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Integrated Optics: An Introduction 

By STEWART E. MILLER 

(Manuscript received January 29, 1969) 

This paper outlines a proposal jOt a miniature jonn oj laser beam 
circuitJ,y. Index oj ref taction changes of the order of 10-2 or 10-3 in a 
substtate such as glass allow guided laser beams of width near 10 microns. 
Photolithogtaphic techniques may permit simultaneous construction oj 
complex circuit patterns. This paper also indicates possible miniature jorms 
jOt a laset, modulator, and hybtids. I j realized, this new art would facilitate 
isolating the laset circuit assembly from thermal, mechanical, and acoustic 
ambient changes thtough small overall size; economy should ultimately 
result. 

r. INTRODUCTION 

Laboratory work and experimental repeater work at laser wave­
lengths (0.4 to 10 + /Lm) has been carried out by interconnecting 
the oscillators, modulators, detectors, and so on, using a form of 
extremely short-range radio. A freely propagating beam has been 
reflected around corners, occasionally refocused with lenses to avoid 
energy loss resulting from beam spreading, and often sheltered by 
tubular enclosures from refractive distortions resulting from ther­
mal gradients in the ambient air. Typical separations between com­
ponents range from a few centimeters to a foot; aggregations of ap­
paratus in a single-channel experimental laser repeater are measured 
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in square feet. The resulting apparatus is sensitive to ambient temper­
ature gradients, to absolute temperature changes, to airborne acousti­
cal effects, and to mechanical vibrations of the separately mounted 
parts. All of these effects are understood and are susceptible to ap­
propriate engineering design; but one naturally looks for alternatives. 

Looking ahead, one sees the possibility of guiding laser beams on 
miniature transmission lines, analogous to the hollow rectangular 
waveguide or coaxial cable used extensively in lower frequency re­
peaters. Accompanying papers report contributions leading toward 
the new form of laser circuitry.1-3 This paper gives a general view 
of the proposal and indicates specific component possibilities. 

II. LASER BEAM GUIDANCE 

We visualize a dielectric waveguide wherein a region having an index 
of refraction no:? is surrounded by a region of index nl, as in Fig. Ia. 
Then a two-dimensional analysis shows that the energy in the lowest­
order guided wave is confined almost entirely to the n:! region if 

n 1 = n2(I - ~), (1) 
where 

(2) 

A. = free space wavelength 
a = half-width of n 2 region, (A.I an2 ) « 1. 

Table I, calculated from equations (1) and (2) for A = 0.6328 {-tm, 
shows that only a very small change in index 6.n:! is needed to provide 
the desired guidance. Some higher order modes are above cutoff using 
these parameters; more exact theory can be used to calculate the 
smaller guide width which restricts the guidance to a single mode at 

.,- • 
(a) (bj 

Fig. 1- Waveguide cross sections: (a) rectangular shape, index 112 > nt. (b) 
round shape. 
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TABLE I-VALUES OF L1 FOR VARIOUS 

Qp'nCAL BEAM Vv IDTHS 

Optical Beam Width 
2a ~ 

1 mm 10-6 

0.1 mm 10-4 

0.01 mm 10-2 

2061 

the expense of having a larger field component at the n"2 to nl interface 
where dimensional irregularities may occur.1

-
4 Values of 6. larger than 

tabulated for a particular guide width 2a do not appreciably change 
the field distribution for the lowest order mode in the n2 region but 
v{Ould allow more propagating modes. 

It is not important that there be a sharp step in index as in the n"2 to 
n1 transition of Fig. 1a. Alternatively, the index can taper smoothly 
from a maximum at the waveguide's center to a lower value at radius 
r according to':C 

(3) 
with 

2a = laser beam width, provided a» A. (4) 

The exponent p can have any even positive value; the lowest order mode 
field always has an approximately cosinusoidal shape in the region 
o < T < a with about 1/10 peak value at l' ,......., a and \vith approximately 
exponentially decaying magnitude for T > a. 

The square law index variation, given by p = 2 in equation (3), 
has the well-known property that phase constant differences for the 
various propagating modes are independent of frequency.G,7 The square 
law medium is free of delay distortion resulting from mode conversion 
and is unique in that property. 5,8 

,Ve can anticipate guiding beams around relatively sharp bends 
as summarized in Table II. The 6.'s associated with these beam widths 
may be obtained from equation (2) or Table 1. By using a guide which 
confines the beam to a 5 to 10fLm width (implies a 6. of 0.04 to 0.01) 
the bend radius can be in the 1.8 to 14.5 mm (70 to 570 mils) region, 
which could facilitate very small circuitry. 

* A somewhat more accurate expression is given as equation (59) in Ref. 5. 
This permits a series of terms in (r/a)P to represent the index variation. 
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TABLE II-EsTIMATED BENDING RADIUS 

Laser Beam 
Width 

2a in mm 

1 
0.1 
0.01 
0.005 

Estimated Acceptable 
Bending Radius in m* 

(X = 0.633 I'm) 

14,500 
14.5 
0.0145 
0.0018 

* This estimate is obtained using equation (33) of Ref. 9, and includes an allowance 
of 0.25 dB maximum loss resulting from a bend of any angle. 

III. FABRICATION OF SMALL WAVEGUIDES 

Tiny laser guides can be fabricated in the form of glass fibers. 
Previous work on fiber-optics for image transmission or incoherent 
light sensing has provided a considerable body of experience on which 
to build, not all of which is applicable. So-called "clad" fibers have 
two discrete regions of index as in Fig. la. The nl region (which car­
ries little light) must be as thin as possible in image-transmitting fibers 
to minimize the "dead" region in the output image. For modulated laser 
beam transmission the cladding must be much thicker and the "core" 
(n2 of Fig. la) much smaller to yield well-isolated single mode trans­
mission. 

Whereas glass fibers may be used to connect repeater components 
and certainly are convenient as flexible connections, we can use an­
other form of dielectric waveguide for miniature laser circuitry. Fig. 2 

Fig. 2 - Planar waveguide formed using photolithographic techniques. 
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shows a channel of index n2 surrounded by a region of index nl, which 
would serve as a dielectric waveguide of the type discussed in con­
nection with Fig. 1. This might be created in glass using a series of 
steps as follows. A mask could be used to expose selectively a light­
sensitive photo-resist previously placed on a sheet of glass, followed 
by washing and selective deposition (if needed) of a more durable 
material for masking purposes. Then a diffusion, bombardment, or 
ionic replacement process could be used to change the index of refrac­
tion of the glass, thereby creating the n2 channel imbedded in the ni 
substrate. Finally the top layer of ni material could be sputtered on 
the entire top surface. 

Using photolithographic techniques which are currently evolving 
for low frequency integrated circuit applications, channel widths in 
the 2 to 5 /Lm range may be achievable and dimensions on the order of 
10 /Lm are readily held. Complicated masking patterns may in time be 
made, leading to the possibility of simultaneously making complicated 
laser circuits using combinations of elements such as those described in 
the following paragraphs.'f 

This description is intended to be a broad indication of possible 
feasibility rather than a blueprint. However, relevant contributions 
are appearing. G. M. C. Fisher and A. D. Pearson have reported 
processes which reduce or increase the index of refraction of glass 
by as much as 0.7 per cent.lO F. K. Reinhart, D. F. Nelson, and 
J. McKenna have reported the existence of an index increase in 
gallium phosphide junctions which is effective as a light guide at 
zero bias.ll-

l3 Optical waveguides formed by proton irradiation have 
been reported.14 Further contributions may be anticipated.15 

Some relevant work on two-dimensional light guides has been re­
ported.16

- 20 In this work one transverse dimension of the guided wave 
was in the 10 to 100 /Lm region; but the other transverse dimension 
was orders of magnitude larger. We seek waveguides tightly guided 
in both transverse dimensions in order to make possible the compo­
nents proposed in Section IV. 

IV. INTEGRATED-CIRCUIT LASER 

The transmission line of Fig. 2 becomes a resonator when mirrors 
are placed at the ends, or when a series of partially reflecting trans-

* Complicated masking patterns are feasible now where the area involved is 
small; depth-of-focus problems may require advances in masking to produce the 
large area patterns we need. 
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verse lines are spaced at an odd quarter-wave multiple apart to rein­
force reflections at the resonator's peak frequency (Fig. 3). The partial 
reflectors are analogous to layered dielectric mirrors and are large 
enough in the transverse plane to intercept most of the guided-wave 
energy; they may be increased index regions placed in the sheet as 
noted in Section III, empty grooves, or minute grooves coated with 
metal. 

By adding a small concentration of neodymium ions and by pro­
viding a pump, the resonant cavity becomes a laser. Fig 4 shows, in 
cross section, two possible ways the pump might be applied. In Fig 4a 
the active material (such as neodymium) can be applied only in the 
vicinity of the n:!, waveguide channel (by sputtering on the surface, 
beneath the 8n02 film, for example) or might be distributed through­
out the substrate. The spherical reflector confines the pump energy 
near the waveguide where the laser field is a maximum. The electro­
luminescent material (for example, doped zinc sulphide) is selected to 
provide radiation at a pumping line for the active lasing materials. 

In Fig. 4b, ac (kilohertz rate) excitation of the electroluminescent 
pumping material is implied; the electroluminescent material is dis­
tributed throughout the glass substrate. Relatively low power lasel' 
sources might be produced in similar structures, the order of 0.1 watt 
being adequate for many communication applications. 

Fig. 3 - Resonator using planar waveguide. 
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Fig. 4 - Cross sections of possible lasers in planar waveguide: (a) external 
pump (b) pump ions imbedded in laser circuit. 

V. MODULATOR 

Figure 5 shows a possible phase modulator for a guided laser beam. 
The electro optic material might be the substrate or might be applied 
as a thin surface layer adj acent to the guiding index region n:.?,. Using 
photolithographic techniques, it should be possible to use spacing be­
tween the metallic electrodes of about 25 ,um which would yield large 
modulating fields with only a few volts of modulator drive. 

t 
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I _________ METALLIC 
I ELECTRODES 
I 
I 
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: ~----nl 
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Fig. 5 - Phase modulator. 
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VI. HYBRID 

Figure 6 shows the directional coupler form of hybrid. The ex­
ponentially decaying fields, propagating in the n1 region of Fig. 2, 
overlap for the two parallel guides of Fig. 6, providing continuous 
distributed coupling. Reference 1 gives approximate expressions for 
calculating the guide spacing and needed coupling length. 

Figure 7 shows the partially reflecting mirror form of hybrid; the 
reflecting line may be a narrow groove coated with a metal film, an 
empty groove, or a high index dielectric region created by a masking 
and diffusion or ionic replacement process. A single empty groove, an 
odd quarter of a wavelength thick, in the direction of propagation 
would give a coupling loss of about 9 dB. 

VII. FREQUENCY-SELECTIVE FILTERS 

Using techniques familiar at lower frequencies, hybrids and resonant 
circuits can be combined to form filters, a needed component in fre­
quency-division multiplex systems. Figure 8 shows such an arrange­
ment, where band pass cavities 0 1 and O2 are used to separate fa from 
fb and fe; hybrids divide and recombine the energy to form a constant 
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Fig. 6 - Directional coupler type hybrid. 
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t 

t 
Fig. 7 - Junction type hybrid. 
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resistance filter. Alternatively, a multiple-line grating could be used 
in place of the resonant cavities as the reflecting element. to reflect fa 
only, and t.he output. posit.ions of fa and fb, fe would interchange. 

In filters of this kind the int.rinsic loss of the substrate is of course 
important. Good quality glasses have bulk losses as low as 1 dB per m, 
which corresponds to an intrinsic Q of about. 30 million; this would 
allow filters with band widths of a few hundred megacycles in the 
visible region; therefore, intrinsic substrate loss should not be too 
limiting. 

VIII. CONCLUSIONS 

This paper outlines a prospect for laser circuitry and devices which, 
if realized, would have many attractive features. Photolithographic 
processes would simplify reproducing complicated circuits, once the 
original was developed. Small size would facilitate isolating the com­
pleted circuit. assembly from thermal, mechanical, and acoustic am­
bient changes. For communication purposes, low laser power levels 
are adequate so that the heat. to be dissipated hopefully will not be 
large. In the very small laser beam cross sections, nonlinear effects 
needed for modulation and frequency changing should be achievable 
with only a few volts of drive. 

Finally, a word of caution is needed. Work is just beginning in the 
directions indicated, and we have identified goals rather than accom­
plishments. 'Ve recognize these are difficult goals; but we believe they 
are worth the serious effort required to achieve them. 
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Dielectric Rectangular Waveguide and 
Directional Coupler for Integrated Optics 

By E. A. J. MARCATILI 

(Manuscript received March 3, 1969) 

We study the transmission properties of a guide consisting of a dielectric 
rod with rectangular cross section, surrounded by several dielectrics of 
smaller refractive indices. This guide is suitable for integrated optical 
circuitry because of its size, single-mode operation, mechanical stability, 
simplicity, and precise construction. 

After making some simplifying assumptions, we solve Maxwell's 
equations in closed form and find, that, because of total internal reflection, 
the guide supports two types of hybrid modes which are essentially of the 
TEM kind polarized at right angles. Their attenuations are comparable to 
that of a plane wave traveling in the material of which the rod is made. 

If the refractive indexes are chosen properly, the guide can support only 
the fundamental modes of each family with any aspect ratio of the guide 
cross section. By adding thin lossy layers, the guide presents higher loss to 
one of those modes. As an alternative, the guide can be made to support only 
one of the modes if part of the surrounding dielectrics is made a low im­
pedance medium. 

Finally, we determine the coupling between parallel guiding rods of 
slightly different sizes and dielectrics; at wavelengths around one micron, 
3-dB directional couplers, a few hundred microns long, can be achieved with 
separations of the guides about the same as their widths (a few microns). 

1. INTRODUCTION 

Proposals have been made for dielectric waveguides capable of 
guiding beams in integrated optical circuits very much as waveguides 
and coaxials are used for microwave circuitry.1-3 Figure 1 shows the 
basic geometries for these waveguides. The guide is a dielectric rod of 
refractive index n immersed in another dielectric of slightly smaller 
refractive index n (1 - 6.); both are in contact with a third dielectric 
which may be air (Fig. Ia) or a dielectric of refractive index n(l - 6.), 

2071 
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AIR 

/ // / 
/ / / 

tn/ 
n (hl) 

(a) (b) 

Fig. 1- Dielcctric wH,ocguidcs for intcgratcd optical circuitry. 

