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Integrated Optics: An Introduction

By STEWART E. MILLER
(Manuscript received January 29, 1969)

This paper outlines a proposal for a miniature form of laser beam
circuitry. Index of refraction changes of the order of 107 or 107° 4n a
substrate such as glass allow guided laser beams of width near 10 microns.
Photolithographic techniques may permit simultaneous construction of
complex circurt patterns. This paper also indicates possible miniature forms
for a laser, modulator, and hybrids. If realized, this new art would facilitate
isolating. the laser circuit assembly from thermal, mechanical, and acoustic
ambient changes through small overall size; economy should ultimately
result.

I. INTRODUCTION

Laboratory work and experimental repeater work at laser wave-
lengths (0.4 to 10 4+ um) has been carried out by interconnecting
the oscillators, modulators, detectors, and so on, using a form of
extremely short-range radio. A freely propagating beam has been
reflected around corners, occasionally refocused with lenses to avoid
energy loss resulting from beam spreading, and often sheltered by
tubular enclosures from refractive distortions resulting from ther-
mal gradients in the ambient air. Typical separations between com-
ponents range from a few centimeters to a foot; aggregations of ap-
paratus in a single-channel experimental laser repeater are measured
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in square feet. The resulting apparatus is sensitive to ambient temper-
ature gradients, to absolute temperature changes, to airborne acousti-
cal effects, and to mechanical vibrations of the separately mounted
parts. All of these effects are understood and are susceptible to ap-
propriate engineering design; but one naturally looks for alternatives.

Looking ahead, one sees the possibility of guiding laser beams on
miniature transmission lines, analogous to the hollow rectangular
waveguide or coaxial cable used extensively in lower frequency re-
peaters. Accompanying papers report contributions leading toward
the new form of laser circuitry.** This paper gives a general view
of the proposal and indicates specific component possibilities.

II. LASER BEAM GUIDANCE

We visualize a dielectric waveguide wherein a region having an index
of refraction n. is surrounded by a region of index ny, as in Tig. 1a.
Then a two-dimensional analysis shows that the energy in the lowest-
order guided wave is confined almost entirely to the n, region if

ny = nm(l — A), 1
where
~3 <A> ‘
A7 \o (2)
N\ = free space wavelength
a = half-width of n, region, (\/an,) < 1.

Table I, calculated from equations (1) and (2) for A = 0.6328 um,
shows that only a very small change in index Ans is needed to provide
the desired guidance. Some higher order modes are above cutoff using
these parameters; more exact theory can be used to calculate the
smaller guide width which restricts the guidance to a single mode at

L

o

(b)

Fig. 1 — Waveguide cross sections: (a) rectangular shape, index n: > n.. (b)
round shape.
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TaBLE I—VALUES oF A rOoR VARIOUS
OpricaL BEam WiprHS

Optical Beam Width

2a A
1 mm 10-®
0.1 mm 10—
0.01 mm 1072

the expense of having a larger field component at the n, to ny interface
where dimensional irregularities may oceur.*™* Values of A larger than
tabulated for a particular guide width 2a¢ do not appreciably change
the field distribution for the lowest order mode in the n. region but
would allow more propagating modes.

It is not important that there be a sharp step in index as in the n. to
n, transition of Fig. la. Alternatively, the index can taper smoothly
from a maximum at the waveguide’s center to a lower value at radius
r according to*

n = nofl — ¢(r/a)”] 3)
with
¢ = 0.16<§>~
a
2a = laser beam width, provided a > \. 4)

The exponent p can have any even positive value; the lowest order mode
field always has an approximately cosinusoidal shape in the region
0 < r < awith about 1/10 peak value at » = a and with approximately
exponentially decaying magnitude for » > a.

The square law index variation, given by p = 2 in equation (3),
has the well-known property that phase constant differences for the
various propagating modes are independent of frequency.®” The square
law medium is free of delay distortion resulting from mode conversion
and 1s unique in that property.*$

We can anticipate guiding beams around relatively sharp bends
as summarized in Table II. The A’s associated with these beam widths
may be obtained from equation (2) or Table I. By using a guide which
confines the beam to a 5 to 10,m width (implies a A of 0.04 to 0.01)
the bend radius can be in the 1.8 to 14.5 mm (70 to 570 mils) region,
which could facilitate very small circuitry.

* A somewhat more accurate expression is given as equation (59) in Ref. 5.
This permits a series of terms in (r/a)” to represent the index variation.
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TaBLE II—EstiMmaTED BENDING RADIUS

Laser Beam Estimated Acceptable
Width Bending Radius in m*
2a in mm (\ = 0.633 pm)
1 14,500
0.1 14.5
0.01 0.0145
0.005 0.0018

* This estimate is obtained using equation (33) of Ref. 9, and includes an allowance
of 025 dB maximum loss resulting from a bend of any angle.

IIT. FABRICATION OF SMALL WAVEGUIDES

Tiny laser guides can be fabricated in the form of glass fibers.
Previous work on fiber-optics for image transmission or incoherent
light sensing has provided a considerable body of experience on which
to build, not all of which is applicable. So-called “clad” fibers have
two discrete regions of index as in Fig. 1a. The n; region (which car-
ries little light) must be as thin as possible in image-transmitting fibers
to minimize the “dead” region in the output image. For modulated laser
beam transmission the cladding must be much thicker and the “core”
(ng of Fig. 1a) much smaller to yield well-isolated single mode trans-
mission.

Whereas glass fibers may be used to connect repeater components
and certainly are convenient as flexible connections, we can use an-
other form of dielectric waveguide for miniature laser circuitry. Fig. 2

Fig. 2 — Planar waveguide formed using photolithogrdphic techniques.
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shows a channel of index 7, surrounded by a region of index n;, which
would serve as a dielectric waveguide of the type discussed in con-
nection with Fig. 1. This might be created in glass using a series of
steps as follows. A mask could be used to expose selectively a light-
sensitive photo-resist previously placed on a sheet of glass, followed
by washing and selective deposition (if needed) of a more durable
material for masking purposes. Then a diffusion, bombardment, or
ionic replacement process could be used to change the index of refrac-
tion of the glass, thereby creating the 7o channel imbedded in the n;
substrate. Finally the top layer of n; material could be sputtered on
the entire top surface. ,

Using photolithographic techniques which are currently evolving
for low frequency integrated circuit applications, channel widths in
the 2 to 5 um range may be achievable and dimensions on the order of
10 pm are readily held. Complicated masking patterns may in time be
made, leading to the possibility of simultaneously making complicated
laser circuits using combinations of elements such as those described in
the following paragraphs.®

This description is intended to be a broad indication of possible
feasibility rather than a blueprint. However, relevant contributions
are appearing. G. M. C. Fisher and A. D. Pearson have reported
processes which reduce or increase the index of refraction of glass
by as much as 0.7 per cent.® F. K. Reinhart, D. F. Nelson, and
J. McKenna have reported the existence of an index increase in
gallium phosphide junctions which is effective as a light guide at
zero bias.***3 Optical waveguides formed by proton irradiation have
been reported.** Further contributions may be anticipated.t®

Some relevant work on two-dimensional light guides has been re-
ported.r®-2° In this work one transverse dimension of the guided wave
was in the 10 to 100 um region; but the other transverse dimension
was orders of magnitude larger. We seek waveguides tightly guided
in both transverse dimensions in order to make possible the compo-
nents proposed in Section IV.

IV. INTEGRATED-CIRCUIT LASER
The transmission line of Fig. 2 becomes a resonator when mirrors

are placed at the ends, or when a series of partially reflecting trans-

* Complicated masking patterns are feasible now where the area involved is
small; depth-of-focus problems may require advances in masking to produce the
large area patterns we need.
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verse lines arc spaced at an odd quarter-wave multiple apart to rein-
force reflections at the resonator’s peak frequency (Fig. 3). The partial
reflectors are analogous to layered dielectric mirrors and are large
enough in the transverse plane to intercept most of the guided-wave
energy; they may be increased index regions placed in the sheet as
noted in Section III, empty grooves, or minute grooves coated with
metal.

By adding a small concentration of neodymium ions and by pro-
viding a pump, the resonant cavity becomes a laser. Fig 4 shows, in
cross section, two possible ways the pump might be applied. In Fig 4a
the active material (such as neodymium) can be applied only in the
vicinity of the n. waveguide channel (by sputtering on the surface,
beneath the SnO; film, for example) or might be distributed through-
out the substrate. The spherical reflector confines the pump energy
near the waveguide where the laser field is a maximum. The eclectro-
luminescent material (for example, doped zine sulphide) is selected to
provide radiation at a pumping line for the active lasing materials.

In Fig. 4b, ac (kilohertz rate) excitation of the electroluminescent
pumping material is implied; the electroluminescent material is dis-
tributed throughout the glass substrate. Relatively low power laser
sources might be produced in similar structures, the order of 0.1 watt
being adequate for many communication applications.

Ny——.

Ny ——

Ny —ef e

TFig. 3 — Resonator using planar waveguide.
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Fig. 4 — Cross sections of possible lasers In planar waveguide: (a) external
pump (b) pump ions imbedded in laser circuit.

V. MODULATOR

Figure 5 shows a possible phase modulator for a guided laser beam.
The electrooptic material might be the substrate or might be applied
as a thin surface layer adjacent to the guiding index region n.. Using
photolithographic techniques, it should be possible to use spacing be-
tween the metallic electrodes of about 25 wm which would yield large
modulating fields with only a few volts of modulator drive.

MODULATING
POTENTIAL

e __ _ METALLIC
ELECTRODES

Fig. 5 — Phase modulator.
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VI. HYBRID

Figure 6 shows the directional coupler form of hybrid. The ex-
ponentially decaying fields, propagating in the n; region of Fig. 2,
overlap for the two parallel guides of Fig. 6, providing continuous
distributed coupling. Reference 1 gives approximate expressions for
calculating the guide spacing and needed coupling length.

Figure 7 shows the partially reflecting mirror form of hybrid; the
reflecting line may be a narrow groove coated with a metal film, an
empty groove, or a high index dielectric region created by a masking
and diffusion or ionic replacement process. A single empty groove, an
odd quarter of a wavelength thick, in the direction of propagation
would give a coupling loss of about 9 dB.

VII. FREQUENCY-SELECTIVE FILTERS

Using techniques familiar at lower frequencies, hybrids and resonant
circuits can be combined to form filters, a needed component in fre-
quency-division multiplex systems. Figure 8 shows such an arrange-
ment, where band pass cavities C; and C» are used to separate f, from
fy and f,; hybrids divide and recombine the energy to form a constant

—_——

f

Fig. 6 — Directional coupler type hybrid.
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resistance filter. Alternatively, a multiple-line grating could be used
in place of the resonant cavities as the reflecting clement to reflect f,
only, and the output positions of f, and f,, f. would interchange.

In filters of this kind the intrinsic loss of the substrate is of course
important. Good quality glasses have bulk losses as low as 1 dB per m,
which corresponds to an intrinsic @ of about 30 million; this would
allow filters with band widths of a few hundred megacycles in the
visible region; therefore, intrinsic substrate loss should not be too
limiting.

VIII. CONCLUSIONS

This paper outlines a prospect for laser circuitry and devices which,
if realized, would have many attractive features. Photolithographie
processes would simplify reproducing complicated ecircuits, once the
original was developed. Small size would facilitate isolating the com-
pleted circuit assembly from thermal, mechanical, and acoustic am-
bient changes. For communication purposes, low laser power levels
are adequate so that the heat to be dissipated hopefully will not be
large. In the very small laser beam cross sections, nonlinear cffects
needed for modulation and frequency changing should be achievable
with only a few volts of drive.

Tinally, a word of caution is needed. Work is just beginning in the
directions indicated, and we have identified goals rather than accom-
plishments. We recognize these are difficult goals; but we believe they
are worth the serious effort required to achieve them.
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Dielectric Rectangular Waveguide and
Directional Coupler for Integrated Optics

By E. A. J. MARCATILI
(Manuscript received March 3, 1969)

We study the transmission properties of a guide consisting of a dielectric
rod with rectangular cross section, surrounded by several dielectrics of
smaller refractive indices. This guide 1s sutlable for integrated optical
circuitry because of its size, single-mode operation, mechanical stability,
simplicity, and precise construction.

After making some simplifying assumptions, we solve Mazwell’s
equations in closed form and find, that, because of total internal reflection,
the guide supports two types of hybrid modes which are essentially of the
TEM kind polarized at right angles. Their attenuations are comparable to
that of a plane wave traveling in the material of which the rod is made.

If the refractive indexes are chosen properly, the guide can support only
the fundamental modes of each family with any aspect ratio of the guide
cross section. By adding thin lossy layers, the guide presents higher loss to
one of those modes. As an alternative, the guide can be made to support only
one of the modes if part of the surrounding dielectrics is made a low im-
pedance medium.

Finally, we determine the coupling between parallel guiding rods of
slightly different sizes and dielectrics; at wavelengths around one micron,
3-dB directional couplers, a few hundred microns long, can be achieved with
separations of the guides about the same as their widths (a few microns).

I. INTRODUCTION

Proposals have been made for dielectric waveguides capable of
guiding beams in integrated optical eircuits very much as waveguides
and coaxials are used for microwave circuitry.*-* Figure 1 shows the
basic geometries for these waveguides. The guide is a dielectric rod of
refractive index n immersed in another dielectric of slightly smaller
refractive index n(1 — A); both are in contact with a third dielectric
which may be air (Fig. 1a) or a dielectric of refractive index n(1 — A),

2071
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AIR

Tig. 1 — Diclectrie waveguides for integrated optical circuitry.

(Fig. 1b). These geometries are attractive not only because of sim-
plicity, precision of construction, and mecchanical stability, but also
because by choosing A small enough, single-mode operation can be
achieved with transverse dimensions of the guide large compared with
the free space wavelengths, thus relaxing the tolerance requirements.

Even though in a real guide the cross section of the guiding rod is
not exactly rectangular and the boundaries between dielectrics are not
sharply defined, as in Fig. 1, it is worth finding the characteristics of
the modes in the idealized structure and the requirements to make it a
single-mode waveguide.

Furthermore, directional couplers made by bringing two of those
guides close together, Fig. 2, may become important circuit compo-
nents.? In this paper we study the transmission through such a
coupler; the modes in a single guide result as a particular case, when
the separation between the two guides is so large that the coupling is
negligible. Through use of a perturbation technique, we also find the
coupler properties when the two guides are slightly different.

Fig. 2 — Directional couplers.
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The guiding properties of the rectangular cross section guide im-
mersed in a single dielectric are compared with those derived through
computer caleulations by Goell.* Similarly, the coupling properties of
two guides of square cross section immersed in a single dielectric are
compared with those of two guides of circular cross section derived by
Jones and by Bracey and others.>® In both comparisons agreement is
quite good.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

For analysis, we redraw in Fig. 3 the cross section of the coupler
subdivided in many areas. Nine of the areas have refractive indexes
ny to ns; we do not specify the refractive indexes in the six shaded
areas. The reasons for these choices will become obvious.

A rigorous solution to this boundary value problem requires a com-
puter;*” nevertheless, it is possible to introduce a drastic simplification
which enables one to get a closed form solution. This simplification
arises from obscrving that, for well-guided modes, the field decays
exponentially in regions 2, 3, 4, and 5; therefore, most of the power
travels in regions 1, a small part travels in regions 2, 3, 4, and 5, and
even less travels in the six shaded areas. Consequently, only a small
error should be introduced into the caleulation of fields in regions 1
if one does not properly match the fields along the edges of the shaded
areas.

The matching made only along the four sides of regions 1 can be
achieved assuming simple field distribution. Thus the field components
in regions 1 vary sinusoidally in the x and y direction; those in 2 and 4
vary sinusoidally along z and exponentially along %; and those in
regions 3 and 5 vary sinusoidally along y and exponentially along .
The propagation constants k.1, k.o, and ks along 2 in media 1, 2, and

Y
/ /]
D ) 7
27 "7 o g
777777474, LLLLLLLI L P72777707277%
Na n, 207 m x N3 ib
77777 v 77/7/77/7/7#;2

Fig. 3 — Coupler cross section subdivided for analysis.
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4 are identical and independent of y. Similarly, the propagation con-
stants k,1, ky3, and ks along y in the regions 1, 3, and 5 are also
identical and independent of z.

In the appendix we calculate these propagation constants and find,
as expected, that all the modes are hybrid and that guidance occurs
because of total internal reflection. Nevertheless, because of another
approximation which consists of choosing the refractive indexes n. ,
Na , Ny , and n; slightly smaller than n, , total internal reflection occurs
only when the plane wavelets that make a mode impinge on the inter-
faces at grazing angles.* Consequently, the largest field components are
perpendicular to the axis of propagation; the modes are essentially of the
TEM kind and can be grouped in two families, 7, and E? . The main field
components of the members of the first family are F, and H,, , while those
of the second are E, and H, . The subindex p and ¢ indicate the number
of extrema of the electric or magnetic field in the # and y directions,
respectively. Naturally, E;, and E?, are the fundamental modes; we
concentrate on them as we discuss the transmission properties of
different structures.

III. GUIDE IMMERSED IN SEVERAL DIELECTRICS

The guide immersed in several dielectrics (Fig. 4a) is derived from
Fig. 3 by choosing

c = o, 1)

It supports a discrete number of guided modes which we group in two
families £Z, and E?, plus a continuum of unguided modes.®***

3.1 The I, Modes

The main transverse field components of the E., modes are ¥, and H,, .
They are depicted in solid and broken lines, respectively, in Fig. 4a for
the fundamental mode EY, . Within the guiding rod each component
varies sinusoidally both along x and along y. Outside the guide each
component decays exponentially. Such functional dependence is given
in equation (38) and depicted in Fig. 4b. We assume n, 5 ng 5= n, 5% s ;
consequently the field distributions are not symmetric with respect to
the planes ¢ = 0 and y = 0. In Fig. 5a we assume n, = n, and nz = ns ;
the E7, modes depicted are either symmetric or antisymmetric with
respect to the same planes. These modes look similar to those in laser

* This approximation is not very demanding. Even when n. is 50 percent larger
than 7., ns, n4, and ns, the results are valid.
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Fig. 4 — Guide immersed in different dielectrics: (a) cross section and (b) field
distribution of the fundamental mode Eu?.

cavities with rectangular flat mirrors, but our nomenclature is different.’
The subindexes p and ¢ indicate the number of extrema each component
has within the guide.

Now we describe these modes quantitatively by reproducing the
propagation constants found for each medium in Section A.l1 of the
appendix. Let us call k, the axial propagation constant and k., and k,,
the transverse propagation constants along the x and the y directions,
respectively, in the »th medium (v = 1, 2, - - - 5). Furthermore, let us call

b, = kn, = 2, 2)
A
the propagation constant of a plane wave in a medium of refractive
index 7, and free-space wavelength A.
According to equations (39) through (52)

k. = (b — kX — )} @)
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Fig. 5— (a) Field configuration of E,.’ modes. (b) Field configuration of E,q”
modes.

in which

ke = ky = koo = kzy 4)
and

k, =k, = kys = kys. ©)

This means that the fields in media 1, 2, and 4 have the same x
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dependence and similarly those in media 1, 3, and 5 have identical y
dependence. These transverse propagation constants are solutions of
the transcendental equations:

k.a = pr — tan™' k& — tan”' kL&, (6)
2 2
kb = gr — tan™* ;—L% k,m. — tan™! Z—% k. (7)
in which
1 1
= = = (8)
Eg ka r L : _ k2 :
5 A3 z
1 1
N2 = r 2 T (9)
+ ]CuZ l _ k2 :
4 Ag v
L 4 -
and
A
A2.3,4.5 = 7 1 (10)

(k? - k§,3,4,5)2 - Q(ni - n§,3,4,5>%.

In the transcendental equations (6) and (7), a and b are the trans-
verse dimensions of the guiding rod, and the tan= functions are to be
taken in the first quadrant.

What are the physical meanings of & , 7., and A5 5.4.5 ? The amplitude
5 4

of each field component in medium 3 (I'ig. 4) decreases exponentially
along z. It decays by 1/¢ in a distance & = 1/ | k.3 | . Similarly &, 7.,
and 7, measure the “penetration depths” of the field components in
media 5, 2, and 4, respectively.

The meaning of 4, is the following. Consider a symmetric slab derived
from Fig. 4 by choosing ¢ = « and n, = n, . The maximum thickness
for which the slab supports only the fundamental mode is 4, .

Expressions (3), (8), and (9) contain k, and &, , which are solutions of
the transcendental equations (6) and (7). These cannot be solved exactly
in closed form. Nevertheless, for well-guided modes, most of the power
travels within medium 1, implying
k.As

5

7!'

2 2

k,A,
<1 and |—3% «1. (11)
™

It is possible then to solve those transcendental equations in closed,
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though approximate, form. Their solutions are

b= (14 Aet As)” (12)
. _ n3d, + nifh)"’.
ko= (1 + il (13)

For large a and b, the electrical width, k,a, and the electrical height,
k,b, of the guide are close to pr and g, respectively.

Substituting equations (12) and (13) in equations (3), (8), and (9),
we obtaln explicit expressions for k,, &, &, 72, and »4:

2 2 2 -27]4
k, = [lcf - (’—”—’) (1 At A) _ (m) (1 4 mads tn@) ]
a wa b b

(14)
A3 pA, 1 z |4
& = 1 - > (15)
5 a 1 + Aa —|— A
L Ta
A, g4, . 2t
— _ 4
ni T or 1= b n§A2 + n3A4 (16)
Lo P
L m™mib

3.2 The E;, Modes

Except for the fact that the main transverse components are F, and
H,, the IZ, modes are qualitatively similar to the £, modes (Fig. 5b);
they differ quantitatively. Distinguishing with bold-face type the symbols
corresponding to EZ, modes, the axial propagation constant and the
“penetration depth” in media 2, 3, 4, and 5 are, according to equations
(60), (63), and (64),

= (b — k. — k;)} (17)
1 1
ES = = ( N2 1 (18)
5 k:3 L _ k2 ?
5 A3 T
LY 5
1 1
ni - k,, T lh _ kz—lé 19
4 A2 Y
LU ) _l
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in which k, and k, are solutions of the transcendental equations

2 2
k.a = pr — tan™! 71%sz3 — tan™! %kz& (20)
n1 nl
kb = gr —tan k,n, — tan ' k,n, . 21)
The approximate closed form solutions of these equations are
2 2 -1
_ b nsds + 'ﬂsAs)
k. a (1 + ™mia @2)
and
-1
k, = I (1 4 A+ 4, A4) . 23)
b xb

Substituting these expressions in equations (17), (18), and (19), we
derive the explicit results:

2 2 -27|3
k= [ - () (o B - () o A

(24)
A3 F pAs 1 2 "‘}
— -3 _ 5
Eﬁ B 1 a nsd; + nj (25)
1+ P
L § TN, a
A2 ,qu ) 27]-%
= —2 — 4
ni ™ 1 b 1 Az + A4 (26)
+ e 1 -2
L b
If
— Ny — nz < ].

Ny
4
5

these results coincide with those in equations (14), (15), and (16),
indicating that the EZ, and E, modes become degenerate.

3.3 Ezamples
The axial propagation constants k, and k,, given in equations (3)
and (17) and properly normalized, have been plotted in Figs. 6a through
k as a function of the normalized height of the guide
D _2b s oy
A4 - )\ (nl n4)
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Fig. 6 — Propagation constant for different modes and guides. ————— tran-
scendental equation solutions; — ——— closed form solutions; —:—-— Goell’s

computer solutions of the boundary value problem.
for several geometries and surrounding media.* The ordinate in each of
these figures is

oy
B — k2

it varies between O and 1. It is O when k, = k,, that is, when the guide

*dIn these figures we use the same symbol k, for both the E,* and the E,
modes.
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is 80 small that the mode under consideration becomes unguided or, in
other words, the “penetration depth” in medium 4 is «. It is 1 when the
guide is so large that k£, = k;, which means that all the field travels
within the guiding rod and the “penetration depths” in media 2, 3, 4,
and 5 are zero.

The solid curves have been obtained using the exact numerieal
solutions of the transecendental equations (6), (7), (20), and (21);
for the transverse propagation constants &, and k, ; the dashed lines have
been derived using the closed form approximations (12), (13), (22),
and (23). In Figs. 6a, 6b, Ge, and 6f, for comparison, we have also
included the dotted-dashed lines which are the results obtained by
Goell as computer solutions of the boundary value problem.*

The three solutions coincide even for moderately large values of b.
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Thus, for a guide and mode for which

k2 — ki

B = 0%

the closed form approximation is within a few percent of the exact value.
This gives us confidence to use our results in guides with an aspect
ratio a/b > 2, in guides surrounded by several dielectrics and in direct-
ional couplers for which there are no computer calculations available.
The largest diserepancy between our results and Goell’s occurs for

B =B
B — k2=
1.2
\ ’ l (h)
1.0f— Ny =t
{ 2745 Ezmz,Ezgz_____—_
By
P Ny Jb EI“I:,Elgl /"-T_A
0.8— T
n
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06— L e /"//\\/
a=b / s Y 7“2 /
ki =22n 4 »l;/// ﬁ//’
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and especially for the fundamental modes £, and EY, . Our approximate
theory is incapable of predicting the fact that these modes remain
guided no matter how small the guide’s cross section.

Figures 6a through d cover the cases of rectangular guides totally
embedded in a single dielectric of slightly lower refractive index. For all
practical purposes, given p and ¢, the E?, and I, modes are degenerate,
and the square cross section provides the widest separation between
modes.

TFigures Ge through g also consider rectangular guides embedded in a
single dielectric, but the external refractive index is 1.5 times smaller
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than the internal one. A glass rod immersed in air is an example. The
substantial difference of refractive indexes breaks the degeneracy for any
rectangular cross section. Rectangular waveguides as in Ilig. 1a, with
three sides in contact with slightly lower refractive indexes and the
fourth side in contact with air, are covered in I'ig. 6h through k.

The approximate dispersion relation (14) for I, modes, in a rectang-
ular guide surrounded by four different dielectrics, has been put in
graphical form in I'ig. 7 by plotting the equivalent equation

PX +¢7 =1 27)
in which
X = (a) (1 -t ) = )™ (28)
and
2 2‘ i 2 1 —2 o
Q)
1
1.0
: | 2
| Az +K
- = c=[2 ' 3Ta'5
17\1_[?048 ] v P yenz A, +nZA,
mn2 b
s
Ay=——T
N\ey | ebEong
Ve
05,
i\ oz
T
0.6 0.8 1.0

0.4
Az+Ag\2, 2\
=) (kP okd)

Fig. 7— Nomograph to dimension a guide immersed in several dielectrics in
such a way that it supports any preseribed number of modes.
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The curves plotted for different values of p and g are straight lines
(solid lines) ; since the values of X and Y are physically meaningful
when they are positive, the plots are kept within the first quadrant.

In Fig. 7 the dotted lines depict the equation

As + A5 |°
Ta

nyd, + nié

anib

1+

Y

b1+

Given any guide, we can calculate C which is a function of the dimen-
sions, refractive indexes, and wavelength. The corresponding dotted
line intersects all the solid lines representing the different modes. The
abscissa or ordinate of each intersection yields, after some algebra, the
propagation constant k, of each particular mode. If the resulting %, is
smaller than the smallest k,, that mode is not guided.

Another way of using the graph is this: Suppose one wants a guide
with such dimensions that at a given wavelength only the E%, mode is
supported. Picking k, = k,min , any combination of n; , ny, 15, 14, 15,
a, and b represented by a point within the triangle limited by the solid
lines EY,, EY,, and L%, will satisfy the proposed single-mode require-
ment.

In the graph it is enough to substitute a by b and everything we said
about E?, modes is applicable to E;, modes.

TFigures 6a through k have been used to determine dimensions for
several guides. All of them have the maximum dimensions compatible
with exclusive guidance of the Ei, and E}; modes. The results are
collected in Table I.

In general, the geometry with n, < n, requires a larger waveguide
cross section than with n, = 7, . This means reducing the refractive index
on one side of the guide reduces its ability to guide. The explanation of
this paradox is found in the known fact that a symmetric slab indeed
guides “‘better’” than an asymmetric one. Comparing, for example,
TFigs. 6d and 6k, in which the solid curves have been drawn solving
Maxwell’s equations exactly, the £}, and £ modes can be guided by the
symmetric slab (Fig. 6d) no matter how small the thickness b; there is a
minimum thickness required for the asymmetric slab (Fig. 6k) to guide
the same modes.’

Consider the guide immersed in a single dielectric. In general, the
guide’s height b is inversely proportional to

1

7 — nt
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TasLe I—TypricaL DIMENSIONS FOR SEVERAL Guipes*

a a
[ - it
%
ne ZN7J_§b Na "7 {b
Dy Dy, Dioyg
n, n n n Ny Y TR p, T
=00 [ L=yor | L=ros| t=ts 2 2
4 Na na Na Dt —ioor | E=ior | D=yos
Ao = e L =H
a=b 15,31 4.9 2.25 0.92 17.7 5.6 2.6
a=2b 19 6.1 2.8 .21 23.2 7.4 3.4
a=4b 26.8 8.5 3.8 1.37 349 i 4.9

* Dimensions are for guides capable of supporting only the fundamental modes
Enm and E“”.
t All numbers in the table must be multiplied by A/n;.

Forn, = 1.5, n, = 1, and A = 1y, the largest guide height corresponds
to the square cross section, and b = ¢ = 0.61u. This dimension may be
too small and difficult to control. The tolerance requirements may be
relaxed by choosing n, — n, << 1. Nevertheless, this difference cannot be
made arbitrarily small because the guide loses its ability to negotiate
sharp bends."

In all these examples the fundamental modes £, and EY, are almost
degenerate, so symmetry imperfections of the guide tend to couple
these modes. A lossy layer, added to one of the interfaces between
guiding rod and surrounding dielectrics, should attenuate the mode with
polarization parallel to that interface. As an alternative, the guide can
be made to support only the fundamental mode E};, by substituting
medium 2 with a low impedance medium such as a dielectric with large
refractive index or a metal.

An example of such a guide and the propagation constant of its modes
are shown in Fig. 8. By choosing

0.7\
¢S W=
only the EY, mode is guided. If the metal is not perfect, there is power
leakage into the low impedance medium. The smaller that impedance,
the smaller the leakage.

Guides for integrated optics may be easier to build with a/b > 1. We

can use Fig. 7 to design a guide of arbitrary dimensions a¢ and b which is
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Fig. 8 — Propagation constant for modes in a guide surrounded by metal and

diclectrics, ———— transcendental equation solutions; — ——— closed
form solutions; —-—:— Goell’s computer solutions of the boundary value
problem.

still capable of supporting only the K7, and I}, modes. An as example,
let us caleulate what the values

ng = ns; = n (1 + A) and n, = n, = n,(1 + A')

should be, assuming

Choosing

N3
(ﬁ> =£=35, @1

a\’
v — 95
C = (b> L.

The curve corresponding to ¢ = 25 has been plotted as a dotted line
in Fig. 7. It intercepts the F3, line at

v - [Q 4] (_27”_ U2 — k)™ = 0.88.

T wkn, \A

one derives from Iig. 7

In this expression, by making
E, = kn,(1 — A),

the guide supports only the EY, and Ef, modes; its height is then
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b = 1.66 - I(A) (32)

We can choose b arbitrarily by the proper selection of A’
For

N=1pn, = 1.5 and b = Hy,

from equations (31) and (32) we obtain
a = 25, A = 0.002, and A" = 0.05.
IV. DIRECTIONAL COUPLER

In general, the directional coupler can transmit £, and £, modes;
but if the sides a and b of the guides are selected small enough, only the
fundamental modes E3, and EY, are guided. Let us concentrate on the
LY, mode. The coupler guides two kinds of /%, modes: one is symmetric
(Iig. 9¢) while the other is antisymmetric (I'ig. 9d). Both are essen-
tially TEM modes with main field components I/, and H, . The electric
and magnetic field intensity profiles for both modes are depicted
qualitatively in Figs. 9b, ¢, and d.

Ignoring the small effects introduced by the loose coupling, the
electrical width k.a and height k,b of each guide, as well as the field
penetrations 53 and nz, coincide with those of the guide described in

Section III. Slmllar reasonmg applies to the £, mode.

The coupling coefficient K between the two guides and the length L
necessary for complete transfer of power from one to the other are,
according to equations (56) and (59),"

_ 7w «‘Es exp (—c¢/&;) )
o= gp =2 Ry BE (33)

For EY, modes, k, and &; are given in equations (3) and (8), and k, is the
solution of equation (6). Similarly, for £7 modes, k,, &, and k, are
obtained from equations (17), (18), and (20). As expected, the coupling
decreases exponentially with the ratio ¢/ &; between the guide’s separation
and the field penetration in medium 5.

The normalized coupling coefficient

|K|la k., wa 1 k.

oo ()T e £ [ () 0
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Fig. 9 — Directional coupler immersed in several dielectrics: (a) cross section,
(b), (c), and (d) field distributions.

derived from equation (33) by substituting #; for its value given in
equation (8) has been plotted in Fig. 10 for the E%, mode, assuming
ns = ns and n,/n; is arbitrary. The solid and dotted lines were obtained
using the exact solution of (6) and the approximate expression (12),
respectively, for k. . Both sets of curves are close to each other, espec-
ially for 2a/\n? — n2)? = 1.

The dashed-dotted lines are the couplings obtained by A. L. Jones®
for two parallel eylinders of refractive index n; = 1.8 embedded in a
medium n; = 1.5.° As expected, if the diameters of the round guides are
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equal to the widths of the rectangular guides, and if the separations are
the same, the coupling between the round guides should be slightly
smaller than that between the rectangular ones.

The normalized coupling equation (34) for the E7, mode has been
plotted in Fig. 11, using for k. the exact solution of equation (20) .
For n,/n5 close to unity, the lines get close to the solid eurves in Fig. 10
as the £, and E;, modes approach degeneracy. The influence of the
height b of the guides, the refractive indices n, and n, , and the value of ¢
in the coupling of either mode is not important since they only affect k, .

To work some examples, assume

1.5

101" and a = 2b.

n1=1.5, Ng = Ng = Ny = Ng =

S

ns%. ni“yﬁnsib
2 o L ]

238 1/2

—n
ity
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\ J
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1.5 X 2.5 3.0
c/a
Fig. 10 — Coupling coefficient for E:* modes. ————— coupling calculated

from trancendental equations; ——-—— closed form approximations; —-—-—

coupling between two cylindrical rods (A. L. Jones5).
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Fig. 11 — Coupling coefficient for E,“ modes. ————— E;° coupling for
ni/ns = 1.5; —+—-— E1,° coupling for n./ns = 1.1.

To insure that each guide only supports the Ej, and Ej, modes, the
normalized dimension b according to Fig. 6b must be chosen to be

QT\b m: — n)t = 0.75.

Consequently

k,
k,
From Fig. 10 we obtain the coupler length L for complete power trans-
fer:

b = 1.77), a = 3.54\, and

=1.

L =6540N for ¢ =a and L = 262\ for ¢ =

e
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How far apart should two guides of length I be spaced to have small
coupling? If the transfer coefficient | T'| = I | K | < 1, from equation
(33) we derive

N I kg 1 ]

o= sos |2 | 69

For the same guide dimensions of the previous example and for
l=1em, A =1y, and 7T = 0.01,

we derive, from either equation (35) or Fig. 10, that ¢/a = 2.5. Con-
sequently, both guides 3.54p wide and 1 em long would couple —40dB
if their separtion is 8.9p.

Now we evaluate how a small change of the refractive index between
the guides modifies their coupling. Such would be the case if the
medium between the guides is, for example, an electrooptic material
and we change the applied field to modulate or switch the output.

TFor E?, and E?, modes, assuming well-guided modes (k,4;/7 << 1)
and n, — ns;/n, < 1, the ratio between couplings for two values of
refractive index in medium 5 (for example, ns and n;(1 + §)), result from
equations (34) and (12):

K _L_ [ (ni_ >_a[ _ <2 )]}

That ratio is 1/2 if

W ), (2, e}
5=°-22(az— )7[1‘(#‘4.) ] ' 37)

A directional coupler with coupling coefficient K; and length L =
w/| 2K, | would transfer all the power from one guide to the other.
If the refractive index of the medium between the guides was changed
from ns to ns(148) such that equation (37) is satisfied, the power
would emerge at the end of the input guide. The larger the separation
¢ of the guides, and the smaller the difference of refractive indexes
ny — ng, the smaller the change of refractive index required.

Following the example above, for

1.5
1.01°
a =154, = 3.54x, and ¢ = q,

the percentage change of index required is only § = 0.0033.

n, = 1.5, Ny =Ny = Ny = Ny =
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V. DIRECTIONAL COUPLER MADE WITH SLIGHTLY DIFFERENT GUIDES

Consider the directional coupler of Fig. 12 in which the two guides
have slightly different heights: one measures b + h and the other
b — h.

Let us qualitatively plot the coupling coefficient as a function of b,
Fig. 13. Because of simple arguments of symmetry, the absolute value
of coupling coefficient is stationary (first derivative zero) around

= 0. Therefore, the coupling coefficient between two guides of height
b; and b, is the same as that of the coupling between two identical
guides of height 1/2(b; + b), provided that | b; — by| is small
enough.

This reasoning applies to guides with different widths, heights, and
refractive indices, provided that the differences are small enough. Un-
fortunately, as in most perturbation analysis, we don’t know what
“small enough” is unless we calculate the next higher order term.

VI. SUMMARY AND CONCLUSIONS

A dielectric rod (Fig. 4a) of rectangular cross section a by b surrounded
by different dielectrics supports, through total internal reflection, two
families of hybrid modes. They are essentially TEM modes polarized
either in the z or the y direction; we call them EZ, and E¥,. The sub-
indices state the number of extrema (p in the « direction and ¢ in the
y direction) of the magnetic or electric transverse field components.

Dispersion curves for guides of different proportions and different
surrounding dielectric are plotted in Figs. 6a through k. Typical di-
mensions for several guides capable of supporting only the fundamental
modes E7, and EY, are contained in Table I. _

By picking dielectrics with similar indexes, the guide dimensions can
be made large compared with A, thus reducing the tolerance require-
ments. The dimensions a and b can be picked arbitrarily and still achieve

Fig. 12 — Directional coupler with guides of different heights.
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[kl

Fig. 13 — Qualitative behavior of the coupling coefficient as a function of A.

a guide which supports only the fundamental modes if one ecan choose
the refractive indexes. The design is achieved with the help of either
equation (14) or Fig. 7.

The penalty one pays with most of these guides is that the funda-
mental modes are almost degenerate; consequently, symmetry imper-
fections tend to couple them. A lossy layer added to the interface y = b/2
(Fig. 4a) should attenuate the E?, mode more than the E%, . As an
alternative, the guide can be made to support only the Ef, mode by
metalizing the same interface. Dispersion curves arc shown in Fig. 8.

Since the field is not confined, there is coupling between two of these
guides (Fig. 3). Design curves for directional couplers are given in Figs.
10 and 11.

Typically, for n, = 1.5, n, = n; = n, = n; = 1.5/1.01, ¢ = 3.54),
b =a/2 = 177\, and ¢ = a/4 = 0.88), according to equation (33) the
length necessary for 3dB coupling is L/2 = 131\. This length increases
exponentially with the separation between the guides.

Increasing the refractive index between the guides by a 3 per
thousand doubles the coupling.

What is a reasonable separation to prevent coupling? Using the
numbers of the previous example, two parallel guides 1 em long sepa-
rated by 2.5 times the width of each guide have a coupling of —40 dB.

The dielectric waveguides and the directional couplers described
show great promise as basic elements for integrated optical eir-
cuitry because they:

(z) Can be made single mode even though their transverse dimen-
sions can be large compared with the free space wavelength of opera-
tion. Consequently, the tolerance requirements can be relaxed.

(1) Permit the building of compact optical components.

(7%) Are mechanically stable and alignment problems are mini-
mized.

(fv) Are relatively simple structures and lend themselves to being
fabricated with high precision integrated ecircuit techniques.

(v) Can include active devices of comparable small dimensions.
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APPENDIX A

Freld Analystis of the Directional Coupler

We solve Maxwell’s equations for the directional coupler whose
cross section is depicted in Fig. 3. The structure is symmetric with
respect to the # = 0 plane; therefore, the modes have electric fields
which are either symmetric or antisymmetric with respect to that
plane. Consequently, the guide we have to study is simpler (Fig 14):
if the plane x = 0 is an electric short circuit, the modes of the coupler
propagating along 2z are antisymmetric; if the plane x = 0 is a mag-
netic short circuit, the modes are symmetric. As is known, it is the
interaction of these symmetric and antisymmetric modes traveling with
different phase velocities along z that represents the effect of coupling.

As discussed in Section II, by neglecting the power propagating
through the shaded areas, the fields must be mateched only along the
sides of region 1. We find that two families of modes can satisfy the
boundary conditions; we call them EZ, and E?, . Each mode in the first
family has most of its electric field polarized in the z direction, while each
mode of the second family has the electric field almost completely
polarized in the y direction. The subindexes p and ¢ characterize the
member of the family by the number of extrema that these transverse
field components have along the # and y directions, respectively. For
example, the 5, mode has its electric field virtually along z, its magnetic
field along y; the amplitudes of the field have one maximum in each
direction.

Each family of modes will be studied separately.

A1 B2 Modes: Polarization Along y
The field components in the »th of the five areas in Fig. 14 are:"

(M, cos (k.x + @) cos (ky + ) for » =1
M, cos (k.x + «) exp (—ik,y) for v = 2
H,, = exp (—ikz + i) M, cos (k,y + B) exp (—ik.a) for » = 3
M, cos (k.x + @) exp (1k,.y) for v = 4
M cos (k,y + B) sin (kx + ) for » =5

H, =0
_ LM, (38)
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Fig. 14 — Coupler cross section with plane 2 = 0 either an clectric or magnetic
short circuit.
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in which M, determines the amplitude of the field in the »th medium;
a and B locate the field maxima and minima in region 1; v equal to 0°
or 90° implies that the plane x = 0 is an electric (antisymmetric mode)
or magnetic (symmetric mode) short circuit, respectively; w is the
angular frequency; e and u (appearing in k* = w’eu) are the permittivity
and permeability of free space.

In the »th medium the refractive index is n, , and the propagation
constants k., , k,, , and k, are related by

K, + ki, + kI = o’eun) =k . (39)

To match the fields at the boundaries between the region 1 and the re-
gions 2 and 4, we have assumed in equation (38)

fop = koo = ko =k, (40)
and similarly to match the fields between media 1, 3, and 5,
kyl = ky3 = kuE = ky . (41)

Before finding the characteristic equations, let us assume the re-
fractive index n; of the guide to be slightly larger than the others.
That is

mo_
S 11 (42)

2
3
4
5
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As a consequence only modes made of plane wavelets impinging at
grazing angles on the surface of medium 1 are guided. Since this im-
plies that

b <, (43)
k,

the field components E, in equation (38) can be neglected.
Now we match the remaining tangential components along the
edges of region 1 and from equation (38) we obtain

o

L
tan <k1, 5 =+ B) =i . (44)
4
% k.5 z'ctn(kz5 % -+ ,Y>
tan | k&, +al=1 k3 (45)
a+ —g 1

Where there are two choices, the upper ones go together and the lower
ones go together.

T. Li pointed out that each of these equations considered separately
is the characteristic equation of a boundary value problem simpler
than that of Fig. 14.8 2 Thus for a dielectric slab infinite in the z and 2
directions and refractive indexes as depicted in Fig. 15a, the char-
acteristic equation for modes with no H, component coincides with

Y
Y
ELECTRIC
N MAGNETIC 24
2 WALL
T
m/
Z Z
(a) (b)

Fig. 15— Dielectric slabs.
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equation (44). Similarly, for two slabs infinite in the y and z directions
and limited at £ = 0 by an electric or magnetic short as in Fig. 15b,
the characteristic equation for modes with E, = 0 is equation (45).

A similar technique has been used by Schlosser and Unger to find
the transmission properties of a rectangular dielectric guide immersed
in another dielectric.” If the two guiding rods are so far apart that the
coupling between them is a perturbation, then

| kuse | > 1 (46)

and we can rewrite the characteristic equations (44) and (45) with
the help of equations (39) and (46), making a and b explicit, as

2 2
kb = gr — tan™ 3 k,n, — tan™ 7 k,n, @7)
ny 7,
c .
{ %, exp (_5—5 - '1,2'y>i|
k,,a = lc,oa 1 + ‘a— 1 + ka£§ (48)
where ko is the solution of
kaa = pr — tan kb — tan"'k.of;, (49)
1 1
7}2 = = Y2 % (50)
4 kv2 L — kZ
4 A2 v
-\ 4
1 1
g = = . (51)
5 k.3 T 2 :
5 A3 z0
LU 5)
and
A
A = 7 I = * 52
2848 (kf - ;,3.4,5)2 (ni - n§.3,4.5)% ( )

In the transcendental equations (47) to (49), p and g are the arbi-
trary integers characterizing the order of the propagating mode, and
the tan functions are to be taken in the first quadrant. The angles
ko and k,b measure the phase shift of any field component across
the guiding rod in the x and y directions respectively, or in other words,
the electrical width and height of each guide of the coupler. On the
other hand, %,a is the electrical width of each guide assuming no inter-
action between the guides, that is assuming ¢ = o0,
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Let us find the physical significance of 524 and & 5. The amplitude
of each field component in medium 2 (Fig 14) decreases exponentially
along y. It decays by 1/e in a distance . given by equation (50).
Similarly #4, &, and & measure the “penetration depth” of the field
components in media 4, 3, and 5, respectively.

The propagation constant along z for each mode of the coupler is,
according to equations (39), (40), and (41),

k. = (ki — k2 — k). (53)

With the help of equation (48), the slightly different propagation con-
stants of the symmetric (y = 90°) and antisymmetric modes (y = 0)
are

kol _ @wwH@]
k}‘“bi2ma1+M£ (54)

In this expression
ko = (kf - kio - k:)% (5'5)

is the propagation constant of the E¥, mode of a single guide (¢ — ).

The coupling coefficient K between the two guides and the length L
necessary for complete transfer of power from one to the other are
related to the propagation constants k., and k., by'®

. _ T _ kz.s - kza _ _kLZOé €xp (_c__/gi)_
K=3L=" 3 Phoa 1+ B

_ 2 Add (kAH { w_c[ (lc,oA5>2]*}
T oaky, [1 - T exp T A, 1= T + (56)

As expected, the coupling increases exponentially both by decreasing ¢
and by increasing the penetration depth & in medium 5.

All these formulas contain either k., or k,, which are solutions of
the transcendental equations (47) and (49). For well-guided modes,
most of the power travels within medium 1 and consequently

‘kzOAa 2
2 K1 (57
™

2

and

4

Pm

« 1. (58)
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It is possible then to solve those transcendental equations in a closed
though approximate form by expanding the tan= functions in power of
those small quantities and keeping the first two terms of the expan-
sions. The explicit solutions of equations (47), (49), (50), (51), (55),
and (56) are given in Section II1.

A.2 B2 Modes: Polarization in the x Direction

The field components and propagation constants can be derived from
those in Section A.1 by changing £ to H and u to —e¢, and vice versa.
Except for their polarizations, the E7, and E}, modes are very similar
and have comparable propagation constants. Using boldface type to
distinguish the symbols corresponding to EZ, modes, from equations
(56), (55), (47), (49), (50), and (51), we obtain

K = T _ oK & exp (—c/&)
K=0L T2k, a1+ (ki) (59)
where
k., = (kf - kzo - k:zz)é (60)
and k., and k, are solutions of the transcendental equations
k,b = qgr — tan”' kn, — tan”! k,n, (61)
and
n2 n2
k..o = pr — tan™! =5 k., & — tan™' %kzo& (62)
n; N
in which
1
N = = (63)
4 l _ kz
4
and

(64)

b=
T g2
5

As in Section A.1, the transcendental equations (61) and (62) can
be solved in closed, though approximate, form provided that

kzOA3 ?
- K1 (65)
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and

kyAz 2
4« 1. (66)
T

The explicit results are given in Section II1.
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Bends in Optical Dielectric Guides

By E. A. J. MARCATILI
(Manuscript received March 3, 1969)

Light transmission through a curved dielectric rod of rectangular cross
section embedded in different dielectrics is analyzed in closed, though
approximate form. We distinguish three ranges:

(2) Small cross section guides such as a thin glass ribbon surrounded
by air—Making its width 1 percent of the wavelength, most of the power
travels outside of the glass; the atlenualion coefficient of the guide 1s two
orders of magnitude smaller than that of glass, and the radius of curvature
that doubles the straight guide loss is around 10,000\.

(7i) Medium cross section guide for integration opiics—It is only a few
microns on the side and capable of guiding a single mode either in low loss
bends with short radii of curvature or in a high Q closed loop useful for filters.
Q’s of the order of 10° are theoretically achievable in loops with radii ranging
from 0.04 to 1 mm, if the perceniage refractive index difference between guide
and surrounding dielectric lies between 0.1 and 0.01.

(%9t) Large cross section guides—They are multimode and are used in
JSiber optics. Conversion to higher order modes are found more significant than
radiation loss resulting from curvature.

I. INTRODUCTION

A dielectric rod, embedded in one or more dielectrics of lower re-
fractive index, is the basic ingredient of three types of optical wave-
guide which differ only in their relative dimensions and consequently
in their guiding properties.

The first is a small cross section guide which supports only the fund-
amental mode; most of the power travels in a lower loss external
medium. Thus, the attenuation of the mode is smaller than if all the
power flowed through the higher loss internal medium. Tiny rods, thin
ribbons, or films made of glass or other substances embedded in either
air or low loss liquids are typical examples.*-3

The second is a medium size guide capable of supporting only a few

2103
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modes; most of the power travels in the internal medium. Such a guide,
(Fig. 1 of Ref. 10) has been proposed as the building block of passive
and active components for integrated optical eircuitry.*® Lasers,
modulators, directional couplers, and filters are some of the many
devices which could be built in a single substrate utilizing the high
precision techniques available from integrated circuitry; consequently
they would be compact, mechanically stable, and reproducible.

The third, a large size guide (clad fiber) which can support many
modes, is used typically in fiber optics.”

These basic guides, having round or rectangular cross section and
straight axis, have been studied both analytically and through com-
puter calculations.®*3 Also the directional coupler (Fig. 2 of Ref. 10)
obtained by running two guides of rectangular or circular cross sections
parallel to each other, has been analyzed.2o22:14

To my knowledge, though, little is known quantitatively about the
ability of any of the three types of guides to negotiate bends, or about
the radiation losses in loops, such as the one depicted in Fig. 1 as part
of a channel dropping filter. This paper should supply such informa-
tion.

In Section II the boundary value problem is discussed, and the
fundamental modes of each polarization are described. Section III con-
tains a discussion of the results and numerical examples. Conclusions
are drawn in Section IV and all the mathematical derivations are
exiled to the appendix.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

Figure 2 depicts, in perspective, the basic geometry of the curved
guide with radius of curvature R. The cross section is a rectangle whose
sides are a and b. The refractive index of the guide is ny, and the re-
fractive indices around the guide are ns, ns, 14, and ns, all of which are
smaller than ny. Furthermore, for reasons which become apparent later,
we do not specify the refractive indices in the four shaded areas.

This boundary value problem is solved in closed, though approxi-
mate form in the appendix, by introducing the same simplification
used in solving the problem of transmission in the straight guide.*®
That simplification arises from solving Maxwell’s equations only for
guide dimensions such that a small percentage of the total power flows
through the shaded areas and consequently a negligible error is ex-
pected if one does not match properly the fields along their edges.

Two types of hybrid modes propagate through this curved guide;
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Fig. 1 — Channel dropping filter (ring type).

each one has six field components. But since some of the refractive
indices n,, ns, ny, and ns are chosen close to n,;, guidance occurs
through total internal reflection only when the plane wavelets that make
a mode impinge on the interfaces at grazing angles. Consequently, the
only large field components are perpendicular to the curved z axis
(IFig. 2). The modes are then of the TEM kind and we group them in two
families, £, and E?, . The main field components of the members of the
first family are E, and H, , while those of the second are E, and H, .

Fig. 2 — Curved dielectric guide.
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Virtually every one of these components varies sinusoidally along
z and y within the guiding medium 1 and decays exponentially in the
surrounding media 2, 3, 4, and 5 (Fig. 2). The subindices p and g
represent the number of extrema of each field component in the x and
9 directions, respectively. The field configurations of some members
of the two families in straight guides are depicted in Fig. 5 of Ref. 10;
section 2.1 describes the influence of a finite radius of curvature on
those field configurations.

General expressions for the different phase and propagation constants
in each medium of the curved guide are calculated in the appendix, for
arbitrary modes and for n, % n; ¥ n, £ n; . In the text, we consider only
the fundamental modes of each family Ei, and E3, ; furthermore, we
choose

Ny = N5 ey

and leave n, and n, arbitrary. This choice of refractive indexes en-
compasses the most interesting cases.

2.1 B}, Mode

We first study the E3, mode. As we said before, the main compo-
nents are F, along the z direction and H, along y. Both components
have a single maximum located within medium 1 and drop sinusoidally
toward the edge of it. Outside of the medium, the decay is exponential.

The axial propagation constant is according to equation (47)

k. = (B — k2 — k)b, @)
where k; = kny = (2»/A)ny and X is the free space wavelength, k, is
the propagation constant along x in media 1, 2, and 4, and k, is the
propagation constant along y in media 1, 3, and 5. This means that
the electrical width of media 1, 2, and 4 is the same and equal to k,a,
and the electrical height of 1, 3, and 5 is also the same and equal k,b.

The transverse propagation constant k, is independent of the radius
of curvature R and can be found from the transcendental equation
(37)

2 -4 2 -1
kb =7 — tan™! [(ﬁ;) — 1] — tan™* [(ﬁ) — 1] 3)

in which

A
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If the height of the guide b is selected so large that

_‘1_2_—’—_4_4. & 1’ (5)
b
only a small percentage of the power carried by the mode travels in
media 2 and 4; and equation (3) can be solved approximately,
yielding

T érf'_Aa_>".
ky = b (1 + b

According to equation (49), the other transverse propagation con-
stant

_ 2c . k_,ooz_c]
is valid if
c
1
ak., < G
e R K1,

The first term in equation (6), k.o , is the propagation constant in the
z direction of the guide without curvature; the second and third terms,
which according to equation (7) must be small, are perturbations related
to the change of field profile and to radiation loss, both of which are
introduced by the curvature. More precisely, «. is the attenuation
coefficient of the curved guide, «,R is the attenuation per radian,
that is the attenuation in a length of guide equal to R, and ¢ is a con-
version loss coefficient such that, at a junction between a straight and a
curved section of the same guide, ¢* measures the power that the funda-
mental mode in the straight section would eouple to modes higher than
the fundamental in the curved section. The fact that equation (6) is
valid if ¢ < 1 requires the radius of curvature R to be so large that the
field profiles of the fundamental modes in the straight and curved guides
are quite similar. Later in this section we consider formulas applicable
when ¢ 22 1.

The axial propagation constant, k.o, of the straight guide is related
to k.o and k, by the expression

koo = (6 — K20 — K3 ®)

and k., is the solution of the transcendental equation (55)
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_int T\ i
koo =7 — 2tan 72 oA —1J . 9

The length

- N
T2 — m3)t
is used as a normalizing dimension. What does it measure? If one
assumes b = o, the guide becomes a slab of width a. If a £ A, only
the fundamental mode is guided; if @ > A, the slab is multimode.
TFigure 3 is a graph of the electrical width, k..a, of the straight guide
as a function of a/A. The solid curve is the solution of equation (9)
assuming n,/n; = 1.5, while the dotted one is the solution forn, /n; =1.
For thin guides, a/A « 1, the electrical width is proportional to a; for
thick guides, a/A >> 1, the electrical width goes asymptotically to .
The attenuation per radian «.R and the conversion coefficient c,
obtained from equations (50) and (51) with n; = n; are

ot - 1o = B (et (Y], _ (e}
2 ny 7y Ta T
®{, lczoA>2< 2 >2]’}
® exp { 3 [1 <—~T 1+ ah

(10)

4 2 2 27]-4
- R )
7y T nia T
and
1 ra)® 1

C‘2mw(A)aw (12)

where
2B ()Y
R = EA 2 12 1— > R. (13)

The solid curves in Figs. 4 and 5 are graphs of the function

nz 3
aDR( - —%)
n;

(which is proportional to the attenuation per radian) as a function of a/4
using ® as a parameter. In Fig. 4, we further assume that

mo1+a

N3
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Fig. 3—Guide’s electrical width. Solid line is for Ef; mode with n;/n; = 1.5;
dashed line is for E%, mode with ni/n; arbitrary, and for Ef; mode with n, =~ ns.

and
AKL T,
in Fig. 5,
™5,
N3

In the same figures each dashed line is a curve of constant conversion
loss ¢. Since the calculations are valid for ¢ << 1, we believe the solid
curves are reliable to the left of the dotted curve ¢ = 0.3 and grow
progressively in error to the right of it.

