocols, which are the architectural foundation for Xerox's distributed systems. As illustrated, the ITP protocols include internet datagram, routing information, sequenced packet, packet exchange, echo, and error protocols. With the NS4200 ITP package as a building block, the task of networking RSX-11M and VAX/VMS systems to Ethernet compatible systems is minimized. Only detailed file structures and command interpretations need be addressed to provide task to task communications between RSX-11M or VAX/VMS systems with other Ethernet compatible systems that use the Xerox Network Systems' higher level protocols.

The NS4200 ITP package contains a NETMAN™ menu driven utility program that automatically tallies over 40 different network statistical values. NETMAN enables a network manager to acquire and display operational data from local/remote ITP nodes. NETMAN's parameters let a network manager identify connected ITP stations, identify congestion and flow control bottlenecks, understand traffic flow patterns, evaluate the performance of virtual circuit connections, and assess the quality of network service.

In addition, Ethernet's 32-bit CRC error detection makes the checksum function optional. The 48-bit ITP addresses map directly into the 48-bit Ethernet data link addresses to eliminate need for address mapping typically required by other transmission protocols when used on Ethernet. Protocols such as the ECMA 72 Class 4 are planned for future implementation. DECnet Phase III Ethernet networking is also provided via ETHERWAY/DECnet/Ethernet software. NS4200 Internet Transport Protocol package is provided in C language source form for $25,000. Runtime licenses are also available.

ETHERNODE™ series

The NS4200 ITP is also a part of the ETHERNODE™ 1000 series data communications package that contains all the hardware and software required for RSX-11M and VAX/VMS systems to communicate over Ethernet. Depending on the type of processor and operating system, each ETHERNODE package contains the appropriate NS4200 ITP software, device driver, Ethernet communications controller board, nonintrusive tapping transceiver, and transmission cables. Either a NT10/UNIBUS or NT20/QUBUS intelligent Ethernet communications controller board is included. These microprocessor based boards perform DMA data transfers, contain extensive receive data buffering for back to back frame reception, provide extensive diagnostics, and collect network statistics.

The NT10 Ethernet transceiver unit, an integral part of the ETHERNODE series, provides a nonintrusive coax cable tap that allows the unit to be installed/removed from an operational Ethernet without disrupting network communications. The NT10 also provides triple-redundancy control logic (jabber control) to protect the network against the effects of a continuously transmitting Ethernet station.

Included in the series are the ITP/RSX/UNIBUS, ITP/RSX/QUBUS, and the ITP/VMS/UNIBUS configurations. The ITP/RSX versions are available immediately; ITP/VMS will be available in February 1983. ETHERNODE 1110 (ITP/RSX/UNIBUS) and ETHERNODE 1310 (ITP/VMS/UNIBUS) are priced at $3100, quantity 25. ETHERNODE 1120 (ITP/RSX/QUBUS) is priced at $2335, quantity 25. Interlan, Inc, 3 Lyberty Way, Westford, MA 01886.
In the world of electronic data processing, choosing the wrong contact can result in lost information. And lost information means lost time and money. A simple error can cost you anywhere from $50,000 to $150,000—or more.

So, when you're connecting a PC board to a backplane or assembling I/O connections, check into the Cannon® ADAPTA-CON connector series. Check into the best way to not only save information, but to save time and money as well.

The ADAPTA-CON family of connectors is a versatile two-piece printed-circuit packaging system. It offers a variety of possible combinations, all emanating from a female box-type receptacle.

The heart of this system is a modified box contact that allows the designer to fabricate assemblies with over 100 contacts that are easily mated and unmated.

Best of all, ADAPTA-CON series connectors are in stock right now, ready to be delivered wherever and whenever you need them.

For immediate information, refer to our pages in EEM. For literature, the name of your local ITT Cannon distributor or other information, contact: Commercial/Industrial Products Marketing Manager, ITT Cannon, a Division of International Telephone and Telegraph Corporation, 10550 Talbert Avenue, Fountain Valley, CA 92708. (714) 964-7400. In Europe, contact: ITT Cannon, 105A rue Colonel Bourg, B.3 1140 Brussels, Belgium. Phone: 02/735-6094.

CANNON ITT
The Global Connection
SYSTEM COMPONENTS

High speed CMOS microprocessor and I/O controller upgrade family

Two added high performance CMOS microprocessor family members, the HD-6120 12-bit microprocessor and the fully compatible HD-6121 I/O controller are designed to recognize the instruction set of DEC's recently announced PDP-8/E™ (DECmate II™) minicomputer. An upgrade of the HD-6100 microprocessor, HD-6120 features a 5.1-MHz CPU and optimized microcode that minimizes the required number of clock cycles for all instructions, thereby reducing instruction execution time. Two onchip 12-bit stack pointer registers are included, along with onchip memory extension control hardware to address 64k words of memory divided between the 32k control panel and 32k main memory. Memory control is implemented in software and need not use any part of main memory or change the processor state—an important feature if the final configured system does not have a control panel and the main memory's entire capacity is used. The microprocessor works with either a parallel resonant, fundamental mode crystal or an external frequency source. Simplified memory, programmed data transfers, and interrupt transfer control signals ease hardware interfacing. Twelve-bit accuracy, rapid interrupt response, battery backup, and low power (sealed enclosure) capability suit the chip to realtime control applications.

The HD-6121 I/O controller provides independent control of any combination of five 12-bit I/O ports with handheldshaking capability. Used in conjunction with the HD-6120 microprocessor, the I/O controller chip provides basic control and enable signals for the device that it controls, but it is not involved in the critical speed timing of the DX bus transfers to/from these devices. Each I/O port retains its own output latch or input driver interface for maximum I/O device flexibility. Because these latches and input drivers are not included in the 6121, the device can provide complete handshaking for five I/O ports. Software programmable chip select decoding (enable outputs) allows I/O device addressing to be easily changed without changing the user's PCB. This onchip feature eliminates the need for the two to five ICs usually associated with chip select decoding. Also onchip is the priority interrupt controller that includes software programmable logic vectors and complete interrupt request/grant handshaking for the 6120 microprocessor. A separate interrupt controller IC is not required. The priority in/priority out control signals allow up to eleven 6121s to be daisy chained without interfacing logic, for vectored interrupt control of up to 55 I/O ports. I/O port handshaking signals are included onchip for status polling of an input port and signaling an output port that has received data. These software programmable signals can be considered "input buffer full" and "output buffer full" status lines.

Both devices are available in the industry standard 40-pin 0.6" (1.5-cm) center spaced cerDIP. Power supply requirement is 5 V, ±5%. Industrial temp version of the HD-6120 is $55 and the mil temp version is $96.25. HD-6121 is $22 for the industrial temp version and $38.50 for the mil temp version. Harris Corp, Semiconductor Digital Products Div, PO Box 883, Melbourne, FL 32901. Circle 262

Computer is based on standard subsystems

The 29" (74-cm) high Tower 1632 is built around a 16-bit 10-MHz MC68000 processor, a UNIX III based operating system, a MULTIBUS I/O subsystem, and fixed Winchester drives. The MC68000 supports up to 16 simultaneous local or remote users, each performing multiple functions. Up to six microprocessor based DMA controllers that handle the 51/4" disks, 8-channel I/O, and multiprotocol communications onload I/O functions from the CPU. Up to 2M bytes of main memory in 256k-byte increments and 60M bytes of Winchester disk mass storage in the main unit are supported. Add-on units can expand mass storage to more than 1G byte. Standard magnetic media interfaces include the SA400 for 1M-byte 51/4" floppydisks, the ST506 for 10M-byte Winchester, an SMD for 8" Winchesters, and the QICII streaming tape. The 6-slot MULTIBUS I/O system is separate from the dedicated 2-slot high speed memory bus. The buses function both simultaneously and independently to minimize contention and maximize throughput. UNIX optimized memory management unit with 256k ECC memory uses a full 24-bit addressing field and provides a clear migration path to 32-bit technology.

Five "menu personalities," one for each of five programming sophistication levels, are part of the enhanced UNIX. These personalities allow easy access to the system. To facilitate applications development, NCR's N-GEN dictionary-driven applications generator contains the needed software tools to generate quick computer programs. COBOL, Business BASIC, FORTRAN, and C languages are supported. Two RS-232-C ports provide ASCII teletypewriter and Bisync 2780/3780 communications. Other protocols supported are NCR's DLC, SDL/C/SNA, X.21/X.25, and UNIX networking.

Carrying features beyond industry standards, the Tower 1632 includes a power fail recovery system that preserves data in memory (without specialized applications programming) until power is returned after an outage. In addition, the intellectual properties protection system prevents both proprietary operating and applications software from running on unlicensed machines. The $12,000 Tower 1632 will be sold to computer systems houses, OEMs, distributors, and dealers who can add applications software, specialized peripherals, and other subsystems to suit customized needs. NCR Corp, Dayton, OH 45479. Circle 263
Gates Energy.
Back-up power you can call on anytime.

Phone system customers demand reliability. That’s why major manufacturers of telecommunication systems are backing up their installations with Gates Energy cells.

Gates Energy cells deliver dependable back-up power that keeps your lines alive. They’re rated at 2 volts with capacities at 2.5 Ah, 5 Ah, 12.5 Ah and 25 Ah. And they can be assembled into an endless variety of configurations.

Gates Energy cells provide outstanding cold weather performance (50% of C/10 room temperature capacity at -40°C). And you’ll get 8-10 years life at 23°C in float applications.

Learn how Gates Energy cells can keep your electronic equipment working when the local power company can’t.

Call, or write, Gates Energy Products Inc., 1050 S. Broadway, Denver, CO 80217. (303) 744-4806.
Programmable controllers store 10-year memory without external power

Three microprocessor based programmable controllers capable of solving more than 80% of the control problems in small industrial applications, the EPTAK™ 210, 220, and 240 are economical alternatives to hardwired control relays, card logic systems, and panel systems. Key to the systems is a compact controller with CPU, power supply; portable, remotely programmable 54-key programmer; realtime clock; and nonvolatile EEPROM. The EEPROM provides 10 years of memory protection without an external power source.

EPTAK 210 and 220 are based on Intel's 8049 microprocessor chip, and EPTAK 240 uses Intel's 8051 microprocessor. A permanent program storage, plug-in memory module that fits directly into the processor or programmer protects against data loss from power failures, time delays from programming to final equipment installation, or extended periods between editing and program use. Typical scan rates are 10 ms for model 210 and 20 ms for models 220 and 240. These times vary as the number of program instructions vary.

An RS-232 communications port links peripherals located up to 50' (15 m) from the programmer to the unit. The processor controlled "operator interface" port accommodates bidirectional data transmissions to the programmer and the data access display modules (DADMs) for monitoring timers/counters or analog data at distances up to 1k' (305 m) from the processor.

I/O configuration delivers up to 16 dual-point modules for 32 max I/O points per track. Each EPTAK system can interface to the same programmer, DADMs, and other peripherals for shared communications and control functions. A reversible step program function is accommodated via two 32-stage shift registers.

EPTAK 210 ($361) replaces hardwired panels or control systems with as few as two timers/counters and several relays. Space can be further cut by selecting either full-, half-, one-quarter, or one-eighth track size versions. EEPROM is 1k and 420 program statement capacity is provided.

EPTAK 220 (pictured) expands EEPROM to 4k and provides 820 program statement capacity. Add, subtract, and compare functions optimize data handling. It has 128 I/Os, controls 32 timers/counters, and can be expanded to 4 I/O tracks for maximum control. Eight auxiliary ports for external I/O in binary or BCD format are provided. Price is $1323.

EPTAK 240 ($1778) with 16 analog I/Os increases device potential in process control applications. Accompanying analog I/O blocks fit the standard track; other digital blocks can be intermixed in unused analog block positions on the same track. Analog input values are set-point, actual, and proportional integrated derivative (PID). If PID values are not defined, the PID loop defaults to on/off control. Two subroutines permit common routines to be repeated without duplicating instructions. The 8k EEPROM provides a 1200 program statement capacity and 6 arithmetic functions.

Dual fixed/removable 5¼" Winchester drive meets ANSI specs

Providing unformatted capacities of 13M bytes in fixed memory and 13M bytes on removable disk cartridge, the D520 5¼" Winchester also boasts 860-tpi/9200-bpi densities and 40-ms average access time. An embedded servo tracking system eliminates seek errors and need to align the oxide media and minicomposite read/write heads. The Winchester's removable front loading cartridge is compatible with the proposed ANSI standard cartridge (Computer Design, Oct 1982, p. 3). When the cartridge is inserted into the drive, the drive/cartridge combination becomes a completely sealed unit allowing high pressured, closed-loop air flow and filtration. This absolute air filtration system allows the disks and heads to operate in a contamination free environment. Drive logic ensures that heads are loaded only after a completed air contamination purge cycle. Since the cartridge performance and capacity exactly match those of the drive's fixed memory, full backup is easily accomplished.

The drive provides 1 spare sector per track and 10 spare tracks per surface. Its magnetic rotary voice coil actuator is completely balanced to allow mounting in vertical and horizontal positions. Proprietary LSI chips have reduced the required number of discrete components by approximately 75. A brushless dc drive motor directly rotates the drive motor to eliminate need for belts or pulleys, and to increase reliability. The shock-mounted baseplate minimizes vibration. MTBF is specified at 8k h, and the drive requires no preventive maintenance.

Rotational speed is 3400 rpm. Track to track access is 5 ms and transfer rate is 5M bps. Ambient temp range is 4 to 46 °C. The drive is built within the standard 5¼" minifloppy footprint of 7.55" x 3.25" x 8" (19.15 x 8.26 x 20 cm) and weighs 7 lb (3 kg). Internationally used dc voltage requirements are ±12 Vdc and 5 Vdc; power consumption is 35 W. ST700 and DMA interface compatible the fixed/removable Winchester is the first 5¼" drive from Cynthia Peripheral, a service subsidiary of the France based Cii Honeywell Bull that formerly specialized in 10¼" drive. Price of the D520 is $1350 in OEM quantities. The company's compatible "Eas Box" disk drive subsystem provides immediate connection to built-in backup, controller, power supply, at enclosure, for a price of $1780. Cynthia Peripheral Corp, 3606 W Bayshore R. Palo Alto, CA 94303. Circle 264
Where to drill? Traditionally, exploring a 25,000 square mile frontier for an answer to that question could take months. And cost over a million dollars for consultant fees and aerial photography.

Today, a DeAnza Image Processing System can narrow the same frontier to a few miles using roughly $100,000 worth of satellite data. And help project the final drill site in less than thirty days. Remarkably, the system itself is paid for several times over, exploring just a single frontier.

Get The Complete Picture
Image processing is the only way all geological data can be considered simultaneously: LANDSAT, SEASAT, radar, magnetic, gravity, topographical, etc. Step-by-step, a DeAnza Image Processing System graphically displays faults, folds and stratigraphic units to pinpoint areas small enough for seismic exploration. Finally, the system enhances seismic data gathered in the field to project final drill sites. And these projections stay completely confidential, because they’re done in-house.

The Gould/DeAnza Advantage
Gould/DeAnza is one of the world’s leading suppliers of image processing systems. For one very good reason. No other supplier offers systems with power, flexibility, and range of operations equal to ours. Nobody. Call or write us today. Let us help you explore the possibilities of image processing. It may be the richest find you make this year.
Full-color graphics added to workstation

The bit-mapped video with 128k-byte display memory and 16k-byte firmware that offloads the graphics overhead from the workstation's CPU is organized in three 512 x 512 display memory planes. As a combined graphics and alphanumeric subsystem, a proprietary page mode memory controller on the graphics board provides 3 bits/pixel via sixteen 64k dynamic RAMs. Vector drawing mode uses a full palette of 64 colors, with 8 colors displayable at any time. Screen can display 80 chars x 29 lines and 7 x 9 pixels per char in a 9- x 11-pixel cell. Graphics resolution is 432 x 319. The alphanumeric/graphics displays can also be selectively disabled to present only text or only graphics, or to combine the two with text taking precedence.

Although the units can be locally clustered for networking capabilities via a high speed data link, neither the central processor nor the graphics processor is shared by other workstations in the network. Diverse applications can simultaneously operate on the same data base. Hardware and software architectures are totally modular, designed to provide multiple upgrade paths. A standalone system can be upgraded to local networking without software modification. The workstations can also be connected to mainframe hosts via SNA, X.25, IBM 3270, and 2780/3780 communications protocols.

All AWS turbo color graphics workstations have four I/O ports—two RS-232-C serial ports, one RS-422 cluster port, and one Centronics compatible parallel port. The systems have a built-in spoiler that permits queuing of an unlimited number of pictures for plotting or printing without interfering with simultaneous interactive processing operations.

Three levels of device-independent graphics software support include system-level primitives, applications-level primitives, and the Color Business Graphics Package. The device-independent graphics subroutines are callable from COBOL, BASIC, FORTRAN, and Pascal. Software controls character generation, multiple split screens, and a wide range of display attributes.

Pricing for the AWS color turbo graphics workstations in single units ranges from $12,190 for a unit with 5M-byte Winchester to $13,790 for a unit with 16M-byte disk. Convergent Technologies, 2500 Augustine Dr, Santa Clara, CA 95051. Circle 266

Ink-sheet copier blends color print, thermal transfer techniques

D-SCAN 520I produces full-color copies of complex graphics directly from CRT displays in under one minute. To further enhance productivity, local video memory stores images before the output copies are generated, freeing the graphics workstation for continuous use. Copies come out on markable, fade-resistant paper with a 150-dot/in resolution. Per-copy cost is $0.25.

Seiko’s ink-sheet technology forms copies over a line-type thermal head. The head transfers pigment dots from a wax coated, 3-color banded ink sheet to a sheet of normal grade paper that overlays the ink sheet. The specially treated paper comes in a segmented roll with consecutive page-sized bands of cyan, magenta, and yellow.

The 0.003-mm, transferable pigment-type ink layer covers a 0.01-mm thick ink sheet, which passes over the thermal head to print the appropriate portion of each of the three primary colors onto the copy. Wire nibs in the thermal head heat up instantaneously to melt pinpoint spots of color into the print.