(Fig. 1 b). These geometries are attractive not only because of sim­
plicity, precision of construction, and mechanical stability, but also 
because by choosing 6 small enough, single-mode operation can be 
achieved with transverse dimensions of the guide large compared with 
the free space wavelengths, thus relaxing the tolerance requirements. 

Even though in a real guide the cross section of the guiding rod is 
not exactly rectangular and the boundaries between dielectrics are not 
sharply defined, as in Fig. 1, it is worth finding the characteristics of 
the modes in the idealized structure and the requirements to make it a 
single-mode waveguide. 

Furthermore, directional couplers made by bringing two of those 
guides close together, Fig. 2, may become important circuit compo­
nents. 1

,::! In this paper we study the transmission through such a 
coupler; the modes in a single guide result as a particular case, when 
the separation between the two guides is so large that the coupling is 
negligible. Through use of a perturbation technique, we also find the 
coupler properties when the two guides are slightly different. 

n (I-A) 

Fig. 2 - Directional couplers. 



DIELECTRIC WAVEGUIDE 2073 

The guiding properties of the rectangular cross section guide im­
mersed in a single dielectric are compared with those derived through 
computer calculations by GoelU Similarly, the coupling properties of 
two guides of square cross section immersed in a single dielectric are 
compared with those of two guides of circular cross section derived by 
.J ones and by Bracey and others. G.G In both comparisons agreement is 
quite good. 

II. FORMULATION OF THE BOUNDARY VALUE PROBLEl\I 

For analysis, we redraw in Fig. 3 the cross section of the coupler 
subdivided in many areas. Nine of the areas have refractive indexes 
nl to n5; we do not specify the refractive indexes in the six shaded 
areas. The reasons for these choices will become obvious. 

A rigorous solution to this boundary value problem requires a com­
puter;.J·7 nevertheless, it is possible to introduce a drastic simplification 
which enables one to get a closed form solution. This simplification 
arises from observing that, for well-guided modes, the field decays 
exponentially in regions 2, 3, 4, and 5; therefore, most of the power 
travels in regions 1, a small part travels in regions 2, 3, 4, and 5, and 
even less travels in the six shaded areas. Consequently, only a small 
error should be introduced into the calculation of fields in regions 1 
if one does not properly match the fields along the edges of the shaded 
areas. 

The matching made only along the four sides of regions 1 can be 
achieved assuming simple field distribution. Thus the field components 
in regions 1 vary sinusoidally in the x and y direction; those in 2 and 4 
vary sinusoidally along x and exponentially along y; and those in 
regions 3 and 5· vary sinusoidally along y and exponentially along x. 

The propagation constants k:rl' k:r'2, and k:r4 along x in media 1, 2, and 

Fig. 3 - Coupler cross section subdivided for analysis. 
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4 are identical and independent of y. Similarly, the propagation con­
stants k y1 , k y3 , and k Y5 along y in the regions 1, 3, and 5 are also 
identical and independent of x. 

In the appendix we calculate these propagation constants and find, 
as expected, that all the modes are hybrid and that guidance occurs 
because of total internal reflection. Nevertheless, because of another 
approximation which consists of choosing the refractive indexes n2 , 
na , n4 , and n5 slightly smaller than n1 , total internal reflection occurs 
only when the plane wavelets that make a mode impinge on the inter­
faces at grazing angles.* Consequently, the largest field components are 
perpendicular to the axis of propagation; the modes are essentially of the 
TEM kind and can be grouped in two families, E;q and E~q. The main field 
components of the members of the first family are Ex and H II , while those 
of the second are Ell and H x • The subindex p and q indicate the number 
of extrema of the electric or magnetic field in the x and y directions, 
respectively. Naturally, E~l and E~l are the fundamental modes; we 
concentrate on them as we discuss the transmission properties of 
different structures. 

III. GUIDE IMMERSED IN SEVERAL DIELECTRICS 

The guide immersed in several dielectrics (Fig. 4a) is derived from 
Fig. 3 by choosing 

c = 00. (1) 

It supports a discrete number of guided modes which we group in two 
families E;q and E~q plus a continuum of unguided modes.Bog 

3.1 The E~q Modes 

The main transverse field components of the E~q modes are Ell and H x • 

They are depicted in solid and broken lines, respectively, in Fig. 4a for 
the fundamental mode E~l . Within the guiding rod each component 
varies sinusoidally both along x and along y. Outside the guide each 
component decays exponentially. Such functional dependence is given 
in equation (38) and depicted in Fig. 4b. We assume n2 ~ na ~ n4 ~ n5 ; 
consequently the field distributions are not symmetric with respect to 
the planes x = 0 and y = O. In Fig. 5a we assume n2 = n4 and na = n5 ; 
the E~q modes depicted are either symmetric or antisymmetric with 
respect to the same planes. These modes look similar to those in laser 

* This approximation is not very demanding. Even when nl is 50 percent larger 
than n2, nn, 14, and nu, the results are valid. 
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~ 
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---- MAGNETIC FIELD --. 

Ey OR H;r 

Fig. 4 - Guide immersed in different dielectrics: (a) cross section and (b) field 
distribution of the fundamental mode ElllI. 

cavities with rectangular flat mirrors, but our nomenclature is different.1o 

The subindexes p and q indicate the number of extrema each component 
has within the guide. 

N ow we describe these modes quantitatively by reproducing the 
propagation constants found for each medium in Section A.l of the 
appendix. Let us call lez the axial propagation constant and lcxv and kl/ v 

the transverse propagation constants along the x and the y directions, 
respectively, in the vth medium (v = 1, 2, ... 5). Furthermore, let us call 

271" 
le" = len" = ~n" (2) 

the propagation constant of a plane wave in a medium of refractive 
index n p and free-space wavelength "-. 

According to equations (39) through (52) 

(3) 
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Fig. 5 - (n) Field configuration of Ep/ modes. (b) Field configuration of Epq:r 
modes. 

in which 

(4) 

and 

(5) 

This means that the fields in media 1, 2, and 4 have the same x 
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dependence and similarly those in media 1, 3, and 5 have identical y 
dependence. These transverse propagation constants are solutions of 
the transcendental equations: 

(6) 

(7) 

in which 

1 

~ 
1 

(8) 

1 

17~ = lley~ I 

1 
(9) 

and 

(10) 

In the transcendental equations (6) and (7), a and b are the trans­
verse dimensions of the guiding rod, and the tan-1 functions are to be 
taken in the first quadrant. 

What are the physical meanings of b , 172 ,andA 2,3,4,5 ? The amplitude 
5 4 

of each field component in medium 3 (Fig. 4) decreases exponentially 
along x. It decays by 1/ e in a distance ~3 = 1/ Ile x3 I . Similarly ~5 , 172 , 

and 174 measure the "penetration depths" of the field components in 
media 5, 2, and 4, respectively. 

The meaning of A2 is the following. Consider a symmetric slab derived 
from Fig. 4 by choosing a = 00 and n2 = n4 . The maximum thickness 
for which the slab supports only the fundamental mode is A2 . 

Expressions (3), (8), and (9) contain lex and ley , which are solutions of 
the transcendental equations (6) and (7). These cannot be solved exactly 
in closed form. Nevertheless, for well-guided modes, most of the power 
travels within medium 1, implying 

(11) 

It is possible then to solve those transcendental equations In closed, 
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though approximate, form. Their solutions are 

kx = p7r (1 + Aa + AS)-l 
a 7ra 

(12) 

(13) 

For large a and b, the electrical width, kxa, and the electrical height, 
kyb, of the guide are close to p7l' and q7r, respectively. 

Substituting equations (12) and (13) in equations (3), (8), and (9), 
we obtain explicit expressions for kz, ~3, ~5, 7}2, and 7}4 : 

(
7r
b
Q
)'( 1 + n;A::::;ArT 

(14) 

(15) 

(16) 

3.2 The E;a Modes 

Except for the fact that the main transverse components are Ex and 
H y , the E;a modes are qualitatively similar to the E~a modes (Fig. 5b); 
they differ quantitatively. Distinguishing with bold-face type the symbols 
corresponding to E;q modes, the axial propagation constant and the 
"penetration depth" in media 2, 3, 4, and 5 are, according to equations 
(60), (63), and (64), 

(17) 

(18) 

1 

~I 
1 

(19) 
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in which k., and k y are solutions of the transcendental equations 
2 2 

k t -1 na k t" t -1 n5 k t" 
x a = p7r - an 2 x<.a - an 2 x <.5 n 1 n 1 

(20) 

kllb = q7r - tan-1 kyn2 - tan- 1 kyn4 . (21) 

The approximate closed form solutions of these equations are 

k., = p7r (1 + n~Aa -t n;A5)-1 
a 7rn1a 

(22) 

and 

kll = q; (1 + A2 ~ A4) -1 • (23) 

Substituting these expressions in equations (17), (18), and (19), we 
derive the explicit results: 

k. = [k: - (7)'(1 + n;A~an:Ar - (":)'(1 + A, ~ ArT 
(24) 

(25) 

(26) 

If 

these results coincide with those in equations (14), (15), and (16), 
indicating that the E;a and E~1l modes become degenerate. 

3.3 Examples 

The axial propagation constants kz and kz , given in equations (3) 
and (17) and properly normalized, have been plotted in Figs. 6a through 
k as a function of the normalized height of the guide 

l = 2b (n2 _ n 2)1 
A4 A 1 4 
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Fig. 6 - Propagation constant for different modes and guides. tran-
scendental equation solutions; ---- closed form solutions; -.-.- Goell's 
computer solutions of the boundary value problem. 

for several geometries and surrounding media.* The ordinate in each of 
these figures is 

it varies between 0 and 1. It is 0 when kz = k4 , that is, when the guide 

* In these figures we use the same symbol kz for both the EpqY and the Ep/ 
modes. 
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is so small that the mode under consideration becomes unguided or, in 
other words, the "penetration depth" in medium 4 is 00. It is 1 when the 
guide is so large that kz = kl' which means that all the field travels 
within the guiding rod and the "penetration depths" in media 2, 3, 4, 
and 5 are zero. 

The solid curves have been obtained using the exact numerical 
solutions of the transcendental equations (6), (7), (20), and (21); 
for the transverse propagation constants lex and ky ; the dashed lines have 
been derived using the closed form approximations (12), (13), (22), 
and (23). In Figs. 6a, 6b, 6e, and 6f, for comparison, we have also 
included the dotted-dashed lines which are the results obtained by 
Goell as computer solutions of the boundary value problem. 4 

The three solutions coincide even for moderately large values of b. 
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Thus, for a guide and mode for which 

k; -- k~ > 05 
k~ -- k! = ., 

2083 

the closed form approximation is within a few percent of the exact value. 
This gives us confidence to use our results in guides with an aspect 
ratio alb> 2, in guides surrounded by several dielectrics and in direct­
ional couplers for which there are no computer calculations available. 

The largest discrepancy between our results and Goell's occurs for 
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and especially for the fundamental modes E~l and E~l . Our approximate 
theory is incapable of predicting the fact that these modes remain 
guided no matter how small the guide's cross section. 

Figures Ga through d cover the cases of rectangular guides totally 
embedded in a single dielectric of slightly lower refractive index. For all 
practical purposes, given p and q, the E~q and E~q modes are degenerate, 
and the square cross section provides the widest separation between 
modes. 

Figures Ge through g also consider rectangular guides embedded in a 
single dielectric, but the external refractive index is 1..5 times smaller 
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than the internal one. A glass rod immersed in ~1ir is an example. The 
substantial difference of refractive indexes breaks the degeneracy for any 
rectangular cross section. Rectangular waveguides as in Fig. la, with 
three sides in contact with slightly lower refractive indexes and the 
fourth side in contact \yith air, are covered in Fig. 6h through k. 

The approximate dispersion relation (14) for E~q modes, in a rectang­
ular guide surrounded by four different dielectrics, has been put in 
graphical form in Fig. 7 by plotting the equivalent equation 

III which 

and 

I r----. 

r/X + (/Y = 1 

x 

y ( )
2( 2 2 1 ) 2 ~ 1 + n2A~~bn-±-~ - (k~ - k~)-l. 

1.0.--------.-------,------,--------,-----, 

N.i 0.8 I 
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(27) 

(28) 

(29) 

Fig. 7 - Nomograph to dimension a guide immersed in several dielectrics III 

such a way that it supports finy prescribed number of modes. 
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The curves plotted for different values of p and q are straight lines 
(solid lines) ; since the values of X and Yare physically meaningful 
when they are positive, the plots are kept within the first quadrant. 

In Fig. 7 the dotted lines depict the equation 

1 + A3 + A5 
Y a 7ra 
X - b 1 + n;A2 --J; n!A4 

7rn1b 

C. (30) 

Given any guide, we can calculate C which is a function of the dimen­
sions, refractive indexes, and wavelength. The corresponding dotted 
line intersects all the solid lines representing the different modes. The 
abscissa or ordinate of each intersection yields, after some algebra, the 
propagation constant kz of each particular mode. If the resulting kz is 
smaller than the smallest kv, that mode is not guided. 

Another way of using the graph is this: Suppose one wants a guide 
with such dimensions that at a given wavelength only the Erl mode is 
supported. Picking kz = kpmin , any combination of n 1 , n2 , n3 , n4 , n5 , 
a, and b represented by a point within the triangle limited by the solid 
lines Erl , Er2' and E~l will satisfy the proposed single-mode require­
ment. 

In the graph it is enough to substitute a by b and everything we said 
about E~q modes is applicable to E;q modes. 

Figures 6a through k have been used to determine dimensions for 
several guides. All of them have the maximum dimensions compatible 
with exclusive guidance of the E~l and Erl modes. The results are 
collected in Table I. 