To extend the use of this graph to arbitrarily large values of a/4, we
calculate the loss per radian, equation (63), when a/4 > 1 ande=21.1tis

2 2|4 3 274
ol Y el (91) il_"_s] } .
B ny [1 (n1> :| P { 3 [1 ow) T me | )’ (14

the dotted lines in Figs. 4 and 5 represent this loss. The reader can
smoothly extend the solid curves to the right of the dashed line, ¢ =
0.3, so that they become asymptotic to the dotted lines. Thus, the
whole range of guide width a from 0 to R has been covered.
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Fig. 4 — Attenuation per radian for E;* and Epy modes if ni/n; =1 4 A
and A < 1.

To understand why these curves of constant R become asymptotic
for ¢4 > 1, we have drawn in Fig. 6a a curved guide with a certain
R; its width a is very large compared with A. Also the amplitudes of
the field components E, and H, are plotted as functions of z and y.
Along z the field inside the guide behaves virtually as the Bessel

per radian.

function J,[ky (R + )] where v is a very large number and outside
of the guide decays exponentially. This guide has some radiation loss

Now, suppose that we start shrinking e without changing R. Since

the field at x = —a is very small, the radiation loss remains constant
until @ is made so short that the field at x = 0 and z = —a are com-
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parable (Fig. 6b). The field inside the guide varies almost sinusoidally,

while outside decays exponentially and the attenuation per radian

increases. If a is reduced even further (Fig. 6¢) most of the power
travels outside of the guide, and the loss increases even more. The

field configuration along % is practically the same in the three cases
(Fig. 6).

For resonant loops, such as the filter in Fig. 1, the intrinsic @ re-

sulting from curvature radiation is more interesting than the attenua-
tion a,. They are related by the expression

kzO
Q =5 (15)
1072 T \ \l \ T T
3.3
s \ AN R=0.82 K Z‘R
\ \ O ko
2 = \ B=55 |
\ NN L
10-3 . i N \‘ ...... ese®R =50
S,
| IR
, & |t
- N\ )O\|l \ ‘\ \!‘\\\
2 oO—35 (e o } t )
1A A AVARE
10-4 1
\ Veeooosaee =
. \ \ \ \ R =60
% 1 ‘
K i \\ \
ol 5 1 \ \
. \ c:o.|||\ \0.3 \\0.5
107 j\
\
s \ 1 ! L
\ LN
\ ‘ \
> \
LN
1078 + \‘ \\
s \ \ \ | \
\ \ ‘
. ‘. ‘. ssesessse(R =380
1 |}
|
1077 \ | \\\
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Fig. 5— Attenuation per radian for Ef; mode if n;/n; = 1.5.
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Fig. 6 — Field distribution as a function of guide width a with (a) a/4 > 1,
(b) a/A = 1, and (c) a/4 K 1.

This function is plotted in Fig. 7, assuming

M_14a
Ng
and
AK1
and in Fig 8, assuming
M5,
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using as before the normalized guide width a/4 as variable and & as
parameter. As in I'igs. 4 and 5, the reader can easily match the solid and
dotted curves. Further discussion of these curves is reserved for Section
II1.

The field components in media 2, 3, 4, and 5 decay almost exponen-
tially away from the guiding rod, and the distances »,, 54, &, and &
over which the fields decrease by 1/e are

109 {
R=36 n‘%Aa/2
2 ssscessse( =80 —
108
L A
5 e
fi=200 /

/ sesesecss =60

esssssscs (R =50

Fig. 7 — Intrinsic Q for E,* and E, modes if n;/ns = 1 4+ A and A « 1.
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1 1 S
Ny = = ) (16)
Ioyo k2 — ki — K2\
LI Gl )
1 1 an

N . L
2.2 EY, Mode

‘We now consider the £y, mode. The main components are &, and H, ;
they are qualitatively quite similar to components of the Ef, mode,
rotated 90°.

The propagation constant k, is still given by equation (2); but now %,

108 l

5 ssscsees(R=80-—
3 K3
K= n;

R=0.82

R

Vv
R=200 /
2
100 /
108

11/ ol
5

: IRy Rz
|
|
/

/ eecesceesR=50

0.2 0.4 0.6 0.8 1.0 1.2 4 1.6 1.8 2.0 2.2 24 2.6

Fig. 8 — Intrinsic @ for E;,* mode if ny/ns = 1.5.
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is the solution of

2 2 -4 2 2 -3
- _ -17 ) — _ -1 T _ .
k,b = 7 — tan .- [(k,,A) 1] tan . [(k,,A) I:l
(18)

The equivalent formula of any of those between equation (7) and (17)
can be derived from that formula by substituting the ratio of refractive
indexes by unity, but leaving them unchanged wherever they are
subtracted from unity. For example, equation (11) becomes

en =31 - @) Vo ()1 - (2] ]
son{-2[1 - (=4 )7}

ool e 2 - ()]

while ¢ and ® given by equations (12) and (13) remain unchanged.

Figure 9 is a graph of the function a,R[l — (ns/n,)*]}, valid for any
ratio n,/n; . In particular, for n,/n; = 1 4+ A and A < 1, equations (19)
and (11) become the same, and eonsequently these curves coincide with
those in Fig. 4. This means that for n, = n; , the E;, and EY;, modes have
the same loss.

Figure 10 is a graph of the intrinsic @ of a loop operating in the EY,
mode which can be derived from equations (15) and (19). As before, in a
resonant loop with n,/n; = 1 4+ A and A < 1, the E%, or E%; modes have
the same @’s.

., (9

III. DISCUSSION AND EXAMPLES

The attenuation per radian of any dielectric guide of rectangular
cross section and the Q. resulting from curvature are strongly de-
pendent on the radius of curvature. With the help of equation (17),
the attenuation per radian equation (11) can be written

1 AR
aR = MR exp (—67_5 W), (20)
3

where M is independent of R, A, is the guided wavelength along 2z, and
&3 is the length over which the field in medium 3 decays by 1/e. Ac-
cording to Fig. 11, the function

RERE)
Rexp( 67 &
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becomes negligibly small, and consequently the attenuation per radian
becomes negligibly small when

2 3
R (21)
This simple criterion is developed further in Ref. 15.

We are interested, though, in a more detailed description of trans-
mission through a bent dielectric guide. Given a guide with a certain
radius of curvature (that is, given R and a/A4), in general the loss per
radianofthe E7, mode is much larger than that of the EY, mode (compare,
for example, Iigs. 5 and 9 for n,/n; = 1.5). That difference becomes
negligible if n,/n; — 1 < 1.

1072
LA AN o
5 \\\ N KRndRT nad|72
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AN N N = 6]
R \ \\\ 20
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s ! N L S0y
\ % \ \‘ cosesecnss R=50
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10™4 8 ° ° " ‘\\
\ \
EN RV N
\
\
. \ \|\ \\ \‘f ....... R=60
\
& 10°5 J \ \ \
10 1 1
s | \ \
i) \ \
| \ \
2 “ 1 4
\ 1C=0.1 \ \\0‘3 \\0.5
1078 \ l‘ \,‘ !
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. ! r
\ sesessee R=80
0.2 04 06 08 10 .2 1.4 16 18 20 2.2 2.4
a _ i B n32 VZ
A TEM x[‘ (= ]

Fig. 9 — Attenuation per radian for E;¥ mode and n,/n; > 1.
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Fig. 10— Intrinsic  for E, mode and n;/n; > 1.

Let us consider separately the three types of guide: thin, medium and
large.

3.1 Thin or Low Loss Guides*
In thin guides the width a is so small that

* Low loss for straight guide.
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o _ 2a@} — n3)}

A= X K 1. (22)
The height b of the guide must be large so that only a little part of
the power travels in the shaded areas of Fig. 2. Assuming that the

guiding rod dielectric is lossy, its refractive index is

mo= a1+ 52, 23)

where n is real and « is the attenuation constant of a plane wave in
that medium.
Substituting equations (22) and (23) in equations (2), (11), and
(12), we obtain
k, = ko + ta, + ta, . (24)
The first term

1 AN .
1+ 3 |:k3a<1 - %%)] for Ei, mode

1 n® : Y
1+ 3 ksa i 1 for Ej, mode

3

koo = (k5 — ky)* (25)

is the phase constant. Since most of the power travels in the external
medium, its value for either mode is close to kns. The conversion loss
term c is negligible.

The imaginary part of equation (24) is the attenuation constant,
and is made of two terms. The first term

6
n, z
o - (7—%—3> for I, mode
2. 2
o, = snngk’a’| =5 — 1 (26)
2 (n
8 1 for EY, mode
R R
ROEXP( Ro)
N
€ ’— i AN
|
' |
| | RNy
| | N
| AN
[ | ~
| | N
| I R
Ro  2Rg 4R,

Fig. 11 — Plot of R/R, exp (—R/R,) and tangent at inflection point.
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is the attenuation that each mode would have if the guide were
straight.’® The second term

3.2 2 2
ac=lf£(@§_1)

() oo {222 () - )1 - 1))

(for E3;, mode)

s3]
eXp{_ 2 Y2\
L (for Ej, mode)

is the attenuation resulting from the radiation introduced by the curva-
ture. The E¥, mode is more tightly bound to the guiding rod and conse-
quently has more straight loss and less curvature loss than the E}; mode.

From equations (26) and (27), the radius of curvature R, that doubles
the straight guide loss is

12 on i 1 (kN |
I B R -5 ()]
Qasn:;( - 1)

27)

2
3

3 k 2 z
[EY ] e

2 2
log [% (135 - 1)] (for Ei; mode).

4ozn Mg

(28)

Ezample 1: Consider a thin ribbon guide made of glass surrounded by
air and assume that n = 1.5, n; = 1, @ = 0.1 nepers perm, and b = <.
From equations (26) and (28) we calculate the values in Table I.

It is doubly advantageous to use the E7, mode rather than the £,
because (¢) the thickness required for equal radiation loss and straight
guide loss is roughly (n/n,)° times larger, and (i) R, is about (n/n;)*
times smaller.

If the height b of the ribbon is finite, k,/kn; is no longer zero and the
radii are, according to equation (28), [I — 2(k,/ks)*]™" times longer than
those in Table I.

3.2 Medium Size Guide for Integrated Optical Circuitry

It is likely that guides for integrated optical circuitry will be possible to
fabricate only with n, =2 nz; . The radiation loss per radian and the Q. of
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TasLe I—VaLues CALcuLATED FROM EqQUATIONS (26) AND (28)

Env Mode E1® Mode
@ a B e B
(neper.s/m) A N N N
0.01 0.05 1.9 X 103 0.17 6.3 X 10?
0.001 0.016 6.2 X 10* 0.055 2 X 10t
0.0001 0.005 2 X 108 0.017 6.5 X 10°

loops made with these guides can be obtained from TFigs. 4 and 7, con-
sidering abscissas around a/4 = 1. For both modes, E¥, and E3, , most
of the power travels within the guiding rod.*

In general, the losses are very sensitive to the radius of curvature.
They are also sensitive to the guide’s width to the left of the dashed
curve ¢ = 0.5, but fairly insensitive to the right of it.

Example 2: Letus design a guide:
{(7) The attenuation per radian resulting from radiation loss is

a.R = 0.01 nepers = 0.087 dB.

(12) Its width a is the maximum compatible with single mode guid-
ance in the infinitely high slab, that is

> g

a 1
1 (n} —ny)* = 1.

(771) We assume b =  and n; = n;(1 — A), where A << 1 andn, =
1.5.

From Fig. 4 we derive the guide dimensions for different values
of A:

a R

A X x
0.1 0.745 30
0.01 2.36 1,060
0.001 7.45 37,000

Unless A is 0.01 or larger, the radius of curvature B becomes un-
comfortably large for integrated optical circuitry. Furthermore, if b
is finite, k, is no longer zero, and the radii become [1 — (k,/k3)2]
times larger than those in the table above.

* This is not true if b/B; < 1. Then k,, must be calculated from equation (8).
4
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Ezample 3: We design a resonant loop (Fig. 1) such that its Q. re-
sulting from radiation is equal to the @ resulting from transmission
loss in typical glass (n; = 1.5, « = 0.1 neper/m at A = 1) ; that is,

Q =0, =5X10".

Furthermore, let us assume as in Example 2 that a/A = 1, n, =
n,(1 — A), and b = . With the help of Fig. 7 we derive
a R
A x X
0.1 0.745 57
0.01 2.36 1,550
0.001 7.45 42,000

Again, unless A is larger than 0.01, the radius of curvature becomes
unwieldily large for integrated optical circuitry.

Instead of using a loop as the resonant circuit of Fig. 1, it is pos-
sible to make a = R, and the loop becomes a pillbox (Fig. 12). This
structure may be simpler to fabricate. For this case, also from Fig. 4,
using the refractive indices of the previous example, we obtain

R
A x
0.1 42
0.01 1,170
0.001 32,000

The pillbox resonator requires a 30 percent shorter radius than the ring
resonator. As before, if b is finite, the radii are [1 — (k,/k3)2] times
longer than those in the last two tables.

PILLBOX RESONANT
AT f5
\

Fig. 12— Channel dropping filter (pillbox type).
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3.3 Large Guides for Fiber Optics

The large guide is multimode, a/4 > 1, and the radius for small
mode conversion is derived from equations (11) and (12), making
kzoa =« and k.o = 2zny/X. Then

3

2
¢ = mn] z5°
'NR

TFor a power conversion ¢? = 0.01, and n; = 1.5, we have

a E

A A

5 8,900
10 71,000

The conversion loss is many orders of magnitude larger than the loss
radiated by the fundamental mode because of the curvature. Radia-
tion loss of higher order modes can be found in equations (51) and
(63).

In general, clad fibers are of circular cross section; consequently
our calculations do not strictly apply. Nevertheless, a guide of circular
cross section and another of equal area but square cross section must
have quite comparable attenuation per radian unless mode degen-
eracy occurs, but this is quite unlikely.

Though we have been talking throughout of light guides, it is
obvious that all the calculations are equally applicable to microwave
guides.

IV. CONCLUSIONS

Relations between radiation losses resulting from curvature, geom-
etry, and electric characteristics of the bent dielectric guide are sum-
marized in Figs. 4, 5, and 7 through 10 and they are discussed and
exemplified in Section III.

The main qualitative results are that for a given radius of curva-
ture R, the radiation loss can be reduced

(¢) by increasing the difference between the refractive index ny of
the guide and those of the media toward the outside, ns, and inside,
15, of the curved guide axis (Fig. 2);

(%) by increasing the guide width a. Nevertheless, once a is bigger

than
<Rﬂ7}\:> %
f ’
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(where A is the free space wavelength), there is little reduction of the
loss;

(i) by choosing the height of the guide large enough to confine
the fields as much as possible within the guide in the direction normal
to the plane of curvature.

In general, the radiation losses are small if
2 2 . 3
B> 2T )\lggé‘l‘ ,

where & is the length over which the field decays by 1/e in medium 3
(Fig. 2).

Thin ribbons of glass, surrounded by air and oriented as in Fig. 6,
operate better with the electric field perpendicular to the ribbon’s
plane. Choosing the thickness ¢ = 0.055), the attenuation of the
straight guide is 1 percent of the attenuation in glass, and the radius
of curvature which doubles that low attenuation is 20,000\.

The dielectric guide for integrated optical circuitry seems suitable to
negotiate bends and to make resonant loops of small radii of curvature
and small radiation losses. For example, for

n, = 1.5

_ A

= ———n2 ;
2n1<1 — ;%)

a 1 percent attenuation (0.087 dB) resulting from radiation in a length
of guide equal to R is achieved with the following values

(single mode guide)

[ a B
ny A A
0.1 0.745 30
0.01 2.36 1060
0.001 7.45 37000

The smaller n; — ng, the larger the radius of curvature. For A = 0.63y,
if one wants to keep R below 1 mm, the difference between the internal
and external refractive indices must be larger than 0.01.

Large cross section dielectric guides capable of supporting many
modes are far more sensitive to mode conversions than to radiation
losses. For the fundamental mode, the power conversion loss at the
junction between a straight and a curved section of a multimode
guide is
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3 \2
a
o = (i )

For n; = 1.5, ¢ = 6.3, and A = 0.63y, the radius of curvature R that
produces a power conversion ¢ of 0.01 is 45 mm. The radiation loss in
a length of guide equal to R is many orders of magnitude below 0.01.

APPENDIX

Field Analysis of the Curved Guide

Figure 2 shows the geometry and dielectric distribution of the curved
guide. In this appendix two families of modes are found, E:, and E?;
each is studied separately.

A1 E; Modes: Polarization Along

The field components in each region should be written as integral
expressions, but, as discussed in Section II, the power propagating
through the shaded areas is neglected, and the field matching is per-
formed only along the sides of region 1. Consequently, those field
components do not need to be so general. As a matter of fact, the
simplest field components in the mth of the five areas aret®

1 o°H,.
k: — k2, 9z dy ’

H — —ivftiwt
ym = €

H:m =

M,J, (% — k:l)%(R + @) + ] cos (k,y + Q) for m = |1
N . . 2
. MEJVU]CZ kyﬂ R4+ =)+ gl/i exp (:szyzy} for m 4
M H,”[(k; — kiz)%(R + 2)] cos (kusy + Q) for m = 3
MyJ [k — K R + 2)] cos (ky + 95 for m =5
H = 7 v 0H,,
=k —-EkE.R+2x 9y’
L wp v
N
E,, =0,

Tk — Kk, 9x
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in which M,, is the amplitude of the field in the mth medium; ¢,, and €,,
are constants that locate the field maxima in region m; « is the angular
frequency; en, and u, the permittivity and permeability of each medium,
are related by k2 = k¥’n2 = w’eun ; k,. is the propagation constant
along ¥ in medium m; and J, and H!®? are Bessel and Hankel functions,
respectively.

Strictly speaking, the H, component in media 1, 2, and 4 should
be written as a sum of Bessel functions of the first and second kind,
but later on they are approximated by circular functions; therefore,
we do not make any mistake using only the Bessel function of the
first kind with an arbitrary phase constant in the argument.

We consider only guide geometries for which the guide wavelengths
measured in the z and y directions in medium 1 are large compared
with the wavelength measured in the z direction. This means that (2)

oH,, _ v

oz SR’
and, as a consequence, the field component H,; is very small com-
pared with H, and is neglected; (&7) the propagating modes are bas-
ically of the TEM type.

In order to match the remaining components along the boundaries
of medium 1, the field components in media 1, 2, and 4 must have the
same dependence along x, while the field components in media 1, 3,
and 5 must have the same dependence along y. Therefore

(30)

kz/l = kys = ku5 = ku ’ (31)
ki — k5 =k — ko = ki — ki, , (32)
hh=¢v =Y, =4¢, and Q = Q= Q= Q. (33)

Furthermore, the field matching yields the following four equations
from which two characteristic equations will be derived

b Lk b .k,
tan(k,,§+ﬂ)=z-l—6:, tan(kl,§—9>=z—k—: (34)

Ju(Pm) P3 Hf'Z)(Pa) Ju<P15) Ps Jv(Ps)
oS = B gy PSS and A = Bty 35
v(Pla) P13 Him (Pz) an ']v(sz) Pis Jy(Ps) ( )

where

b= BE =)'+ 4, p = (B — o)k — ) + w} (36)
po = R( — k), and oy = (B — @) — k)P



2126 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

Similar to what happens with the straight guide, equations (34)
and (35) are the boundary conditions of two independent problems
far simpler than the one depicted in Fig. 2. Thus, for a dielectric slab
infinite in the z and z directions and with dimensions and refractive
indices as depicted in Fig. 13a, the boundary conditions for modes
with no E, component coincide with equation (34). Similarly, for a
bent slab infinite in the y direction as shown in Fig. 13b, the boundary
conditions for modes with a negligible H, component coincide with
equation (35).

The elimination of @ between the two expressions of equation (34)
yields the characteristic equation for the plane slab®

kub = qﬂ- —_— tﬁ,n_l '.————1;——.*1 —_ tall—l "_—_—'12_——_; 3 (37)
G - G -
Azkv A4k1/
in which
4, A (38)

2 2\% ?

+ 2(ng ni)
the tan™ functions are to be taken in the first quadrant, and the
arbitrary integer ¢ is the order of the mode, that is, the number of
extrema of each field component within the guiding rod in the v
direction.

The transcendental equation (37) has an approximate closed form
solution already found in Ref. 10

L Ay + 4, ..>—1
el (i dtd ) (39)

Fig. 13 — Guiding dielectric slabs.
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which is valid only when b is so large that

A, + 4,
b
and consequently the parenthesis is close to unity.
The field components in media 2 and 4 decay exponentially by 1/e
in lengths 72 and »4, which are deduced from equation (32) to be

<1 (40)

1 1

- (k8 — - k2>

Let us consider the solution of the characteristic equation of the bent
slab (Fig. 18b). For guided modes, both the arguments and the order
of the Bessel and Hankel functions involved in equation (35) are large
compared with unity, and consequently they can be replaced by their
Watson's first term approximations,**

N2 = (41)

4

Cy2
1

t L exp [—@2_—2‘02)%:] for v> p
J.(p) = [mz 3 Vz)%]2 2 , 2?:V
tsin [(p —21’—) + 2] for p>v

R L (42)

y |eXp |:(V —zp)z] for v > p

Y., (p) = [ —rr sy ]i SV
” (o — )} o
coS [ 3,7 + Z] for p>v.
These expressions are valid if
V2
C)}—_’—VE)“% < 1. (43)

Introducing these approximations for the Bessel functions in both
equations (35) and eliminating ¢ between them, we obtain the char-
acteristic equation for the bent slab

1 3
37 (ol — )P — (o1s — )]

= pr — tan” 1 < 3 |:P13 _ ];{1 + 7 ex [_2 (V2 - Pg)%]})
n: |y — xp 3 v

)4

2

3

— tan™' =5 n < — ) (44)
v o~ Ps
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in which p is an arbitrary integer bigger than zero which determines
the order of the mode in the z direction, and the tan—* functions are
to be taken in the first quadrant.

Let us rewrite this equation substituting ps, ps, p1s, and pis by the
values given in equation (36) ; furthermore, let

A
Ay = ——2— | 45
t7 20 - ) (45)
vy = kR (46)
and
k, = (&} — ki — k2. 47

Because of these two last definitions, k., k., and k, are the axial and
the transverse propagation constants at = 0. The characteristic equa-
tion (44) then becomes

- (-]
3% [1 ~\!' " %R
. 2 °R k. A5\ |
ot tion{-2am i - (B4}
= pﬂ' - tan—l 7’;% ﬂ-z 2 %
-1
[(sz:i) ]

1

2
_a 2 g2 _ g2
B tan—l n—g [1 R] (kl ku) kz
2
n

2
e - (- e -w

(48)

To solve this equation for k, we expand the left side and the second
tan™ in powers of 1/R and the first tan in powers of the exponential.
Assuming R is large and keeping the first term of each perturbation
calculation, the solution of equation (48) is

. 20 _ @Oac>
k, = kw(l + aos ~ ) (49)
where
1 (xaV'1 1+ 2F,
¢ = S (A) &1+ F, + F, (50)
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and
o[- 20
I el (1
7 ko T ’ 1L+ F, + T, ’
(1)
in which
n?,}z A4 1
r 3 5 - , (62
3 n, kooAsl® na | [k0ds]? (52
mall — : 1— |1 =3 —
[ m ny T
_ 2R 2 o KR
- kzoAg - 2(”1 - n3) kfo ) (53)
koo = (B — k) — k2o)*, (54)
and k&, is the solution of the equation
ame 1 L nE 1
k.o = pr — tan ‘;‘%mx — tan ‘7—1? [—<—T’>Tl—:r‘
k10A3 - kxOA-S
(55)

This is the physical interpretation of equation (49): the trans-
verse propagation constant k, measured at x = 0 is made of three
terms. The first term, k.o, is the transverse propagation constant of
the guide without curvature; the second and third terms are perturba-
tions related to the change of field profile and radiation introduced by
the curvature. It is easy to find that ¢ is the mode conversion loss that
would exist at a junction between a straight guide and a curved one,
and e, is the attenuation coefficient of the curved guide.

The field components in media 3 and 5 decay almost exponentially
away from the guide. The length &;, over which the intensity in medium
3 decays by 1/e, is derived as in equation (41) to be

M S 1
Pk | (B = ks =[R2

and only approximately

(56)

E.: 1 = 1 .
P ke | (R = ks — [k D

(57
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All these equations have been derived under the assumption that
inequality (43) is satisfied; this means that the field configuration of
the curved guide is very close to that of the straight guide. In other
words, ¢ € 1. For a given R, if one chooses the width & of the guide
large enough, these inequalities are not satisfied, the previous results
are no longer applicable, and a new solution is needed. We proceed
to find it.

Let us assume as a limiting case that in Fig. 2

a=R. (58)

The characteristic equation derived from the first equation of (35),
making ¢ = 0, is

(P?S _ Vz)% — (p — Lr — tan™! 7_7’_; <Pf3 - Vi>%
3 * n; \ v’ — pb

-{1 + i exp [—% (”%’@—]} (59)

Following similar steps to those taken to solve equation (44), we
substitute p13, ps, and v by the values given in equations (36) and
(46) ; we obtain

Rk)® _ 1

Cexp 2 TR (k;A3>2]%}
o “”e*p{ 3 (W) AL [1 .

BT (=) -]
kA,

The primes distinguish the symbols from those used previously.
To solve this equation we notice that for small losses it must be that

(60)

./
]”’—;13 & 1. (61)

Therefore, the tan! can be replaced by its argument and the approxi-
mate solution of equation (60) is

k:()ac

k! = k;o[l — i@gg] , (62)
where

B
- 1
° T nd kRS — nj)
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- [ - ) D)

(63)
klo = [k — ky — (klo)T, (64)
T &T_(B,:@T{ _1m [_6__]*} -
B = A, [ a’ ! 3n; Le'p — V&’ ’ (63)
and
’ 27 R 3 ]C R
® = WA = 2(n} — nj)’ Uy (66)
The field components outside the guide decay to 1/e¢ in a length
1 1
& = (67)

|k — k2 — (k)]

A.2 B), Modes: Polarization Along y

The field components and propagation constants can be derived from
those in Section A.1 by changing F into H, u into —e, and vice versa.
Except for their polarizations, the E;, and £, modes are very similar.

The formulas equivalent to equations (37) and (41) are

2 2
kb = gr — tan™' 3 12 - — tan™' o 12 :
n, T z n, T 2
—77) — 1 7] — 1
|:(A2ky ) ] ‘:(A4ky ) :l
(68)
7 1” 1 (69)

Ny =
©

2
4

(b1 = ks = ")’

4

The double prime distinguish these symbols from those used before.
The equivalent formula to any of those between equation (45) and

(67) can be derived from that formula by substituting the ratio of

refractive indexes by unity, but leaving the differences between squares

of indexes unchanged. For example, the formula equivalent to equation
(52) for E?, modes is

1
FI = - . . 70
: k24,2 n { koA, |® 70
mL1 — 3 1— |1 —-2 5
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A Circular-Harmonic Computer Analysis of
Rectangular Dielectric Waveguides

By J. E. GOELL
(Manuscript received April 8, 1969)

This paper describes a computer analysis of the propagating modes
of a rectangular dielectric waveguide. The analysts is based on an expansion
of the electromagnetic field in terms of a series of circular harmonics, that s,
Bessel and modified Bessel functions mulitplied by trigonometric functions.
The electric and magnetic fields inside the waveguide core are matched to
those outside the core at appropriate points on the boundary to yield equa-
tions which are then solved on a computer for the propagation constants and
field configurations of the various modes.

The paper presents the results of the computations in the form of curves of
the propagation constants and as computer generated mode patterns. The
propagation curves are presented in a form which makes them refractive-
index independent as long as the difference of the index of the core and the
surrounding medium s small, the case which applies to integrated optics.
In addition to those for small index difference, it also gives results for
larger index differences such as might be encountered for microwave appli-
cations.

I. INTRODUCTION

It is anticipated that dielectric waveguides will be used as the
fundamental building blocks of integrated optical circuits. These wave-
guides can serve not only as a transmission medium to confine and
direct optical signals, but also as the basis for eircuits such as filters
and directional couplers.r Thus, it is important to have a thorough
knowledge of the properties of their modes.

Circular dielectric waveguides have received considerable attention
because circular geometry is commonly used in fiber optics.>® In many
integrated optics applications it is expected that waveguides will con-
sist of a rectangular, or near rectangular, dielectric core embedded in
a dielectric medium of slightly lower refractive index. The modes

2133
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for this geometry are more difficult to analyze than those of the me-
tallic rectangular waveguide because of the nature of the boundary.

Marecatili, using approximations based on the assumption that most
of the power flow is confined to the waveguide core, has derived in
closed form the properties of a rectangular dielectric waveguide.® In
his solution, fields with sinusoidal variation in the core are matched
to exponentially decaying fields in the external medium. In each
region only a single mode is used. The results of this method are
obtained in a relatively simple form for numerical evaluation.

The properties of the principal mode of the rectangular dielectric
waveguide have been studied by Schlosser and Unger using a high-
speed digital computer.” In their approach the transverse plane was
divided into regions, as shown in Fig. 1, and rectangular coordinate
solutions assumed in each of the regions. The longitudinal propagation
constant was then adjusted so that a field mateh could be achieved
at diserete points along the boundary. This method gives results
whieh, theoretically, are valid over a wider range than Marecatili’s,
but with a significant increase in computational difficulty. One short-
coming of the method is that for a given mode, as the wavelength
increases the field extent increases, so, in the limit it becomes increas-
ingly difficult to match the fields along the boundaries between regions
[1] and [2] and between regions [2] and [3].

A variational approach has been undertaken by Shaw and others.?
They assume a test solution with two or three variable parameters
in the core. From this test solution, the fields outside the core are
then derived and the parameters are varied to achieve a consistent

REGION [1]

REGION [2A] |REGION[2B]| REGION [2C]

REGION [3]

Fig. 1 — Matching boundaries for rectangular mode analysis.
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solution. This approach, like that of Schlosser, requires involved com-
putations. Also, it has the disadvantage that the test function must
be assumed in advance, In addition, some of his preliminary results
do not show the proper behavior for the limiting cases (waveguide
dimensions which are very large or very small compared with the
wavelength).

In the present analysis the radial variation of the longitudinal
electric and magnetic fields of the modes are represented by a sum
of Bessel functions inside the waveguide core and by a sum of modi-
fied Bessel functions outside the waveguide core. Solutions are found
by matching the fields along the perimeter of the core. Thus, the
matching boundary is not a function of the waveguide parameters,
so the computational complexity does not increase with wavelength.

Section IT discusses the underlying theory of the circular-harmonic
analysis of rectangular dielectric waveguides. This is followed by a
description of computational techniques and special graphical methods
of presentation used. Section III is divided into three parts, the first
describing the accuracy of the computations, the second describing
field patterns, and the third presenting propagation curves.

II. DERIVATION OF EQUATIONS

The waveguide considered here consists of a rectangular core of
dielectric constant, ¢, surrounded by an infinite medium of dielectric
constant, ¢. Both media are assumed to be isotropic, and have the
permeability of free space, p. Figure 2 shows the coordinate systems
(rectangular and cylindrical) and rod dimension used in this paper.
The direction of propagation is in the +z direction (towards the
observer).

In eylindrical coordinates the field solutions of Maxwell’s equations
take the form of Bessel functions and modified Bessel functions mul-
tiplied by trigometric functions, and their derivatives. In order for
propagation to take place in the z direction, the field solutions must
be Bessel functions in the core and modified Bessel functions outside.
Since Bessel functions of the second kind have a pole at the origin
and modified Bessel functions of the first kind a pole at infinity, the
radial variation of the fields is assumed to be a sum of Bessel fune-
tions of the first kind and their derivatives inside the core and a sum
of modified Bessel functions and their derivatives outside the core.

In cylindrical coordinates, the z components of the electric and
magnetic fields are given by
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B = 3 aJ.(i)sin 6 + o) exp [i(hz — )] (1a)
and
H, = i boJ o (hr) sin 6 + ¢,) exp [i(k.z — wt)] (1b)

inside the core, and by

o

E., = 3 c.K.(pr) sin n6 + ¢,) exp [i(kz — wf)] (1)
and
Ha = 3 dK.(pr) sin (00 + ¥) exp [i(k.c — wi)] (1d)

outside the core, where w is the radian frequency and k, the longitudinal

propagation constant. The transverse propagation constants are given
by

ho= (& — k) (2a)
and
p = (& — ki (2b)

where &, = w(uoe,)? and ko = w(uoeo)?. The terms J, and K, are the nth
order Bessel functions and modified Bessel functions, respectively, and
¥, and ¢, are arbitrary phase angles.

The transverse components of the fields are given by®

ik, [em. (uow) a_@]
E'—kZ—kf[ar * \kr) a0 (3a)
€0
y
" A
° i %
= (A b
o
¥
e ——— —— — d-—————— >|

Fig. 2 — Dimensions and coordinate system.
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_ ik, [1loE, &) aH,]

Bo = 2 k2 l:r a9 <k ar (3b)
_ ik, _< k? )aE, aH,]

He=w_ ki[ wokr) a0 T or (39
ik [(F )aE, 1 aHz:l

Hy = i [(,uow/cz or + r 96 ]’ (3d)

where k can be either k&, or ko
Finally, the component of the electriec field tangent to the rectang-
ular core is given by

B, = £(F,sin § 4+ E, cos 0) 0. <8 <0 (4a)
r— 6, <0<+ 6,
or
L, = +(—E,cos 6+ Eysin ), 0. <80 <7m— 8, (4b)

T+ 0. <0< —0

where 6, is the angle which a radial line to the corner in the first
quadrant makes with the x axis. Similar expressions exist for the
tangential magnetic field.

2.1 Effects of Symmetry

Since the waveguide is symmetrical about the z axis the fields
must be either symmetric or antisymmetric about this axis. This is
true because the structure is invarient under 180° rotations and there-
fore the field patterns must be invarient under a 180° rotation, except
for sign. From this and the fact that 8/60 appears in each of equations
(3), it is evident that two types of modes must exist, the first type
with ¢, = 0 and y, = =/2 and the second type with ¢, = =/2 and
Yn = .

Similarly, the field functions must also be symmetric or anti-
symmetric about the y axis. Suppose, for example, F,, exhibits a sinu-
soidal angular dependence about § = (E. is odd about the z axis).
Then, letting & = ¢ — /2, equation (1¢) can be put in the form

E,, = X ¢,K,(pr)(sin na cosnr/2 + cos ne sin nrr/2). (5)

n=0
For E, to be purely symmetric about « = 0 (the y axis), all n must
be odd; for E, to be antisymmetric about o = 0 all n must be even.
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Since similar results apply for cosinusoidal variation of E. about
6 = 0, and all other field functions as well, any given mode must
consist of either even harmonies or odd harmonies.

From the preceeding analysis it is evident that if the matching
points are selected symmetrically about both the 2 and y axes, then,
except possibly for sign, every point will have an equivalent point
in each quadrant. Therefore, the field matching need only be per-
formed in one quadrant. Thus, the use of the symmetry of the strue-
ture not only reduces the number of constants required to calculate
the properties of a given mode by a factor of four, it also decreases
the number of points to achieve a given degree of accuracy by the
same factor.

2.2 Selection of Matching Points

As mentioned in Section 2.1, the matehing point locations should be
symmetrical about the # and y axes. For the odd harmonic cases, the
points used to compute the results to be presented in Section IIT were
6, = (m — 1/2)x/2N; m = 1, --- , N, where N was the number of
space harmonics.

The choice of points for the even harmonie cases was more complicated
since simultaneous existence of an n = 0 harmonic for both the TE and
TM circular modes is inconsistent with the waveguide symmetries.
Thus, if the maximum 7 for both the TE and TM solutions are equal,
the total number of coefficients to be found will be 4N — 2 rather than
4N as in the previous case.

The method of choosing points for the even harmonic modes used for
the computation of the results of Section ITI was to pick the points
for the field components with even symmetry about § = 0 to be 6,, =
(m — 1/2)x/2N;m = 1,2, --- , N, and for the field components with
odd symmetry about & = 0 to be 6,, = (m — N — 1/2)z/2(N — 1);
m=N+1,N+2, ---, (2N — 1) for cases with unity aspect ratio,
(a/b = 1). For aspect ratios other than unity, all points were chosen
aceording to the first formula, except that the first and last points for
the odd z component were omitted.

2.3 Formulation of Matrix Elements

The coefficients of equation (1) were found by matching the tan-
gential electric and magnetic fields along the boundary of the wave-
guide core. Since each type of field consists of both longitudinal and
transverse components, four types of matching equations exist.

To facilitate computer analysis the matching equations were put in
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matrix form. The matching equations in matrix form for the longi-
tudinal field components are

ELAA — ELCC (6&)
for the electric field and
H*?B = H*’D (6b)

for the magnetic field. For the transverse fields the matrix matching
equations are given by

E™A 4+ E"B = E*°C + E™D (6¢)
for the electric field and
H™4A 4 H™B = H™C + H™D (6d)

for the magnetic field. The A, B, C, and D matrices are N element
column matrices of the a,, b, ¢,, and d, mode coefficients, respectively.
The elements of the m X n matrices E**, E*¢, H*®, H"", E™, E*,
E*, E™, H™, H", H", and H™ are given by

et = J8, (7a)
ekl = K8, (7b)
hLE = JC, (7¢)
hEP = KC, (7d)
emt = —k,(J’SR + JCT), (7¢)
el = kZo(JSR + J'CT), (7f)
emd = k,(K'SR + KCT), (7g)
ef? = —kZy(KSR + K'CT), (7h)
hIt = eko(JCR — J'ST)/Z, (7i)
home = —k(J'CR — JST), 7]
RIS = —ko(KCR — K'ST)/Z, , (7k)
RI2 = k(K'CR — KST), (7D

where

Zy = (p.o/eo)%,

€ = e1/€0 '
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S = sin b, + o) 0r¢=0 ,
C = cos (nb,, + ¢ o = /2
J = J,(hr,), K = K.(pr.),
J' = Ji(hr,), K’ = K}(pra),
j = nJ ﬂzg};r,,,) , K — nI;,;EZT,") ’
and
R = sin 6, l R = —cos 6, l
T = cos 6, P<é,, T = sin 0,, 0> 86, .
rm = (a/2) cos 0,,,[ rm = (b/2) sin BMJ

For 6 = 6, , the boundary at the corner was assumed to be perpendicular
to the radial line connecting it to the origin, so for this case R = cos (6.,
+ 7/4), T = cos (8,, — «/4), and r,, = (a® + b*)}/4.

2.4 Mode Designation

Unlike metallic waveguides, the field patterns of dielectric wave-
guides are sensitive to refractive index difference, wavelength, and
aspect ratio. This complicates the problem of finding a reasonably
descriptive mode designation scheme.

For rectangular metallic waveguides, the accepted approach is to
designate the modes as TE (or H) and TM (or E), and to specify
the number of field maxima in the z and ¥ directions with a double
subscript. When there is no variation the subscript 0 is used.

Since the rectangular dielectric waveguide modes are neither pure
TE nor pure TM, a different scheme must be used. The scheme adopted
is based on the fact that in the limit, for large aspect ratio, short wave-
length, and small refractive index difference, the transverse electric
field is primarily parallel to one of the transverse axes. Modes are
designated as E?, if in the limit their electric field is parallel to the y
axis and as EZ, if in the limit their electric field is parallel to the = axis.
The m and n subscript are used to designate the number of maxima
in the = and y directions, respectively.’

t This scheme agrees with that used by Marcatili in Ref. 6.
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2.5 Blectric and Magnetic Field Function Differences

For a hollow metallic waveguide where pure TE and TM modes
can exist, it is evident from equation (3) that E, and H, have similar
transverse variations as do Ey and H,, so that the impedance is in-
dependent of position. Furthermore, the transverse electric and mag-
netic fields are perpendicular and the power flow, Re {E X H*}, does
not change sign anywhere across the waveguide.

By examination of equation (3), it is clear that for the mixed modes
of the dielectric waveguide, the field functions are not similar and the
impedance is a function of position. In order for the transverse fields
E; and H; to be perpendicular,

Et‘Ht = E,H,. + EgHg = O. (8)

Now, from equation (3)

kX — & (0H, 9B, , 1 oH, 9E,
k2 (67‘ ar T a0 aa)' ®)
Thus, E; and H, are not necessarily perpendicular. Finally, since the
transverse variations of E; and H, are not the same, the electric field
and magnetic field can change sign at different points, which results in
negative power flow.t

Three special cases exist where the electric and magnetic fields, and
the impedance, have the same positional dependence, and where the
power flow does not change sign across the waveguide:

(z) in one of the regions if the propagation constant is approximately
equal to the bulk propagation constant of that region, that is, if k & k,
ork =k,

(i) everywhere in the limit for small refractive index difference,
since case ¢ will then hold in both regions, and

(77) everywhere for circular symmetry of both the structure and the
modes.

Eg'Ht =

2.6 Normalization

The arguments of the Bessel and modified Bessel functions are given
by hr = (k2 — k3 and pr = (&2 — k2)¥, respectively. The first argu-
ment can be put in the form

hr = [k — k2 — p*lhr. (10)

t This unusual property has also been observed for helices.l® Presumably, if
loss were included there would be a radial component of power to feed the re-
verse flow, and the lossless case can be thought of as the limit of the lossy case.
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Letting
2
¢ = ———(k{l f")_ T L (11)
and
® = rko(n? — 1)} (12)
where
n, = (ky/ko)* (13)
is the index of refraction of the core relative to the outer medium, gives
pr = PR (14)
and
hr = ®(1 — %)L (15)

The curves of the propagation constant given in Section III are
drawn in terms of ®* and ®, where
@ = 2~ 1} (16)
Ao
and N, = 2m/k, . Since ® is proportional to 1/(n? — 1)* and @ and ®
are proportional to (n? — 1), the use of ®* and & as plotting variables
eliminates the explicit dependence of the Bessel and modified Bessel
function arguments on the refractive indices of the media.
Examination of the matching equations, equations (6), reveals that
¢, appears in the H™ term. However, since ¢, appears as a multiplicative
factor in H”*, for sufficiently small values the normalized propagation
constant, @°, is independent of e, .
The normalized propagation constant, ®° has two additional prop-
erties which make its use convenient. First, its range of variation is on
the interval (0, 1). Second, for n, ~ 1,

¢~ koo — 1 , (17)

An,

where An, = n, — 1; so for small n, , ®° is proportional to k, — %, . The
latter property is the reason that ®° rather than @ was used as a plotting
variable.

2.7 Method of Computation

2.7.1 Propagation Constant

Equation (6) yields 4N simultaneous homogeneous linear equations
for the a,, b4, ¢4, and d, for the odd modes and 4N-2 equations for
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the even modes, using the matching points previously described. The
equations can be combined to form a single matrix equation

[QIT] = 0, (18)
where
J ok 0 —E*° 0
0 H*? 0 —Hg*
ETA RTE  _RTC _pT®
HTA HTP _[TC _[T®

and the column matrix

(T] =

O o w b

All of the quantities in the matrices [@] and [T'] are themselves ma-
trices as defined by equations (1), (6), and (7).
In order for a nontrivial solution to equation (18) to exist

Det [Q] = 0. (19)

The normalized propagation constant, ®°, was found by substituting
test values into equation (19). First, values of @ evenly distributed in
the interval (0, 1) were substituted to crudely locate the roots. Then,
Newton’s method was used to find the roots to the desired accuracy.'
Generally, one Newton approximation was used to find @° for the prop-
agation curves and about ten Newton’s approximations when ®* was
to be used to calculate field plots.

Both the simple method of triangulation'® and the more complicated
Gauss pivotal condensation method'® were used to evaluate the deter-
minant, the former for almost all cases and the latter for a few cases
when roundoff error was apparent because the value of the determinant
was not a smooth function of ®*. In all cases double precision arithmetic
was used. For five space harmonics, about 0.1 second of IBM 360/65
computing time was required for each value of ®* to evaluate the deter-
minant using the triangulation method.

Due to the wide dynamic range of the coefficients, steps had to be
taken to prevent underflow and overflow of the computer and to re-
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duce the effects of roundoff. Multiplying a row or column of the ma-
trix by a finite constant is equivalent to multiplying the determinant
by that constant. Thus, any row or column of the determinant can be
multiplied by a positive function without shifting its zeroes.

A detailed theory giving the “best functions” can be derived. How-
ever, since a “brute force” method was used, the more sophisticated
method, which was not used because it would have required a substan-
tial increase in the complexity of the program logic, is not discussed.
It was found that multiplying the Bessel function terms by A2d/|J.(hD) |
and the modified Bessel function terms by p%d/k.(pb), where d is
the average of the waveguide dimensions, kept the variation of the
terms “under control.” A further simplification was made by setting
Zy to unity, which does not shift the zeroes of the determinant be-
cause if the H; rows are multiplied by Z,, then if Z, appears in a
column, it will appear in a similar manner in every element of the
column.

2.7.2 Mode Configurations

The electric and magnetic fields were calculated for representative
cases from equation (3). To find the ay, ba, ¢, and d, coefficients,
k. was first found from equation (19). Its value was then substituted
into equation (18). By setting one of the elements of the T column
matrix to unity, all of the other elements were then found by standard
matrix techniques.t®

Several approaches were used to obtain information that could
be used to derive the field patterns. These included computation of
the field components along radial cuts of the waveguide cross section,
computer generated isoclines giving the direction of the electric field,
and computer generated mode pictures.

The isoclines and pictures were drawn using a simulated Stromberg
Carlson SC-4020 cathode ray tube plotter, which is capable of gen-
erating points and lines on a 1024 X 1024 grid.¥ A single quadrant
was used for the isoclines and intensity picture since the results for
all quadrants are identical except for orientation. In general, the di-
mensions were scaled so that the long dimension of the rectangular
waveguide core extended over 80 percent of the displayed width. All
figures were plotted at the points (20m, 20n), where m and » take on
all integer values from 0 to 49.

Isocline drawings were made by drawing a line at each of the co-
ordinate points parallel to the electric field at that point (all lines

t An SC-4060 plotter was used to simulate the SC-4020 plotter to take advan-
tage of previously existing programs.
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had the same length). The isocline drawings were used as working
tools to derive the field line drawings in Section III.

In order to draw pictures of mode patterns, the power density was
calculated at each of the points to be plotted. The square root of the
power density was then normalized to the square root of the peak
power density and quantized into 21 levels. About each point in the
picture, a portion of the figure shown in Fig. 3 was then plotted,
starting at 1 and going to the point corresponding to the appropriate
quantized level (except at the points where the quantized power
was zero where no plotting was done). Since the size of the cathode
ray tube spot is approximately equal to the line spacing in the figure,
the plotted figures are filled in. Therefore, the light passed by these
figures is approximately equal to the power density to be represented.
For small index difference, since the power density is proportional to
the square of the transverse electrie field, the dynamic range of the
pictures (in terms of the electric field) is 400.

Starting with the single quadrant pictures, complete pictures were
generated by making quadruple exposures of the microfilm. In general,
about 30 to 60 seconds of IBM 360/65 computing time were required
for each picture.

III. RESULTS OF COMPUTATION

This section gives the computed results. Section 3.1 discusses ac-
curacy. This is followed by a discussion of field plots and mode

17
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11|¥
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12 4 6 8 10 12 14 16 18 20

Fig. 3 — Intensity picture figure.



2146 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969
)

TaBLE I—SaMPLE Accuracy REsuLTs

2
Number of ¢
Harmonics Used
a/b=1 a/b=2 a/b=3 a/b=4
3 0.714 0.811 0.820 0.828
4 0.713 0.811 0.820 0.819
5 0.715 0.808 0.819 0.813
6 0.714 0.808 0.822 0.820
7 0.715 0.808 0.820 0.813
8 0.715 0.807 0.820 0.814
9 0.715 0.807 0.823 0.815
Variation 0.2% 0.4% 0.4% 1.5%

pictures in Section 3.2. Finally, curves of the propagation constant for
a variety of conditions are presented in Section 3.3.

3.1 Accuracy

Numerous test runs were made in order to obtain an estimate of
the accuracy of the computed results. The results of several of these
runs are given in Table I for the first mode with 8 = 2. The numbers
at the bottom of the table represent the total variation for a given aspect
ratio taken as a percentage of the full range possible (one).

For small aspect ratios, it is clear that the convergence is very rapid.
However, for larger aspect ratios the convergence is not as good. For
example, the variation for an aspect ratio of four is 1.5 percent (taken
as a percentage of the full range of variation). For this case, from the
table and from the limit for infinite aspect ratio'* which is an upper
bound for @°, it appears the error is about 3 percent. This error is
achieved with a relatively small number of harmonics and can only
be improved by using a prohibitively large number of harmonics on a
computer which carries more significant digits than the one which was
available for this study. However, since solutions exist for an infinite
aspect ratio, the decrease in accuracy for the large aspect ratio of the
circular-harmonic method is not a serious problem.

Computations similar to those for Table I were performed to ob-
tain an estimate of the upper bound of the accuracy of the cases pre-
sented in Section 3.3. From these calculations, it is believed that all
of the data to be presented in the following sections is accurate to
1 percent, except for the results of calculations using even harmonies
for aspect ratios other than unity which are believed to be accurate
to better than 2 percent. In general, accuracy decreases as the mode
order increases, although not monotonically.
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The results of the circular-harmonic analysis and of Marcatili’s
analysis agree.® In the regions where his method and the circular-
harmonic method are both theoretically valid, the agreement is well
within the tolerances given above. To avoid duplication, the reader is
directed to his curves for a comparison.

The effect of the number of harmonics used in the field patterns is of
some interest. This question has not been explored in great detail,
however, a few comparisons of intensity pictures for different numbers
of ecircular harmonics were made. In general, it was found that five
harmonics were sufficient to give a good representation of the modes
that this paper presents. An example of this is given in Fig. 4, comparing
the EY; mode intensity patterns for five and nine harmonics. For the
results which follow, five circular harmonics were used.

3.2 Mode Configurations

Figure 5 shows intensity pictures for the first six modes for unity
aspect ratio, @ = 3, and an index difference of 0.01. Figure 6 gives
similar data for an aspect ratio of two and & = 2. For both, the plots
are arranged in ascending order of cutoff frequency. All of the pictures
are for EY, modes. These pictures are virtually indistinguishable from
the corresponding %, modes so both sets are not presented. In general,
for small index differences the EY, and EZ, can be considered to be
near duals, that is, to have identical field patterns except that the
electric and magnetic fields are interchanged.

The field distribution patterns for the modes of Figs. 5 and 6 are
more complicated than those for the rectangular metallic waveguide

Fig. 4 — Intensity for the EY; mode for a/b = 2, ® = 2, and An, = .01: (a) for
five harmonics and (b) for nine harmonies.



Fig. 5— Intensity for some EY, modes with unity aspect ratio, & = 3, and
An, = 0.01: (a) EY,, (b) EY,, (c) EY,, (d) E},, (e) Ef;, and (f) Ef;.
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Fig. 6 — Intensity picture for some E?,, modes with a/b = 2, ® = 2, and An,
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Fig. 7— Field configuration of the EY; mode.

since they extend beyond the waveguide boundary and, in general, their
shape is dependent on waveguide parameters other than shape. The Ef,
and Y, modes have the simplest field patterns. Figure 7 shows the elec-
tric and magnetic field orientations for the EY, mode. In this figure and
the following ones, there are heavy lines in the regions of high field inten-
sity and light lines in regions of low field intensity. Only E%, modes are
shown since the E3,, modes can be obtained by interchanging the electric
and magnetic field vectors.

Figure 8 shows the field lines for the E%, and EY, modes for a large
aspect ratio. (For a/b — « the fields have the appearance of rectangular
metallic waveguide modes.) However, as the aspect ratio approaches
unity, the EY, and Ej, modes and the E% and Ej, modes couple and
shift to the patterns shown in Fig. 9. Most of the change takes place
with the aspect ratio close to unity.

Figures 10, 11, and 12 show the field configurations for the E%, mode,
the E%, mode, and the EY, mode, respectively. The field patterns of
these modes do not change drastically with the aspect ratios.

Figure 13a shows an intensity picture of the E%, mode and TFigure

oo M=
e I ==

(a) (b)

Fig. 8—TField configurations for the (a) E%, and (b) EY, modes far from cutoff.
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Fig. 9 — Field configurations for the square (a) E%, and (b) E¥, modes.

13b its field pattern for unity aspect ratio. The field pattern inside the
core is similar to a sum of the TE,; and TE;, of metallic waveguide,
shown in Fig. 13¢ and d, respectively. Figure 13a demonstrates that the
circular-harmonic analysis can generate complex field patterns with
a relatively small number of harmonies.

Figures 14 and 15 show the variation of the intensity distribution with
®* for the EY, and E¥ modes, respectively. As one would expect, for
small values of @ the radial extent of both modes increases very rapidly
as @° decreases. It is of significance, however, that most of the energy is
contained within the waveguide core, even for relatively small values
of ®® and An. Thus, Marcatili’s assumption that very little energy
propagates in the region of the corners is valid over a wide range.

3.3 Propagation Curves

In all cases of computed propagation curves, the normalized wave-
guide height ®, as given in equation (11), is plotted on the horizontal

Fig. 10 — Field configuration of the E%, mode.
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L

Fig. 11 — Field configuration of the E%; mode.

axis and the normalized propagation constant, ®°, given in equation (16),
along the vertical axis.
Figure 16 shows the case of vanishing index difference for an aspect

ratio of one. The first 16 modes are shown. For this case the following
six degenerate groups.exist

Ty z
{11 1] 11

v £ v z
12, B, B2y, B3,

Y x
Y31y L3
z v
31, Lz
x v
422 ) {22

Y z v x
E32 7E23 vE23 1E23 .

In addition, the E¥, and the Ej, modes are almost degenerate except

Fig. 12 — Field configuration of the E¥; mode.
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Fig. 13 — The E%, mode for unity aspect ratio: (a) intensity, (b) field configura-
tion, (¢) TE;., and (d) TE,s.

near cutoff. The splitting of these modes can be accounted for by the
differences of the field patterns shown in Fig. 11 and 12. Since the Ej,
mode reversals occur along the direction of the electric field lines, the
electric field for this mode must have a larger longitudinal field com-
ponent than for the E%, mode.

All degeneracies, except the LY, — E;,., are broken by a change
in the aspect ratio as demonstrated in Fig. 17, which is drawn for
the first 12 modes of a waveguide of aspect ratio 2. One interesting
feature of this curve is the mode crossing of the EY and EY, modes.
Crossings of this type, which cannot occur in metallic waveguides, are
possible because the field functions are frequency dependent. Qualita-
tively, it can be explained by noting that field reversals must take place
in the core, therefore constraining the central lobe of the E%, more than
any of the EY, mode lobes as cutoff is approached. Far from cutoff,
however, all fields are well constrained and the E%, mode has a larger
propagation constant than the EY, mode, as it does for the similar
metallic waveguide mode with an aspeet ratio of 2.

The effect of finite index difference on the modes can be observed by
comparing Fig. 16, which is computed for unity aspect ratio and a
vanishing index difference, with Fig. 18, which is computed for unity
aspect ratio and a 0.5 index difference. The curves for modes whose
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0.50,

0.02.

Fig. 14 — Intensity pictures of the EY; mode for (a) ®2 = 0.81, (b) ®2

and (c) @2
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Fig. 16 — Propagation curves for the first 16 modes for unity aspect ratio and
An, — 0

field lines reverse direction across the origin are no longer degenerate,
but those whose field lines do not reverse still are degenerate. For all
degeneracies to be split, there must exist a finite index difference as well
as an aspect ratio other than unity. Figure 19 illustrates one such case.

The effect of index difference on the degenerate principal modes for
unity aspect ratio is examined in Tig. 20. The curve shows both a low
and high index difference limit. In the range of interest for optical
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Fig. 17 — Propagation curves for the first 12 modes for a/b = 2 and An, — 0.
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Fig. 18 — Propagation curves for the first 16 modes for unity aspect ratio and
An, = 0.5

circuits (0 — 0.1) the vanishing difference curve is an excellent ap-
proximation. The greatest changes occur in the 0.1 — 10 range, which
is the range of interest for some microwave problems.

Figure 21 presents the computed results for the effect of index changes
on the principal modes for an aspeet ratio of 2. The effect is much
stronger on the EY, mode than the E;, mode. In fact, the effect on the
E?, mode is comparatively small, except near cutoff.

The effect of aspect ratio on the principal modes is demonstrated for

1.0 y
lu efi~] iz
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Fig. 19 — Propagation curves for the first 12 modes for a/b = 2 and An, = 05
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Fig. 20 — EY, and Ef, mode propagation curves for several values of An, with
unity aspect ratio.

vanishing index difference in Fig. 22. The curve for infinite aspect ratio
was obtained from the exact analysis of the slab case.™

IV. CONCLUSIONS

The results of the computations show that the circular harmonic
method for analyzing rectangular dielectric waveguides gives excel-
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Fig. 21 — EY, and E}, mode propagation curves for several values of An, with
a/b =2 .o : ) [ S
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Fig. 22 — E?, and Ej, mode propagation curves for several values of a/b with
Any — 0.

lent results for waveguides of moderate aspect ratio. The convergence
of the computed results was rapid and the results are in agreement
with those of Marcatili’s in the regions where his approximations ap-
ply. Furthermore, the results compare very well with Schlosser’s
curves for the principal mode.