In turn, with images transformed onto plain paper, the cyan, magenta, and yellow combine to create a palette of eight saturated colors, including red, green, blue, black, and white. Apart from the standard and ink-sheet paper rolls, no resupplies, such as toner or ink, are needed. Final copies are automatically cut to standard 8.5" x 11" letter size.

One half of the D-SCAN 520I controls critical ink-sheet and paper movements, and the other manages electronic duties such as input control, formatting, storing, and CRT graphic data output. The machine measures 26" x 12.8" x 17.5" (66 x 32.5 x 44.5 cm) and weighs 130 lb (59 kg).

Slated for shipment late in the first quarter of 1983, the base unit will cost about $13,000, quantity-one. Optional and standard interfaces including RS-170 and RS-343, as well as a Centronics compatible parallel interface, will also be available. Seiko Instruments U.S.A., Inc, 2620 Augustine Dr, Santa Clara, CA 95051. Circle 267
Qantex MultiMode impact printers will do virtually anything that one would expect a printer to do including graphics, forms, and word processing. The remarkably flexible printers offer the user multiple speeds, multiple fonts, and multiple modes of operation with high density letter quality printing, high resolution graphics, and user defined formats.

For a demo or a print sample contact:

Qantex
Division of North Atlantic
60 Plant Avenue, Hauppauge, NY 11788
(516) 582-6060 (800) 645-5292
In Canada Call: MULTILEK, INC. (613) 226-2365

CIRCLE 80
Unpatterned faceplate detects continuous X-Y coordinates

Interaction Systems has improved the resolution of its capacitive-sensing technology with TK-1000, a touch sensor that allows unrestricted definition of touch-sensitive areas on one surface. Proprietary technology, which deposits indium tin oxide over an unpatterned glass faceplate, provides continuous X-Y coordinates of the touch point in 8-bit (0 to 255) numeric output for both dimensions. The unpatterned, temper-coated technique substantially reduces production cost.

Early touch-sensitive screen coordinate systems were largely mechanical—pushing one plastic layer embedded with wire mesh into another. Though active elements produce high resolution, numerous mechanical parts raise cost and lower reliability. In subsequent solid state versions, the faceplate was flooded with infrared light or high frequency sound, and each broken beam marked a touch coordinate.

TK-1000 touch-sensing system is designed to be incorporated into a microprocessor bus, and will control both video based and computer generated displays. It consists of the faceplate, a connecting cable, and a 2.5" x 2.5" x 0.75" (6.4- x 6.4- x 1.9-cm) component that outputs 8 bits of data and a "touch in progress" (TIP) signal.

When a person touches the screen, the touch component detects an impedance change and lowers the TIP line. Control logic can program the microprocessor to monitor the TIP at intervals, or to provide an interrupt to the microprocessor. The microprocessor then reads X and Y coordinates from the touch position via address and data enable lines.

Microprocessor software that controls the touch component adjusts the time required for touch recognition. Browsing is allowed by not accepting a touch until the user stabilizes at a position or, alternately, lifts the finger.

The system can be used alone or in conjunction with a keyboard, which can be displayed on a video monitor for typing directly onto the screen. Moreover, with TK-1000 the computer will recognize letters drawn onto the video display. Directly touching the desired location will also move the cursor for adding or deleting text, which can replace conventional keyboard entries or "mouse" manipulations.

In quantity-1000, each touch-sensitive component will cost about $200. Delivery is expected to be late in the first quarter or early in the second quarter of 1983. The company will offer manufacturing licenses for TK-1000 to companies with high volume requirements.

Interaction Systems, Inc., 24 Munroe St, Newtonville, MA 02160.

Circle 268

Winchester 5¼" drive packs 140M bytes on eight disks

An innovative Winchester design gives the XT-1000 series of 5¼" drives 140M-byte max capacity and an average access time of 30 ms. The proprietary integral hub/dc motor design, with the spindle motor inside the disk hub, provides a deeper base casting and thus allows eight minifloppy sized disks to be stacked inside the enclosure.

A flexure design derived from ferrite recording heads with Whitney-type sliders (IBM 3380 technology) is incorporated instead of the conventional 3350 style head flexures used on many smaller Winchesters. This Whitney design allows a closer disk spacing to accommodate the increased number of platters per package. It also provides improved aerodynamic stability for the flying head, better head to disk compliance, and an improved signal to noise ratio. Additionally, the Whitney head/flexure design utilizes more of the disk surface to increase the total number of tracks per disk surface to 918. This flexure/head concept will also allow thin-film read/write heads that provide at least 50% increased recording densities to be easily incorporated as they become available in low cost production quantities.

Currently ST506/412 compatible, subsequent drives are planned that will utilize intelligent interfaces such as Shugart's SASI. Although the read/write channel design is already optimized to handle MFM codes, when SASI is implemented, user transparent run-length limited (RLL) codes may be used on future generations of the drives. Through RLL codes, a 50% increase in storage capacity per disk can be realized with no corresponding increase in flux density.

XT-1000 drives use the 30-ms access time MAXTOR™ rotary voice-coil actuator to position the heads on the disks. It compares well to the performance usually achieved only by larger sized, high power consumption linear actuators. The rotary voice-coil design has 80% of its copper in the magnetic field through-out movement to improve torque. The closed loop servo system, dedicated servo surface, and plated recording media provide recording density of 980 tpi. Miniaturized LSI ICs packed on the single MAXPAK™ PCB work as functional TTL circuit equivalents, while occupying 50% less space. Rotational speed is 3600 rpm; average latency is 8.33 ms; and transfer rate is 5M bps.

Initial deliveries are scheduled for the first quarter of 1983, with volume shipments slated for the second quarter of 1983. Three models will be provided, ranging in unformatted capacities of the 65M-byte 4-disk XT-1065 ($1520), the 105M-byte 6-disk XT-1105 ($2100), and the 140M-byte 8-disk XT-1140 ($2690).

Maxtor Corp, 5201 Lafayette St, Santa Clara, CA 95050.

Circle 269
TORMAX®

Tormax® Variable Reluctance Step Motor
Utilized extensively in high speed applications. Highest torque to inertia ratio of any type step motor. Step angles range from 7.5°/step to 30°/step.

Tormax® Salient Pole Rotor Permanent Magnet Step Motor
Where variable torques and intermediate speed responses are required to interface with large gear drives, primarily for military and space applications. Step angles range from 22.5°/step to 120°/step.

Tormax® Hybrid Step Motor
For those difficult computer applications where accelerating torque is needed for high speed and fast response in both printers and disc drives.

The Tormax® Hybrid Step Motor with step angles from 0.9°/step to 5.0°/step combines high torque and small step angles for excellent positional accuracy and high reliability. A wide range of torques from 10 oz. in. to 450 oz. in. and DC voltages from 3 volts to 100 volts are available.

Synchron®

Synchron® Step Motor
The Synchron® Step Motor is being utilized in those computer peripheral applications where the combination of performance and low price are major requirements. Typical step angles range from 3.75°/step to 22.5°/step.

When precise positioning is needed, the Synchron® Step Motor combined with a lead screw gives the desired location for the various motion profiles in a floppy disc head positioner.

The Synchron® Step Motor is popular in paper feed, ribbon applications in the lower performance matrix, and daisy wheel serial printers. Torques of 3 oz. in. to 50 oz. in. and voltages from 3 volts to 40 volts are available for your applications.

IMC MAGNETICS CORP., WESTERN DIVISION
12627 Hidden Creek Way • Cerritos, CA 90701 • 213/926-0927

IMC/HANSEN
P.O. Box 23 • Princeton, IN 47670 • 812/385-3415
HANSEN MANUFACTURING COMPANY, INC., Subsidiary of IMC Magnetics Corp.
Portable plotter

DMP-40 single-pen drum plotter features pen speeds to 4.2 ips and format size to 11" x 17" (28 x 43 cm). Both pen and paper are directly driven by stepper motors. Step size is programmed to ensure resolution exceeding anticipated CAD/CAM or general plotting requirements. Unit generates circles, arcs, ellipses, and general curves on command. The 5 char sets resident in ROM can be presented normally or in italics with 255 sizes and 360° of rotation. Eleven line types are available. Plotter will also clip, window, viewport, and scale to size. Price is $995. Bausch & Lomb, 8500 Cameron Rd, Austin, TX 78753.

Circle 272

Multifunction serial dot-matrix printers

Microline models 92 and 93 dot-matrix printers provide bidirectional data processing print mode with short line seeking logic at 160 cps and high resolution correspondence print mode at 40 cps. Microline 92 ($695) with a max col width of 136 at 17 cpi and Microline 93 ($1249) with a max width of 233 cols at 17 cpi feature Okigraph[TM] dot-addressable graphics. Downline loadable char sets create custom chars and symbols. Centronics compatible parallel or RS-232-C serial interfaces are provided. MTBF is 4K hr; MTTR is 15 min. Okidata Corp, 111 Gaither Dr, Mt Laurel, NJ 08054.

Circle 273

Industrial printer

Digistrip® model LP-1 is a sealed, panel mounting line printer for industrial and control applications. Paper path is totally self-contained. A full 11" x 8.5" (28- x 21.6-cm) print format is provided. Printer mechanism is 5 x 8 dot matrix and operates on pressure sensitive paper. No separate inks or ribbons are required. Accepting either RS-232-C or 20-mA current loop inputs, printer provides full ASCII upper/lowercase char set at 137 cols wide, 1 line/s. A 3k-char internal buffer allows error-free printing between 110 and 2400 baud. Kaye Instruments, Inc, 15 De Angelo Dr, Bedford, MA 01730.

Circle 274

CSI...THE #1 SOURCE FOR DG & TI CONTROLLERS

First CSI brought high-performance, quality controllers to the DG users. Now we've done the same thing for TI users.

Our broad product line enjoys a solid reputation for dependability and economy. In addition, our after-purchase support is tops...including a full 2-year warranty.

CSI has them all: disk, tape, line printer, memory expansion and muxes. In fact CSI offers the most complete line of controller products in the industry. So regardless of your needs...

Contact the #1 source. Call or write CSI today.

CSI...A choice you can afford to make!

CUSTOM SYSTEMS INC
6850 Shady Oak Rd.
Eden Prairie, Minnesota 55344, U.S.A.
Telephone: (612) 941-9480 Telex: 290975 CSI MPLS ENPE

NOW SHIPPING NEW STATE-OF-THE-ART DISK AND TAPE CONTROLLERS

172 COMPUTER DESIGN/January 1983 CIRCLE 82
The only Power Supplies that carry a Passport to the World

Worldwide Acceptance
POWER-ONE’s new International Series is the only high-reliability D.C. power supply series to achieve true acceptance throughout the world.

Designed specifically for products sold throughout the world’s major electronics markets, the International Series can be used anywhere, for almost any application...without costly modifications or crippling time delays for safety testing.

Meets International Safety Requirements
Even the most important requirements of the world’s leading regulatory agencies are satisfied, including VDE, UL, CSA, BPO, IEC, CEE, and ECMA. Our new patented power transformer winding process features fully separated and enclosed primary and secondary windings. This unique construction complies with the world’s toughest safety standards, including:

- Leakage Current (Max.): 5.0mA
- Spacings (Min.):
 - Line to Ground: 9.0mm
 - Live Parts to Dead Metal: 9.0mm
 - Other Than Field Terminals: 5.25mm
- Dielectric Withstand Voltage (Min.):
 - Input to Ground: 3750 VAC
 - Input to Outputs: 3750 VAC
 - Outputs to Ground: 500 VAC

Power-One’s patented International Series transformers feature separate, fully enclosed, primary and secondary coils. Meets safety requirements of VDE, UL, CSA, BPO, IEC, CEE, and ECMA.

Wide Choice of AC Input Power
More worldwide acceptance. Each unit is rated at 100, 120, 220, 230, and 240 volts, 47 to 63 Hz. This means reduced inventory and service requirements since only one standard off-the-shelf power supply is needed...regardless of your product’s final destination. Another International Series exclusive feature.

New Models, More Applications
Demand has been great since the introduction of our International Series, so we have expanded our line with 32 new models.... 76 in all.

Write or call for our new brochure today. See why the International Series are the only power supplies that carry a passport to the world.

Power-One, Inc. • Power One Drive • Camarillo, CA 93010 • Phone: 805/484-2805 • 805/987-3891 • TWX: 910-336-1297
Outside California Call Toll Free 800/235-5943

CIRCLE 83
What can more than 5
to an industry that

It can bring you a
touch panel with more
engineering behind it.

Over the past 50 years,
MICRO SWITCH has built a
reputation for designing inno-
vative solutions to switching
problems. Our new touch
panels are the latest example.

They have some out-
standing features to give you
reliability you can count on.
Like channel venting to
prevent the effects tempera-
ture and altitude changes can
have on operating charac-
teristics. And sealing that
provides environmental pro-
tection to eliminate contam-
nation of the switch contacts.
This means less service ex-
 pense for you, and less down-
time and fewer input errors
for your customers.

You can use our touch
panels with confidence,
under a variety of condi-
tions, because we test
them under a variety of
extremes. They satisfy
NEMA 13 requirements
and pass many MIL-
STD-202E tests.

And we in-
clude a few tests of our own—
for conditions like sulphur
atmosphere and changes in
altitude.

You'll get more out of
your touch panel, because
we put more engineering
behind it.

Gasoline pump monitor, manufactured by Southwest Pump, features MICRO SWITCH
custom touch panel.
years of innovation bring only a few years old?

a positive feel of the switching action. The touch surface can also be embossed to enable finger positioning on the switch stations.

Your touch panel can be designed to include a variety of visual feedback options including LCD, LED, or electroluminescent displays. Audible feedback is also available. The touch panel is a critical interface between your product and its user. We put more human engineering in front of it, so you'll get better communications through it.

It can bring you a touch panel with the highest quality graphics across it.

Touch panels can have a major impact on the appearance of your product. That's why we offer durable, high quality graphics.

Advanced printing techniques assure consistently sharp resolution and vivid colors from one production run to the next. Legends and colors will look good year after year because they are screened on the reverse side of the graphic layer.

You can take advantage of virtually unlimited design flexibility. Legends, colors, size, shape and type face are all variable. And touch surfaces are available in clear, velvet, matte or suede finishes.

High quality graphics do more than make the touch panel look good. They make you look good, with a statement of quality that lasts for the life of your product.

It can bring you a touch panel that ultimately has a lot going for it.

There's more to a touch panel than what's in front, behind, and across it. Namely, the capabilities of the company selling it. At MICRO SWITCH these capabilities start with our people. Like direct salespeople and in-house application engineers who will work with your engineers to help develop a cost-effective solution to all of your manual control needs. They want to get involved early in your design process to help reduce the time and resources you need to invest.

Naturally, touch panels can't satisfy every manual control need. But MICRO SWITCH can, because our touch panels join a broad line of manual switches and keyboards. You'll get a combination of performance and price to match your special control needs, while working with just one company.

Just like every MICRO SWITCH manual control, our touch panel combines quality, reliability, and cost-effectiveness. If you're considering a touch panel, it makes sense to consider the one with the most going for it.

For more information about our touch panel capabilities, and for the locations of our sales offices around the world, call 815-235-6600. Or write MICRO SWITCH, Freeport, IL 61032.
You can wait for industry standards to mandate improved performance. Or you can have it now on Maxell. The Gold Standard.

What distinguishes a Maxell floppy disk? Improvements great and small, achieved in a decade of innovation. We developed unique, uniform crystals to assure dense oxide packing. Intensified the calendering process to minimize the need for abrasive burnishing. Created an improved binder and lubricant. And a new jacket design that leaves industry standards in our wake.

It would require photomicrographs to make some of these improvements observable. On the job, the advantages become obvious. Resolution enhanced by 20% creates a cleaner signal output. And guarantees the read/write accuracy in double-density applications. New jacket construction, heat-resistant to 140°F, extends disk use without risk of mistracking. In effect, durability is redefined. And in accelerated tests against the most respected names in the industry, Maxell sustained the highest and most consistent output over time.

We applaud industry standards that aspire to dropout-free, reliable disk performance. The Gold Standard expresses a higher aim: perfection.
Matrix printer for microcomputers

MT 160 160-cps 80-col dot matrix printer features a 40 x 18 char matrix printed at 40 cps. Data processing mode uses a 9 x 7 char matrix at 160 cps and features bidirectional logic seeking printhead travel and accelerated tabbing to increase throughput. Dot addressable graphics produce bar and pie charts, curves, or other images on a video screen. Four double-wide, and 3 compressed print char pitches, and std 10 cpi can be printed. Friction feed and clip-on attachments accommodate paper handling. List prices begin at $845. Mannesmann Tally, 8301 S 180th St, Kent, WA 98032. Circle 275

Low cost daisywheel printer

HP 2602A daisywheel printer, priced at $1950, eliminates the need to remove the ribbon to insert the printwheel. The printwheels are aligned automatically within their enclosure. Printwheels in several languages and type styles are available. Modular design includes printer mechanism, power supply, 2-bolt cover design, control panel, and PCB. Printer features an RS-232-C interface with an HP-IB option, bidirectional printing, proportional spacing, and 132 cols at 10 pitch. Contact local Hewlett-Packard sales offices. Circle 276

Low cost terminal emulates HP 2624A

TS-2624 terminal emulates HP model 2624A display terminal and comes with P-31 green phosphor or amber screens. Optional microprocessor controlled 212A compatible modem ($965) operates at either 300 or 1200 bps in full-duplex with originate and auto-answer modes. Four pages of screen memory and two RS-232 ports are std. Terminal has 128 displayable ASCII upper/lowercase chars and 64-char line drawing set. Display enhancements are provided. Single-unit price is $1995. Falco Data Products, Inc, 1286 Lawrence Station Rd, Sunnyvale, CA 94086. Circle 277

Desktop alphanumeric raster graphics terminal

Whizzard 160™ color graphics terminals are compatible with DEC VT100/52 and the Whizzard 600 and 7000 series systems. Each unit utilizes an 8-MHz 8086 microprocessor as the graphics processor, and employs display list processing techniques. An 8085 microprocessor is used as keyboard/peripheral processor; digital vector generator processes display list vectors up to 10 times faster than a general purpose microprocessor. RS-232-C port interfaces to the host, and local intelligence offloads many processing tasks. Price is $15,900; volume discounts are available. Megatek Corp, 3985 Sorrento Valley Blvd, San Diego, CA 92121. Circle 278

MOST SYSTEM PROBLEMS START AT THE SOURCE . . . YOUR POWER LINE

And to do it, we’ve gone that “extra mile”—through some grueling tests and procedures—to have the Franklin 3600A Power Line Disturbance Monitor* UL listed.