In general, the geometry with n 2 < n 4 requires a larger waveguide 
cross section than with n2 = n4 . This means reducing the refractive index 
on one side of the guide reduces its ability to guide. The explanation of 
this paradox is found in the known fact that a symmetric slab indeed 
guides "better" than an asymmetric one. Comparing, for example, 
Figs. 6d and 6k, in which the solid curves have been drawn solving 
l\1axwell's equations exactly, the E;l and E~l modes can be guided by the 
symmetric slab (Fig. 6d) no matter how small the thickness b; there is a 
minimum thickness required for the asymmetric slab (Fig. 6k) to guide 
the same modes.9 

Consider the guide immersed in a single dielectric. In general, the 
guide's height b is inversely proportional to 

1 
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TABLE I-TYPICAL DIMENSIONS FOR SEVERAL GUIDES* 

a 1~~-1 1·----' n 2 

n 4 f%nJ30a=:tb n4 t?1 ~ l~ --.1 b 

nt nt nt 

!2.!.=1.001 
nj nj n t 

n
2 

= 1.5; n
2 

= 1.5; n
2 
= 1.5; 

n 4 
n4 =1.01 n:;: = 1.05 n:;. = 1.5 n t nt nt n:;: =1.001 n4 =1.01 n4 =1.05 

a=b 15.3 t 4.9 2.25 0.92 17.7 5.6 2.6 

a=2b 19 6.1 2.8 1.21 23.2 7.4 3.4 

a=4b 26.8 8.5 3.8 1.37 34.9 11 4.9 

* Dimensions are for guides capable of supporting only the fundamental modes 
Ed" and E l1Y. 

t All numbers in the table must be multiplied by X/nl' 

For n 1 = 1.5, n 4 = 1, and A = 1,u, the largest guide height corresponds 
to the square cross section, and b = a = 0.61,u. This dimension may be 
too small and difficult to control. The tolerance requirements may be 
relaxed by choosing n 1 - n4 « 1. Nevertheless, this difference cannot be 
made arbitrarily small because the guide loses its ability to negotiate 
sharp bends. 11 

In all these examples the fundamental modes E~1 and E~1 are almost 
degenerate, so symmetry imperfections of the guide tend to couple 
these modes. A lossy layer, added to one of the interfaces between 
guiding rod and surrounding dielectrics, should attenuate the mode with 
polarization parallel to that interface. As an alternative, the guide can 
be made to support only the fundamental mode E~1 by substituting 
medium 2 with a low impedance medium such as a dielectric with large 
refractive index or a metal. 

An example of such a guide and the propagation constant of its modes 
are shown in Fig. 8. By choosing 

only the Erl mode is guided. If the metal is not perfect, there is power 
leakage into the low impedance medium. The smaller that impedance, 
the smaller the leakage. 

Guides for integrated optics may be easier to build with alb » 1. We 
can use Fig. 7 to design a guide of arbitrary dimensions a and b which is 
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Fig. 8 - Propap:ation constant for modes in a p:uide surrounded by metal and 
dielectrics. transcendental equation solutions; - - - - closed 
form solutions; -'-'- Goell's computer solutions of the boundary yalue 
problem. 

still capable of supporting only the E~l and E~1 modes. An as example, 
let us calculate what the values 

n:l = n5 = n l (1 + ~) and n 2 

should be, assuming 

.:1, .:1' « 1, 

Choosing 

one derives from Fig. 7 

and 

a 
b 

a 
b 

5. 

.1, (:31) 

The curve corresponding to C = 25 has been plotted as a dotted line 
in Fig. 7. It intercepts the E~1 line at 

[
b 1 (2 )~J-2 y = - + -- -, (lei - k;)-1 
7r 7rknl.:1 

0.88. 

I n this expression, by making 

kz = kn 1 (1 - ~), 

the guide supports only the E~1 and E~1 modes; its height is then 
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h = 1 Jio :;;1 (~7)1' (32) 

\Ve can choose b arbitrarily by the proper selection of ~/. 
For 

A = 1,u n 1 = 1.5, and b G,u, 

from equations (31) and (32) we obtain 

a = 2;),u, Ll = 0.002, and Ll' 0.05. 

IV. DIRECTIONAL COUPLER 

In general, the directional coupler can transmit E;q and E~q modes; 
but if the sides a and b of the guides are selected small enough, only the 
fundamental modes E~1 and Erl are guided. Let us concentrate on the 
Erl mode. The coupler guides two kinds of Erl modes: one is symmetric 
(Fig. 9c) "'hile the other is antisymmetric (Fig. 9d). Both are essen­
tially TE~I modes 'with main field components Ey and Hx . The electric 
and magnetic field intensity profiles for both modes are depicted 
qualitatively in Figs. 9b, c, and d. 

Ignoring the small effects introduced by the loose coupling, the 
electrical 'width kxa and height kyb of each guide, as well as the field 
penetrations ~3 and Y]2, coincide with those of the guide described in 

5 -1 

Section III. Similar reasoning applies to the E~1 mode. 
The coupling coefficient K between the two guides and the length L 

necessary for complete transfer of power from one to the other are, 
according to equations (56) and (.59),12 

_ '}( _ 3! __ ') k~ ~ exp (-c/b) . 
~ - -.;,J 22 

2L kz a 1 + k:r~ij 
(3;)) 

For E~a modes, kz and ~5 are given in equations (3) and (8), and kx is the 
solution of equation (6). Similarly, for E;q modes, kz , b, and kx are 
obtained from equations (17), (18), and (20). As expected, the coupling 
decreases exponentially with the ratio c/ ~5 between the guide's separation 
and the field penetration in medium 5. 

The normalized coupling coefficient 

I K I a kz _ ?!:!;£ ___ 1 __ kz 

[1 - (~:),T Ie, - 2 J, [1 - (~:),T k, 

= 2("':')'[1 - (1e':JT exp {-7r i~ [1 - (k':JT} (34) 
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Fig. 9 - Directional coupler immersed in several dielectrics: (a) cross section, 
(b), (c), and (d) field distributions. 

derived from equation (33) by substituting ~5 for its value given in 
equation (8) has been plotted in Fig. 10 for the E~(/ mode, assuming 
n3 = n5 and n 1/n5 is arbitrary. The solid and dotted lines were obtained 
using the exact solution of (6) and the approximate expression (12), 
respectively, for lex . Both sets of curves are close to each other, espec­
ially for 2a/A(ni - nD! ~ 1. 

The dashed-dotted lines are the couplings obtained by A .. L. J ones5 

for two parallel cylinders of refractive index n 1 = 1.8 embedded in a 
medium n5 = 1.5.5 As expected, if the diameters of the round guides are 
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equal to the widths of the rectangular guides, and if the separations are 
the same, the coupling between the round guides should be slightly 
smaller than that between the rectangular ones. 

The normalized coupling equation (34) for the E~q mode has been 
plotted in Fig. 11, using for kx the exact solution of equation (20) . 
For n1/ns close to unity, the lines get close to the solid curves in Fig. 10 
as the E~q and E~q modes approach degeneracy. The influence of the 
height b of the guides, the refractive indices n2 and n4 , and the value of q 
in the coupling of either mode is not important since they only affect kz . 

To work some examples, assume 

~ 
~ 
,----:--... 

~ c.ojc 
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I 
~ 

NI -..:s:::..:s::: 
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1.01 ' 

and a = 2b. 
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cia 

Fig. 10 - Coupling coefficient for Elq'V modes. coupling calculated 
from trancendental equations; ---- closed form approximations; -.-.­
coupling between two cylindrical rods (A. L. Jones5). 
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10r-------~------~--------~------~--------~----~ 
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~ 10-lk~~~~~~--~~~---~--~~------~~=--=~------~ 

71~ c c 
~ 

I 
~ 

NI ~ X X 
10- 2 I--\\---\\---+---'~---

10-4L-______ ~L_ __ ~~ ______ ~L_ ______ ~~ ____ ~ ______ ~ 

o 0.5 1.0 1.5 2.0 2.5 3.0 

cia 

Fig. 11- Coupling coefficient for El/ modes. ----­
nI/n5 = 1.5; -'-'- Elq'" coupling for nI/n5 = 1.1. 

Elqil: coupling for 

To insure that each guide only supports the E~l and E~l modes, the 
normalized dimension b according to Fig. 6b must be chosen to be 

Consequently 

b = 1.77A, a = 3.54A, and ~: t'J 1. 

From Fig. 10 we obtain the coupler length L for complete power trans­
fer: 

L 6540A for c = a and L 262A for c 
a 
4 
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How far apart should two guides of length l be spaced to have small 
coupling? If the transfer coefficient 1 T 1 = l 1 K 1 « 1, from equation 
(33) we derive 

1 [
lie! ~5 1 ] 

c = ~5 og 2 TTl le z -;; 1 + Ie!~; . (35) 

For the same guide dimensions of the previous example and for 

l = 1 cm, A = IJ,l, and T = 0.01, 

we derive, from either equation (35) or Fig. 10, that cia = 2.5. Con­
sequently, both guides 3.54/-t wide and 1 cm long would couple -40dB 
if their separtion is 8.9/-t. 

Now we evaluate how a small change of the refractive index between 
the guides modifies their coupling. Such would be the case if the 
medium between the guides is, for example, an electro optic material 
and we change the applied field to modulate or switch the output. 

For E~l and E~l modes, assuming well-guided modes (lexA5/7r « 1) 
and n 1 - n51nl « 1, the ratio between couplings for two values of 
refractive index in medium 5 (for example, n5 and n5(1 + 0)), result from 
equations (34) and (12): 

~~: ~ ~: ~ cxp {-1r(~! - 1 r ~o, [1 - (~+ ;TJl (36) 

That ratio is 1/2 if 

(37) 

A directional coupler with coupling coefficient K1 and length L = 
71"/1 2K1 I would transfer all the power from one guide to the other. 
If the refractive index of the medium between the guides was changed 
from n5 to n5 (1 +8) such that equation (37) is satisfied, the power 
would emerge at the end of the input guide. The larger the separation 
c of the guides, and the smaller the difference of refractive indexes 
n1 - n5, the smaller the change of refractive index required. 

Following the example above, for 

n 1 = 1.5, 

a = 1.5A5 = 3.54A, and c = a, 

the percentage change of index required is only 8 = 0.0033. 



2094 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

v. DIRECTIONAL COUPLER MADE WITH SLIGHTLY DIFFERENT GUIDES 

Consider the directional coupler of Fig. 12 in which the two guides 
have slightly different heights: one measures b + h and the other 
b - h. 

Let us qualitatively plot the coupling coefficient as a function of h, 
Fig. 13. Because of simple arguments of symmetry, the absolute value 
of coupling coefficient is stationary (first derivative zero) around 
h == O. Therefore, the coupling coefficient between two guides of height 
b1 and b2 is the same as that of the coupling between two identical 
guides of height 1/2 (b1 + b2 ), provided that I b1 - b2 1 is small 
enough. 

This reasoning applies to guides with different widths, heights, and 
refractive indices, provided that the differences are small enough. Un­
fortunately, as in most perturbation analysis, we don't know what 
"small enough" is unless we calculate the next higher order term. 

VI. SUMMARY AND CONCLUSIONS 

A dielectric rod (Fig. 4a) of rectangular cross section a by b surrounded 
by different dielectrics supports, through total internal reflection, two 
families of hybrid modes. They are essentially TEM modes polarized 
either in the x or the y direction; we call them E;Q. and E;Q. . The sub­
indices state the number of extrema (p in the x direction and q in the 
y direction) of the magnetic or electric transverse field components. 

Dispersion curves for guides of different proportions and different 
surrounding dielectric are plotted in Figs. 6a through k. Typical di­
mensions for several guides capable of supporting only the fundamental 
modes E~l and E~l are contained in Table 1. 

By picking dielectrics with similar indexes, the guide dimensions can 
be made large compared with A, thus reducing the tolerance require­
ments. The dimensions a and b can be picked arbitrarily and still achieve 

Fig. 12 - Directional coupler with guides of different heights. 
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Ikl 

---L-+_Oh 
Fig. 13 - Qualitative behavior of the coupling coefficient as a function of h. 

a guide which supports only the fundamental modes if one can choose 
the refractive indexes. The design is achieved with the help of either 
equation (14) or Fig. 7. 

The penalty one pays with most of these guides is that the funda­
mental modes are almost degenerate; consequently, symmetry imper­
fections tend to couple them. A lossy layer added to the interface y = b/2 
(Fig. 4a) should attenuate the E~l mode more than the Erl . As an 
alternative, the guide can be made to support only the E~l mode by 
metalizing the same interface. Dispersion curves are shown in Fig. 8. 

Since the field is not confined, there is coupling between two of these 
guides (Fig. 3). Design curves for directional couplers are given in Figs. 
10 and 11. 

Typically, for n 1 = 1.5, nz = n3 = n4 = n5 = 1.5/1.01, a = 3.54A, 
b = a/2 = 1.77A, and c = a/4 = 0.88A, according to equation (33) the 
length necessary for 3dB coupling is L/2 = 131A. This length increases 
exponentially with the separation between the guides. 

Increasing the refractive index between the guides by a 3 per 
thousand doubles the coupling. 

What is a reasonable separation to prevent coupling? Using the 
numbers of the previous example, two parallel guides 1 cm long sepa­
rated by 2.5 times the width of each guide have a coupling of -40 dB. 

The dielectric waveguides and the directional couplers described 
show great promise as basic elements for integrated optical cir­
cuitry because they: 

(i) Can be made single mode even though their transverse dimen­
sions can be large compared with the free space wavelength of opera­
tion. Consequently, the tolerance requirements can be relaxed. 

(ii) Permit the building of compact optical components. 
(iii) Are mechanically stable and alignment problems are mini­

mized. 
(iv) Are relatively simple structures and lend themselves to being 

fabricated with high precision integrated circuit techniques. 
(v) Can include active devices of comparable small dimensions. 
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APPENDIX A 

Field Analysis of the Directional Coupler 

We solve Maxwell's equations for the directional coupler whose 
cross section is depicted in Fig. 3. The structure is symmetric with 
respect to the x = 0 plane; therefore, the modes have electric fields 
which are either symmetric or antisymmetric with respect to that 
plane. Consequently, the guide we have to study is simpler (Fig 14) : 
if the plane x = 0 is an electric short circuit, the modes of the coupler 
propagating along z are antisymmetric; if the plane x = 0 is a mag­
netic short circuit, the modes are symmetric. As is known, it is the 
interaction of these symmetric and antisymmetric modes traveling with 
different phase velocities along z that represents the effect of coupling. 

As discussed in Section II, by neglecting the power propagating 
through the shaded areas, the fields must be matched only along the 
sides of region 1. We find that two families of modes can satisfy the 
boundary conditions; we call them E:a and E~a . Each mode in the first 
family has most of jts electric field polarized in the x direction, while each 
mode of the second family has the electric field almost completely 
polarized in the y direction. The subindexes p and q characterize the 
member of the family by the number of extrema that these transverse 
field components have along the x and y directions, respectively. For 
example, the E~l mode has its electric field virtually along x, its magnetic 
field along y; the amplitudes of the field have one maximum in each 
direction. 

Each family of modes will be studied separately. 