Comparison of the results presented here with Mareatili’s show that
the two methods give values of the normalized propagation constant,
®°, which are within a few percent for ®* > 0.5. Thus for @* in this
range his method is to be preferred since the calculations required are
much simpler. However, for ®* < 0.5, and when it is desired to dif-
ferentiate between modes for some of the near degenerate cases, an-
other method must be used.

The circular harmonic analysis is attractive for small ®* because of
the nature of the matching boundary. For large refractive index dif-
ference and moderate ®* both the method presented here and the one
presented by Scholosser can be used.
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Improved Relations Describing Directional
Control in Electromagnetic Wave Guidance

By E. A. J. MARCATILI and S. E. MILLER
(Manuscript received January 22, 1969)

The direction-changing capability of electromagnetic waveguides may be
limated not only by mode conversion but also by radiation if the transverse
field extends indefinitely into a freely propagating region. This paper gives
new, more accurate expressions for the permitted bending radius with respect
to mode conversion, using coupled-wave theory to categorize the wide variety
of transmission media possible. This paper also makes a suggestion for
estimating the permitted bending radius when radiation is a limitation. In
single-mode “open” waveguides that have transverse fields extending in-
definitely into a freely propagating region (such as a dielectric waveguide),
the permitted bending radius is limited by radiation effects, whereas in
etther the open or completely shielded mullimode waveguides, the permaitted
bending radius vs usually limited by mode conversion.

I. INTRODUCTION

It is useful to be able to characterize the direction-changing capa-
bility of electromagnetic waveguides without detailed knowledge of
the waveguiding structure. The first work in this area was reported
by Miller in 1964.* A direction-determining parameter R, was
defined

a

o= —s 1

Rmm 4)\2 ( )

in which R, is a bend radius, a is the full transverse width of the

field distribution, and A is the wavelength in the medium in which the

waveguide is embedded.* For bend radii longer than Rum, Ref. 1 in-

dicates that wave propagation is virtually as in a straight guide; at

radil less than R, something drastic happens. Just what changes

* Notice that we have redefined a here; in Ref. 1 the full transverse width of
the field distribution was 2a.
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oceur in a straight guide depends on the nature of the medium in
detail; for hollow conducting guides the change is large mode conver-
sion and for beam transmission in a sequence of infinitely wide lenses
the change is also mode conversion appearing as a wide oscillation
of the beam about the nominal axis of propagation.

Following similar lines of thought, a parameter

A
a

Bimax @)
is given to describe the transition region between essentially normal
wave propagation and the region of drastic changes for abrupt angular
changes in direction.! The only restriction on these order of magnitude
direction-determining parameters given in Ref. 1 is the exclusion of
degeneracy between the used mode and some other mode coupled by
the direction change. It is well known that such a degeneracy results
in complete loss of signal for certain lengths of bent guide regardless
of the bending radius, and that removal of the degeneracy by dis-
sipative or reactive means can in principle make the bend loss as
small as desired.>*

In recent studies of bend losses in dielectric waveguides, Marcatili
found a serious disagreement between the implications of equation
(1) and the bend losses predicted by analysis of the particular wave-
guiding structure.® For an “open” waveguide—that is, one in which
the transverse field decays exponentially in a transverse plane but ex-
tends to great distances—he found that the bend radius required for
tolerable losses was much larger than given by equation (1) and it
followed a different law with relation to @ and A when only one mode
could propagate.

It is now clear that two components of bend loss must be considered:
the dissipative loss (resulting from either radiation or coupling to a
high-loss undesired mode) for the normal mode of the bend region
characterized by an attenuation coefficient «,, and the mode conver-
sion loss P, for the straight-guide mode on entering and leaving the
curved region. If mode transformers were used at the ends of the
curved region (impractical for occasional bends in most transmission
situations), the mode conversion loss would be zero and any bend R
would be acceptable from that criterion.

Equation (1) relates to the mode conversion loss; it fails to give a
correct estimate when dissipative loss is important. The permitted
bend radius B must be assessed with respect to dissipative loss as
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well as mode conversion loss; Section II gives relations which make
this possible. Improved forms of equations (1) and (2) have also been
derived which explicitly relate the maximum conversion loss to the
bending radius for the generalized electromagnetic waveguide. The
added quantitative factor should provide greater usefulness since the
improved relations not only identify the transition region between
virtually straight-guide behavior and violent changes, but also give
detail about the transition. Section III gives these results and the
appendices give the derivations.

II. RADIATION FROM CURVED OPEN WAVEGUIDES

Figure 1 shows a representation of an open waveguide. The shaded
wave-guiding region has an effective index of refraction larger than
that of the surrounding region, resulting in a transverse field distribu-
tion for the guided mode F(x) which decays exponentially but re-
mains finite. To derive a generalized expression for radiation loss as
a function of bending radius I, we visualize this as a two-dimensional
guide with an isotropic surrounding region capable of supporting a
free-space radiating wave. We note that at some transverse distance
2, the maintenance of a pure guided mode with equiphase fronts on

WAVI;GUIDE

Fig. 1 — A two-dimensional open waveguide.
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radial planes requires energy propagating at the speed of light, and
for x > z, a pure guided mode implies energy propagating at greater
than the velocity of light. This is true at some value of z, for any finite
bend radius R, since F (z) extends indefinitely in the z direction. We
postulate that the transverse field distribution F(z) is virtually the
same in the curved region as in a straight guide for large R. The frac-
tion of the energy in the guided mode at £ > z, is assumed to be lost
to radiation; this loss is taken to occur in a longitudinal distance
equal to the collimated-beam length associated with the field F(x).
All these assumptions imply that any mode propagating along the
curved open guide radiates. This is indeed the case for the modes in
the curved dielectric guide analyzed in Ref. 5.

As developed in Appendix A, the attenuation coefficient for the
normal mode of the bend region is

1 &
o =5 8—; , (3
where
g = F*(z) dz, 4)
er = [ @ dr, (5)
2
7 _ Q.
Ac - 2)\5 ’ (6)
T, = (k'k;k’)R, )

k, = longitudinal phase constant for the guided mode,
k, = 2m/\, phase constant for a plane wave in the surrounding region,
and
a = effective width of the transverse field F(x).
Applying this formulation to a curved two-dimensional dielectrie-
slab waveguide of width ¢ gives the following. From solutions of
Maxwell’s equations in a straight guide

F() = cosk.x for —% <z= é , ®
t
x| —2

Fi@) = cos (két)e"gg—&) for |alz5 O
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The resulting expressions for 2, , &, and &, are
s

_2( _ _t>
& = % cos’ <k—5—t)e ——_E—z- , (10)
& = é + 2]1c sin k.t + £ cos” <]£;—t> , (11)
[t + 2¢ cos <’—c§—t)]
2, = 2 . (12)

These expressions, when put into equation (3), yield a radiation at-
tenuation coefficient of the form*

o, = ¢ exp (—c:R), (13)

where ¢; and ¢, are independent of R. As Table I illustrates, in several
cases of interest c¢; and ¢, are very large numbers (calculated for A
= 0.6328 um). Case 1 corresponds to a thin glass sheet surrounded by
air; cases 2 and 3 correspond to 1 percent and 0.1 percent index dif-
ferences between the guide and the surrounding region, a possible
guide of interest for miniature laser-beam circuitry.® Because ¢; and
cz are so large, reasonable values of «, occur only within a narrow
range of bend radius K. Figure 2 illustrates «, versus R for case 2. We
can define a transition radius R; as that value of R which gives o, =
1 neper per meter:

R, = :— log ¢, (14)

2

in which ¢; and ¢, are the constants of equation (13) found by evaluat-
ing equation (3). Because of the exponential nature of «, versus R,
radii smaller than R, give excessive losses and radii slightly larger
than R; give negligibly small losses. We may therefore use R; as an
index of this transition for radiation losses analogous to the R, of
equation (1) for mode conversion losses.

Notice the size of z,, the transverse distance to where wave propaga-
tion at the velocity of light is required. For cases 1, 2, and 3, z, has
the values 1.0, 3.9, and 16.5 um, respectively, for o, = 1 neper per
meter. Wave propagation at the velocity of light occurs quite close
to the center of the guide, well within the bending radius.

* This paper uses mks units in all formulas.
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TABLE I—VALUES FOR ¢, AND ¢C»

Sur-
Waveguide Slab rourlllgling
Case index of width ¢ index of ¢1 (nepers forar =1
refraction (vm) refraction per meter) c2 (meters™1) neper/m
1 1.5 0.198 | 1.0 2.57 X 108 3.47 X 10¢ 4.25 pm
2 1.5 1.04 1.485 1.04 X 105 1.46 X 104 0.79 mm
3 1.5 1.18 1.4985 5.4 X 10° 81.4 0.106 m

In Appendix A the results using equation (3) are compared with
the more exact values of «. obtained from Maxwell’s equations di-
rectly.® For a given «, equation (3) yields a value of R about 0.6
times that obtained from Ref. 5. Moreover, Ref. 5 shows that, as the
slab width ¢ increases, the radiation loss does not decline indefinitely;
the normal mode transverse field reshapes itself in the bend to in-
crease F'(z) in the z, region. However, the mode conversion loss usually
becomes important at those values of ¢ and for incidental bends (that
is, without mode matching transformers) the mode conversion loss is
limiting rather than radiation loss.

Another approach, which yields an expression for the radiation loss
of the curved guide in terms of constants of the straight guide, consists

10
s \

. \

0.8 \
0.6 \
0.4 \
0.2

0.1 \
o 0.2 0.4 0.6 08 1.0
BEND RADIUS IN MILLIMETERS

RADIATION LOSS, ap IN NEPERS/METER

Fig. 2— Radiation loss versus bend radlus for a two-dlmensmnal dlelectrm
waveguide; case 2 of Table I. L . o .
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of noticing that the boundary value problem, which can be solved
exactly by matching the radial impedances at each interface, can also
be solved approximately if the radius of curvature R is so large that
the field components of the curved guide differ only slightly from
those in the straight guide.’ Then, all the impedances can be replaced
by those of the straight guide. except that on the external inter-
face of the bend which, according to Ref. 5, must be multipled by

k.’i
14 7 exp (—%R ﬁ)
In this expression k,, and k, are the propagation constants in the x

and z directions in the external medium of the straight guide. The
attenuation constant of the curved guide results

. 3
a, = k,, exp (—%R %> :]icz . (15)

This expression should give greater accuracy in general and does so in
the case of the slab waveguide used in this section. It also shows that
waveguides which present imaginary radial impedances have no radia-
tion loss. Co

III. MODE CONVERSION ‘LLOSSES IN CURVED OPEN OR BOUNDED WAVEGUIDES

3.1 General Formulation of T4lt Relation

When a pure mode of a straight multimode waveguide enters and
leaves a curved region, it generally suffers mode conversion loss. Coup-
led-mode theory has been applied to calculate these losses as a func-
tion of bend radius and to devise lower loss bend structures.®*"® In
these previous contributions, direct solution of Maxwell’s equations is
used to find which of the straight-guide modes are coupled in the
bend, and for these important modes to find the transfer coupling
coefficients and the associated differences in propagation constants
which are needed in the coupled wave solution.

We present here a generalized use of coupled wave theory which
gives an improvement on equations (1) and (2) in predicting ap-
proximate values of tolerable bend radius without direct solution for
the transfer coupling coefficients or the phase constants. We do not
imply that this provides accuracy comparable to a direct solution.
It does yield an approximate answer to show where further work to
get more accuracy is of interest.



2168 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

The first approximation is used to derive the transfer coupling coef-
ficient from the self-coupling coefficient. Consider a tilt (illustrated in
Fig. 3) for a hollow metallic rectangular waveguide. The self-coupling
in the tilt from the incident mode to the same mode beyond the tilt,
of angle $, is?

e | = ) [( ;) - (%Z)]‘”p<i%%§x>dxdy
LG + @) Jew ]

in which A, is the guided wavelength along z.

The function F is the axial field component which, for hollow metal-
lic rectangular waveguides, is either sin =p x/w sin =q y/b for TMy,
modes or cos =pr/w cos =q y/b for TE,; modes.

For small tilt angles | ¢, | is of the form

e | =1 — A, 17)

where A < 1; A corresponds to the energy lost from the input mode at
the tilt, whether by reflection or transmission into a single or into
many modes. We now assume the incident mode to be well above cut-
off so that reflection effects are small; that is, w/A > 1 and preferably
w/A > 1. We further assume that all the lost energy at the tilt goes
into a single undesired mode. For such a transfer

(16)

e l=Q =l D ~1~Flel (18)

where c; is the transfer coupling coefficient. We then combine equa-
tions (17) and (18) to obtain the transfer coupling coefficient

le.| = (2A), (19)
3
:
-
¥ f
B ¥
y b y

Fig. 3 — Tilt in hollow metallic rectangular waveguide.
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and the fraction of the input power that is converted is

P, = 2A. (20)

Carrying out the integration of equation (16) for the rectangular
metallic waveguide, assuming sw/x, < 1, gives

ow\’
P, = B(i—> . (21)
Appendix C shows that for the lowest order TE mode TE;o, B is
5.28. For other modes, B ranges between 5.28 and 1.28; we somewhat,
arbitrarily select the geometric mean of these values to approximate
P, for any mode. Then,

P, - 2.6(‘”") , (22)
Az
ow
e = 1.61( > , (23)
n
5 = 0.62 2 (P (24)
. w t ?

which we have derived under the restrictions

w Sw
X > 1, X < 1.

Equation (24) is an improved form of equation (2). It shows the approxi-
mate tilt angle permitted versus fractional power converted. Derived
for hollow metallic waveguide of width w, the “field” width is also w
which is equivalent to a in equation (2); since we required the modes to
be far from cutoff, A, =2 \; however, we note that the converted power
P, is smaller in fact than indicated by using A, = \ since the guided
wavelength \, is greater than A.

3.2 Formulation of Bend Coupling Coefficient

Using a limiting process, described in Section 2.3.2 of Ref. 10, the
tilt conversion coefficient can be converted to a continuous bend con-
version coefficient. Consider a sequence of straight guide sections, each
of length I and connected making a tilt angle 8§ (Fig. 4). Let us as-
sume that a mode entering in this guide couples at each tilt mostly to
itself and lightly to one single spurious mode travelling in the for-
ward direction. The tilt amplitude coupling coefficient is given by
equation (23). The coupling per unit length is | ¢/l |; letting I and 8
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Fig. 4 — Waveguide bend made of a series of straight segments.

go to zero simultaneously in such a way that I/8 = R, the bend ampli-
tude coupling coeflicient ¢y is:

w
P /4

les | = 1.61 . (25)

3.3 Coupled Wave Interaction
We are now prepared to discuss the effect of bends in producing
mode conversion using coupled-wave theory. In this approach the

signal amplitude E; is related to the undesired mode amplitude E,
by the equations

ar,
—(;z— = —I\E, + kE, , (26)
e A @)

in which

. = a, + 18, = propagation constant of signal wave,

T, = a; + 18, = propagation constant of undesired wave, and

k = transfer coupling coefficient.

These equations have been solved and the resulting wave interactions
discussed in many papers.>*81911 Appendix B gives a few of the ex-
pressions relevant to this disscussion; we will draw from these. We
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assume a boundary condition, E; = 1.0 and B, = 0 at z = 0, through-
out. The effects of mode coupling depend importantly on (I'; — T%)
and k. In finding expressions which improve on equation (1) we break
the discussion of a generalized waveguide down into a series of cases
which are classified by the relation between the coupling coefficient k&
and (P] - Pg)

3.4 Gradual Bends in Low-Loss Waveguides
We categorize the case of gradual bends in low-loss waveguides by

B | < (8 — 82", (28)
(v — )’ K (B — Bo)’, (29)
aL KL 1, (30)

where L is the length of the bend.

This is the most likely case to be encountered in waveguides in-
tended for low-loss transmission. The special case of degeneracy, 8, =
Bs, 1s treated in Section 3.6; degeneracy is not likely to occur ac-
cidentally since it is a very critical condition. Because S is very large
compared with « in typical cases, equation (29) can be satisfied with
relatively small changes from the degenerate condition, and the present
case can be considered achievable except under very special circum-
stances.

With small o's, k is pure imaginary, k = ic; a value such as given
by equation (25) applies. With equation (30) wvalid, the signal loss
oscillates along the bend between zero and a maximum value

po= (52 31)

To complete our derivation we need (3; — B.), which should be the
difference between the phase constants of the modes coupled in the bend.
We have not determined in our generalized waveguide case just which
modes are coupled. We use as an approximation the rectangular metallic
waveguide case of Fig. 3, and calculate the AB for the pth and (p £ 1)
mode; again requiring the modes to be far from cutoff, we find
2p 4+ Do X

a8 = (3 — p)~ B2 EDT L (2)
Combining equations (31), (32), and (25) with ¢ = | ¢z | and solving
for R yields
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_ 41w’
T @pED@PIN

For the p = 1 mode only, the (+) sign in (2p & 1) applies; but for
higher order modes either sign is applicable and the (—) sign will be
controlling. As a further rough approximation we may drop the =1 term,
yielding

R (33)

W

2.05 w
p(P)* N

g

R:

(34)

Equation (34) has the same general form as equation (1) but gives
added accuracy by showing the quantitative influence of mode index and
fractional conversion loss permitted.

3.5 Gradual Bends in Lossy Waveguides

Here we keep equations (28) and (29) but address the case where the
undesired mode coupled to has high loss over the length L of the bend:

Now, the true situation is very complex. The coupling coefficient & is
complex and may have real and imaginary components that are equal.
Energy conservation between c,. and ¢, , which was implied by equation
(18), is not justified. Experience with helix waveguide for TE], waves
shows, however, that the modulus of the helix coupling coefficient is
comparable to that for a copper tube; therefore, we use equation (25)
for the | k | and proceed as before.

As the result of equation (35) the oscillations in the conversion loss
are damped out and the conversion loss has the form of a simple ex-
ponential; that is, the normal mode of the curved region is set up with an
attenuation coeflicient (az + o), where the extra loss resulting from the
bend is

ay = real [(F—fr—)] (36)

Using equation (25) with [ cz | = | k|, this becomes
421 (a — al)wﬁ.
T 21} RN
This resembles a radiation loss in that it grows with length L, whereas

in Section 3.4 the oscillatory loss peak was independent of L.
We can rearrange equation (37) to show the permitted bend radius R,

37)
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(again dropping the =1):

1.05 | (@2 — ) |t 0°
B=" [—] o (38)
Here o5 may be regarded as a design criterion selected to meet the
requirements of a particular use, analogous to P, above; as such ap
may be independent of A or may have some A dependency.

Expression (38) has a character markedly different from equation
(1). Since s and «; are dependent on guide size and wavelength the
a®/A* dependence given by equation (1) is not valid when coupling
takes place to a very lossy mode.

3.6 Bends in a Waveguide with Low-Loss Degenerate Coupled Modes

When the modes coupled in the bend are degenerate, whether by
design or misfortune, a far more stringent requirement on E develops.
In this case

B =B (39)

Because attenuation coefficients are small in many typical cases, it is
relatively easy to obtain coupling coefficients that are larger, that is,

les P> o — o | (40)
Then the signal wave output of a bend of length L is
| B, | = | cos cpl | (41)

or, using the value of equation (25) for ¢z,

. (1.61 wL)
0S W

The signal loss is infinite when the argument of the cosine is an odd
multiple of =/2, and the corresponding bend radius R., or bend length
L, are

|E1|=

(42)

R - 1.(33;01: )
z for m =1,3, 5.
L. = 0.98 m)‘—;vli (44)

For small fractional power losses P,, equation (42) may be approxi-
mated by the first term of the expansion; the resulting permitted
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bend radius is

1.61 wL
'
When (81 — B2) is nonzero, the signal transmission oscillates between
unity and a minimum of

R = (45)

2¢

[F1]

which merges with equation (30) and the case considered in Section
3.4.

‘61—62

. El Imin =

(46)

3.7 Bends in Waveguides with High-Loss Degenerate Coupled Modes

When the phase constants of the modes coupled in the bend are
degenerate—that is, equation (37) holds—but the undesired mode is
very lossy

l oy — o |2 > | Cp |2. 47

Then Appendix B shows that we again have normal-mode propaga-
tion in the bend region (as in Section 3.5) with an attenuation con-
stant (eq + ap) where

02
ap = —E . (48)

Qg —

Using equation (25), this yields a bend radius:

1.61 w
[as(os — a)]? N
This corresponds to very long bend radii in order to have equation
(47) valid. Just as in equation (38), ap of equation (49) is a dis-
cretionary design parameter.

R = (49)

1IV. COMPARISON WITH KNOWN DIRECT SOLUTIONS

The principal usefulness of the preceding approximate relations for
permissible tilt and bend radius is in new unstudied situations, where
direct solutions are not available. However, we compare here the ap-
proximations with known direct solutions in order to gauge the ac-
curacy to be expected.



WAVEGUIDE DIRECTIONAL CONTROL 2175

4.1 Tilt in a Sequence of Cylindrical Lenses: (Two-dimensional Problem)

The input mode is gaussian, its spot size is w,, and the transverse
field distribution is exp[— (z/w,)?]. The normalized power coupled to
other modes at the tilt (§ K 1) is*?

I 1 Gl o1 DR
| Lee[-]e |

To compare this exact result with our approximate one, equation (22),
we must define the width a of the beam. Somewhat arbitrarily we
choose

(50)

a = 2w, ; (51)
thus 95 percent of the power is traveling within the width a.
Substituting this value in equation (50) we obtain

sa\’

P, = 2.5(7> : , (52)

This compares to equation (21) withp =1 and w = a,

P, - 2.6(%9)2- (53)

Considering that equation (53) came Vfrom rectangular metallic wave-
guide and equation (52) from an open lens waveguide, the corre-
spondence seems excellent.

4.2 Tilt in a Cylindrical Metallic Waveguide Propagating TEy,

TFor TE?, at a tilt, important coupling is known to occur to three
modes:*'*°

Mode pair Tilt coupling coefficient
TES, — TES, 0.585 22 (54)
TE), — TES, 098% (55)
as
TE;, — TM,, 0.58 ~ (56)

where a is the diameter of the round guide and is the full width of
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the transverse field. This corresponds to equation (23) with w = a
and p = 2 (two extrema in the transverse field),

¢, = 1.61 "T‘s 7)

In the real case, the converted power is the sum of three conversions
using the above three coupling coefficients; since the three components
vary with a different period versus A, or distance along the guide after
the tilt, the actual mode conversion is a complicated function.
We might take the root-sum-square combination of equations (54)
through (56) to compare with equation (57), leading to

as,
A
The converted power loss is | c; |2, so we see that equation (57) gives
a correct order of magnitude indication, but it lacks significant de-
tail.

TEgl Ce(rss) EI 1'65 (58)

4.3 Bends in Cylindrical Metallic Waveguide Propagating TES,

The above discussion for tilt coupling coefficient applies directly to
bend coupling coefficient in empty round guides, noting the interrela-
tion ‘
led.

73 (59

However, the maximum conversion loss in the bend is also controlled
by the quantity (8; — B=2) as given in equation (31). For the three
important modes, the values are

les | =

Mode |8 — B |
TES, — TEY, 3.6% (60)
TES, — TES, 4.4 ;} 61)
TE;, — TMY, 0 (62)

where a is again the guide diameter. These are to be compared with
equation (32) withw = aandp =2,
A
| By — B l = 3.9 —- (63)

a
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The approximation (63) agrees well with the values for the TE], — TE,
and TEj, — TE}, from expressions (60) and (61). However expression
(62) shows that empty round guide has a degeneracy, which controls
its behavior.” The permitted bend radius is controlled by the TE, —
TMjJ, interaction. Ixact theory shows the bend length to the first
extinction of signal is®

L. = 2.71—‘} , (64)

which is to be compared with equation (44) with w = a and m = 1,

L. =008 1—?- (65)

Here the agreement is again quite good. The permitted bend radius
for P, fractional power loss, from exact theory is

0.58 aL
E=0myy (66)
and the approximation from equation (45) is
1.61 oL
E=wyx ©7)

In practical use of round guides for TE,, , however, the bare pipe is
modified to eliminate the degeneracy. Intentionally making the empty
guide elliptical is one way;’ it takes only 1.7 percent diameter difference
to make (8; — B.)° = 10(a; — a;)* making the relations of Section 2.4
valid. A more symmetrical modification is to add a thin dielectric lining;
with a polyethelyne lining only 0.010 inches thick in a 2 inch inner
diameter guide, the (8, — B8,) for TE), — TM?, is about 60 percent of
that given above for TE, — TES,."” This also yields (8, — 8:)°> >
(¢ — @,)® for all modes. Interestingly, exact theory shows that the
lining drops the TE), — TE?, bend coupling coefficient by an order of
magnitude.'*'** Thus only two small mode conversions occur in the bend
of lined waveguide. Taking the simple sum of these conversion losses
yields, from this “exact” treatment,

6

P, = 0.098 #- (68)
The exact radius relation is then
0.31 &
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This is to be compared with equation (33) with w = a and p = 2,

1.02 o*-

F=wyy

(70)
Considering the complexity of the true situation the estimate provided
by equation (70) is good.

4.4 Helix Waveguide for TES,

The helix waveguide for TE), is a very special structure designed to
maximize the attenuation to the undesired modes.'*'** This waveguide
is unusual in presenting very large (a2 — ;). The bend coupling coeffi-
cients k of equations (26) and (27) are no longer pure imaginary as they
were in the simple metallic tube. For example, the complex nature of the
helix coupling coefficients are shown for comparison with those of a
metallic tube; we set &k = ¢’ -+ jc’, as shown in Table II. The helix values
correspond to a longitudinal wall impedance of 196 ohms with a capaci-
tive angle of 5° both guides at A = 5.4 mm and a guide diameter of
5.08 cm.

The attenuation coefficient of the normal mode of the bend region is

2 ka
ar + 2 Real [m] (71)
where the summation represents the contributions of the three modes
above. Using the helix waveguide coupling values of Table 11, the con-
version loss contributions are given in Table III. Note that the con-
tributions of the TE,;, and TM;; modes are of opposite sign; experi-
ment agrees well with this theory.'®* An approximate degeneracy exists
between TMj; and TE;, in the helix waveguide.

When such direct computations were made over a range of nu-
merical conditions in the 30 to 100 GHz region on helix waveguides
varying in diameter from 0.25 inch to 3 inches, it was found that the
mode conversion contribution to the bend-region normal-mode at-

TaBLE II—HELIX WAVEGUIDE CoUPLING VALUES

Solid Metallic Tube Helix Waveguide

Mode R ¢'R 'R 'R
TE 1, 0 5.5 —0.16 6.86
TMi, 0 5.46 —8.03 —5.71
TE;, 0 9.21 —-3.76 11.88
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TABLE III—ConxvERsION Loss i HELiIx WAVEGUIDE

R2kn?
Mode Real =T,
TE,, 0.713
TM 1, 8.79
T —8.05
> = 1.55

tenuation coefficient is approximately

3

as = 0.009 # , 72)

which yields a permitted bend relation from direct solution of the
helix problem:

0.095 o™

(aB)% 7\1.35
The corresponding approximate relation from Section 3.5 is equation
(38) withw =aand p = 2,

R = (73)

3
R = 0.52("—‘&)% % (74)
ap A

To compare functional dependence on a and A, we need to know how
(as — 1) * [which is (as)*] varies with @ and A in the helix wave-
guide. Unfortunately this is not readily available although it was
implicitly used in the work which yielded equation (72). However, a
single numerical point is known: at ¢ = 5.08 cm and A = 5.4 mm, a»
= 1.4 nepers per meter for TM;;, which will control the guide behavior
in equation (74). With these numbers equation (73) yields

L2

Rex:u‘ = 1 75
t (OZB)T ( )
whereas equation (74) yields
2.76 .
R rox — 7 N 76
app (aB)% ( )

The approximation is only off a factor of about two, which is re-
markable and may be fortuitous. We suggest that equations (38) and
(74) be considered provisional until proven or disproven by additional
work,
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4.5 Curved Beam Guide

Let us consider a curved beam guide made of a sequence of con-
focal lenses propagating the fundamental gaussian mode. The radius
of curvature R, the wavelength A, and the beam size w are found,
with the help of equation (50), to be related to the maximum power
conversion P, by

Tw
Ro - )\Z(PD)Q' (77)

As in a previous example, the width of the guide containing 95

per cent of the power in the wanted mode is @ = 2w, ; therefore,

_ 193 4
e — (Pc); }\2

This exact result compares with the approximate value from equation
(33) withw =aandp =1,

R 78)

1.36 o
P)* N
Considering that the exact value relates to an open lens waveguide
and the approximate one relates to a hollow metallic rectangular wave-
guide, the agreement is excellent.

R = (79)

V. DISCUSSION AND CONCLUSION

The direction-changing capability of electromagnetic waveguides
may be limited by (¢) radiation, if the guided field extends into an
open freely propagating region, and (72) mode conversion. Radiation is
the limitation for single-mode open guides that have transverse fields
extending indefinitely into a freely propagating region. An estimate of
permitted bending radius may be made by using equations (15) or (3)
and the knowledge of the field for the straight guide. For a straight
guide transverse field decaying exponentially [exp(—z/¢)], the radia-
tion attenuation coefficient in a bend of radius R was found to be of the
form

ap = ¢ exp (—cR), (13)
where ¢; and ¢, are large constants. As a result, oy is large for
1
R < =loge (14)
Ca

and small for R greater than that value.
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When the guide supports higher order modes, mode conversion loss
tends to be the controlling factor. In Section III formulas are devel-
oped for permissible bend radius R versus transverse field width a, the
guided wavelength X, and fractional power P, lost to other modes.
Numerous possible cases are treated, depending on the relation be-
tween the mode coupling coefficients k&, the signal mode propagation
coefficient Ty = «; + 98;, and the propagation coefficient of the mode
coupled to, in the bend Ty = as + i8:;. A case which should be very
common is one of small or moderate losses and gradual bends:

| & | < (8 — B2)7, (28)
(o — a)” K (B — B2)%, (29)

where L is the length of the bend. Then an approximation for the bend
radius permitted is

4.1 @

ECTETAI @
and for the permitted abrupt tilt angle 8
- P A
5§ =0.62(P,) o (24)

in which p is the number of extrema in the transverse field distribution.
Examples are given in Sections 4.1 through 4.4 which show that known
theory for several hollow metallic and open lens waveguides agree well
with these expressions.

One must use caution in applying these expressions to new wave-
guides where the modes coupled in the bend are not known and, more
importantly, where the phase constant differences are not known. If
by design or misfortune a degeneracy exists between modes coupled
by the bend, 8; = B2, a radically more severe restriction on bend R
occurs. Sections 3.6 and 3.7 discuss this situation. However, since 8’s
are large compared with typical o’s, it usually is possible to avoid these
restrictive conditions and justify equations (28) and (29) by small
modifications of the guiding structure.

If the mode coupled to is very lossy, so that asL >> 1, equation (33)
does not hold. Section 3.5 and equation (38) relate to this case. We
cite one example in Section 5.4 which supports equation (38); but
more experience with coupling to lossy modes is needed.
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APPENDIX A

Supplement to Section I1

We note that the maintenance of equiphase differences on F(x) for
all z, but on radial planes differing by Ae (Fig. 1), requires

kR Ap 2 k(R + 2,) Ag, (80)

where k, is the phase constant for a plane wave in the region surround-
ing the waveguide. For the equal sign in equation (80) a plane wave in
the . region is traveling at the velocity of light and equation (80)
yields

(kz _ ks)
ks

The energy traveling at * > z, is presumed lost to radiation, since to
remain guided would imply energy traveling at greater than the velocity
of light. The fraction of the total energy in the cross section at x > =z,
is /87, where & and &, are given by equations (4) and (5). How
rapidly, as a function of distance along the direction of propagation, does
energy flow out from the main energy packet to this region at ¢ > z, ?
For a wave in an infinite uniform medium the energy remains collimated
for a distance

x, = E. (81)

2
a

o 2
2)\3 ] (8 )

2. =
where a is the transverse field width and A\, is the wavelength in that
medium. It may be expected that an approximate distance 2, would be
required for energy to flow out from the guided field of the same width a.
Noting a power decay rate e *** &~ 1 — 2az, the fractional power loss
becomes

&

&, = 20,2, (83)
or
_ L &
= 9 8, (84)

Numerical Evaluations of a Specific Case

The potential usefulness of equation (3) is in estimating radiation
losses of curved open waveguides for which the straight-guide fields are
known, but for which a solution in the curved coordinate system is not
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known. Here we compare the results of using equation (3) with the results
of a direct solution, to obtain an indication of the accuracy that might
be expected in other cases. The case is defined by equations (8) and (9),
which lead to equations (10), (11), and (12) for &, &1, and 2, .

We provide additional expressions needed in the numerical calcula-
tions: from known theory?®1®

2= Wt — ) — P (55)

where k is the free space wave number, n; is the index of refraction of
the dielectric slab, and ns is in the index of the surrounding region.
The quantity k, may be obtained graphically as a function of /A and
is reproduced here in Fig. 5, from Ref. 5. The quantity A is the
value of t at which the second propagating mode appears,

T A
A = 2 2% 2 2\1 " (86)
ki — ma)* 2(n; — ny)*
2.8
"]
/
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Tig. 5 — Normalized iransverse wave number k.o versus normalized thickness
t/A for a two-dimensional dielectric waveguide. ————— fundamental mode
polarized perpendicular to the dielectric sheet and ne = n1/15; —————
fundamental mode polarized perpendicular to the sheet.and ni/ne. — 1 < 1,-or
fundamental modé polarized parallel to the sheet and ns arbitrary. i
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Also known are %°

kf = nfk2 - k: ' (87)
K = nk* + sl , 89)

and in the region of considerable interest where
k, << kn,, (89)

the approximations
1 k2
ke =k = 5 o (90)
1 k2

k, —kns =k, — k, = k(n, — n,) (91)

2 kn,y
are valid. Using the above relations, one can calculate «,, given ¢, A,
n, and ng.

Table IV lists the principal parameters and a comparison with
more exact theory for several cases. In Table IV the first five columns
define the waveguide; ¢; and ¢ are values from equation (13), found
in turn by evaluating equations (3) through (7). The table also
lists the radiation attenuation coefficient «,, the estimate of the asso-
ciated bend radius R, the value of R from Ref. 5, and the ratio. The
estimate from equation (3) is consistently lower than the true re-
quired R (in the approximate ratio 0.6) for a wide range of index
differences (ny — n3) and bend radii R.

The table also lists the transverse distance . at which the velocity
of light condition occurs. It is interesting that it is so close to the wave-
guide.

Additional support for the approximate calculation based on equa-
tion (3) comes from an additional case. It is readily verified from exact
theory that the case 1 condition, n; = 1.5 and ng = 1.0, yields different
radiation losses for the two polarizations of wave if the thickness ¢ is
fixed. However, if ¢t is adjusted to give the same external field decay
constant £ of equation (9), then the radiation losses are the same for
the two polarizations of wave.

APPENDIX B

Solutions of the Coupled-Wave Equations (26) and (27)

If one assumes that the coupling coefficient k& in equation (26) and
(27) is pure imaginary, k = ic, one can express the fractional power



TABLE IV—TABULATION OF IMPORTANT PARAMETERS IN CURVED DIELECTRIC WAVEGUIDES

: R from Ref. 5
t - ar zr for same ar

Case | (1076 m) A ni ns3 c1 ca (meter) (neper /m) (1076 m) (meter)

1* 0.198 | 0.7 1.5|1.0 2.57 X 105 | 3.47 X 105 | 3.54 X 107¢ 11.6 0.846 | 5.49 X 10°¢ .
6.15 X 1076 | 1.34 X 107* 1.47 11 X 108 .

2t 0.372 1 0.25 | 1.5 | 1.485 0.46 X 105 2.570 4.17 X 1072 1.0 6.5 6.89 X 1073 .

31 1.04 0.7 1.5 ] 1.485 1.037 X 10% | 1.46 X 10* | 0.807 X 1073 0.776 4.0 1.18 X 1073 .
1.43 X 1073 | 0.895 X 10 7.09 2.37 X103 .

41 1.79 1.20 | 1.5 | 1.485 1.46 X 10% | 2.55 X 10* | 0.355 X 10-3 16.9 2.55 0.593 + 1073 0.6
0.442 X 1073 1.89 3.18 0.711 x 103 0.62
0.6 X 1073 | 0.0321 4.31 0.948 x 1073 0.63
0.938 X 103 | 5.97 X 10~ 6.75 1.18 X 1073 0.79

5% 2.38 1.6 1.5 1 1.485 2.18 X 108 3.04 X 10* | 0.336 X 1073 7.9 2.7 0.593 X 102 0.566
0.423 X 1073 0.568 3.4 0.711 X 10— 0.59
0.585 X 103 | 3.97 X 1073 4.7 0.948 X 102 0.617

61 1.18 0.25 1.5 | 1.4985 | 0.543 X 10¢ 81.4 0.106 1.0 16.5 0.18 0.59

* The electric field is parallel to the dielectric slab.
1 Applies for either polarization.

TOULLNOD TVNOILLOFYIA AAINDTAVM

GR8T1¢%



2186  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969
P, converted out of the signal (that is case 1) mode as

[1 — (—1———_—:—’(?] exp [z(l + K—12>%cz]

po_ 1 _ ol = )]

4
1 . ARG
+ |:1 -+ m;;] exp \:—1(1 + ;5) cz] , (92)
where
Kk = -————r,l 720 T, (93)
and
T =oa + 16 . (94)
2 2 2

In these formulas, Ty and T are the propagation constants of the
wanted and spurious modes, respectively; in general, they are complex
and their real parts, «; and a», are the attenuation constants; their
imaginary parts, 81 and B, are the phase constants. We bear in mind
that k& = ic has only been proven valid in lossless waveguides, and for
one case of coupling to a lossy mode (helix waveguide) k is complex.

Another useful expression is for the signal wave amplitude E; when
the coupling k is small compared with (I'; — T.), or more specifically,

| 4k" | < (Ty — To)? (95)
and
| k* | < | To(Ty — T | . (96)

Then we may write

E, = exp (—-I‘lz){[l - (f‘l—fz?;)?] P [—6’1—1?—1‘:5]

2

(fff—ﬁ_? exp (T — F2)z]}' (97)

The first term corresponds to the low-loss normal mode of the coupled
region, and the second term to the high-loss mode (we assume as > ).
For Section 3.4, it is valid to take k = ic¢; equation (92) yields a con-

version loss of
_ 2c . 2 [(ﬁx - Bz)z]
P, = (61 — /32> sin” | =5 | (98)

+
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For Section 3.5 we use equation (97), keeping a complex k; note
that for aeL > 1, only the first term remains significant and the propa-
gation constant of the normal mode is

k2
(T, — T,)’
This yields equation (36) for «y, the added attenuation resulting from

the bend.
For Section 3.7 we again use equation (97); the first term predomi-

nates with the assumption

I, + (99)

k2
_— K1 100
T -1 < (100
and equation (99) yields equation (48).
For Section 3.6, the case of low-loss modes degenerately coupled,
equation (92) yields

P, ~1 — exp [(en — a)2] | cOs (cz + E) (101)
It 1s also well known that the signal amplitude is given by>*
|Ey| = |coscz], (102)
the undesired mode amplitude by
[ E;| = |sin cz | (103)
and the fractional conversion loss P, by
P, = sin® cz. (104)

APPENDIX C

Supplementary Information Concerning the
Derivation of Equation (22)

Carrying out the integration of equation (16) for the rectangular
metallic waveguide as outlined in Section 3 1 yields a conversion loss
resulting from the tilt of

P, = B(5w>2, (105)

where
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B = —3- 1+ <£>2 <g>2 71_27)2
w + b

The + or — sign corresponds to the TE,, or TM,, modes, respectively.

For the lowest order TE mode, p = 1 and ¢ = 0, B becomes 5.28.
For the TE or TM mode with p = 1 and ¢ = 1, B ranges from 5.28 to
1.28 as the dimensions of the guide vary between w < b and w > b.
The limits on B are 5.28 and 1.28 for any p or g. We somewhat arbi-
trarily chose a value (5.28 X 1.28)% = 2.6 to represent all modes
simultaneously.

(106)
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Some Theory and Applications of
Periodically Coupled Waves

By STEWART E. MILLER
(Manuscript received February 6, 1969)

Parallel-traveling waves can interact with complete power transfer even
though they have different phase constants, provided that the coupling is
periodic. This paper outlines some possible applications of this phenom-
enon, including mode transforming devices, frequency-selective filters in the
microwave and laser wavelength regions, and parametric amplifiers or
converters. This paper also gives some coupled-wave equations for inter-
actions in a nonlinear medium and a generalization of the Tien conditions
for parametric wave interaction.

I. INTRODUCTION

In a previous paper it was shown that two parallel-traveling coupled
waves can interact with complete power interchange even though they
have different phase constants.* This is accomplished by introducing
a variation in coupling in the direction of wave propagation. The ideal
coupling variation is a pure phase variation whose period exactly
matches the beat period between the uncoupled waves, however, it
was also shown in that paper that a simple periodic magnitude varia-
tion of the coupling can also yield complete power interchange between
waves having different phase constants.

In this paper we outline some of the possible applications of periodic
coupling. Complete power exchange between two modes of a single
hollow metallic waveguide is illustrated. In two dielectric or hollow
metallic waveguides, or in a combination of them, complete power
exchange (or a desired fractional exchange) can be arranged. Fre-
quency selective filters in the above structures can be obtained or
broadband interactions ean be chosen by suitable design. The periodic
coupling phenomenon can be applied in lumped element parametric
devices by modulating the pump waveform periodically; we give the

2189
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resulting conditions that the signal frequency, idler frequency, pump
frequency, and modulation frequency must fulfill.

Finally, in distributed parametric devices the periodic coupling
principle can be used to advantage; spatial variation of the coupling
gives a modified phase-matching relation that may render useful
long lengths (with guided waves or unguided waves) of materials not
useful with previous vectorial phase matching relations; time modula-
tion of the pump introduces new frequency relations of possible use
in modulators or frequency translators. The frequency range in which
such applications may be useful extends from the laser region to the
lowest frequency at which distributed coupled-wave interactions are
convenient,

Section II presents some theory needed to understand the device
illustrations. In Appendices A and B and in the discussion of para-
metric devices, we develop some coupled-wave equations to facilitate
analysis of nonlinear circuits with generalized time- and space- de-
pendent couplings. This paper is a survey of potential applications
and is intended as a stimulus for further work. Complete design
relations and experimental verification are not included.

II. GENERAL THEORY

We deal with devices or situations in which two waves of amplitude
E, and E. are coupled according to

d
d_zEl(z) = —v, B, 4+ CZI(Z)EZ (1)

d
d‘zEz(z) = —v.F, + ¢..()E, )

in which v, and v, are the complex propagation constants and ¢;, and c,,
are coupling functions. In a previous paper we showed that the coupling
distributions summarized in Table I lead to wave interactions virtually
the same as those which are familiar for ¢;; and ¢, independent of z,
provided that transformations for coupling magnitude ¢, and differential
phase constant Ag, are appropriately defined. For K, = 1.0 and E, =
at 2 = 0 the solutions for equations (1) and (2) are

Ei(2) = exp (—v»)[A exp (rz) + B exp (r:2)] (3)

B,z = 9%\;& lexp (rz) — exp (r:2)] 4)
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TABLE I—VALUES oF ¢, AND AB, FOR VARIOUS
Periopic CoupLiNGg Funcrions

Coupling
Type Coupling Definition Cx ABx
1 Ci2 = €1 = jC ¢ AB = f1 — B

(]

. ( .27rz>
¢z = jeexp | —j 5

2r
c AB — ;\;
. ( 21rz>
co1 = jeexp [j=—
x'V'L
3 _ e 2wz c AB — 2n/A
Ciz2 = C21 = jJC S K;— ) T/ Am
symmetrical square wave -
Cig = Cq1 = jC for NAm 2 2 A
4 <z<Ma(nA+H) | Ze jap-T |1 (="
¢z = ¢ = — jefor (m + Hin ™ m ™

<z<(n+ i n=0,

1,2, -

raised square wave
C12 = ¢33 = j2c for n\,

<

<(n+4+ 1N, n=0,

P
Ze AB — ==

<z<Mln+HHT

Ci2 = ¢o1 = Ofor(n + D, < 2 c

1,2 .-

in which

oo
I
LD | =
+
LD |

A . -
ro= = e/
2

2

V= [1 + <%>2
Ay, =

Y1 =

Y2 =

Y T Y2 T

Aa) (.A&
<2c*> 2 2c,

(p — ) + 148,
o + 16,

o + 1,

Aa + tAB.

Aa
2c,

)

(6)

1w

9)
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In Table I we define the quantities c, and A8, ; N, is the wavelength of
the coupling variation as defined in the second column of Table I.

In Table I, type 1 coupling is the familiar uniform coupling, inde-
pendent of z. For negligible attenuation and for A8 = 0 the wave energy
is exchanged cyclically between the two waves according to

E, = cos (c2) (10)
E, = isin (c2); (11)

and for other values of Ay limited wave interactions oceur. This has been
described previously.”?

In Table I, type 2 coupling corresponds to the exact transformations
given for ¢, and AB, ; the other type couplings correspond to the
approximate values given for ¢, and A8, . For coupling types 1 and 2,
equations (3) and (4) give exactly the coupled-wave amplitudes; for
coupling types 3 and 4, equations (3) and (4) give the coupled wave
amplitudes exactly at z equal to a multiple of \,./2, and may be in error
by no more than about 0.2¢\,./= at other values of z. The error may be
slightly larger for coupling type 5, but is negligible for small cX,, .

Figure 1 shows the initial buildup of the wave amplitude E. for
coupling types 4 and 5. At z = A,,/2 further extension of uniform
coupling would result in added components to E» at such a phase as
to diminish E.. By reversing the sign of the type 4 coupling, the added
components in the region 0.5 A, < z < A, cause an increase in E». By
reducing the magnitude of the type 5 coupling to zero at A,, = 0.5, no
components are added to E. in the region 0.5 A, < 2 < Ay Atz = A,
the cycle repeats. In this way the amplitude variation in coupling
versus z causes an average in-phase transfer of energy. The same be-
havior exists for an arbitrary amplitude variation of coupling ¢(2) ; the
fundamental Fourier component may be taken as the type 3 coupling
and the resulting wave interaction calculated. The result is accurate
provided that ¢, A, < 1, where ¢, is the peak of the coupling waveform.

III. FREQUENCY SENSITIVITY

In many coupled-wave devices the objective is to transfer all of the
power from one wave to the other, and frequency sensitivity may be
desirable (as in channel-selecting filters of a communication system)
or may be undesirable. We show the magnitude of this frequency
sensitivity.

Consider first two dielectric waveguides where most of the energy
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travels in the central dielectries designated n; and np (indexes of
refraction) in Fig. 2. Periodic coupling is induced by the dielectric
sheets labeled nz, corresponding to type 5 coupling in Table I. Then,

approximately
2
AB = T?r (n, — o) (12)

in which A is free space wavelength. We assume the complete transfer
condition, which is

L =3 (13)
with L being the length of the coupling region. Also let
L = N\, (14)
with
2
M = 250 (15)

and AB, defined as A8 at the midband frequency f = f, . Now AB, as a

Ez(2)
4CAm
[ ST
TYPE 5 __
COUPLING ~ ™~
/
1
3CAm [}
T | ,’
1
1
|
/
/
2C A
7 STTTTT
/
/ S~ __TYPE 4
/ COUPLING
/
CAm| /[
il
/
/
1]
!
/
b
1 ! | | .
0 Am Am 3Am 2Am
2 2

Fig. 1— Transferred wave amplitude E, versus length of coupling region for
type 4 and type 5 coupling (see Table I),



2194 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

function of frequency is

A8, (f) = AB() — AB(f,). (16)
Expressing the frequency as a deviation from f,
f=Q+9f, a7)
we find
AB, = 2;:05 (n, — ny) (18)

with A, equal to A at f = f, . Using equations (18), (13), and (14) and
assuming the typical case of negligible dependence of ¢, on frequency,
we find

280 _ 4 4. 19)

*

This ratio uniquely determines the frequency sensitivity of the wave
interaction, according to

N S
() +1]

B, | = sin {[(Aﬁ_*) + 1]1*1} (20)

*

Fig. 2 — Dielectric waveguides (having indices of refraction n: and n.) with
periodic coupling.
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Fig. 3 — Transferred wave amplitude E; versus A8, /c,, the frequency dependent
parameters, for ¢, L = 7 /2.

which follows from equation (4) with Ae = 0. With complete transfer
conditions ¢, L = =/2 and with A,, chosen to make Ag, = Oatf = §,,
equation (20) becomes unity at f = f, and falls off as AB,(f) differs from
zero, that is, as § differs from zero in equation (17). Figure 3 shows E,
versus AB,/c, for ¢, L = w/2; values for this graph can be calculated
from equation (20). Using these results and equation (19) we find the
bandwidth properties of the periodically coupled wave interaction on
dielectric waveguides. A few examples are listed in Table II. The first
three rows illustrate broadband coupling; as long as N (the number of
coupling periods in the total coupling length L) is five or less, very little
variation from the complete transfer condition occurs. The fourth row
illustrates that intentional frequency selectivity can be induced by using
a large N; the 0.2 percent band at N = 865 yields AB,/c, = 3.46, the
location of the first null in Fig. 3. Structures analogous to Fig. 2 but
actually fabricated in a solid sheet continuum are under consideration
for laser beam circuitry. If a 20A bandwidth to the first nulls is desired

t For AB,/c, <2, 20logio | B | = —1.1]a8,/c, | dB.
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TasBLe II — BANDWIDTH PROPERTIES OF PERIODICALLY
CourLEpD WAVES oN DIELECTRIC WAVEGUIDES

Percentage 20 log |E2|
Bandwidth Band Edge Loss
(2000) N (dB)
10 1 —0.04
10 3 —0.36
10 5 -1.1
0.2 865 —®

at 10,00010& midband and if (n, — n,) = 0.1, we find \,, = 10 um and the
coupling length I, = 8.65 mm. Frequency selectivity obtained in this way
does not require low heat loss in the circuit; as long as the two waves
have the same attenuation coefficient, loss does not limit the filter

selectivity.

For waves in an infinite medium or in other types of waveguides,
equation (20) remains valid but relations other than (19) must be found
to describe the way AB,/c, varies with frequency. For waves in hollow
metallic tubes the results are very similar to those for waves on dielectric
rods. We show this with two illustrative examples as follows.

In any hollow metallic waveguide the phase constant of a mode is
given by

2
B=51— w7 21)
where

N\ = free space wavelength,

u = fc/f!

f. = cutoff frequency for the particular mode, and
f = operating frequency.

By defining A\, = Matf = f,

o = uwforwavel at f = f,
p, = pforwavel at f = f,(1 4+ 9);

and using similar definitions (not written out) for wave number 2, we find

AB,(N) = AB() — AB(f.)

=%u+wm—ﬁﬁ—u—£m

Il

—%m—mtﬂ—@m @2)

To develop a physgcal model, we take parameters typical of a 24,000
MHz TEY, — TE,, transducer similar to one described in connection
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with Fig. 42 of Ref. 2. We keep the same coupling length L = 0.417 m
for complete transfer of power, corresponding to ¢, = 3.76 m™. We
arbitrarily choose to explore the bandwidth when A,, = L/3 = 0.139 m.
We keep the same rectangular guide width, 0.340 inches, which at
fo = 24,000 MHz gives ;o = 0.723. This determines that u, = 0.625;
there is a round guide diameter of 0.96 inches (optionally a particular ps,
larger than 0.723 could have been selected to give the same | A2(f,) |
and \,,). We can now calculate AB,(f)/c, from equation (22), neglecting
variations in ¢, for this estimate. For a 10 percent frequency band,
that is, & = 0.05, we find AB,/c, = 1.01 and the loss 20 log;, £, = 1.1dB.
The case, N = L/\, = 3, thus yields a result very similar to that
obtained for dielectrically guided waves using equations (19) and (20)
and shows broadband interaction capability for waves in guided tubes
provided & is not too large. Sections V and VI discuss some factors which
may motivate one to use periodic coupling instead of constant coupling.

Consider a second example in hollow metallic guides to illustrate
intentional frequency selectivity. Assume we need a filter with center
frequency f = 50 GHz and a 3 dB bandwidth of 1000 MHz. Then
8 = 0.01 and from equation (20) or Fig. 3 we find (A8, /c,) = 1.6. We
keep one wave at u;o = 0.723 as before and choose s = 0.91. We can
calculate A8, from these choices using equation (22) which yields
AB, = 8.95m™ at f = 1.01f, . At this frequency we need (A8,/c,) = 1.6,
so ¢, needs to be 5.58 m™" and complete transfer at f, (that is, ¢, L =
7/2), requires L = 0.28 m. These are reasonable values physically;
Section IV illustrates possible coupling and waveguide cross-sectional
geometries. We now note that N = L/, for this case is 12.7. The same
values of 6(0.01) and N(12.7) for a dielectrically guided wave pair yield
from equation (19) AB,/c, = 5.1, indicating somewhat more selectivity
in the dielectrically guided waves than in the hollow-tube guided waves,
for the same number of coupling periods N.

IV. STRUCTURES FOR PASSIVE WAVE INTERACTIONS

We describe a few structures in which guided waves may be coupled
periodically. The general diagram is given in Fig. 4. Most typically
there is no input to wave 2 in this discussion although the transforma-
tions of Table I and equations (1) and (2) may be used to treat gen-
eral inputs to the periodically coupled region. In some cases the two
waves occupy the same space as discrete modes of a single structure.
In other cases separate guiding structures for the two waves are
provided.

In Ref. 1 a structure is described for hollow metallic waveguide
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WAVE NO. | WAVE NO, |
IN ouT
WAVE NO. 2 WAVE NO. 2
IN l— ouT

Fig. 4 —Two coupled waves; the dimension for the coupling region may be
distance or time.

TE, — TE(?l coupling which closely approximates type 2 coupling and
yields the simple transformation for AS, of Table I without “harmonic”
transformations for AB, . The harmonic transformations, discussed
fully in Ref. 1, are characteristic of square-wave or sinusoidal coupling
patterns and may yield appreciable wave interactions when AB, =
ABp/ N\, with p an odd integer. The exponential type 2 coupling is thus
a desirable one. However, because the harmonic interactions are weaker
than the fundamental and may occur at greatly different frequencies,
the square-wave and sinusoidal couplings are useful.

Figure 2 shows two dielectric waveguides periodically coupled with
dielectric sheets yielding type 5 coupling of Table I. Its possible use as
a frequency selective filter has already been referred to. Figure 5 shows
the form it might take in laser circuitry where A,. of 10 um could be
sought using photolithographic techniques; the substrate index 7, is to
be less than n, and n, .2

Figures 6 and 7 illustrate the way two modes of a single hollow metallic
waveguide can be coupled periodically to achieve complete or partial

Fig. 5 — Periodically coupled dielectric waveguides,
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Tig. 6 — Periodic coupling structure for waves in a hollow, rectangular, metallic

waveguide.

power interchange. In Fig. 6 the TET, and TES modes are coupled by
the dielectric sheet. The fields of these modes in a transverse plane are
sketehed in Fig. 8; a thin dielectric sheet introduces maximum coupling
at a distance d = 0.392a, where the product of the two fields is a maxi-
mum. The coupling between the modes is reversed by moving the sheet
to the opposite side of the guide centerline, as in section B — B’ of
Fig. 6. A similar maximum coupling position can be found for the
TE’,Ol — TE’:,)1 coupling, the fields for which are sketched in Fig. 9;

A4—| B - C - D=
AN S R NN S I
| | ' | ! | '
' 1 N | | | )
_________ l——_—__—___L_—-_—____—L________#__
A’<J N B! N C' D'
e ————— m e — —— —— SALIR
2 2 1
 __——- FOAM SUPPORT--—-___
PN e DIELECTRIC SHEET - —= ===~ fig

SECTIONS A-A', C-C/,

AND SO ON

SECTIONS B-B) D-D,
AND SO ON

Fig. 7 — Periodic coupling structure for waves in a hollow, round, metallic

waveguide.
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Fig. 8 — Transverse field distributions for TE;,° and TE;,C.

Fig. 7 shows the structural form of coupler. In both Iigs. 6 and 7 the
length \,./2 is that at which the coupled modes develop = radians phase
difference. This length is near that for = radians phase difference in an
empty guide, which for Fig. 7 is approximately one diameter. (Specif-
ically, in a % 1nch—1ns1de diameter guide at 54 GHz the half-beat wave-
length for TE11 — TE o1 18 about % inch.) Structures of the type in IFigs.
6 and 7 provide mode transformation without complicated and expensive
shaping of the metallic walls.

Figures 10 and 11, which show the transverse cross sections of the
guides, illustrate couphng between modes of dlfferent hollow metallic
waveguides. Although TES, — TE01 and TE(,,l — TEOl couplings are
indicated, any mode pair having common field components at the
coupling aperture may be used. Figure 12 illustrates the type 5 coupling
distribution, simulated by a series of discrete point couplings which
should be spaced no more than about one-third guide wavelength.
Either broadband power interchange or intentional frequency selectivity
may be obtained.