You wouldn’t use equipment in your operation that didn’t pass rigid tests, so why settle for anything less when you monitor your vital power lines?

Even more important is what the portable Franklin 3600A will do for you.

• It tells you what happened on your power line . . . and when.
• It monitors three AC phases and one DC channel simultaneously and provides a complete alphanumeric printout or LED readout of power activity.
• It isolates such problems as under/over voltage, high frequency noise pulses and frequency deviations. It prints out each event along with the time, amplitude and duration of the disturbance.

When testing is completed, close the case and take the Franklin 3600A to your next problem location—even if it’s cross-country.

If your critical systems can’t tolerate power line problems, pinpoint them with the UL-listed Franklin 3600A.

Call or write us today for more information and/or a demonstration.

CALL TOLL-FREE

800-538-1770

IN CALIFORNIA (408) 245-8900

Franklin Electric
Programmed Power Division
995 Benicia Avenue • Sunnyvale, CA 94086 • Telex: 357-405
Portable 5½" Winchester tester

DX525 microprocessor based test system automatically exercises ST506 type disk drives. Up to 16 prompted programmed test functions aid in the generation of a flaw map of bad tracks and overall error rate statistics. Tested connects to the drive through std 20- and 34-conductor flat ribbon cables. Functions evaluated include compatible interface, device selection, positioning electronics, and R/W circuits. It can operate in single cycle or continuous modes and provides selectable error thresholds. Price is $2225 for single units. Applied Memory Technology, 2822 Walnut Ave, Tustin, CA 92680.

In-circuit component tester

Model 3110 in-circuit component tester's CRT X-Y display presents E/I characteristic curve of component or circuit under test, and has a 1-Hz switching CRT rate compare mode. A 100-Hz triangle waveform test signal eliminates bright spots and other display aberrations. Low, medium, and high voltage ranges with a continuously variable divider are provided. LED annunciator around the CRT display indicates full-scale voltage range in use and A/B test signal in operation. All metal chassis eliminates external noise interference. Unit price is $995. Vu-Data Corp, 7122 Convoy Court, San Diego, CA 92111.

Communications performance analyzer

Model CPA/7 monitors all data comm traffic and automatically prints a hard-copy report that includes over 70 categories of line utilization and transaction response time statistics. The unit can monitor for 1 or all transactions at 1 of 3 logical levels within the comm link—all stations level (up to 1024 addresses); cluster control unit level (all stations attached to a specific cluster); and logical unit level (1 device attached to a cluster control unit). Z80 based, the system supports 3270 Bisync and 3270 SDLC/SNA protocols in the same unit. Price is $6300 with printer or $5450 without printer. Questronics, Inc, 3565 S West Temple #5, Salt Lake City, UT 84115.

BACKED-UP. BACK-UP.
Fiber optic connector for HP data links

The 906 series single-fiber, single-channel connector provides 1- to 2-dB insertion loss, and is intermateable with HP's HFBR-1201 transmitter and HFBR-2201 receiver data links. The optic connector also complements the HP links' 0.132" (0.335-cm) mounted height for applications requiring 0.5" (1.3-cm) board spacing. All metal construction maintains the package's emi/rfi integrity. Connector terminates HP's PIN HFBR-3000 glass fiber. The link is available with/without installed connectors. The devices are $5 for 1k-piece quantity.

Amphenol, an Allied Co, World Headquarters, 2122 York Rd, Oak Brook, IL 60521.
Circle 282

6-slot assembly for black box applications

Model 3200 backplane power supply assembly nests the SBC 11/21 Falcon, LSI-11/2, or -11/23, and up to 5 I/O, memory, and/or mass storage interface boards in NEMA compatible enclosures and other space restricted black box applications. In addition to front access power supply and card cage, the assembly features 16 captive mounting nuts and optional universal mounting bracket. Std equipment includes 5-V at 8-A and 12-V at 1.5-A plug-in power supply, 60-Hz line clock, emi shield between supply and card cage, front panel switch connector, and terminal block for ac power and access to 5 and 12 V for external use. In open configuration, price is $695; in fully packaged version, price is $850. ADAC Corp, 70 Tower Office Park, Woburn, MA 01801.

Circle 283

Interface links RS-232 and coaxial cable

CoaxFACE™ connecting interface allows use of existing RG-62 coaxial cable to avoid the cost of installing special RS-232 cable. The interface ($150/pair) connects RS-232-C links and IBM coaxial cable and is an option on the company's 1076, 1071, and 1051 protocol converters. The PCI converter interfaces between an IBM SNA/SDLC host and ASCII CRTS, personal computers, printers, and other devices. CoaxFACE is a connecting link on the ASCII device. Digital pulses are transmitted through the cable 300 to 9600 bps without reducing the RS-232-C data rate.

CoaxFACE, 6430 Variel Ave, Woodland Hills, CA 91367.
Circle 284

Archive backs up Winchesters 10 times faster than floppies.

Today's business computer system simply can't afford floppy Winchesters back-up anymore. Not when our Archive Super Sidewinder 3/4" Streaming Cartridge Tape Drive can copy 45MB in just nine minutes.

A floppy, on the other hand, takes more than an hour to do the same job. Not counting the time you spend inserting a new disk every few minutes.

Saves "handling" charges.

One Super Sidewinder cartridge is equal in capacity to 38 eight-inch disks. That will save you over $200, plus the cost of handling all those disks—inserting, removing, labeling, and filing. In addition, a Sidewinder cartridge is completely enclosed when out of the drive, virtually eliminating damage due to handling.

More than just a back-up.

Our 3/4" streaming tape drives provide the complete removable media needs of any system: Software distribution, data collection and program loading. All performed at the touch of a button.

System integration made simpler.

Both our 20MB and 45MB drives are specifically designed to fit an 8" floppy disk footprint. To use the same power supply. And to use the same simple 8-bit parallel interface. We could go on. But let's get specific, contact us today. And ask for our new handbook on streaming tape drives and how to use them. Archive Corporation, 3540 Cadillac Ave., Costa Mesa, CA 92626. (714) 641-0279, Telex 4722063, TWX 183561. Distributed nationally by Hamilton/Avnet.

Archive Corporation

3/4" Streaming Tape Drives
Signal conditioning subsystem for harsh environments

Analog I/O signal conditioning subsystem 3B series provides a modular interface that directly connects to low level sensor signals and produces simultaneous high level voltage and current outputs. The small modules can be matched on 4-, 8-, and 16-channel backplanes for custom-tailored signal conditioning. Specs include –25 to 85 °C op temp range, ±1500-V isolation, and 220-V RMS input protection. Modules are priced from $135. Analog Devices, Inc, Rte 1 Industrial Pk, PO Box 280, Norwood, MA 02062.

Circle 285

Redundant processor unit for programmable controls

A redundant processor unit (RPU) for GE’s Series Six programmable controller functions as a switch to perform a bumpless transfer of logic control to a backup CPU. Switching is done within a few milliseconds of a detected fault. Unit automatically switches to an auxiliary backup power supply if the RPU’s main source fails. Failed modules can be replaced without removing power from the unit. Dual I/O system runs in parallel. CPUs are sweep interlocked for program synchronization. General Electric Co, 8150 Leesburg Pike, Vienna, VA 22180.

Circle 286

Programmable controller features 32 I/Os and 5 timers

1000 series sequential programmable controller is prepacked and completely assembled for control panel mounting. Two I/O module boards provide up to 32 I/Os. One module board contains 8 dedicated inputs and 8 dedicated outputs. Optional second module board also has 2 groups of 8 that are switch selectable as I/Os. Five independent internal timers are software programmed with multiples of timing functions/timer in any given cycle, each of which can be preset for 0.01 to 0.1 s, 0.1 to 10 s, 1 to 100 s, and 10 to 1 k s. Customized preprogramming is available. Holmor, Inc, 169 Rte 206, Flanders, NJ 07836.

Circle 287

Let’s hear from you

We welcome your comments about this issue. Just jot them on the Reader Inquiry Card.
"Multiwire has been an active partner in our design effort for over seven years."

"We've been designing and building our products with Multiwire® circuit boards since we developed our first MAP® Array Processor in 1975. With the help of our local Multiwire Design Center, we've introduced several generations of design advancements faster and far more economically than we ever could have with multilayer."

MAKE MULTIWISE YOUR PARTNER

Multiwire's use of polyimide-insulated wire for interconnections and its advanced CAD/CAM capabilities, account for its unique combination of benefits—dense component packaging, quick turn around, greatly reduced design costs, ease of design, excellent electrical performance. Whatever your product, Multiwire can make invaluable contributions by speeding your design cycle and lowering your costs. Contact your local Multiwire Sales Engineer for full information.

Multewire/New England
41 Simon Street
Nashua, NH 03060
603/889-0083

Multewire West
3901 E. La Palma Ave.
Anaheim, CA 92807
714/932-7770

Multewire/New York
31 Sea Cliff Avenue
Glen Cove, NY 11542
516/648-1428

Adv. Mfg. Group
10 Andrews Road
Hicksville, NY 11801
516/938-2000

Michael Stern
Vice President, Operations
CSPI
Billerica, Massachusetts

Multiwire® is a U.S. registered trademark of the Kollmorgen Corp.
Testing is more than the simple question of pass/fail. It is a complex set of questions encompassing degree of test, test results needed, test procedure and many other aspects of both product and corporate needs. Applied Circuit Technology designs and manufactures volume test equipment to answer these important questions for rotating memory devices. Based upon six years of proven performance, ACT's equipment has tested more 5¼" Winchester disk drives than any other system in the world. ACT's expertise, however, does not stop at Winchester drives. Today, Applied Circuit Technology has systems involved in floppy systems test, tape systems test, fixed/removable Winchester disk systems test, plus Servo Writers and Spiral Testers. From 10 units to 100 units in simultaneous test with one console, Applied Circuit Technology provides the answer to high volume, in-depth end configuration testing. If you believe testing is more than a question of pass/fail, contact Applied Circuit Technology.

Applied Circuit Technology
2721 Saturn Street
Brea, California
(714) 993-1580
Now with GEN.II™ choose a monochrome, gray-scale, or color-formatted terminal to deliver our Tek 4010/4027 compatible graphics.

For a variety of text terminals, the world of cost-efficient graphmaking is now made possible by Digital Engineering's GEN.II Retro-Graphics terminal enhancement—a "snap-in" PC card assembly that provides Tektronix®-based graphics software compatibility.

Once installed, GEN.II will perform monochrome imaging on the TeleVideo® 950, 925, 920, 912, and 910, Lear Siegler ADM 3A, 3A+, and 5, and ADDS VIEWPOINT and VIEWPOINT/3A PLUS; gray scale on TI's Model 940; and color on the Datamedia™ ColorScan™ 10, 30, 60, 70, and 10H.

But best of all a Retro-Graphics enhancement costs only a fraction of what you're paying now for an equivalent graphics terminal: about $1200-1900, depending on the GEN.II model you order.

Introducing GEN.II Retro-Graphics. For superior bit-mapped technical plots and MIS charts.

Our second-generation enhancements provide emulation of the Tektronix 4010 graphics terminal and simulation of the Tek™ 4027 color graphics terminal. In standard resolutions on all GEN.II models. And in medium resolution—640 by 480 pixels—on Color Retro-Graphics™ for the ColorScan 10H.

Because GEN.II products are based on industry-standard Tek protocol, operation is both powerful and familiar to most programmers. Raster-scan images are generated quickly on GEN.II because up to 48 Kbs of graphics intelligence is "resident." This also means costly host-terminal data transmissions are held to a minimum.

English-like commands simplify graphics operation and programming. For example, entering from the keyboard or computer the following command string

$PIE, 200, 90, 120

will cause the upgraded terminal to draw a pie chart sector with a radius of 200 and fill in the area between 90 and 120 degrees. The filled area can be a color in the case of Color Retro-Graphics, an intensity level in the case of gray-scale GEN.II, or a dithered shade in the case of our one-color products.

In addition, GEN.II enables the programmer to draw polygons and vectors. Define and shape text characters. And recall stored graphs with similar high-level command strings. And you get all this without the loss of existing terminal features.

GEN.II software compatibility protects your hardware investment.

Since our products are compatible with Tek's 4027 and 4010, GEN.II's performance on utility and applications programs, both present and future, is ensured. Currently, more than 30,000 Retro-Graphics enhancements are successfully being used with DISSPLA® and TELLAGRAF®, PLOT 10™, Template™, DI-3000™, and ILS® graphics programs.

Comprehensive support at every level.

Good ideas mean little if you cannot build on them. Optional interfaces let you hook up a variety of input/output devices of your choice. These include a light pen and digitizers, impact and non-impact serial printers, and video devices. There's solid documentation at every level. And fast, accurate backup by our own customer service and worldwide distribution network.

Digital Engineering's GEN.II Retro-Graphics and your choice of terminal—for economy and compatibility in a sophisticated graphics workstation.

Call us today for full details, demonstration, and the name of your local Retro-Graphics distributor—your "one source" for graphics.
Ikegami Technology

For systems applications requiring high quality, dependable CRT display monitors, Ikegami brings you the technology of the future, today. An innovator in video technology for over 36 years and the world’s leading producer of high quality broadcast camera systems and monitors, Ikegami has applied its unparalleled experience to the design and production of display monitors for the computer industry. Put Ikegami’s Emmy award-winning digital techniques for automatic setup to work for you.

HDM Series
Ultra high resolution for your most demanding graphics systems. Ikegami’s HDM Series color and monochrome display monitors utilize a delta-gun, raster-scan CRT and superb quality wide band, high speed scan, video amplifiers to provide the precision you need (up to 1280 x 1024 pixels interlace mode), plus the long life and easy maintenance you demand from a top quality graphics display. Available in 19V and 25V CRT sizes.

The CD Series (CDA/CDB)
Quickly becoming our most popular line of high resolution in-line gun color CRT display monitors. If your requirements are for high resolution (up to 1024 x 1024 pixels interlace mode), stable operation and very low maintenance, the CD Series may be your solution. Available in 13V and 19V analog or digital models, the compact-size CD Series is perfect for simulation, medical, CAD/CAM and other high resolution applications.

The UD Series
Medium resolution, digital drive, color display monitors for business graphics systems. The Ikegami UD Series provides high performance (615 x 240 or more pixels interlace mode) at a very economical price.

The BDM Series
High performance, flicker-free monochrome CRT display units that bring Ikegami quality to word processing or on-line data entry systems. Available in green or white display and standard CRT sizes (5”, 9”, 12”, 14” and 15”).

Easy Interface. Easy Maintenance.
Ikegami display monitors are designed to interface with your equipment quickly and easily. There’s no complex rework...no hassle. Ikegami’ sophisticated design virtually eliminates maintenance problems, so you know your Ikegami displays will continue to bring out the best in your systems, year after year.

East — 37 Brook Avenue
Maywood, NJ 07607
(201) 368-9171

West — 3445 Kashiwa Street
Torrance, CA 90505
(213) 534-0050

We are the future.
Easy to use data logger

Model 2500 data logger can be set up and operated through the front panel without a programming language. Pushbutton switches program 10 to 40 internal channels alone or in blocks, set scan interval, and select output conditions from the built-in 32-col printer. Unit holds 4 signal conditioners and accepts 35 types of sensors. Accuracy is rated at ±0.015% full scale. Five-digit display indicates polarity and is capable of 25k counts. Options include alarm package, RS-232-C/20-mA port, scan expanders to 240 channels, and extra signal conditioners. Digitec Corp, 918 Woodley Rd, PO Box 458, Dayton, OH 45401.
Circle 288

Measurement/control unit works alone or as frontend interface

Model 10K7 Datapac data acquisition and control system can interface with any computer in any programming language. Large scale integral black/white or color CRT display with up to 100 field composable format pages is featured. System scans up to 1k channels at 2500 channel/s min. Microprocessor based data acquisition and control program is completely transparent to the computer; 84k-byte memory (including 36k non-volatile EEPROM) remembers all setup and calibration data even in total power loss. Computer interface is RS-232 or, optionally IEEE 488. Daytonic Corp, 2589 Corporate Pl, Miamisburg, OH 45342.
Circle 289

Dual-language programmable controller

CP73P executes a control program written in Tiny BASIC and in process state monitor (PSM) interpretive language. Handling sequential aspects of the application program, PSM can make calls to BASIC subroutines so that arithmetic, terminal I/O, and other Tiny BASIC functions are accommodated. Program is entered from any ASCII terminal using PSM command chars, and the need to create a ladder diagram is eliminated. The $625 controller has access to twenty-six 16-bit variables, eight 0.01-s resolution timers, and 48 on/off I/O channels. Adaptive Automation Technology, PO Box 1339, Sandpoint, ID 83864.
Circle 290

Programmable controllers for small computers

Programmable controller series includes Troll 300 with 8 digital I/Os and the slightly wider Troll 310 with 16 digital I/Os. Both are expandable to 256 digital I/O modules in groups of 16. Input voltage is 85 to 132 Vac or 170 to 265 VAC.

(continued on page 186)
Think of us as your "selection connection"
Lynn Electronics can be your single professional source for all your wire and cable, cord and connection needs. Our standard products cover the broadest range of industry requirements, and our manufacturing capabilities enable us to custom-produce to individual specifications.