A.I E~a 1I1odes: Polarization Along y 

The field components in the vth of the five areas in Fig. 14 are: l3 

1
Ml cos (kxx + a) cos (kyy + m for v = 1 

1112 cos (kxx + a) exp (-ikY2Y) for v = 2 

Hxp = exp (-ikzz + iWt)j1l13 cos (kyy + m exp (-ikx3X) for v = 3 

1114 cos (kxx + a) exp (ik y4Y) for v = 4 

l1l!J5 cos (kyy + (3) sin (kx5x + 1') for v = 5 

(38) 
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Fig. 14 - Coupler cross section with plane x = 0 either an electric or magnetic 
short circuit. 

1 a2Hxv 
- wEn:kz ax ay 

Ezv = ~2 aHxv 
WEn v ay 

in which JJlv determines the amplitude of the field in the vth medium; 
a and {3 locate the field maxima and minima in region 1; 'Y equal to 0° 
or 90° implies that the plane x = 0 is an electric (antisymmetric mode) 
or magnetic (symmetric mode) short circuit, respectively; W is the 
angular frequency; E and fJ. (appearing in k2 = w

2 
EfJ.) are the permittivity 

and permeability of free space. 
In the vth medium the refractive index is nv , and the propagation 

constants kxv , k yv , and kz are related by 

(39) 

To match the fields at the boundaries between the region 1 and the re­
gions 2 and 4, we have assumed in equation (38) 

kXl = kX2 = kX4 = kx (40) 

and similarly to match the fields between media 1, 3, and 5, 

k Y1 = kY3 = kY5 = ky . (41) 

Before finding the characteristic equations, let us assume the re­
fractive index nl of the guide to be slightly larger than the others. 
That is 

n 1 _ 1 « 1. 
n2 

(42) 
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As a consequence only modes made of plane wavelets impinging at 
grazing angles on the surface of medium 1 are guided. Since this im­
plies that 

kz «kz , 

kll 

the field components Ex in equation (38) can be neglected. 

(43) 

Now we match the remaining tangential components along the 
edges of region 1 and from equation (38) we obtain 

(44) 

~ c + "l = /;:: [ictn( kx5 ~ + 'Y )]. 

a+ 2 1 

(45) 

Where there are two choices, the upper ones go together and the lower 
ones go together. 

T. Li pointed out that each of these equations considered separately 
is the characteristic equation of a boundary value problem simpler 
than that of Fig. 14.8,9 Thus for a dielectric slab infinite in the x and z 
directions and refractive indexes as depicted in Fig. 15a, the char­
acteristic equation for modes with no Hy component coincides with 

(a) 

ELECTRIC 
OR 

MAGNETIC 
WALL 

Fig. 15 - Dielectric slabs. 

~-+---t--.. :x: 

( b) 
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equation (44). Similarly, for two slabs infinite in the y and z directions 
and limited at x = 0 by an electric or magnetic short as in Fig. 15b, 
the characteristic equation for modes with Ea: = 0 is equation (45). 

A similar technique has been used by Schlosser and Unger to find 
the transmission properties of a rectangular dielectric guide immersed 
in another dielectric.7 If the two guiding rods are so far apart that the 
coupling between them is a perturbation, then 

(46) 

and we can rewrite the characteristic equations (44) and (45) with 
the help of equations (39) and (46), making a and b explicit, as 

(47) 

(48) 

(49) 

(50) 

(51) 

and 

7r A 
A 2.3.4.5 = (ki - k;.3.4.5)! = (ni - n;.3.4.5)!· (52) 

In the transcendental equations (47) to (49), p and q are the arbi­
trary integers characterizing the order of the propagating mode, and 
the tan-1 functions are to be taken in the first quadrant. The angles 
ka:a and kyb measure the phase shift of any field component across 
the guiding rod in the x and y directions respectively, or in other words, 
the electrical width and height of each guide of the coupler. On the 
other hand, ka:oa is the electrical width of each guide assuming no inter­
action between the guides, that is assuming c ~ 00. 



2100 THE BELL SYSTEM 'l'ECHNICAL .JOURNAL, SEPTEMBER won 

Let us find the physical significance of 1}2,4 and ~~,5. The amplitude 
of each field component in medium 2 (Fig 14) decreases exponentially 
along y. It decays by lie in a distance 1}2 given by equation (50). 
Similarly 1}4, ~~, and ~5 measure the "penetration depth" of the field 
components in media 4, 3, and 5, respectively. 

The propagation constant along z for each mode of the coupler is, 
according to equations (39), (40), and (41), 

(53) 

With the help of equation (48), the slightly different propagation con­
stants of the symmetric (y = 90 0

) and antisymmetric modes (y = 0) 
are 

(54) 

In this expression 

(5.5) 

is the propagation constant of the E~a mode of a single guide (c ~ 00). 
The coupling coefficient K between the two guides and the length L 

necessary for complete transfer of power from one to the other are 
related to the propagation constants kZ8 and kza by12 

-iK = ~ = kZ8 - kza = 2 k;o ~ exp (-~/~25) 
2L 2 kzo a 1 + kxO~5 

~ ; ~k~:o [1 - (k,:A'YT exp {- ~: [1 - (k,:Anl (56) 

As expected, the coupling increases exponentially both by decreasing c 
and by increasing the penetration depth ~5 in medium 5. 

All these formulas contain either kxo or k y, which are solutions of 
the transcendental equations (47) and (49). For well-guided modes, 
most of the power travels within medium 1 and consequently 

[
k xOA3]2 
__ 5 «1 

7r 
(57) 

and 

(58) 
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It is possible then to solve those transcendental equations in a closed 
though approximate form by expanding the tan-1 functions in power of 
those small quantities and keeping the first two terms of the expan­
sions. The explicit solutions of equations (47), (49), (50), (51), (55), 
and (56) are given in Section III. 

A.2 E~IJ Modes: Polarization in the x Direction 

The field components and propagation constants can be derived from 
those in Section A.l by changing E to Hand J.1. to - €, and vice versa. 
Except for their polarizations, the E~IJ and E~IJ modes are very similar 
and have comparable propagation constants. Using boldface type to 
distinguish the symbols corresponding to E~q modes, from equations 
(56), (55), (47), (49), (50), and (51), we obtain 

-iK = ~ = 2 k;o ~5 exp (-C/~5)2 
2L kzo a 1 + (kXO~5) (59) 

where 

kzo = (k~ - k;o - k:)! (60) 

and kxo and kll are solutions of the transcendental equations 

(61) 

and 

(62) 

in which 

1 
n2 

[[~:r -k;J 
(63) 

and 

~3 = 
1 

5 [[~J -k;oJ 
(64) 

As in Section A.l, the transcendental equations (61) and (62) can 
be solved in closed, though approximate, form provided that 

[
k xoA 3J2 
__ 5 «1 

7r 
(65) 
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and 

(66) 

The explicit results are given in Section III. 
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Bends in Optical Dielectric Guides 

By E. A. J. MARCATILI 

(Manuscript received March 3, 1969) 

Light transmission through a curved dielectric rod of rectangular cross 
section embedded in different dielectrics is analyzed in closed, though 
approximate form. We distinguish three ranges: 

(i) Small cross section guides such as a thin glass ribbon surrounded 
by air-Making its width 1 percent of the wavelength, most of the power 
travels outside of the glass; the attenuation coefficient of the guide is two 
orders of magnitude smaller than that of glass, and the radius of curvature 
that doubles the straight guide loss is around 10,000"A. 

(ii) Medium cross section guide for integration optics-It is only a few 
microns on the side and capable of guiding a single mode either in low loss 
bends with short radii of curvature or in a high Q closed loop useful for filters. 
Q's of the order of 108 are theoretically achievable in loops with radii ranging 
from 0.04 to 1 mm, if the percentage refractive index difference between guide 
and surrounding dielectric lies between 0.1 and 0.01. 

(iii) Large cross section guides-They are multimode and are used in 
fiber optics. Conversion to higher order modes are found more significant than 
radiation loss resulting from curvature. 

I. INTRODUCTION 

A dielectric rod, embedded in one or more dielectrics of lower re­
fractive index, is the basic ingredient of three types of optical wave­
guide which differ only in their relative dimensions and consequently 
in their guiding properties. 

The first is a small cross section guide which supports only the fund­
amentalmode; most of the power travels in a lower loss external 
medium. Thus, the attenuation of the mode is smaller than if all the 
power flowed through the higher loss internal medium. Tiny rods, thin 
ribbons, or films made of glass or other substances embedded in either 
air or low loss liquids are typical examples.1- 3 

The second is a medium size guide capable of supporting only a few 

2103 
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modes; most of the power travels in the internal medium. Such a guide, 
(Fig. 1 of Ref. 10) has been proposed as the building block of passive 
and active components for integrated optical circuitry.4-6 Lasers, 
modulators, directional couplers, and filters are some of the many 
devices which could be built in a single substrate utilizing the high 
precision techniques available from integrated circuitry; consequently 
they would be compact, mechanically stable, and reproducible. 

The third, a large size guide (clad fiber) which can support many 
modes, is used typically in fiber optics. 7 

These basic guides, having round or rectangular cross section and 
straight axis, have been studied both analytically and through com­
puter calculations.s- 13 Also the directional coupler (Fig. 2 of Ref. 10) 
obtained by running two guides of rectangular or circular cross sections 
parallel to each other, has been analyzed.1o,12,14 

To my knowledge, though, little is known quantitatively about the 
ability of any of the three types of guides to negotiate bends, or about 
the radiation losses in loops, such as the one depicted in Fig. 1 as part 
of a channel dropping filter. This paper should supply such informa­
tion. 

In Section II the boundary value problem is discussed, and the 
fundamental modes of each polarization are described. Section III con­
tains a discussion of the results and numerical examples. Conclusions 
are drawn in Section IV and all the mathematical derivations are 
exiled to the appendix. 

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM 

Figure 2 depicts, in perspective, the basic geometry of the curved 
guide with radius of curvature R. The cross section is a rectangle whose 
sides are a and b. The refractive index of the guide is nl, and the re­
fractive indices around the guide are n2, n3, n4, and n5 , all of which are 
smaller than nl. Furthermore, for reasons which become apparent later, 
we do not specify the refractive indices in the four shaded areas. 

This boundary value problem is solved in closed, though approxi­
mate form in the appendix, by introducing the same simplification 
used in solving the problem of transmission in the straight guide.10 

That simplification arises from solving Maxwell's equations only for 
guide dimensions such that a small percentage of the total power flows 
through the shaded areas and consequently a negligible error is ex­
pected if one does not match properly the fields along their edges. 

Two types of hybrid modes propagate through this curved guide; 
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each one has six field components. But since some of the refractive 
indices n2, n3 , n4 , and n5 are chosen close to n 1 , guidance occurs 
through total internal reflection only when the plane wavelets that make 
a mode impinge on the interfaces at grazing angles. Consequently, the 
only large field components are perpendicular to the curved z axis 
(Fig. 2). The modes are then of the TEl\'[ kind and we group them in two 
families, E~q and E~q . The main field components of the members of the 
first family are Ex and Hy , while those of the second are Ey and Hx . 

I n5 
~ ---~-----__ L_~-----

I 

I 
I 

I 

~-+---a ---+-, 
~5 ~3 

Fig. 2 - Curved dielectric guide. 
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Virtually everyone of these components varies sinusoidally along 
x and y within the guiding medium 1 and decays exponentially in the 
surrounding media 2, 3, 4, and 5 (Fig. 2). The subindices p and q 
represent the number of extrema of each field component in the x and 
y directions, respectively. The field configurations of some members 
of the two families in straight guides are depicted in Fig. 5 of Ref. 10; 
section 2.1 describes the influence of a finite radius of curvature on 
those field configurations. 

General expressions for the different phase and propagation constants 
in each medium of the curved guide are calculated in the appendix, for 
arbitrary modes and for n2 ~ n3 ~ n4 ~ ns . In the text, we consider only 
the fundamental modes of each family E~l and E~l ; furthermore, we 
choose 

(1) 

and leave n:! and n4 arbitrary. This choice of refractive indexes en­
compasses the most interesting cases. 

2.1 E~l Mode 

We first study the E~l mode. As we said before, the main compo­
nents are Ex along the x direction and Hy along y. Both components 
have a single maximum located within medium 1 and drop sinusoidally 
toward the edge of it. Outside of the medium, the decay is exponential. 

The axial propagation constant is according to equation (47) 

kz = (ki - k; - k~)!, (2) 

where kl = knl = (2'7l'/A) nl and A is the free space wavelength, ka; is 
the propagation constant along x in media 1, 2, and 4, and ky is the 
propagation constant along y in media 1, 3, and 5. This means that 
the electrical width of media 1, 2, and 4 is the same and equal to kxa, 
and the electrical height of 1, 3, and 5 is also the same and equal kyb. 

The transverse propagation constant ky is independent of the radius 
of curvature R and can be found from the transcendental equation 
(37) 

k,b = " - tan-' [(k,~J - 1 r -tan-' [(k,~J - 1 r (3) 

in which 

(4) 
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If the height of the guide b is selected so large that 

A2 + A4« 1 
7rb ' 
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(5) 

only a small percentage of the power carried by the mode travels in 
media 2 and 4; and equation (3) can be solved approximately, 
yielding 

According to equation (49), the other transverse propagation con­
stant 

is valid if 

k = k [1 + ~ - . kzo(Xc] 
'" ",0 k '" e a ",0 ",0 

_c_« 1 
ak",o 

(XcR « 1. 

(6) 

(7) 

The first term in equation (6), k",o , is the propagation constant in the 
x direction of the guide without curvature; the second and third terms, 
which according to equation (7) must be small, are perturbations related 
to the change of field profile and to radiation loss, both of which are 
introduced by the curvature. More precisely, (Xc is the attenuation 
coefficient of the curved guide, (XcR is the attenuation per radian, 
that is the attenuation in a length of guide equal to R, and c is a con­
version loss coefficient such that, at a junction between a straight and a 
curved section of the same guide, c2 measures the power that the funda­
mental mode in the straight section would couple to modes higher than 
the fundamental in the curved section. The fact that equation (6) is 
valid if c « 1 requires the radius of curvature R to be so large that the 
field profiles of the fundamental modes in the straight and curved guides 
are quite similar. Later in this section we consider formulas applicable 
when c rov 1. 

The axial propagation constant, kzo , of the straight guide is related 
to k",o and kl/ by the expression 

kzo = (k~ - k;o - k~)!; (8) 

and k",o is the solution of the transcendental equation (55) 
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(9) 

The length 

(10) 

is used as a normalizing dimension. What does it measure? If one 
assumes b = 00, the guide becomes a slab of width a. If a ~ A, only 
the fundamental mode is guided; if a > A, the slab is multimode. 