Fig. 9 — Transverse electric field lines for TE;;° and TE,°.
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N,

A~

Fig. 10 — Transverse cross section for TE;® — TE:° coupling in hollow metallic
waveguides.

V. LUMPED-ELEMENT PARAMETRIC DEVICES

Periodic coupling can be applied to lumped-element parametric de-
vices; Figure 13 is a simplified version. The box labelled «; is a filter
presenting a short circuit at »; and an open circuit at other frequencies;
the filter box labelled w. has similar characteristics

We assume a general time-varying capacitor
Clt) = € + C,() (23)
in which @, is a constant. Appendix A shows that the normalized

amplitudes representing the voltages and currents in the two resonant
circuits can be described by the coupled-wave equations:

At e v L1 S

e ot + 5[5 -G e

L R e ol B

Y e+ (G| ee2 - Gd]) e
A

|
A ‘—] \__/

Fig. 11 — Transverse cross section for TE,,© — TE;° coupling in hollow metallic
waveguides.
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Fig. 12 — Section A-A’ for Figs. 10 and 11.

For €, = 0 the solutions to equations (24) through (27) are of the form

a, = A, exp (jw,t) (28)
a¥ = Af exp (—jwil) (29)
a; = A, exp (jw.t) (30)
af = A¥ exp (—jw.l). (31)

We now specify a periodically varying capacitance component
G, = AC cos (w,t + ¢) cos w.t (32)

and we proceed to determine the coupling coefficients in equations (24)
through (27) and to deduce the frequency interrelations governing the
parametric interaction.

In equation (24) only the frequencies of the term in d( )/dt ab o
result in large coupled-wave interaction; similarly in equations (25)
through (27) only frequencies near —w, are important. Moreover, in
equation (24) the term in (a, — a%) is a reaction of circuit 1 upon itself,
which for small coupling is negligible; we drop terms of that type. With
these eriteria for selection of important terms we find that putting
equation (32) in equations (24) through (27) leads to the following as the
only significant wave interaction

I, Iz

— e

Ly VnT == Cy == Ci) Co = TVZ Lz

Tig. 13 — Lumped element parametric circuit,
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do, . ~_ __AC d
at ~ M T gl e, dt
“(a¥ {exp [flot + w.t + )] + exp [jlw,l — w.t + ©)]}) (33)
daf _ . o« _ A€ d
dat — 7% T gleen) dt

(ar{exp [t — wt — )] + exp [[(—wit — wy — 9)1}). (34)

Noting that dA%/dt < (w, = w.) in our loose coupling approximation
[A% defined as in equation (31)] and similarly for dA4,/df, we find
equations (33) and (34) reduce to

% = jwit; + Ci1a¥ exp [J(w, + wo)i] + era0af exp [jlw, — w)t] (35)
_ —deew (e
Ciz1 = 8[C1Col’ jlw, — wp + w,) (36)
_ —Aeexp (o) .,
Cioe = 8[ "11_622“—“‘]% ](w,, Wa O)a) (37)
daj - . .
_&_{ = —jws@F + C2120, exp [j(—w, + w)t] + o110, exp [j(—w, — w)i]
(38)
_ —ACexp(—jo) .,
Ca1y = 8[@]1622]% ]( Wy We + w1) (39)
_ —aeew (=g
Ca12 = 8[@11622]% ]( w, + We _I_ wl)' (40)
Note that
I e L (41)
ek, = (@, + 0. — w)) (42)

C .
(wp + w, — CO2) 121

Using relations (28) and (31) for a, and a%, equations (35) and (38)
reduce to

dd,

- Cra1 A¥ exp [jw, + 0. — w; — wy)f]

4 €122 A% exp [flw, — w, — w; — wy)l] (43)
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dAs
dt

= A, exp [j(—w, — w. + w; + w)i]

+ ¢2124,4 exp [j(_wzr + we + o + wz)t]' (44)

For simple exponential buildup of A4, and A% there are two possible
frequency relations; one is

W T W = w, + w, (45)
which reduces equations (43) and (44) to
A .
ddtl = ¢ AF + 22 AF exp (—2w.1) (46)
A% .
ddt2 = oy + 2124, exp (2w.0). (47)

Here the ¢y0; — co11 terms are important; the other terms give a small
cyclical variation on the exponential buildup.
The other important, frequency relation is

w0 = w, — w (48)
which reduces equations (43) and (44) to

d4,

T C1o1 AF exp (2w,1) + ¢100A% (49)
dA¥ )
dt2 = ¢y d, exp (—2w.t) + cond; . (50)

Here the ci22 — o210 terms are important; the other terms give a small
cyclical variation on the exponential buildup.

Thus the effect of periodically varying the coupling in the lumped
parametric circuit is to modify the frequency-relation requirement to
equations (45) and (48). The result is eminently reasonable and per-
haps superficially obvious. We can see this as follows: equation (32)
can be rewritten

A
€, = %5 [eos [, + @)t + o] + cos [, — 0l + ol}.
Suppose we assume a €, of

e, = 'éé@ cos [(w, + w)t + ¢].

Then the previously known frequency condition for strong interac-
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tion is*

w T owe = W, + ow .
If instead we have

c, = ézg Cos [(wp - wc)t + 99]‘

then the frequency condition for strong interaction is
W W = w, — W, .

If we then assume linear superposition (unjustified in the nonlinear
process) we could expect relations (45) and (48) for @, of equation (32).
The above analysis and associated discussion indicate the restrictions
which must be met to achieve the desired result.

The periodic coupling variation need not be cosinusoidal as in (32).
Instead, square wave or even low duty cycle pulse modulation of €,
again leads to equations (45) and (48), although care must be exercised
to assure that pulse modulation of the pump properly reproduces the
signal content in a parametric amplifier.

VI. DISTRIBUTED PARAMETRIC WAVE INTERACTIONS

Coupling in distributed parametric wave interactions can be periodic
in two ways: (¢) with respect to time at a particular point, and ()
with respect to distance in the direction of propagation at a particular
instant of time. We derive the constraints on propagation constants
and on frequencies which result from such periodicity and then indi-
cate some physical structures in which these wave interactions may
prove useful.

Figure 14 shows a simplified model of a distributed transmission
medium. The distributed capacitance is nonlinear and is a function of
time as well as of the position 2z in the direction of propagation. A number
of waves of frequencies v, , w, , and w, may propagate. The distributed
inductance L, is independent of current magnitude but may have

1(z,t) L L L
— O‘

T
i A A

Tig. 14 — Distributed parametrie circuit.

vz}
O~
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different values at different frequencies w, . In Appendix B the following
coupled wave equations are derived for the normalized amplitudes of
the traveling waves in Fig. 14

d . 9 V(B
LG = —ibe — ‘”] exp (—jut) 2LC2) (51)
daf .. o [z ] ,,)
P iB.ai B} .. (52)
das ) d Ve,,
d;“t = —JB:0a, L ] p (—jwst) = ( ) (53)
da¥ . ]
_da% = jB:02 — ["2] exp (jwpl) =— 2 (Ve”) i (54)
in which we define, at frequency w, ,
Cle, 1) = C,n + Culz, 1) (55)
L, |}
Zon = [e—m:‘ (56)
Br = wi[LnC.nlt. (57)

The time and space varying portion of €z, t) is all contained within
C,(z, t), and @,, is dependent only on frequency.

Equations (51) through (54) may be used to explore the effects of any
periodic coupling behavior. Because the normalized amplitudes a, , a* ,
a2 , and ¢% are dependent on z only (according to equations 142, 143, 130,
and 131), only the terms of the partial derivatives of (51) through (54),
which yield zero time dependence of the coupling coefficient, result in
appreciable coupled-wave interaction. This condition produces the
frequency interrelations for parametric interaction. Similarly, only the
terms of the partial derivatives of equations (51) through (54), which
ultimately yield constant coupling between the traveling waves at all 2,
cause appreciable wave interaction; this condition produces the inter-
relations between the propagation constants (the §,) necessary for
parametric interaction. We proceed to apply this technique.

6.1 Traveling-Wave Pump with Spatial and Time Periodicity

We specify a function for the nonlinear distributed capacitance (type
3 coupling of Table I)

Colz, ) = A—; cos B.z{cos [(w + w)t — B.z] + cos [(w — w)t — B2}
(58)
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in which 8, is the phase constant at frequency (v + w.) and B- is the
phase constant at (w — w,). This corresponds to driving the nonlinear
medium with traveling wave at a modulated pump frequency cos wt in
which w, is the modulation; the cos 8,z factor represents a spatial periodic
variation in the coupling. Structures which produce spatially periodic
parametric interactions are described later in this section.

We use equation (58) in equations (51) through (54) and select the
terms which are capable of yielding a zero time dependence to the
coupling terms. This shows a, and a% to be the waves with significant
coupling and the selected terms are

W i+ ot exp (=B, + B + o + . — v — w)]
+ 12105 exp [—(B+ — B.) + jlw + w. — w; — wo)i]
+ €120205F exp [—j(B- + B.) + jlo — w. — w; — wo)i]
+ €120 exp [—iB- — B + .7(‘4’ — W, — Wy — wz)t] (59)
E3
%lj' = jB.af + C21.01 €Xp By + B.) — jlw + w. — w, — wy)i]
+ o110, exp [(B. — B.) — jlo + w. — @ — w)i]
+ Ca120y exp [(B- + Bo) — jlo — w. — w; — wy)l]
+ €212, exp [(B- — B.) — jlo — w. — w — wy)i] (60)
in which
Ci21 = _128 j(w + w, — wz)(zmzoz)% (61)
Ciz2 = _128 ](w — W, — ) (201202)5 (62)
s = 38 0 + 00 — 01) Gorzed)’ (63)
AC . 3
Co19 = 1_5 j(w - W, — (&)1)(201202)2. (64)

From equations (59) and (60) one sees that there are two frequency
conditions which can yield large wave interactions. When

o+ 0w = w + w (65)

the ¢121 and cay; terms dominate and the other terms produce only minor
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fluctuations. Also, when
©w— w = w + w (66)

the ¢;22 and ¢z;» terms dominate. When equation (65) is valid, (o + w. —
w2) = w; and the coupling coefficients reduce to

_ —Ae. g)%< B.B- )
Ci21 16 ](w2 Co1Con (67)
- Ao w6 )
Gor = 16 ]<w1 Co1Co2 (68)
Note that
Ci21 = 2—203‘11 . (69)

When equation (66) is valid, the coupling coefficients of importance are
C122 Which reduces to equation (67) and c¢sy» which reduces to equa-
tion (68), so that again

3]
Cia2 = "'103‘12 . (70)
Wy

To find the necessary constraints on the phase constants we note that
in the absence of coupling (that is, AC = 0) the solutions to equations
(59) and (60) are of the form

a, = A, exp (—7B12) (71)
af = A¥ exp (jB:2). (72)

When equation (65) is valid, use of equations (71) and (72) in equa-
tions (59) and (60) reduces them to

d:;zl = Cleék{eXP [—j(ﬁ+ — B. — B — B)2]
+ exp [—j(B+ + B. — B — B)z]} (73)
d:;jk = ¢4,

-{exp [1(B8+ — B. — B — B2)z] + exp [i(B. + B. — B — B2)z]}.
(74)

We can now observe two conditions, either of which permit significant
parametric wave interaction:



PERIODICALLY COUPLED WAVES 2209

B+ — B. =6 + B (75)
B+ B, =01+ 8. (76)

Repeating the above procedure for equation (66) being valid instead
of equation (65) yields two more permissible conditions at which in-
phase wave interaction occurs at all z: '

B-—B. =5 + B (77)

ﬂ—+ﬁc=ﬂl+62' (78)

When one of equations (75) through (78) is valid along with the
corresponding frequency condition, equations (59) and (60) reduce to

dA

dzl = ¢, A¥ (79)
dA¥

dzg = 621A1 . (80)

These equations are satisfied by exponentials of the form
exp [ (CiaCar)?2].

When (c12¢01)? is pure real, growing and decaying waves are present and
equations (67) and (68) meet this requirement. The parallel propagation
of signal w, , idler w,, and pump o results in gain, as is well known.
Other configurations of signal, pump, and coupling peridocity can result
in pure imaginary values of (¢;2¢,;)? in which case a periodic interchange
of power between waves is indicated.

The above discussion pertains to type 3 coupling of Table I, the
difference between the sin and cos being negligible. For square wave
coupling the physical model is often simpler to construct; we briefly
consider this situation. In Fig. 15 we assume a region “a” in which the
coupling is constant but the normal phase matching relations are not
met, that is,

B+ B # B.
Wy e
W2 —> a b a b
w —>
Z Z Z A
4———5‘——»(———b——><———a—~~>(———l—)——>

Fig. 15— Model of a transmission medium with periodically. varying properties.
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Then the proper way to establish the periodic coupling is to make the
length 2, such that the exponentials in equations (73) and (74) (with
Be = 0) become a half beat wavelength; for the specific case above
there are two permissible choices,

(B+ - B — 32)241 =7k 2177" (81)
B — 81— Bo)ta =7 £ 2pm (82)

with the time modulation present; for cw pumping
(B — By — B2)za = m % 2pm (83)

with p being any integer. Then, in the “b” region of Fig. 15, the cou-
pling may be zero in which case we have type 5 coupling, or the
coupling may be reversed compared with the “a” region, in which case
we have type 4 coupling. In either case we require

B = B — B2z, = 7 £ 2pm. (84)

The f’s in the “a” and “b” regions nced not be the same—the g’s of
equations (81) through (84) are to be those values characteristic of
the waves’ location. Earlier work has made use of some of these pos-
sibilities.%¢

Figure 15 shows square-wave coupling which, as discussed above,
applies generally to passive wave interactions as well as to other
parametric interactions. The conditions analogous to equations (81)
through (84) follow from making the exponents in the appropriate
coupled-wave equations, analogous to equations (73) and (74), equal
to = or an odd multiple of =.

6.2 CW Traveling-Wave Pump with Simultaneous Modulation of the
Entire Medium
A case related to that discussed in Section 6.1 is described by

C,(H) = A cos w.t cos (wt — Bz). (85)

Here the pump wave is a continuous wave and the entire array of
variable capacitors is simultaneously modulated. This may occur when
the modulating wave w, is brought into the nonlinear medium at right
angle to 2, or when w, is so small that the entire length of nonlinear
medium is a lumped element in the w, circuit. Analysis similar to that
in Section 6.1 shows that the frequency conditions are again given by
equations (65) and (66), the coupling coefficients are twice those given
by equations (67) and (68), and the phase constant condition is
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B=p8+8. (86)
6.3 Second-Harmonic Generation with Spatially Periodic Coupling

The ecapacitance function for second-harmonic generation with
spatially periodic coupling is

G,{t) = AC cos B.z cos (w,l — B:2). (87)

We look for coupling with w, = 2w, in equations (51) through (54) and
find the interaction between a, and a, . The coupling coeflicients are

Gz =1 4 (w) <@meo2 &8
_ Ae %)*( BBy ) 89
Ty (wl Co1Cos 8
and the phase-constant requirement, is
B2 = 28, =+ B. . (90)

In this case (cjace1)* is pure imaginary, so the wave solutions, vary-
ing as

exp [(Clzczl)%z] =+ exp [_(012021)%21:
represent a cyelical interchange of power between a; and a.. However
the mathematical model represented by equation (87) is not valid when
a; diminishes appreciably because it no longer is the principal field on
the variable capacitors as called for in equation (87).
If square-wave coupling is used in the configuration of Fig. 15, the
phase constant and length relations are

(261(1 - 62a)za =7 x 22777

(281 — Ban)zy = w == 2pr
with p being any integer including zero; the subscripts a or b on the
B’s denotes the region of Fig. 15 involved. As in the previous discus-
sion of Fig. 15, a constant coupling in the “a” regions may be paired
with either zero coupling or reversed coupling in the “b” regions to
form types 4 or 5 coupling of Table 1.

(91)

6.4 Frequency Converter with Spatially Pertodic Coupling

Consider a medium driven nonlinear simultaneously at all z by a
frequency w, according to

C,(z, 1) = AC cos 8.z cos w,l . (92)
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With waves of frequency w, and w, in the medium, from equations (51)
through (54) we find that there is strong coupling between a, and a, at
the frequency

W, = W — Wz . (93)
The phase constant condition is
Bl - B? = :bBc (94)
and the coupling coefficients are
_ ;he @)*( B8, )
Gz = 4 \w, C01Co2 (95)
_ ;Ac ‘°—>%( BB )
o =17 4 (0-’1 Co1Co2 (96)

Since (¢15¢2;)? is pure imaginary there is a cyclical interchange of power
between waves, and in this case the mathematical model is valid for
complete interchange of power. If a wave at w, is the input, the output
will be solely a wave at w, at a medium length 2, such that

' (012621)% |zt =

3 (97)

which yields
s, = 2'”(@01@022% .
‘ AC(B,B,)"

When square-wave coupling in a periodic structure of the form of
Fig. 15 is used, the phase constant and length relations become

(98)

(Bla - 62(1)20 =7 % 2p7" (99)

(Brr — Bu)zy = m == 2pr (100)
with p being any integer.

6.5 Structural Forms of Periodic Paramelric Devices

We suggest here a few forms which periodic parametric devices
might take. Figure 15 has already been referred to; it is apparent that
the diagram is applicable to all of the preceding cases. The “b” region
might simply be an index-matching oil without coupling effects. In
other cases, it may be possible to achieve a reversal of the coupling.®

Figure 16 shows a centrosymmetric crystal such as (potassium
tantalum niobate) with associated electrodes and potentials to achieve
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: ve(t)

TTTTTTTTTTT T

Wi, W2, —

!M—am o—-—{

. Tig. 16 — Model of a nonlinear crystal with wave coupling that is periodic both
in time and space.

the periodic coupling. In such a crystal, a change in index of refraction
is a parabolic function of the biasing field through the electro-optic
effect. We have in mind laser wavelengths for the o, , w, , and w waves.
For V, positive and V, negative in Fig. 16, the slope of index versus
RF field at frequency w is positive in the “a’ region and negative in
the “b” region. Therefore, a spatial variation of coupling of the general
form described in Section 6.1 is established; instead of the cos 8.z term
in equation (58), a square-wave variation results from Fig. 16 with
V.() = 0and de biasesof V, = +V,V, = —V.

With the addition of V.(¢) in Fig. 16, a component cos w.t as in
equation (85) adds a simultancous modulation of the medium, of the
general form discussed in Section 6.2; to conform to equation (85) the
voltages V., and V, should be made equal to zero. Second harmonic
generation can be achieved using Fig. 16 with the w wave omitted,
V.t) =0,V,=V,and V, = —V.

Frequency conversion of the type diseussed in Section 6.4 might also
be accomplished in the structure of Fig. 16. In this case the w wave is
omitted, the cos w.t variation of equation (92) is produced by V,(¢), and
the biases V, and V, yield a square-wave spatial periodicity. Notice that
V', may be zero, approximating a type 5 coupling of Table I.

Figure 17 shows an alternate wave feeding arrangement for simul-
taneously modulating the entire nonlinear medium at a laser frequency
rate. This could apply to Section 6.4 as well as to Section 6.2 with the
addition of an w wave parallel to the w; and w, waves.

In all cases, a guided wave may be used in the nonlinear medium
by having a transverse index variation such as to produce a dielectric



2214 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

REFLECTOR ~<

NONLINEAR
__ MEDIUM

N
o

Fig. 17 — Parametric device with simultaneous modulation of the entire length
of the nonlinear medium.

waveguide effect. This permits much longer regions of nonlinear inter-
action by holding the field within a small transverse area.

VII. CONCLUSION

We have outlined a wide variety of coupled-wave interactions in
which a periodic variation in coupling may be used. The advantage
in using periodic coupling rather then uniform coupling is frequently
to achieve large power transfer between waves under conditions where
uniform coupling will not do so—that is, where it is not possible for
one reason or another to establish identical phase constants between
the waves. Then by matching the periodicity of the coupling to the
difference between the phase constants of the coupled waves, one can
achieve nearly the same wave interactions as for matched phase con-
stants and uniform coupling.

With frequency-selective filters, dispersion in the phase constants
in combination with periodie coupling produces a desirable frequency-
selective transfer of power. In the case of parmetric coupled-wave
devices, periodie coupling requires a generalization of the Tien condi-
tions which the frequencies and phase constants must meet.” These
are outlined in Section VI.
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APPENDIX A

Lumped Element Parametric Circuit

We now derive the coupled wave equations for the lumped circuit
of Fig. 13 with a general time-varying capacitort

e = e, + e,). (101)
We define w, and w, by
L@, =1 (102)
ngzeQZ = 1 (103)
Cu = €6 + G, (104)
Cypp = C + G, . (105)
Then
a, _ _ 1
g - L. V, (106)
ar, _ _ 1
i@ - L V.. (107)

With the filter denoted by «, in Fig. 13, a short circuit at w; and an open
circuit at other frequencies, and similarly for the filter w,

1= 4 i, + Vi) — e)V) (108)

I = % {le, + V) — V). (109)

Expanding equation (108)

av,
dt

d
Il = ((9“ =+ (‘3,) + Vlm(ell + (‘3,,)

d _ v,
- Vz dit (eo + ep) (eo + ep) dt (110)
Rearranging terms,
av, _ I, d (epvl) V.de, | (€, + ¢,)dV,
R TR + ey, di Cy dt (11D

i We follow the terminology of W. H. Louisell 4
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Similarly,
av, _ I, d (e V2> V,de, (eo + e,,) av,
dt ~ Gy di \ €y Cyy di + Cos dt (112)

As a result of the action of the w, and w, filters, ¥V contains only the
frequency w, , and V, contains only the frequency w, . Hence dV./dt
cannot contribute to dV,/dt, and may be dropped in equation (111).
Similarly, the last term of equation (112) may be dropped.

Multiplying the remainder of equation (111) by jw,@;;, adding
cquation (116), and multiplying each side by (L,)%/2, gives

L dl av
(21) ( ! + w1eu dtl)

3 Vv . eV,
= ——(Ll) \:"—L—: + ]wl 1 — §0:Cny dt( ) + .7“’1V2 dt ] (113)

2 cC
Using the normalized amplitudes a;, ao, ancilthelr complex conjugates
w = 4 jneav) (114)
at = B 1 — o, vy (115)
a; = (L;)—%— (Iy + §0,Cs2 V) (116)
af = (—Léf (IF — jwaCp VE), 117

one may verify that equation (113) becomes

da, _ . _ d (@, — al) (az — az):\}.
e dt{ [ e ONORE (18

Using similar methods one can derive the other coupled wave equations
daf Loy, 4 { [(al —af) _ (e, — az)]}
e 119
TR T Cu [€11Caa)’ ()
da, _ d { . [(az —a) (@ — ai*)]}
s _ , — = T 12
a =T g2 U e [€:Caa)? (120)

* — af — af
C_l(?—tz - —jwza;k + g {— [(a2 e22(12) _ ([aéu@zglé)]}. (121)
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APPENDIX B

Daistributed Parametric Medium

We now derive the coupled-wave equations for the distributed trans-
mission medium of Fig. 14 with the general time- and space-varying
distributed capacitance.

ez t) = ¢, + Clzt) (122)

where @,, is a constant relevant at angular frequency w, . Similarly the
distributed inductance may have different values L, at the various w, .
From circuit theory

oV ol
5 —L Y (123)
of _ (Ve
9z ot (124)
Noting 0€/dt = a€,/dt, equation (124) becomes
ol AV <]
oL _ ar __ 9 25
9z eon ot ot (Vep) (1"‘0)
We define
7 — &_>%
Lo = <Gm (126)
L, )
= |—== 12
Zo2 ((‘302 ( 7)
B = wl(Lle()l)-} (128)
B: = wz(Lzeoz)%- (129>

Consider the case of propagating two waves in the medium of Fig. 14,
one at w, and one at w, . Then define

Viz, t) = Vi(2) exp (joit) + Va(2) exp (jwst) + Vi) exp (—jw,?)

+ Vi(e) exp (—juwst) (130)
I, t) = IL(z) exp (joit) + I,(2) exp (juwol) + I¥(2) exp (—jw,t)
-+ I#(z) exp (— jwst) (131)

where the V, and I, are dependent only on z and the* denotes the
complex conjugate. Then Equation (123) becomes
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. av .
exp (jo, 1) 72‘ + exp (ju,

+ oo = —jw Ly exp (o), — jwsLy exp (Gwol)I, + -+ . (132)
Equating terms of equal frequency

$h — L, (133)

W o L, (134)

dTZik = jo, L, I¥ (135)

L joulas. (136)

Using equations (130) and (131), equation (125) becomes

exp (let) + exp (]w2t) ceo= —jw Co V' exp (jw,t)
. . ave, -
— i€V exp Giont) + - — 2LEL g
Equating terms of equal frequency yields
dl . .oaave,
_d_zl = —jw,Co; V; — exp (—jw,l) (at ) N (138)
dI¥ a VG,,
Ut jorea vt — exp (jort) L0 (139)
dl 9 V@
_d_; = _]O)ze(ng —_ eXp ( ]ClJzt) ( p) (140)
dl¥ Ve,
i J0:Co VE — exp (jwot) ( G) (141)

The partial derivatives are to be evaluated in the vicinity of w, for
equation (138), —w, for equation (139), and so on. Considering only
forward waves, we define a normalized wave amplitude

a,(z) = ( ) = I,(z0)} (142)

a,(z) = 2( 5 {Vy + 20ly}. (143)
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Using equations (143), (133), and (138),

d 1 a(lVe,
% = —mg [70.!1[/1] + anjwlem Vi + 2o, exp( jwlt) ( )]

Using equations (143), (128), and (126),

]wl(L eol)

-6, = ‘)(20) (Vi + zal) (144)
1 . .
= "%_ﬁ (]wlemvlzm + leLlll)-
<\Ro1
Hence
d . d V@,,
70 = —iha — (‘“) exp (—jor) 2V S )| (145)
Using similar substitutions one can show that
daf . d VG,,
9 _ ot — @ exp (o 2V | (146)
d . i) V@ -
% = —iBa, — (02) exp (— jwsl) ( ») (147)
daf . d Ve
28— paap — 2 oxp Ging) 200 (149)

With the mode amplitudes normalized as above, the square of the
amplitudes represents the power carried by the mode.
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The Cutoff Region of a Rectangular
Waveguide with Losses,
Its Properties and Uses*

By L. U. KIBLER
(Manuscript received February 10, 1969)

The effect of the wall and the dielectric losses on the operation of a
rectangular waveguide at frequencies in the culoff region was investigated
both theoretically and experimentally. A new measurement technique that
permits determining the elecirical properties of metals and dielectrics at
microwave frequencies was developed from these tnvestigaitons.

I. INTRODUCTION

Physical waveguides have walls with finite conductivity and enclose
dielectric regions that have finite losses. The usual high conductivity
metals and low-loss dielectrics have little effect on wave propagation
at frequencies well above and below the cutoff frequency region.t
These metallic and dielectric losses, however, have a pronounced ef-
fect in a small frequency region that includes the nominal cutoff fre-
quency for a particular mode as determined for a lossless waveguide
of the same geometry.* The purpose of this paper is the theoretical and
experimental investigation of the properties of a physical waveguide
operated at frequencies in this latter region.

The scope of this investigation is limited to a rectangular wave-
guide operated in the 8.2 to 12.4 GHz band of frequency (X band).
The dominant mode of the lossless waveguide, the B, mode, serves
as the initial model for an analysis of a similar mode configuration
when losses are present. The analysis is divided into two parts: first,
the waveguide is assumed to have two narrow walls with conduectivity

* From the disertation submitted to the faculty of the Polytechnic Institute
of Brooklyn in partial fulfillment of the requirements for the degree of Doctor
of Philosophy (electrophysics), 1968.

T For a lossless waveguide, the cut frequency. is a singular point for the propaga-
tion constant of a waveguide mode.
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o1, and the two broad walls with conductivity ¢,; and second, the
same waveguide is analyzed with a lossy dielectric slab centered be-
tween the narrow walls of the waveguide.

The results of this analysis are examined experimentally using
waveguide sections that have several different wall conductivities.
Additional experiments were conducted with two types of lossy di-
electrics. The results of these experiments demonstrate the effect of
wall losses and dielectric losses on propagation in the cutoff frequency
region of the waveguide.

The major use motivating this study of the cutoff properties of a
lossy waveguide is that of determining the electrical constants of
metals and dielectrics. The conductivity of three metals, and the
dielectric constant and loss tangent of two dielectrics are determined
experimentally using the cutoff properties of the waveguide. Copper,
nickel, and a nichrome-copper composite were chosen. The effect of
a de magnetic field on the conductivity of copper and nickel were
also investigated. The magnetic field produced no measurable effect
on copper; however, the apparent conductivity of nickel decreased. A
tentative explanation of this observation is advanced. Lueite and
micarta were chosen for the dielectric experiments.

Experimental values of these physical constants are determined to
within an accuracy of less than 2 percent. Where published
values of these constants are available, they are found to agree within
a few percent with the electrical values we obtained. The difference
between published values and the values determined by this cutoff
measurement technique reflect the use of certain approximations in
the analysis and the experiment errors. These two sources of error
are not separable, but it is evident that they are quite small.

This experimental technique provides a marked departure from
the classical resonant cavity techniques used in the past.? The chief
advantage of the waveguide cutoff measurement technique lies in the
ability to measure the properties of metals accurately at microwave
frequencies. The properties of dielectrics can also be measured al-
though the accuracy of the cutoff technique is about the same as that
of the classical resonant cavity techniques. There remains, however,
the general advantage of having alternate measurement techniques
which may be more convenient in some instances.

II. ANALYSIS

There are many analyses of the effects of losses in waveguides.>—¢
These efforts have been concerned with the effect of wall or dielectric
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losses at frequencies well above or below the cutoff frequency of a
particular mode. Barrow and Lender treated the effect of a finite wall
conductivity on the propagation constant near the nominal cutoff of
a circular waveguide.”® Southworth noted that a decrease in the wall
conductivity will decrease the frequency at which the cutoff region
oceurs.?

The classic method of treating wall losses and dielectric losses of a
single mode in waveguides in the propagation region of the guide is
to consider the power loss in the walls.*® These approximate solutions
are not valid in the vicinity of cutoff, since the lossless analysis on
which they are based has a singularity at cutoff.

In order to accurately calculate the propagation constant of a
waveguide with lossy walls and possibly containing a lossy dielectric,
we must consider what field components must be present in the walls
and in the dielectric. We will direct our attention to the TE;o mode in
the lossless waveguide as a starting point.

Refer to Fig. 1. The TE;p mode in the lossless rectangular waveguide
has the following field components; a y-directed electric field, a z-di-
rected magnetic field and an z-directed magnetic field.

From these fields of the lossless waveguide, we can consider what
other field components are necessary when the bounding walls have
finite conductivity. At the side walls * = 0, £ = a, there must be a
y-directed electric field at the wall. On the top and bottom walls there
must be an z-directed electric field and a z-directed electric field in
the metal as a result of the finite currents in these directions. These
fields must be supported by like directed fields in the dielectric region
of the waveguide since the tangential electric and magnetic fields
must be continuous across the dielectric-metal boundaries. Figure 1
shows the required field distributions.

In order to solve the field in the waveguide we must find a solu-
tion of Maxwell’s equations for a possibly lossy dielectric surrounded
by walls with finite conductivity. The finite conductive walls will be
considered to be describable by their intrinsic impedance.

In a source free region, Maxwell’s equations for a source free re-
gion with sinusoidal time dependence can be written for solution by
vector potentials.! These vector potential equations became

Ez—VxF—m+§VNA) )

H:VXA—w+§wvm @)
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The choice of a y-directed complex magnetic vector p stential of the
form

A=A, sin K,z cos K,y exp (—vz2) 3)

where 4, is an arbitrary constant yields, after substitution in equations
(1) and (2), the complex electric and magnetic field vectors in the
dielectric region.

H; = A,vsin K,z cos K,y exp (—72)u. (4a)
H, = A.K,, cos K.,z cos K,y exp (—v2)u. (4b)
E., = —[%K—” cos K,z sin K,y exp (—v2)u, (4c)
E, - A, sin sz cos K,y (k2 — KZ2) exp (—v2)u, (4d)
E, = A,y sin K, z sin K, ,yu. (4e)
K+ K —~ =k (4f)
where
ki = Yo%
and

¥ = complex longitudinal propagation constant
K., , K,, = complex transverse propagation constants.

In order to account for the properties of the metals that make up the
waveguide walls, we define the surface impedance of a metal at micro-
wave frequencies as

1—1;—! = Z(side walls) = Z, = R, + jX,

E .

H’ = Z(top or bottom walls) = Z, = Ry + jX, . (5)
z ly=b

In order to evaluate the surface impedance of the metal walls of the
waveguide, we use the surface impedance for TEM waves in an un-
bounded lossy medium. This approximation is exact for a plane wave
incident on a lossy metal. In the cutoff region the dominant mode fields
can be approximately described by plane waves reflecting between the
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side walls. Thus this definition of the surface impedance closely ap-
proximates the lossy waveguide in the cutoff region.

These wall impedances can be defined from z(w) and y(w) such that

Zs.o = Re (zS'T>Z + jIMAG (—%S—I) . (©)
Ys.r Ys,r

From (6) the intrinsic wall impedance for the conventional good con-

ductors where ¢ >> we can be obtained as

Zs = (‘—;ﬁ:—)%a + ) .
Ze = (%) +

20'1'

The determination of the propagation constants K,, K,, and v
results from application of the boundary conditions. These boundary
conditions require continuity of the tangential £ and H fields at each
boundary. From equations (4) with conditions (5) and (7), we obtain

kK — K2, _ (w,l,,)% .
Ty, tan K,,a = 5. a4+ (8a)
3
Ko tan Kb = (‘ﬂ—) 1 + j). (8b)
o 20'T

These equations (8) are transcendental and are solvable on a digital
computer. Solution of (8b) for K,, allows the solution of (8a) for K,, for
each frequency of interest. The z-directed propagation constant v can be
determined by substituting K., and K,, into (4f).

It is evident that a set of curves for ¥ can be plotted for various
values of Rg., and X » . Thus from measured values of v, the values
of Rs.r and X r can be determined, and hence the values of o, or o7 .

The solutions represented by equations (8) can be used to determine
the characteristics of the cutoff region of waveguides that have walls
made of composite or coated metals. The intrinsic impedance of such
conductors has been solved by Ramo and Whinnery.** The solution
is given below.

sinh 7, d + B, cosh 7, d
ZCOMP = Rl(l -+ ]) Rl (9)
cosh 7, d + =2sinh 7, d
1

where



WAVEGUIDE FREQUENCY CUTOFF 2227

d = thickness of coating metal

ro= (14 j)(rfwme)?
- )

"5}

- ()
2 i

o, = conductivity of coating metal
o, = conductivity of coated metal
w1 = permeability of coating metal
us = permeability of coated metal.

Zooxup can be substituted for either Zg or Zy in equations (8) depend-
ing on which walls of the waveguide are coated.

The most general solution of a waveguide in the cutoff region must
include not only the effects of walls with finite conductivity but also
the effect of a lossy dielectric. When the dielectric completely fills the
interior of the waveguide the solutions just given can be used by in-
serting the complex dielectric constant defined above.

Because of a limited physical size of the available dielectries or to
accommodate certain measurement techniques discussed later, it may
be necessary to use a thin slab of dielectric material that only partially
fills the interior of the waveguide. Figure 2 is a sketeh of such a dielec-
tric slab waveguide.

/
DIELECTRIC
SLAB

L
x
X

Fig. 2 — Dielectric slab waveguide.
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The analysis of a lossy dielectric slab centered in a waveguide whose
walls have finite conductivity proceeds from equations (1) and (2).
The field solution if losses are assumed present only in the top and
bottom walls can be obtained by choosing a y-directed complex elec-
tric vector potential

F = ue. (10)

A solution which satisfies the physical requirements of the dielec-
tric slab waveguide dominant mode can be obtained by choosing the
’
¢S as

0y = B, cos K“(x — g) cos K,y exp (—2) a ; d <z = azii

0, = A;sin K, (a — z) cos K,y exp (—v2) g _l,)_ d fz=a (11)
. a—d

o) = A, sin K, x cos K,y exp (—v2) 02 =

4

where A; and B, are arbitrary constants. The field components in the
three regions of the dielectric slab waveguide are determined by substi-
tuting the electric vector potentials represented by (10) and (11) into
the field equations (1) and (2).

In the dielectric region (@ — d)/2 =< = = (a + d)/2, the field com-
ponents are

E,, = vB, cos K“<x — g) cos K,y exp (—y2)u,
E,, = —K,B, cos K“<x — g) sin K,y exp (—v2)u,
2 2
H, = (kdz—K“)B, cos K“<x - g) cos K, .y exp (—v2)u, (12)
d
B, . a\ .
H, = ~ K, K, sinK,l\z — 5) sin K,y exp (—v2)u,
d
H,, = B'Z—K” sin K“<x — %) cos K,y exp (—y2)u,
d
where
v = complex longitudinal propagation constant

Il

¥ =K, + K2, — I
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K., = z-directed propagation constant
K,, = y-directed propagation constant
ky = o’uaes
Za = jwpa
a = guide width
d = width of dielectric slab
ua = dielectric permeability
€ = e — jei
¢ = dielectric permitivity
¢}’ = dielectric loss factor.
In the region defined by 0 £ z £ (@ — d)/2 the field components
become

E! = ~vA,sin K,z cos K,y exp (—y2)u,
E/ = —K, 4, sin K,z sin K,y exp (—v2)u.
k- K2

H! = —Z——) A, sin K, x cos K,y exp (—v2)u,
° (13)

H = Ay K., cos K.,z sin K, .y exp (—vy2)u,

o

H., = Ay cos K.,z cos K,y exp (—y2)u, .

o

In the region defined by [(a 4+ d)/2] £ 2 £ a the field components are
E, =~v4,sin K, ,(a — z) cos K,,y exp (—v2)u,
E., = —K,A,sinK, (¢ — z)sin K,y exp (—y2)u.
2 _ o2
(ko — Ko) Ay sin K, (@ — ) cos K,y exp (—v2)u.
2,
(14)
AK K,
2

o

H., =

H, =

o

cos K, (a — z) sin K,y exp (—v2)u,

H, = A’%Z cos K, (¢ — x) cos K,y exp (—v2)u.

]

where

= complex longitudinal propagation constant
K, + K3 — k2

= z-directed propagation constant

= y-directed propagation constant

I~
Sm ?N
o
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K; = o€,

2, = jwit,

g, = permeability of vacuum
€, = permitivity of vacuum.

The total field solution of the dielectric slab waveguide is obtained
by matching the tangential electric and magnetic fields at the dielec-
tric-air boundaries. Matching these field quantities yields

.& g — K% (a - d)
2 tan K, 5= cot K, 5 (15a)
@22"_1{;55—) tan K,,b = Z, (15b)
d zd
(—k—z_ﬁlz) tan K,.b = Z, (150)

where Zr is the surface impedance of the top and bottom walls of the
waveguide.

Attempts to include the effects of the finite conductivity of the side
walls in this solution were not successful. This failure stems from the
lack of conformance of the boundary conditions and the eoordinate
surfaces. However, the fields in a waveguide operated in the cutoff
region are approximately TEM waves in the transverse direction. We
can use this fact to modify equations (15) to include the effects of the
finite side wall conductivity. For this modifying solution we turn to a
transverse resonance type of analysis.

Consider the dielectric slab waveguide in Fig. 2 at cutoff as a loss-
less parallel plate waveguide. The side wall of the waveguide is rep-
resented by its intrinsic admittance, y,. The center of the guide is
considered an open circuit. The admittance looking to the right, v,
and to the left, y», of the dielectric-air boundary, is given by

v+ in.tan K..(25-9)

?/1 = yo _ d
Y, + Jy, tan K,o<9~2——)

. (16)
Y2 = jys tan K, 3

where
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_ (e
ya <ﬂd
1 1
==\
- (‘g“)<1+j>
08

K., = w.(use)? at resonance
K., = w.(ue)* at resonance
w, = resonance or cutoff angular frequency.

The condition for resonance is then given by

Yo = —Ya2 . (17
Substitution of (16) into (17) yields
1 + jye, tan Kz,,<9—;—d>

v, + jtan K., (259

Yo = —jy.tan K (18)

xqd 5‘
Since jy,2, will be a small value for practical wall metals, we can

use the approximation

Y2 = a X tan a. (19)
Equation (18) then becomes

1 + tan « tan K,,o<a ; d>

— Y = —jystan K (20)

P
2

2

The bracketed funetion on the left side of equation (20) is the
expansion of cot (4-B) ; hence (20) becomes

—tan a + tan Kh(a — d)

Yo cot l:K“<a g d) — jyozs] =y, tan K, g (21)

Equation (21) has the general trigonometric form of the field solution
given in equation (15a). Substituting the values for y, and ¥, and mul-
tiplying and dividing by K., and K., yields when the common terms of
Ko, € , € and u, are cancelled and K, and K, are reintroduced and the



2232  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

equation rearranged

K. cot [K,,,(a - d) + K—’ﬁ] - K tan K, g (22)
d

0 2 %o 2,

Equation (22) is the same form as equation (15a) except for the
modification of the argument of the cotangent funetion by the effect of
the side wall impedance. Because of the evident similarity of equations
(15a) and (22), we can interpret K, as the transverse complex propaga-
tion constant that is valid not only at cutoff but over a range of fre-
quencies extending on either side of cutoff.

The term z,/z, can be expanded by using the definition of the skin

depth, 8§
3
§ = (—2—) (23)
WO

to yield

z, _ (1 =35s8

2, 2 @4)
The argument of the cotangent term becomes

a—d , (1 — 76

[t 0z is] -

Argument (25) indicates that the width of the air region of the dielec-
tric-slab waveguide is increased by an amount proportional to the
skin depth. A similar result was obtained by Adler, Chu, and Fano,
who analyzed the minimum of the standing wave pattern for a plane
wave at an air-lossy metal interface.?

The equations which furnish the solution of a lossy dielectric slab
centered in a waveguide with lossy walls in the region of cutoff are
given by

K., cot Kxa[(a ) -+ (L - ])6:' = &tan K“g (26a)

o 2 2 2a
K,, tan K,,b
T e (262)
K, tan K,,b
g [k2 jnK2] = ZT (260)
v =K. + K, — k. (26d)

v =K., + K;, — ki . (26€)
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These are complex transcendental equations and were solved by a
digital computer.

Equations (26), which provide the solution for the propagation
constant of a lossy waveguide with a centered lossy dielectric slab
operated in the cutoff region, were derived using several approxima-
tions. These approximations are considered quite accurate for fre-
quencies in the cutoff region. At frequencies outside the cutoff region,
these approximations lead to an increasing error in the computation
of the longitudinal propagation constant. Thus, the electrical proper-
ties of materials cannot be determined accurately for frequencies out-
side the cutoff region. The accuracy of the measurements in the cut-
off region will be evident from the experimental results.

III. EXPERIMENTAL CIRCUITS

The analysis in Section II shows that the cutoff region of a wave-
guide with losses in the walls and dielectric is basically characterized
by the complex longitudinal propagation constant. The other descrip-
tive parameters such as impedance, admittance, scattering coefficients,
and so on, depend on this propagation constant.

The propagation constant can be measured experimentally by de-
termining the total attenuation and the total phase shift of a section
of uniform waveguide whose length is known accurately. Accurate
measurement of either attenuation or phase shift is difficult to obtain.
However, differences in phase shift and in attenuation can be measured
with great accuracy.

The experimental circuit was designed to measure differences in
attenuation and phase shift. Figure 3 shows the basic experimental
circuit. It is a microwave form of the usual low frequency comparison
circuit. A common source supplies two paths. The path B is used as
a reference path. Path A, the comparison path, has two separate test
paths, A; and A,, either of which may be chosen by proper positioning
of the waveguide switches 1 and 2. The two main circuit paths are
connected to a phase detector and to an amplitude detector by posi-
tioning switches 3 and 4.

These experiments could be conducted at any number of micro-
wave frequencies. Available tables of the properties of metals and
dielectrics show that these materials have a marked change in their
de properties in the X band of frequencies.™*® For this reason and
the availability of accurate test equipment, the center of the X band
of frequencies, about 9.5 GHz, was chosen for the design of the ex-
perimental circuit.
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Fig. 3 — Simplified schematic diagram of experimental circuit.

The complete experimental circuit is shown schematically in Fig. 4.
Standard commercial precision waveguide components were used
throughout. Isolators were chosen to have voltage standing wave
ratio’s of less than 1.08 and isolation greater than 40 dB. The phase
detection circuit was the kind described by Cohn.** It can measure
phase differences to an accuracy of 0.05°. The amplitude detection
circuit was used in conjunction with the tandem precision rotary vane
attenuators (path A, Fig. 4). This combination was capable of measur-
ing attenuation differences to an accuracy of 0.005 dB.

A precision rotary vane phase shifter was calibrated against the
phase detection circuit and both were calibrated with selected lengths
of precision X band waveguide. The phase shifter (path B, Fig. 4)
and the phase detection circuit were used in combination for phase
difference measurements.

Two types of waveguide test sections (see Fig. 5) were designed
for use in these studies of the properties of a waveguide operated at
cutoff. We designate these as a type A and a type B test section. Both
types were electroformed of oxygen-free hard copper. Mandrels of
the required dimensions for each test section were machined from
aluminum, and polished to remove any roughness. The wall thickness
of both types of test sections was a nominal 9{¢ inch.

Each type A test section was electroformed in one piece. Standard
X-band flanges, type UG-39/1, were soldered to each end of a test
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——

section. The flanges were machined and lapped to a smooth mating
surface. Two alignment pins were inserted in each flange. Figure 6
shows a complete type A section.

The type B test sections were made in two halves (see Fig. 7). These
halves were joined along the center of the broad faces of the wave-
guide walls. Ilach half of the type B test section was mounted in a
brass channel for rigid support. The joining faces of these brass mount-
ing channels were polished to achieve the required width. Alignment
pins assured accurate assembly of the two halves. The joining surfaces
were machined and lapped for accurate mating. The halves were held

Fig. 6 — A complete type A waveguide test section.
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together by 24 10-32 bolts. Threaded holes to mate standard X-band
flanges were placed in each end of the type B test section. A dielectric
slab is shown inserted in one half.

The type B test sections were used to examine the conductivity of
various metals. These metals were placed on the walls of the cutoff
portion of the type B sections by plating or evaporation. These test
sections were made in halves for two reasons. First, it was possible
to obtain uniform metal deposit on the three walls of the channel
that results from making the section in halves. Uniform metal deposits
on the interior walls of a closed test section was difficult if not im-
possible. Second, when metal is deposited on the walls of a waveguide,
the interior dimensions are reduced by the metal thickness. At cut-

Fig. 7— Type B waveguide test section with a dielectric slab in the top half.
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off these small changes (0.0001 inch or less) in the waveguide height
are insignificant. However, the same magnitude of dimension change
in the width are very significant. By using two halves and by deposit-
ing the same thickness of metal on the joining surfaces as on the walls,
there is an automatic compensation of the width change. The metal
deposited on the narrow walls decreases the waveguide width, but the
metal deposited on the joining surfaces increases the width on join-
ing the halves by the same amount. Thus, the waveguide width was
kept constant regardless of the thickness of the deposited metal.

1V. EXPERIMENTAL MEASUREMENT PROCEDURE

The general procedure for measuring the properties of a wave-
guide operated in the cutoff region is divided into three steps. We use
Fig. 3 to help in the discussion of these steps. First, the phase and at-
tenuation difference between the reference path (B in Fig. 3) and the
reference test waveguide (A in Fig. 3) are measured. This measure-
ment includes both the transmission through, and reflection from
(C in Fig. 3) the reference test waveguide. Second, the phase and
attenuation difference between the reference path (B in Fig. 3) and
the test waveguide section (A; in Fig. 3) are measured. As above,
this measurement includes both the transmission through and the
reflection from (path C) the test waveguide section. Third, the phase
and attenuation difference between the reference test waveguide and
the test waveguide are determined from the first two measurements.

The measurement of the effect of copper walls on the properties of
a waveguide operated at cutoff required a copper type A waveguide
test section and a copper type B waveguide test section. The type A
section was placed in the position of the reference test waveguide (As
in Fig. 3); and the type B section in the position of the test wave-
guide section (A; in Fig. 3). The three part measurement procedure
was followed.

These measurements yielded two results. The transmission measure-
ments result in the differences in the total phase shift and the total
attenuation of the cw signal transmitted through the type A and type
B waveguide test sections. The reflection measurements yielded the
difference in the total phase shift and the total attenuation of the cw
signal reflected from the type A and type B sections. From Fig. 5
we see that the type A and type B test sections have identical tapers.
These tapers were adjusted to be electrically equal. The total phase
shift and attenuation differences thus became the phase shift and at-
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tenuation of the transmission through and the reflection from the
2-inch-long cutoff section contained in the type B test section.

The measurement of the effect of the dielectric slabs of lucite and
micarta on the properties of the waveguide at cutoff followed the same
procedure. The dielectric slabs (see Tig. 8) were centered in the type
A and type B copper test sections. Since the tapers at the ends of the
dielectric slabs are identical, the result of the measurement is the
phase shift and the attenuation of the transmission through, and the
reflection from, the dielectric loaded cutoff section of the type B test
section.

The measurement of the effect of the other metallic walls, nickel
and nichrome-copper, required only type B test sections. A copper
type B test section was placed in the reference test waveguide posi-
tion (A; in Fig. 3). An identical second copper type B test section
was placed in the test section position (A; in Fig. 3). The electrical
difference between these two test sections was determined for use in
correcting future measurements.

The type B test section (A; in Fig. 3) was removed and the metals,
nickel or nichrome, were applied over the copper walls of the cutoff
region. The type B section was then reinserted into test position Aj.
The measurement steps just described were repeated. The results of
these measurements after correction for the possible electrical differ-
ence yielded the phase shift and attenuation of the signal transmitted
through and reflected from the 2-inch long cutoff section of the type
B waveguide section. The properties of the waveguide with nickel or
nichrome walls operated in the cutoff region are determined from
these results.

r-——-4.992————->'<————— 4.992————4>‘ T—>] '-—

e —— i

(a)

‘(——~——4.992————~)I«1,9 899 +|<—-~77 4.992————A>1 T»‘H'e
e ——
(b)

Fig. 8 — Dielectric slabs for (a) type A and (b) type B test sections. Dimensions
are 1n inches.
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These phase and attenuation measurements are used to calculate
the complex propagation constant of a waveguide operated at fre-
quencies in the cutoff region. These calculations are based on an
analysis developed by Southworth (see pp. 57 and 58 of Ref. 9). He
defines a voltage wave progressing down a finite length transmission
line and suffering repeated reflections from mismatches at the input
and output of the line. Southworth derives an expression for the steady
state voltage at any point on the line. Using Southworth’s notation
we define V; as the voltage transmitted to the output of the cutoff
section and V, as the voltage reflected to the input of the cutoff see-
tion. The difference between these two “voltages” can be written
using Southworth’s results as

(Vi — Vo) = [exp (—7ol) — 1]. 27

The measurement of (V, — V,) yields from (27), the experimental
value of v, , the complex propagation of the cutoff region of the wave-
guide section.

The experimental measurements given by the phase shifter, the phase
detection circuit, and the tandem attenuators were used to determine
the value of (V; — V,). Figures 3 and 4 should help in the following
discussion. For the measurement of copper and dielectrics we have a
type A test section in path A, and a type B test section in path A, of the
comparison path A. We consider two voltage waves, I, and E, . E,
propagates in the comparison path A, and L, in the reference path B.

The attenuation and phase shift of test path A, from the input rotary
switeh to the center of the type A test section is defined as A, exp (§%,),
and from the center of the type A test section to the output rotary
switch as By exp (j&,). The attenuation and phase shift of test path A,
from the input rotary switch to the junction of the type B section taper
and the cutoff section is defined as Aj exp (j&;), and from the output of
the cutoff section to the output rotary switch, Eg exp (j®;). The voltage
wave in the reference path B is defined as E, exp (j6,).

Test path A, with a type A section inserted is connected to the com-
parison path. With the tandem attenuators set at an arbitrary value,
the phase shifter is adjusted to provide a 45° phase difference be-
tween the comparison and reference paths. The outputs of the phase
measuring circuit and the amplitude measuring circuit are propor-
tional to

B + B, = 6, & 45° (28a)
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and

FEoABy = M, = SWR meter reading, (28b)

respectively.

When the comparison path is connected to test path A, with atype B
test section inserted, the outputs of the phase measuring circuit and the
amplitude measuring circuit are proportional to ®) + & + < V¥, and
EoAB; | Vi |, respectively.

The tandem attenuators and the phase shifter are adjusted to return
the outputs of the amplitude measuring circuit and the phase measuring
circuit to their values when test path A, was connected to the comparison
path. This condition is expressed as

o+ B+ LV, = 6, + 0, = 45° (29a)
TEABL | V. | = M, (29b)

where 6, is the change in the phase shifter and T, the change in the
attenuators’ reading.

The same analysis is applied to the voltage waves reflected from
test paths A and B. The reflection from test path B is expressed as

2®, = 6, £ 45° (30a)
BEo2A, = M, . (30b)
The reflection from test path A is expressed as
205 + X Vo = 0, + 0, & 45° (31a)
T.E2A | Vo | = M, (31b)

where 6} is the change in the phase shifter and 7', is the change in the
attenuators’ reading.
Subtracting equation (28) from (29) yields

By — B+ B — B+ XV, =6, (32a)
T1A<1)B}) | v, l = A.B, . (32b)

A calibration procedure determines the difference between &, and &,
and &; and &} , and the ratio of Aj/A, and B}/B, . With these measured
differences, V; is determined from the phase shifter change, 6, in degrees,
and the tandem attenuators’ change, 7', in dB.

Subtracting equation (30) from (31) yields

X Vo + 20) — 20, = 6} “ (33a)
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TAS | Vo | = A (33b)

Again the calibration procedure furnished the values of ®} — &, and
Aj/A, . The value of V, was determined from the phase shifter change
6, and the tandem attenuators’ change T',. The value of V, — V, is
determined by the phase shifter’s and attenuators’ change in reading.
The value of v, is calculated from these experimental measurements by
equation (27).

This analysis is also applicable to measurements with type B test
sections in both the reference test path and the test path as required for
measurement of nickel and nichrome. We define the propagation con-
stant for one type B test section cutoff region (copper) as v, and for the
second type B test section (nickel or nichrome) as v, . We can then write
for the nickel or nichrome section

(Vz - VO)A = [eXp ("'Yll) - 1] (343)
and for the copper section '
(Vl - VO)eu = [eXp (—'Yol) - 1]' (34b)

The difference of these two equations yield
AA—cu = (Vl - VO)A - (Vl - VO)cu
= [exp (—m1l) — exp (—v.D].

This difference represents the measured difference between a copper
type B test section and a type B test section with a nickel or nichrome
cutoff section. The analysis used previously to describe the copper
cutoff section measurements is applicable here to show that A,—.. was
evaluated by this measurement and v, by the copper test section meas-
urement; thus the value of v; is determined.

Since nickel is a magnetic material, measurements were made on the
nickel plated type B test section with a magnetic field applied. These
measurements demonstrated qualitatively that this measuring technique
could be used to detect the magnetic induced changes in conductivity of
certain metals.

The magnetic field was obtained from a surplus horseshoe shaped
magnetron magnet. The width of the pole pieces was approximately
two inches and the gap approximately two and one quarter inches.
The measured field between the poles was approximately 2100 gauss.
The magnet was oriented with the type B test section to produce
a magnetic field parallel to the electromagnetic field lines in the
side walls of the waveguide. Because of its construction (horseshoe

(35)
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shape), this magnet produced a nonuniform magnetic field in the wave-
guide walls. Uniform magnetic field sources were not available; hence,
these experiments were qualitative.

Measurements were made with nichrome to determine the effect on
the waveguide cutoff properties of a lossy metal. A second type B test
section was inserted in test path A; in place of the nickel plated test
section. The reference type B test section remained in test path A,.
The phase shift difference and the attenuation difference between
test path A; and test path A, was measured for both transmitted and
reflected signals. This was done to establish a reference for the type
B test section in test path A.

The type B test section was removed from test path A; and disas-
sembled. The two halves of the test section were masked and nichrome
was vacuum evaporated on the two narrow sidewalls to a thickness
of 800A. The two halves were reassembled and the nichrome type B
test section reinserted in its original position in test path A;.

The properties of a waveguide partially loaded with a dielectric
was examined in the cutoff frequency region. Two types of dielectrics
were used, one with low loss, lucite; and one with moderate loss,
micarta.* In addition to demonstrating the effects of dielectric at
cutoff, the dielectric constant and the loss tangent were determined
from these measurements. Figure 8 is a diagram of the dielectric slabs.

V. EXPERIMENTAL RESULTS

In order to place the results of the experiments in the proper per-
spective, we note that the nominal cutoff frequency of a lossless wave-
guide 0.62150-inch wide operated in the dominant mode is 9502.030
MHz.