Get it all with just one call: 800-523-6075
In PA call 215-355-8200

Shielded 8-Position Modular Cords for Data and Computer Equipment
7-Conductor with Drain Wire. Aluminum Mylar Shield. Black Polyurethane Jacket. Rated VO.
Unkeyed Modular Cords interface with RJ31X jack.
Keyed Modular Cords interface with RJ41S and RJ455 jacks and used as test cord for 97A and 97B Data Blocks.
Typical computer applications • Keyboard to CRT—coil only • CRT to printer—straight cord

Coiled Cords
Full Modular, 6-position Modular plugs on both ends.
L-DB71-BR-BK (unkeyed) L-M871-BR-BK (keyed)
Quarter Modular, 6-position Modular plug one end, other end ring strain relief and spade tips.
L-DB71-QR-BK (unkeyed) L-M871-QR-BK (keyed)

Line Cords (Straight)
Full Modular, 8-position Modular plugs on both ends.
L-DB71-BU-BK (unkeyed) L-M871-BU-BK (keyed)
Quarter Modular, 8-position Modular plug one end, other end ring strain relief and spade tips.
L-DB71-AB-BK (unkeyed) L-M871-AB-BK (keyed)
Various lengths available

LYNN ELECTRONICS CORPORATION
915 Pennsylvania Blvd./ Feasterville, PA 19047
Serving the electronics communications industries.

CIRCLE 133

COMPACT PORTABLE RS232 TAPE LOADER

The low-cost Braemar MTL-II offers fast and accurate loading of ANSI-compatible tapes through any RS232 port.
Ideal for program loading, diagnostics, or transmission of remotely collected data.
Features variable block length and automatic data re-read. Up to 136K by the capacity on 80-ft. tape at 9600bps. Data rate selectable from 150 to 9600 baud.
Panel LED's show system status. Membrane keyboard controls operation. Optional second port for terminal or modem connection.
Priced from $350.00 in quantity. Call or write for free literature.

BRAEMAR COMPUTER DEVICES INCORPORATED
190 TWELFTH AVENUE SOUTH / BURNsville, MINNESOTA 55337 / 612 890 5635

CIRCLE 95

SYSTEM COMPONENTS/
CONTROL & AUTOMATION

Vac, 47 to 63 Hz, single phase. Both units are expandable to 128 analog I/Os in groups of 4. The series, which uses ladder logic, includes 32 timers/counters, 128 control relays, 64 data registers, message register, and 32 software switch registers. The controllers are $395 for board-level units. Conrac Corp, Cramer Div, Old Saybrook, CT 06475. Circle 291

SOFTWARE

CP/M on a chip
80150 CP/M combines CP/M-86 OS with essential OS hardware on a single silicon device. The component is a processor extension for the 8086, 8088, and 80186 microprocessors. End user licensing is not required, and diskette serialization is eliminated. “Memory disk” capability creates portable, diskless microcomputer workstations by specifying a block of RAM that the 80150 will treat as a std floppy disk. The silicon component will be sampled in the fourth quarter of 1982, priced at $57.15 in 1k quantities.
Intel Corp, 2625 Walsh Ave, Santa Clara, CA 95051. Circle 292

X.25/HASP communications support
MP/X.25 interfaces small computers to public or private networks for realtime 2M-bps serial communications under direct control of the user's application. MP/X.25 supports the DG Network Bus System to interconnect up to 32 Eclipse® computers over 1 mi (1.6 km). It runs under MP/OS; languages supported include SP/Pascal, MP/Pascal, MP/FORTRAN IV, and MP/BASIC. MP/HASP emulates the IBM HASP RJE workstation. It supports both point to point communications between any DG computer and an IBM 360/370 compatible system, and point to point communications between any 2 DG computers. Line speeds to 4800 bps under MP/OS and up to 9600 bps under MP/OS are supported. Initial license fee for both MP/X.25 and /HASP is $1500. Data General Corp, 4400 Computer Dr, Westboro, MA 01580. Circle 293

Talk to the editor
Have you written to the editor lately? We're waiting to hear from you.
World's smallest impact printers
When you need small printers to integrate into calculators, handheld or portable computers, electronic games, or other products, come to Epson OEM. Our 150/160 Series Ultra Micro dot matrix impact print mechanisms are the world's smallest and lightest, yet each is manufactured to standards of precision that yield astonishing reliability.

More importantly, Epson OEM can supply the 150/160 Series 16 and 24-column print mechanisms in the quantities you need. They feature dot addressable graphics as well as alphanumeric printing, and can even be battery operated when necessary.

Custom made
But small printers are only part of the story. We build custom printers — with custom packaging and custom firmware — in sizes up to 136 columns. And since we build more print mechanisms than anyone else in the world, we can build printers for almost any application, custom-designed for about the same price as many off-the-shelf units. And we can build a thousand or a hundred-thousand, and deliver them... on time.

Call Epson OEM
Let us show you how we can take your specifications and give you the printers you need for any application. With a custom fit.

YOU'VE GOT A FRIEND IN THE PRINTER BUSINESS.
Low cost array processor has 3.6-ms execution time

AP490 array processor, with execution times of 3.6 ms for a 1024-point real FFT, has a basic configuration of 2k program memory and 4k x 24 bits of data memory. The 4-card set with card cage mountable backplane simultaneously performs 6.3M adds/s, 2.1M multiplies/s, and 1M I/O operations/s. Interfaces for HP 1000 series; PDP-11, LSI-11, VAX; and NOVA and Eclipse are available. The array processor is expandable to 4k words of program memory and 64k words of data memory. Price is $6450. Analogic Corp, Audubon Rd, Wakefield, MA 01880. Circle 294

Portable 16-bit computer

PORTABLE 16-BIT COMPUTER

It's only one signal, but it's vital. That's why concerned ATE and computer engineers specify Chabin Transmission Line Assemblies (TLAs) for critical timing applications such as clock and data lines in mainframes, minis and computer peripherals. Only Chabin TLAs combine high-speed pulse fidelity and miniature size for maximum space utilization and signal integrity. They're the ideal solution for new systems as well as those already in the field.

With Chabin TLAs you'll be able to use the latest cable types and geometries. And, COMPAQ™ self-contained system includes a high resolution 9" (23-cm) diagonal video display, 16-bit 8088 microprocessor with 128k-byte RAM (expandable to 256k bytes), a 5¾" floppy disk drive with 320k-byte storage, and room for an optional second 320k-byte floppy. Ports for an optional red-green-blue video monitor, for composite video, and for connection to a std TV set are provided, along with parallel printer interface and socket for an Intel 8087 coprocessor. Asynchronous communications interface is optional. Price is $2995. COMPAQ Computer Corp, 12330 Perry Rd, Houston, TX 77070. Circle 295

Q-bus compatible computer

SPECIFY CHABIN TLAs WHEN THAT ONE SIGNAL IS VITAL

our inlaid contact and rugged molded-on strain relief ensure longevity to the fully assembled, fully tested Transmission Line Assembly.

For fast answers to your needs, call or write us today.

CHABIN CORPORATION
890 Fortress St, Chico, CA 95926
(916) 891-6410 • TWX: 910-536-1001
Western Office: (408) 727-5811
Eastern Office: (216) 354-5543

TRANSMISSION LINE SPECIALISTS

System 94 fully integrated DEC PDP-11/23 microcomputer with 70M-byte Winchester and 20M-byte streaming tape provides 256k bytes of MOS RAM (expandable to 4M bytes), 4 serial I/O ports, an extended LSI backplane, and 25-ms average access time. Memory management allows direct access of up to 22 bits of address space or 4M bytes of RAM. Floating point processors and an array processor are available as enhancements, along with realtime clock, ADCs and DACs, serial I/O multiplexers, synchronous I/O ports, and floppy disk subsystems. The computer sells for under $20,000. Cambridge Digital Systems, 65 Bent St, Cambridge, MA 02139. Circle 296
As you can't see, the terminal on the left has a low-cost Rockwell R24DC modem built in. It's connected directly to the U.S. dial-up network with nothing more than a standard telephone jack. No acoustic coupler. No phone. No tangled wires.

It's easy to connect the R24DC modem inside your terminal. It's LSI-based, with the entire 2400 bps modem and data access arrangement on a single 5" x 7.85" plug-in card. With power requirements of ±12V and +5V, it consumes only 3 watts.

Rockwell's R24DC integral modems are FCC-registered and both Bell- and CCITT-compatible. And they're widely used in point-of-sale terminals, and for cleaning up PBXs, data concentrators and data communications devices.

To get the inside story on Rockwell modems, call the Electronic Devices Division, Rockwell International at (800) 854-8099. In California, call (800) 422-4230. Or write us at P.O. Box C, MS 501-300, Newport Beach, California 92660.
Kiss the 5¼" floppydisk goodbye!

Amdek has revolutionized data storage for personal computers with the new AMDISK-3 Micro-Floppydisk drive system. The system consists of 2 drives and a power supply, fully compatible with 5¼" floppy disk drives. The 3" disk is encased in hard plastic, protected from dust and fingerprints, and it's easy to mail.

Just write, or call to receive our data sheet on the new AMDISK-3 Micro-Floppydisk Cartridge system.

- 1 Megabyte (unformatted) storage capacity.
- Track-to-track compatible with 5¼" floppy disk drives.
- 3" shirt-pocket sized disk cartridge.
- Drive has built-in power supply.

Amdek . . . your guide to innovative computing!

2201 Lively Blvd. • Elk Grove Village, IL 60007
(312) 364-1180 TLX: 25-4786
MODEM ECONOMY GETS DOWN TO EARTH WITH THE UDS 212 LP

UDS has combined smart design with large-quantity, high-quality manufacturing to bring 212 modem prices down to earth.

Our 212LP is a low-priced, line-powered modem that’s fully 212A-compatible for full-duplex, 1200 bps asynchronous communication only.

No AC connection is required, since operating power comes directly from the telco line. The unit is FCC certified for direct connection to the DDD network and it fits under your telephone handset.

For down-to-earth modem buyers, the message is simple: if 1200 bps capability is all you need, that’s all you should pay for! Add that saving to the economies of scale in UDS’ high-volume delivery capability and you’ll find real modem economy. Get details from your UDS distributor, or contact Universal Data Systems, 5000 Bradford Drive, Huntsville, AL 35805-1953. Phone 205/837-8100; TWX 810-726-2100.

Universal Data Systems

DISTRICT OFFICES:
Old Bridge, NJ, 201/251-9090 • Blue Bell, PA, 215/643-2336 • Atlanta, 404/998-2715 • Chicago, 312/441-7450 • Columbus, OH, 614/895-3025 • Boston, 617/875-8888
Richardson, TX, 214/686-0002 • Englewood, CO, 303/694-6043 • Houston, 713/366-6908 • Tustin, CA, 714/669-8001 • Sunnyvale, 408/738-0433

CIRCLE 100
When you need better convergence, linearity and color purity across the screen and from edge to edge, then you need SRL's advanced-performance Model 2106 In-Line Color Display.

The Model 2106 offers you a 100 MHz ultra-high bandwidth. You get consistent brightness of narrow horizontal and vertical grid lines, and an optional 64 kHz horizontal frequency.

Factory convergence never deteriorates. No pots to adjust... no buttons to push. You get superb convergence, all the time.

You don't need to buy several monitors or make circuit changes to satisfy your multiple line/frame rate needs. Simply select one of 16 ranges with our unique Select-a-Rate.

And we offer you even more benefits at no extra cost: differential video inputs, separate horizontal and vertical drive inputs, an adjustable bezel that allows you to insert anti-glare filters, and the custom engineering services you need to solve your specific configuration and source signals.

Our 19-inch model features 1280x1024 resolvable triads (0.31 mm spacing), while our 13-inch model has 1024x768 or 1280x1024 resolvable triads (0.31 mm and 0.21 spacing).

Compare the Model 2106's features and benefits...review our specifications and find out why our color displays resolve the difference in color graphics displays. Contact us today for more information.
Now, the most talented Multibus specialists in the country bring you more Multibus options than ever before. And less.

More technology with less risk. More function with less cost. And more support with less hassle.

When you're ready to expand your Multibus capabilities, talk to us. We're the specialists who give you more. And less.

Entire rigid disk controller family is software interchangeable. Automatic completion of simple multisection commands, automatic recovery from errors, bad track mapping, full sector buffering, extensive diagnostic reporting. Variable burst DMA in 8 or 16 bit systems. Software drivers and disk subsystems also available.
Second-generation CAD system

CADMAX-II CAD 2-D system based on high speed, bipolar processors incorporates onscreen menus, vector refresh displays, and human-engineered workstations. Smooth line graphics, clear images, and instant updates are possible. The system features a multitasking OS for simultaneous design and plot. The 2-workstation system sells for $109,700 complete with the 2-D drafting software. One-station and multistation configurations are also available as well as plotter and other output devices. Vector Automation, Inc., Village of Cross Keys, Baltimore, MD 21210.

Circle 297

BELTING INDUSTRIES—Semi-Stretch Belt Users All Say—

"THANKS for the MEMORY"

Belting Industries makes belts for use on common shafts and equipment where there is no allowance for take-up, especially computer disk and paper transport drives. What puts Binco ahead in belting technology is their use of a more advanced style of weave—a weave which keeps the belts' basic dimensions the same even after constant stretching pressure. That's called "Belt Memory", and the better the memory, the longer the life of the belt. Binco—one of the nation's largest suppliers of belts, with five convenient locations throughout the country to serve you.

You'll be thanking them for the memory.

BINC0 "IT GETS AROUND"

BELTING INDUSTRIES CO., INC.

20 Boright Ave., Kenilworth, N.J. 07033, (201) 272-8591

Circle 103

EPROM programming from CP/M files

EPM version 1.1 hardware independent software package programs EPROMs directly from CP/M disk files and allows existing EPROMs to be read directly to a disk file. EPROM programmer I/O routines in source form provide custom interfacing to EPROM programming hardware. Program is menu driven and automatically verifies EPROM erasure prior to programming. Utility is included for hex file conversion. Program runs under CP/M version 2.0 or later with at least 24k RAM. Package is $75. Dantek Software, Inc., 4550 Schoolhouse Rd, Batavia, OH 45103.

Circle 298

Development system for single-chip micro

Microcomputer development environment (MDE) chip system develops/ debugs applications for the T-11 single-chip microcomputer via real-time in-circuit emulation. MDE comprises a tabletop LSI-11/23 based system, buffered T-11 emulation hardware, and associated software. For use with VAX and PDP-11 computers using MACRO-11 programming language, system enables software to be downline loaded into the target circuit. Host communications are via an RS-232 compatible serial asynchronous line. Price is $24,900. Digital Equipment Corp., Maynard, MA 01754.

Circle 299

Development system supports CIBUS™ microcomputer

COMMANDER/800™ development system, optimized for CIBUS™ microcomputer systems, features a complete development software package, dual-floppy disk drives, RS-232-C ports, and front access to all 16 CIBUS card slots. A single-card cage holds both the target system and cards that control software/hardware development. During debug, development cards exercise, monitor, and control the target system via standardized CIBUS bus. System includes a CPU card with CMOS NSC800 microprocessor that executes Z80 software. Standard system is $9950. Micro/Sys, 1367 Foothill Blvd, La Canada, CA 91011.

Circle 300
Yesterday's ideas might not be good enough for today or tomorrow, and selecting the proper data display has never been more significant. Recent studies in the computer marketplace indicate the CRT display has become the single-most important element in today's computer systems. An easy-to-read, jitter-free display is of course a dynamic part of this critical man/machine interface.

If you want to look at things with a fresh point of view, an eye-pleasing Audiotronics data display can help insure maximum productivity for the end user.

With our full line of data products, in 5", 7", 9", 12" and 15", there is a good chance that we have already solved your problems. We have developed and engineered data display products to satisfy almost every need for today's applications. Because we know what works and what doesn't, our expertise can be put to good use in developing your needs for today and tomorrow, with performance and quality that meet your budget objectives.
75-W multi-output switching supply
AC 9354 75-W multi-output switching power supply produced on an open PCB is jumper selectable for either 115 or 230 Vac. Built-in emi filter, vacuum impregnated transformers, low output ripple, and overvoltage and short circuit protections are featured. Fully tested with 100% thermal cycle and burn-in, device is BB and CSA approved, and meets European safety standards. Outputs are 5 Vdc at 4.5 A, 12 Vdc at 2.8 or 2.0 A, and -12 Vdc at 0.5 A. Astec International, Ltd., 1101 Space Park Dr, Santa Clara, CA 95050. Circle 301

Switching power supplies
LR5100, LR5300, and LR6500 switching regulated power supplies feature card-only quad-output models of 40 and 65 W, strappable 115/230 Vac ± 20% operation, 20-ms holdup for loss of input, and low ripple and noise. Overvoltage protection for 5-V output is std. Series meets FCC, UL, and CSA standards. VDE 0730 versions are available. LR5100 has outputs of 5 V at 4 A, 12 V at 2 A, -12 V at 0.5 A, and -5 V at 0.5 A to a max 40 W. LR5300 has 65 W total with outputs of 5 V at 6 A, 12 V at 2.5 A, -12 V at 0.6 A, and -5 V at 0.6 A. LR6500 has the same ratings as LR5300 and comes in a larger sized package. California DC, 2150 Anchor Ct, Newbury Park, CA 91320. Circle 302

DC-DC converters
The EP series single-output mini dc-dc converters include 4 models with 5-Vdc input and 5-, 12-, 15-, and 24-V output; 4 models have 12-Vdc input and 5-, 12-, 15-, and 24-V output. Four models have 24-Vdc input and outputs of 5, 12, 15, and 24 V. Additional models can be customized to specific requirements. KSC Electronics, Inc, 543 W Algonquin Rd, Arlington Heights, IL 60005. Circle 303

1.5-VA output, 16-bit DRC
Offering 8- and 16-bit microprocessor compatibility, the HDR2106 hybrid digital to resolver converter provides 1.5-VA output drive, 16-bit resolution, and 1 arc-min accuracy. Double-buffered inputs, 0.03% vector accuracy, and fully protected analog sine and cosine outputs are featured. Packaged in a 32-pin triple DIP, the converter does not require a 5-V logic supply. Digital inputs are TTL/CMOS compatible. Output power stage can be driven by ±15 Vdc or pulsating supplies. Output protection is provided. Price is $495. Natel Engineering Co, Inc, 8954 Mason Ave, Chatsworth CA 91311. Circle 304
Universe 68/05 First to Smash Price Barrier
The new Universe 68/05 is the first true 32-bit computer priced under $10,000 (OEM quantity one). “True” because, unlike other 68000-based systems, the Universe 68/05 handles 32 bits in parallel on its VERSAbus.