Figure 3 is a graph of the electrical width, kxoa, of the straight guide 
as a function of a/A. The solid curve is the solution of equation (9) 
assuming nl/n3 = 1.5, while the dotted one is the solution for n 1/n3 = 1. 
For thin guides, a/A « 1, the electrical width is proportional to a; for 
thick guides, a/A» 1, the electrical width goes asymptotically to 11". 

The attenuation per radian acR and the conversion coefficient c, 
obtained from equations (50) and (51) with n3 = n5 are 

a,R ~ ~ (1 - ;;~rt,~:oa)' C~)'[ 1 - (k,:A)' T 
ill exp {-~ [1 - (k,:A)'( 1 + a~:JT} 

(11) 

and 

1 (7ra)3 1 
c = 2kxo a A CR' (12) 

where 

(13) 

The solid curves in Figs. 4 and 5 are graphs of the function 

a cR(1 - ;!Y 
(which is proportional to the attenuation per radian) as a function of a/A 
using CR as a parameter. In Fig. 4, we further assume that 



BENDS IN GUIDES 2109 

2.8 

2.4 

f..----f..----

~ ---..... ,...--=--

/ 
V ------.---

2.0 

1.6 
ru 

0 
H 

X 

J(~ // ~-
.... / 

L, -- -

~ 
./ 

- ---1.2 

0.8 

R jV' n3 n3 

1/'/ k-a-~ 

1/ 
0.4 

) 

V o 
o 0.2 

... 
I 
I 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

NORMALIZED WIDTH ~ = 2a en 2_ n 2 )1/2 A A 1 3 
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dashed line is for Efl mode with ndna arbitrary, and for Efl mode with nl ~ na. 

and 

in Fig. 5, 

Ll « 1; 

n l = 1.5. 
n3 

In the same figures each dashed line is a curve of constant conversion 
loss c. Since the calculations are valid for c « 1, we believe the solid 
curves are reliable to the left of the dotted curve c = 0.3 and grow 
progressively in error to the right of it. 

To extend the use of this graph to arbitrarily large values of a/A, we 
calculate the loss per radian, equation (63), when a/A» 1 and c "-' 1. It is 

(14) 

the dotted lines in Figs. 4 and 5 represent this loss. The reader can 
smoothly extend the solid curves to the right of the dashed line, c = 
0.3, so that they become asymptotic to the dotted lines. Thus, the 
whole range of guide width a from 0 to R has been covered. 
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To understand why these curves of constant R become asymptotic 
for aM » 1, we have drawn in Fig. 6a a curved guide with a certain 
R; its width a is very large compared with A. Also the amplitudes of 
the field components Ex and Hv are plotted as functions of x and y. 

Along x the field inside the guide behaves virtually as the Bessel 
function J v [k1 (R + x)] where v is a very large number and outside 
of the guide decays exponentially. This guide has some radiation loss 
per radian. 

Now, suppose that we start shrinking a without changing R. Since 
the field at x = -a is very small, the radiation loss remains constant 
until a is made so short that the field at x = 0 and x= -a are com-
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parable (Fig. 6b). The field inside the guide varies almost sinusoidally, 
while outside decays exponentially and the attenuation per radian 
increases. If a is reduced even further (Fig. 6c) most of the power 
travels outside of the guide, and the loss increases even more. The 
field configuration along y is practically the same in the three cases 
(Fig. 6). 

For resonant loops, such as the filter in Fig. 1, the intrinsic Q re­
sulting from curvature radiation is more interesting than the attenua­
tion l¥c. They are related by the expression 

Q k20 

C = 2a
c

' 
(15) 
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This function is plotted in Fig. 7, assuming 

n 1 = 1 + Ll 
n3 

and 

Ll« 1 

and in Fig 8, assuming 

n 1 = 1 5 . , 
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using as before the normalized guide width a/ A are variable and ffi as 
parameter. As in Figs. 4 and 5, the reader can easily match the solid and 
dotted curves. Further discussion of these curves is reserved for Section 
III. 

The field components in media 2, 3, 4, and 5 decay almost exponen­
tially away from the guiding rod, and the distances YJ'2' YJ4, f3, and ~5 
over which the fields decrease by 1/ e are 

5 
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Fig. 7 - Intrinsic Q for Ell'" and E1l" modes if nl/na = 1 + 6. and 6. « 1. 
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1 1 
'1! = ~I 

1 1 
~3 = /;5 = ~ = (ki - ki - I k; D ~ . (17) 

2.2 E~l Mode 

We now consider the E~l mode. The main components are E'/I and H % ; 

they are qualitatively quite similar to components of the E~l mode, 
rotated 90°. 

The propagation constant kz is still given by equation (2); but now k'/l 

I I I 
k 3 n3 
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Fig. 8 - Intrinsic Q for E l1%IDOde if ndna = 1.5. 
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is the solution of 

k.b = 1r - tan -, ~! [(k.~J ]

-! 
1 . 

(18) 

The equivalent formula of any of those between equation (7) and (17) 
can be derived from that formula by substituting the ratio of refractive 
indexes by unity, but leaving them unchanged wherever they are 
subtracted from unity. For example, equation (11) becomes 

a,R = ~ [1 - (~:rr(k""a)'(~)'[ 1 - (k":A)'T 
Gl exp { -~ [1 - (":A)'( 1 + a~JT} 

(19) 

while c and CR given by equations (12) and (13) remain unchanged. 
Figure 9 is a graph of the function a cR[1 - (n3/nl)2]\ valid for any 

ratio nl/n3 . In particular, for nl/n3 = 1 + A and A « 1, equations (19) 
and (11) become the same, and consequently these curves coincide with 
those in Fig. 4. This means that for n 1 ::: n3 , the E~l and E~l modes have 
the same loss. 

Figure 10 is a graph of the intrinsic Q of a loop operating in the E~l 
mode which can be derived from equations (15) and (19). As before, in a 
resonant loop with n 1/n3 = 1 + A and A« 1, the E~l or E~l modes have 
the same Q's. 

III. DISCUSSION AND EXAMPLES 

The attenuation per radian of any dielectric guide of rectangular 
cross section and the Qc resulting from curvature are strongly de­
pendent on the radius of curvature. With the help of equation (17), 
the attenuation per radian equation (11) can be written 

(20) 

where iVI is independent of R, Az is the guided wavelength along z, and 
~3 is the length over which the field in medium 3 decays by 1/ e. Ac­
cording to Fig. 11, the function 

( 
1 'A;R) 

R exp -67r2 M 



2116 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

becomes negligibly small, and consequently the attenuation per radian 
becomes negligibly small when 

R > 247r2 ~ ~3J:. 
Az 

(21) 

This simple criterion is developed further in Ref. 15. 
Weare interested, though, in a more detailed description of trans­

mission through a bent dielectric guide. Given a guide with a certain 
radius of curvature (that is, given Rand a/A), in general the loss per 
radianofthe E~l mode is much larger than that of the E~l mode (compare, 
for example, Figs. 5 and 9 for n1/n 3 = 1.5). That difference becomes 
negligible if n 1/n3 - 1 « 1. 
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Fig. 9 - Attenuation per radian for Ell1/ mode and nl/n:l > 1. 



BENDS IN GUIDES 2117 

I I I ~ 
k3n~R~ n

3J 
2 

1R=2~ I-(n;-) 
zo 

2 ••••••• ··(R.=80 f-------

II / ./ 

I II / 
v 

(J{ = 200/ I JV 
2 

/ / / 
() 

a 2 I loi / 
/ 1/ / 
/ I 1/80 

••••••••• !R.= 60 

I / / ~ ---
:J I / /' 

V 2 

/ V / 
V60 

I II / / •••••••• ·(R=50 

/ I I / /' 
~~ 

/ / / II /v 

I I v / V 
J 

10 3 / / / / / 
o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

;=2n t ~~_(~~)2JY2 

Fig. 1O-IntrinsicQforEdffiodeandnI/n3 > 1. 

Let us consider separately the three types of guide: thin, medium and 
large. 

3.1 Thin or Low Loss Guides* 

In thin guides the width a is so small that 

* Low loss for straight guide. 
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~ = 2a(n~ ;: n;)! « 1. (22) 

The height b of the guide must be large so that only a little part of 
the power travels in the shaded areas of Fig. 2. Assuming that the 
guiding rod dielectric is lossy, its refractive index is 

n 1 = n( 1 + ~~) , (23) 

where n is real and ex is the attenuation constant of a plane wave in 
that medium. 

Substituting equations (22) and (23) in equations (2), (11), and 
(12), we obtain 

The first term 

for Ex 
11 

(24) 

mode 
(25) 

mode 

is the phase constant. Since most of the power travels in the external 
medium, its value for either mode is close to kn3. The conversion loss 
term c is negligible. 

The imaginary part of equation (24) is the attenuation constant, 
and is made of two terms. The first term 

a 2 2(n2 
a = -nn k a ---

s 2 3 n; 

1 e 

for 

for Ey 

11 

mode 

mode 

~--~~--~~--------~-------------'R 
4Ro 

Fig. 11- Plot of RjRo exp (-R/Ro) and tangent at inflection point. 

(26) 
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is the attenuation that each mode would have if the guide were 
straight.16 The second term 

[

(:')' exp { - ki;~R (:' )'(:; - 1)'[1 - ~ (~:)']} 
. (for E~l mode) (27) 

l 
exp {-k:;~R (~ - 1)'[1 - ~ (~:),J} 

(for E~1 mode) 

is the attenuation resulting from the radiation introduced by the curva­
ture. The E~1 mode is more tightly bound to the guiding rod and conse­
quently has more straight loss and less curvature loss than the E~1 mode. 

From equations (26) and (27), the radius of curvature Ra that doubles 
the straight guide loss is 

12 [ an l![ 1 (k )2J-1 
R, ~ Ie, 2a,n, (~ _ 1) 1 - 2 k: 

. 1 (:,y log [: (~ - 1) J (for 

log [:::. (:; - 1) J (for 

mode). 
(28) 

mode). 

Example 1: Consider a thin ribbon guide made of glass surrounded by 
air and assume that n = 1.5, n3 = 1, a = 0.1 nepers per m, and b = 00. 

From equations (26) and (28) we calculate the values in Table I. 
It is doubly advantageous to use the E~1 mode rather than the E~l 

because (i) the thickness required for equal radiation loss and straight 
guide loss is roughly (n/n3)3 times larger, and (ii) Ra is about (n/n3)3 
times smaller. 

If the height b of the ribbon is finite, ky/kn3 is no longer zero and the 
radii are, according to equation (28), [1 - !(ky /k3)2r1 times longer than 
those in Table 1. 

3.2 Medium Size Guide for Integrated Optical Circuitry 

I t is likely that guides for integrated optical circuitry will be possible to 
fabricate only with n1 ::: n3 . The radiation loss per radian and the Qc of 
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TABLE I-VALUES CALCULATED FROM EQUATIONS (26) AND (28) 

EuY Mode Ellr Mode 

a Rd a Rd 
a. X T };: X (nepers/m) 

0.01 0.05 1.9 X 103 0.17 6.3 X 102 

0.001 0.016 6.2 X 104 0.055 2 X 104 

0.0001 0.005 2 X 106 0.017 6.5 X 105 

loops made with these guides can be obtained from Figs. 4 and 7, con­
sidering abscissas around a/A = 1. For both modes, Erl and E~l , most 
of the power travels within the guiding rod.* 

In general, the losses are very sensitive to the radius of curvature. 
They are also sensitive to the guide's width to the left of the dashed 
curve c = 0.5, but fairly insensitive to the right of it. 

Example 2: Let us design a guide: 

(i) The attenuation per radian resulting from radiation loss is 

cxcR = 0.01 nepers = 0.087 dB. 

(ii) Its width a is the maximum compatible with single mode guid­
ance in the infinitely high slab, that is 

~ = 2: (n~ - n;)! = 1. 

(iii) We assume b = 00 and n3 = n 1 (1 - ~), where ~ « 1 and n 1 = 
1.5. 

From Fig. 4 we derive the guide dimensions for different values 
of 6: 

L 
a R 
- }: A 

0.1 0.745 30 
0.01 2.36 1,060 
0.001 7.45 37,000 

Unless 6 is 0.01 or larger, the radius of curvature R becomes un­
comfortably large for integrated optical circuitry. Furthermore, if b 
is finite, ky is no longer zero, and the radii become [1 - (ky/k3) 2]-1 
times larger than those in the table above. 

* This is not true if b/B2 « 1. Then k.o must be calculated from equation (8). 
4. 
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ExanLple 3: 'Ve design a resonant loop (Fig. 1) such that its Qc re­
sulting from radiation is equal to the Q resulting from transmission 
loss in typical glass (nl = 1.5, a = 0.1 neperjm at A = 1ft); that is, 

Furthermore, let us assume as in Example 2 that a/AI, na 
n 1 (1 - A), and b = 00. With the help of Fig. 7 we derive 

a 
A 

R 
A 

0.1 0.745 57 
0.01 2.36 1,550 
0.001 7.45 42,000 

Again, unless 6. is larger than 0.01, the radius of curvature becomes 
unwieldily large for integrated optical circuitry. 

Instead of using a loop as the resonant circuit of Fig. 1, it is pos­
sible to make a = R, and the loop becomes a pillbox (Fig. 12). Thi~ 
structure may be simpler to fabricate. For this case, also from Fig. 4, 
using the refractive indices of the previous example, we obtain 

6. 
R 
A 

0.1 42 
0.01 1,170 
0.001 32,000 

The pillbox resonator requires a 30 percent shorter radius than the ring 
resonator. As before, if b is finite, the radii are [1 - (ky,/k a) 2]-1 times 
longer than those in the last two tables. 

Fig. 12 - Channel dropping filter (pillbox type). 
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3.3 Large Guides for Fiber Optics 
The large guide is multimode, a/A » 1, and the radius for small 

mode conversion is derived from equations (11) and (12), making 
k:coa = 7r and kzo ,= 27r'nl:/A. Then 

3 
2 a 

C = 7rn1 >--2R· 

For a power conversion c2 = 0.01, and nl = 1.5, we have 

a 
~ 

5 
10 

R 
>: 

8,900 
71,000 

The conversion loss is many orders of magnitude larger than the loss 
radiated by the fundamental mode because of the curvature. Radia­
tion loss of higher order modes can be found in equations (51) and 
(63) . 

In general, clad fibers are of circular cross section; consequently 
our calculations do not strictly apply. Nevertheless, a guide of circular 
cross section and another of equal area but square cross section must 
have quite comparable attenuation per radian unless mode degen­
eracy occurs, but this is quite unlikely. 