5.1 Metallic Test Sections

The general effect of decreasing the conductivity of the waveguide
walls for frequencies in and near the cutoff region can be seen in Fig.
9. The conductivity ranges from the de value of oxygen-free hard
electroformed copper, 5.8 X 10° mho/cm (reciprocal ohms per centi-
meter), to approximately one tenth the conductivity of copper. At a
single frequenecy, as the conductivity is decreased, the imaginary part
of the propagation constant, 8, increases. The real part of the propa-
gation constant, «, decreases with decreasing conductivity for fre-

* The micarta used was made of woven cotten impregnated with cresylic acid
formaldehyde resin,
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quencies just below cutoff, but « increases for frequencies just above
cutoff.

It is interesting that in Fig. 9 there is one frequency in the cutoff
region for each value of conductivity where the real part of the
propagation constant («) in nepers per centimeter equals the imagi-
nary part of the propagation constant (8) in radians per centimeter.
This frequency is properly defined as the cutoff frequeney when the
waveguide has walls with finite conductivity. Further examination
of Fig. 9 shows that this defined cutoff frequency shifts to a lower
frequency as the conductivity of the waveguide walls is decreased. We
see that a decrease in conductivity by a factor of ten causes this
defined cutoff frequency to shift by 850 KHz. Since microwave fre-
quencies in this frequency region can now be measured to 1 KHz, the
potential accuracy obtained by using this frequency shift for the
measurement of the conductivity of metals is less than 1 per cent.

5.1.1 Copper Test Sections

The copper test section was measured at two different frequencies in
the cutoff region. These frequencies, 9500.873 and 9497.960 MHz, were
chosen to cover a region where Fig. 9 shows a maximum difference in
a and 8 for the range of expected copper conductivity. The calculated
values of v/ (I in em) for the first test frequency are plotted in Fig. 10
as a function of the conductivity (in mho/em.) The value of 41 was used
instead of ¥ to make comparison with the measured values easier, since
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the measurement involves the total length of the test seetion and since
the experimental errors are in dB and degrees. Each figure contains two
curves; one for the total attenuation in dB, and one for the total phase
shift in degrees.

The experimental values are plotted as points marked ay and Bi
on the figure. The vertical broken lines with markings A« and AB
indicate the error limits in the experimental measurements. In Fig. 10,
the error limits are smaller for the 8, measured value than for the
ay value. The results at the second frequency, although not plotted,
support the plotted results.

The average value of the conductivity of copper based on the a
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Fig. 10 — Copper experimental results at 9500.873 MHz yielding experimental
value of conductivity. O calculated al, X calculated gl, and [] measured values.
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measurement at the two frequencies is 4.635 X 10° mho/em. The
average value of the 8, values is 4.685 X 10° mho/em. The average of
the mean of the maximum and minimum values of a and B at the
two frequencies is 4.69 X 10° mho/cm. The best value for the condue-
tivity of oxygen-free hard electro-formed copper at 9500 MHz is taken
to be the average of the a,; and 8,; averages, 4.66 X 10° mho/cm. The
error in this value, based on the errors in the measured values is 1.5
percent. This value of the conductivity of copper is 80.3 percent of the
de value of copper. Previously reported values for the conductivity of
copper in this frequency range, based on measurements of long lengths
of waveguide operated in the propagation frequency region, vary
between 85 and 78 percent of the de conductivity.'®

5.1.2 Nickel Test Sections

The nickel test section was made by electroplating a 0.001-inch-
thick layer of commercial grade nickel on the four walls of the cutoff
section of an electroformed copper test section. The wall conductivity
of this copper test section was measured before plating. These results
are not repeated since this measured conductivity agrees with the
previously measured value of the conductivity of the copper within
the error limits mentioned earlier.

The experimental measurements were made in the manner already
described, at two test frequencies, 9500.873 and 9497.963 MHz. The
calculated values of vyl and the experimental points for the first test
frequency is plotted in Fig. 11 as a function of conductivity. As was
done for the copper measurements, two curves are plotted on the figure,
one for the total real part of yI, and one for the total imaginary part
of 'yl.

Figure 11 shows some interesting features of the cutoff region. The
total attenuation of the nickel test section is less than that for the
copper test section, indicating that the cutoff region has shifted to a
lower frequency. Consistent with this shift in the cutoff region to
lower frequencies is the increase in the total phase shift. However, as
the conductivity is decreased below 6 X 10* mho/cm, the total at-
tenuation increases. This result indicates that the loss resulting from
the decreased conductivity is increasing faster than the cutoff region
is shifting to a lower frequency by the decreasing conductivity. This
difference leads to a net increase in the total loss of the cutoff section.

Only the experimental values for the first test frequency are plotted.
The results at the second frequency support these results. The points
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labeled a,; and 8 are the experimental values. The vertical broken lines
enclosing Aa and Ag define the error limits in the experimental measure-
ments. The error limits in Fig. 11 are small for the phase measurement,
B, while the error limits for the attenuation measurement, oy , are
large; hence the measured 8 value yields the more accurate result. The
figures for the copper and nickel test sections illustrate a feature of this
experimental technique. At some frequency in the cutoff region both the
« and B measurement may have the same accuracy, while at another
frequency either the a or 8 measurement will yield a more accurate
result. This feature, of course, depends on the errors in the measuring
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equipment. It does allow one to choose test frequencies which will
compensate for the errors in the measuring equipment.

The B, measurements at the two test frequencies both yield a value
of 6.10 X 10* mho/cm for the conductivity of commercial grade nickel
plating. The «;r measurements yield conduetivity values of 8.0 X 10*
mho and 6.4 X 10* mho/cm. However, the error limits of the a, meas-
urements include the 8, measured values. In this case, one concludes
that the most accurate measure of the conductivity of nickel is the 8
value. The maximum range of the measured value of conductivity based
on the 8;; measurement is 6.3 X 10* to 5.9 X 10* mho/cm or an error of
3.6 percent. The minimum range of the measured values is 6.0 X 10* to
6.15 mho/cm or an error of 1.7 percent.

The de conductivity of nickel as given by various tables of the
properties of metals'® is 1.28 X 10° mho/cm. The experimentally de-
termined value for the conductivity of nickel at 9500 GHz is 6.10 X
10* mho/cm or 47.6 per cent of the de¢ conductivity. The conductivity
of copper at 9500 GHz was determined earlier in this paper to be 80.3
per cent of the de value. Electroplated metals have been reported to
be more porous than solid metals.*® This increased porosity would
account for the larger decrease in the conductivity of nickel com-
pared with copper in these experiments.

The nickel plated test section was used for a second experiment.
The test section was subjected to a magnetic field of 2100 gauss as
discussed in Section IV. The actual field applied to the nickel was
difficult to determine accurately because of the size of the Hall plate
available to measure the field. It is estimated that a field of 500 gauss
was applied to the nickel walls. This same field was applied to the
copper test section before plating. No measurable effects were obtained.

The results of the experiment with the magnetic field are plotted in
Fig. 11 as the points, eymagner and Buaexer. It is evident from the
location of these points on the calculated curves that the application
of the magnetic field has caused an apparent decrease in the conduc-
tivity of nickel. The mean value of the conductivity resulting from
the application of the magnetic field is 4.95 X 10* mho/em.

The exact cause of this decrease in conductivity is not known. Since
there was no effect of the magnetic field on the copper test section
before plating, we can assume that the decrease in the conductivity of
nickel resulted from the ferromagnetic properties of nickel. This ef-
fect can then be explained by assuming that the magnetic field in-
creases the effective microwave permeability of nickel by the ratio of
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6.10/4.95. The effect of the conductivity of the metal walls of a
waveguide enter into the calculation of the propagation constant

through the expression
= (em)
c (20>

Hence, the increase in the permeability, s, causes the same result as
a decrease in conductivity. It is well known that nickel is ferromag-
netic at low frequencies. The ferromagnetic property is described by
its permeability. Evidently, if this explanation is correct, nickel ex-
hibits a small ferromagnetic effect at microwave frequencies.

5.1.3 Nichrome-Copper Test Section

The conductivity of the walls of one of the electroformed copper
type B test sections was measured and found to agree with the original
copper test section within the stated error limits. Nichrome was ap-
plied to the two narrow walls as described in Section IV, and an
experiment was conducted at 9497.936 MHz. The calculated values
and the experimental results are plotted in Fig. 12. This figure shows
the effect of conductivity on the cutoff region not present in the pre-
vious results. The « and 8 curves have a somewhat unusual shape.

These new features are not too unusual when it is considered that
we are dealing with the combination of a composite metal, nichrome
over copper, on two walls of the waveguide, and a single metal, copper,
on the remaining walls. The thickness of the evaporated nichrome is
much less than the nichrome skin depth. The effect of this combina-
tion of metals is best understood by considering the intrinsic wall
impedance defined in equation (9). The variation in this wall im-
pedance with the change in the conduectivity of the coating metal for
a fixed coated metal is discussed by Ramo and Whinnery.**

The variation in the total attenuation as the nichrome conductivity
is decreased results from two factors, the shift in the cutoff region and
the increase in the skin depth of the nichrome. The rate at which these
two factors change as the conductivity decreases governs the shape
of the « and B curves. This effect can be explained simply by consider-
ing the a curve. The explanation of the shape of the g8 curve is more
complicated and would involve repeating the analysis of Ramo and
Whinnery. This is not necessary for our purposes.

As the nichrome conductivity is decreased, the skin depth of the
nichrome is increased. The presence of the nichrome has less effect on
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ured values.

the microwave currents and the total conductivity approaches that of
copper. However, until the nichrome conductivity decreases suf-
ficiently, the conductivity of the nichrome-copper combination is less
than that of copper and hence causes a shift of the cutoff region to
lower frequencies with an attendant decrease in the total attenuation.
As the nichrome conductivity is decreased further, the effective con-
ductivity approaches that of copper and the cutoff region shifts to
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higher frequencies. The attenuation increases again approaching that
of a copper test section.

The experimental value of @, a,r, is plotted in Fig. 12. The experi-
mental value of 8, 8, , lies on the flat portion of the 8 curve with error
limits that cover the extent of the flat portion plotted. Thus the 8
measurement gives no accurate measure of the conductivity of nichrome.
The experimental value of nichrome conductivity at 9497 MHz based on
the o measurement is 6.4 X 10° mho/em. The maximum error is 1.5
percent. The de conductivity of nichrome is 10* mho/em (See Ref. 16).
The measured value of nichrome at 9497 MHz is 64 percent of the de
value.

5.2 Dielectric Loaded Cutoff Test Sections

It is well known that the insertion of a dielectric into a waveguide
section causes an increase in the phase shift per unit length for fre-
quencies above the cutoff region. The effect of lossy dielectrics placed
in a waveguide section operated in the cutoff region is not well known.

Figure 13 shows the effect of a lossy dielectric in a waveguide over
a frequency range covering the cutoff frequency region. The curves
of the real and imaginary part of the propagation constant were
plotted for several dielectric constants and loss tangents for a dielectric
slab 0.059 inch thick inserted in a copper waveguide 0.62150 inch wide.
The unloaded cutoff frequency of this waveguide is approximately
9500 MHz. The waveguide has a wall conductivity of 4.64 X 10°
mho/em.

Examination of these curves shows that increasing the dielectric
constant for a constant loss tangent shifts the cutoff region to a lower
frequency (e decreases, B8 increases). For a constant dielectric con-
stant an increase in the loss tangent shifts the cutoff region to a
higher frequency (a increases, 8 decreases). Although not shown in
Fig. 13, a decrease in the wall conduetivity of the waveguide shifts the
set of curves to a lower frequency.

5.2.1 Lucite Dielectric

The copper test section used for the original measurement of the
conductivity of copper was used for the dielectric experiments. The
0.056-inch thick slab of lucite was inserted in the copper test sections.

The experimental values of a and B8 were compared with a series of
curves calculated for various combinations of dielectric constants,
¢'/e , and loss tangents, ¢’/¢ , for the two test frequencies, 8361.653
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Fig. 13 — Propagation constant in cutoff region as a function of relative dielec-
tric constant and loss tangent. O calculated el, and X calculated gl.

and 8351.945 MHz. Fig. 14 was plotted for those values which agreed
with the experimental results. The results for 8351.945 MHz are not
presented because they give the same result as in Fig. 14. The experi-
mental values, ay and B , are plotted on the respective curves of these
two figures. The vertical broken lines indicate the error limits of the
measured values. The curve in Fig. 14 was plotted for ¢ /¢, = 2.55 and
a range of loss tangent values, €'/ .

The error in the value of the measured a,; can be seen to be much less
than that of 8 . This is an example of a case discussed in Section 5.1.2
where one of the parts of the propagation constant can be measured with
greater accuracy than the other at the chosen frequency in the cutoff
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region. From the experimental results, the experimental value of the
dielectric constant of lucite is 2.55. The error limits, although not shown
on the curves are 2.56 and 2.545. The measured values of the loss tangent
are 0.0065 and 0.0066 giving a mean value of 0.00655. The error limits at
8361.653 MHz are 0.0064 and 0.0066; and at 8351.945 MHz, 0.0065 and
0.0067. The maximum error in the mean value of the loss tangent is
4.5 percent, and the minimum error, 1.5 percent.

The measured values of 3,; do not lie at the same values of loss tangent
as those of «ay . However, the error limits of the experimental values
of B enclose the error limits of the experimental values of oy . The
measured values of 8, , while not agreeing with those of a, support the
more accurate values of o .

The experimental values of the dielectric constant and the loss tangent
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Fig. 14 — Lucite dielectric experimental results at 8361.653 MHz yielding ex-
perimental values of relative dielectric constant and loss tangent. O calculated
el, X caleuated gl, and [] measured values.
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for the lucite dielectric at 8350 MHz can be taken as 2.55 and 0.00655,
respectively. The values reported for lucite at 10 GHz are 2.59 and
0.006, respectively.'*

5.2.2 Micarta Dielectric

The lucite dielectric slabs in the copper test sections were replaced
with 0.031-inch thick micarta slabs for an experiment in which the total
attenuation and the total phase shift for various values of the dielectric
constant ¢/e, and the loss tangent €’/¢, were calculated. The results
which satisfy the experimental results are plotted in Fig. 15 for the test
frequency 8477.289 MHz. Other experiments were performed at 8455.512
MHz. These experiments, although not plotted, support the results of
Fig. 15.
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Fig. 15— Micarta dielectric experimental results at 8477289 MH:z yielding
experimental values of relative dielectric constant and loss tangent. O calculated
al, X calculated gl, and [] measured values.
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In these experiments with micarta, the experimental results at
8477.289 MHz yielded a dielectric constant ¢/¢, = 3.62, and a loss
tangent based on the « measurement of ¢’/¢; = 0.0575, and for the
8 measurement, €’/e, = 0.0580. The results at 8455.512 MHz yielded
a dielectric constant of 3.60 and a loss tangent for the & measurement of
0.585 and for the 8 measurement of 0.0585. The mean dielectric constant,
determined from the measurement at the two test frequencies, is
¢/ec = 3.61 with an error of -£1.5 percent. The mean loss tangent
determined from these measurements is ¢’/e¢, = 0.058 with an error
of &1 percent.

Published tables of the properties of dielectric materials list dielec-
tric constants ranging from 3.42 to 3.78 and loss tangents ranging
from 0.05 to 0.08 for micarta at 10 GHz. The range of values stems
from slightly different formulations used in the manufacture of
micarta. Since the definite composition of our sample of micarta is not
known, it is evident that our results are quite justified.

The results discussed in the preceding sections are summarized in
Table I, which lists the metal or dielectric, the frequency of measure-
ment, the measured values of the indicated electrical properties, and
the value of these properties as determined by other measurement
techniques.

VI. CONCLUSIONS

The effects of various metals and dielectrics on the properties of
the cutoff region of a rectangular waveguide operated in the dominant
mode have been investigated. It has been shown that a waveguide
with walls of finite conductivity has a cutoff region instead of a
singular cutoff frequency associated with a lossless waveguide. As
the conductivity of the waveguide walls is reduced, the cutoff region
is shifted to a lower frequency.

It is evident that the definition of the cutoff frequency for a loss-
less guide does not apply when losses are present. The definition of
cutoff frequency should take into account the conductivity of the walls.
The cutoff frequency for a given mode may be defined (for a given
conductivity) as that frequency where the real part of the propagation
constant in nepers per unit length is equal to the imaginary part of the
propagation constant in radians per unit length. For the same physical
dimensions, a waveguide operated in the dominant mode with walls
of conduetivity ¢; would have a higher cutoff frequency than a wave-
guide with walls of conductivity o2 for o1 > o2.
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TaBLE I—MEASUREMENTS AT 72°F, 50 PERCENT
RevaTive Humipity

Measured Published Values*
Conductivity Frequency Conductivity Frequency
Metal (mho/ecm) (MHz) (mho/cm) (MHz)
Copper (electroformed) 4 .66 X 105 9500 5.8 X 105 0 (de)
4.64 X 105 10,000
3.15 X 108 24,000
Nickel (commercial 6.10 X 10* 9500 1.28 X 108 0 (de)
plated)
Nickel (with 800 gauss 4.95 X 10¢ 9500 None Available
H field)
Nichrome (evaporated) 6.4 X 103 9500 1.0 X 10¢ 0 (de)
Measured Published Valuest
Frequency Frequency
Dielectric € /eo €’ /eo (MHz) /e €’ /eo (MHz)
Lucite (sheet) 2.55 | 0.00655 8350 2.59 | 0.006 10,000
Micarta (sheet) 3.61 | 0.058 8460 3.62 | 0.057 10,000

* See Refs. 6, 9, 15, and 16.
T See Refs. 9 and 13.

The introduction of a lossy dielectric into a rectangular waveguide
operated in the dominant mode with walls of finite conductivity has
a pronounced effect on the cutoff frequency region. A lossless dielec-
tric inserted into a lossless waveguide produces a singular cutoff fre-
quency at a frequency lower than that of the waveguide alone. When
the waveguide walls have finite conductivity and the dielectric has
a finite loss tangent, there is a cutoff region rather than a singular
frequency. In this cutoff frequency region, for a constant dielectric
constant, an increase in the loss tangent causes the cutoff frequency
region to shift to a higher frequency. For a constant loss tangent, an
increase in the dielectric constant causes the cutoff region to shift to
a lower frequency. For a constant dielectric constant and loss tangent,
a decrease in the wall conductivity of the waveguide causes a shift
of the cutoff region to a lower frequency.

In the general case of a waveguide with walls of finite conductivity
and a dielectric with a finite loss tangent, the cutoff frequency may
again be defined as that frequency at which the real part of the propa-
gation constant in nepers per unit length is equal to the imaginary part
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in radians per unit length. So defined, there are generally distinet cut-
off frequencies for each combination of wall conductivity, dielectric
constant, loss tangent, and waveguide dimensions.

Having discussed the effect of metals and dielectrics on the cutoff
region of the dominant mode of a rectangular waveguide, we turn to
uses of this waveguide phenomenon. The most prominent use of the
cutoff region has been examined in detail; that of measuring the
properties of metals and dielectrics at microwave frequencies.

The properties of three metals, copper, nickel, and nichrome, and
two dielectrics, lucite and micarta, were measured using the effect of
these materials on the cutoff region. The experimental values of the
metal conductivities and the relative dielectric constant and loss
tangent of the dielectrics are given in Section V. The accuracy of all
measured values was about =2 per cent, although some measurements
were accurate to =1 per cent.

There are little published data on the microwave conductivity of
these metals at the frequencies used for the experiments. What data are
available agrees with our results to within 5 per cent. The error limits
of the published values were not given; hence it is not possible to
check the accuracy of the experimental values in this way.

The decrease in the conductivity of nickel in the presence of a de
magnetic field demonstrates an effect not observed in the measure-
ments of the other metals. The exact cause of this effect is not known.
It is suggested that, since nickel is ferromagnetic, the magnetic field
caused a small increase in the microwave permeability of nickel. The
analysis of a lossy cutoff waveguide operated at cutoff depends on the
intrinsic wall impedance. Within this approximation, it is evident that
an assumed Increase in permeability produces the same effect as the
measured decrease in the conduetivity of nickel.

There are published data for lucite at 10 GHz. The values obtained
from the cutoff waveguide measurements agree within 2 per cent of
these values. Interpolating between the published values to obtain
values for 8.5 GHz brings the agreement to about 1 per cent. The
exact chemical composition of the micarta dielectric was not known.
There are a range of values given in Tables of Dielectric Properties
for different micarta compositions.?® These published values bracket
the experimental results obtained from the cutoff measurements.

Lucite was chosen as one of the test materials in order to establish
a known reference to determine the total error inherent in this analysis
and measurement technique. The experimental results show that the
measured value of the electrical properties of lucite agree to within
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1 per cent of values determined by other techniques.*® The analysis of
a lossy dielectric slab centered in a lossy waveguide operated in the
cutoff frequency region requires more approximations than the anal-
ysis of the empty lossy waveguide. Hence, we would expect the maxi-
mum error to be present in the measurement of the lucite dielectric.
The small error for lucite, 1 per cent, is indicative of the accuracy of
this technique for measuring electrical properties of metals and dielec-
tries.
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Intermodal Coupling at the Junction
Between Straight and Curved Waveguides

By C. P. BATES
(Manuscript received March 6, 1969)

This paper analyses the coupling of electromagnetic modes at the junction
between straight and continuously curved rectangular waveguides. The
method of solution s based on an integral equation formulation, applicable
for sharp as well as gradual bends. Such quantities as the average power
transmitted or reflected into each of the various modes propagating in
the straight and curved waveguide sections are readily obtained.

The article presents the results of representative calculations for the two
types of waveguide bends. These include graphs of the energy distribution
@ the transmiited and reflected modes as a function of dimensionless ratios
for a sharp bend; the range of values considered allows tmmediate applica-
tion of the results to standard C-band waveguides. The gradual bend example
uses paramelers encountered in the waveguide connections to an antenna
n a typical microwave relay network.

L. INTRODUCTION

In a microwave system for guiding electromagnetic waves, often
there are bends formed by connecting straight and continuously curved
rectangular waveguides (see Fig. 1). Precise numerical computations
and extensive analytical investigations of the angular propagation con-
stants for the various electromagnetic modes in the curved section
alone have been published by Cochran and Pecina. The propagation
constants and modal fields which may exist in the straight sections
alone are trivial. To understand propagation of electromagnetic waves
through these waveguide bends, therefore, requires a complete com-
prehension of the intermodal coupling that takes place at the various
junctions and discontinuities. This paper investigates the coupling that
occurs where straight and continuously curved rectangular waveguides
join.

This type of structure has been studied to some extent by others.
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n v

(b)

Fig. 1 — Waveguide bends formed by connecting straight and continuously
curved rectangular waveguides. (a) E-plane bend. (b) H-plane bend.

There is an approach based on a matrix caleulus formulation by Rice.?
Using a perturbation method, Jouguet obtained expressions for the
fields in the curved waveguide up to terms of second order, that is, to
terms in 1/R?, where R denotes the radius of curvature of the axis of
the curved guide.? He uses these approximate expressions to determine
the intermodal coupling that results at the junction between the
straight and curved waveguides for a particular polarization of the
field. In contrast with Jouguet’s approach, the analysis we use permits
the waveguide bends to be as sharp as desired, while still including
the gradual bend within the permissible range of parameters.

Our approach involves the solution of a boundary value problem
formulated in terms of the appropriate modal expansions for the fields
in the straight and curved waveguides (see Section 2.1). The modal
functions and propagation constants in these waveguide sections con-
sist of certain combinations of trigonometric and Bessel functions and
the zeros of such combinations. Evaluation of the appropriate quan-
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tities for the curved waveguide is one of the more difficult aspects of
this problem and necessitates not only numerical methods for deter-
mining zeros and asymptotic expansions but also computer algorithms
for the accurate evaluation of Bessel functions. Such algorithms have
been recently developed and programmed at Bell Telephone Labora-
tories.*

With the modal expansions in hand, one can formulate an integral
equation for the aperture field at the junction between the straight and
curved waveguides. This equation, as discussed in Section 2.2, may be
solved numerically by the method of moments to within a reasonable
accuracy (error criteria are discussed in Section 4.1). A solution for
the fields in the waveguides can then be easily obtained, and such
quantities as the power reflected or transmitted into various modes at
the junction may be evaluated.

Section 4.2 gives examples of the intermodal power coupling for both
sharp and gradual bends. Section 4.2.1 presents the results for the
sharp bend example as a function of certain dimensionless ratios; the
range of values considered allows direct application of the results to
standard C-band waveguides. The results clearly demonstrate that
significant intermodal power coupling takes place; they also establish
the exaggeration which occurs in the reflected powers near the cutoff
frequencies of the individual modes. Section 4.2.2 gives the results for
the gradual bend example and shows that reflections are negligible and
hence only the forward coupling has significant levels for the gradual
bend considered.

II. FORMULATION AND SOLUTION OF THE BOUNDARY VALUE PROBLEM

2.1 Fields in Straight and Continuously Curved Waveguides

An arbitrary electromagnetic field, which may exist in either the
straight or continuously curved waveguide, may be expressed as a sum
of the longitudinal electric (LE) and longitudinal magnetic (LM)
modes appropriate to that section (for explicit details on such modal
representations in a continuously curved waveguide see Cochran and
Pecina and for the straight waveguide see Harrington %), The LE
modes have an electric field transverse to the z-direction which means
this field component lies in the longitudinal plane, while the LM modes
have their magnetic field similarly positioned.

The explicit form of the transverse components of the LE model
expansion, suppressing an exp (jwt) time convention, is given below
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(for a LE field and straight waveguide) :

E° = D A ‘enn exp (FiBmd),
0
sHa = = ZA";L ah:rm exp (:FJanU)

with
se;m = <P:n(x)¢n(z)i;1
B = g G @) T+ 5 @V

on() = (en/b)* cos [mr/bl, — )],
m=0,1,2, -+, =1, =2, m=1,

@) = (2/a)tsin (nwz/a), n=1,2, -+,
Bun = [hn — (ma/b)’) = —j[(ma/B)* = B}, m

hn = [k2 - (nw/a)z]%y n = ly 21 Tty
and
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e
=
©

k= w/e, Z = jou, re =1 + b.

Here °E° is the transverse electric field intensity, "H° the transverse
magnetic field intensity,  the angular frequency, & the wave number,
u the permeability, and ¢ the phase velocity of the medium filling the
guide. The veetor components which make up the field are given by the
lower case letters. The 4,,, are the unknown expansion coefficients of the
individual LE modes in the straight guide with the (&) indicating waves
traveling either in the positive or negative y-direction (towards or away
from the junction in the straight section of Fig. 1a). The propagation
constant of a particular mode is 8,.., and it is either real or purely
imaginary (providing the guide is filled with a lossless medium) thus
indicative of either a traveling or evanescent mode.

In the curved waveguide, using polar coordinates (p, ¢, 2), one has
(for the LE field and curved guide) :

E Coin €l €XP (F omud),
2
= -+ Z Cmn ch:,m exp (:F]anw)
with

€ 0
emn

() ¥al2) B,

o =
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1 Cuntion | = ([ 50 dp)
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In these expressions J,(z) and Y,(x) are the Bessel functions of the
first and second kind respectively; the prime indicates differentiation
with respect to the argument. The permissible propagation numbers
vmn, in this case, are given by the implicit solutions of

d
— = = 9 e
dp Oan(th) ln=n 0, m 0; ]-v ’ '

and again they are either real or purely imaginary providing the guide
is filled with a lossless medium.’ Section III discusses the modal function,
C, , in more detail. The C*, are the expansion coefficients of the individ-
ual modes with the (&) again designating the direction of mode travel.
~ In equations (1) and (2) the superscript e indicates that the partic-

ular vector is an LE component and the superseript s or ¢ indicates
that the veetor or funection is associated with the straight or curved
sections. The subscripts m and n are the modal indices. In Section IV,
where results are also given for an LM polarization, a superseript m
designates such fields.

One may easily verify that these transverse LE field components,
along with their longitudinal counterparts, satisfy Maxwell’s equations
in the appropriate regions and that the required boundary conditions,
namely, zero tangential electric field and zero normal magnetic field
on the waveguide walls, are met. Such representations are complete in
that any arbitrary fields in the straight and curved waveguides which
have their electric components confined to the longitudinal plane can
be expanded in the form of equation (1) or (2), respectively.

Appropriate expressions may also be written for the transverse com-
ponents of the LM modal expansions. They would also be complete in
the sense that any arbitrary fields in the straight and curved wave-
guides which have their magnetic components confined to the longitu-
dinal plane could be expanded in such a representation.

It can be shown, for the geometry indicated in Fig. 1, that an LE
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source in either the straight or curved waveguide excites only an LE
field, and conversely an LM source excites only an LM field. Hence
a waveguide bend excited by an LE mode is usually referred to as an
E-plane bend, in keeping with the fact that the LE source sets up only
an LE field for which the electric field is confined to the longitudinal
plane, that is, the plane of the bend. Figure 1a shows the typical wave-
guide geometry for an E-plane bend. Analogously, an H-plane bend is
one for which the magnetic field is confined to the plane of the bend;
this occurs when the source and hence the resulting fields are LM.
Tigure 1b shows typical geometry for this case.

Notice that the transverse vector components can be shown to satisfy

[[enean = o, sl [ et oid = b0 6. @)

In equation (3) the integration is taken over the cross-sectional area
of the appropriate waveguide interior. Such orthogonalities are a con-
sequence of the differential equations and the boundary conditions sat-
isfied by the scalar parts of the transverse vector components.

2.2 Integral Equation Formulation and Solution

As discussed in Section 2.1, the fields in the guides need only be ex-
panded in a representation consistent with the given source. In the
sequel, the unknown coefficients of the modal expansions are deter-
mined through an integral equation approach.

If there are LE modes incident on the junction in Fig. la in both
the straight and curved guides, the continuity in the transverse electric
and magnetic fields at the junction between the guides requires

St el 4 D0 A teh = D Cow €l + St ‘el @)
and

Si,hy, — 20 An b, = 30 Co bl — S5 hIL (5)
Here the source coefficients have been designated, for emphasis, by
S:, and 8;, for the straight and curved sections, respectively; they are
assumed specified. The unknowns are the modal expansion coefficients
A, and C,. .

Each side of equation (4) is actually an expansion of the unknown
aperture electric field E,(z, z). Referring to the orthogonal properties of

t Kronecker delta.
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the transverse vector components in Section 2.1, it follows that

8t bur 0+ A = [[ B ven.aa ©®
Sa

and

Chnt 821 o b0 = [[ Bu el pdd @)
Sa

form =0,1,...and n = 1, 2, . .. with the integration being per-
formed over the aperture area.t Rearranging equation (5) and substi-
tuting the relationships (6) and (7) for the expansion coefficients re-
sults in:

257, Wi, + 287 0 = [[ B, )80, dd,  ©®
Sa
where the dyadic kernel is given by
Glz,z;2,2") = 2 ['en(a’, 2) ‘Wiz, 2) + 2’ ‘€0l , ') Monlz, 2)]. (9)
Notice that equation (8) is precisely in the form of a vector Fred-
holm integral equation of the first kind for the unknown aperture elee-
tric field.
A solution of this integral equation by the method of moments would

proceed as follows.” Expanding the aperture electric field in terms of
the modes of the straight waveguide gives

E.@,2) = 2 G ‘€l - (10)

Substituting into equation (8) and interchanging summation and in-
tegration then requires

287, 'hi, + 287, Y, = 30 Gma(hin 4+ 20 bun B3, (11)
with b, defined by

b = | e@)eiulla) da. (12)

1

Taking the inner product of equation (11) with °h}, finally leads, after
some algebra, to '

t The indices m and n of the modes are chosen such that in the limit of =
—> co0 the mode in the curved guide with index numbers m and n is asymptotic to
the mode in the straight guide with index numbers m and n.
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as the infinite set of algebraic equations to be solved for a,,, , the expan-
sion coefficients of the aperture electric field.

As a first observation, we note from equation (13) that a,, = 0 if
g # s, and hence the aperture field is actually given by

E.(x,2) = 2 @, ‘ehl(z, 2), (14)

that is, the z-variation of the excited modes is the same as the z-varia-
tion of the source mode. At this point, therefore, the second subseript
may be dropped without loss of generality by merely realizing it is the
same as the second subscript of the exciting modes.

Equations (13) form an infinite set of equations for the infinite
number of unknown expansion coefficients of the aperture field. A trun-
cation is now made in order to solve for a,, by standard matrix meth-
ods, including sufficient terms in the field expansions in order to ensure
reasonable accuracy (see Section 4.1).%

2.3 Reflected and Transmiited Modes

Let us assume here that the expansion coefficients for the aperture
field have been obtained by solving equation (13). A relationship be-
tween the coefficients of the modes in the straight guide and the aper-
ture field was given by equation (6). Substituting the expansion of the
aperture field, equation (14), into this equation gives an expression for
the coefficients of the modes in the straight guide as

A, =0 — 6,8, m=20,1,2, --- . (15)

Likewise equation (7) yields, for the coefficients of the modes excited
in the curved waveguide,

Ch= 2 b — 8,85, m=0,1,2, . (16)

These relations are deceptively simple in that much of the complex
interplay between incident, reflected, and transmitted modes is hidden
in the “assumed known” coefficients a,, and a,.

The average power carried by the incident rth mode in the straight

t The solution of equation (13) also requires knowledge of the bm, defined by
equation (12). Their determination is at the crux of this method and their
evaluation will be discussed in Section 3.
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and curved guide may be determined:

2
PI; = __ff ‘e He* ds =jﬁlé ol I (17)
and
5 t
pr; = [[ B chgas = S| S (1s)

Here we assume that the incident rth mode is a propagating mode with
real B8, and », and that (*) designates the complex conjugate of a
quantity.

The average power coupled into the mth mode from the incident rth
mode may be evaluated in a similar manner yielding for the straight
cuide

h2
PC,., = WA |A.7]° (19)
and for the curved guide
. n’ .2 .
Pes, = <oz i (20)

The index m in equations (19) and (20) is anyone such that B, or v,
is real; that is, the mth mode must be a propagating one which carries
energy away from the junction. There are, of course, only a finite num-
ber of such propagating modes for a particular operating frequency
(see Cochran and Pecina?).

Equations (19) and (20) thus determine the power coupling, that is,
the power ‘excited in the mth propagating mode either transmitted or
reflected when the rth mode is incident in either the straight or curved
sections. Naturally, these quantities become of dominant importance
as one moves away from the junction and the evanescent modal con-
tributions die out. Section 4.2 gives some examples of the power cou-
pling for both sharp and gradual bends.

A similar analysis can be performed for an LM excitation. Section
IV presents the numerical results for this case.

III. PROPAGATION CONSTANTS AND MODAL FUNCTIONS
The modal functions for the continuously curved waveguide are de-

1 At this stage we assume that the waveguides are filled with a lossless dielectric;
hence, the total power is the sum of the power in each individual mode.
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fined in terms of Bessel functions of the first and second kind in Sec-
tion 2.1. Obviously they are solutions of Bessel’s differential equation,
which we write in the form

; d ( d > < - Vim)
2 - = Q: 21
P dp p dp Cl’mn hn p2 Can 0: ( )

moreover, for LE excitation, they are such that

d — ‘
gp Cronllop) li2ey = 0. ©22)

The boundary condition at p = r, is automatically satisfied by the
particular choice of the cross-product Bessel functions in Section 2.1,
whereas the boundary condition at p = r; determines the admissible
angular propagation constants vy.,.

The real angular propagation constants result in propagating modes
and hence are the most important in this analysis. These are obtained
for the sharp bend by a program of precise calculations of the real
v-solutions of the transcendental equation (22). The Bessel functions
appearing in equation (22) were approximated with six-figure accu-
racy by the use of algorithms recently developed and programmed for
a digital computer as discussed in Ref. 1.

There are other methods to determine the propagation constants of
gradual bends. For instance, a large parameter expansion of the differ-
ential equation (21) can be made; that is, the modal functions and
propagation constants may both be expanded in negative powers of 7.
The unknown ceefficients of each series can then be determined by im-
posing the boundary conditions at p = r; and r.. This approach has
been used by Kislyuk, as well as others; Ref. 8 gives these results.
Four terms in the expansion are all that are available, because higher
order terms are extremely tedious to determine.

A comparison of the real values of v evaluated from Kislyuk’s re-
sults with the precise v-zeros of equation (22) shows five digit agree-
ment for gradual bends (r;/b > 12). In the final program, we chose
to calculate all angular propagation constants by Kislyuk’s equation
for large (ry/b), that is, 12 or greater.

In the sharp bend case the imaginary propagation constants cannot
be obtained precisely, because there are no computer algorithms for
the evaluation of Bessel functions for this range (imaginary orders).
So other techniques must be used.

When the propagation constants lie on the negative imaginary axis,
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that is, v = —iu and u is not close to zero, asymptotic expansions for
the modal functions can be obtained. One approach is to approximate
the Bessel funections in C, (the derivative with respect to h,ry is not
performed as yet) by the first term of the asymptotic series developed
by Olver.® This yields an expression in terms of the familiar Airy func-
tions A7 and Bi. When the Airy functions are approximated by the
leading terms of their phase-amplitude expansions (see Abromowitz
and Stegun?®) and the derivative with respect to h,ry is taken, the ap-
proximation of C, becomes

~ —2 21} —w
R 0T ena+ D {(1 + 7)*/n cos [plw(n) — w(fn)]
n .
+Za¢7pmmwm~amm} @3)
where
hrs 7
n= —I:"_ ' = 7'_2 ’
and

2}
w@=mPi%§ﬂi—a+ﬁ?

The imaginary propagation constants for the sharp bend are now de-
termined by numerically finding the p-zeros of the asymptotic expres-
sions, equation (23).

The evaluations of the inner products, equation (12), required in
Section 2.2 are performed numerically. When the propagation con-
stants are real, we again use the computer algorithms for the evalua-
tion of the Bessel functions for both the sharp and gradual bends. The
latter evaluation was required because the evaluation of the modal
functions by means of a large parameter series expansion as deter-
mined by Kislyuk’s approach (really only three terms available) does
not exhibit very good agreement with the precise evaluation of the
modal function even in a region where the agreement between the two
methods of determining the propagation constant is very good. When
the propagation constants are imaginary the modal functions for the
curved waveguide are evaluated by means of the approximate expres-
sion, equation (3), for both the sharp and gradual bends.

A similar analysis may be made for an LM polarization; Section IV
presents the results of appropriate numerical calculations, as well as,
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comments concerning the verification of the numerical solution and
some representative examples.

IV. ERROR CRITERIA AND REPRESENTATIVE EXAMPLES

4.1 Error Criteria

As discussed in Section 2.2, the solution of the integral equation for
the aperture field reduces to an infinite set of algebraic equations for
its expansion coefficients. We make a truncation so that standard ma-
trix techniques may be used to solve for these unknown coefficients.
Sufficient terms must be included to obtain reasonable accuracy; in-
cluding more terms than necessary wastes computing time.

One can verify that a particular truncation is adequate by determin-
ing how well the field solutions satisfy the continuity requirement at
the aperture. The conservation of energy, which requires that the aver-
age power in all the propagating modes traveling away from the junc-
tion between the guides be equal to the average power in the propagat-
ing modes incident on the junction, is always satisfied (within roundoff
error) by the solution obtained (that is, regardless of the number of
modes used) ; therefore it cannot be used as an accuracy check. This
redundancy in the conservation of power, which may be established by
an analysis suggested by Amitay and Galindo,** is a consequence of the
method of moments approach which has been used to solve the integral
equation.

When the incident field is an LE mode, the aperture electric field is
determined. From this field one can derive the modal coefficients and
hence the magnetic fields in the straight and curved guides. These de-
rived magnetic fields should be continuous at the aperture; therefore,
3 mean square error (MSE—refer to its application by Cole and oth-
ers'?), normalized with respect to the incident field, can be defined as

[[ e —my-cm — E)* as

MSE =

>

J[ em o omy- ey as

The subscript ¢ designates the incident exciting field; the terms in the
numerator constitute the total fields, all evaluated at the junction be-
tween the guides. This mean square error is a meaningful measure of
how well continuity in the aperture field is approached, and is, of
course, & function of the number of modes used in expanding the fields.
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It was found, in the examples of Section 4.2, that the mean square
error could be maintained smaller than 10-3. This corresponds to three
to four digit agreement between the samples of the transverse com-
ponents of the magnetic fields on both sides of the aperture. A similar
mean square error may be defined for the LM case with corresponding
error levels.

4.2 Representative Examples

Some of the following representative examples correspond to very
sharp bends (r;/b & 1); the others correspond to very gradual bends

(r/b > 1).

4.2.1 Sharp Bends

Figures 2 through 5 and Table I give the results for the sharp bends.
We give the power transmitted into the modes of the curved guide and
reflected into the modes of the straight guide for an incident mode in the
straight guide in terms of the dimensionless ratios b/\, r,/b, and a/b.
Any structure with these ratio numbers has a coupling characteristic as
displayed.

The incident modes used in Figs. 2 and 3 are from the set of LM},
modes in the straight guide which have an electrie field given by

s m _B:L”hg 1 . - ~

En, = TBY (2/b)* sin [ma/br; — )] exp (—jBmoY)2.
That is, the incident fields are the familiar T'F,,, modes of a uniform
rectangular guide. The curved guides used here are referred to as
H-plane bends since the magnetic field lies in the plane of the bend
(see Section 2.1). In Figs. 4 and 5 the incident modes are from the LE?,
mode set in the straight guide. The curved guides there are referred to as
E-plane bends since the electric field lies in the plane of the bend.
The LE;; mode incident corresponds to the familiar TE,; mode with an
electric field given by

‘E6 = Agi(2/ab)tsin (rz/a) exp (—jBoy)d

whereas the LE;, mode incident is a combination of the TE,, and TM,,
modes in a uniform rectangular guide. The coefficients B}, and A7, of
the incident modes are chosen so that the incident power is unity.
The sharp bend results may be used, for example, to depict the
operation of the standard C-band guide 0.872 by 1.872 inch for a fre-
quency range from 3 to 18 GHz for the LM excitation and from 3 to

20 GHz for the LE excitation. For convenience we have superimposed
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TaBLE I—INTERMODAL COUPLING FOR LONGITUDINAL KELECTRIC
AND LoONGITUDINAL MAGNETIC FIELDS FOR A SQUARE
Guipe witH r,/b = 1.068

Incident Mode
b/A Power Reflected Mode Power Transmitted Mode Power
1.19 | LMi, =1.0 LM:, ~ 1077 LMS, = 0.952174
LM, = 0.000012 | LMg, = 0.047815
LE}, =1.0 LE:, = 0.000001 LES, = 0.618860
LE:, =0.000046 | LE:, = 0.376074
LE;, =0.000022 | LE: = 0.004997
1.79 | LM, =1.0 | LM, =10~ LM¢, = 0.736720
LM, = 0.000001 | LMS, = 0.258699
LM;, ~ 1077 LMg, = 0.004581
LE; =1.0 LE;, =~ 107 LES, = 0.456751
LE:, =0.000005 | LE:, = 0.384346
LE3, =0.000001 | LES, = 0.153564
LE;, = 0.000027 LE;, = 0.005306

another coordinate scale on Figs. 2 through 5 demonstrating the fre-
quency of operation if the guide has these dimensions. The vertical
arrows on this frequency scale indicate the cutoff frequencies of the
modes in the straight guide. As these examples show, the frequency band
covered corresponds to a situation where up to 5 modes can propagate.
The overmoded operation demonstrates the possible coupling between
modes. Also notiee that for the H-plane bend (Figs. 2 and 3), b is greater
than @ and for the E-plane bend (Ifigs. 4 and 5) b is less than a.

The strong coupling between the modes for sharp bends is clearly
demonstrated for H-plane bends in Figs. 2 and 3. In Fig. 2 we see that
the LM}, mode incident in the straight guide can actually couple more
energy into the LM, than into the LM], mode of the curved guide
when b/\ is greater than 2.7. Conversely the LM 3, mode incident in the
straight guide can couple more energy into the LM5, , LM 3, , and LM,
modes than into the LM, mode of the curved guide for the appropriate
b/, as Fig. 3 shows.

For an LM excitation it is possible to have a mode propagating in
the curved waveguide while still cut off in the straight waveguide. This
leads to a value of coupling into the curved guide mode which drops
sharply as the corresponding mode begins to propagate in the straight
guide but then increases with increasing frequency. Figures 2 and 3
show this at b/A = 1.0, 1.5, 2.0, and 2.5. The reflections are also exag-
gerated at the cutoff frequencies of the modes in the straight guide. In
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contrast, the cutoff frequencies of the LE modes in the curved guide
are greater than or equal to those in the straight guide. This leads to
the possibility of having a mode propagating in the straight guide
while still cut off in the curved guide. Sharp jumps in reflections and
transmissions are thus also expected at such cutoff frequencies for this
situation; unfortunately, we are not able to examine them in detail.
Recall that the procedure outlined in Section ITI allows us only to find
the imaginary propagation constants in the curved waveguide if they
are not too small. Unfortunately the case just described violates this
restriction since the pertinent propagation constants in the curved
waveguide are imaginary with a magnitude infinitesimally close to
ZEro.

In Figs. 4 and 5 one can see that the power coupling at an E-plane
bend is also very strong. The reflections for this case are more pro-
nounced over a wider frequency band than in the H-plane case. Again
there are exaggerated reflections at the cutoff frequencies of the modes.
Notice that with both LE and LM polarizations, the forward coupling
is greatest into the modes adjacent to the one corresponding to the
ineident mode.

It is valuable to compare the coupling for an E-plane bend with that
of a H-plane bend for equivalent problems. To this end, consider a
square guide with the ratio r;/b set at 1.068 for cach polarization and
the frequency of operation set at the same value for both cases. Table
I gives the coupling for this situation. (Notice that the number of LE
modes propagating is one more than the number of LM modes prop-
agating at the frequencies used.) From the results one sees that much
less energy is forward coupled into the mode corresponding to the in-
cident one when the fields are LE and that the total reflected energy is
greater in the LE case. This is not unexpected if one examines the dis-
continuity in the geometry encountered by the electric field intensity
for both cases.

4.2.2 Gradual Bends

For a very gradual bend situation we chose square waveguides with
r;/b = 250. This very gradual bend simulates the curvatures encoun-
tered in the waveguide connection between receiver and antenna of the
Bell System TD-2 microwave relay system (one must realize though
that waveguides with circular cross sections are used there). Tables 11
and III give some pertinent results. Again a frequency scale is super-
imposed, this time corresponding to a 2.4 inch guide. This value was
picked so that the fundamental mode in the straight guide with a square
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cross section would have the same propagation constant as the funda-
mental mode of a straight guide with a circular cross section, 2.812
inches in diameter. This we felt, permits us to stimulate, at least quali-
tatively, the situation encountered with circular cross section guides in
the TD-2 system.

The coupling in the reverse direction (reflected power) was at least
60 dB down for both LE and LM fields regardless of which mode was
incident; hence thesc tables do not give them. The H-plane bend
(Table II) forward couples power (=40 dB down) into modes adjacent
to the one corresponding to the incident mode only at the higher fre-
quencies. The E-plane bend (Table III) exhibits much larger forward
coupled power into such modes (=30 dB down) at these same higher
frequencies. The levels of the undesired forward coupling at the lower
frequencies is much less (=250 dB down). The results suggest that with
such gradual bends reverse coupling is totally insignificant and only
forward coupling can have a meaningful effect.

All the results discussed in Section 4.2 have been based on the ex-
citation from the straight guide side of the junction. The results for
excitation from the curved guide side are of the same form, and hence,
have not been given for the sake of brevity. However, forward cou-
pling into the straight guide from the curved guide may be deduced
from the data already presented by realizing that the power forward
coupled into mode m of the straight guide from mode 7 in the curved

TABLE II—INTERMODAL COUPLING RESULTING FROM A
LoxaiTupiNaAL MaAGgNETIC MODE INCIDENT IN
StraiGHT GUIDE WITH r,/b = 250

f Excited Mode
(b = 2.4 inches) Incident Excited Power Level

b/ GHz Mode Mode dB)
0.813 4 LMM;3, LM3, 0.00
1.22 6 LM:, LM, 0.00
LM, —55.84
LM, LM, —55.84
LM, 0.00
2.24 11 LM3, LM, 0.00
LM, —41.54

LM, < —60

LM, <—60
LM3, LM¢, —41.54
LM, 0.00
LM, —47.59

LM, <—60
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TaBLe III—INTERMODAL COUPLING RESULTING FROM A
LoNGiTupiNAL ELEcTRIc MODE INCIDENT IN STRAIGHT
Guie wiTH r,/b = 250

s Excited Mode
( = 2.4 inches) Incident Excited Power Level
b/ GHz Mode Mode (dB)
0.813 4 LES§, LE3, 0.00
LEY, —50.06
LE3, LE§, —50.06
LE3, 0.00
1.22 6 LEg, LE:, 0.00
LE:, —39.39
LE;, <—60
LE3, LE:, —39.39
LE:, 0.00
LE:, —55.46
2.24 11 LE&1 LEg, —0.01
LE:, —27.38
LE3, < —60
LEE, <—60
LE;, <—60
LE:, LE, —27.38
LE:, —0.01
LE, —39.88
LEE, <—60
LE;, <—60

guide is the same as the power forward coupled into mode n of the
curved guide from mode m in the straight guide (reciprocity).!

V. CONCLUSION

This paper has investigated the coupling of electromagnetic waves
between straight and curved rectangular waveguides. Numerical re-
sults have been obtained by using a numerical method which leads to
solutions applicable for sharp as well as gradual bends. Two represen-
tative examples have been given. One was a sharp bend and could be
used to depict the coupling that takes place, say, in standard C-band
guides. The other was a very gradual bend; this was used to obtain
some insight into the coupling that occurs in the waveguide connec-
tions between the receiver and antenna in typieal microwave networks.

The coupling discussed has been confined to a one junction struc-

t This modal reciprocity, although surprising at first glance, is a direct con-
sequence of Maxwell’s equations, the lossless character of the guides, and the
orthogonalities between the modes as discussed in Section 2.1.
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ture, that is, a straight to a curved guide or a curved to a straight
guide. In any practical system, however, at least two junctions gen-
erally occur, that is, one encounters straight-curved-straight or curved-
straight-curved connections. For very gradual bends it is merely neces-
sary to account for the forward coupling at each junction since any
reflections are negligible. Sharp bends, on the other hand, require one
to account for multiple reflections; this appears to be most effectively
handled by the scattering matrix approach.
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A Quadratic Conduction Gas Lens

By C. A. FRITSCH and D. J. PRAGER
(Manuscript received January 17, 1969)

A lens system for a periodic light-beam waveguide is proposed and
analyzed in which gas ts enclosed in a circular cylinder heated with a
cos 2¢ temperature distribution. We show that this temperature distribution
may be produced by cutting a cylindrical hole in the center of a square block
which has two opposite sides of equal temperature above the ambient tem-
perature, and two sides of a lower temperature. Heat conduction across
the gas produces an index of refraction variation which, in two orthogonal
azimuthal planes, increases or decreases as the radius squared. The effect
of thermal convection is analyzed by solving the governing equations as an
expansion in powers of the Rayleigh mumber; the solution reveals that
convection effects can be made negligible over a practical range of lens
parameters. The major attributes of the lens system are that only tempera-
ture controls are required and the aberrations associated with thermal
convection can be readily minimized.

I. INTRODUCTION

A gas lens system to transmit a light beam through a tube should
have a favorable refractive index, negligible aberrations, and a simple
construction. The favorable refractive index must be such that all
light rays parallel to the tube axis, but of varying distances from that
axis, converge at approximately the same point on the axis, the dis-
tance being called the focal length. Within the paraxial ray approxi-
mation it is easy to show that an r? variation of the refractive index
has this property (see, for example, Refs. 1 and 2).

Berreman obtained a refractive index (which varied approximately
as the square of the radius) by flowing a gas through a cold cylinder
enclosing a warm helix aligned on the axis®* The interior of the
helix has the desired refractive index. Marcuse and Miller simplified
Berreman’s lens by considering a cool gas flowing through a heated
cylinder of uniform temperature (the Graetz problem) .2

2281



2282 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

In order to reduce the distortion resulting from spherical aberra-
tions, Berreman built a counterflow arrangement composed of two
back to back tubular lenses.! Marcuse calculated the principal sur-
faces of a flow type lens noting that the one with the light beam
parallel to the flow differs only slightly from that of the beam anti-
parallel to the flow.? He then numerically calculated the fate of a
beam as it passes through a large number of flow lenses and compared
the results with those with a counterflow arrangement.® This arrange-
ment, decreased the distortion. Kaiser later found that this configura-
tion also lessens the asymmetric distortion due to thermal convection.®

The major drawback to the flow-type lens is the need for control of
the flow. Gu performed a compressible flow analysis and found that,
as a result of the wall friction, choking could occur for the optimal
flow rate in a few hundred meters.” This could be overcome only by
further complexities in the system.

A conduction-type lens was proposed by Suematsu, Iga, and Ito,
in which they analyzed a configuration composed of hyperbolie, con-
vex Inward walls, two of which are at one temperature and the other
opposing two at a lower temperature.® The concomitant temperature
distribution varies as the square of the distance in the transverse di-
rection. Then the refractive index bears the r* variation® in two
orthogonal planes, being convergent in one and divergent in the other.
This guadratic variation has two highly desirable characteristics.
First, within the paraxial approximation, the focal length of every
ray passing through a quadratic lens is independent of the radius,
and hence the field reproduces itself after each period.* Second,
Marecatili has shown that the eigenfunctions associated with a quad-
ratic lens are Gaussian. Therefore a laser beam which is also Gaus-
sian can be mode-matched to a waveguide consisting of quadratic
lenses. This means that all the energy will remain in the launched
mode; the only mode conversion that would take place is that result-
ing from higher order variation, that is, aberrations.

The advantage of the conduction lens is that only temperature con-
trols are required since no gas flow is involved. However, thermal
convection is present in this lens and although Suematsu, and others,
observed a degradation of their lens at high temperature differences
they did not analyze the thermal convection effects.

* For negligible pressure changes the refractive index is virtually only a func-
tion of the temperature; for small temperature variations the changes in refrac-
tive index are directly proportmnal to and of opposite sign from the temperature
changes.
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We will consider a quadratic conduction-type lens, which is formed
by imposing a cos 2¢ temperature distribution on the wall of a cir-
cular cylinder. For sufficiently small temperature variations the change
in the refractive index is approximately quadratic and lensing action
similar to that of Suematsu, and others, is obtained. The three cen-
tral questions considered are: (1) What are the effects of thermal con-
vection on the quadratic distribution? (it) How does one readily
obtain a cos 2¢ wall temperature distribution? (¢} What are the opti-
cal properties of a waveguide consisting of these lenses?

We show that the cos 2¢ distribution can be achieved very simply by
boring a circular hole in a square block in which two opposite sides bear
a higher temperature than ambient and the other two bear a lower tem-
perature. If sections of the above lens are placed in tandem, each con-
secutive one rotated by 90 degrees, there then exists in one plane a
series of alternating, convergent-divergent lenses. In the perpendicular
plane this series is, so to speak, 180 degrees out of phase. We may
then use Miller’s® analysis of a sequence of alternating gradient
lenses,” and determine criteria for the optical properties as a function
of the parameters of the system.

We study the effect of thermal convection by using a straightfor-
ward perturbation analysis which is found to be in agreement with
preliminary results of an experiment. We investigate the method of
producing the wall temperature distribution by constructing an ap-
proximate solution which reveals how the wall temperature distribu-
tion can be established, as well as discuss the experimental program
in progress and compare this lens and the other cited above.

II. ANALYSIS

2.1 Analysis of Thermal Convection

Consider a circular cylinder with the geometry given in Fig. 1. The
governing equations for the steady motion of the gas within the
cylinder are:

(7) continuity equation,
V- (pu) = 0; 1)
(1) equation of motion,

p(u-V)u + Vp — pg — uVu = 0; (2)

* Alternating gradient focusing in gas lens systems was first proposed by A. R.
Hutson .3
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Y

Fig. 1 — Geometry of the lens eylinder.
(%) energy equation,

-V (e, T) = kV’T 4+ u-Vp + ud. 3)
Here,

p is the density,

u the velocity,

p the pressure,

g the gravitational acceleration,

u the viscosity,

¢, the specific heat at constant pressure,

k the thermal conductivity, and

& the dissipation function (associated with the frictional work).

The boundary conditions at the cylinder surface are

T(a, ¢) = T.,(l + %T cos 2¢) 4)
and
u(a, ¢) = 0, 6))

where AT is the maximum excursion about the average wall tempera-
ture, T,.

At this point we use the Boussinesq approximation which consists
of two elements; the density changes are significant only in the body
force term, and these changes are a function of temperature only. The
latter element amounts to neglecting the product of the isothermal
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compressibility, «, times the pressure change in comparison with the
product of the volumetric expansivity, B8, times the temperature
change. In other words, for p = p(p, T')

dp 1<6p> l(ap)

—==\=) d =\ dT
P p\dp/p p+p T/,
=xdp — BdT,

and the Boussinesq approximation requires the second term to be
much larger than the first term but still small enough so that

p = PO[]- - B(T - TO)]y (6)
where the subscript denotes conditions at the center of the cylinder
in the absence of fluid motion.