Outperforms VAX*

Its price is even more impressive when you look at Universe 68/05 performance versus that of 32-bit “superminis” several times more expensive, like the VAX-11/750.

High-Speed 68000, 4Kb Cache, 32-Bit Bus

The key to that performance is a 4Kb cache that eliminates processor wait-states and takes full advantage of a 12.5MHz 68000 processor. Also included are a separate 68000 I/O processor, four serial I/O ports (expandable to 64), 256Kb RAM (expandable to 3Mb), 20Mb/sec, 32-bit VERSAbus, 10Mb Winchester, 1.25Mb floppy disk, and 5-slot card cage. All in a 7-inch enclosure.

UNIX-Compatible Real-Time OS, Too

UNOS*, our UNIX® Rev7-compatible operating system with real-time features, runs Pascal, Fortran, C, BASIC, DBMS, and third party application programs.

For more information, just attach your business card to this ad and mail to Charles River Data Systems, 4 Tech Circle, Natick, MA 01760. Or call us at (617) 655-1800. We’ll send you a copy of “The Insider’s Guide to the Universe,” a detailed discussion of the technical concepts behind this remarkable new computer.

CHARLES RIVER DATA SYSTEMS

*VAX is a trademark of Digital Equipment Corporation. UNIX is a trademark of Bell Laboratories. UNOS is a trademark of Charles River Data Systems.
HEI card readers are accurate. Read punches or pen/pencil marks, nearly any color. Microprocessor-based with a host of options to meet various applications without custom engineering.

Serial or parallel TTL output, strobe or non-strobe. Format options include ASCII image, Hollerith to ASCII.

Proven in many applications including:
- Lottery Systems
- Inventory Control
- Brokerage Transactions
- Process Control
- Medical Systems
- Educational Systems (software available)

HP 69752A 64-channel and HP 69755A 16-channel scanner cards for the HP 6942A multiprogrammer use FET switching to scan single-ended voltage channels at speeds up to 25k channels/s. Up to 960 channels in the ±10.24-V range can be scanned by cascading up to 14 scanner cards in a single multiprogrammer. Both random access and sequential scan measurements can be made. The 64-channel scanner card costs $1200; the 16-channel costs $550. A scan control/pacer card, for use with multicard scanners, is $650. Call local Hewlett-Packard sales office. Circle 305

Simultaneously sampling ADC

Self-contained 2-channel ADC model A/D/A/M-822 has input sample and hold amplifiers, stable reference source, and 12-bit ADC. The simultaneously sampling, 0.025% accurate system has 3-ns aperture uncertainty time. Output codes are natural binary, offset binary, or 2's complement. Four analog inputs can be chosen in 2 groups of 2 each. Better than 110-dB interchannel crosstalk isolation is ensured. Offset error on any channel, adjustable to 0, is less than 25 mV for a full-scale input of ±10 V without adjustment. Analogic Corp, Audubon Rd, Wakefield, MA 01880. Circle 306

Tell us what you like
Did you remember to rate the articles in this issue of Computer Design? Turn to the Editorial Score Box on the Reader Inquiry Card.
A'S SYSTEM 355 master network processor solves your data communications problems...and saves you time, money, and valuable space.

THE SYSTEM 355 maximizes data communications and minimizes headaches. COMPLETE NETWORK TRANSPARENCY allows the interconnection of varied hosts and terminals.

VIRTUAL-CIRCUIT SWITCHING gives every network user a dedicated-line feeling. ERROR-CONTROLLED DATA TRANSFER eliminates the probability of undetected errors and allows the use of low-cost hardware and less CPU memory.

COMPATIBLE MODULAR HARDWARE makes repairs and upgrading quick and easy.

X.25 LEVEL 3 GATEWAY INTERFACE allows your network to access public data networks. And ASCII terminals in your network may communicate with any host supporting X.25.

44 TRUNK-LINK CAPABILITY offers centralized network management control with no geographic limitations.

DCA delivers what others are still promising. If you're stuck in traffic call DCA toll-free at (800) 241-5793. Digital Communications Associates, Inc., 303 Research Drive, Norcross, Georgia 30092.

CIRCLE 108
TO FIND NEW WAYS OF LOOKING AT A PROBLEM, LOOK TO LUNDY.

Today, everything from a microchip to an oil refinery is designed on graphics terminals.

No one display station can possibly handle every one of these design situations. But, chances are, one display manufacturer can. The manufacturer is Lundy. And our line of interactive graphic display systems is setting industry standards for both real-time responsiveness and price/performance.

Take, for example, the Lundy UltraGraf™. No other graphic design workstation gives designers more speed and intelligence to draw on. Or a larger screen work area. Best of all, it takes advantage of dual buffers and distributed intelligence architecture to achieve almost instantaneous response times.

For three-dimensional and dynamic modelling, architectural drawing and countless mechanical engineering applications, look into the Lundy UltraGraf.

When the design problem calls for high resolution color or monochrome imaging, the solution is Lundy’s line of raster scan terminals. Models are available with a color palette as large as 256 from a supply of 4,096 different colors and resolutions as high as 1,536 x 1,024 pixels. There’s a selection of screen sizes and configurations suited to the OEM as the end-user. To boost operator productivity, the systems have a long list of features including polygon fill, conics, high-speed vector generation, scrolling alphanumerics and fully interactive keyboards.

No matter how you look at it, efficient design starts with an interactive graphics terminal. And there’s no better place to look for the one that’s best for you than Lundy Electronics & Systems, Inc., Glen Head, New York 11545. Phone (516) 671-9000.
MDP-11 microcomputer system has built-in LSI-11 microcomputer, hard and floppy disk, or cartridge tape system. Disk and tape systems are compatible with std DEC RL01/02, RX01/02, and TM-11. 4M-byte direct addressing is provided. RT-11, RSX-11M, and RSTS-11 operating systems are accommodated. Either 0.5M- or 20M-byte removable media and 5M- or 10M-byte hard disk are provided.

MEDICOM/Medische Elektronica en Computer Systemen, Postbus 2070, 2800 BE Gouda, The Netherlands.

Circle 307

Z80A/B based microcomputer

DSB-4/6 single-board Z80 microcomputer has 64k RAM and a choice of 4- or 6-MHz CPUs. Disk controller automatically interfaces with both 51/4" or 8" drives in either single- or double-density recording formats. DMA is fully supported. Up to 3 RS-232 serial I/O ports, a modem port, and a std Centronics style parallel port are provided. For hard disk interface, a second parallel port provides 8-bit bidirectional I/O, address lines, read/write, data and interrupt requests, and data enable. Single-unit price range is $695 to $995. Davidge Corp, 1951 Colony St, Mountain View, CA 94043.

Circle 308

Single-board computer

HART-09 single-board standalone computer is based on the MC6809 microprocessor. It features a std RS-232 port, five 16-bit timer/counters, an 8-bit DAC, 1k bits of nonvolatile RAM, 64k EPROM and RAM memory, hex keypad interface, and a general purpose parallel port for interface with a digital display, printer, floppy disk, or other peripheral. Modular multitasking OS interfaces with most I/O devices. Application programs can be written in BASIC, assembly, COBOL, or Pascal. Hart Scientific, PO Box 934, Provo, UT 84630.

Circle 309
EXORBUS USERS WELCOME A BOARD!

Creative Micro Systems greets you with a comprehensive line of completely compatible support modules and enclosures. All are pin and outline compatible with the Motorola EXORCiser* and Micromodule*. And all offer high quality, low prices, and fast delivery. Check out our latest fare... No matter which route you choose we have some exciting stops along the way.

GET ON BOARD WITH A NEW CPU.
The Creative Micro Systems 9619 Advanced Microcomputer is a complete MC68B09-based system on a single EXORbus compatible card. You'll appreciate its flexible extensive on-board memory capacity. Configurations range from 8K EPROM and 8K RAM to 32K EPROM and 2K RAM. Features include two serial I/O channels with software selectable bit rates, four parallel I/O channels, non-volatile quartz-referenced time-date subsystem and 2K non-volatile RAM.

JUST THE TICKET FOR ADDING MEMORY.
The 9638 static RAM module increases capacity by your choice of 64, 56 or 32K. Each way, you benefit from high speed (200 ns maximum access time), lower power needs (¼ watt typical), and extended address decoding for memory mapping applications.

A MEMORY THAT WON'T SOON FORGET.
Our new 9637A is a non-volatile static RAM module that retains all stored data... even with system power off... for as long as three years. You can even remove the 9637A from the chassis and transport it without loss of data. Available in 16K and 8K versions.

TAKE A SPIN WITH OUR DISC SUBSYSTEM.
We offer 8 inch Winchester/Floppy Disc combination units with capacities to 40 megabytes. For smaller systems our economical 5¼ inch systems are available with capacities to 20 megabytes. All disc systems are packaged complete with controller, power supply and cables to plug-in easy interface to the EXORbus. Software interfaces are available for both operating systems.

MDOS* and OS-9+

THERE'S MORE WHERE THESE CAME FROM.
A catalogful, to be exact. CMS has all the newest technology products including three intelligent modules. The 9657 Intelligent Parallel Interface, the 9661 Intelligent Time-Date Subsystem and the 9671 Intelligent Floppy Disc Controller each have their own processor to remove some burden from the main processor. They fit your price/performance needs. And they fit into your enclosures or ours, including rack mount and desk top designs.

Join the growing family of 6800/6809 people who welcome our boards. You'll like our products, our pricing, and our from-stock delivery. Write or call for details—and for your free copy of our latest catalog of EXORbus-compatibles.
CMOS 8-bit A-D peripheral chips
Series of A-D ICS interfaces analog inputs to 8- and 16-bit microprocessor systems and features an 8-line TTL compatible 3-state bidirectional data bus. The TL530, TL531, TL532, and TL533 can be addressed by, and supply data directly to, memory, microprocessors, or other peripherals. Onchip multiplexers and 16-bit analog/digital data registers are provided. TL530 and TL531 ($8.97 and $4.81) are 40-pin devices that accept up to 15 analog inputs and 12 digital inputs. TL532 and TL533 ($7.34 and $4.32) are 28-pin versions that handle up to 11 analog and 6 digital inputs. Texas Instruments Inc., PO Box 202129, Dallas, TX 75220. Circle 310

Single-chip logic arrays combine digital/linear functions
ULA Digilin logic arrays, with digital and linear functions on the same chip, range from 100 gates with 356 active and 531 passive components to 730 gates with 1644 active and 2660 passive components. Packed with 14 to 40 pins, the devices can form precision references, voltage regulators, comparators, amplifiers, or sample and hold circuits. Std predefined support functions required by digital signal conditioning of analog circuits are included. Interconnection pattern is generated from user’s specs. Development range is $8000 to $40,000. Ferranti Semiconductors, 87 Modular Ave, Commack, NY 11725. Circle 311

Pulse width modulator with bandgap reference
SG1524B single-chip pulse width modulator features undervoltage lockout, double-pulse suppression, and improved current limiting. Output transistor voltage is 60 V max; output drive is 100 mA max (200 mA pk) from 50 mA. Bandgap reference lowers min supply voltage to 7 V, allowing battery powered portable applications. Reference also lowers typ output noise voltage, improves long-term drift, and decreases turn-on drift. Available in mil, industrial, and commercial grades, price in 100-piece 16-cerDIP ranges from $4.55 to $13.90; device is $4.30 in a 16-pin plastic DIP. Silicon General, Inc, 11651 Monarch St, Garden Grove, CA 92641. Circle 312

6-bit ADC operates at 100 MHz
SPH9756 ADC runs at sampling rates from dc to 70 MHz, with a typ 100-MHz speed with analog inputs up to nyquist frequencies. Latch function onchip sampling eliminates need for external sample and hold. Data clocking through the device in a master/slave configuration ensures outputs are synchronous and valid for the complete clock period. All outputs are ECL compatible. Op temp range is –30 to 85 °C; device meets MIL-STD-883, level B. The 6-bit hybrid ADC, in a 32-pin DIP, is $560 each in single quantity. Plessey Semiconductors, 1641 Kaiser Ave, Irvine, CA 92714. Circle 313

For a free copy of Computer Design’s “1982 Subject Index of Technical Articles,” send an 8½” x 11” self-addressed, postage-paid envelope (54¢ U.S.) to Index Editor, Computer Design, 119 Russell St, Littleton, MA 01460, U.S.A. For addresses outside the U.S., enclose a self-addressed mailing label, and International Reply Coupons to cover 3-oz (85-g) airmail postage.
MULTIBUS board for level-2 handling

MULTIBUS communications control board PI handles all link layer level-2 operations. Full SDLC/HDLC procedures are standard. Board interfaces to the system via a serial port or the MULTIBUS, and can also pass flow control information to the system. Operations can be completed with traffic densities at speeds to 64k bps. An 8087 CPU is onboard. Two line ports based on the Intel 8274 controller are provided. Unit price is $2200 with OEM discounts available. Tekelec Inc, 2932 Wilshire Blvd, Santa Monica, CA 90403.

Circle 314

CMOS single-chip FSK modem

Single-chip XR-14412 contains circuitry necessary to construct a complete FSK modem with simplex, half-duplex, and full-duplex operation. Modem has onboard crystal oscillator. Device operates in answer or originate mode and is pin programmable to either Bell or CCITT standards. Interfacing with CMOS or TTL devices, modem can be programmed for 200, 300, or 600 baud. Operating voltages are 4.75 to 15 V, and 4.75 to 6 V. Unit is a second source to the MC14412. Available in a 16-pin plastic DIP or cerDIP, price range is $8.88 to $10.66. EXAR Integrated Systems, Inc, 750 Palomar Ave, PO Box 62229, Sunnyvale, CA 94088. Circle 315

New freedom for 3D digitizers.

Here's great news for users of three dimensional digitizers like our SAC® Model GP-6-3D: New point microphones are now available to provide larger active volumes and to simplify three dimensional motion studies.

Rather than limiting the area to be digitized with a "picture frame" style linear microphone assembly, our new point microphones allow the placement of sonic receivers precisely where needed for digitizing three dimensional objects. This new digitizing technique provides ease of installation and larger active volumes, of direct benefit to those involved in motion studies in areas such as sports medicine, industrial modeling, robotics quality control, animation, and physical therapy. Now, each 6" x 2" x 3½", 8-ounce point microphone assembly can be placed as required to define the active area when digitizing.

Like standard two dimensional digitizers, 3D digitizers derive distance information by measuring the time required for a sound wave generated by a spark gap built into the point of a stylus to reach a microphone sensor. The distances measured by 3D systems are the slant ranges to each of the sensors; a microprocessor is incorporated to convert this information into X-Y-Z cartesian coordinates. With our GP-6-3D, a multiplexer is available to allow input from 8 individual sound sources, or from 16 sources with the addition of a second multiplexer. This three dimensional digitizing technique is frequently used in conjunction with an intelligent graphics terminal to allow 3D images to be displayed and qualitative measurements performed on the data. Typically, the user may program the graphics terminal to perform a number of functions such as volumetric measurements, as well as rotate and view the image from any angle.

And now, in all cases, our point microphones mean the ultimate in digitizing freedom for you.

Don't you think it's time to learn about our GP-6-3D digitizer and point microphones? The whole story is yours for the asking. We're ready. We're Science Accessories Corporation, 970 Kings Highway West, Southport, Connecticut 06490, (203) 255-1526.

SAC® SCIENCE ACCESSORIES CORPORATION

High speed synchronous modem

9600 data modem for 4-wire point to point operation processes 9600 bps of synchronous digital data. Built-in test functions of the CCITT V.29 compatible modem allow a rapid 4-step check of data terminals, modems, and telephone lines. An automatic digital adaptive equalizer overcomes effects of large variations in delay and amplitude distortion. Modem operates at a 2400-baud signaling rate, encoding 4 bits/signal element. If operating conditions deteriorate, fallback rates of 7200 or 4800 bps can be used. Universal Data Systems, 5000 Bradford Dr, Huntsville, AL 35805.

Circle 316

Talk to the editors

Have you written to us lately? We're waiting to hear from you.
DIALIGHT LED CIRCUIT BOARD INDICATORS STEP UP YOUR PRODUCTION BY ELIMINATING PRODUCTION STEPS.

You’ll save money when you stop mounting LEDs on PC boards the old way — bending leads, inserting holders, adding resistors — and start using LED Circuit Board Indicators from Dialight.

Mounting our LED Circuit Board Indicators is easier and less time-consuming. They eliminate production steps and reduce labor costs. Not only is positioning faster, it’s far more accurate. As soon as you insert the assembly you are ready for wave soldering.

Dialight originated the idea of packaging LEDs for easy mounting on PC boards. And we’ve developed over 50 different Circuit Board Indicators in red, green, yellow and red/green bicolor. Choose single-element LEDs or QUAD-LED™ four-element arrays with a wide range of voltages with or without current limiting resistors.

Send for our catalog. And the next time you need LEDs for PC boards, eliminate steps and save money — specify Dialight. 203 Harrison Place, Bklyn., NY 11237 (212) 497-7600 TWX: 710-584-5487

DIALIGHT meets your needs.
A North American Philips Company
Introducing the HP 2627A Color Graphics Terminal.

Now you can have a bright, sharp image that's easy to read. For only $5,975. Which means our compact new color graphics terminal is setting completely new price/performance standards.

You get 8 basic colors, plus hundreds of additional user-defined ones. Including colors that match our plotter pens. On a black screen with 512 x 390 line resolution. You get raster display technology for fast, selective screen updates. You get vector graphics and polygonal area fills, a combination that makes it easy to create complex shapes, symbols, and even typestyles. In a lot less time. With a lot more precision.

Of course, it's also software-compatible. In addition to HP's DSG/3000 and Graphics/1000-II software, the 2627A runs PLOT 10 from Tektronix, SAS's SAS/GRAFH, Precision Visual's DI-3000 and GRAFMAKER, ISSCO'S DISSPLA and TELL-A-GRAF.

But that's not all; the 2627A has user-definable softkeys and graphics edit keys that make this one of the easiest-to-use terminals on the market. It even gives you complete alphabetic capability. In a separate memory. So whether you're interested in business or technical applications, just return this coupon and we'll send you more information. Or call your local HP sales office. We're listed in the white pages.