Though we have been talking throughout of light guides, it is 
obvious that all the calculations are equally applicable to microwave 
guides. 

IV. CON CL USIONS 

Relations between radiation losses resulting from curvature, geom­
etry, and electric characteristics of the bent dielectric guide are sum­
marized in Figs. 4, 5, and 7 through 10 and they are discussed and 
exemplified in Section III. 

The main qualitative results are that for a given radius of curva­
ture R, the radiation loss can be reduced 

(i) by increasing the difference between the refractive index nl of 
the guide and those of the media toward the outside, n3, and inside, 
n5, of the curved guide axis (Fig. 2) ; 

(ii) by increasing the guide width a. Nevertheless, once a is bigger 
than 
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(where A is the free space wavelength), there is little reduction of the 
loss; 

(iii) by choosing the height of the guide large enough to confine 
the fields as much as possible within the guide in the direction normal 
to the plane of curvature. 

In general, the radiation losses are small if 

where ~3 is the length over which the field decays by 1/ e in medium 3 
(Fig. 2). 

Thin ribbons of glass, surrounded by air and oriented as in Fig. 6c, 
operate better with the electric field perpendicular to the ribbon's 
plane. Choosing the thickness a = 0.0551.., the attenuation of the 
straight guide is 1 percent of the attenuation in glass, and the radius 
of curvature which doubles that low attenuation is 20,0001... 

The dielectric guide for integrated optical circuitry seems suitable to 
negotiate bends and to make resonant loops of small radii of curvature 
and small radiation losses. For example, for 

( n~)! 
2nl 1 - n~ 

a= (single mode guide) 

a 1 percent attenuation (0.087 dB) resulting from radiation in a length 
of guide equal to R is achieved with the following values 

1 - ~ a R -
nl A A 

0.1 0.745 30 
0.01 2.36 1060 
0.001 7.45 37000 

The smaller nl - n3, the larger the radius of curvature. For A = 0.63!-,-, 
if one wants to keep R below 1 mm, the difference between the internal 
and external refractive indices must be larger than 0.01. 

Large cross section dielectric guides capable of supporting many 
modes are far more sensitive to mode conversions than to radiation 
losses. For the fundamental mode, the power conversion loss at the 
junction between a straight and a curved section of a multimode 
guide is 
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2 (2 a
3)2 

C = 7l"n1 'A.2R . 

For nl = 1.5, a = 6.3,u, and A = 0.63,u, the radius of curvature R that 
produces a power conversion c2 of 0.01 is 45 mm. The radiation loss in 
a length of guide equal to R is many orders of magnitude below 0.01. 

APPENDIX 

Field Analysis of the Curved Guide 

Figure 2 shows the geometry and dielectric distribution of the curved 
guide. In this appendix two families of modes are found, E;a and E:a; 
each is studied separately. 

A.1 E;a Modes: Polarization Along x 

The field components in each region should be written as integral 
expressions, but, as discussed in Section II, the power propagating 
through the shaded areas is neglected, and the field matching is per­
formed only along the sides of region 1. Consequently, those field 
components do not need to be so general. As a matter of fact, the 
simplest field components in the mth of the five areas are16 

H 1 a2
Hym 

xrn = k! - k~m ax ay 

H - -ivfl+iwt yrn - e 

1I11J .[(k~ - k~l)!(R + x) + ¥t1] cos (ky1Y + Q1) 

1I1!Jv [(k~ - k~d !(R + x) + ¥t!J exp (:riky!y J 
1I13H~2)[(k; - k~3)!(R + x)] cos (k y3Y + Q3) 

1l15JV[(k; - k~5)!(R + x)] cos (ky1Y + Q5) 

H i v aHym 
zm = k2 _ k2 R + -a-' 

m yrn X Y 

for m= 1 

for 
2 

m = 4 

for m = 3 

for m = 5 

(29) 
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in which M m is the amplitude of the field in the mth medium; 1/Im and Qm 

are constants that locate the field maxima in region m; w is the angular 
frequency; E:n~ and IL, the permittivity and permeability of each medium, 
are related by k~ = k2n~ = w2 E:ILn~ ; kym is the propagation constant 
along y in medium m; and J v and H~2) are Bessel and Hankel functions, 
respectively. 

Strictly speaking, the Hy component in media 1, 2, and 4 should 
be written as a sum of Bessel functions of the first and second kind, 
but later on they are approximated by circular functions; therefore, 
we do not make any mistake using only the Bessel function of the 
first kind with an arbitrary phase constant in the argument. 

We consider only guide geometries for which the guide wavelengths 
measured in the x and y directions in medium 1 are large compared 
with the wavelength measured in the z direction. This means that (i) 

aHlIm « !:.. 
ax R' 

(30) 

and, as a consequence, the field component Hz! is very small com­
pared with Hz and is neglected; (ii) the propagating modes are bas­
ically of the TEM type. 

In order to match the remaining components along the boundaries 
of medium 1, the field components in media 1, 2, and 4 must have the 
same dependence along x, while the field components in media 1, 3, 
and 5 must have the same dependence along y. Therefore 

kYl = kY3 = kY5 = klJ , 

ki - k; = k; - k;2 = k! - k;4 , 

(31) 

(32) 

1/11 = 1/12 = 1/14 = 1/1, and Ql = Q3 = Q5 = Q. (33) 

Furthermore, the field matching yields the following four equations 
from which two characteristic equations will be derived 

where 

P13 = R(k~ - k~)~ + 1/1, 

P3 = R(k~ - k~)!, and 

P15 = (R - a)(k: - k:)~ + 1/1} 
. Ps = (R - a)(ks - ky)2. 

(34) 

(36) 
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Similar to what happens with the straight guide, equations (34) 
and (35) are the boundary conditions of two independent problems 
far simpler than the one depicted in Fig. 2. Thus, for a dielectric slab 
infinite in the x and z directions and with dimensions and refractive 
indices as depicted in Fig. 13a, the boundary conditions for modes 
with no Ey component coincide with equation (34). Similarly, for a 
bent slab infinite in the y direction as shown in Fig. 13b, the boundary 
conditions for modes with a negligible H x component coincide with 
equation (35). 

The elimination of (2 between the two expressions of equation (34) 
yields the characteristic equation for the plane slab10 

(37) 

in which 

(38) 

the tan-1 functions are to be taken in the first quadrant, and the 
arbitrary integer q is the order of the mode, that is, the number of 
extrema of each field component within the guiding rod in the y 

direction. 
The transcendental equation (37) has an approximate closed form 

solution already found in Ref. 10 

J, ~ q7r (1 + A2 + A4 + ... )-1 
C

y 
- b 7rb' (39) 

L ___ ~ __ 
~------ R-

(a) (b) 

Fig. 13 - Guiding dielectric slabs. 
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which is valid only when b is so large that 

(40) 

and consequently the parenthesis is close to unity. 
The field components in media 2 and 4 decay exponentially by 1/ e 

in lengths 1J2 and 1)4, which are deduced from equation (32) to be 

1 1 

1J~ = I ky~ I = (k~ - k! - k~ Y (41) 

Let us consider the solution of the characteristic equation of the bent 
slab (Fig. 13b). For guided modes, both the arguments and the order 
of the Bessel and Hankel functions involved in equation (35) are large 
compared with unity, and consequently they can be replaced by their 
\Vatson's first term approximations,17 

il [(v2 
- /)1J 

2 t 2 exp -~-2-

.T,(p) ~ [,,(p~ J [' 2 2)a J . (p - V 2 7r 

lsm ~-2- + 4 

I
, [(/ -/)~J 

9 ! exp --3--2 -

Y,(p) ~ - [;C;;' =- if J [(p' ~ l)! "J 
cos ----av-2 - + 4 

These expressions are valid if 

2 
v 

-( -2 -2)~ « 1. p - V 2 

for v > p 

for p > v 
(42) 

for v > p 

for p > v. 
) 

(43) 

Introducing these approximations for the Bessel functions in both 
equations (35) and eliminating tf! between them, we obtain the char­
acteristic equation for the bent slab 

-1 (n; [P~3 - v
2 J!{ . [2 (/ - pD~J}) = p7r - tan ;,~ ~2 _ pr 1 + ~ exp - 3" --v-2--

2 ( 2 2)1 
t 

-1 n5 P15 - V 2 - an -2 -2--2- , 
n 1 v - P5 

(44) 
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in which p is an arbitrary integer bigger than zero which determines 
the order of the mode in the x direction, and the tan-1 functions are 
to be taken in the first quadrant. 

Let us rewrite this equation substituting P3, P5, PI3, and PI5 by the 
values given in equation (36) ; furthermore, let 

A (45) Aa = 2( 2 2)1. , 
5 n] - na • 

5 

V = kzR (46) 

and 

kz = (k~ - k~ - k;)t. (47) 

Because of these two last definitions, kz, kaJ' and k y are the axial and 
the transverse propagation constants at x = o. The characteristic equa­
tion (44) then becomes 

(48) 

To solve this equation for kaJ we expand the left side and the second 
tan-1 in powers of 1rjR and the first tan-1 in powers of the exponential. 
Assuming R is large and keeping the first term of each perturbation 
calculation, the solution of equation (48) is 

k 1 (1 + 2c . kzoac) 
x = ICxO k - ~ k~ , 

a xO xO 

(49) 

where 

(50) 
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and 

2 exp {-~ [1 - (kxoA3)2(1 + ~)2J~} 
ac = k;o [1 _ (~x~G) Jp __ 3 . 7r akxo 

kzo 7r 3 1 + F3 + F5 ' 

in which 

1 -

kzo = (ki - k~ - k;o)t, 

and k,ro is the solution of the equation 

(51) 

1 
(52) 

(53) 

(54) 

-1 n; 1 

1 J - tan n: [(k,:AJ - 1 T 
(55) 

This is the physical interpretation of equation (49): the trans­
verse propagation constant ka; measured at x = 0 is made of three 
terms. The first term, kxo , is the transverse propagation constant of 
the guide without curvature; the second and third terms are perturba­
tions related to the change of field profile and radiation introduced by 
the curvature. It is easy to find that c2 is the mode conversion loss that 
would exist at a junction between a straight guide and a curved one, 
and £Xc is the attenuation coefficient of the curved guide. 

The field components in media 3 and 5 decay almost exponentially 
away from the guide. The length ~3, over which the intensity in medium 
3 decays by lie, is derived as in equation (41) to be 

1 1 
b = Tk:l = (ki - k·~: ------,-'-k; i)! (56) 

and only approximately 

1 1 
~5 = Tk:l = (ki - k; - 'k; I) t . (57) 
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All these equations have been derived under the assumption that 
inequality (43) is satisfied; this means that the field configuration of 
the curved guide is very close to that of the straight guide. In other 
words, c « 1. For a given R, if one chooses the width a of the guide 
large enough, these inequalities are not satisfied, the previous results 
are no longer applicable, and a new solution is needed. We proceed 
to find it. 

Let us assume as a limiting case that in Fig. 2 

a = R. (58) 

The characteristic equation derived from the first equation of (35), 
making tf; = 0, is 

(P~3 - V2)~ (_ 1..) _ t -1 n; (pi3 - V2)1 
-3,,-2 - = P 4 7r an 2 2 2 

y n 1 y - P3 

{ . [2 (l - pi) !J} . 1 + '/, exp - 3 y2 • (59) 

Following similar steps to those taken to solve equation (44), we 
substitute P13, P3, and v by the values given in equations (36) and 
(46) ; we obtain 

R(k~)3 
3(k:)2" = (p - 1)7r 

. {2 7r
3

R [ (k~A3)2Ji} 
-1 n~ 1 + '/, exp -3 "Ck:7A! 1 - -;-

- tan ;,~. [(-;-)2 _ I]! 
kx A 3 

(60) 

The primes distinguish the symbols from those used previously. 
To solve this equation we notice that for small losses it must be that 

k~A3 « 1. (61) 
7r 

Therefore, the tan-1 can be replaced by its argument and the approxi­
mate solution of equation (60) is 

k' k' [1 . k~oacJ 
".r = xO - '/, (k~0)2 , (62) 

where 
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(63) 

k~o = [k~ - k~ - (k~O)2J!, (64) 

k;o = ;, [G1r(Pill;=-!) T{ 1 - ~ ~~ [1r'(P ~ t)'ill' T} , (65) 

and 

, 27r
3
R ( 2 2)1 k

3
R 

CIl = (k~O)2 Ai = 2 nl - n3 2 (k~O)2· (66) 

The field components outside the guide decay to 1/ e in a length 

,1 1 
~3 = Tk:l = [k~ - k; - (k~O)2j1· (67) 

A.2 E;fJ. 1I1odes: Polarization Along y 

The field components and propagation constants can be derived from 
those in Section A.l by changing E into H, J.L into - €, and vice versa. 
Except for their polarizations, the E:fJ. and E~fJ. modes are very similar. 

The formulas equivalent to equations (37) and (41) are 

2 1 2 1 

k~'b = q7r - tan-
l ;~ [(_7r_)2 _ J! - tan-

1 ;~ [(~_)2 
A 2k~' 1 A 4k~' 

" 1 
1]! = I k~~ I 

1 

The double prime distinguish these symbols from those used before. 

(68) 

(69) 

The equivalent formula to any of those between equation (45) and 
(67) can be derived from that formula by substituting the ratio of 
refractive indexes by unity, but leaving the differences between squares 
of indexes unchanged. For example, the formula equivalent to equation 
(52) for E;fJ. modes is 

FI! 
3 

As 
5 

I~ [k~~A~12]! 
7ra 1 - -- 1 -

L 7r 

1 
(70) 
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A Circular-Harmonic Computer Analysis of 
Rectangular Dielectric Waveguides 

By J. E. GOELL 

(Manuscript received April 8, 1969) 

This paper describes a computer analysis oj the propagating modes 
oj a rectangular dielectric waveguide. The analysis is based on an expansion 
oj the electromagnetic field in terms oj a series oj circular harmonics, that is, 
Bessel and modified Bessel junctions multiplied by trigonometric functions. 
The electric and magnetic fields inside the waveguide core are matched to 
those outside the core at appropriate points on the boundary to yield equa­
tions which are then solved on a computer for the propagation constants and 
field configurations oj the various modes. 

The paper presents the results of the computations in the form of curves oj 
the propagation constants and as computer generated mode patterns. The 
propagation curves are presented in a form which makes them refractive­
index independent as long as the difference of the index of the core and the 
surrounding medium is small, the case which applies to integrated optics. 
In addition to those for small index difference, it also gives results for 
larger index differences such as might be encountered for microwave appli­
cations. 