We nondimensionalize the variables in the hope that a perturbation
scheme for a solution to our problem may be suggested. We define
u T — Ta
= oo T 0= TaT @
Since the density changes are considered important only in the body
force term, equation (1) yields the incompressible continuity equa-
tion,

U

v-U = 0. ®
The pressure term can be eliminated from the equation of motion by
taking the curl of equation (2). The result of this operation leads us
to define the velocity components in terms of the stream function ¢ so
that in e¢ylindrical coordinates we have
_lw

T rdg ] ¢ or ©)

The continuity equation, (8), is identically satisfied, and the equa-
tion of motion becomes

U,

: 1(@9__@6_) 2y _ ( g_sinqsg)
VYt T \Grae " apar) Y VT NSV 50 (0)
where

¢ = Hlj— . the Prandtl number, and
B ATgC,,pg(f

\ = the Rayleigh number.

uk '
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Fig. 2— Contour plot of the first approximation for the stream function with
values of y® on indicated contours:

A = 0.00001 F = 0.0005 M = —-0.002 Q = —0.0001
C = 0.00005 G = 0.001 N = —0.001 R = —0.00005
D = 0.0001 H = 0.002 O = —0.0005 T = —0.00001
E = 0.0002 P = —-0.0002

If the velocities are sufficiently small then the viscous dissipation
can be neglected and the energy equation, (3), in terms of the new
variable becomes

2p _ L(30 0 _ 0 a_) _
Ve r(é)raq& aq&ara_o' (11)
The boundary conditions, (4) and (5), become
6(1, ¢) = cos 2¢ (12)
and
W _ 9 -
(Lo =550 =0. (13)

In the case of a small Rayleigh number it is fruitful to seek a solu-
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tion in powers of A;

ll/=)\tl/m+)\2¢(2)+"' (14)
and

0= 09 4 N0D NP & ., (15)

This expansion is valid in the limit, A = 0, and an upper bound of A
for the validity of the expansion will be obtained subsequently.

When we insert equations (14) and (15) into (10) and (11), the
coefficients of like powers of A must individually be set equal to zero
for the equations to hold as X is varied. Beginning with the lowest
order we obtain from equation (11)

AVAUAE) (16)
The solution to the equation, with the boundary condition given by
equation (12), is

8 (r, ) = 1 cos 2¢. (17)

Next, from equation (10) the lowest order contribution to the
stream function is obtained from

30" sing 90"

ar 7 do

with the boundary conditions given by equation (13). Inserting equa-
tion (17) into equation (18) and expressing the biharmonic operator
in eylindrical coordinates yield

VP = cose (18)

(2422 19,10
+ r o’ r° ar r or

2 9 2 9 19 4a)m_
—T3a¢267'+?"26¢ 31”2—{_7‘46(#4 4a¢ 12 ={2r cos ¢. 19)

The solution to this inhomogeneous biharmonic equation is

v, ¢) = 616 I — 2" 4+ 1} cos ¢. (20)

Tigure 2 is a contour plot of the stream function, equation (20).

Finally we wish to determine the perturbation on 6(®. This will
indicate the effect of thermal convection in distorting the lens and
afford an estimation of the upper bound of the Rayleigh number.
Again, from equation (11) we get
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-1.0
-1.0 -0.8 -0.6 -0.4 -0.2 o] 0.2 0.4 0.6 0.8 1.0

Fig. 3— Contour plot of the (a) zeroth approximation for the temperature
distribution with values of 6® on indicated contours:

A=01=—-R D=04=-T G =07=-X
B =0.2= -8 E=05=-V H=08=-Y
C=03=-T F =06=-W I =09=-7Z

(b) first perturbation for the temperature distribution with values of §® on indicated

contours:

A=00001=-S C=0006=-U ZE=0015=-W G=0025=-Y
B=0001 =-T D=001 =-V F=0.02 —-X H=0028= -7

(e) first approximation for the temperature distribution (A 10%) with values of
8© 4 X6D® on indicated contours:

A=01=-R D=04=-U G =07=-X

B=02=-S E=05=-V H=08=-Y

C=03=-T F=06=-W I =09=-Z

1 <a¢(l) 60(0) a\b(l) 80(0))
2p(1) _ — 21
Ve r dp Or ar Jd¢ @1)
with the boundary condition

6(1, ¢) = 0. (22)

Inserting cquation (17) and (10) into equation (21) yields
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¥ 19,19 :
<—- + e + 5 é;—2>0(” = —20* — %% + 1)rsin ¢ cos 2¢

+ 2(5+* — 6¢° 4 1)r cos ¢ sin 2¢. (23)
The solution which satisfies equation (22) is

6, ¢) = [f(1) — fz(l)] 5sing — [fi(1) + f(l)] —sm 3¢

+ ,(r) sin ¢ cos 2¢ + f.(r) cos ¢ sin 2¢, (24)

where
32 48
Q) *_<§§— 2041 " )
and
s 483D 32(11) )
f.t) = 4(96) (9’" soar T T4t g r T2

A numerical calculation reveals that the maximum value of 49 is
approximately 3 x 10-% Since 8 is bounded by unity, the expansion
should be valid for Rayleigh numbers less than the order of 10%. Figures
3a, b, and ¢ show contour plots of #(, 4™ and 9 + A, respec-
tively. In Tig. 3¢, A = 10° to demonstrate the distortion possible.

Experiments are being conducted to verify the foregoing results and
to better understand thermal convection in other circumstances. Fig-
ure 4 is a photograph of the streamlines made visible by the introduc-
tion of cigarette smoke into a circular cylinder having a cos 2¢
temperature distribution. The Rayleigh number is 575. Notice the re-
semblance between this pattern and the contour plot of the preceding
analytical results (Fig. 2). The slight shift upward of the smoke
streamlines can be attributed to higher order terms in ¢ and y. The
steadiness of the observed flow supports our seeking time-independent
solutions of the equations of motion.

2.2 Establishing the cos 2¢ Wall Temperature Distribution

If one imposes a linear temperature distribution across a slab by
heating one face and cooling the other, and then if one drills a
cylindrical hole parallel to the faces of the slab, it is well known that
a temperature distribution varying as cos ¢ will appear on the wall
of the cylindrical hole. Extending this to a square region with one pair
of opposite faces heated and the other pair cooled one might presume
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that a cos 2¢ temperature distribution would appear on a cylindrical
hole cut in the center of the square. To determine the degree of ap-
proximation of this presumption the heat conduction problem in a
region bounded on the exterior by a square and on the interior by a
circle is analyzed in the following paragraphs. Figure 5 shows the
geometry of the problem.

The problem of a square with a hole in it cannot be solved exactly,
as we show. An approximate solution could be sought in either cartesian
or cylindrical coordinates. However, considering the problem in cy-
lindrical coordinates allows one to compare the relative magnitude of
the portion of the distribution, which varies with cos 2¢, to that as-
sociated with higher order terms. Secondly, the solution is more nearly

Fig. 4 — Convective motion illuminated by cigarette smoke.
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0=+6

Fig. 5— Geometry for conduction problem in solid cross section of gas lens.

exact on the cylindrical hole if the approximate solution is sought in
cylindrical coordinates. Furthermore, since the heating arrangement
has a certain amount of symmetry, only a sector 7/4 < ¢ < 7/2 need
be considered.
For steady two-dimensional conduction in a material having constant
thermal conductivity the heat conduction equation becomes
190 , 19%

+;5;+r6¢ 0. (25)

The boundary conditions are:

at rsin¢ = b, 0= —06; (26)

at r=1, g—f = 0; @7

at =7, 6=0; (298)
T 00

at ¢ = 50 3% = 0. (29)

Notice that 6§ = (T — T,)/AT as before, where T is the tempera-
ture excursion desired on the cylindrical hole. Consequently, ® =
(T, — T,)/AT where T, is the wall temperature. The insulated condition,
(27), assumes that the heat lost to the gas in the hole is negligibly small
compared with the heat conduction in the solid. This is reasonable as
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long as k.p1ia 3> keas.* Condition (29) results from the symmetry about
/2. The radius r is normalized with respect to the cylinder radius
as in the Section 2.1.

Assume a separable solution of the form

0 = R(r)®(¢), (30)
so that

PR 4+ R’ — &’R = 0, (31)
d"" + o’d = 0. (32)

The solution of equation (31) and (32) is

« , B .
6 = A(r + —a>(C’ sin a¢ + cos ag). (33)
r

The insulated condition (27) is satisfied if B = 1. To satisfy both
conditions (28) and (29) simultaneously, C = 0 and

a = 2n, n=12375 . (34)
Therefore,

0, = An<'r2" + ;%,;)(cos 2ne), n=135---, (35)

where A, is determined to satisfy equation (26), that is,

-3 b e )
-0 = E An<sin2n p + sin™ ¢ | cos 2ne. (36)

n=1,3,5

Because of equation (26) our problem in r is not a Sturm-Liouville
system and we have no assurance that equation (36) will converge
even if the A,’s could be determined in general. In what follows we
determine the first few A,’s so that equation (36) is satisfied in
two different senses as accurately as our needs dictate—collocation
and minimization of the error in a least-squares sense.®

In the collocation method the error is made to vanish at, say, three
particular points on the boundary r sin ¢ = b. This gives us three
simultaneous equations through which A4, , 4;, and 4; can be deter-
mined. For two different sets of collocation points, the corresponding
coefficients are listed in Table I for the ratio of the side length to the

* The k for most plastics is a factor of 10 greater than that for air. For formed
plasties kenia = keas and the behavior of 6 at r = 1 can be assessed from the solution
for conduction in a square with two sides at ® and two sides at — @,
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TABLE I-—COEFFICIENTS FOR APPROXIMATE SOLUTION BY COLLOCATION

Collocation points = 60°, 75°, and 90°

b =2 b =4 b=6
ay 1.03531 1.08889 1.09191
as —0.11082 —0.10469 —0.10434
as 0.01083 0.01155 0.01159

Collocation points = 50°, 70°, and 90°

b =2 b =4 b =
a 1.04521 1.09927 1.10232
as —0.14096 —0.13457 —0.13421
as 0.03046 0.03101 0.03104

cylinder diameter, b = 2, 4, 6. These coeflicients are normalized with
respect to ©. Furthermore, some of the dependence on b is suppressed
when the coefficients are defined as:

Aann
@ )

®37)

a, =
so that
%g > E"—(rz"—!—;}—n) cos 2n¢, ;-:éqﬁé;—r' (38)

n=1,3,5 b2"

Figure 6 contains a plot of 6(r = b/sin ¢, ¢/b) using both sets of col-
location points. This illustrates the degree of approximation entailed
at the outer boundary where — (/@) should equal unity over 0 =
X/b < 1.

The least-squares method requires that the mean square error over
the boundary r = b/sin ¢, 7/4 < ¢ = /2, be as small as possible.
Defining

¢=6— (—0); (39)

we then wish to minimize

j; ’ € do. (40)

Tor convenience we take only the first two terms of equation (35) for
6 and note that »** > 1/r* close to the outer boundary so long as
b = 2. Consequently,

6= Ay’ cos 2¢ -+ A, cos 6¢, (41a)
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and

o~ Ay S082¢ s €08 6
e Ab S’ ¢ + Azb S ¢ (41b)
Inserting equation (41b) into integral (40), performing the integra-
tion, and setting the derivative with respect to 4; and A3 equal to

zero we find that:

% ~ 1'32)1218 (rz + ;15> cos 2¢ — 0'11)5?505 (1'6 + r—};) cos 6¢. (42)
Figure 6 also has a plot of equation (42) evaluated at r = b/sin ¢.
Apparently the collocation method yields a much closer approxima-
tion for heat conduction problems. (The square of the temperature
has no particular physical meaning,.)

Returning to the collocation solution (Table I) the temperature
distribution on the cylindrical wall, for b = 6, is given as

0(1, ¢; 6) - 2a; cos 2¢ | 2a, cos 66 I 2a; cos 10¢

== 2 + 6 10
C] 6 6 6
1.4 . —
LEAST-SQUARES
METHOD
1.2 >§
1.0 /
COLLOCATION AT
605 755 90°——
0.8 ! }
0 I
-y COLLOCATION AT ___
509 705 90° \
0.6
0.4 \\\
0.2 \\\\
o
o 0.2 0.4 0.6 0.8 1.0
x/b

Fig. 6 — Comparison of approximation at outer boundary in conduction problem.
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2 0.06066 cos 2¢ — 0.0447 X 107* cos 6¢ (43)
-+ 0.0383 X 107® cos 10¢,

and we see that the distribution varies as cos 2¢ within one part in
10,000. For b = 2 the deviation is somewhat greater, being

&g;_m — 0.5176 cos 2 — 0.00346 cos 66 4+ 0.02115 X 10~ cos 106.
(44)

Similar results can be obtained from equation (42).

Recall that this solution is for k.o 1zq > keas - When ke1ia R Kgas the
deviation of 6(1) from cos 2¢ can be evaluated from the analytical
solution for a solid square two sides at © and two other sides at —0, v."*
In doing this we found that the deviations from cos 2¢ are of the same
order as those cited above.

The power necessary to operate the lens can be readily found from
integrating along the radial line at ¢ = /4. The heat flow rate Q
through one sector is given by

. *198
Q——kATflrad)dr

nmw
—

Q=aT 3 kd.siny [(\—%) —~ (‘@bf)'n] 45)

which is nearly independent of b. In terms of the collocation coef-
ficients, where the b** term has been neglected,

k@QAT E 20/1 - 803 + 32(15 . (46)
Forb =4
Q = 338kO AT = 338 K(T, — T,). (47a)
Since

6(1, 7/2; 4) = —0.1360 = —0.136(5”—[7,&) —1, (47

then for a AT of 1°C excursion Ty — T, = 7.4°C. For a gas lens
whose solid portion is made of polystyrene (k = 0.1 W/m°C) the heat
flow rate would be Q@ = 2.5 W/m for each sector; then the power re-
quirement would be 10 W/m for 1°C AT across the lens. If a foamed
polystyrene could be used the power requirement would be 3.5 W/m°C.
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2.3 Optical Properties of the Conduction Lens

With the effect of thermal convection in mind we now consider how
to evaluate the optical properties of a gas lens characterized by the
lowest order temperature distribution (that is, 72 cos 2¢). We wish
to determine these properties as functions of AT, cylinder radius a,
and lens section length L; we are constrained by the requirement of
minimizing AT so that the distortion depicted in Fig. 3¢ shall be toler-
able. In the following paragraphs we only write down the relevant
equation; we do not establish explicit design criteria.

The system of lenses consists of a sequence of sections with each
succeeding one rotated 90 degrees. Therefore, for any angle, ¢ (see
Fig. 1), as one marches axially, the sections act alternately as diver-
gent and convergent lenses. Since the temperature varies angularly,
as well as radially, so does the refractive index; hence, in addition to
the ray bending toward or away from the axis it will, in general, be
twisted. However, at ¢ = 0 and /2 the refractive gradient has no
angular gradient and, hence, rays originally in either of those planes
remain there; they undergo convergent and divergent displacements
alternately. All other rays have radial displacements intermediate
to those at ¢ = 0, =/2.

The trajectories of the rays in the ¢ = 0, =/2 planes may be calcu-
lated analytically and turn out to be sinusoidal and exponential in the
convergent and divergent sections, respectively.

Although a numerical solution must be used for the other trajec-
tories, some qualitative observations may be made. In the neighbor-
hood of ¢ = 0 the angular component of the refractive index causes
rays to be twisted away from that attitude, while near ¢ = =/2 rays
are restored to that angular position. Therefore, as one moves down
a section the density of rays tends to increase near ¢ = =/2 and to
decrease near ¢ = 0.

In order to obtain the intensity of the beam through a lens section,
the Helmholtz-type equation with the appropriate refractive index
must be solved. This was done by Marecatili*? for an asymmetrical
but convergent-type refractive index.* He established conditions for
the stability of a lens system and calculated the focal length.

For our present purposes there is no need for a detailed solution of
the field equations but rather for the ray displacement, stability
criterion, and focal length. Toward this end Miller’s® analysis of the

* Marcatili informed us that there is no basic reason why his analysis could not
be extended to include divergent sections.
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ray equation is applicable.! He obtained these quantities by solving
the difference equations which govern the passage of the rays through
the sequence of lenses. If we only consider the ¢ = 0, =/2 planes, then
the sections act as alternating convergent and divergent lenses, with
the rays remaining in their original planes; we may then apply Mil-
ler’s results.

Miller obtained the ray displacement after the nth convergent and
mth divergent lens for an initially convergent and an initially diver-
gent sequence. He also found the stability condition which keeps the
ray trajectory bounded after an infinite number of lenses. This con-
dition is

0<%<2. (48)

Here, to serve as an example, we only display the expression for the
ray displacement after the nth convergent lens for an initially con-
vergent lens:

Ty = 7.k, cos (n 8 — ¢,) + 4Lk, sinn 8 (49)

where r, and 7/ are the initial displacement and slope, respectively, and

I _1@)2] 2
8 = cos l:] 5\ , ky = A

(50)

S

_ -1 7.-1 _ A
¢ = |cosT k[, and k, = P
Turthermore, we must stipulate that the ray does not intersect the
cylinder wall, that is,

T

2 <L (1)

The relationship between the focal length and the refractive index
may be obtained from Marcuse and Miller.* For a thin lens the focal
length is given by*

t We are indebted to Marcatili for several clarifying remarks on this subject.

* A thin lens is one in which the principal surface generated by rays incident
from the left coincides with that surface constructed by rays incident from the
right. Since there is no preferred direction with the conduction-type lens it is
thin; the flow-type lenses cited in Section I may be approximately thin,
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2

f =16, g—d; : (52)

where 8, = 2x/A, A is the wave length of the light, and A¢ is the dif-
ference of the phase of a ray incident a distance r from and parallel
to the axis after traveling a distance L, compared with a ray on the
axis traveling the same distance.

To calculate A¢ in terms of the refractive index, we invoke the
paraxial approximation in which the rays are regarded as approxi-
mately parallel to the axis. Then the required phases are easy to
calculate, that is,

L
8,928, [ n6) d = Ban@)L (53)
0
and
¢(0, z) = B.n(0)L. (54)
The refractive index at ¢ = 0 is
T, n, — 1
nr, 0 =14+ n, — 1) TG.0) — 1+ — AT
R
’ (55)
AT o
=n, — (no - 1)71_0_%»
where n, is the refractive index at the axis at temperature T',.
Hence,
AT r*
A = B, — D 5 L (56)
and the focal length is obtained from equation (52):
1 a’T,
f =S =1 aTL 67

independent of r.

With the aid of equations (48), (49), (51), and (57) we may deter-
mine the focal length and ray displacement as a function of the lens
section and radius and temperature excursion. For a complete dis-
cussion of the foregoing subject, see Ref. 9.

To establish precise design criteria the foregoing equations must be
solved on a computer. However, for illustrative purposes and as one
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aspect of the problem we shall make use of some of Miller’s simplified
expressions valid in certain limits.?

If we use equation (49) with the value of the section length to
focal length ratio which yields the smallest value of the maximum ray
displacement and, furthermore, insure that the rays do not intersect
the wall, AT obtained is unacceptable for three major reasons (¢) the
power requirement is excessive, (77) the moderate Rayleigh number
will cause appreciable distortion, and (#%) the temperature excursion
is sufficiently large so that section end effects may be significant.

In order to overcome these objections we now examine the case of
weak focusing, that is, 2f/L > 1. We consider the initial conditions
such that '

r, K 7rlf. (58)

(The opposite inequality for weak focusing yields a trivial design
problem since it does not involve the focal length.) From Miller the
maximum ray radius, 7mayx, 18 °

Tmax = 2f75 . (59)

To insure that the ray does not intersect the wall we have

7z (60)

Inserting equations (57) and (59) into equation (60) yields
a_ T,
L, — 1)AT" "

As an example we use the following values, where air is the medium
of the lensing action

1

v

(61)

T, = 290°K,
n, — 1 = 0.295 X 107°,
and
A (Rayleigh number) = 9.15 X 107 ATa®

with AT in degrees Celsius and a in meters. In addition, let 7§ = 107%,
a =3 X 10"°m, and L = 0.5 m. Then from inequality (61) we obtain

AT = 0.59°C. (62)
Hence, A = 2.9. Consequently,
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[ AP < 107" &< | 0 Ja -

It should be borne in mind that with the above values of @ and L, the
weak focusing limit is satisfied for AT < 5°C. In addition, to satisfy
inequality (568) with the foregoing values we must have

ro K rif = 1.5 X 107 m (63)

which is easy to satisfy.
Using equation (47a), we obtain for the heat flow rate through one
sector

Q=15W/m

which results in a power requirement of 6.0 W/m. The required ex-
terior wall temperature is calculated from equation (47b) as T, =
T, + 4.4°C. Therefore, in the limit of weak focusing the temperature
excursion is sufficiently small to make the lens system promising.

Considering the flow-type lens of Marcuse and Miller to have the
same characteristics as the above conduction type lens, we calculate
the power expended at optimum flow rate to be 1.14 W.* Hence, the
lens proposed here requires somewhat more power for heating than
those previously investigated. However, the flow-type lens also re-
quires power to drive the gas.

Since the input beam will be more complicated then was assumed
above, the foregoing calculation is very cursory. However, the rea-
sonable magnitudes of a and L together with the small Rayleigh num-
ber lend encouragement to a more detailed analysis.

III. CONCLUSIONS AND RECOMMENDATIONS

The conduction-type lens proposed here is found to be feasible on
the basis of negligible distortion resulting from thermal convection
and reasonable power requirements to maintain the desired tempera-
ture distribution. Although the lens design illustrated was predicated
on the weak focusing limit a wider range of parameters can be found
by using Miller’s complete expression.®

The effect of thermal convection was calculated from a two di-
mensional analysis, which is certainly valid away from the ends of
the section since a/L < 1. For the temperature excursion required
and the lens illustrated, the convection effect was found to be negligi-
ble. However, at the interface between the sections, the axial tempera-
ture gradients could be large depending on the spacing left between
sections. Axial gradients were present in the experiments of Suematsu
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and others for their hyperbolic shaped conduction-type lens system.®
They found that no significant aberration existed as long as AT <
42/a*%* (o in millimeters) so that the effects of the axial gradients
must have been insignificant.

The analyses presented indicate that a system of conduction-type
lenses might be practical for an alternating gradient light-beam wave-
guide. Such a system would require straight square rods with a cylin-
drical hole. Two sides of the rod would be heated while the other two
would be held at a uniform and constant temperature. This could be
done by attaching aluminum fins which project into a constant tem-
perature heat sink to the cooled sides. Such a heat sink is available
for buried systems since, at depths greater than about five feet, the
surface temperature changes are virtually damped out. Therefore,
cooing is not required.

The hole in the rod would be of the order of 6 mm in diameter and
the exterior could be as small as 2.4 ecm across a face. Larger hole
dimensions could be used but, for the same size beam and lensing ac-
tion, the temperature difference and power requirement would in-
crease proportionately.

After only ‘a preliminary design analysis, where the simplest of
Miller’s expressions have been used, parameters have been obtained
in the weak focusing limit which yield a power consumption some-
what greater than but of the same order of magnitude as flow-type
gas lenses.® Additional investigations are, of course, necessary. The
distortion of a gaussian beam as it is launched through a lens system
should be numerically calculated (similar to Marcuse’s study for the
flow-type lens.®) The effect of the axial gradients that will be present
at the interface between two lens sections will have to be assessed
through experimental measurements of the optical performance of
such a lens system.
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Resonances in Waveguide Antennas with
Dielectric Plugs

By C. P. WU
(Manuscript received March 19, 1969)

This paper discusses an analysis of the radiation from a parallel-plate
waveguide to determine the effects of loading the waveguide with dielectric
plugs near the aperture. We devole special attention to the sttuation in
which the higher order modes, generated by the aperture discontinuity,
propagate inside the dielectric plug but are evanescent in the unloaded
waveguide region. We show that the dielectric plug may function as a
resonant cavity for this type of wave mode. When one of these modes s at
resonance, it is strongly excited by the incident wave; the presence of this
resonance is manifested by the appearance of sharp spikes in the reflection
coefficient either as a function of the frequency or the plug thickness. We
also discuss the relation between the resonances in a single waveguide and
in array configuration.

I. INTRODUCTION

The radiation from a parallel-plate waveguide with infinitesimally
thin walls is one of the relatively few electromagnetic boundary value
problems for which the Wiener-Hop{ integral equation technique may
be applied to obtain a closed form solution.! Unfortunately, this ele-
gant mathematical technique quickly loses its usefulness even when
rather minor modifications of the physical system are introduced,
such as, for example, by allowing the waveguide to have finite wall
thickness or loading the waveguide with a dielectric material.

The somewhat simpler problem of determining the radiation admit-
tance of a waveguide terminated in an infinite conducting plane has
been treated by several workers using the variational technique.z®
The field of the incident wave is used to approximate the true aperture
field in these calculations. The results thus obtained appear adequate
for engineering purposes. The implication is that the radiation admit-
tance of an empty waveguide is rather insensitive to the approxima-
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tion used for the aperture field distribution. There is no way, how-
ever, to ascertain without more elaborate calculations how well the
aperture field is approximated by that of the incident wave.

The variational technique has also been widely used in a broad
class of scattering problems. Although it seems that useful approxi-
mate answers are often obtainable even when rather crude approxima-
tions are used for the trial funnctions, there are numerous instances,
notably in the area of phased arrays* and in problems involving di-
electric material,® wherein it has been found that good approximations
of the trial functions are necessary to obtain meaningful results. An
important factor contributing to this knowledge undoubtedly is the
widespread availability of high speed electronic computers, which have
made it possible to perform elaborate computations hitherto regarded
as too time-consuming and costly to be practical.

In this paper, we discuss the radiation properties of a waveguide
which is loaded with dielectric plugs near the aperture and is termi-
nated in an infinite conducting plane. A waveguide antenna has the
advantage that it can be flush mounted. This feature makes it attrac-
tive for applications such as missile and aircraft antennas. Dielectric
plugs, moreover, provide convenient covers to protect the antenna feed
system against environmental influences. The introduction of dielec-
tric material, however, makes it possible to excite the wave modes
which have a surface wavelike field distribution within the wave-
guide because they propagate inside the dielectric plug but are
evanescent in the empty waveguide region. (This excitation is caused
by the aperture discontinuity.)

We show that because of the excitation of this type of wave mode,
the antenna impedance (or the reflection coefficient) exhibits resonance
characteristics versus both the frequency and the thickness of the
dielectric plug. These resonances occur when the parameters are such
that the impedances of a surface wavelike mode (or “ghost mode”)
satisfy a transverse resonance condition. The implication of this ob-
servation is that the dielectric plug acts like a resonance cavity for
the surface wavelike modes. When the combination of the parameters
is such as to permit one of these modes to resonate, the effect is to
cause rapid variation in the radiation impedances (or reflection coef-
ficient) which are manifested as sharp spikes.

The radiation patterns generally show smooth variations versus
the angle of observation. Only when the parameters are in the close
vicinity of a resonance such that the higher order mode is exceedingly
strongly exeited do pattern dips appear. Moreover, the dips are rather
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broad and shallow. It is therefore necessary to exercise extreme care
in order to detect resonances by examining the patterns alone.

An earlier analysis of phased arrays using the waveguide at hand
as the radiation element has revealed that resonance characteristics
also exist in both the reflection coefficients and the mutual coupling of
the array.®” These resonances are related in certain ways to those of
the present problem. We briefly discuss the relationship with the view
toward using a single waveguide for the detection of the resonances in
an array configuration.

The boundary value problem is formulated in two ways, one in a
pure integral equation with the tangential magnetic field as the un-
known and the other in an integro-differential equation with the aper-
ture electric field as the unknown. It appears that no known analytical
method is available for solving either equation. It is possible, how-
ever, to use numerical technique to determine approximate but ac-
curate solution from the latter equation. We discuss the method of
obtaining solutions by the method of moments; we also point out cer-
tain salient features with regard to the formulation.

II. FORMULATION OF THE PROBLEM

Consider a parallel-plate waveguide, terminated in an infinite con-
ducting plane as illustrated in Fig. 1. The waveguide is loaded with
a dielectric plug (or window) near the aperture. We consider the sys-
tem to be excited by the lowest TE mode incident upon the aperture
from the waveguide side, and assume the fields to be invariant with
respeet to y. Under these conditions, it is easily shown that the scat-

Tig. 1— A flush mount parallel-plate waveguide with dielectric plug.
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tered fields consist of TE modes alone. We determine the radiation
characteristics of the antenna by using the integral equation approach.

2.1 Integral Equations

The problem may be formulated in terms of integral equations hav-
ing as the unknown function either the tangential electric field or the
tangential magnetic field in the plane z = 0. In order to do so, we
must first introduce suitable representations for the tangential fields
in the regions both inside and outside the waveguide. The application
of boundary conditions using these field representations across the
common z = 0 plane then leads to the desired integral equations. We
derive first the equation with the tangential electric field as the un-
known.

2.2 Integro-Differential Equation for Aperture Electric Field

By virtue of the equivalence principle,® the fields in z = 0 may be
derived from an equivalent magnetic dipole M = E, X Z situated
above a perfectly conducting plane, where E, denotes the tangential
electric field which exists at the aperture and Z is a unit vector in the
z direction. According to the image theorem, these fields are equal to
twice the fields produced by the same equivalent source in free space.
Since E, = §E,(z', 0), M = %E,(z', 0). The vector potential due to
this source distribution may be determined easily to be

L f HOMR)E,(, 0) da, 0
A

where A denotes the waveguide aperture, H{”(u) is the zeroth order
Hankel function of the second kind, and R = [(z — 2/)* + 2]*. We
use the time convention exp jwt, which is suppressed for brevity.

The electromagnetic fields in z = 0 may be derived from F by

E=—-V XF,
@)

1
— [F°F + V(V-F)].
o EF + V(7 )
In particular, we find that the tangential field components are given by

Ewd) =5 [ B, 0) 5 BEGR) @,
®
1

2
H,(CC, Z) = —2—(;,"—0 (762 + :;9;5) LE,,(%', O)HéZ)(kR) dz’.
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Notice that the integrals in equation (3) have to be evaluated care-
fully when z approaches 0. In particular, the differentiation and inte-
gration in the second equation may not be interchanged when z — 0,
because in doing so the integral becomes divergent.

The fields inside the waveguide are most conveniently expressed
in terms of the waveguide modal functions. The presence of dielectric
plugs near the aperture may be accounted for by using appropriate
modal admittances which are derivable by applying the transmission
line theory. Assuming that the incident wave originating in the region
z < — d has unit modal voltage, we may write the tangential electro-
magnetic fields at the aperture as

Eu(.”(i, O) = Z Vnﬂon(x)a
n=1

4)
Hz(xﬁ 0) = _2Y1¢1(x) + Z YnVn¢n(x))
n=1
where ¢, are the orthonormal modal functions, and
<xrD D
¥ o= y? Y,I,)—l— j.I,, tan a;d ,
Y, + jY.tana,d )

. Y, Y?

Y1 = ’
Y? cos aid + jY, sin o2d
with
(82 aD
Y,=—" and Y2 =2
Who Wiy

(® and a, being the nth propagation constants in the waveguide region
with and without a dielectric, respectively). The V, are the modal
voltages at the aperture. When the modal voltages V, in the empty
waveguide region are desired, they may be obtained by using the fol-
lowing formula

Y? _
© YP cosa’d + Y, sin o?d

+

Va
2Y, sin o7d
Y? cos ad + Y, sin o2d

where §,, 1s the KXronecker delta. The reflection coefficient R is obtain-
able from

0 (6)

1+R=V1. (63:)
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The orthonormality of the waveguide modal functions may be applied
to the first equation of (4) to obtain

7= f B,@, 0)pua’) da’.
A

When the result is substituted into the second equation of (4), we
find

%@@=*Wm@+EYM®L%MMM®M5 %)

Notice that the summation and integration in equation (7) are not
interchangable. The reason is that when the summation is brought
under the integral sign, the resulting kernel has a singularity of the
form 1/(x — 2’)2, which is nonintegrable in the usual sense. In order
to circumvent this difficulty and to put equation (7) into a form suit-
able for combination with equation (3) when the boundary condition
is applied, we use the following relation
> i 2\ Y,
¥ n¢n($)¢n(x,) = <@ + k > e ¢n(x)§0n(:cl)' (8)

2%

Equation (7) may then be written as
. 9
Ha(o,0) = —2Vio@) + (2 + 1)

.L[izwmmwﬂmwmmw (82)

n=1 “%n
An application of the continuity condition on H, across the aperture
leads to

2V 0,(z) = (;—;2 + k2> fA [i ;ﬁ en(®)en(2’)

n=1 n

+ 2—1—H52’(Ic |z — o [)]Ey(x’, 0)d’ for wed. (9)
WHo

This is the integral equation having as the unknown function the
tangential electric field which is nonvanishing only over the aperture
region.

Notice that the step introduced in equation (8) to facilitate the
interchange of integration and summation is not essential in our later
application of moment method for solution. The procedure, however,
enables us to obtain a compact integro-differential equation from
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which a pure integral equation may be derived, thus permitting a
solution by different techniques.

2.3 Integral Equation for Tangential Magnetic Field

We next consider the integral equation using the tangential magnetic
field at z = 0 as the unknown function. The derivation in this case
follows the same procedure as discussed in Section 2.2. We first rec-
ognize that the fields in z = 0 may be expressed in terms of the tangential
magnetic field as follows

B3 = =% [ HPGRLG, 0) dr,

H.(z,2) = _75 %Hé”(lcR)Hz(x’, 0) da, (10)
Hie,d) =L [ L HOGR)H.(', 0) do’.

2J_ o0z

The limits of integration extend from — o to « because H.(z/, 0)
has values over the entire z = 0 plane. The fields inside the waveguide
are given by

H,(z,0) = f, Len(@),
n=1 (1 1)

E,,(x, 0) = _2Z-1¢l(x) + Z ann¢n(x))

n=1
where
D
Zo=yP., Fi= B
Z{ cos ad + jZ, sin o'y d
Again, the I’s are the modal currents defined at the aperture, and

the modal currents I, for the empty waveguide region are related to
I, by

zZP =
= 71) D . . D I"
Z. COSa,d -+ jZ,sin o',d

L.

j 27, sin o3d
Z? cos ad + jZ, sin a3d

The reflection coefficient may be calculated using

in o (12)

1—R=1I,. (12a)
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Equation (11) may be rewritten by making use of the orthonormality
relation between the ¢’s. Thus,

E,(z,0) = —2Zpy() + fA [2 ann(fv)%(x’)]Hx(x’, 0)dz’.  (13)

In obtaining equation (13), the integration and summation have been
interchanged. This is permissible because the kernel

> Zi@ena)

n=1
behaves like In |z — 2’| so that the integral is absolutely convergent
for physically acceptable solution H,.

We are now ready to derive the integral equation by applying the
boundary condition using equations (10) and (13). The limits of in-
tegration in equation (13) may be extended from A4 to (—o0, o0) with
the understanding that the ¢’s are defined to be identically zero out-
side the aperture. We thus obtain

27.0.(x) = j: [:1 Z.on(@)ea(@)

+ O HP (e | o — o |>]Hz<x', Ode’  —o <z<e. (14

Notice that equation (9) and (14) may be cast into variational form
for the input impedance and admittance, respectively.

III. SOLUTIONS OF THE INTEGRAL EQUATIONS

Equations (9) and (14) constitute a pair of alternative integral
equations for the radiation from a parallel-plate waveguide into a
half space. One of the equations has as the unknown function the
tangential electric field, while the other has as the unknown function
the tangential magnetic field. Since there is no known method for
solving these equations analytically, we have to resort to approximate
techniques. Because of the infinite limits associated with the equa-
tion for the magnetic field, which is usually rather difficult to handle
numerically, the one for the electric field is much preferred.

Strictly speaking, equation (9) is an integro-differential equation.
We may derive from it a pure integral equation in a similar vein as
Hallen did for the dipole antenna. The usefulness of this approach is
currently being investigated. We discuss solutions of equation (9)
directly by the method of moments.®* To do so, we first approximate
the aperture electric field by the following representation
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N
B, 0) = 2 bU.@"), (15)

where U,(2’) is a set of linearly independent functions which are
chosen to satisfy the boundary conditions on E, at both ends of the
aperture, that is

Un(o) = Un(a) = 0' (16)
Substituting equation (15) into equation (9) gives

2Y0.(2) & é b,,(:—; + k2> fA [Z % en(@)en(x)

n=1 Yn

b HOM |z — 2 ) U A7)
2wpo

We next require the difference between the left and right sides of
equation (17) to be orthogonal to another set of functions
Wn(x)l n=1)2)"'7N

with W,(0) = W, (a) = 0 (for reasons to become apparent presently).
This last step then converts the integral equation into a set of algebraic
equations

N
;qubp=fqy q=1:2;""Nr (18)

fo = 27, f dz o, (X)W (),
A
with

W, 0 = f dz W o@)e(@).

For the evaluation of 4,,, it is desirable that U,(z) be chosen such
that the integration of U, (z) and Ho(k |  — 2’ |) can be carried out in
closed form. Unfortunately, such functions which will also satisfy the
boundary conditions (16) are not easy to find. This being the case, we
shall manipulate the expression in equation (19) into forms which are
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more convenient to implement for numerical integration. Thus, by in-
terchanging one differentiation with the integral with respect to 2’, and
then integrating by parts twice (once with respect to &’ and once with
respect to z), we find

fA dz W (%) ;7 f Q' HO0 |z — ' DU,

_ ”dW,,(:L')[ gt AU
= L(LL _dL . d2’ H, (k lfC T D de’

where we have used the relation

9 ’ 9 ’
oy Ho (k1o —a' ) = =55 H'(k [ — 2 |)

and the fact that the integrated terms vanish on account of the bound-
ary conditions.
Using this result, we may rewrite equation (19) as

Ms

Aap Y (VVG ’ ¢n)(¢n ’ 11)

-

n=

+ oo [k2 f dz W (x) f do’ H?(k |z — o' U, @)

_ de%@fli & HOG |z — o ) Lo (x)] (20)

The double integrals in equation (20) may be converted into single
integrals by a transformation of variables. If the waveguide modal
functions are chosen as both the basis and testing functions and if
the fact that only modes of even symmetry with respect to yz plane
are excited is accounted, we obtain

Aap = 17cz

1 (2) D)
o L ds H® (ks)F ) (9), @1

ar

where

2 2, o DT 2 . QT
—_— Ll — kl Lo
@ ) [k,,qsmas ,,psmasl q#Ep

I(’qp(s) =j Smmsl
1 2 . 2
Ejké(a—S)Gos%rs-i—[k _l_(Z_’T)] a ¢=p
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with

k12 — k? _ (PL")Z
'p g a .

The last integrals in equation (21) may be evaluated numerically.
We have found that a fast, accurate, and yet economical way is to
apply the Simpson’s rule with the values of the Hankel function ob-
tained from the Tschebycheff representation.**

After the matrix elements are calculated, the set of equations (14)
is ready for a solution. An advantage of choosing the waveguide
modal functions as both the basis and testing functions in the ap-
plication of the moments method is that the solutions are expressed
directly in terms of the modal coefficients of the aperture field. The
reflection coefficients are then easily calculated by using equations
(6) and (6a).

The radiation patterns of the antenna may be obtained from equa-
tion (3). Introducing the asymptotic expression for large arguments
for the Hankel function, we find that the electric field in the far
zone is approximated by

1/2
B, 0) A (Oi> T cos g [ B, 06 dw. (22)
& A

It is easy to show that the magnetic field in the far zone is related to
the electric field through the free space admittance. Thus,

H,(r, 0) = noE,(r, 6), for kr>1,

where 5, is the characteristic admittance of free space. For compari-
son, it is often desirable to normalize the radiation patterns. A com-
monly used normalization is to make the amplitude unity in the di-
rection of maximum radiation. We use a different normalization here,
however. Our patterns are normalized such that the integral of the
square of the amplitudes gives the radiated power when a unit power
is supplied to the incident wave. This way of displaying the patterns
is more advantageous because it shows the normalized radiation inten-
sity in addition to the information contained in the usual pattern
presentation; this provides a basis of comparison when the frequency
is varied. Thus, using expression (15) with {U,(x)} = {W,(z)} =
{¢,(x)} and equation (22), we obtain for the normalized radiation
pattern
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cos (lc %sin 0)
N
T(0) = oy > b 2

(2ma,)'? cos 6 N (mr)\: <2a . >2:‘ ’
— )1 —{="sin @
a nA

where «; is the propagation constant of the incident wave.

(23)

IV. RESULTS

We now present numerical results obtained by the method described
in Section III. The computations are actually performed with exp —
jot time convention. Table I shows the type of convergence one may
expect for the reflection coefficient R versus N, the number of modes
used to approximate the aperture clectric field. The parameters used
in this calculation are e = 6, A/a = 1.5, and d/a = 0.544. This rep-
resents one of the worst situations encountered. Nevertheless, we find
the convergence is quite rapid.

The variation of the reflection coeflicients versus the thickness of the
dielectric plug is considered first. Figure 2 shows such a calculation
for A/a = 1.5 and ¢ = 6. With this value of a/A, only one mode can
propagate in an unloaded waveguide. The dielectric constant is chosen
so that the third order mode is propagating inside the dielectric. (The
second order mode will also be propagating; but this mode cannot be
excited because of the symmetry in the geometry.)

The reflection coefficient shows a smooth standing wave like variation
versus d/a over the entire range of d considered except in the vicinities
of d/a =~ 0.54 and d/a =~ 1.31 (where sharp spikes appear). Figure 3
shows the details of the reflection coefficient near these spikes.

The maxima (or minima) of the standing wavelike pattern are equally
displaced at a distance given by w/a%, where o’ is the propagation
constant of the nth mode of a dielectric loaded waveguide. The separa-

TABLE I-—CONVERGENCE OF R VERrsus N

by IR} Femons).
1 0.8031 —162.8
3 0.9213 ~169.8
5 0.9306 ~169.2
7 0.9348 —168.9
9 0.9372 —168.6
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Fig. 2 — Reflection coefficient of a waveguide antenna with dielectric plug (e =
6 and \/a = 1.5).

tion between the two spikes Ad is obtainable from the relation a2(Ad)
= x. (Notice that the sharp spikes are frequently preceded by deep
dips such that they may appear like close-by double spikes as displayed
by theone at d/a & 1.31. See Fig. 3.) Figure 4 presents another calcula-
tion using a higher dielectric constant ¢ = 13. Since the propagation
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Fig. 3 — Details of R versus d/a for e = 6 and \/a = 15.

constants o2 and o9 are larger when a higher dielectric constant is
used, the maxima (or minima) and the spikes become more closely
spaced. Otherwise, the relation stated above remains valid. This ob-
servation suggests that ordinarily the third order mode is only weakly
excited so that the radiation impedance of the waveguide is determined
primarily by the fundamental mode. Only when the dielectric plug
has a certain thickness is the third order mode excited strongly enough
to influence the reflection coefficient of the fundamental mode. Figure
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5 shows the solutions for the third order modal coefficients versus d to
demonstrate that indeed this is the case.

From the regularity of the intervals between the spikes at which the
third order mode is excited sufficiently strongly to influence the radia-
tion of the waveguide, it seems reasonable to assume that the dielectric
plug forms a cavity for the third order mode. This cavity goes into
resonance only at proper combinations of the wavelength and the
thickness of the dielectric plug. To verify this conjecture we applied
the transverse resonance technique at the waveguide aperture using
the admittances pertinent to the third order mode. Let ¥ be the radia-
tion admittance when a completely loaded waveguide is excited in the
third order mode. The admittance looking toward the negative z diree-
tion, that is, into the waveguide is given by the appropriate modal
admittance:

~ P Ys 4 Y5 tan ozd
- 3
Y2 4 jY, tan o%d

0.8 +

Q.71
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o

o
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Fig. 4 — R versus d/a for e = 13, N\/a = 1.5.
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Fig. 5 — Magnitude of third model coefficients versus d/a for ¢ = 6 and \/a
= 15.

The condition of resonance is given by*
Im (Y + 7) = 0.

Figure 6 shows a calculation of the imaginary parts of ¥ and ¥ as
functions of d. The graph clearly demonstrates that there are inter-
sections occurring at the values for which resonance behavior is ex-
hibited in the reflection coefficients.

We next consider the variation of the reflection coefficient when the
frequency is varied. Figure 7 gives a calculation using e = 6 and d/a =
0.55. That there are two frequencies at which the reflection coefficient
displays abrupt variations is quite evident. The details of one of the
variations are illustrated in expanded scale in the inset. Examination
of the admittances pertinent to the third order mode again shows that
the transverse resonance condition is satisfied at both of these fre-
quencies. Another salient feature shown in this calculation is that there
are several frequencies at which the reflection coefficients are practically
zero. Therefore, when the parameters are judiciously chosen, the use of
a dielectric plug does not necessarily degrade the match characteristic
of the antenna.

* Strictly speaking, because of the radiation from the waveguide aperture, the

resonance condition should be (Y 4 if') = 0. Since our interest is to obtain the
condition for maximum excitation of the third order mode as d is varied, this
should be a good approximation.
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Fig. 6—7Y and ¥ of the third order mode for ¢ = 6 and Na = 15 (
‘}—’; —+—+— —Im ?).

The radiation patterns of the antenna have also been computed for
the various values of parameters considered. The results in general
display smooth variation versus the angle of observation . Only when
the parameters are such that the resonating higher order mode is ex-
ceedingly strongly excited do dips appear in the radiation patterns.
Figure 8 gives some typical results for smoothly varying patterns and
Figure 9 illustrates the patterns with dips. Notice that the pattern
dips are exhibited only over a very narrow range of the parameter
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Tig. 7 — Variation of B with frequency for e = 6 and d/a = 0.55.
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Fig. 8— Normalized radiation patterns 7() of a waveguide with dielectric
plug for e = 6 and \/a = 1.5.

d/a. Moreover, the dips are rather broad and shallow because the
aperture is small in wavelength, 4 < a/A < 1.

Figure 9 also shows the patterns for the situation when the wave-
guide is completely loaded with a dielectric and is excited in the
first or the third order mode. The aperture field in such situations
consists primarily of the incident wave. We observe that a relatively
small aperture with an aperture field distribution of the third order
mode is capable of producing a dip in the radiation pattern. Now,
when the third order mode is at resonance inside the dielectric plug
50 that it is strongly excited, the aperture field contains high content
of both the incident dominant mode and the third order mode. The
relative amplitudes and phases of these two modes determine the
shape of the radiation pattern. The combination sometimes may be
such as to generate a pattern which exhibits a considerably suppressed
radiation in the broadside direction as shown in the curve for d/a =
0.545.

V. CONCLUSIONS AND DISCUSSIONS

The investigation of the effects of dielectric plugs on the radiation
from a flush mounted waveguide has shown that dielectric plugs can
function as a resonant cavity for the wave modes which are propagat-
ing inside the dielectric but evanescent in the unloaded waveguide
region. Such wave modes have interesting effects on the radiation
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impedances of the antenna. When one of these modes is at resonance,
it is strongly excited by the incident wave; the presence of the res-
onance is manifested in the form of sharp spikes in the reflection
coefficient,

Resonances have also been observed in the analysis of phased
arrays using the present waveguide with dielectric plugs as the radiat-
ing elements. They appear in both infinite and finite arrays. The oc-
currence of these resonances may be identified by the conditions of
total reflection of the incident power in infinite arrays® and rapid
variation of the coupling coefficients in finite arrays.” Although there
has been considerable discussion on array resonances in general, it
appears that no consensus has been reached yet about the basic
mechanism of this phenomenon. We hope that observation of reso-
nances and our analysis of their causes may shed some light on this
problem.

Another aspect which deserves some comment is the use of a single
array element for the detection of potential difficulty due to reso-
nances. This question is particularly important in array designs using
antenna elements which are less susceptible to analysis. We realize
that this is an ambitious question which cannot be answered com-
pletely without a more elaborate analysis. The calculation so far,
however, has indicated that resonances observed in array -configura-
tions are often not exhibited by the radiation characteristics of a

1.0

0.8~

fr(o)l

o 10 20 30 40 50 60 70 80 S0
THETA IN DEGREES

Fig. 9 — Pattern dips due to strong higher order mode excitation for e = 6 and
Ma = 15 (—-— 1st mode excitation; - -+ - - 3rd mode excitation).
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single element. For example, in arrays of waveguides with dielectric
plugs such as the one considered here,® resonances which are found
to occur as a result of the interaction with the resonating second order
mode are not displayed by a single element because this mode is
usually not excited in the latter situation on account of geometric
symmetry. When the dielectric constant is large enough to permit the
third order mode to resonate, it is possible that the resonance condi-
tions resulting from this mode may be uncovered. Even so, resonances
which are caused by the second order mode are still undetectable.
Moreover, there are other situations in which resonances do occur
without the use of dielectrics such as planar arrays of rectangular
and circular waveguides.2?13 It therefore appears that it is not suitable
to use a single element in the prediction of potential array resonances.
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Dielectric Loss in Integrated
Microwave Circuits

By M. V. SCHNEIDER
(Manuscript received March 12, 1969)

Dielectric loss is tmportant in integrated microwave and millimeter wave
circutts which require small atlenuation. Such circuits are usually built
with microstrip or suspended microstrip transmission lines. This paper
shows that the dielectric loss, the filling factor of the microstrip, and the
stored field energy in the dielectric subsirate can be computed from the
partial derivative dU/de, where U 1s the total electric field energy and e, the
relative dieleciric constant of the substrate. It also shows that the effective loss
tangent is determined by the partial derivative de.i¢/0¢. where e.:s s the
effective dielectric constant of the microstrip. Useful design formulas for
computing the dielectric loss are given for the most-important cases.

I. INTRODUCTION

The dielectric loss in microstrip or suspended microstrip transmis-
sion lines is an important parameter in the design of hybrid integrated
circuits which require small attenuation. This loss can be calculated if
one knows the loss tangent of the dielectric substrate and the electric
field distribution inside the substrate. Electric field computations are
usually complicated and not practical for design purposes. It is there-
fore important to find a simple and accurate method for calculating
the dielectric loss from other well known properties of the microstrip
transmission line,

The results of dielectric loss computations for microstrips, which
have been made by other authors, are quoted in many recent papers
on hybrid integrated circuit design.-® It can be shown that these re-
sults are applicable only if the boundary between the dielectric sub-
strate and air is parallel to an electric field line. This paper presents
general design equations valid for all microstrip transmission lines
provided that the propagating mode can be approximated by a TEM
mode.
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II. EFFECTIVE DIELECTRIC CONSTANT AND FILLING FACTOR OF MICROSTRIP
LINES

The effective dielectric constant of a microstrip line partially filled
with dielectric material is defined by

where A, is the vacuum wavelength and A the wavelength of the
propagating mode on the microstrip. If the propagating mode can be
approximated by a TEM mode one can also define e by

€etf = bg ) (2)

where C is the capacitance per unit length with partial dielectric fill-

ing and C, the capacitance per unit length without dielectric material.
The filling factor ¢ of a microstrip is defined by

=7 (3)

where U, is the electric field energy stored in the dielectric and U the
total electric field energy of the microstrip. Notice that some authors
do not use the same definition for q. Poole and Von Hippel use the
ratio given by equation (3).® This definition is useful because it
simplifies the loss calculation.

iII. PARTIAL DERIVATIVES OF FIELD ENERGY AND EFFECTIVE DIELELCTRIC
" CONSTANT

If one computes the partial derivative of the total electric field
energy U with respect to the relative dielectric constant ¢ of the sub-
strate, one obtains the basic result

oU _ Ui,

661 €

4

The Appendix gives the derivation of this equation. We assume that the
conductor configuration remains the same and that the potential dif-
ference between the conductors is constant. From equations (2) and
(4), and from U = CV?/2 we obtain

O€qss _ Cois U1

d € - € U (5)
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The filling factor ¢ is now given by

— l aeeff (6)

)
ot O€;

and the effective loss tangent of the microstrip is

€ aee“‘

tan o ™

(ta'n a)eff =

€orr 06
with tan § being the loss tangent of the dielectric substrate. One can

show that the effective loss tangent of microstrips with more than
one single lossy substrate is given by

(ta’n 6)eff = Z € "o aéeff n (8)

€off n=1

where ¢, and tan 3, are the relative dlelectrlc constants and loss tan-
gents of each substrate respectively and N the total number of lossy
dielectric materials in the microstrip.

IV. DIELECTRLC ATTENUATION AND UNLOADED Q

The unloaded dielectric quality factor @p of the microstrip is

1 1
@ = (tan 8);s qtan 6’ ©
and the dielectric attenuation in dB per unit length is
_ 20r gtan & _ (tan 8).s;
=195 % = 27.3 B (10)

with A being the microstrip wavelength X = A,/ (eets) %
The effective dielectric constant for the standard microstrip of Fig.
la is known and can be approximated by®
1 -1 AN
=t paz2( a0 d)n (1)
By introducing F(w, h) = (1 + 10 h/w)* we obtain, from equation
(6), the filling factor

q= *—'—1“1— (12)

1+q@+D

Figure 2 is a graph of the filling factor for the standard microstrip as
a funection of w/h with ¢; as a parameter.
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Fig. 1 — (a) Standard microstrip transmission line and (b) suspended micro-
strip transmission line.

Computation of ¢ for the suspended microstrip shown in Fig. 1b is
more difficult. An approximate value can be obtained if w > h, which
means the fringe field contributions are small. The effective dielectric
constant is

__a+b < ce,
“f = o b o\ Tan + b

and the filling factor becomes

) w > h, (13)

bee,

7= (ae + b)(ae, + b + ce)

A different approach is necessary if the fringe field contribution can-
not be neglected. Figure 3 shows a suspended microstrip which has
been used in circuits built by Engelbrecht and Kurokawa, Saunders
and Stark, and Tatsuguchi and Aslaksen.?**? The effective dielectric
constant of the configuration with the dimensions given in Fig. 3 has
been computed by Brenner.*® It is possible to approximate the result
by Brenner by the simple rational function

(14)

g — 1

cre = 1+ Gog T a0

(15)

From equation (6) we obtain
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€1

9= 538 F 1.63¢ + 0.065¢ (16)
Figure 3 is a graph of this filling factor as a function of the relative
dielectric constant ¢;. The filling factor reaches a broad maximum for
relative dielectric constants between 6 and 12. This maximum is ob-
tained for structures with substantial fringe field contributions. If one
neglects the fringe field the filling factor is substantially reduced and
decreases if ¢, is increased.

V. DISCUSSION

There are several types of substrates which are useful for building
integrated circuits. These substrates are

(z) borosilicate glasses and other commercial glasses with loss
tangents of the order of 107 at microwave and millimeter wave fre-
quencies,™

(#%) semiconductor substrates such as Si and GaAs with loss tangents
determined by tan & = o/we,e; where o is the substrate conductivity in
mho per centimeter, ¢, the free space permittivity ¢, = 8.85-107**
F per em, and ¢, the relative dielectric constant of the semi-conductor,

(#71) ceramics such as alumina, beryllia, and rutile with loss tangents
of about 10™* at microwave and millimeter wave frequencies, and

(i) fused silica with tan § = 107" in the same frequency range.

1.0 T —— T T ——
20 T
___.19—-—-—/—’———:";/
00 — 5 [ —] ]
Lt 4 L— //
| /
___’____,_——-—""' |t 3 / / /
[,
0.8 B
|
4 /
/// |~ 15
| |~ €=1
0.6
/
/
0.5 L ! L
0.4 0.2 0.4 06 08 1
w/h

Fig. 2 —TFilling factor q for standard microstrip transmission line as a function
of the ratio w/h with relative diclectric constant e as parameter.
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Fig. 3 — Effective dielectric constant e and filling factor ¢ for suspended
microstrip transmission line for w = h = 0.120 inch, ¢ = ¢ = 0.048 inch and
= 0.024 inch.

For glasses one can, therefore, expect an unloaded dielectric quality
factor of Qp = 100/q; with high quality ceramics and fused silica one
obtains @Qp = 10000/q. However, loss tangents of many substrates
above 30 GHz are presently not available.

The unloaded @ resulting from conductor loss alone is typically
Q. = 100 to 1000 for completely shielded microstrips at microwave
and millimeter wave frequencies. The total unloaded Q is Qr =
QpQ./ (Qp + Q.). One concludes that the conductor loss is predomi-
nant for circuits built with high quality ceramics and quartz. For
microstrips built on glass substrates and some semiconductor sub-
strates, the filling factor is important for computing the total loss of
the microstrip.
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APPENDIX

Partial Dertvative of Field Energy U

The total electric field energy U stored in a microstrip is given by
the volume integral

D2
U= fv2—edV, (17)

where D is the displacement, D = ¢E, and ¢ = ¢, * a(z, ¥, 2) is an
isotropic dielectric constant. We make a small perturbation subject
to boundary conditions which follow equation (20).