Hewlett-Packard

Price U.S. list.
Name:
Title:
Company:
Address:
City:
State: Zip:

Send to: Hewlett-Packard, D.T.D., Dept. 00000, 974 E. Arques Ave., Sunnyvale, CA 94086
Attn: Tom Anderson, Marketing Manager
(408) 735-1550 ext. 2458
Airpax magnetic circuit breakers.

Whether the surroundings are hot or cold, Airpax magnetic circuit breakers' minimum trip current is not affected by temperature extremes, as is the case with fuses and thermal devices. These "trip-free" breakers won't stay closed on an overload even if the handle is held in the "on" position. Their built-in inertia delay avoids nuisance trip-outs due to transient surges.

Designed to conform with VDE and IEC standards 380 and 435, Airpax SNAPAK® breakers make your product ready for export markets. A wide choice of handle actuations, colors, illumination, terminals and hardware gives you the styling and selection you want. They are tested, listed and qualified under various military, UL, CSA and SEV specifications. Proven performance has made them the choice of leading manufacturers of computers, peripherals, broadcast equipment and machine controllers.

Because they combine the functions of power switching and overload protection and have zero replacement requirements, Airpax breakers are an affordable option to fuse-switch combinations.

For complete specifications, write or call Airpax Corporation, a North American Philips Company, Cambridge Division, Woods Road, P.O. Box 520, Cambridge, MD 21613. (301) 228-4600.
At last, plug-in parallel processing in a 32-bit supermini system.

Perkin-Elmer announces the Model 3200 Multiple Processing System, an exciting new concept for demanding real-time applications.

Room to grow
The Model 3200MPS gives you extraordinary system expandibility. You can start with a host CPU and one auxiliary processing unit (APU). Then as your needs grow you can plug in more performance by adding as many as eight additional APUs.

Should you need even more horsepower, plug-in parallel processing lets you add exactly what you need as you need it—from a single APU to a whole fleet of multiple processing systems.

And no matter what the size of your configuration, a central point of control and management is provided by a single copy of our field-proven OS/32 operating system.

Design flexibility
With parallel-processing APUs you can take advantage of application segmentation and structured programming techniques to speed system development. You can segment your application into multiple task modules, with each APU performing a set of related functions. To further optimize system performance, you can easily re-allocate tasks among the APUs.

Your Model 3200MPS provides maximum flexibility for software development, reliability, and system maintenance. To incorporate new design changes or correct problem modules, simply work on the problem module while your system continues to operate. And the Model 3200MPS can be structured to permit continued system operation though one or multiple APUs may fail. When so structured, the APUs can receive immediate maintenance attention while the system continues to run or they can wait for routine scheduled maintenance.

And our state-of-the-art universally optimizing FORTRAN VIIZ enables you to use modular programming techniques without sacrificing real-time efficiencies.

To find out more about how you can plug into all the advantages of plug-in parallel processing minis, mail the coupon or call today:
The Perkin-Elmer Corporation, Two Crescent Place, Oceanport, NJ 07757.
Tel: 800-631-2154. In NJ, 201-870-4712.

PERKIN-ELMER
Model FD1164 flexible disk drive is a single-sided, single-density version of the FD1165 double-sided, double-density 8" drive. Unformatted capacity is 400K bytes. Included are built-in NEC interface with 3M type connector or with variable frequency oscillator (VFO) option, and std Shugart type interface with edge card connector or VFO option. Microprocessor controls head loading mechanism that extends media life to more than 7M passes, spindle speed, and internal diagnostics. Drive is $475 in quantities of 100. NEC Information Systems, Inc, 5 Militia Dr, Lexington, MA 02173. Circle 317

Half-height Winchester uses thin-film disks
ST206 half-height 5 1/4" Winchester drive incorporates thin-film plated media and ferrite R/W heads. It stores 6.38M-byte max unformatted data (5M bytes formatted) on 2 surfaces of a single film plated rigid disk. Drive is fully compatible with std ST506 interface. Data density is 10,416 bytes/track on a total of 306 cylinders. Transfer rate is 5M bps. Average access is 85 ms (including settling) on 206 cylinders and 0.45ms (including settling) on 106 cylinders. Price is ± 30 mA at ± 10 V. Gain is 80 dB over 1000 Hz. Prices range from $37.50 to $53 in 100-piece quantities. Included are built-in NEC interface connector or VFO option. Microprocessor controls head loading mechanism that extends media life to more than 7M passes, spindle speed, and internal diagnostics. Drive is $475 in quantities of 100. NEC Information Systems, Inc, 5 Militia Dr, Lexington, MA 02173. Circle 317

DEC replacement drives
Increased capacity Micro-Magnum 5/5 fixed/removable cartridge and Micro-Magnum 5 removable-only disk drives provide a 5 1/4" replacement for DEC's RL01 and RL02 disk drives. Cylinder count is increased from 312 to 320/disk, giving Micro-Magnum 5/5 formatted capacity of 10.48M bytes and Micro-Magnum 5 formatted storage of 5.24M bytes. The drives have an embedded servo and SASI interface. Micro-Magnum 5/5 OEM price is $1275 and the Micro-Magnum 5 is $995. DMA Systems Corp, 601 Pine Ave, Goleta, CA 93117. Circle 319

SYSTEM ELEMENTS
VMebus compatible boards
Three single-function general purpose modules include VME-SBC ($1695) single-board 6800 microprocessor based computer that features 12K-byte static RAM and 2 monitor/debugger PROMS. Optional version ($1555) features 4K-byte static RAM and 6 empty Bytewyde™ memory sockets for std 2764 EPROMS. VME-DRAM 256 ($2395) 5-V RAM board has 256K-byte memory and onboard refresh. This dual-connector memory card features self-contained Bytewyde parity generation/checking. Double-Eurocard serial I/O VME-SIO ($925) features 2 fixed RS-232 channels and a population option of 2 RS-232 or RS-422 channels. Mostek Corp, a sub of United Technologies Corp, 1215 W Crosby Rd, Carrollton, TX 75006. Circle 320

Low cost R-D converter
1608 series resolver to digital converters provide up to a 4:1 reduction in the cost of angle or distance encoding in robotic/machine tool applications. Total monitoring costs are $100/axis including brushless resolver. Single low profile module comprises a complete 4-channel resolver or synchro to digital converter. Four- or 8-channel expansion modules can be added up to a max 40 input channels. Device provides 12-bit resolution, 8.5-min accuracy, and less than 100-ms conversion time. Logic 1/0 are TTL/CMOS compatible. Four-channel unit is $495. Control Sciences, Inc, 9601-1 Owensmouth Ave, Chatsworth, CA 91311. Circle 321

Wideband fast settling op amp
AH0605 op amp, available in 3 drift grades, is suited for both ac/dc applications. Settling time is 400 ns max to 0.1%. The 400-MHz gain bandwidth product slew rates at 500 V/µs. Output current is ±30 mA at ±10 V. Gain is 80 dB min at ±30-mA output. Voltage offset and drift is 5 mV max, 10 µV/°C. Prices range from $37.50 to $53 in 100-piece quantities. Optical Electronics Inc, PO Box 11140, Tucson, AZ 85734. Circle 322

Like to write?
The editors invite you to write technical articles for Computer Design. For a free copy of our Author's Guide, circle 503 on the Reader Inquiry Card.

Brushless motors
Line of brushless servo and general purpose permanent magnet motors includes over 50 listings with ratings from 0.1 to 1 hp and up to 32 lb/in (4N•m) continuous torque at stall. Motor life exceeds 15k h, rfi/emi are virtually eliminated, and speed is to 7200 rpm. Magnets are on the rotor, and motor windings are the stator. Windings are held stationary and can be commutated electronically to eliminate need for a mechanical commutator and brushes. Three Hall effect sensors are provided. Brushless tachometer uses the same internal electronic commutation as the brushless motor. Honeywell, Inc, Motor Products Div, PO Box 106, Rockford, IL 61105. Circle 323

A Message to our Subscribers:
We urge you to respond promptly whenever you are asked to renew your subscription to COMPUTER DESIGN. Currently we have a large waiting list of qualified subscribers-to-be who are anxious to start receiving CD. With the costs of paper, postage, etc., constantly on the rise you'll be receiving fewer renewal notices in the future. That's why "turning 'round" that first notice is so important to both of us. Your uninterrupted subscription service is my goal.

Cordially,
Robert P. Dromgoole
Circulation Director

CIRCLE 138
CALENDAR

CONFERENCES

FEB 23-25—ISSCC (International Solid State Circuits Conf), Sheraton Center Hotel, New York, NY. INFORMATION: Lewis Winner, 301 Almeria Ave, Coral Gables, FL 33134. Tel: 305/446-8193

FEB 28-MAR 4—Compcon Spring, Jack Tar Hotel, San Francisco, Calif. INFORMATION: Harry Hayman, PO Box 639, Silver Spring, MD 20901. Tel: 301/589-3386

MARCH 10-12—International Computer Color Graphics Conf, Tallahassee-Leon County Civic Ctr, Tallahassee, Fla. INFORMATION: Ron Spencer, 555 W Pensacola St, PO Box 10604, Tallahassee, FL 32302. Tel: 904/487-1691

MARCH 14-16—Phoenix Conf on Computers and Communications, Phoenix, Ariz. INFORMATION: Gerald Fetterer, GTE Automatic Electric Lab, 2500 W Utopia, Phoenix, AZ 85027

MARCH 21-24—Interface, Miami Beach Conv Ctr, Miami Beach, Fla. INFORMATION: The Interface Group, 160 Speen St, PO Box 927, Framingham, MA 01701. Tel: 617/879-4502; 800/225-4620 (outside Mass)

MARCH 21-24—Powercon 10 (International Power Electronics Conf and Exhibit), Sheraton Harbor Island Hotel, San Diego, Calif. INFORMATION: Ronald Birdsell, Gen'l Chmn, Power Concepts, Inc, PO Box 5226, Ventura, CA 93003. Tel: 805/658-1890

MARCH 22-23—Office Automation Conf and Expo, Holiday Inn Mövenpick Hotel, Zurich-Regensdorf, Switzerland. INFORMATION: Foreign Commercial Service, American Embassy, PO Box 1065, CH-3001, Bern, Switzerland. Tel: 031/437011

APR 4-8—Tutorial Week East (including sessions on interactive computer graphics; robotics; data communication; and software design, development, management, and testing), Orlando, Fla. INFORMATION: Harry Hayman, PO Box 639, Silver Spring, MD 20901. Tel: 301/589-8142

APR 5-8—Communications Tokyo, Tokyo Rytsttu Ctr, Tokyo, Japan. INFORMATION: Clapp & Poliak Internet!, PO Box 70007, Washington, DC 20088. Tel: 301/657-3090

APR 18-21—Internet! Sym on Industrial Robots/Robots 7 Conf and Expo, Conrad Hilton Hotel and McCormick Pl, Chicago, Ill. INFORMATION: Society of Manufacturing Engineers, One SME Dr, PO Box 930, Dearborn, MI 48128. Tel: 313/271-1500

APR 19-21—Electro, New York Coliseum and Sheraton Ctr, New York, NY. INFORMATION: Elliot Algaze, Electronic Conventions, Inc, 999 N Sepulveda Blvd, El Segundo, CA 90245. Tel: 213/772-2965; 800/421-8816 (outside Calif)

APR 27-29—Satellite and Computer Communications International Sym, Versailles, France. INFORMATION: T. Bricheteau, Secretariat du Symposium, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France. Tel: 3/954.9020; Poste 660

MAY 2-5—Test and Measurement World Expo, San Jose Conv Ctr, San Jose, Calif. INFORMATION: Meg Bowen, 215 Brighton Ave, Boston, MA 02134. Tel: 617/254-1445

MAY 9-13—SID (Society for Information Display) International Sym, Marriott Hotel, Philadelphia, Pa. INFORMATION: Lewis Winner, 301 Almeria Ave, Coral Gables FL 33134. Tel: 305/446-8193

MAY 16-19—National Computer Conf, Disneyland Hotel and Anaheim Conv Ctr, Anaheim, Calif. INFORMATION: AFIPS, 1815 N Lynn St, Arlington, VA 22209. Tel: 703/558-3624

ANNOUNCEMENTS

Announcements intended for publication in this department of Computer Design must be received at least three months prior to the date of the event. To ensure proper timely coverage of major events, material should be received six months in advance. Programs and dates are subject to last minute changes.

SEMINARS

SHORT COURSES

FEB 15-18—Peripheral Array Processors for Signal Processing and Simulation, Univ of California, Los Angeles. INFORMATION: Marc Rosenberg, UCLA Extension, Continuing Ed in Engineering and Math, 6266 Boelter Hall, Los Angeles, CA 90024. Tel: 213/825-1047

FEB 23-25—Practical CAD/CAM Considerations (Concept through Operation), Univ of California, Los Angeles. INFORMATION: Marc Rosenberg, UCLA Extension, Continuing Ed in Engineering and Math, 6266 Boelter Hall, Los Angeles, CA 90024. Tel: 213/825-1047

MAR 30-31—IEEE VLSI Test Workshop, Bally's Park Place Casino Hotel, Atlantic City, NJ. INFORMATION: Jerry Kunert, Naval Air Engineering Ctr, Code 92A32, Lakehurst, NJ 08733. Tel: 201/323-2663
Dataram Corporation offers the industry's widest range of DEC-compatible peripheral controllers — from comparatively simple NRZI tape controllers to complex 300 MB storage module drive (SMD) controllers.

An impressive array of state-of-the-art controllers, all built around high-speed bipolar microprocessors. All software compatible with the host LSI-11, PDP-11, or VAX® minicomputer...and all available now.

And Dataram's controllers are designed to save you money, and, more importantly, space — our controllers typically occupy half the space required for the comparable controller from DEC. Doing it with a level of performance that makes any member of this family worth looking at.

The chart shows our current family of peripheral controllers, growing every day. If you don't see the controller you need, we're probably working on it right now. Call us and discuss your requirements.

CONTROLLER	**DESCRIPTION**	**COMPATIBILITY**
C03 | Cartridge disk controller | RK05
C33 | Cartridge disk controller | RK05
T03 | NRZI mag tape controller | TM11/TU10
T04/C | Mag tape streamer coupler | TM11/TU10
T04/N | NRZI mag tape controller | TM11/TU10
T04/D | Dual density mag tape controller | TM11/TU10
T34/C | Mag tape streamer coupler | TM11/TU10
T34/N | NRZI mag tape controller | TM11/TU10
T34/D | Dual density mag tape controller | TM11/TU10
T36 | Dual density mag tape controller | TM11/TU10
T34/T | GCR mag tape controller | TM11/TU10
S03/A, S04/A | 80 MB/300 MB SMD controller | RM02/RM05
S03/A1, S04/A1 | 80 MB/160 MB SMD controller | RM02
S03/B | 80 MB/300 MB SMD controller | RK07
S03/C | 200 MB/300 MB SMD controller | RP06
S03/D, S04/D | 96 MB CMD controller | RK06
S33/A | 80 MB/300 MB SMD controller | RM02/RM05
S33/A1 | 80 MB/160 MB SMD controller | RM02
S33/B | 80 MB/300 MB SMD controller | RK07
S33/C | 200 MB/300 MB SMD controller | RP06
S33/D | 96 MB CMD controller | RK06

Products printed in red are LSI-11 Bus compatible. Products printed in black are UNIBUS® compatible for PDP-11 and/or VAX minicomputers.

DEC, LSI-11, PDP, UNIBUS and VAX are registered trademarks of Digital Equipment Corporation.
LITERATURE

Custom/semicustom chip conversion
Brochure introduces CMOS LSI/VLSI gate array design and fabrication facility, highlighting "technology center" approach to CAE that integrates design, simulation, layout, tooling, and test generation functions while converting discrete or MSI TTL circuits to custom or semicustom ICs. **Storage Technology Corp**, Microtechnology Div, Louisville, Colo. Circle 416

Test switching system
Booklet examines how TESS**™** test equipment switching system can simplify test instrument selection and sharing, fault isolation, test sequencing, excitation, scanning, data acquisition, and record keeping. **T-bar Inc**, Switching Components Div, Wilton, Conn. Circle 411

Guide to gate array use
Document covers topics that help evaluate existing gate arrays and speculate new ones; metal and silicon arrays are described, including the TM5900 (which controls 300 V) and the TM6900 (which provides precision analog functions). **Telmos Inc**, Sunnyvale, Calif. Circle 412

Versatile multiport modem with network capabilities
Data sheet examines V.29 Plus modem with time division multiplexer that accepts synchronous or asynchronous input with aggregate speeds to 9600 bps; network enhancing features, system applications, and complete specs are discussed. **Timeplex, Inc**, Rochelle Park, NJ. Circle 413

Indicator and illumination lamps

Isolation transformers and ac line conditioners
Units rated from 100 VA to 60 kVA are outlined in selection guide that discusses ac power problems and suggests appropriate line conditioning devices to solve them. **Gould Inc**, Electronic Power Conversion Div, San Diego, Calif. Circle 415

Comm network testing system
Brochure profiles integrated REACT remote access and test system, with full Bell System 4109 capabilities. **Hekimian Laboratories, Inc**, Gaithersburg, Md. Circle 416

Mass-terminated conductors
Bulletin covers MAS-CON™ insulation displacement connector systems, along with termination tooling and machines. **Panduit Corp**, Tinley Park, Ill. Circle 417

Standard relays
General purpose, midget, power, power-miniature, low profile, telephone-type, and automotive-type relays are detailed in catalog, together with sockets and accessories. **Schrack North America, Inc**, Irvington, NY. Circle 418

International standards for 19" casings
Brochure summarizes DIN, ANSI/EIA, BSI, and IEC standards and specs for 19" enclosure systems; multidimensional isometric diagrams detail test dimensions, mounting hole patterns, nominal apertures, etc. **Schroff Inc**, sub of The Schroff Group, Warwick, RI. Circle 419

Matrix programming and switching systems
Handbook highlights single-, dual-, and multideck matrix boards and their applications. **Sealectro Corp**, Programming Devices Div, Mamaroneck, NY. Circle 420

AC and dc power supplies
Guide presents electrical specs and case dimensions for power sources and switchers in all standard series. **Semiconductor Circuits, Inc**, Windham, NH. Circle 421

Electrical accessories
Catalog introduces DataGuard spike, transient, and noise protection power conditioners for small computers, as well as electrical and telephone cable ducting. **SGL Waber Electric, Div of SGL Industries, Inc**, Westville, NJ. Circle 422

Data comm equipment
Synchronous and asynchronous limited distance modems; terminal, port, and modem sharing devices; and modem eliminators are included in product overview. **International Data Sciences, Inc**, Lincoln, RI. Circle 423

Remote terminal UNIBUS interface
Brochure discusses Series II BusDriver, a statistically multiplexed remote cluster and local terminal interface for DEC PDP-11 and VAX-11 computers. **Micom Systems, Inc**, Chatsworth, Calif. Circle 424

Design application notes

Switch components and assemblies
Guide covers operating and performance characteristics, circuit configurations, and mounting instructions for a range of switches, keypads, ac and dc solenoids, and power relays. **Oak Switch Systems Inc**, Crystal Lake, Ill. Circle 426

Standard filters for custom needs
Brochure describes how to specify standard design filters to meet custom filter requirements, and profiles normalized filter-response curves at any impedance or cutoff frequency within wide feasibility ranges. **OPT Industries Inc**, Phillipsburg, NJ. Circle 427

Computer power conditioners
Product guide outlines standard and optional features of 17 WhisperPac models ranging from 12.5 to 500 kVA, tabulates specs and efficiency ratings, and summarizes installation, maintenance, and warranty information. **Computer Power Products, Gardena, Calif.** Circle 428

Signal converter and terminating unit
Solid state, plug-in module STU-5M interfaces tactical or fixed 2- or 4-wire telephone equipment with 4-wire VF channels and converts ringing and dc supervision to tone on/off signals; leaflet includes performance characteristics and logistic support data. **Dataproducts New England, Inc**, Wallingford, Conn. Circle 429

Flexible flat cables
Catalog displays complete line of PVC insulated cables for use with mass-termination, insulation displacement connectors. **Hitachi Cable America Inc**, New York, NY. Circle 430
Give your VT100 a new image in 4.4 minutes.