1. INTRODUCTION 

It is anticipated that dielectric waveguides will be used as the 
fundamental building blocks of integrated optical circuits. These wave­
guides can serve not only as a transmission medium to confine and 
direct optical signals, but also as the basis for circuits such as filters 
and directional couplers.1 Thus, it is important to have a thorough 
knowledge of the properties of their modes. 

Circular dielectric waveguides have received considerable attention 
because circular geometry is commonly used in fiber optics.2- 5 In many 
integrated optics applications it is expected that waveguides will con­
sist of a rectangular, or near rectangular, dielectric core embedded in 
a dielectric medium of slightly lower refractive index. The modes 

2133 
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for this geometry are more difficult to analyze than those of the me­
tallic rectangular waveguide because of the nature of the boundary. 

Marcatili, using approximations based on the assumption that most 
of the power flow is confined to the waveguide core, has derived in 
closed form the properties of a rectangular dielectric waveguide.6 In 
his solution, fields with sinusoidal variation in the core are matched 
to exponentially decaying fields in the external medium. In each 
region only a single mode is used. The results of this method are 
obtained in a relatively simple form for numerical evaluation. 

The properties of the principal mode of the rectangular dielectric 
waveguide have been studied by Schlosser and Unger using a high­
speed digital computer.7 In their approach the transverse plane was 
divided into regions, as shown in Fig. 1, and rectangular coordinate 
solutions assumed in each of the regions. The longitudinal propagation 
constant was then adjusted so that a field match could be achieved 
at discrete points along the boundary. This method gives results 
which, theoretically, are valid over a wider range than Marcatili's, 
but with a significant increase in computational difficulty. One short­
coming of the method is that for a given mode, as the wavelength 
increases the field extent increases, so, in the limit it becomes increas­
ingly difficult to match the fields along the boundaries between regions 
[1] and [2] and between regions [2] and [3]. 

A variational approach has been undertaken by Shaw and others.8 
They assume a test solution with two or three variable parameters 
in the core. From this test solution, the fields outside the core are 
then derived and the parameters are varied to achieve a consistent 

REGION [IJ 

---------,.-----~------

REGION [2AJ REGION [28J REGION [2c] 

____ . _____ L-__ ----.J __________ _ 

REGION [3J 

Fig. 1 - Matching boundaries for rectangular mode analysis. 
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solution. This approach, like that of Schlosser, requires involved com­
putations. Also, it has the disadvantage that the test function must 
be assumed in advance. In addition, some of his preliminary results 
do not show the proper behavior for the limiting cases (waveguide 
dimensions which are very large or very small compared with the 
wavelength) . 

In the present analysis the radial variation of the longitudinal 
electric and magnetic fields of the modes are represented by a sum 
of Bessel functions inside the waveguide core and by a sum of modi­
fied Bessel functions outside the waveguide core. Solutions are found 
by matching the fields along the perimeter of the core. Thus, the 
matching boundary is not a function of the waveguide parameters, 
so the computational complexity does not increase with wavelength. 

Section II discusses the underlying theory of the circular-harmonic 
analysis of rectangular dielectric waveguides. This is followed by a 
description of computational techniques and special graphical methods 
of presentation used. Section III is divided into three parts, the first 
describing the accuracy of the computations, the second describing 
field patterns, and the third presenting propagation curves. 

II. DERIVATION OF EQUATIONS 

The waveguide considered here consists of a rectangular core of 
dielectric constant, €1, surrounded by an infinite medium of dielectric 
constant, fO. Both media are assumed to be isotropic, and have the 
permeability of free space, fLo. Figure 2 shows the coordinate systems 
(rectangular and cylindrical) and rod dimension used in this paper. 
The direction of propagation is in the + z direction (towards the 
observer) . 

In cylindrical coordinates the field solutions of Maxwell's equations 
take the form of Bessel functions and modified Bessel functions mul­
tiplied by trigometric functions, and their derivatives. In order for 
propagation to take place in the z direction, the field solutions must 
be Bessel functions in the core and modified Bessel functions outside. 
Since Bessel functions of the second kind have a pole at the origin 
and modified Bessel functions of the first kind a pole at infinity, the 
radial variation of the fields is assumed to he a sum of Bessel func­
tions of the first kind and their derivatives inside the core and a sum 
of modified Bessel functions and their derivatives outside the core. 

In cylindrical coordinates, the z components of the electric and 
magnetic fields are given by 
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00 

E z1 = 2: anJ n(hr) sin (nO + 'Pn) exp [i(k.z - wt)] (la) 
n-O 

and 

00 

Hz! = 2: bnJn(hr) sin (nO + Vtn) exp [i(k.z - wt)] (lb) 
n~O 

inside the core, and by 

00 

Ezo = 2: cnI{n(pr) sin (nO + 'Pn) exp [i(k.z - wt)] (lc) 
n=O 

and 

00 

Hzo = 2: dnKn(pr) sin (nO + Vtn) exp [i(kzz - wt)] (ld) 
n=O 

outside the core, where w is the radian frequency and kz the longitudinal 
propagation constant. The transverse propagation constants are given 
by 

(2a) 

and 

(2b) 

where k1 = W(,uoEl)! and ko = W(,uoEo)!. The terms I n and Kn are the nth 
order Bessel functions and modified Bessel functions, respectively, and 
Vtn and 'Pn are arbitrary phase angles. 

The transverse components of the fields are given by9 

/ ---;r 
//1t I 

€t ,..../ \ I 

// r () ()c I 
.....: b 

:x! I 
I 
I 
I 

~--------+---------~~ 

L------- a --------J 
Fig. 2 - Dimensions and coordinate system. 

(3a) 
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(3b) 

(3 c) 

Ho = ~2 [(~) aEz + .! aHz] , 
k - k z J.l.owk z ar r a B 

(3d) 

where k can be either kl or k o• 
Finally, the component o'f the electric field tangent to the rectang­

ular core is given by 

E (E ' E ) -Be < B < Be 
1 t = ± r sm B + 1 0 COS B (4a) 

7r - Be < B < 7r + ()e 

or 

±( -Er cos B + Eo sin B), Be < B < 7r - Be (4b) 

7r + Be < B < - ()e 

where (}e is the angle which a radial line to the corner in the first 
quadrant makes with the x axis. Similar expressions exist for the 
tangential magnetic field. 

2.1 Effects of Symmetry 

Since the waveguide is symmetrical about the x axis the fields 
must be either symmetric or antisymmetric about this axis. This is 
true because the structure is invarient under 1800 rotations and there­
fore the field patterns must be invarient under a 180 0 rotation, except 
for sign. From this and the fact that a/a() appears in each of equations 
(3), it is evident that two types of modes must exist, the first type 
with ipn = 0 and tfn = 7T'/2 and the second type with 'Pn = 7T'j2 and 
tfn = 7r. 

Similarly, the field functions must also be symmetric or anti­
symmetric about the y axis. Suppose, for example, Ezo exhibits a sinu­
soidal angular dependence about () = (E zo is odd about the x axis). 
Then, letting a = () - -n-:/2, equation (Ic) can be put in the form 

CIO 

Ezo = I: cnKn(pr) (sin na cos n7r/2 + cos na sin n7r/2). (5) 
n-O 

For Ezo to be purely symmetric about a = 0 (the y axis), all n must 
be odd; for E zO to be antisymmetric about a = 0 all n must be even. 
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Since similar results apply for cosinusoidal variation of EZ'o about 
() = 0, and all other field functions as well, any given mode must 
consist of either even harmonics or odd harmonics. 

From the preceeding analysis it is evident that if the matching 
points are selected symmetrically about both the x and y axes, then, 
except possibly for sign, every point will have an equivalent point 
in each quadrant. Therefore, the field matching need only be per­
formed in one quadrant. Thus, the use of the symmetry of the struc­
ture not only reduces the number of constants required to calculate 
the properties of a given mode by a factor of four, it also decreases 
the number of points to achieve a given degree of accuracy by the 
same factor. 

2.2 Selection of Matching Points 

As mentioned in Section 2.1, the matching point locations should be 
symmetrical about the x and y axes. For the odd harmonic cases, the 
points used to compute the results to be presented in Section III were 
Om = (m - 1/2)7r/2N; m = 1, ... , N, where N was the number of 
space harmonics. 

The choice of points for the even harmonic cases was more complicated 
since simultaneous existence of an n = 0 harmonic for both the TE and 
TM circular modes is inconsistent with the waveguide symmetries. 
Thus, if the maximum n for both the TE and T1VI solutions are equal, 
the total number of coefficients to be found will be 4N - 2 rather than 
4N as in the previous case. 

The method of choosing points for the even harmonic modes used for 
the computation of the results of Section III was to pick the points 
for the field components with even symmetry about 0 = 0 to be Om = 

(m - 1/2)7r/2N; m = 1, 2, ... , N, and for the field components with 
odd symmetry about 0 = 0 to be Om = (m - N - 1/2)7r/2(N - 1); 
m = N + 1, N + 2, ... , (2N - 1) for cases with unity aspect ratio, 
(a/b = 1). For aspect ratios other than unity, all points were chosen 
according to the first formula, except that the first and last points for 
the odd z component were omitted. 

2.3 Formulation of 111 atrix Elements 

The coefficients of equation (1) were found by matching the tan­
gential electric and magnetic fields along the boundary of the wave­
guide core. Since each type of field consists of both longitudinal and 
transverse components, four types of matching equations exist. 

To facilitate computer analysis the matching equations were put in 
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matrix form. The matching equations in matrix form for the longi­
tudinal field components are 

(6a) 

for the electric field and 

(6b) 

for the magnetic field. For the transverse fields the matrix matching 
equations are given by 

ETAA + ETBB = ETCC + ETDD 

for the electric field and 

HTA A + HTB B = HTCC + HTDD 

(6c) 

(6d) 

for the magnetic field. The A, B, C, and D matrices are N element 
column matrices of the an, bn, en, and dn mode coefficients, respectively. 
The elements of the m X n matrices E LA , E LC, H LB , H LD, ETA, E TB , 
ETC, E TD , H TA , H TB , H TC , and HTD are given by 

e~~ = JS, (7a) 

e~; = I(S, (7b) 

h~~ = JC, (7 c) 

h~~ = I(C, (7d) 

e~~ = -kz(J'SR + JCT) , (7 e) 

e~~ = koZo(JSR + J'CT) , (7f) 

e~; = kz(K'SR + KCT) , (7g) 

e~~ = -koZo(KSR + K'CT) , (7h) 

h~: = Erko(JCR - J'ST)/Zo , (7i) 

hTB = 
mn -kz(J'CR - JST) , (7j) 

hTC = mn -ko(KCR - K'ST)/Zo , (7k) 

h~~ = kz(K'CR - KST) , (71) 

where 

Zo = (110/ Eo)!, 

Er = E1/<::0 , 



2140 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

s = sin (n 8 m + cp) I cp = 0 
( or , 

C = cos (n8m + cp) cp = n/2 

and 

R = sin 8m 

.I = .In(hrm) , 

.I' = .I~(hrm)' 

J - n.In(hrm) 
- h2rm ' 

J' = .I~(hrm) 
h ' 

l 
T = cos Om r 
r m = (a/2) cos 8m 

K = Kn(prm) ' 

K' = K~(prm)' 

K = nK"2(pr m) , 
p rm 

K' = IC(prm ) 

p , 

R = -cos 8m l 
T = sin 8m f 
r m = (b/2) sin 8m 

8 > 8e • 

For 8 = 8e ,the boundary at the corner was assumed to be perpendicular 
to the radial line connecting it to the origin, so for this case R = cos (8m 

+ n-j4), T = cos (8m - 7r/4) , and rm = (a2 + b2 )t/4. 

2.4 M ode Designation 
Unlike metallic waveguides, the field patterns of dielectric wave­

guides are sensitive to refractive index difference, wavelength, and 
aspect ratio. This complicates the problem of finding a reasonably 
descriptive mode designation scheme. 

For rectangular metallic waveguides, the accepted approach is to 
designate the modes as TE (or H) and TM (or E), and to specify 
the number of field maxima in the x and y directions with a double 
subscript. When there is no variation the subscript 0 is used. 

Since the rectangular dielectric waveguide modes are neither pure 
TE nor pure TM, a different scheme must be used. The scheme adopted 
is based on the fact that in the limit, for large aspect ratio, short wave­
length, and small refractive index difference, the transverse electric 
field is primarily parallel to one of the transverse axes. Modes are 
designated as E~n if in the limit their electric field is parallel to the y 

axis and as E':nn if in the limit their electric field is parallel to the x axis. 
The m and n subscript are used to designate the number of maxima 
in the x and y directions, respectively.t 

t This scheme agrees with that used by Marcatili in Ref. 6. 
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2.5 Electric and Magnetic Field Function Differences 

For a hollow metallic waveguide where pure TE and TM modes 
can exist, it is evident from equation (3) that Er and Ho have similar 
transverse variations as do Eo and H r , so that the impedance is in­
dependent of position. Furthermore, the transverse electric and m.ag­
netic fields are perpendicular and the power flow, Re {E X Hif}, does 
not change sign anywhere across the waveguide. 

By examination of equation (3), it is clear that for the mixed modes 
of the dielectric waveguide, the field functions are not similar and the 
impedance is a function of position. In order for the transverse fields 
E t and H t to be perpendicular, 

E t ·Ht = ErHr + EoHo 

Now, from equation (3) 

o. (8) 

(9) 

Thus, E t and H t are not necessarily perpendicular. Finally, since the 
transverse variations of E t and H t are not the same, the electric field 
and magnetic field can change sign at different points, which results in 
negative power flow.t 

Three special cases exist where the electric and magnetic fields, and 
the impedance, have the same positional dependence, and where the 
power flow does not change sign across the waveguide: 

(i) in one of the regions if the propagation constant is approximately 
equal to the bulk propagation constant of that region, that is, if k ~ kl 
or k ~ ko, 

(ii) everywhere in the limit for small refractive index difference, 
since case i will then hold in both regions, and 

(iii) everywhere for circular symmetry of both the structure and the 
modes. 