2
U = f DDy [ D leyy (18)
Vv € v L€

By using E = —grad ¢ and div D = p one obtains, from div (¢ 8D) =
—E 8D + ¢ div 8D,

6U=f<p5pdV—fdiv(<p6D)dV—éf‘EzaedV, (19)
v Vv s

and from the theorem by Gauss

N N
f div (o 8D) AV = Yox [ 8D.dF = 3 ox 8Qx,  (20)
v K=1 YFg K=1

where the surface integral is carried out over all conductor surfaces
K =1,2, ..., N. We are interested in a perturbation subject to the
following boundary conditions:

(7) The space charge is zero, 6p = 0.
(#7) The charge on each conductor remains constant, 6@ x = 0.
(777) de is constant in the dielectric substrate, and e = 0 outside the
substrate.

If the dielectric constant of the substrate is e from equation (18) we
obtain

€
B4V
v, 2

€

U = —ée 21)
The volume integral is the electric field energy U, stored in the dielectric
substrate. For two conductors and Ap = ¢, — ¢, = constant one has
0U = +6¢e-U,/e and consequently
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ou _ Ui,

ae, €

(22)
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Interchannel Interference Considerations in

Angle-Modulated Systems

By V. K. PRABHU and L. H. ENLOE
(Manuseript received November 14, 1968)

This paper considers the deterioration in performance of angle-modulated
systems resulting from interchannel interference. We show that with band-
limited white gaussian noise modulation (simulating modulation by a
frequency division multiplex signal), we can derive an explicit expression
for the spectral density of the baseband interchannel interference when two
or more PM waves interfere with each other.

We show that, tf the interference is co-channel, mazimum interference
occurs at the lowest baseband frequency present in the system and we can
derive upper and lower bounds to this minimum baseband signal-to-
tnferference ratio. For high enough modulation index, we show that this
minimum signal-fo-interference ratio is proportional to the cube of the
modulation tndex and that phase modulation can be used with advantage in
inlerference limited systems. We do not consider the effects of linear filters
on angle-modulated systems, but give some results about the effect of adjacent
channel interference when the interference is in the passband of the recetver.

I. INTRODUCTION

The properties of frequency and phase modulation with respect to
exchanging bandwidth for signal-to-noise ratio are well known,*2 but
the type of noise considered is almost always limited to be random
gaussian noise. In the design of any system, where the noise is likely to
be interference limited, it is necessary to consider other kinds of dis-
turbances such as co-channel and adjacent channel interference cor-
rupting the desired received signal.

Consider the following situation. In the frequency bands above 10
GHz where the signal attenuation resulting from rain could be very
severe, close spacings of the repeaters are almost always mandatory
for reliable communication from point-to-point and for all periods of
time.®* If low noise receivers are used in the system, it is possible
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that the total interference power received by the system may be very
much larger than the noise power in the system. For all practical
purposes, the performance of such a system is determined by the
interchannel interference.®* It is therefore desirable to evaluate the
effect of co-channel and adjacent channel interference on the per-
formance of any modulation system like FM or PM (or PCM) so
that its advantages in combating interference can be determined, and
any system parameters (such as rms phase deviation, channel separa-
tion, and so on) can be properly chosen to keep the baseband inter-
ference below a certain desired level. (It is possible to reduce ad-
jacent channel interference by using suitable receiving filters, but
co-channel interference occupies the same band as the signal.)

The problem of interference in angle-modulated systems has been
considered by many authors.’*? In the analysis, most of these authors
have given an approximate expression (the first term in the power
series expansion) for the baseband interchannel interference, and have
shown that it can be expressed as the convolution of the spectral
densities of the angle-modulated waves. The accuracy in this ap-
proximation has not been determined previously. Also, in the calcula-
tion of interchannel interference in high index ¥M and PM systems,
most of these authors use the quasistatic approximation, the accuracy
of which is unknown.

We first consider a general method of evaluating the baseband inter-
channel interference when two angle-modulated waves interfere with
each other. We assume that an ideal angle (frequency or phase) demod-
ulator is used in the system. (Anideal angle demodulator does not respond
to any variations in the amplitude of the wave. This can be achieved in
practice by using an ideal limiter at the front end of the receiver. If
A(#)e’®” is the input to an ideal limiter, its output is given by 4,¢'*‘"
where 4, is a constant.)

We obtain a general expression for the baseband interference when
the modulating wave is gaussian. This expression can be utilized even
when the baseband signal is passed through a linear network (such
as a pre-emphasis—de-emphasis network).

We are specifically interested in calculating the baseband inter-
channel interference between two or more waves phase modulated
(without pre-emphasis) by band-limited white gaussian random
processes. It has been found in practice that such a random gaussian
noise of appropriate bandwidth and power spectral density ade-
quately simulates (for some purposes) a variety of signals such as a
frequency division multiplex (FDM) signal, a composite speech
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signal, and so on.!® Since the determination of the power spectrum is
fundamental to the evaluation of baseband interference, first we re-
view briefly the methods of obtaining this spectrum for a wave phase
modulated by band-limited white gaussian noise.

In the case of band-limited white gaussian noise modulation, if
the bandwidths of the modulating waveforms for the desired and
interfering carriers are the same, we show that the determination of
baseband interference power is relatively simple, and requires only
the computation of the spectral density of a phase-modulated carrier
for a variety of values of rms phase deviation. For small values of
interference and for band-limited white gaussian noise modulation,
we also show that the first term in the series gives most of the con-
tribution to the baseband interference, and that this first term can be
used as a good approximation.

For a co-channel interferer, we show that maximum interference
oceurs at the lowest baseband frequency present in the system (we
assume that this lowest frequency is f = 0)* and that we can derive
upper and lower bounds to this minimum signal-to-interference ratio.
For sufficiently high modulation index, we show that these bounds are
proportional to the cube of the modulation index, and that phase
modulation can be used to advantage in combating interference.

We show that maximum interference with an adjacent channel inter-
ferer occurs at the highest baseband frequency present in the system
if the carrier frequency separation f; between the two channels is
relatively large compared with the baseband bandwidth W. For a
set of values of fg/W and for different modulation indexes of the two
channels, we compute this minimum signal-to-interference ratio and
give the results in graphic form.

We then consider the case in which more than one interferer may
corrupt the desired received carrier and show that we can derive an
expression for the spectral density of the resulting baseband inter-
ference. This expression is in the form of an infinite series and for its
evaluation, in the case of band-limited white gaussian noise modula-
tion and equal modulation bandwidths, it is only necessary to be able
to compute the spectral density of a sinusoidal carrier phase modulated
by gaussian noise. In case all these interferers are co-channel and all
of them have the same (high) modulation index ®, we show that we
can derive upper and lower bounds to the minimum baseband signal-
to-interference ratio.

* We do not imply that maximum baseband interchannel interference always
occurs at f = O for any general system angle modulated by gaussian noise.
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II. INTERFERENCE BETWEEN TWO ANGLE-MODULATED WAVES

We first assume that there is only one interfering wave corrupting
the desired received signal, and that both of them are angle modulated
by two independent gaussian random processes. Let the desired angle-
modulated wave be given by

s(t)

A cos [w,t + p(1) * o(1)]
= Re 4 exp {jlw.t + p()) * (D]},

where 4 is the amplitude of the wave, f, = w,/2w its carrier frequency,
p(t) the impulse response of the pre-emphasis network, and
o(t) is a stationary gaussian random process with mean zero, and
covariance function R,(r). (We only assume that p(¢) is the impulse
response of a linear network through which ¢(t) may be passed. Only for
convenience, we refer to it as the impulse response of the pre-emphasis
network.) The notation 4 (z)*B(z) represents the convolution of function
A(zx) with B(z).
Let the interfering wave #(f) be given by

i(f) = R:A cos [wit + pi(D) * 0:(t) + ]
= Re AR; exp {jlw:l + p:(t) * ¢:(1) + w1},

where AR, is its amplitude (R; is the relative amplitude of the interfering
wave with respect to the desired wave), w; is its angular frequency, p;(f)
is the impulse response of its pre-emphasis network, and ¢.(f) is a
stationary gaussian random process with mean zero and covariance
function R, (7).

Since s(¢) and #(f) usually originate from two different sources, it
seems reasonable to assume that u; is a uniformly distributed random
variable with probability density =,,(u) where

¢y

@)

Jél;, 0= p<2r

l 0 , otherwise.

()

Tu(u) =

Further, we assume that ¢(f) and ¢;(¢) are independent of each other
and independent, of p;. (Reference 13 treats of the case in which p; is
a deterministic constant, and ¢(¢) and ¢;(¢) are not independent of
each other.)

If we assume that s(¢) and ¢(¢) are both in the passband of the
receiver ‘used in the ‘system, the total signal r(¢) incident at the re-
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ceiver is given by'

r(t) = Re A(exp {jlw.t + p(t) * ()]}
+ R, exp {jlwt + p:i(t) * 0u() + wuil})
= Re A(l + R; exp {jl(w: — w)t + p:(8) * 0:() — p(®) * (D) + w]})
-exp {jlw,t + p(t) * (1)1}

= Re da(®e™ exp {jlw.t + p() * o(1)]}

= Re Aa(?) exp {jlw.t + p(t) * o(t) + D}, 4)
where

a(e™® =1 + R,

exp {jl(w; — w)t + pi(t) * 0:(t) — p(t) * o(t) + ud}. (5)
Notice from equation (4) that the (excess) phase angle 5(¢), as
detected by an ideal angle demodulator, is given by

1) = o(t) + M. (6)
(The gain—or proportionality factor—of the phase demodulator has

been assumed to be unity.) Therefore, the spectral density of 5(¢) can
be written as

§i) = [ R, Q
where By(r) is the covariance function of 4(t), and
Ry(r) = ()0 + 7)). ®

(The notation (x) represents the ensemble average of random variable
x.) If there is no interference, and if g(¢) is the impulse response of
the de-emphasis network used in the system, the detected phase angle
Q(t) can be written as

[QD]ri-0 = g(&) * p(®) * o). 9

If R;# 0,
Q) = @) * p@®) * o(&) + &) * N®)- (10)
Now if we assume that the de-emphasis network is the inverse of
In this paper we do not consider the effects of linear filters usually used in

receiving systems on the interchannel interference between two (or more) angle-
modulated systems.
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the pre-emphasis network, we have

q(®) * p(t) = &(), (1)
and

Q@) = o(t) + q() * M), (12)
where §(t) is the Dirac delta funetion.

From equation (5), we have

M) = ImIn (1 + R; exp {jlwst + p:(8) * :(t)
— p() * o(t) + wil}), (13)
where
Wi =W — W, . (14)
Notice that

(42 =3 (- 1)"'“", 2] <1, (15)

m=1

where z is any complex number.
Therefore, for R; < 1, we havef

Af) = i )m“
, R@[exp {imlwat + pi(®) * 0.() — p(t) * o(t) + w.]}
, 33
_exp {—jmlwat + pi(t) * 0i(t) — p(t) * () + m]}]
2j
= 5 U R sin (il + 2.0 * i) = (0 * () + .

(16)

Since ¢(t), ¢; (), and w; are statistically independent random vari-
ables and since (exp (jkw)) = 0 with k 5= 0, we can show from equa-
tions (6), (8), (13), and (16) that

2m

RW(T) = Rp(T) * Rv(T) + Z 2’:)’1«2 COS MwyT
m=1

- €xXp ("'mz{[RM(O) - RM(T)] + [me(o) - me(f)]}): (17)
t For R: < 1, notice that a(t) > 0.
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where?
R = [ plwle + 7 dt, 18)
B = [ popt + 7 a, (19)
R, (7) = Ry(r) * R, (7), (20)
and
Rv-‘p-‘(T) = Rm(T) * RW(T)- (21}

Therefore, the spectral density of the output is given by

Su) = 5.0+ (T oo s Ul = mf) + 2ol + ], 22)

where H, (f) is the Fourier transform of p (¢), and

]

7o) = [ exp (= {[R,u(0) = Ros(r)]

+ [me(o) - Rtpini(T)] })e—ﬁ”r dar. (23)
From equation (23), we can show that

T.(f) = U.(f) * V.(§) (24)
where!

0

U = [ exp (=mlR0) = Rou)e™ ", (25)

and

V) = [ exp (= mByl0) = By} dr. 20)

Equation (22) gives a general expression for the baseband inter-
channel interference when two angle-modulated waves interfere with
each other. To calculate this interchannel interference, equations (22)
through (26) show that it is essential to determine the RF spectral
density of a wave angle modulated by gaussian noise. Methods of

* Since ¢(t) and ¢i(¢) are assumed to be gaussian, p(t) * ¢(f), and p(¢) * @i(t) are
also gaussian.2+15 Notice also that the Fourier transform of I2,(+) is equal to | Hp(f)[?,
if H,(f) is the Fourier transform of p(f).

T Notice that Un(f) and Vw(f) are the RF spectral densities of waves angle
modulated by gaussian noise.
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caleulating this spectrum for low and medium index modulation are
generally available, and the quasistatic approximation has been used
for high index modulation.>**-2¢ Since the accuracy in the quasistatic
approximation cannot often be determined, some rigorous methods
of evaluating this spectrum for high index modulation have recently
been developed.>®

III. SPECTRAL DENSITY OF A PM WAVE

In this paper, we are specifically interested in determining the in-
terchannel interference between two or more waves phase modulated
by band-limited white gaussian random processes. Hence, we now
review briefly the methods of obtaining the RF spectrum of such a
wave. A sinusoidal wave of constant amplitude A phase modulated by
a signal n(t) can be written as

w(t) = A cos [wot + n(l) + 6], @27
= Re 4 exp {jlwet + n(t) + 61}, (28)

where f, = w,/27 is the carrier frequency of the wave, and 0 is a random
variable with probability density function

<
ra(6) = {1/%, 0<06<2r (29)
0, otherwise.

If the modulating waveform is band-limited and white, its spectrum
S.(f) is given by (see Fig. 1)

d*/2W, <Ww
Sn(f)={ /AW, AT W, (30)
0, otherwise.
SPECTRAL DENSITY
IN RADZ PER Hz
(I)Z
2w
-W w FREQUENCY, f,
IN Hz

Fig. 1— Spectral density of modulating wave,
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Notice that Ref. 16 treats, in detail, the methods of obtaining the spec-
tral characteristics of a sinusoidal carrier phase modulated by such a
signal. From equation (30) we can show that (see Fig. 2)

. 8in 20 W~

Bun) = & oy B

For & > 1 and for low frequencies, the quasistatic approximation
yields®"*®

~ oxp (& 1 (if , [_ﬁi <i>]

Sy(f) = exp (=) o() + 537 \5-) &P | —5 57 \37 (32)
One can show that the approximation given by equation (32) is only
good at low frequencies and that it is too small for large f.2¢

For large modulation indexes (® > 1.7432 rad) and for all frequen-
cies, we can show that?®

$v) = exp (~ ) {0) + o [uslf + ) — 0l — W)]}

+ — 5 W exp \: (cosh D) ” i, (33)
where
o) = {1, z >0, (34)
0, otherwise,
(—2L>%( 0) <u< ( ) (L + D) (35)
A, B> \e%4 ’
coshy, sinhy, f
Ve yf - q)?W ) (36)
and
__sinh y, _ 2 f ) g
A4, = ” v, D @37

We can also show that C and D, appearing in equation (35), are less
than 8 per cent for @ > (10)? rad. Further, for all f, one can show
thatte

C <29 for ® > 5rad, (38)

and

D <29 for & > 5rad. (39)
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0.8 \\
0.6

Rp(T)
@2
o
>

| \.,, el

\ /2w
-0.2

-0.4
o 1 2 3 4 5 6 7 8 9

2TWT

Fig. 2 — Covariance function Rn(7). Since R.(7) is an even function of =, we
only show R.(7) for r = 0.

Hence, we can say that

2r \
k=~ («1>2A2> ! (40)

and that the fractional error in this approximation is very much less
than unity (less than 2 per cent, ® > 5 rad).
For f = 0, from equations (33) through (37) we can show that

0.92 (237)% ﬁv < Sy(f) — exp (—9°) 8(f) < 1.08 (%)é Slvﬁ ’

® > (10)'rad.  (41)

For any f and ®, the determination of the spectral density Sy(f)
from equations (33) through (40) is rather simple. For any given f,
o, and W, we caleulate y, from equation (36), and 4, from equation
(37). The spectral density Sy(f) is then calculated from equations
(33) and (40).
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IV. INTERFERENCE BETWEEN TWO PM WAVES

We now assume that ¢(¢) and ¢;(£) in Section II are band-limited
white gaussian random processes with the same bandwidth W and rms
phase deviations ® and ®;. We also assume that p(¢) = p;(t) = 8(¢),
or that no pre-emphasis—de-emphasis networks are used in the sys-
tem. Therefore, we have

_ psin 27Wr
Ro(r) = @ 2aW+ (42)
and
_ gesin2zWr
Ry () = @} 30200 3)
From equations (22), (23), (42), and (43) we can writef
] 2m
S = 8.0 + X 6.0, (44)
where
G.() = HH,( — mfs) + H,(f + mifa)], - (45)
and
® 2 2 2 i 2 W —i27fr
H,() = f_ _exp l:—m (@ + <1>1.)<1 - %}} dr.  (46)

Notice that G..(f) is the spectral density of a sinusoidal carrier (at
carrier frequency mf; , and having unit amplitude) phase modulated by
a band-limited white gaussian random process having mean square phase
deviation m*(®® + ®°). Section III gives methods of obtaining this
spectrum for all values of f; hence, Sq(f) can easily be calculated.
In order to evaluate Sqo(f) from equation (44), we must be able to
determine the spectral density of a carrier phase modulated by gaussian
noise for any arbitrary modulation index. In the case of band-limited
white gaussian noise modulation the technique presented in Ref. 16 is
very convenient to calculate this spectrum. The series method of
determining this spectral density can become rather tedious when @ or
®, is large.

When there is no interference, the signal as detected by an ideal
phase demodulator is given by ¢(t), and its spectral density by S,(f).
Therefore, from equation (44), the spectral density S;(f) of the base-

T Notice that in this case Q(1) = %(¢), since p(¢t) = p:(t) = 6(¢).. -~



2344 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

band interchannel interference can be written as

Si) = Salf) — S.(), @)
or
Silh) = 22 71e Gull). (8)

Figure 3 is a graph of S;(f) for fo/W = 0, 1, and 5; ® = 3 rad, and
&®; = 2 rad. Notice that, for fo/W = 1, S;(f) is maximum at f = 0 or
that maximum interchannel interference occurs at the lowest baseband
frequency present in the system.

In practice the quantity of interest is usually the ratio of the aver-
age signal power to average interchannel interference power. In this
case this signal-to-interference ratio o (f) can be written as

_ 8.0 Af _ 8,
D= ST s )

where Af is the spot frequency band of interest. Clearly, o(f) is a fune-
tion of f and in designing an angle-modulated system one is usually

1
[ l
INTERFERING

l‘,/"')" SPIKE "‘\\
10! \T\ "
>< \ fa_,
10~2 // \ \\N

1073 N \

Sy (f)

3z 074

10~5 \
10-6 \ \
1077

0 2 4 6 8 10 12

f/w

Tig. 3 — Spectral density S:(f) of baseband interference. ® = 3 rad; ®: = 2 rad.
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interested in the minimum value of o(f) for 0 < |f| < W. We denote
the minimum value of this signal-to-interference ratio by S/I. In practice
a phase demodulator is followed by a linear low pass filter. We assume
that this filter is ideal and that it removes all the frequency components
outside the desired signal frequency band 0 < | f| < W.

4.1 Interference Between Two Co-Channel PM Waves

In general, one can show (see Fig. 3) that S;(f) contains a (nonzero)
Dirac delta function (corresponding to a line spectrum) at the frequency
+f,, and that the frequency division multiplex channel corresponding
to this frequency may not be usable.’ In case the interference is co-
channel, f; = 0, and the line spectrum lies at the frequency f = 0. In
systems usually encountered in practice, there is no frequency division
multiplex channel at de even though the lowest frequency present in the
baseband signal may approach a frequency arbitrarily close to zero.'

Notice from equation (48) and Fig. 3 that, in the case of co-channel
interference between two PM waves, maximum baseband interference
oceurs at the lowest frequency present in the system; we assume that
this lowest baseband frequency lies arbitrarily close to zero. In this
case the minimum signal-to-interference ratio therefore occurs at f =
0 and

®* 1
where
SHO) = 32555 (HA() = oxp [=mi(# + 8] o)) iwo - (5)

Since the interference is co-channel we further assume that ® = &;
so that the rms phase deviations in the two PM waves are the same.
We can now write

0 Rfm

SH0) = 5oz [Ha() — exp (—2m'®) 8]0 . (52)
m=1
Consider the case & > (5)? radians. In this case one can show that®
H.() = exp (~20'8) oPlrco 5o (B, 69)
" =0 omadW \n/’

and that the error in this approximation is less than 8 per cent. Hence,

+ We do not put any lower limit on the width of any frequency division multi-
plex channel present in the baseband signal.
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we have
0.23 © Rf'ﬁ , 0.27 ( )& RZ" &
@W() 2 <80 <G D) LT, @ > () rad. (54)
It can be shown that
i £ di
m=1 m Q(R) j; R2' (55)

Therefore, the signal-to-interference ratio at f = 0 is bounded by

1 <7l'>% KD 1 (1r >% @3 Y
046 Q(Rg) > S/ > — 05d Q(Rz) , ® > (5)* rad. (56)
For any value of R; < 1, equation (56) gives upper and lower bounds
to S/I. We shall now investigate whether we can derive simpler upper
and lower bounds to Q(R?).
From equation (55)

> B gy 5 eelom (/R (57)

m=1 m=2

Now one can show (see Fig. 4) that

0 < 3 epl—mln A/B] f‘” exp [—xml“‘n (/D] ;.

3
m=2 m 1

= E,[In (1/R?)],  (58)
wheref

© —zt

Ey() = f, Cedt, 2> 0. (59)

We can show that for R; < 1, (In 1/R% > 0), (see Ref. 17)

2

n oo B
0 < B(in 1/R) = 51 RS » (60)

or

QRY) < R?[l + 2—?1'111(—1/—]?5} (61)
Since

t The function Egz) is tabulated in Ref. 17 (see pp. 228-248). Notice also the
inequality E.(2) < e72/(z 4+ n — 1) on p. 229.
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e [—:nﬂn (1/Rf)]

; —
N
%%%??

Fig. 4.— Function exp [—z In (1/R:2)1/2% and 2®m-2 R:2™/m3. The area in the
shaded region is less than the area under the curve from z = 1.

4
0 2

0 0 2m
SECSE L ma R, @@ <-ma-E). (2
m=1 m=1
We are thankful to W. T. Barnett for having suggested another upper
bound RY/(1 — R to Q(R?).
One can show that the bound given in equation (69) is tighter than
that given in equation (61) if

R; < R, = 0.695573. (63)
Let us write
1
14+ 55, B <R; <1,
U(Rf) — 2 + In (1/R?) (64)
— R?
_ILIOT@ , 0< Ri < Ro ,
so that
R} < QB < RIURRY), O0<R;<1. (65)
For carrier-to-interference ratio of 10 dB or for R} = 0.1
=] 2m
R} < ZR& . 2. (66)

m=1



2348 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

From equations (56) and (65), we next write

R ENCANS R __1__<7_r>%_1__‘1’f_
0.46 (3) B> 8>55G) By
®> (5)frad, R, <1. (67)

Since the physical characteristics of elements used in a PM receiver
are far from being ideal, and since thermal noise (which is always
present) further deteriorates the performance of any PM receiver, we
often find that R? < 0.1 in systems currently in use. Equations (66)
and (67) show that the error introduced in truncating the series at
m = 1is less than 5.36 percent if R? < 0.1. For any R; < 1, we therefore
need take only the m = 1 term in equation (54) to estimate the baseband
interference. Equation (67) gives upper and lower bounds to S/I for
any R; < 1. Also, note from equation (67) that co-channel interference
can be suppressed in PM systems by using a large modulation index &.'*

4.2 Interference between Two Adjacent-Channel PM Waves

As mentioned in Section IT we do not consider the effects of linear
filters on angle-modulated systems. We assume that the desired and
interfering wave are both in the passband of the PM receiver used in the
system, and that no filters are used to reduce the adjacent channel
interference.

In any multichannel angle-modulated system generally encountered
in practice there is usually both adjacent channel and co-channel
interference. Protection against adjacent channel interference is often
obtained by proper choice of the channel separation frequency and the
required (linear) filters generally used in such systems. The assumptions
made in this section are, therefore, a little unrealistic; hence, the results
given may serve only as a guide in the actual calculation of adjacent
channel interference.

For 0 < f3/W < 1, one can show that S;(f) contains a (nonzero)
Dirac delta function (corresponding to a line spectrum) at the frequency
==f, and that the frequency division multiplex channel corresponding
to /W may not be usable.

For f; ## 0 we can show, from equations (44) through (46), that
0 2m
s = 2

]
m=1 M

Ga(f), (68)

where
Gn(f) = HH.(f — mfs) + H.(f + mfa)l, (69)
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and
H() = [ exp [——m2(<1>2 + @%)(1 el ’)]e“"”” dr.  (10)

For 0 = |f| < W, and |f:| > W, one can show (by numerical
methods) that S;(f) reaches its maximum at f = W, or that maximum
baseband interchannel interference occurs at the highest frequency
present in the baseband signal. For other values of channel separation
frequency, this maximum is to be determined from equations (68)
through (70).

For (&* + %) > (30/x)* rad, the saddle-point method of calculating
G..(f) is very convenient;'® and this method can be applied in a straight-
forward manner to estimate S;(f). (Since one can show that the saddle-
point approximation reduces to the quasistatic approximation for
fo/W & (& + #)% the quasistatic approximation may be used for
convenience if this condition is satisfied. However, the error introduced
as a result of the use of quasistatic approximation cannot often be
estimated.) For R, < 1, we can also show that we need take only the
m = 1 term in equation (68) to estimate S/I with a very small fractional
error (less than 5.36 percent for B; < 0.1).

For fo/W = 2, 4, 6, 8, and 10 and for a set of values of ® and &;, we
have calculated this minimum signal-to-interference ratio; Figs. 5
through 9 give these results. For any value of f;/W and for any S/I,
the required values of ® and ®; may be obtained from these figures.
Since the effects of linear filters on adjacent channel interference has
not been taken into account in this paper, these values of ® and @,
may serve only as a guide in the design of any angle-modulated sys-
tem.

V. INTERFERENCE BETWEEN L-+1 PM WAVES

We now assume that there are L interfering waves, and that all of
them are phase modulated by mutually independent gaussian random
processes.t Let the desired PM wave be given by

s(®) = Re 4 exp {jlot + «(®)]}. (71)
Let the kth interfering wave be represented as

w(t) = Re Rod exp {jloit + 0u(® + wl}, 1=k=L (72

t The analysis given in this section can suitably be modified for angle modula-
tion by general gaussian random processes (see Section II).
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Fig. 5 — Signal-to-interference ratio as a function of rms phase deviations and
channel separation for ®; = 2 rad.

Since the L interfering waves are assumed to originate from L different
sources, we assume that the u,’s are independent of each other, and that
i, 1 £ k = L has a uniform probability density function =,, (1) where

1/2r, 0 2 u <2 1=k =L,
) = { /25, 0 S u < 2m (73)
0, otherwise.

We further assume that ¢(f), the ¢.(f)’s, and the p,’s (with 1 < k < L)
are mutually independent random variables.

If s(t) and the 4 (¢)’s are all in the passband of the PM receiver
used in the system, the total signal incident at the receiver can be writ-
ten as
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"0 = 50 + X il

It

Re A(l -+ I{ER{I; exp {j[wdkt -+ %’k(t) — o(l) + F«k”)

-exp {jlwit + o(D)]}, (74)
where
Wap = @y — w, = far/2m. (75)

From equation (74), we can show that the output 6(¢) of an ideal
phase demodulator can be represented as

1) = o0 + Tmn (14 2 R exp (ot + ea(®) = o0 + )

(76)
Next we write

In (1 + ; R exp {jloat + ea(t) — () + #k]}>

= 5 E (5 R exp ot + a® — o) + 1))

m
45
2 3
V] 8 | "1
w L]
[a] //
i a0 /6 ////,é/
% / 4//
—~ 25 — 7]
LD L~ L~
a
& //
20,/
15
3 4 5 6 7 8 9 10

® IN RADIANS

Fig. 6 — Signal-to-interference ratio as a function of rms phase deviations and
channel separation for &; = 4 rad.
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Fig. 7— Signal-to-interference ratio as a function of rms phase deviations and
channel separation for ®; = 6 rad.

L
kZR”‘ < 1. (77)
=1

By the multinomial theorem, we have

(I;I R exp {jlwat + ealt) — S’(t)]})m

= Z L7n! H R:: exp {ja,[wd,.t -+ (Pir(t) - ﬂo(t) + :u'r]}y (78)
H ar! r=1

where the a,’s are a set of nonnegative integers such that

40
9 ]
g 35 [ —a
2 Mo L ////
a W | L ——
2 30 - /8/;2%
E 6 //
2 2 ./
o
Nm-’
A
23 4 5 6 7 8 ) 10

@ IN RADIANS

Fig. 8 — Signal-to-interference ratio as a function of rms phase deviations and
channel separation for ®; = 8 rad.
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Fig. 9— Signal-to-interference ratio as a function of rms phase deviations and
channel separation for ® = &;.

i a, = m. (79)

From equations (73) and (76) through (79), one can show that the
covariance function Ry(+) of 4(¢) can be written as

Ry(r) = (6)6( + 7))

)

= R + 2 g oxp [—mIRL0) — RG]}

m=1

L 2
m! [ R

r=1

X

r=1

b exp (- 23 iR, 0) ~ R..()

- cos (r i a,w,,,) . (80)

r=1

If the random gaussian noise is band-limited and white, and if all the
modulating waveforms have the same bandwidth W, we have

= 2.S_i£1 2 Wr
R‘P(T) - q> QTIVT ) (81)
and
_ g sin 20l f
Ro(n) =% —53y—, 1=sksL (82)

In this case, equation (80) can be written as



2354 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

= 1 2 i 2 W
Ro(r) = Ry(r) + 35 55 exp [—m @2(1 - %)]

m=1

L

3 (mlf rI-Ix R exp [_(1 __sin 21rW7-) 3 e :|

20 W+

II (a.)®

r=1

- cos (r i a,wd,> . (83)

r=1

Therefore, the spectral density of baseband interchannel interference
is given by

= 1 (m")? IiIlR?f'
S:(f) = ng; ypon Z ‘m
a.!

~|:Tm(f - f: a,f.if) + Tm<f 3 a,fdﬂ SN

r=1

where

e [, _sin 21rWT>< 2gz 1 S o {l) “izesr
Tm-!(f) - ‘/‘_w eXp [ <1 27[']:177' m @ + 7; arq)r c dT‘
(85)

Next notice that the methods given in Section IIT can be used to
calculate T(f) for all values of ®, and ®;,’s (with 1 < k =< L); hence,
we can calculate S;(f) for all values of R,;’s such that E o1 Baw < 1.
The minimum signal-to-interference ratio S/I can then be obtained
from equation (49).

Now assume that we have L co-channel interferers and that all have
the same rms phase deviation &, or

&, = P, 1=r=L. (86)
In this case equation (84) yields
L
= q (m))? H R
Sl = g | 2 G0, )

11 @

r=1
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where

e sin 2z W~ < —i2nfr

Grns(f) b j:w exp |:-<1 —_ W)Cﬁ(nzz -+ Z af)]e dr.
(88)

From equations (87) and (88) and Refs. 2 and 16, one can show

that the continuous part of S;(f) reaches its maximum at f = 0, and
thatt

3! 1 1
0‘92<Zr) AL Gna(0)
m' + 3

r=1
: 1 1 )
< 1.08(—) (—— — &> (5)irad.  (89)
The expression G.:(0) in equation (89) does not include the delta
function contained in G5 (f) at f = 0.

L
Since Y a, = m, one can prove that

=1

2 L
TsXasn (90)
r=1
From equations (89) and (90) we have
3y 1 3\ 2L )’2‘ 1
O‘4G<w) maw < GO < 0'54(71‘) <L T 1) mew OV

Next

L
* (m!)2 HRfr 3 L
1 e 3 2L v 1
5O < S | 0 () g @

L
II @ Y* ,
r=1
If all z;’s are nonnegative, one can show that

>t = (X e (93)
Using equation (93), equation (92) yields
L 2

' TI R

SO %<_2L)* IR R S
5.0 < 2, 0'27(7r> L1 ot | =%

, H a,!

r=1

1 We consider only the continuous part of S;(f).



2356 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

L 2m
R.
_ 5*( 2L )*_1_ : <Z )
= 0.27<7r) T+ @ mf_‘, ———  (99)
or
3V 2L V1 o
where
L 2
b = (ZR;,) <1. (96)
r=1
We have shown in Section IV that
-] 2m
> 5 < VU®Y), b < 1. (97)
m=1

Therefore, the minimum baseband signal-to-interference ratio is
bounded by

e *(L + 1)% P° R
S/I > 054 <3) oL U0 ® > (5)0%'rad, b <1. (98)
From equation (87) we can also show that
1 L
SI(O) > 5 (Z R3r>G18(0)' (99)
r=1
Equations (89) and (99) yield
8,0) > 0 23(§)* L (i R? ) (100
I . T W‘b “~ ir ] )
or
1 3
S/1 < 0_146 (%) Lq’ (101)
0 2 .
Z Rir

r=1

Hence we have

1 (7} & 1 (7_r>%(L+ 1)* 3
0.46 (3> oy >8/1>552\s) \ar ) woas

re=]1

L
®> (G)rad, b= > R, <1. (102

k=1
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For any set of values of R;;’s, 1 = k £ L, and for any &, bounds to
the signal-to-interference ratio S/I can be calculated from equation
(102), and a proper ® can then be chosen to keep the baseband inter-
ference below any desired level.

Notice that the upper bound is a function of the total interference
power, and the lower bound a function of the sum of the amplitudes
of all the interfering carriers. In such cases, the distribution of R’s
generally determines the closeness of the two bounds. However, it may
be observed that both these bounds are proportional to the cube of the
modulation index & (for a high index system).

VI. RESULTS AND CONCLUSIONS

In this paper we consider the effect of interchannel interference on
angle-modulated systems. We also derive an expression for the base-
band interchannel interference when two (or more) waves angle mod-
ulated by gaussian noise interfere with each other. This formula can
be used even when the baseband signal is passed through a linear net-
work such as a pre-emphasis—de-emphasis network. We show that the
calculation of the RF spectral density is essential to the evaluation of
the baseband interchannel interference.

We then consider band-limited white gaussian noise modulation and
show that, in the case of co-channel interference, maximum baseband
interference occurs at the lowest baseband frequency present in the
system. For moderately high modulation index, we show that we can
derive upper and lower bounds to this minimum signal-to-interference
ratio and that these bounds are proportional to the cube of the modu-
lation index. It therefore follows that co-channel interference in PM
systems can be reduced by expanding bandwidth, and that phase mod-
ulation can be used with advantage in combating interference. We also
show that the first term in the power series expansion for the baseband
interchannel interference gives most of the contribution if the carrier-
to-interference ratio is greater than about 10 dB (the error is less than
5.36 per cent for a carrier-to-interference ratio greater than 10 dB).

In this paper we also give some results about the effects of adjacent
channel interference on angle-modulated systems. We assume that all
the incident signals at the receiver are in the passband of the PM re-
ceiver used in the system. This assumption is justified in the case of
co-channel interference, but is not realistic in the case of adjacent
channel interference. However, we feel that the results given in this
paper for the adjacent channel interference may serve as a guide in
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determining the deterioration in performance produced by adjacent
channel interference.
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Calculated Quantizing Noise of
Single-Integration Delta-Modulation Coders

By J. E. IWNERSEN
(Manuseript received March 28, 1969)

We calculate the granular quantizing noise for a delta modulator that
has unequal positive and negative step sizes. The asymmetry leads to a
highly colored noise spectrum. We perform this calculation by adding a
ramp function of time to the input of a symmetrical coder. The resulting
formulas can also be used for untform DPCM and PCM coders. The
idle-channel spectrum consists of discrete lines which scatter somewhat
trregqularly in amplitude and frequency; they can be regarded as the result
of sampling (aliasing) a sawtooth wave. These lines are phase-modulated
by a coder input. For a sinusoidal input, discrete side frequencies are
produced which again have an irregular progression of amplitudes. Gaus-
sian inputs lead to gaussian line shapes; the lines broaden as input power
1s increased. A totally white spectrum (as is often assumed in connection
with delta-modulation-system considerations) cannot be attained, however,
before the onset of slope overload. We give a numerical example that uses
a coder suilable for telephone applications. One can see that step asym-
metry can be very advantageous in attaining low notse.

I. INTRODUCTION

While Laane and Murphy?* were investigating the encoding of speech
using delta modulation {(AM)? it became apparent to us that existing
theories of granular quantizing noise®* were seriously deficient; they
did not take into account, except in a very elementary way, the asym-
metry of the positive and negative integrator step sizes. This work in-
tends to correct this deficiency.

Figure 1 is a block diagram of a AM coder-decoder. An input signal
is compared with a locally reconstructed version of itself and the
differential, or error, is quantized into a one-bit code, transmitted, and
integrated at a receiver to recover the original signal. Quantizing
noise is produced by the coding process and is also recovered at the

2359
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CLOCK
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DECODER— "oyt INTEGRATOR preee—

Fig. 1 — Delta-modulation coder plus decoder (codec).

receiver; this noise is the subject of this paper. We limit our considera-
tion to single-integration systems.

In the past, considerations of AM noise have been broken into two
distinet areas: calculation of quantizing noise accompanying a typical
signal,® and calculation of idle-channel (zero-input-signal) noise.* As
Fig. 2 shows, there is no idle-channel noise for a coder in which the
plus and minus quanta (steps) fed to the integrator are exactly equal
in magnitude. The integrator output spectrum contains only the out-
of-signal-band Nyquist frequency, fy (one half the sampling fre-
quency, fs) and its harmonics. In any real coder, however, it is
impossible to balance the plus and minus steps perfectly, with the re-
sult that the output contains oceasional double-plus (or double-minus)
steps, as Fig, 3 shows. In general, this waveform has signal-band com-
ponents. Wang calculated the noise for this case but his results, while
adequate as far as they go, are incomplete and nonrigorous.* Van de
Weg’s calculation of noise in the presence of signal was for an equal-
step (symmetrical) coder.! We do the calculation for an unequal-

Q

y o
Hnnnnnnnnnonnnnonnn
AR RR TR

Fig. 2 — Integrator-output wave from a symmetrical (equal-step-size) coder.
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Fig. 3 — Integrator-output wave from an asymmetrical (unequal-step-size)
coder, shown with o, | > |o-

step (asymmetrical) coder and show that there are significant differ-
ences.

In much of the literature on delta modulators, where noise is treated
casually, the assumption is made that the total average noise power
is more or less uniformly distributed in the band from zero frequency
to the Nyquist frequency. This assumption is a very good approxima-
tion for multibit PCM and DPCM but, as we show, can lead to
colossal errors for AM.

Results presented for gaussian input are in terms of time-averaged
noise power. In this form they are directly useful for speech systems
and typical data systems but are of more limited value for video
systems, where details of the waveform are perceived.

In Sections II and III, we set up the method of attacking the prob-
lem. Then in Section IV we treat zero input (the idle channel), in
Section V a sinusoidal input, and in Section VI a broadband gaussian
input. The appendixes contain various mathematical developments
necessary for logical completeness but not important to the reader
interested in engineering understanding and application of the main
results (with the possible exception of Appendix D).

II. QUANTIZING RULES

The function of the coder (Fig. 1) is, at each clock time or sampling
instant, to add a positive step (o) to the integrator output (q) if this
output is less than the signal input (y) or to add a negative step (o_)
if the output is greater than the input. If the integrator has instanta-
neous response and infinite time constant, the output is a sequence of
rectangular pulses, as in Figs. 2 and 3.

If y, is the value of the input at the nth sampling instant, and g,
is the output value just before this instant, the operation can be sum-



2362 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

marized:

Yn — Qn Qn+1

+ Qn+o’+
- qn + o

As we mentioned, it is not possible to make the magnitudes of o
and o_ exactly equal in a real coder. Let us therefore define

oL =0 + ¢ o. = —0 + ¢ (1)
where o, the average step size, is a positive quantity. The coder opera-
tion can then be summarized in a single equation:

Guer = @u + o580 (Un — ) + e )

We are actually interested in the error, or noise, z = ¢ — ¥, which
accompanies the reconstructed signal. (Appendix A shows that z is
usually uncorrelated with y and is therefore noise under any circum-
stances.) Substituting for ¢ in equation (2) gives the noise as a funetion
of the input:

Tpet — Tn + 0SEN Ty = — Y1 + Yo + € 3)
= —[Yoe1 — 0 + 1)e] + [y, — ne] 4)
= —yia+yi. ()

Thus we are led to a crucial principle: The notse output of an asym-
metrical (e # 0) AM coder can be calculated as the noise output of a
symmetrical (e = Q) coder, if the input is taken as the actual tnput plus
an appropriate ramp or staircase function of tvme.

If equation (5) is summed from ¢ = — o to just before the nth in-
stant [assuming (— «) = y(— =) = 0],

n—1

T, + o Z sgnx; = —yh (6)
or
n=1
gi= —0 > sgna . ()

The resulting summation in equation (7) must be an integer alternat-
ing between odd and even values as a function of n. We can, without
loss of generality, take it even for even n. [In equation (11) we include
an arbitrary initial value of amplitude for the ramp; this covers the
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possibility that the odd-even assumption is consequential.] If we assume
that the coder does not go into slope overload (that is the input slope
stays between the limits ¢, /7, and o_/7,), then ¢’/o is the nearest odd
integer to (y. -+ ¢€)/o for the odd sampling instants and the nearest
even integer for the even instants. y. -+ ¢ appears, rather than ¥/,
because the error must range from ¢ + € to —o + ¢ rather than from
+o to —o. The effect of this added e is simply that the coder transmits
a de level of € in addition to other signals and noise. Since AM systems
normally suppress de, as is mentioned in Section III in connection
with other reasons, this added e is dropped in the succeeding mathe-
matical development. If it is desired to include it, z — e should be
substituted for « in what follows.

We have seen that a AM coder has two quantizing functions which
alternate in time. Figures 4 and 5 show these functions; both the input
and output are normalized to ¢.

g5(y) and ¢/(y) were called E(y) and O(y) by van de Weg who cast
them into contour-integral form and used them directly.®> We prefer
to follow the suggestion of Riece and use the error functions, z(y),
also shown in Figs. 4 and 5.° These functions, periodic in ¥, are con-
veniently represented by their Fourier series:

o o
z, = ; —7 &P (ilg), )

and

20 = 2 (=)' 5 exp (milg) (©)

10

where ¢’ = y'/o. For a AM coder then,

Tn = ; (=)™ = exp (milg?) (10)
= 2 =% e [rilln + g0)] (a1
= ; fﬁ exp {zil[ds + 1 — Hn + g.l}, (12)

where we have introduced

y 1?0 = '6_0 * (13)

I

g = =7, 4 =

The last part of equation (13) takes into account an arbitrary initial
amplitude for the ramp.
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Fig. 4 — Quantizing and error functions for odd sampling intervals.

There is actually nothing in equation (12) which constrains the
change in integrator output to be equal to one step per sampling
interval. Indeed, the quantizing functions in Figs. 4 and 5 are perfectly
valid for uniform DPCM systems where changes +o, £3c, --- ,
+(2N — 1)¢ are allowed. Thus the formulas developed in this paper
can be used for DPCM (and PCM—see Appendix B) with the provision
that they are useful for input signals with up to 2N — 1 times the
maximum slope of the AM system. This provision is not trivial, how-
ever; when signals range over many steps per sampling interval the
errors tend to be uncorrelated, the noise spectrum tends to be white,
and the structure (important for AM) calculated here is negligible.

III. NOISE FORMULA

Results in this paper are given in terms of frequency spectra of
noise (two-sided unless otherwise identified). It is well known that
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the spectrum of a pulse sequence can be broken into a factor which
contains the information about the pulse shape and a factor which
contains information about the area of each pulse and the periodicity.
The “shape” factor (called also the “structure” or “aperture” factor)
depends on the details of the coder circuit response. This factor is
frequently negligible, because the low pass filter it represents normally
does not contribute any significant distortion in the signal band. Thus
we need only consider a §-function representation of the sampled-
signal, integrator-output, and noise pulse trains, as did van de Weg.?
The noise wave with the proper area for each pulse is

0

v(t) = 7, 2. z, 8(t — nt.), (14)
—
|
. i
fae  —
|
|
]
2L |
1
I |
. | | ! ‘ 4 °
RS ) 2 ‘ ' ' T
| y'so(=g’)
+-2
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| 4.4
|
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! I
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Fig. 5 — Quantizing and error functions for even sampling intervals.
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where 7, is the sampling interval (=1/f,). If z(f) is defined as a con-
tinuous wave with samples z, = a(nr,), equation (14) can be written

W(l) = 7ol i 51 — nr.) (15)
— o) S oxp 2mikf.). (16)

A convenient form for x(t) is, using equation (12),

1#0

a(t) = 3 = exp {willde + (1 = 9)ft + g1}, a7

where

o) = 12, (18)

Combining equations (16) and (17) gives

o0

v@) = 2 > Zexp [m’lﬂo + 27i<l(—1—_i) + Ic)fst + m'lg(t)] (19)
=0 15 wil 2

Thus the noise wave (before filtering by the shape factor) consists of

a collection of lines of frequency

(———l(l ; %) + ’C>fa )

each phase-modulated by the input signal through a time-dependent
angle, »lg (t). These lines are examined in Section IV.

It is well known that the power spectrum of equation (14), and
therefore equation (19), is periodic in frequency, f, with period f,.
We can thus concentrate on the band from —jfy to fy. Because of the
aliasing or folding problem, all useful signals lie in this band (or any
band of width f;). The total power in (—fy, fy) is ¢*/3, which is also
equal to the mean square error, (z?). Appendix D treats these matters
explicitly.

Equation (19) gives the noise generated at the coder, while one is
ordinarily interested in the noise at a (distant) decoder. Unless the
decoder has exactly the same step sizes as the coder, the noises are
different. If the o’s are different, there is some linear gain or loss in
the system; signal and noise are affected equally and their ratio, the
really significant figure of merit, is not affected. If the &’s are different,
the noises will differ only by a drift or ramp function of time. To get
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rid of this ramp (and also because it is necessary to damp out the
effect of errors in transmission) real systems have low-frequency (be-
low-signal-band) cutoffs, called leaks, built into the integrators. The
high-frequency cutoffs of the coder and decoder integrators may also
be different. In the event that these cutoffs affect the signal band
they can be taken into account as separate factors in determining the
spectrum. Thus equation (19) can be used to calculate noise at the
decoder output.

IV. IDLE-CHANNEL NOISE

The term “idle-channel noise” is used here as if it were synonymous
with “zero-input noise.” We recognize that this terminology is some-
what loose, in that an idle channel is actually characterized by a
thermal or other noise input. Nevertheless, this usage seems established
in the literature and the distinction is not significant for most cases of
practical interest.

Figure 3 shows the integrator output of an asymmetrical coder. An
approximately sawtooth-shaped wave with peak-to-peak amplitude
=~ ¢ is clearly visible (Wang’s “first envelope function”).* Other not-
so-evident sawteeth are also usually present.

Putting ¥ = 0 into equation (4), we see that the idle-channel noise
output of an asymmetrical coder can be calculated as the noise out-
put of a symmetrical coder with a ramp input. Figure 6 illustrates
this. The error wave in Fig. 6 is the same as the wave in Fig. 3 ex-
cept for an inconsequential difference in the pulse shapes.

The idle-channel output is calculated by setting ¢ = 0 in equa-
tion (19): -

W) = 3 3 2 oxp [m'h?o + 2m'(% (1 -9 + lc)f,t] ~(20)

1#0 k=-c0
which describes a collection of discrete lines. Figure 7 shows a number
of these lines; the symmetry of the spectrum about all integral multi-
ples of fy is apparent. ,
For any given value of I, there is only one value of k& which leads to
a line in the Nyquist interval (—fy, fx). This line, of frequency f;, can
be defined: Let ’

Q@) = a — N(®) 21)
where

N(a) = integer nearest a.
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Fig. 6 — Input, output, and error waves for a (negative) ramp input to a sym-
metrical coder.

Then
o = oM D)y, 2)

Ignoring lines outside the Nyquist interval, and combining terms of
+1and —I,

vox () = 3 i—;sin (o + 20fit). (23)

1=1
If we now think of the spectrum as one-sided, we have a collection
of lines of frequency

=l (24)
and power
2¢”
P; = 2l2’ (25)

These lines will subsequently be referred to as “main lines,” “original

lines,” “carriers,” or “I-lines’”’ (2-line, 5-line, and so on).
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Figure 8 is an example of the spectrum, bringing out some of the
important qualitative features. One can see that the terms for which
l = 2,4, and so on, are the components of the sawtooth, of peak-to-peak
amplitude ¢ and fundamental frequency &/, , evident in Fig. 3. If we
choose those values of [ which equal aN, where a is a positive integer
and & is the odd integer nearest 1/, we have the components of another
sawtooth of peak-to-peak amplitude 26/N = 2¢ and fundamental fre-
quency |1 — N#¢|f,/2 (Wang’s “second envelope function”). In Fig.
8, N = 19.

Notice that either the (N — 2)-line or the (N + 2)-line has a fre-
quency equal to that of the 2-line minus that of the N-line and a power
about equal to that of the N-line (the 21-line in Fig. 8). This line may
also be thought of as the fundamental of a sawtooth, as may all lines
at the lower end of the spectrum.

There is another interesting way of looking at the idle-channel noise
spectrum. Recalling equations (15) and (17), it is apparent that vy (%)
can be thought of as the result of sampling, at a rate f, , the wave

o .
wo(t) = 2 — exp {millds + (1 — 3)f.1]} (26)
=0 il
which describes a sawtooth of peak-to-peak amplitude 2¢ and funda-
!
11 kt,k=0 s |5 =1, k0 1
T =
-
a
b
<
12, ket 1=-2, k=1
_3,1 3,
4,-2 -4,2
12,6 6.3 s 5-2 12,5
¥-12,5[10-5 T"’ ' 6.7 |3 |15 S\l-‘* ' l . V126
; , | .
N 0 N
FREQUENCY
Fig. 7— Example of an idle-channel noise spectrum. All lines for |1] = 1, 2,

3, 4, and 12 are given; notice their symmetries. Selected other lines are included
to show the progressions involved.
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Fig. 8 — Example of a one-sided idle-channel noise spectrum, for ¢ = 5/96.
The most powerful 25 lines are shown along with selected others, in particular
the harmonics of the 17-line, 19-line, and 21-line. These and the 2-line plus its
harmonics make up sawtooth waves.

mental frequency (1 — &)fy . In Ifig. 9 this sawtooth is superimposed
on the wave of Fig. 3.

All the l-lines are distinet if & is irrational, which is expected to be
the normal case. Appendix B treats rational .

V. SINUSOIDAL INPUT

Let us calculate the noise output of a AM coder for a pure sinu-
soidal input, setting

9(t) = 4 sin 2nfot + o), @7

where ¢ is an -arbitrary constant phase angle. We put equation (27)

L~ O+€

I

1% ivini \
\

LS O i
\ TP

— -0+¢ TIME e

. AMPLITUDE=—ma~

!
Q

Fig. 9— Error wave of Fig. 3 with superimposed sawtooth. The heavy dots are
the sampling points. Section II explains the vertical offset (e).
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into equation (19) and make use of the Jacobi-Anger formula:®

exp [wzlA sin 2rfot + )] Z J,.(xlA) exp (2rimf,t + 1me), (28)

m=—co

where the J, are the Bessel functions of integral order of the first
kind. The result is

) = X 3 Z 7 I n(rld)

1#0 k=—c0 m=-c0

- exp (wild, + ime) exp {2wi[(l(1 %) + lc)f + mfo} } (29)
If we define

[ = <l(1 N 4w, m))f (30)

where k(l, m) is chosen so that f; + mf, is in the Nyquist interval, we
can write (for this interval)

Vysin(f) = ; Z — J owlA) sin 1201 + mfo)t + wlde + me]. (31)

Equation (31) deseribes a collection of lines consisting of the original
lines of the idle-channel noise spectrum (or their replicas, f; + kf,),
each with a set of uniformly spaced (Z=mf,) satellites. The total power in
an l-group (all the lines governed by the index I) is constant. J3(xl4) of
the power remains in the main line; the mth satellite gets J 2(xlA4) of the
total power. From the symmetry of the spectrum one can see that for
every [-line satellite which falls outside the Nyquist interval there is a
corresponding satellite in the Nyquist interval arising from a carrier
outside the interval.

The nature of the Bessel function is such that main lines go through
a series of peaks and nulls as a function of A for a given [, and I for
a given A. The satellites, in addition, fluctuate in amplitude as a func-
tion of the index m. As a result, for the typical case of a signal band
which is a small fraction of the Nyquist interval and for an input
frequency of the same order as the signal bandwidth, the signal-band
noise power is determined by relatively few lines and can be expected
to fluctuate irregularly as a function of input amplitude and frequency.

Jm(2) goes fairly rapidly to zero as a function of m for m > z.
Thus the full width of an I-group is

Af A 2alAf, . (32)
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Fig. 10— The ! = 1 and ! = 2 lines of the spectrum of Fig. 7, modulated by a
sinusoidal input with fo = f»/40 and »A = 5. The other lines are omitted for the
sake of clarity. (The lack of symmetry in this figure, and in Fig. 11, is due to the
omission of the image groups: | = —1, —2.) Equation (32) gives Af.

Figure 10 gives an example of the spectrum which attempts to bring
out the points made above. If f, and f, are not rationally related, the
lines are all distinct. Appendix C treats the case of rational fo/fs.

VI. BROADBAND INPUT

As first discussed by Bennett, the average noise performance of a
coder in the presence of a broadband input signal is best calculated
by using an input signal of random phase.” This test signal should
have the same power spectrum as the input signal under consideration.
Appendix D gives the mathematical manipulations.

Briefly the procedure is to calculate the noise power spectrum,
W (f), by finding the Fourier transform of the autocorrelation funec-
tion, R (r), of the noise wave. The averaging procedure in the defini-
tion of R(r) is carried out assuming the input, ¢(¢), is a gaussian
variate. This gives R(+) in terms of the autocorrelation coefficients,
ax, and the mean power of the sequence of input samples; we deter-
mine the a; from the Fourier transform of the input power spectrum,
U(f). We show that, under an assumption that usually holds in prac-
tice, the dependence on U (f) reduces to a dependence on the rms time
derivative of the input. A parameter S, which is this time derivative
normalized to the average maximum slope of the coder, of,, charac-
terizes the input in the following (equivalent) formulas:
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W) = % 5 e [~ (i, + 12D | ey

150 k=~ T

(CEDP Ztl—lsep[ iy (o + 52 0] |

(34)

Terms of different ! do not interact in equations (33) and (34);
therefore, one may use either formula to calculate the power density
for a given [. Equation (33) converges faster for high values of [; equation
(34) for low values. The crossover occurs at | & 1/(m)!S.

One can see [most easily from (34)] that the spectrum consists of the
lines given in Section IV for the idle-channel noise spectrum, each now
broadened to a gaussian. Notice that some of the power in the wings of
each gaussian falls outside (—fy , fv). Conversely, lines centered outside
this band have in-band wings. The total in-band power of each l-group
is constant.

One can easily see that the full width of an I-group is

Af = 1Sf, . (35)

Thus for IS < 1 one has a relatively sharp line, while all groups for
which S 2 1 sum to a white background. Figure 11 shows the im-
portant qualitative features of the spectrum.

As S approaches one, equations (33) and (34) lose their usefulness
because of the onset of so-called slope-overload noise. (Strictly speaking
equations (8) and (9) do not apply under overload conditions; but
because the errors resulting from overload and quantization are prob-

172 2
2 TSO

75253

—

POWER
DENSITY

1=2, K= |

-fn 0 N
FREQUENCY

|

Fig. 11 —The I = 1 and I = 2 lines of the spectrum of Fig. 7, modulated by a
gaussian input with § = 4. The other lines are omitted for the sake of clarity.
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ably largely uncorrelated, one should be able to calculate them separately
with reasonable precision.) To give some idea of the effect, we quote
Protonotarios’ signal-to-overload-noise ratios for various input spectra:
31017 dB for S = 1 and 16 to 31 dB for S = 1.* These values are lower
limits, and probably poor approximations for high-quality voice sys-
tems, because the total noise was used. Nevertheless, it seems safe
to say that the occurrence of slope overload will prohibit inputs strong
enough to whiten the 1-group and, usually, the 2-group as well.