If you have a VT100 terminal, you’re just 4.4 minutes away from a high quality, versatile graphics system. At a very low price.

Our SG100 Plus graphics enhancement gives you full Tektronix® 4010 emulation on DEC™ VT100, 103, 105, and 132 terminals.

But chances are you’ll prefer our built-in native mode graphics capability, a powerful tool that makes it easy to program graphics applications. Even if you’re not a programmer.

You won’t have to give up your regular VT100 capabilities. And our separate graphics memory means you can switch from graphics to standard mode without losing data.

Our features have exceptional drawing power.

There are a lot of other reasons why our retro-fitted graphics are the best choice: Higher X-axis resolution than the competition. Larger addressable plot area, too—65K x 65K dots. The SG100 Plus printer port is totally transparent to the system, so you can print alphanumeric and graphics interchangeably on one printer. Cross hair cursor and light pen options. And our easy-to-use software is compatible with many operating systems.

High quality graphics on your LA120.

If you have an LA120 printer, our SG120R board can give it fast raster graphics capabilities. We can also interface with many other popular printers.

If you want to give your VT100 a new image, call Selanar. We’re the experts in high-quality, low-cost graphics.
New Directions in Computer Design: Systems, Software and Architectural Trends for the 80's Volume 1, by Saul Dinman

Some 20 years of technological innovation have created dramatic developments and changes in the computer systems industry. The book presents systems, software, and architectural trends for the 80's through a collection of articles covering Minicomputers, Microcomputers, Memory Systems, Software, and Data Communications.

HOW TO ORDER:
15-DAY FREE EXAMINATION
(U.S. AND CANADA ONLY)

Simply circle the appropriate number(s) on the Reader Inquiry Card at the back of this magazine. Your book will be sent to you for your 15-day free trial. If you are satisfied, keep the book and an invoice will follow. Otherwise return the book by the end of the 15-day period, and owe nothing.

VLSI Systems and Computations Edited by H. T. Kung, Guy Steele and Robert Sproull

The papers in this book were presented at the Carnegie-Mellon University Conference on VLSI Systems and Computations in October 1981. They focused on the theory and design of computational systems using VLSI. Conceptual theoretical frameworks for studying VLSI are included as well as single chip systems and architectures.

Algorithms for Graphics and Image Processing by Theo Pavlidis

Technological developments over the past ten years have made computer graphics and image processing by computer popular. Contained in this book is an in-depth treatment of pictorial information processing by computer including computer graphics, computer image processing and pictorial pattern recognition. An ideal reference source for students, industrial employees and advanced hobbyist.

Logical Design of Digital Systems by Arthur D. Friedman

A unique introduction to the design of digital computer systems beginning with the simplest precepts of gate level logic design, and including the concepts of combinational circuit design, sequential circuit design and finally system level design. Each topic is developed in a concise, unified manner.

Digital System Design Automation: Languages, Simulation and Data Base Edited by Melvin A. Breuer

Addressing the problem of synthesis is the primary theme of this book. Specifically the book describes automation systems which deal with the problems of synthesis, design evaluation and simulation at various levels of abstraction. It also deals with the system, register and micro-code levels of description.

Computer Systems Architecture by Jean-Loup Bear

This comprehensive review covers the computer architecture field from the introductory level to advanced research concepts. Beginning with an overview of computer systems architecture, the book covers the PMS notation, register transfer level languages and Petri Nets. The book concludes with a consideration of potential future trends in computer architecture.

216 COMPUTER DESIGN January 1983
BEACON™ PUTS MORE GRAPHICS AT YOUR FINGERTIPS.

It's a rare graphics system that can produce business graphics and also operate as an engineering work station for under $20,000. The Beacon™ System from Florida Computer Graphics puts it all right at your fingertips.

Using Multi-Processor Architecture (MPA) and 48-bit microcoded firmware, the Beacon System produces virtually instantaneous generation of vectors, arcs, circles, rectangles, and polygon fills. And BeaconBRIGHT™ makes those images far more visible even in brightly lit areas.

With the addition of 640KB of optional graphics memory, Beacon's 640 X 480 resolution can create a 1280 X 960 addressable image, typical of many CAD/CAM applications. This higher resolution, combined with the standard BeaconBOAM™ and Zoom features, makes Beacon ideal for many engineering and scientific applications.

Check these unique Beacon features, standard on all models.

- A wide range of true graphics and character graphics including dot addressability, 1X zoom increments (up to 16X), horizontal and vertical scrolling in variable speed, and more.
- A palette of 256 colors; 32 usable at one time (16 in the graphics planes, 16 in the alphanumeric plane).
- Superior ergonomic design. From a display that's twice as steady as those advertised as "flicker free" to the monitor that tilts, swivels, and adjusts in height. Beacon leads the way in human-factors engineering.

Beacon works with joysticks, light pens, digitizer tablets, printers or plotters. It also interfaces with slide cameras, color copiers and even large screen video projectors.

For generating either business or engineering graphics, the Beacon System (stand alone or host dependent), offers a spectrum of capabilities unmatched in its price category. To find out more write for our full color literature:

Marketing Communications Manager
Florida Computer Graphics, Inc.
1000 Sand Pond Road, Lake Mary, FL 32746.
Or call (305) 321-3000. In the Continental U.S. outside Florida, dial 1-800-327-3170.

FLORIDA COMPUTER GRAPHICS
VISION IN COMPUTERS
CIRCLE 118
SPRINT 68 MICROCOMPUTER
CONTROL COMPUTER DEVELOPMENT SYSTEM 6800 MPU, serial I/O, 48K RAM, dual 8" drives, WIZRD multitasking DOS, editor, assembler, 16K BASIC, all for $3949. Options: C, PL/I, PASCAL, FORTRAN, EROM programmer, analog I/O, parallel I/O, 488 GPIB interface, CMOS RAM/battery, power fail detect/power on reset. WINTEK CORP, 1801 South Street, Lafayette, IN 47904; (317) 742-8428. CIRCLE 476

MULTIBUS™ PROTOTYPING BOARD
Prototyping Board for Multibus™ systems has locations for up to 85 PIN-DIP IC's plus discrete components. The layout is on a grid of 0.1" holes, with bus strips individually strappable to any desired voltage. Multibus™ Intel Corp, Model# PR 80H, Price: $85 each, (Qty 1-9). ELECTRONIC SOLUTIONS, 5780 Chesapeake Ct, San Diego, CA 92123. Tel: Toll Free (800) 854-7088, in Calif. (714)292-0242. TLX 910-335-1169. CIRCLE 477

LOW COST POSTCARD MAILINGS
Here's a way for your company to test new product acceptance, offer catalogs, find new applications, or support ongoing product lines. Computer Design's POSTAL MAILERS go to our 72,000 domestic subscribers 4 times each year. Rates start at $995 per card and go down with frequency. Next closing December 21, 1982. Contact Shirley Lessard, COMPUTER DESIGN, 119 Russell St., Littleton, MA 01460. Tel: Toll Free (800)225-0556. CIRCLE 479

THE INDOOR MULTIPLEXEF $495
- Eight channel capacity
- Completely transparent up to 9600 bps for each channel
- No modem needed: 2000 ft. distance between muxes
- Free 30 day trial

COMPUTER DESIGN'S SYSTEM SHOWCASE
CALL...
Maureen Sebastian
(800)225-0556
in MA 486-9501

CIRCLE 475
for rates and information

THE INDOOR MULTIPLEXEF

POWER SUPPLY
For Lab or Original Equipment
FEATURES: Efficient 30 kHz switching frequency • Four Models satisfy most applications • Years of trouble-free service • Each side AC line fuse protected
- Tele-Talk LED "Power-On" Panel Indicator • Three separate voltage outputs
- Metal enclosure provides physical and EMI protection • For experimental use or permanent power source
- Soft start feature protects critical circuits • Peral operation available for higher current needs • Push-in terminals, accept wire, test lead • Weight-light, easy to use • AC line cord permanently attached • Mc reliable power source for a variety of uses and applications • 48 hour burn-in assures MTBF of 35 years, reasonably priced at $1.50/week • Full one year guarantee • 2-tone randomized case • Custom volt/current outputs on special order • Automatic short circuit protection and overload protection

SPECIFICATIONS: Input: 90-120VAC, 47-440Hz • Dual AC Input Fuses
- Line Regulation: 10.1% Max for input changes • Load Regulation: 10.2% Max on #1 Output • Ripple Noise: Typ. 1% PF Max • Over Voltage Protection
- Reverse Polarity Protection • Compact, only 2-7/8" wide, 2-7/8" • Fast load transient response • 5 volt out, 10%•DC Output: 42 Watts continuous/70% Efficient

COMPUTER DESIGN'S POSTAL MAILERS

CIRCLE 478

THE INDOOR MULTIPLEXEF
QUE COMPUTER LAW
APPLICATIONS
Software Legal Book—Addresses the issues associated with the creation, distribution and protection of software, including essential legal information in easy-to-understand, nonlegal terms.

OEM & Turnkey Contracts—Written for OEM and Turnkey system makers, computer manufacturers and attorneys, examining legal issues affecting the negotiation and execution of OEM and Turnkey system contracts. CARNegie PRESS, Madison, 07940. Tel: (201)822-1240.

CIRCLE 481

TERLOCKING PC BOARD MODULE
Erective modular housing concept for PC boards provides unique interlock capability for vertical/horizontal module stacking and permits systems expansion. Gold anodized aluminum extrusion available with选择 alloyed aluminum front and back panels. Three sizes to accommodate standard multiple S-100 cards. Accepts color coordinated slide-in side panels and front panel polarizing filter material. Satisfies a wide range of applications including the new PIO and floppy disk drives. Pricing from $9.45, single unit. TRANSWAVE CORPORATION, Cedar Valley Building, Vandergrift, Pennsylvania 15648. Tel: (412) 8-6370.

CIRCLE 482

JUD STATE POWER FET RELAY
Ledyne's C46/C47 series are pin-compatible replacements for DIP reed relays where low EMI switching, high reliability and long life are required. Switches AC up to 4000V. On-resistance as low as 7ms. Control voltage range is 3.8 to 20VDC. Optical coupling provides 3000VDC isolation. Features no offset voltage, low off-state leakage, and high switching speed. $5.80 ea for 5000 pcs.

CIRCLE 483

Please send me Computer Graphics World for one year (12 issues)
Rates: $30 U.S.; $35 Canada & Mexico; $40 International
Cardholder's Signature ________
Expiration Date ________
Print Name ________
Title ________
Company ________
Type of Business ________
Street Address ________
City ________ State ________ Zip ________

Mail to COMPUTER GRAPHICS WORLD, Post Office Box 122, Tulsa, Oklahoma 74101 or CALL toll free 1-800-331-5959 (in Oklahoma call 918-835-3161).
<table>
<thead>
<tr>
<th>AD Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acromag, Brewer Associates Inc</td>
<td>62</td>
</tr>
<tr>
<td>ACT</td>
<td>182</td>
</tr>
<tr>
<td>ADE Corp, Inc</td>
<td>146</td>
</tr>
<tr>
<td>Advanced Micro Devices, Inc</td>
<td>20, 21</td>
</tr>
<tr>
<td>Airpax, Cambridge Div, The Aitkin-Kynett Co Inc</td>
<td>209</td>
</tr>
<tr>
<td>Amcodyne</td>
<td>145</td>
</tr>
<tr>
<td>Amdek Corp, Inc</td>
<td>190</td>
</tr>
<tr>
<td>Ampex, Memory Products Div, J B Talmadge & Co Inc</td>
<td>81</td>
</tr>
<tr>
<td>Applied Microsystems, Benton Advertising Group</td>
<td>132</td>
</tr>
<tr>
<td>Archive Corp, Jansen Associates Inc</td>
<td>178, 179</td>
</tr>
<tr>
<td>Associated Computer Consultants</td>
<td>58</td>
</tr>
<tr>
<td>Audiotronics</td>
<td>197</td>
</tr>
<tr>
<td>Ava Instrumentation Inc</td>
<td>82</td>
</tr>
<tr>
<td>Bausch & Lomb, Houston Instrument Div, Cooley & Shillinglaw</td>
<td>219</td>
</tr>
<tr>
<td>Belting Industries Co</td>
<td>196</td>
</tr>
<tr>
<td>Braemar Computer Devices, Dewey Advertising Inc</td>
<td>186</td>
</tr>
<tr>
<td>Brown Disc Manufacturing, DeSpain & Co</td>
<td>103</td>
</tr>
<tr>
<td>Carnegie Press, Jansen Associates Inc</td>
<td>114, 115</td>
</tr>
<tr>
<td>Century Data Systems, Jansen Associates Inc</td>
<td>188</td>
</tr>
<tr>
<td>Chabin Corp, Marken Communications</td>
<td>199</td>
</tr>
<tr>
<td>Charles River Data Systems, Richter & Carr Communications</td>
<td>47</td>
</tr>
<tr>
<td>Cipher Data Products, Columbia Data Products</td>
<td>10</td>
</tr>
<tr>
<td>Computer Concepts, Neison Studio Inc</td>
<td>80</td>
</tr>
<tr>
<td>Computer Products Corp, Technell Inc</td>
<td>14</td>
</tr>
<tr>
<td>Control Data Corp, E H Brown Advertising Agency Inc</td>
<td>153</td>
</tr>
<tr>
<td>Creative Micro Systems, Dewey Advertising Inc</td>
<td>204</td>
</tr>
<tr>
<td>Custom Systems, Dewey Advertising Inc</td>
<td>172</td>
</tr>
<tr>
<td>Datacopy</td>
<td>161</td>
</tr>
<tr>
<td>Data Electronics, B J Johnson & Associates Inc</td>
<td>113</td>
</tr>
<tr>
<td>Data General, Clarke Goward Carr & Fitts</td>
<td>36, 37</td>
</tr>
<tr>
<td>Dataram Corp, Louis Zimmer Communications Inc</td>
<td>5, 213</td>
</tr>
<tr>
<td>Data Technology, Peter Chope & Associates</td>
<td>147</td>
</tr>
<tr>
<td>Dialight Corp, Greenstone & Rabasca Advertising Inc</td>
<td>207</td>
</tr>
<tr>
<td>Digi-Data Corp, Business Marketing Inc</td>
<td>106</td>
</tr>
<tr>
<td>Digital Communications Associates, Cole Henderson Drake Inc</td>
<td>201</td>
</tr>
<tr>
<td>Digital Engineering, Peter Chope & Associates, Ron Jenner & Co</td>
<td>183, 148, 149</td>
</tr>
<tr>
<td>Distributed Logic Corp, Ron Jenner & Co</td>
<td>66</td>
</tr>
<tr>
<td>Electronic Solutions, Bowen & Associates Inc</td>
<td>52, 203, 218</td>
</tr>
<tr>
<td>Emulex Corp, Jansen Associates Inc</td>
<td>111</td>
</tr>
<tr>
<td>Endicott Coll Co, R V Swinamer Associates</td>
<td>56</td>
</tr>
<tr>
<td>Epson America, Ripley-Woodbury Advertising Inc</td>
<td>187</td>
</tr>
<tr>
<td>Florida Computer Graphics, The Lone Co</td>
<td>84</td>
</tr>
<tr>
<td>Gates Energy Products, Broyles Allebaugh & Davis Inc</td>
<td>165</td>
</tr>
<tr>
<td>General Electric, Cabell Eanes Advertising</td>
<td>86</td>
</tr>
<tr>
<td>Genesis Microsystems, Genisco Computers Corp, B J Johnson & Associates Inc</td>
<td>74, 57</td>
</tr>
<tr>
<td>Genstar Rental Electronics, Warr Foote & Rose</td>
<td>29</td>
</tr>
<tr>
<td>Gould/DeAnza, Eby, Utley & McManus Advertising</td>
<td>167</td>
</tr>
<tr>
<td>Gould Instruments Div, Tycer * Fultz * Bellack</td>
<td>8, 9</td>
</tr>
<tr>
<td>Gould, SEL Computer Div, Group Three Advertising Corp</td>
<td>15</td>
</tr>
<tr>
<td>Grinnell Systems, Bergthold Fillhardt & Wright Inc</td>
<td>18, 19</td>
</tr>
<tr>
<td>GTCO Corp, Business Marketing Inc</td>
<td>55</td>
</tr>
<tr>
<td>HEI, Dewey Advertising Inc</td>
<td>200</td>
</tr>
<tr>
<td>Hewlett Packard, Wilton Coombs & Cohnett Inc Advertising</td>
<td>71, 72, 73, 208</td>
</tr>
<tr>
<td>IBM</td>
<td>221</td>
</tr>
<tr>
<td>Geer DuBois Inc Advertising</td>
<td>184</td>
</tr>
<tr>
<td>Ikemagi Electronics USA, Bon Advertising Agency Inc</td>
<td>112</td>
</tr>
<tr>
<td>Ikier Technology, Foray Associates</td>
<td>171</td>
</tr>
<tr>
<td>IMC Magnetics Corp, Information Displays, TCI Advertising Inc</td>
<td>155-158</td>
</tr>
<tr>
<td>Infoscribe, Donald S Smith Associates Inc</td>
<td>48</td>
</tr>
<tr>
<td>Invitational Computer Conference, B J Johnson & Associates Inc</td>
<td>143</td>
</tr>
<tr>
<td>Ithaco CompuDAS, Northrup and Teel Inc</td>
<td>198</td>
</tr>
</tbody>
</table>
Now OEMs can buy IBM 8-inch Winchester disk assemblies. They're backed by IBM quality and a commitment to OEMs.