Figure 12 illustrates calculated noise spectra of a coder suitable for
telephone applications." Notice the enormous differences in power in
the voice band for different ¢’s. For ¢ = 0.02 the 2-line, 4-line, and
6-line centered at 30.88, 61.76, and 92.64 kHz, respectively, can be
seen. The broad line centered at 38.6 kHz for & = 0.05 and S = 27" is
the sum of the 19- and 21-lines. Although the spectra are white for
S = 277 in the frequency range shown, they are not independent of S.
The 2-line is still spreading out and the 1-line is just starting to spread in.

TFigure 13 presents the results of Fig. 12 in the form of noise power
in dBrnC versus speech input power in dBm. The unit “dBrnC”’ means
dB above one picowatt of integrated noise passing through a filter with
C-message weighting.” Briefly, this filter, which weights noise according
to its subjective effect in a telephone circuit, has a pass band with a
transmission averaging about —0.5 dB from &~ 800 to =~ 2500 Ilz;
the noise bandwidth is &~ 2070 Haz.

The parameter S is turned into speech power as follows: de Jager
(see p. 447 of Ref. 2) showed that the ratio of the rms slope of the
average speech spectrum?®® to the rms amplitude is given by

22\\ 4
r = (%—;) ~ 27-800 Hz =~ 5000 rad per s. (36)
Thus, speech power is given by
P, = (3. @)

In Fig, 13, this quantity is plotted in units of dB above 1 mW. The
structure in Fig. 13 is best interpreted by referring to Fig. 12.

VII. SUMMARY AND REMARKS

We have developed a AM quantizing-noise formalism for the case
of unequal positive and negative integrator step sizes and have given
the noise spectrum for zero, sinusoidal, and gaussian coder inputs.
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Fig. 13— Noise versus average speech power for the coder of Fig. 12. See
text for explanation of units. The circles are the calculated points; the lines
are only to connect points of the same parameter.

In AM systems, as contrasted with multibit PCM and DPCM,
the signal typically does not change more than a small fraction of a
step size in one sampling interval. As a result, the sample-to-sample
errors are strongly correlated and the noise spectrum is highly colored.
The main contributions of this paper are to point out that the spectral
distribution of power is strongly dependent on the step unbalance and
to provide a means of calculating the spectrum precisely.

A typical AM system has a signal bandwidth very much smaller than
the Nyquist bandwidth. The consequences of this situation for the
idle channel (zero input) are best seen by referring to Figs. 7 and 8.
There are extreme system-noise variations depending on whether or not
the system parameters are such as to bring into the signal band one
of the stronger spectral lines. The | I | = 2-line, which has /415 percent
of the total Nyquist-interval power, is especially important in this
regard.

Coder inputs phase-modulate the idle-channel lines; the frequency
breadth of the sideband structure is proportional to the rms slope
(roughly, root power times frequency) of the input. Thus, as power is
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increased, there may be an abrupt increase in noise as the sidebands
of a strong line come into the signal band. Figure 13 illustrates such
a situation.

At very high input powers most of the idle-channel lines are
broadened to the point where they make an easily caleulable white
contribution to the spectrum. Unfortunately, the most powerful lines
(|1} = 1 with 61 percent of the Nyquist-interval power, | I| = 2, and
so on) can be broadened to whiteness only by inputs powerful enough
to force the coder into slope overload. It is possible, however, to mini-
mize noise in a given system by dithering, that is, the deliberate in-
jection of certain appropriate signals into the coder (including the
judicious choice of step unbalance). Dithering requires extensive
treatment and will be the subject of a future paper.
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APPENDIX A

Correlation of Error and Input

The error wave, v(t), consists in general of a part fully correlated
with the input, y(¢), and an uncorrelated part. The uncorrelated part
is noise in almost any conceivable system; whether the fully cor-
related part is considered noise or not depends on the use to which the
system is put. Let us investigate the correlation by forming the cross-
correlation function of v and g (assuming zero mean for each):

Ro) = lim gz [ 5(0g(t + ) d. 39)

Inserting equation (19) gives

o . R 1
R, (D) = 2, = exp (ril,) iff.} 57

=0

f_z g(t + 7)e™ i ki exp [ZM(Z(L;—Z” + k)f.t] dt. (39)

The integral in equation (39) is zero unless g (¢£) contains components

locked to the idle-channel-noise frequencies (Section IV) or their
subharmonics. Thus for typical AM systems
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R,,(r) = 0 forall 7, (40)

and »(t) is a noise wave under any circumstances.

This conclusion is not applicable to the case of rational 9, treated
in Appendix B, where I(1 — ¢)/2 + k = 0 for some values of I and
k; that is, some of the idle-channel-noise frequencies are zero. The most
extreme case is that of PCM (¢ = 1) where every value of [ contributes
a de term to the summation in equation (39) and the summation is
therefore replaced by one. Let us calculate the two parts of »(f) for this
case.

It is easy to show that R,,(r) is a maximum for » = 0 and that we
need consider only instantaneous correlations. This result is physically
reasonable when one considers that no delay from input to output
was introduced in the formulation of »(t). If we let ( ), stand for
the integrating-limiting (averaging) process defined in equation (38)
we can write

<Vg>av = Rvg(o) . (41)

The correlated part of v(t) is ay (£), where « is a constant for a given
y(#). The uncorrelated part is then v(t) — oy (¢), and the condition for
determining « is

<(V - ay)y>av = 01 (42)
or
e _ G
= <y2>av h a'<g2>av (43)

Substitution of a specific input waveform into

e = 2 27 5P @YD) (44)

will show that oy is generally negligible compared with v unless {(g2)ay
< 1; that is, the signal-to-noise ratio is low. This conclusion is quite
plausible because of the (g?)* dependence of « and because the oscilla-
tory character of the second factor in the averaging bracket in equa-
tion (44) makes the bracket tend toward zero as ¢ increases.

For rational values of ¢ 5 1, the summation in equation (44) is only
over multiples of an integer L (as shown in Appendix B) and ay is
negligible for even smaller values of {¢*). L = 2 for the van de Weg
case, ¢ = 0.



CODING NOISE 2379

APPENDIX B

Rational Step Unbalance

If the fractional step unbalance, ¢, is a rational number, the [-lines
of Section IV are not all distinct. Indeed, if L is the least positive integer
for which (L/2)(1 — &) is an integer, it is easy to see from equation
(22) that

fier = fi and fpo, = —fi. (45)

Let us sum up terms of frequency =f, in equation (23), ignoring for
the moment the cases ! = L and ! = L/2 (if it exists). Then

0

vowi() = 3 ﬁsm (L + VL)3 + 2nf1]

=

+ émsm (L — 1+ VL) — 2xf,t].  (46)

A little manipulation of the indices in the second summation gives

e

son(® = 7T(z—+2_azT) sin [r(l + VL)9 + 20f21] @7

s a
B ,'Zw wi(l + U'L)
From Jolley’s series Nos. 534 and 535 it is easily established thatt

exp {i[r(l + VL)3, + 27f:t]} + c.c.*. (48)

z&o: eim&
wemw @+ 7
Using this to do the sum in equation (48),

o C8C (lz 7l')

=7 cscare* ™Y for 0 < ¢ < 2r. (49)

vomi(t) = 7 eXp [’L('ZZ’IF — 7l + 7wl + 27r)’,t)] + c.c. (50)
(£7)
20 csc A !
= -—L———sin (7r 7= wld, + 7l + 21r)‘,t) , (51)
where
L#, = least positive quantity = Ld, mod 2. (52)

* By c.c. we mean complex conjugate.
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The power at f = | f; | is thus
2¢° esc’ <l— 7r)
L
g

Let us compare this with the sum of the powers of the same lines as
given by equation (25):

’ > 20’2 20-2 .
Pi= 2% (#’(l a7 7 Z’L)2> (54)

Again, index manipulation yields

P, = (63)

0 20_2
! = ——————— 5
Pi= 2 70+ 7T7 (55)
This series is easily summed by means of cotangent residues (see
Section 7.4-4 of Ref. 6) to give

2% esc? <lz 7r)

L2 1
which is identical to equation (53). Thus, all lines with the same fre-
quency, f, where 0 < f < fy, are phased such that their powers add.
As a result one need not take line degeneracies into special account
when considering the noise power spectrum. We assume, without proof,
that this statement is true of sidebands as well as main lines; it is
elementary that the power in a sine wave is not changed when its
phase is modulated.

If L is even there is a line at fz» = fy, on the border between the
Nyquist interval and higher frequencies. If one starts from equation
(20) rather than equation (23), so that the higher frequencies are
taken into account, equation (51) with I = /2 will result.

For Il = ' L we get fi = 0, that is, a de component. Summing up
these terms of equation (23),

Py = (56)

& 20 .
VONL(D = Z l—/dlen 7rl'ln90 . (57)

1'=1T

Starting from equation (49), subtracting the n = 0 term (1/a) from
both sides, letting ¢ — 0, and combining terms of +n and —n, gives

ST oY gy 0 <y <om (58)
n=1
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Using equation (58) in equation (57) gives

YovIL — %(1 - Ll?]), (59)

where ¢, is defined in equation (52). Thus, the de component fluctuates
as a funection of ¢, or &, . If it is averaged uniformly over this parameter,
the mean value is zero and the mean square is ¢°/3L°. The latter is the
sum of the powers of the !'L-lines. The dc¢ power varies from zero to
o’ /L?. Thus, for rational ¢, the total noise power in the Nyquist interval
(counting one-half the power at fy) is not always ¢°/3 but can vary
from this total by —¢®/3L% +2¢°/3L*. For small# and correspondingly
large L this variation is not very significant. In any case, as Section III
explains, the usual AM system suppresses de at the decoder.
If the I’L-lines are modulated, we have

pon(l) = ,i 22 sin xl'Lig, + g()) (60)
= 21— Lo, (&)

where ¢,(f) is defined by using ¥ + ¢(f) in equation (52) in place of
& . If the excursions of g(f) are significantly greater than 1/L ({¢°) >
1/L?, which covers nearly all cases of practical interest) equation (61)
can be time-averaged uniformly over ¢,(t). As stated above, the mean
square will be ¢°/3L*. That is, for a practical input signal, the power
in the I'L-lines is dispersed into sidebands, and the total power in these
sidebands is equal to that which would be calculated using the formulas
for irrational #. This argument is used to justify the assumption that,
except for de power, the noise spectrum for rational ¢ can be calculated
as indicated in the text for irrational &.

There are two cases of rational ¢ which are of special interest. One
is & = 0, calculated for gaussian input by van de Weg®. In this case all
the even-l lines are centered at zero frequency and all the odd-I lines
at fy - As one can see from Section VI and Figs. 12 and 13, this is a good
approximation only for a baseband with a width much greater than 9/, .

The other case of interest is # = 1. This is equivalent to using the
even-instant law of equation (8) for all sampling instants, which is
equivalent to ordinary uniform PCM (with a step size of 2¢). Let us
consider a typical PCM speech system, for which (see Section VI)

@) = @)-@r-800 Hy' G
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and
f. = 8 kHa. (63)
Then (Appendix D)
S = 0.63(¢" ). (64)

Useful input signals are many steps high in amplitude ({g*) > 1); thus
S > 1 and the noise spectrum is substantially white. (See Section VI.
This range of S is permissible for PCM, since slope overload does not
occur.)

If ¢ = 1 is inserted into equation (31) the result can be shown to be
equivalent to that of Schouten and van’t Groenewout for a sinusoidal
input into a PCM coder if one allows for:'* () their nonunity shape
factor, (¢7) their particular choice of phase (¢), (#77) replacing the last
sine factor in their expression (17) by a cosine, and (7)) multiplying
their expressions (15), (16), and (17) by 2.

APPENDIX C

Rational Input-to-Sampling Frequency Ratio

If the ratio of fo to fs is a rational fraction, there exists a least posi-
tive integer M for which Mfo/f, is integral. In this case it is easily
seen, from equation (29), that terms for which the values of m differ
by a multiple of M have the same Nyquist-interval frequency. Sum-
ming up these equal-frequency terms, we replace equation (29) with

0 M

v = 2 Y > = }: I mmag(wlA) exp [i(m + m/M)e]

1#0 k=—c0 m=1 7«l m’ =—co

-exp {m‘lﬂ(, -+ 21%.[(1(1 %) + k)f + mfo] } (65)

One can therefore see that a given l-group consists of a total of M lines,
the original and M —1 satellites spaced uniformly throughout (—fy, fx).
The sum over m’ in equation (65), which is the relative amplitude
coefficient of a satellite [Bwm (2, ¢, M), where z = «lA] can be turned
into a finite sum:
It is easy to verify that

= 0 otherwise, (66)
where m, m’, M, and p are integers.
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Thus
Buleros M) = 3 Juw @) €50 liGm + m'M)e] (o)
= ng:w J,(2)e®? []lll ; exp <____27rin(?zw— Z’))] (68)

1 :[V_: Z J(2) exp [zp( i )] exp (%rjz;{zm)

n=1 p=—w
(69)

The sum over p is given by equation (28). Thus

B,.(z, 0, M) = ﬂl[ Z exp [zz sin <<p 2;;) + zrz?mil' (70)

n=1
We note the dependence on the phase (p) of the input signal, which
indicates that this result could not have been obtained by adding the
powers of the equal-frequency terms. Indeed, it can be established
easily from equation (67) that

lf | Bulz, 0, M) | do = Z T @) (71)

that is, the sum of the term powers is given by the true satellite power
averaged uniformly over ¢.

In order to emphasize this dependence on phase, let us examine the
highly artificial but simplest nontrivial case, fo = fy. In this case
M = 2 and each main line has one satellite spaced fy away. Then

BO(Z’ (2} 2) = B2(z: (2] 2) = €08 (z sin 90)7 (72)
and

B.(z, ¢, 2) = 1 sin (z sin ). (73)

For ¢ = 0, the satellite power is always zero and we get the undis-
turbed idle-channel-noise spectrum. That this is to be expected can be
seen from equation (27) where ¢ = 0 is the condition under which the
sampling instants fall precisely on the zeroes of the input wave. For
¢ = =/2, where the sampling instants fall on the crests, the power for
any given [ oscillates between main and satellite as a function of
amplitude. This result may be compared with the incorrect one ob-
tained by summing powers:

1

% o lBO(zy Qov 2) ‘2 d(p =

1+ Jo(22)
—hge, (74)
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and

1 — J,(2
__T(_Z_). (75)

1 m
%fo | Bi(z, ¢, 2) |* do =

APPENDIX D

Calculations for Broadband Input

The autocorrelation function of v(¢) [defined in equation (14)] is
given by

R() = }1-1-1.2 21T (Z Lo 8(F — nr ))

n==—c0

A D wur, 8¢ — mr, + 7)) di (76)
( )

M= — 00

2 =T/7s S(T+1)/74

ZuTm O[7 + (0 — m)7,). 77)

T 2T nz—T/1s m2(—~T+7)/7s

We can replace T/, with a positive integer N without loss of general-
ity. Let us concentrate on values of r lying between (k — 1/2)7; and
(k + 1/2)r; where k is an integer. Only terms for which n—m = —k
fall within this interval. Thus

R(T) = Ts Il\fl—l:g oON ";N Tnlntr B(T - kT)

for k—Pro<r=E&+ P, . (78)
Defining
<xnxn+k> = llm Z Z, xn+k L] (79)
n=—N

and joining together the segments of the function given by equation
(78), we have

R(r) = 7, Z @Znsr) 8(r — k7). (80)

The Fourier transform of R(+) is the noise-power spectral density,
first given by Bennett (see pp. 460-464 of Ref. 7):

W) = = ki (@aurs) exp Cnikfr). (81)

It is easy to see that
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[ weyar = @ = @ )

that is, the total noise power in the Nyquist interval is given by the
mean square of the sequence {z,}.

Next, let us connect (zn%,41) with the input signal. Using equation
(12)

2
[

Talpsr) = —
< +k> 10 x;ézo ﬂ'zl)\

-exp {m[(l 4+ )\)170 + (l + )\)71(1 - 0) + lk(l - 19) + lgan + )\gn]}>‘
(83)

We carry the averaging bracket inside the summations and examine the
various factors of the exponential. Since n and g, are uncorrelated, the
factors containing them can be averaged separately. Let us examine the
factor

<evri(l+)\)n(1—0)>.

For irrational & this expression is zero unless [ + A = 0, in which case
its value is one. Thus equation (83) reduces to

2
(Tnnar) = Z#e””"“'o’(exp [wil(gnir — gu)])- (84)

10
Notice that (see p. 66 of Ref. 12)

2 2
nN_ SO _ o
(@) = ;ﬁz =3 (85)

Let us now find the value of the averaging bracket in equation (84)
for a gaussian input:

(exp [1il(gnsr — g)])

= [ [ o0 trilguss = 001P(urs + 02) dgusdgn, (30

where P(gn4+%, ¢g») is the joint probability density of two gaussian
variates, which is (see Section 18.8-6 of Ref. 6):

_ 1 N gi+k>
P(0n+k y gn) - 27r<g2>(1 . az)% exp ( 2<92>(1 — ai) ’ (87)
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where
o = &), (89)
.1
<gngn+k> = 11\’1-11)1 ‘ZTV_ me—N gﬂg'H'k ’ (89)
and
0") = (9ugu)- (90)
Combining equations (86) and (87) gives
(exp [1il(guir — g.))) = exp [—7"1{g") (1 — a))], o1)

a result first obtained by Rice.r® Substituting equation (91) into equa-
tion (84), and the result into equation (81), gives

2

W(f) = Z f: 77:2(;2

1740 k=—o

-exp |:—7r2l2<g2>(1 — ) + 21rik(f1-,, + E(L;—ﬂl>] 92)

This result, with ¢ = 0, was given by van de Weg.’ He also used as
an input a flat signal, band-limited to (—f,, , f.), for which

_ sin @akfmr,)

Y (93)

and inserted
2
1 — a ~ Q’mé%fl 94)

This approximation is made possible by observing that the real ex-
ponential factor in equation (92) is appreciable only for small values
of the exponent. Thus, if one ignores the region of low signal-to-noise
ratios (that is, small (4?), 1 — a; need only be accurately approxi-
mated for small values. (g?) > 0.1 is high enough for the approximation
to be good for most purposes, and appears to cover nearly all cases of
practical interest.

It is not necessary for the input spectrum to be flat. We take a
spectrum, U(f), even in f and confined to the Nyquist interval. Ap-
pendix E shows that (g.g.. 1) is given by R, (kr,), the autocorrelation
function of g(£). This autocorrelation function is the Fourier trans-
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form of the spectral density.

Gty = [ U exp @rikfr) of (95)

and [using the evenness of U(f)]

@)1= @) = [ UG~ cos2nkir) di. 96)

Using the reasoning given in the previous paragraph, and specifying
that U(f) be a smooth function of frequency (free of strong narrow-
band components which could make 1 — a; & 0 for isolated high values
of k), gives

(@0 =)~ g [ U . o7)

It is well known that the integral in equation (97) gives the mean
square of the time derivative of g(=¢). Thus

k2<g'2> _ k2<y-2> _ k?sZ
2ff 27 2
where S is the rms time slope of the input normalized to the maximum

average slope of the coder (of.). Inserting equation (98) into equation
(92) gives

W = 5 3 B0 e |~ oy, + S0 | o)

10 k=—c0

<92>(1 - ) &

(98)

which is equation (33).
Making use of the Fourier-series expansion of a picket fence of
gaussians,

3 = 3 2 .
Z exp |—a’(@ — pro)’] = Z ﬁ_o exp [_(ﬂ) + Zrzlcx] ’

p=—cw0 k=—c0 (o H) Zo
(100)
we can rewrite equation (99) as
B 0 21/27_‘0_2 [ ( (1 _ 0) )2—
WO = 5 2 s e g S +) |
(101)

which is equation (34).



2388 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

Computationally more convenient versions of equations (99) and
(101) are, in one-sided form,

P(f) =

(-] © 2
{ % [% + 3 exp (_(ﬂ'll;S) ) coswlk(1 — ) cos z,rkfn]} ,
=1 et

(102)

and
P = Lo ,Z.:(lll ,,Z_w{e"p[ sy (1m0 1052 m)]

+ e"p[ sy <f“ - *(%0”)) ]}) (103)

In equation (102), 1/2 =(1/1?) is left in that form in order that the
power density can be calculated separately for each L.

APPENDIX E

Autocorrelation—Function and Its Samples

In the absence of aliasing, the autocorrelation coefficients of a se-
quence of samples of a function are equal to the appropriate samples
of the autocorrelation of the function:

<gngn+lc> = 11\122‘27\7 Z gngn+k (104)

n=—N

Ntg 0
- }Jiﬁ?ﬁ f % gardglor, + ke) ot —nr) di - (105)

= }rl—l’: —2]%, " g(Dg(t + kr,) n;_w 8(t — nr,) dt (106)
= lim 2N f " gt + kr)p;w oxp @mipf.d) di (107)
= lim 57 f 0(g(t + kr) dt (108)
= R,(br) (109)

where the transition from equation (107) to equation (108) is made by
assuming that ¢g(¢) is confined to the Nyquist interval. For any given
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value of p 52 0, equation (107) can be regarded as the correlation func-
tion of ¢(f) and ¢(f) exp (2wipf.t). The latter represents a carrier wave at
f = pf. amplitude-modulated by g(t). None of the sidebands resulting
from this modulation overlap g(f) in frequency if g(t) is confined to the
Nyquist interval. It is well known that two signals are uncorrelated if
their frequency bands do not overlap (but not, in general, otherwise).**

Dividing equation (109) by (3°) = R,(0) gives the lemma in nor-
malized form. The procedure given here is a slight generalization of one
given by Bennett for ¥ = 0 (see pp. 468-469 of Ref. 5).
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Computer Study of Quantizer Output Spectra

By G. H. ROBERTSON

(Manuseript received January 25, 1969)

This article describes a method for accurately calculating the output
spectrum of a quantizer. The method was developed for known expressions
defining the output spectrum of an arbitrary quantizer with gaussian tnput
of arbitrary bandshape. Resulls obiained for a wvariety of conditions,
however, suggest that the calculations are valid even though the input has
only a minor gaussian component. When sampling is also used, at the
Nyquest rate or a little higher, the quantizing notse folded into the input
band is almost flat even when the input bandshape vs sharply peaked. When
inlerference at the input 1s increased, the quantizer (preceded by AGC)
appears to operate like an increasingly moisy linear transducer up to a
breaking point beyond which its performance (for small signals) degrades
rapidly and becomes difficult to analyze.

I. INTRODUCTION

Several authors have described formulas for calculating the output
noise spectrum from a quantizer when the input is a gaussian wave-
form. References 1 through 4 are characteristic and contain representa-
tive bibliographies. Evaluation of the resulting expressions is difficult
because they contain multiple infinite sums of terms containing
Hermite polynomials whose order increases without limit. Conse-
quently simplifying assumptions are made about the input spectrum
and quantizer characteristics, or only a few terms are evaluated and
the rest assumed negligible, to get results.

This article describes a more fruitful approach in which the Hermite
polynomials are evaluated in conjunection with other parts of the ex-
pression such that the combination tends to zero as the order increases
to infinity. The convergence is slow and many terms are needed to get
sufficient accuracy in the noise spectrum. It is possible to get results
even when the quantizer is not linear or symmetrical, and for arbitrary
input spectrum shapes.

2391
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For quantizing steps no greater than ¢ (the rms gaussian compo-
nent) an interesting and useful result is that even when the input
spectrum is sharply peaked, if the quantized waveform is also sam-
pled uniformly at up to a few times the Nyquist rate for the input
band, the resulting quantizing noise appearing within the input band
is nearly flat. Many systems can therefore be evaluated quite ac-
curately with much simpler calculations than those needed to define
the quantizing noise spectrum.

Study of quantizers having uniform steps less than o in amplitude
show the output spectrum to be practically independent of the loca-
tion of the gaussian mean if it is at least ¢ from the overload limit.
Consequently, added signals (whose waveform defines the gaussian
mean) have a negligible effect on the quantizer output noise as long
as they do not approach within ¢ of the limit. A quantizer with many
steps activated thus produces a noise spectrum virtually independent
of relatively large signals added to the gaussian component.

II. DEFINITION OF QUANTIZER

Figure 1 shows the transfer characteristic of the quantizer where
the “staircase” relates the output voltage (ordinate) scale to the input
voltage (abscissa) scale. Assuming that the input waveform is gaus-
sian about some arbitrary mean value, the probability that it is Z or
more above the mean value is

Q; = ﬁ"_ j: exp (—£2/246°) dt. @

Figure 1 shows that when the input waveform reaches a “riser” of
the staircase, the output waveform changes abruptly from the value
on one tread to the value of the one on the other side of the riser. For
convenience, number the treads and risers starting with 1 at the left.
There is one more tread than the number of risers, so if the last riser
is k, the last tread is k + 1. Let @, be the probability that the input
waveform is greater than riser r, and the output voltage of step r be
W,. The mean value of the output is

S = Wl(l - Ql) + W2(Q1 - Qz) + -+ Wk+1Qlc- (2)
The mean squared value is

Vi=Wid = Q)+ Wi@Q: — @) + -+ + WinQ:. )
The variance of the output is
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V:— § = P. “)

Assuming unity impedance, P is the output power after subtracting the
component, caused by the displacement of the mean value of the input
waveform from zero.

III. QUANTIZING NOISE SPECTRUM

Velichkin showed that the correlation function of the quantizer out-
put can be written*

R = 5| acew Capnn(2) | 22 6

2
n=1 k=1 271'0' "’n!

R, (r) is the input correlation function, ¢* is the input variance, there
are v treads, /\ is the output voltage difference between treads & + 1
and k, a; is the input voltage at riser k, and H,(z) is the Hermite
polynomial

H.() = (—1) exp (/2) L [exp (~2/2)]. (©)

Also, where [r/2] is the greatest integer <r/2,°

. ————— —— —QUTPUT SCALE- ——~~———— -

Fig. 1 — Quantizer transfer characteristics.
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(r/2]

Py r!
H.e) = 'EO (—1/2)2 it — 21 @)

By the Wiener-Khinchine theorem the power spectrum of the
quantizer output is

off) = 4 fo " Ry(+) cos (2xfr) dr

2 & e () } i

= 12 A, exp (—ai/2¢%) o

T p= k=1 1) ‘]
: f R(r) cos (2nfr) dr. ®)
Equation (8) can be written
o) = 3> 54 [T R2) cos ape) ar, ©

in which the quantizing factor terms ¥, depend only on the properties
of the quantizer and n. When n = 1 the component Q,(f) is the input
spectrum multiplied by F,/¢%. All other n give components whose
bandwidth exceeds that of the input [because the integral in equation
(9) then represents multiple convolutions of the input band], and
their sum Q,(f) may be called the quantizer error spectrum. The
quantizer output spectrum is

o) = 2.0) + .. (10)

So far only amplitude quantizing has been considered. Sampling,
at a rate f;, is generally also used,* and the output spectrum be-
comes proportional to*

) = o) + z 2, £ ). a1

If £, is at least twice the highest frequency of the input band, only Q.
can add more noise by fold-over into the range of the input band.

These results are all known but now follow what are thought to be
new contributions enabling equation (9) to be evaluated for an
arbitrary choice of input spectrum shape. Equation (9) can be writ-
ten

* The result is independent of which is done first.



QUANTIZER OUTPUT SPECTRA 2395

o) = > Iz [* R ar

n=1

I

> L oe, 50/, (12)

n=1
where Cn[s(f) /2] is the (n—1)th convolution of the cisoid power
spectrum s(f) /2. The sinusoid power spectrum is s(f), corresponding
to the autocorrelation function R, (7).

The significance of equation (12) is that whereas the direct calculation
of R2(7) may be impossible for an arbitrary spectrum shape, C,-[s(f)/2]
can always be calculated if s(f) is defined. Appendix A describes the
methods used to caleulate C,_,[s(f)/2] in the computer program written
to evaluate equation (9).

If G(¢) represents the input waveform, the autocorrelation func-
tion at zero lag is

o L 2
R.0) = lim 55 f_ GOyt

=+ &, (13)

where S is the mean value of the input waveform and ¢ is the variance
as used in equation (1). Figure 1 shows that the value of the quantizer
output for a given input waveform is independent of the scale on the
input axis. For convenience, relabel this scale so that the input mean
is zero. Consequently,

R.(0) = o~ (14)

Normalizing the input power that now contains no de, so that o* =
1, gives

R;(0) =1 (15)

for all n. By the Wiener-Khinchine theorem the total output power
PT is

Y

= R,0)
= % ":% [lg A, exp (—ai/2) ———[(f’:l({l)k')]%] (16)

using equation (5). Pr is the same as V2 given by equation (3) so the
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accuracy of computing the quantizing factor terms F, can be checked
by computing the total power by both these methods. The method of
equation (3) gives high accuracy very easily, but the F, terms are
needed to compute the quantizer error spectrum Q.(f) of equation
(10). Appendix B describes the methods used to compute F, for values
of n up to 10,000, the limit used in the program.

Recall [after equation (9)] that when n = 1 the resulting component
of @(f) is the input spectrum multiplied by F,/¢?, where the gain
factor is

v=—-1 2
I, = % l: A, exp (—ai/Zaz)il . )
-1

k

When o¢* = 1, the total quantizer error power is

PE=P—F17 (18)

where P is given in equation (4). Both P and F; can be computed
easily and accurately, so Py can be determined accurately with little
computational effort. Note that this shows Pz to be independent of
the input spectrum shape.

A computer program, using the techniques described in Appendixes
A and B to compute Q(f), simulated the effect of sampling (without
holding) by pivoting @(f) about the sampling frequency and its
harmonics, and computing the contributions thus folded into the
original band. The total Py is folded into a bandwidth equal to half
the sampling frequency; and when the latter was less than a few
times the Nyquist rate for the input band, the level of the error com-
ponent resulting from Pz was nearly flat over the input band even
when the input spectrum was sharply peaked.

This result is very useful because the performance of quantizers ean
now be evaluated quite accurately using only the simple calculations
indicated by equations (4) and (17). The error spectrum after sam-
pling was flatter when more levels were used in the quantizer.

IV. SIGNALS ADDED TO INPUT

Signals added to the gaussian noise at the input cause the mean
value of the latter to vary according to the signal waveform. Com-
putation shows that under static conditions the gain factor F; and
the total error power Py remain nearly constant when the step size
is about ¢ and the mean is no closer than ¢ to the overload limit.
Under these conditions the position of the mean has negligible effect
on the shape of the quantizing noise spectrum. Assuming a signal wave-
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form uncorrelated with the gaussian noise, and of a magnitude such
that the mean rarely approaches within o of the overload limit, it is
thus quite accurate to assume that the quantizing error is independent
of the signal when the step-to-o ratio is constant and less than unity.
A sampling rate, up to a few times the high end of the input band,
further improves the accuracy of this assumption as the quantizing
noise then becomes almost flat across the input band even when the
input spectrum is sharply peaked.

Assume now that an AGC unit is used to maintain constant power
into the quantizer so that the waveform representing the sum of the
gaussian component and large signal (interference) very rarely ex-
ceeds the overload limits. As the level of the interference increases,
the ratio of quantizer step to gaussian rms (rms,) also increases.
Assuming no correlation between the interference and gaussian com-
ponents, the degradation from quantizing noise can be estimated from
the way the parameters F; and Py vary with the position of the mean.
The greatest variation in these parameters occurs between the values
when the mean is at a riser (see Fig. 1) and when it is midway be-
tween risers.

Figures 2 and 3 show the results obtained for a 16-level quantizer
with a flat input spectrum and with a sharply peaked input spectrum,
respectively, in calculations carried out for these limiting cases. Up to
a breaking point (where the two curves diverge) the quantizer ap-
pears to act like a linear but noisy transducer for input signals. Note
that the breaking point seems to be independent of the spectrum
shape. When the interference level is high enough to cause operation
beyond the breaking point, the spectrum becomes difficult to analyze
and depends on the interference waveform. At all points on the abseis-
sas of Figs. 2 and 3 below the breaking point, F; and Py were found
virtually constant for all positions likely to be ocecupied by the input
mean (determined by the AGC unit). Since the quantizing noise level
was flat it was therefore proportional to Pp. The input copy was
proportional to F;; the curves in Figs. 2 and 3 show the ratio of the
level of input copy plus quantizing noise to the level of the input copy
alone. The degradation these curves indicate, as the interference in-
creases, results from the decreasing ratio of ¢ to quantizing step size
caused by the AGC unit preceding the quantizer.

V. COMPARISON WITH MEASUREMENTS

A sharply peaked spectrum was produced in the laboratory by
filtering the output of a noise generator, and the resulting waveform
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Fig. 2 — Quantizer performance (static) versus relative interference (flat input)
for 16-level quantizer with flat input spectrum (gaussian) ; overload at 3 X (MS,
+ M8 % set by AGC; MS, = gaussian component (rms)2; MS; = interference
(rms)?; output sampled at 3 X high end.

was radically clipped before being submitted to a spectrum analyzer.
A 1910-A recording wave analyzer (made by General Radio Company)
was used, and several successive traces were superimposed by the
recorder as the narrowband (10 Hz) filter was slowly swept across
the spectrum. The spectrum before and after clipping were determined
in this way; the final results were obtained by drawing a smooth curve
through the mean of the superimposed traces. Figure 4, where the solid
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Fig. 3 — Quantizer performance (static) versus relative interference (peaked
input) for 16-level quantizer with peaked input spectrum (gaussian); overload
at 3 X (MSr + MS,)% set by AGC.
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curve is the computed clipper output spectrum when a copy of the
input is given by the dashed curve, shows the results. Values of the
measured output spectrum appear as circles and agree well with the
computed curve.

Another check between computed and measured results can be
obtained for a uniform step 16-level quantizer. A band of noise, nearly
flat from zero to about 330 Hz and falling rapidly at higher frequencies,
is added to a sinewave at 160 Hz and passes through an AGC unit
before quantization. The quantizer overload limit is set near four times
the rms value of the AGC output, and the results are recorded on a
magnetic tape for various ratios of the sinewave-to-noise power. In
this capacity the sine wave acts as an interfering signal. A computer
program processes the tape using a version of the east Fourier trans-
form algorithm to produce estimates of the spectrum level at the
quantizer output up to half the sampling rate of 1024 Hz.® Since the
input spectrum level at 500 Hz is much lower than in the flat part
below 300 Hz, the increase in noise level estimated at 500 Hz is taken
as a measure of the quantizing noise introduced as the interfering
signal increases. Assuming this noise to be flat from 512 Hz to zero it
is possible to estimate the degradation in signal-to-noise power suf-
fered by a small signal in the flat part of the input band.

Figure 5 shows the results, as circles superimposed on the solid
curves, which are computed for a 16-level quantizer sampled at three
times the high end of an input band of noise flat to zero frequency.
The quantizer is preceded by an AGC unit and its overload is four
times the rms input.
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Fig. 4 — Clipper output spectrum.



2400 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

8

/ STATIC PERFORMANCE |

4 k?(seu—: FIG. 2,3)

. /
L

0 5 10 15 20 25 30
INTERFERENCE/GAUSSIAN COMPONENT IN DECIBELS

o

P EXPERIMENTAL _|]
POINTS

o

OUTPUT/INPUT COPY IN DECIBELS

Tig. 5 — Quantizer degradation for flat input spectrum for 16-level quantizer;
overload = 4 X input (rms) set by AGC; flat input gaussian component (0 to
330 Hz) ; sinewave interference (160 Hz); output sampled at 1024 Hz.

VI. CONCLUSION

This article describes a new method of calculating the quantizing
noise spectrum when gaussian noise with arbitrary spectrum shape is
applied to an arbitrary quantizer. The novelty is not in the form of the
expressions that describe the noise spectrum but in the techniques used
to compute the results. Applying the method to a sharply peaked spec-
trum shows that if the output is sampled at the Nyquist rate, or a little
higher, the quantizing noise is folded back to cover the input band
with almost uniform intensity. A clipper (2-level quantizer) and a
16-level quantizer, preceded by AGC to keep the overload at three
times the rms input, operate like noisy but linear transducers for
added signals of power less than one tenth and less than twenty times,
respectively, that of the broadband background. These useful results
indicate that the performance of quantizers under such conditions
can be evaluated without the lengthy computations required to deline-
ate the quantizing noise spectrum.

APPENDIX A

Calculating the Input Spectrum Convolutions

The input cisoid spectrum is defined and convolved with itself to
calculate Cpn1[s(f) /2] when n.is small: Because the input spectrum
is of finite width, the convolutions tend to take the form of a gaussian
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distribution as n increases. Since direct computation of the convolu-
tions becomes very lengthy when n is large, it is profitable to compute
a Gram-Charlier approximation instead (see pp. 257-260 of Ref. 5.)
This can be done if the moments for the desired convolution can be
obtained. The input cisoid spectrum is symmetrical about zero, and is
defined up to its limiting bandwidth, so all the moments desired can
be computed for it. If the input spectrum shape is normalized so that
it covers unit area and it is considered to define a probability dis-
tribution from which random samples are drawn, the nth convolution
is the same as the probability distribution of (n + 1) independent
samples of the original distribution.” The moments of the nth convolu-
tion can thus be obtained from the moments of the input spectrum
shape as follows. Since we desire ultimately standardized central
moments, note that the standardized central moments for the sum
and for the average of N independent samples are the same. Using the
appropriate multinomial expansion the general term for the »th such
moment is

= () R0,

where
v = 1p + jq -+ kr, (20)
the right side being a partition of v, and*

J=1+j+k—1.

The sum is taken over all the partitions of v except those containing
unity (because the first central moment is zero). The term p, is the
pth standardized central moment of the original distribution. A pro-
gram was developed to compute such moments; but since the com-
putation rapidly becomes very lengthy when » inereases, the number
of moments used to get the Gram-Charlier approximation was re-
duced as the convolution order increased. This can be done without
undue sacrifice in accuracy since the distribution tends to become
gaussian with increasing convolution order.

APPENDIX B

Calculation of Quantizer Factor Terms F,
Equation (8) shows that F, requires computation of terms like

* A partition of » is a set of positive integers whose sum is ». The terms 1, j, k,
D, q, and r are integers.
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Fin = exp (—a3/2)H,.(z:)/[(n — 1) I, @1

where H,(z) is a Hermite polynomial for which the recurrence rela-
tion exists®

H, . (x) = 2H,(x) — rH,.,(z). (22)
Therefore
Frneny = xkan/ni — Fipun(n — 1)/"]%- (23)
Since H,(x) = 1 and H, (x) = z, from equation (21)
Fyy = exp (—2}/2) (24)
and
Fio = xkal . (25)

Therefore, by using equations (23), (24), and (25), a straightfor-
ward method exists for finding any Fy,. When values are to be calcu-
lated using the same @ and many successive values of n, the pro-
gramming can be simplified by saving the computed values for n and
(n — 1) to be used in equation (23) when the value for (n -+ 1) is
desired. Taking advantage of this way of arranging the computa-
tions values were computed for n up to 10,000, enabling determina-
tion of the quantizing noise level at greater than 100 times the input
bandwidth for a 16-level quantizer. Since recurrence relations like
that in equation (23) sometimes result in rapid loss of accuracy, a
few values of F, were computed by an independent method, for high
values of n.

Hermite polynomials can be evaluated in terms of confluent hy-
pergeometric functions;® a suitable asymptotic formula for these

TABLE I—VALUES OF Fy,

o n Recurrence Relation Asymptotic Formula
1.0 9999 0.3540125940E-01 0.35401259262E-01
1.0 10,000 0.60060871554397E-01 0.60060871554399E-01
1.0 10,001 —0.34798910623E-01 —0.34798910644E-01
2.0 9999 0.28830572153E-01 0.28830572171E-01
2.0 10,000 0.16057291188981E-01 0.16057291188984E-01
2.0 10,001 —0.28508000965E-01 —0.28508000983E-01
10.0 9,999 —0.62935376617E-12 —0.629353766E-12
10.0 10,000 0.1037121050651E-12 0.1037121050655E-12
10.0 10,001 0.73302922069E-12 0.73302922115E-12
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functions was obtained in Ref. 9. Although the asymptotic formula
would give adequate accuracy when = is large, the recurrence relation
permits much faster evaluations when values are needed over a large
range of n. Table I compares a few values of Fy, calculated by the
recurrence relation and the asymptotic formula. Very good agreement
is obtained justifying the use of the recurrence relation.
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Adding Two Information Symbols to
Certain Nonbinary BCH Codes
and Some Applications

By JACK KEIL WOLF
(Manuscript received March 20, 1969)

This paper is a compendium of results based on a simple observation: two
information symbols can be appended to certain nonbinary BCH codes
without affecting the guaranteed minimum distance of these codes. We give
two formulations which achieve this result; the second yields information
regarding the weights of coset leaders for the original BCH codes.

Single-error-correcting Reed-Solomon codes with the added information
symbols yield perfect codes for the Hamming metric. We use these lengthened
Reed-Solomon codes as building blocks for perfect single-error-correcting
codes in another metric.

I. INTRODUCTION

This paper is a compendium of results based upon a simple observa-
tion: two information symbols can be appended to the code words of
certain BCH codes without weakening the error correction capability
of these codes.

We define a class of BCH codes called “maximally redundant codes”
in Section IT; for codes in this class a simple method is given for ap-
pending two columns to the check matrix which does not increase the
number of check symbols for the code nor decrease the error correction
capability of these codes. Section III gives the parameters for length-
ened Reed-Solomon codes and shows that such codes are perfect for
single error correction. Section IV discusses a general decoding algo-
rithm for the lengthened codes and shows that these codes are in-
variant under certain permutation operations.

Section V discusses a method for constructing the lengthened codes
from cosets of the original code. We use this approach in Section VI
to determine the lower bounds on the number of high weight cosets
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for the original BCH codes. Section VII defines a new metric and gives
a procedure for constructing some perfect codes in this metric. These
codes are based upon the lengthened Reed-Solomon codes. The ap-
pendix shows that a necessary and sufficient condition for the non-
zero elements of GF (p) to be partitioned into mutually exclusive and
exhaustive four element subsets of the form

{x) er -, ""ﬁ.’l)}, B: re GF(Z’)
is that there exists an integer £ such that
g% = —1(mod p).
II. BCH CODES
BCH codes are random-error-correcting codes for symbols from GF(q)
where ¢ is a prime (in which case ¢ is replaced by p) or a power of a
prime.'™ Let « be an element of GF(¢™) and let the order of a be n.

That is, " = 1 and o # 1 for 7 < n. The check matrix of a BCH code
with designed distance d can then be given as

[_1 amo (am0)2 . (a”lg)'ﬂ—l —‘
1 amo+1 (amo+1)2 . (amo+1)n—1
H =
1 arnn+d—2 (amo+d—2)2 R (amu +d—2)w—1

The code words are all n-vectors, C, with entries from GF(q) which
satisfy the equation

HC = O.

(Unless stated to the contrary, all vectors are column vectors.)

The proof that such codes have minimum distance at least d follows
from demonstrating that all sets of d — 1 or fewer columns of H are lin-
early independent over GF(q). Actually, the proof shows more than this:
it shows that all sets of d — 1 or fewer columns of H are linearly indepen-
dent over any extension field of GF(g). To establish this linear inde-
pendence let us consider the columns 4, , j5 , * -+, ja—1 and the determinant
of the corresponding (d — 1) by (d — 1) array of symbols from GF(q™).
Then,

(amo)i; (amo)ig . (amo)id—x
(amo+l)j1 (a1no+l)7'z . (amo““])id—x

det

(am.,+d—2)i1 (amo+d—2)i.) . (ama +d~2)i.1_,
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L1 1 1

— amo(i1+i2+"'+id—x) det a a e «

(aix)d—2 (aj,)d—2 L. (aid—1)d—2

The latter determinant is a Vander Monde determinant and is known
to be nonzero if o’* # a'* for ¢ 5 k. Since the elements of the matrices
in question are elements from G'F(¢™), the nonvanishing of the determ-
inant ensures that any set of d — 1 columns of the check matrix are
linearly independent over GF(q™). The special case of m = 1 defines a
subset of BCH codes called Reed-Solomon codes.*

The number of check symbols in the code is upper bounded by
m(d — 1) since these are the number of rows in the check matrix after
each symbol from GF(q¢™) is replaced by an m-vector with elements
from GF(g). The reason that m(d — 1) is merely an upper bound is that
the number of check symbols is equal to the number of linearly inde-
pendent rows in the check matrix [when expressed in terms of elements
from GF(q)]; in general this number can be less than m(d — 1). In this
paper, codes for which the number of check symbols is equal to m(d — 1)
are called “maximally redundant” BCH codes. Binary codes (codes
for which ¢ = 2) are examples of nonmaximally redundant codes while
Reed-Solomon codes (codes for which m = 1) are examples of maximally
redundant codes.

Let us now consider appending two columns to the check matrix,
H, to form the new check matrix, H',

1 0
0 0
-l
00

0 1

It is now easy to see that any (d — 1) columns of H' are linearly inde-
pendent over GF(q™). [Determinants formed from (d — 1) columns,
excluding the first two columns, are (d — 1) by (d — 1) Vander Monde.
Determinants formed from (d — 1) columns, including one of the first
two columns, are (d — 2) by (d — 2) Vander Monde after expansion
about the column in question. Determinants formed from (d — 1)
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columns, including both the first and second column of H', are (d — 3)
by (d — 3) Vander Monde after expansion.]

The number of symbols per block in the lengthened code is thus two
more than the corresponding number for the BCH code. The number of
check symbols may or may not be increased in accordance with
whether or not the number of linearly independent rows remains the
same after the addition of these two columns. One class of BCH
codes for which the number of check symbols does not increase is
the maximally redundant codes. This class includes all Reed-Solomon
codes as well as other codes.

It is possible that in some cases more than two columns can be ap-
pended to the parity check matrix while preserving the designed dis-
tance of the code. No general results have been found, however, for
such cases.” For example, if a column is appended which contains a
single 1 in the (I 4 1)th position of the column vector, the resultant
determinant after expansion and factoring is of the form

1 1 . e 1
ah aig R aid—-:
Dz — (ai')l—l (aiz)l—l - (aia~z)l-l .
(ai;)l+1 (ai,)l+l V.. (aid_,)l-H
(ah)d-z (ain)d-2 . (aid—z)d-z

Such a determinant can be evaluated as
d—2

D, = [] @ — &™) [sum of all products of (d — 2 — I) distinet &’*].
>k

The latter sum of products can be zero even if all the a'* are distinct.

III. LENGTHENED REED-SOLOMON CODES

The Reed-Solomon codes codes with symbols from GF(qg) are BCH
codes formed by choosing the parameter m = 1. These codes have
parameters

block length n=gq-—1,
check symbols per block » = d — 1,
* An exception is d = 4 and g even where three columns can be appended to

the parity check matrix. The appended columns are then the 3 X 3 identity
matrix. :
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and correct any pattern of [(d — 1)/2] or fewer errors in a block of
length n. Any ¢ error-correcting linear code can have no fewer than 2¢
check symbols; this bound is achieved by the Reed-Solomon codes if
d is an odd integer. This is not to say that the codes cannot be im-
proved upon: in particular, the lengthened codes formed as deseribed
in Section IT represent a minor improvement.

The lengthened code has parameters:

block length n =q+1,
check symbols per block 7' = (d — 1),

and corrects any pattern of [(d — 1)/2] or fewer errors in a block of
length n' symbols. The lengthened codes are maximum distance
separable (MDS) in that they have the maximum possible minimum
distance for a given block length 7/, and code size ¢™ ~"". These codes
complement the set of maximum distance separable codes given by
Singleton.® The weight distributions of the code words of maximum
distance separable codes are given by Berlekamp.® The case of single
error-correcting lengthened Reed-Solomon codes (that is, d = 3) are of
particular interest in that they are perfect codes. That is, bounded
distance decoding results in the use of every syndrome. Specifically,
there are ¢* distinet syndromes. There are (¢ — 1) different errors which
can oceur in any of the (¢ + 1) different positions resulting in ¢* — 1
different error patterns. The all zero error pattern (no errors) in addition
to the (g — 1)(g + 1) = ¢° — 1 single error patterns use all ¢° syndromes.

IV. DECODING AND SYMMETRY OF LENGTHENED MAXIMALLY REDUNDANT
BCH CODES*

The columns of the parity check matrix are conveniently labeled:

’

< n >
(1 0 1 1 1 .- 1]
001 « (@* - (@
H=001 & @? -« @
0 11 o @5 o @
label 0 © 1 « ok o™ ?

* This section is based on suggestions from E. R. Berlekamp of Bell Telephone
Laboratories.
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where « is a primitive element of GF (¢™) and m, has been taken equal
to zero. If the second column were omitted from this matrix, the re-
sultant code would be an extension of a BCH code of designed distance
d — 1. That is, the resultant code is obtained by appending an overall
parity check digit to a BCH code of designed distance d — 1. The code
with the second digit omitted (block length ' — 1) is called a “singly-
lengthened” BCH code. The code of block length »’ (which includes all
digits) is called a “doubly-lengthened” BCH code.

For d odd, one decoding algorithm for the correction of [(d — 1)/2]
or fewer errors for the doubly lengthened BCH codes is:

(2) Ignore the last syndrome digit (the only equation involving the
symbol in position labeled «) and decode as in Section 10.3 of Ref. 6
for extended BCH codes. Let D be the number of errors indicated by
the decoding algorithm. If D < (d — 1)/2, decode all positions ex-
cept the position labeled « and then use the last parity check equation
to decode the position labeled 0.

(%) If D = (d — 1)/2, assume that the digit in position o is correct,
modify the syndrome accordingly, and decode as in Ref. 6 using all
digits in the modified syndrome.

The lengthened primitive BCH codes have interesting symmetry
properties. Since the singly-lengthened primitive BCH code is an ex-
tension of a primitive BCH code with designed distance one less, it is
invariant under the affine permutation group on GF(q), as Theorem
10.37 of Ref. 6 shows.

One might hope that the doubly-lengthened BCH code would be
invariant under the ftriply-transitive linear fractional group on
GF(q) \J « (page 358 of Ref. 6). This is not really the case since the
code is not invariant under the simple permutation # — 1/2. The
doubly-lengthened BCH code is invariant, however, under the multiply
and permute operation of order two specified:

(1) Exchange digits at 0 and co.

(%) Multiply digit at o' by «#92 and then move it to position «.

This operation transforms the H' matrix into the same matrix with the
rows listed in reverse order. Since this operation preserves Hamming
weights, it ensures considerable symmetry.

V. ALTERNATIVE FORMULATION OF LENGTHENED MAXIMALLY REDUNDANT
BCH CODES

We will now describe an alternative formulation of lengthened maxi-
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mally redundant BCH codes which is more complicated than that
described in Section III. However, its real utility is that it gives in-
sight to the problem of determining the weight distribution of coset
leaders for the (unlengthened) BCH codes (a subject discussed in
Section V).

Consider an (unlengthened) maximally redundant BCH code [with
symbols from GF (q)] with check matrix

1 amo (am‘;)Z e (amo)n—l
1 amo+l (amo+l)2 - (amg+l)7l—1
H = ’
mo +d—2 mo +d—2\2 mo+d—2yn—1
l « @™ e (@)

where « is an element of GF(¢™). Consider an n-vector X [with entries
from GF(q)] such that

(5]

| 02

m

where o, and o, are elements from GF(q™). We now prove the following
inequalities regarding the weight of X, denoted W (X).

Inequality 1: Ifoy =0, =0, W(X) =d for X =0.

Proof: The vectors X which satisfy HX = O are the code words of the
code with check matrix H and have minimum distance at least d. Thus
the weight of any nonzero code word is greater than or equal to d.

Inequality 2: If o, = 0 and o, # 0 or if o, # 0 and o, = 0, then
wWX) =d-1.

Proof: We first note that X £ 0 since either o, or ¢, is nonzero. Next
consider the case where o; # 0 and o, = 0 and form a new check matrix
H(,, obtained by deleting the first row of H. Now H;, X = 0 so that X
is a code word corresponding to the check matrix H,, . But any (d — 2)
columns of H;, form a (d — 2) by (d — 2) Vander Monde determinant
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so that the weight of X is at least (d — 1). The proof for the case where
o, = 0 and o, # 0 follows similarly by noticing that X is a code word in

a code corresponding to a check matrix formed by deleting the last row
of H.

Inequality 3: If ¢, ¢ 0 and o, 5% 0, then W(X) = d — 2.

Proof: Again X # 0 since both ¢, and ¢, are nonzero. Now consider a
check matrix formed by deleting the first and last rows of H. Since X is
in the null space of this new check matrix, every such nonzero vector
must have weight at least (d — 2).

—0
The lengthened code is now formed of (n + 2)-tuples of the form | — g, |+
X

From before we see that all such nonzero vectors must have weight at
least d. It is easy to verify that the set of code words from a linear code
and indeed that such a linear code is the null space of the check matrix

1 0
00
H =|0 0 H|

01

VI. WEIGHTS OF COSETS OF MAXIMALLY REDUNDANT BCH CODES

In this section we digress from the main theme of this paper to pre-
sent some results on another problem: determining the weights of
cosets (that is, coset leaders) for maximally redundant BCH codes. It
should be emphasized that this problem differs from the widely re-
searched problem of determining the weights of the code words them-
selves.

The complete weight enumeration of the cosets is known only for a
very few classes of codes.® This knowledge is crucial to determining
the performance of codes using a complete decoding algorithm (that is,
maximum likelihood decoding).

In this section we are not able to determine the complete weight
enumeration for the codes under consideration. Rather we can only
give lower bounds to the number of coset leaders whose weight exceeds
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certain values. However, we believe that this knowledge is both new
and useful.

Specifically we are concerned with the weights of coset leaders of
maximally redundant primitive BCH codes. Our main result is:

[Number of coset leaders of weight = d — j]
izl

> (@) MG+ De" — ] — 1 for {
2j < d.

This result shows that for a maximally redundant BCH code of
minimum (designed) distance d, in addition to having as coset leaders
all vectors of weight less than or equal to [(d — 1)/2], coset leaders exist
for all weights up to and including (d — 1). The actual minimum distance
of the code, d 4 ¢ r , may exceed the designed distance d. If[(d4 ¢ — 1) /2] <
d — 1, the codes cannot be perfect codes and if [(d4er — 1)/2] < d — 2,
the codes cannot be quasiperfect. For Reed-Solomon codes dycr = d
and the codes are not perfect for any d and not quasiperfect for d > 3.

Proof: Consider a coset leader X’ corresponding to the syndrome, S,
where

A

HX’

I
2}
I

d —1 where o;¢cGF(Q™) 1=0,1,---,7.

Oyl

Oiv2

Lol Y

Consider a new check matrix obtained by deleting the first © rows and
the last (j — %) rows of H. X’ must be a vector in the null space of this
new check matrix and will be nonzero unless ¢; = o, = -+ = o; = 0.
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Furthermore every such nonzero vector must have weight at least
d — j since any set of d — 1 — j columns of this new check matrix forms
a Vander Monde determinant. A counting problem remains: counting
the number of distinct nonzero syndromes having a run of d — 1 — j
consecutive zeros. For ¢ = j, there are (¢”)" — 1 such patterns corres-
sponding to the ¢™ different values for each ¢; (excluding ¢y = o, = - -+
= ¢; = 0). For each ¢ < j, there are (¢" — 1)(¢™)"™" such patterns
corresponding to the (¢” — 1) distinet nonzero values for ¢;,, and the ¢"
distinct values for all other o, ¥ # 7 + 1. Counting in this fashion, if
2§ < d we include each such pattern once and only once resulting in a
total of

@) — 14" = DY = @)VNG+ D" — 4 =1

such patterns.

The above proof not only yields a bound to the number of high
weight coset leaders but also gives an easy way of recognizing their
occurrence from their respective syndromes. Thus if one were to use
bounded distance decoding (decoding only coset leaders of weight =<
[{d — 1)/2]), many nondecodable cosets would be easily recognizable by
the form of the syndrome.

A tighter bound can sometimes be obtained by noticing that the
parity check matrix

—1 a™ (amo)z . (amo)n—l
1 amn+a (amo+a)2 e (aMo+a)n—1
H — 1 amo+2a (amo+2a)2 e (aMo+2a)n—l

i amo+(‘d—2)a (amo+(:1—2)a)2 : : : ((er‘-(d;z)”)"_lJ
yields a code with a minimum distance of at least d if @ and n are rela-
tively prime. Thus the zeros in the syndrome that signify a high weight
coset need not oceur as a single burst but rather can occur with a fixed

periodicity.
VII. SOME PERFECT SINGLE-ERROR~CORRECTING CODES FOR ANOTHER METRIC

In this section we use the lengthened Reed-Solomon codes to construct
codes for a new metric. In particular, we consider the case where ¢ = p,
a prime, and we are interested in codes that correct errors of the form
+1, £2, -+, =T in a “single position” of a code word. In particular,
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codes are given for 7 = 1 and 7' = 2. For T' = 1, these codes are single-
error-correcting Lee metric codes.”

The lengthened Reed-Solomon code used in the construetion of these
codes has a check matrix

«~—n'=p+1—>
p_jrot1r 11 .. 1}
011 a & -+ a2
where « is a primitive element from GF(p). The null space of this matrix
is a perfect single-error-correcting code for the Hamming metric. That is,
it corrects any error [+1, 42, - - - , &=(p — 1/2)] which occurs in any one
position in a code word.
Consider the case where 