IBM’s first products for OEMs are the Models 680 and 676 Disk Storage Assemblies.

These reliable disk assemblies are backed by an OEM product support team you can call on for free consultation on interface design and software. The IBM 680 has 64.5 MB formatted capacity and 27 ms average access time with a 1.03 MB/sec data rate. The new IBM 676 has a formatted capacity of 30.8 MB, average access time of 40 ms and a 1.25 MB/sec data rate. And it comes with a 30-month Head Disk Assembly replacement guarantee. These high-performance characteristics, combined with outstanding reliability, a wide range of environmental tolerances and worldwide parts availability make the 680 and 676 excellent choices for OEMs.

IBM wants to discuss and understand your OEM requirements. We’d like to relate your needs to our technology and experience in making quality products. To learn more about the IBM program for OEMs, as well as the Models 680 and 676 Disk Assemblies, return the coupon. Or call Bruce Prestwich, collect, at (408) 224-4622.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ithaco, Scientific Div</td>
<td>205</td>
</tr>
<tr>
<td>Northrup and Teel Inc</td>
<td></td>
</tr>
<tr>
<td>ITT Cannon</td>
<td>163</td>
</tr>
<tr>
<td>Abert Newhoff & Burr Inc</td>
<td></td>
</tr>
<tr>
<td>Kennedy Co</td>
<td>1</td>
</tr>
<tr>
<td>R L Thompson Advertising</td>
<td></td>
</tr>
<tr>
<td>KMW</td>
<td>101</td>
</tr>
<tr>
<td>Bonner McLane Advertising</td>
<td></td>
</tr>
<tr>
<td>Kratos</td>
<td>16</td>
</tr>
<tr>
<td>The Lone Co</td>
<td></td>
</tr>
<tr>
<td>L-Com</td>
<td>218</td>
</tr>
<tr>
<td>Marketronics Inc</td>
<td></td>
</tr>
<tr>
<td>Lexidata</td>
<td>49</td>
</tr>
<tr>
<td>Humphrey Browning MacDougall Inc</td>
<td></td>
</tr>
<tr>
<td>Lundy</td>
<td>202</td>
</tr>
<tr>
<td>Lynn Electronics</td>
<td>186</td>
</tr>
<tr>
<td>Letren Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Mannesmann Tally</td>
<td>2</td>
</tr>
<tr>
<td>Richard Hill Associates</td>
<td></td>
</tr>
<tr>
<td>Maxell Corp</td>
<td>176</td>
</tr>
<tr>
<td>AG &R Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Media Buying Services International</td>
<td></td>
</tr>
<tr>
<td>MDB</td>
<td>79</td>
</tr>
<tr>
<td>Megatek Corp</td>
<td>Cover I</td>
</tr>
<tr>
<td>LeAne & Herbert Advertising</td>
<td></td>
</tr>
<tr>
<td>Micro Memory</td>
<td>53</td>
</tr>
<tr>
<td>Micro Peripherals Inc</td>
<td>118</td>
</tr>
<tr>
<td>Kuhlman & Klein</td>
<td></td>
</tr>
<tr>
<td>Micropolls</td>
<td>88</td>
</tr>
<tr>
<td>Courtney/Wilson Advertising</td>
<td></td>
</tr>
<tr>
<td>Micro Switch</td>
<td>174, 175</td>
</tr>
<tr>
<td>N W Ayer Inc</td>
<td></td>
</tr>
<tr>
<td>Multwire</td>
<td>181</td>
</tr>
<tr>
<td>Greenstone & Rabasca</td>
<td></td>
</tr>
<tr>
<td>NEC Information Systems</td>
<td>23, 137</td>
</tr>
<tr>
<td>The Straylight Corp</td>
<td></td>
</tr>
<tr>
<td>Oak Switch Systems</td>
<td>27</td>
</tr>
<tr>
<td>Marsteller Inc</td>
<td></td>
</tr>
<tr>
<td>OK Machine & Tool Corp</td>
<td>63</td>
</tr>
<tr>
<td>Camden Advertising Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Pericom</td>
<td>196</td>
</tr>
<tr>
<td>Roberta Kenney Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Peritek</td>
<td>185</td>
</tr>
<tr>
<td>Perkin-Elmer</td>
<td>210</td>
</tr>
<tr>
<td>Marquardt & Roche Inc</td>
<td></td>
</tr>
<tr>
<td>Plessey Microsystems</td>
<td>64, 65</td>
</tr>
<tr>
<td>Pawlik Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Power One</td>
<td>173</td>
</tr>
<tr>
<td>Courtney/Wilson Advertising</td>
<td></td>
</tr>
<tr>
<td>Qantex</td>
<td>169</td>
</tr>
<tr>
<td>NOAT Advertising</td>
<td></td>
</tr>
<tr>
<td>Racal Vadic</td>
<td>43</td>
</tr>
<tr>
<td>Courtney/Wilson Advertising</td>
<td></td>
</tr>
<tr>
<td>Ramtek</td>
<td>Cover IV</td>
</tr>
<tr>
<td>Pinné Garvin & Hock Inc</td>
<td></td>
</tr>
<tr>
<td>Rockwell International</td>
<td>189</td>
</tr>
<tr>
<td>Ketchum Advertising</td>
<td></td>
</tr>
<tr>
<td>ROLM</td>
<td>99</td>
</tr>
<tr>
<td>McArthur & Associates</td>
<td></td>
</tr>
<tr>
<td>Science Accessories Corp</td>
<td>206</td>
</tr>
<tr>
<td>Smith Dorian & Burman</td>
<td></td>
</tr>
<tr>
<td>Scientific Micro Systems</td>
<td>128, 129</td>
</tr>
<tr>
<td>Seagate Technology</td>
<td>130, 131</td>
</tr>
<tr>
<td>Lutat Battey & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Seallectro</td>
<td>224</td>
</tr>
<tr>
<td>GRA Concepts Inc</td>
<td></td>
</tr>
<tr>
<td>Seiko Instruments</td>
<td>28</td>
</tr>
<tr>
<td>Doug Gotthoffer & Co</td>
<td></td>
</tr>
<tr>
<td>Selanar</td>
<td>215</td>
</tr>
<tr>
<td>The Advertising Co of Offield & Brower</td>
<td>104, 105</td>
</tr>
<tr>
<td>Shugart Associates</td>
<td></td>
</tr>
<tr>
<td>Chiat/Day Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Silicon Systems</td>
<td>123</td>
</tr>
<tr>
<td>JMR Advertising</td>
<td></td>
</tr>
<tr>
<td>Solana Electronics</td>
<td>218</td>
</tr>
<tr>
<td>Sorrensen</td>
<td>109</td>
</tr>
<tr>
<td>Ribaudo & Schaefer Inc</td>
<td></td>
</tr>
<tr>
<td>SyQuest</td>
<td>127</td>
</tr>
<tr>
<td>Peter Chope & Associates</td>
<td></td>
</tr>
<tr>
<td>Systems Research Laboratories</td>
<td>194</td>
</tr>
<tr>
<td>Tanberg Data</td>
<td>139</td>
</tr>
<tr>
<td>Lenac Watford Stone Inc</td>
<td></td>
</tr>
<tr>
<td>Tandon Corp</td>
<td>116, 117</td>
</tr>
<tr>
<td>Reiser Williams DeYoung</td>
<td></td>
</tr>
<tr>
<td>TEAC</td>
<td>70</td>
</tr>
<tr>
<td>TVC Ads</td>
<td></td>
</tr>
<tr>
<td>Tektronix</td>
<td>12, 13</td>
</tr>
<tr>
<td>Tektronix Advertising</td>
<td></td>
</tr>
<tr>
<td>Teledyne Relays</td>
<td>219</td>
</tr>
<tr>
<td>Michelson Advertising</td>
<td></td>
</tr>
<tr>
<td>TeleVideo</td>
<td>82, 83</td>
</tr>
<tr>
<td>Dancer Fitzgerald Sample Inc</td>
<td></td>
</tr>
<tr>
<td>Theon EMI Datatech Ltd</td>
<td>223</td>
</tr>
<tr>
<td>Marsteller Ltd</td>
<td></td>
</tr>
<tr>
<td>3M</td>
<td>30, 31</td>
</tr>
<tr>
<td>BBDO Inc</td>
<td></td>
</tr>
<tr>
<td>Toshiba America</td>
<td>38, 39</td>
</tr>
<tr>
<td>Michelson Advertising</td>
<td></td>
</tr>
<tr>
<td>Transwave</td>
<td>219</td>
</tr>
<tr>
<td>TRW, Customer Service Division</td>
<td>203</td>
</tr>
<tr>
<td>R H Fuller Advertising</td>
<td></td>
</tr>
<tr>
<td>Universal Data Systems</td>
<td>193</td>
</tr>
<tr>
<td>Dayner/Hall Advertising Inc</td>
<td></td>
</tr>
<tr>
<td>Versitron</td>
<td>97</td>
</tr>
<tr>
<td>Pallace Inc</td>
<td></td>
</tr>
<tr>
<td>Visual Technology</td>
<td>41</td>
</tr>
<tr>
<td>Blackwood Associates Inc</td>
<td></td>
</tr>
<tr>
<td>Western Digital</td>
<td>44, 45, 125</td>
</tr>
<tr>
<td>Leading Edge Communications</td>
<td></td>
</tr>
<tr>
<td>John Wiley & Sons</td>
<td>126</td>
</tr>
<tr>
<td>Wintek Corp</td>
<td>218</td>
</tr>
<tr>
<td>Wyse Technology</td>
<td>93</td>
</tr>
<tr>
<td>Lutat Battey & Associates Inc</td>
<td></td>
</tr>
<tr>
<td>ZAX</td>
<td>141</td>
</tr>
<tr>
<td>Sales Management International Inc</td>
<td></td>
</tr>
<tr>
<td>Zenith Radio Corp</td>
<td>95</td>
</tr>
<tr>
<td>Foote, Cone & Belding</td>
<td></td>
</tr>
</tbody>
</table>
Providing low cost back-up for Winchester drives the miniature 2-speed EMISTREAMER 9800 is as easy to use as a cartridge, offers proven reliability and universal interchange. The 9800 fits within a twin 8" floppy enclosure and automatically loads the standard, multisourced 7" reel of ½" wide computer tape. The unformatted capacity is 15 Mbytes at 1600 bpi, PE, optional 30 Mbytes at 3200 bpi. With full IBM/ANSI format compatibility the world's smallest standard ½" tape drive with Industry standard interface is the REEL alternative you have been looking for. Also in the EMISTREAMER range are the autoloading 9900 with total capacity of over 60 Mbytes (120 Mbytes optional) and the high performance 8900b. These low cost streamers provide reliable data interchange between the smallest micro and the largest mainframe. Contact us now for full details.

9800 is designed for high reliability — practical features include:
- Short tape path
- Autoload
- PCB access from the top
- Three levels of diagnostics
- Alphanumeric display

EMISTREAMERS FOR BACK-UP PLUS UNIVERSAL DATA INTERCHANGE
NEW Sealectro Mini Optical Reader

- Only 3.08" x 3.09" x 0.63" Actual Size
- No Moving Parts
- Self Cleaning
- Solid State Optics
- No Badge Counterfeits
- Available Now
- For Door Access Control, Time Clocks, Copier Control, Telephone Credit Calls... and much more

AS LOW AS $25
IN QUANTITIES

PROGRAMMING DEVICES DIVISION
SEALECTRO
225 Hoyt St., Mamaroneck, N.Y. 10543
(914) 698-5600 TWX: 710-566-1110

WINCHESTER DISK CONTROL WITH MAG TAPE BACK-UP

On a Single Multibus Board

- ALL ANSI COMPATIBLE DISKS, 8 AND 14 INCH PRIAM DISKS
- INDUSTRY STD. ½-INCH TAPE
- ¼-INCH TAPE CARTRIDGES
- START-STOP OR STREAMING DRIVES

Our RIMFIRE controllers are full Bus Masters with a variety of options that make it easy to design them into any Multibus system. Their simple Parameter Block Interface offers numerous programming options such as Bus Lock, ECC and Retry Disable, Linked Commands and Mailbox Interrupts.

CALL OR WRITE FOR COMPLETE INFORMATION

*Multibus is a trademark of Intel Corporation
© 1982 Computer Products Corporation

2405 Annapolis Lane
Suite 250
Plymouth, MN 55441
Phone (612) 559-2034

Home Office
Director of Marketing
Gene Pritchard

Direct Marketing
Shirley Lessard

List Rental
Robert P. Dromgoole

Classified Advertising
Maureen Sebastian
Account Representative
119 Russell St.
Littleton, MA 01460
(617) 486-9501

New England and Upstate New York Regional Manager
Barbara Arnold
Account Representative
Maureen Sebastian
119 Russell St.
Littleton, MA 01460
(617) 486-9501

Middle Atlantic States, Long Island and Southeastern States
Dick Busch, Inc.
Richard V. Busch
6 Douglass Dr., R.D. #4
Princeton, N.J. 08540
(201) 329-2424
Eleanor Angone
74 Brookline Ave.
E. Atlantic Beach, NY 11561
(516) 432-1955

Midwestern States and Colorado
Berry Conner Associates
Berry Conner, Jr.
88 West Schiller St.
Suite 2208
Chicago, IL 60610
(312) 266-0008

Western States And Texas
Buckley/Boris Assoc., Inc.
Terry Buckley
Tom Boris
John Sabo
22136 Clarendon St.
Woodland Hills, CA 91367
(213) 999-5721
(714) 957-2552
Terry Buckley
M. Patricia Shay
P.O. Box 278
Campbell, CA 95009
(408) 866-8735
(213) 999-5721

*TM
We invite comparison on the basis of quality, reliability and performance, even though the comparison may seem unfair since the Houston Instrument COMPL0T® costs much less than the competition. The competitive edge of the CPS-19 is based on solid design and meaningful capabilities. The end result is a highly cost effective 34.5" four-pen plotter that performs tirelessly and flawlessly on its owner's behalf. At a bottom line price of only $14,950*, the Houston Instrument CPS-19 full-size plotter is thousands of dollars more affordable than others of comparable performance.

The CPS-19 will continue its thrifty ways far beyond the time of initial purchase. For instance, the CPS-19 will plot unattended, delivering drawings of up to E size, without interruption, on through the night and into the dawn. Since paper feed is continuous you can generate drawings at a time that's right for you or your system, rather than being restricted by an '8-to-5' plotter.

Finally, compare plot quality. The CPS-19 is an evolutionary stage beyond stepper-motor technology. Rugged servo drives incorporate both position and velocity feedback loops to tightly control pen and paper movement. The result is curves drawn with grace and precision, and straight lines of unerring accuracy.

For the name, address and phone number of your nearest representative, contact Houston Instrument, P.O. Box 15720, Austin, Texas 78761. (512)835-0900. Outside Texas call toll free 1-800-531-5205. In Europe, contact Houston Instrument, Rochesterlaan 6, 8240 Gistel, Belgium. Telephone 059/27-74-45.

BAUSCH & LOMB®
Houston Instrument division
THE BEST HAS JUST
BECOME THE BEST DEAL.

Ramtek's popular 6211 Colorgraphic Terminal is now just $4995* This versatile desk-top unit is ideally suited for the majority of color graphic applications in CAD, science, business, and control systems. Rack mounted (without monitor), it's even more of a value at just $3995.

Need data terminal functions, too? The companion 6221 with full VT 100™ compatibility is priced at just $5995. Plus there's a 12% discount available through March 31, 1983 on systems with both color printer and 35mm slide camera.

The price of quality has never been lower. Volume discounts are also available. For details, call our office nearest you. Or contact us at 2211 Lawson Lane, Santa Clara, CA 95050, (408) 988-1044.

Ramtek

OUR EXPERIENCE SHOWS.

World Headquarters—Santa Clara, CA (408) 988-2211 European Offices—Amsterdam (31) 2968-5056: London (8956) 76211, Cologne (2234) 78021 U.S. Offices—Dallas, TX (214) 422-2200, Los Angeles, CA (714) 979-5355, Seattle, WA (206) 575-1600, Chicago, IL (312) 397-2279, Houston, TX (713) 774-2239, McLean, VA (703) 893-2020, Denver, CO (303) 694-0758, Cleveland, OH (216) 524-1882, Upper New York/Canada (716) 425-1742, New Jersey (201) 238-2090, Florida (305) 645-0780, Boston, MA (617) 273-4590, Atlanta, GA (404) 252-5066

*Light pen sold separately

VT 100 is a registered trademark of Digital Equipment Corporation.