2. 6 Normalization 

The arguments of the Bessel and modified Bessel functions are given 
by hr = (ki - k~)!r and pr = (k~ - k~)!r, respectively. The first argu­
ment can be put in the form 

(10) 

t This unusual property has also been observed for helices.10 Presumably, if 
loss were included there would be a radial component of power to feed the re­
verse flow, and the lossless case can be thought of as the limit of the lossy case. 
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Letting 

(11) 

and 
(12) 

where 
(13) 

is the index of refraction of the core relative to the outer medium, gives 

pl' = (pm (14) 

and 
hr = m(1 - (p2)!. (15) 

The curves of the propagation constant given m Section III are 
drawn in terms of (92 and CB, where 

(16) 

and Ao = 2'lC/ko • Since m is proportional to 1/(n~ l)t and (p and CB 
are proportional to (n~ - 1)\ the use of (p2 and CB as plotting variables 
eliminates the explicit dependence of the Bessel and modified Bessel 
function arguments on the refractive indices of the media. 

Examination of the matching equations, equations (6), reveals that 
Er appears in the HTA term. However, since Er appears as a multiplicative 
factor in HT A, for sufficiently small values the normalized propagation 
constant, (p2, is independent of Er • 

The normalized propagation constant, (p2, has two additional prop­
erties which make its use convenient. First, its range of variation is on 
the interval (0, 1). Second, for nr ~ 1, 

(p2 r-..; kjko - 1 
r-..; tlnr ' 

(17) 

where tlnr = nr - 1; so for small nr , (p2 is proportional to kz - ko . The 
latter property is the reason that (p2 rather than (p was used as a plotting 
variable. 

2.7 Method of Computation 

2.7.1 Propagation Constant 

Equation (6) yields 4N simultaneous homogeneous linear equations 
for the an, bn, en, and dn for the odd modes and 4N-2 equations for 
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the even modes, using the matching points previously described. The 
equations can be combined to form a single matrix equation 

[Q][T] = 0, (18) 

where 

ELA 0 _ELC 0 

Q= 
0 HLB 0 _HLD 

ETA ETB _ETC _ETD 

HTA HTB _HTC _HTD 

and the column matrix 

A 

[T] 
B 

c 
D 

All of the quantities in the matrices [Q] and [T] are themselves ma­
trices as defined by equations (1), (6), and (7). 

In order for a nontrivial solution to equation (18) to exist 

Det [Q] = o. (19) 

The normalized propagation constant, (p2, was found by substituting 
test values into equation (19). First, values of (p2 evenly distributed in 
the interval (0, 1) were substituted to crudely locate the roots. Then, 
N ewton's method was used to find the roots to the desired accuracy.ll 
Generally, one Newton approximation was used to find (p2 for the prop­
agation curves and about ten Newton's approximations when (p2 was 
to be used to calculate field plots. 

Both the simple method of triangulation 12 and the more complicated 
Gauss pivotal condensation method13 were used to evaluate the deter­
minant, the former for almost all cases and the latter for a few cases 
when roundoff error was apparent because the value of the determinant 
was not a smooth function of (p2. In all cases double precision arithmetic 
was used. For five space harmonics, about 0.1 second of IBl\1 360/65 
computing time was required for each value of (p2 to evaluate the deter­
minant using the triangulation method. 

Due to the wide dynamic range of the coefficients, steps had to be 
taken to prevent underflow and overflow of the computer _ a~d to re-
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duce the effects of roundoff. Multiplying a row or column of the ma­
trix by a finite constant is equivalent to mUltiplying the determinant 
by that constant. Thus, any row or column of the determinant can be 
multiplied by a positive function without shifting its zeroes. 

A detailed theory giving the "best functions" can be derived. How­
ever, since a "brute force" method was used, the more sophisticated 
method, which was not used because it would have required a substan­
tial increase in the complexity of the program logic, is not discussed. 
It was found that multiplying the Bessel function terms by h2d/IJn (hb) I 
and the modified Bessel function terms by p 2d/kn (pb), where d is 
the average of the waveguide dimensions, kept the variation of the 
terms "under control." A further simplification was made by setting 
Zo to unity, which does not shift the zeroes of the determinant be­
cause if the H t rows are multiplied by Zo, then if Zo appears in a 
column, it will appear in a similar manner in every element of the 
column. 

2.7.2 Mode C onjigurations 
The electric and magnetic fields were calculated for representative 

cases from equation (3). To find the an, bn, en, and dn coefficients, 
kz was first found from equation (19). Its value was then substituted 
into equation (18). By setting one of the elements of the T column 
matrix to unity, all of the other elements were then found by standard 
matrix techniques.13 

Several approaches were used to obtain information that could 
be used to derive the field patterns. These included computation of 
the field components along radial cuts of the waveguide cross section, 
computer generated isoclines giving the direction of the electric field, 
and computer generated mode pictures. 

The isoclines and pictures were drawn using a simulated Stromberg 
Carlson 8C-4020 cathode ray tube plotter, which is capable of gen­
erating points and lines on a 1024 X 1024 grid.t A single quadrant 
was used for the isoclines and intensity picture since the results for 
all quadrants are identical except for orientation. In general, the di­
mensions were scaled so that the long dimension of the rectangular 
waveguide core extended over 80 percent of the displayed width. All 
figures were plotted at the points (20m, 20n) , where m and n take on 
a.ll integer values from 0 to 49. 

Isocline drawings were made by drawing a line at each of the co­
ordinate points parallel to the electric field at that point (all lines 

t An SC-4060 plotter was used to simulate the 8C-4020 plotter to take advan­
tage of previously existing programs. 
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had the same length). The isocline drawings were used as working 
tools to derive the field line drawings in Section III. 

In order to draw pictures of mode patterns, the power density was 
calculated at each of the points to be plotted. The square root of the 
power density was then normalized to the square root of the peak 
power density and quantized into 21 levels. About each point in the 
picture, a portion of the figure shown in Fig. 3 was then plotted, 
starting at 1 and going to the point corresponding to the appropriate 
quantized level (except at the points where the quantized power 
was zero where no plotting was done). Since the size of the cathode 
ray tube spot is approximately equal to the line spacing in the figure, 
the plotted figures are filled in. Therefore, the light passed by these 
figures is approximately equal to the power density to be represented. 
For small index difference, since the power density is proportional to 
the square of the transverse electric field, the dynamic range of the 
pictures (in terms of the electric field) is 400. 

Starting with the single quadrant pictures, complete pictures were 
generated by making quadruple exposures of the microfilm. In general, 
about 30 to 60 seconds of IBM 360/65 computing time were required 
for each picture. 

III. RESULTS OF COMPUTATION 

This section gives the computed results. Section 3.1 discusses ac­
curacy. This is followed by a discussion of field plots and mode 

19 l 

17 l 

15 I 

13 I 

11 L 

9 I 

7 I 

5 I 

ill '-- - '-- - - - -

3 

1 2 4 6 8 10 12 14 16 18 20 

Fig. 3 - Intensity picture figure. 
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TABLE I -SAMPLE ACCURACY RESULTS 

Number of 
(5)2 

Harmonics Used ------- --~- .. ----- --------
alb =1 alb=2 alb=3 alb =4 

3 0.714 O.S11 0.S20 0.S2S 
4 0.713 O.S11 0.S20 0.S19 
5 0.715 O.SOS 0.S19 0.S13 
6 0.714 O.SOS 0.S22 0.S20 
7 0.715 O.SOS 0.S20 0.S13 
8 0.715 0.S07 0.820 0.S14 
9 0.715 0.S07 0.S23 0.815 

Variation 0.2% 0.4% 0.4% 1.5% 

pictures in Section 3.2. Finally, curves of the propagation constant for 
a variety of conditions are presented in Section 3.3. 

3.1 Accuracy 

Numerous test runs were made in order to obtain an estimate of 
the accuracy of the computed results. The results of several of these 
runs are given in Table I for the first mode with ill = 2. The numbers 
at the bottom of the table represent the total variation for a given aspect 
ratio taken as a percentage of the full range possible (one). 

For small aspect ratios, it is clear that the convergence is very rapid. 
However, for larger aspect ratios the convergence is not as good. For 
example, the variation for an aspect ratio of four is 1.5 percent (taken 
as a percentage of the full range of variation). For this case, from the 
table and from the limit for infinite aspect ratio14 which is an upper 
bound for (5)2, it appears the error is about 3 percent. This error is 
achieved with a relatively small number of harmonics and can only 
be improved by using a prohibitively large number of harmonics on a 
computer which carries more significant digits than the one which was 
available for this study. However, since solutions exist for an infinite 
aspect ratio, the decrease in accuracy for the large aspect ratio of the 
circular-harmonic method is not a serious problem. 

Computations similar to those for Table I were performed to ob­
tain an estimate of the upper bound of the accuracy of the cases pre­
sented in Section 3.3. From these calculations, it is believed that all 
of the data to be presented in the following sections is accurate to 
1 percent, except for the results of calculations using even harmonics 
for aspect ratios other than unity which are believed to be accurate 
to better than 2 percent. In general, accuracy decreases as the mode 
order increases, although not monotonically. 
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The results of the circular-harmonic analysis and of Marcatili's 
analysis agree. 6 In the regions where his method and the circular­
harmonic method are both theoretically valid, the agreement is well 
within the tolerances given above. To avoid duplication, the reader is 
directed to his curves for a comparison. 

The effect of the number of harmonics used in the field patterns is of 
some interest. This question has not been explored in great detail; 
however, a few comparisons of intensity pictures for different numbers 
of circular harmonics were made. In general, it was found that five 
harmonics were sufficient to give a good representation of the modes 
that this paper presents. An example of this is given in Fig. 4, comparing 
the E~l mode intensity patterns for five and nine harmonics. For the 
results which follow, five circular harmonics were used. 

3.2 Mode Configurations 

Figure 5 shows intensity pictures for the first six modes for unity 
aspect ratio, ill = 3, and an index difference of 0.01. Figure 6 gives 
similar data for an aspect ratio of two and ill = 2. For both, the plots 
are arranged in ascending order of cutoff frequency. All of the pictures 
are for E~n modes. These pictures are virtually indistinguishable from 
the corresponding E':nn modes so both sets are not presented. In general, 
for small index differences the E~n and E':nn can be considered to be 
near duals, that is, to have identical field patterns except that the 
electric and magnetic fields are interchanged. 

The field distribution patterns for the modes of Figs. 5 and 6 are 
more complicated than those for the rectangular metallic waveguide 

Fig. 4 - Intensity for the Efl mode for alb = 2, CB = 2, and llnr = .01: (a) for 
five hannonics and (b) for nine harmonics. 



Fig. 5 - Intensity for some E!.n modes with unity aspect ratio, (B = 3, and 
~nT = 0.01: (a) Etu (b) E~u (c) Et2' (d) E~2' (e) EKl' and (0 Et3' 
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Fig. 6 - Intensity picture for some E~nn modes with alb = 2, (B = 2, and Llnr = 
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Fig. 7- Field configuration of the Erl mode. 

since they extend beyond the waveguide boundary and, in general, their 
shape is dependent on waveguide parameters other than shape. The E~l 
and E~l modes have the simplest field patterns. Figure 7 shows the elec­
tric and magnetic field orientations for the E~l mode. In this figure and 
the following ones, there are heavy lines in the regions of high field inten­
sity and light lines in regions of low field intensity. Only E':nn modes are 
shown since the E':nn modes can be obtained by interchanging the electric 
and magnetic field vectors. 

Figure 8 shows the field lines for the E~l and Er2 modes for a large 
aspect ratio. (For alb ~ 00 the fields have the appearance of rectangular 
metallic waveguide modes.) However, as the aspect ratio approaches 
unity, the Er2 and E~l modes and the E~l and E~2 modes couple and 
shift to the patterns shown in Fig. 9. lVlost of the change takes place 
with the aspect ratio close to unity. 

Figures 10, 11, and 12 show the field configurations for the E~2 mode, 
the E~l mode, and the Ef3 mode, respectively. The field patterns of 
these modes do not change drastically with the aspect ratios. 

Figure 13a shows an intensity picture of the E~2 mode and Figure 

-r -={ ~ -t~-=-J: --{-
-t--I-=-t = =f--f-.. -~-- -

(a) (b) 

Fig. 8-Field configurations for the (a) E~l and (b) Er2 modes far from cutoff. 
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(a) (b) 

Fig. 9 - Field configurations for the square (a) E~l and (b) Ef2 modes. 

13b its field pattern for unity aspect ratio. The field pattern inside the 
core is similar to a sum of the TE23 and TE32 of metallic waveguide, 
shown in Fig. 13c and d, respectively. Figure 13a demonstrates that the 
circular-harmonic analysis can generate complex field patterns with 
a relatively small number of harmonics. 

Figures 14 and 15 show the variation of the intensity distribution with 
(p2 for the E~l and E~l modes, respectively. As one would expect, for 
small values of (p2 the radial extent of both modes increases very rapidly 
as (p2 decreases. It is of significance, however, that most of the energy is 
contained within the waveguide core, even for relatively small values 
of (p2 and ~n. Thus, Marcatili's assumption that very little energy 
propagates in the region of the corners is valid over a wide range. 

3.3 Propagation Curves 

In all cases of computed propagation curves, the normalized wave­
guide height <13, as given in equation (11), is plotted on the horizontal 

~~-1--"' I \ 
I r -- -- \ \ 
(' \ \ 

I r- --- \ I 
'I I II , 
1\ '- --' }I 

\~ --=I=-- :.,/ 
Fig. 10 - Field configuration of the E~2 mode. 



215·2 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

Fig. 11 - Field configuration of the EKI mode. 

axis and the normalized propagation constant, (p2, given in equation (16), 
along the vertical axis. 

Figure 16 shows the case of vanishing index difference for an aspect 
ratio of one. The first 16 modes are shown. For this case the following 
six degenerate groups ,exist 

In addition, the E~l and the E:1 modes are almost degenerate except 

-1- --==t=:----!_ 
--{--

'--1--­
"~---==1=~~---1--

-i---~l:--+ 

Fig. 12 - Field configuration of the Et3 mode. 
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Fig. 13 - The E~2 mode for unity aspect ratio: (a) intensity, (b) field configura­
tion, (c) TE32, and (d) TE23 • 

near cutoff. The splitting of these modes can be accounted for by the 
differences of the field patterns shown in Fig. 11 and 12. Since the E~l 
mode reversals occur along the direction of the electric field lines, the 
electric field for this mode must have a larger longitudinal field com­
ponent than for the E~l mode. 

All degeneracies, except the E~n - E':nn' are broken by a change 
in the aspect ratio as demonstrated in Fig. 17, which is drawn for 
the first 12 modes of a waveguide of aspect ratio 2. One interesting 
feature of this curve is the mode crossing of the E~l and E~2 modes. 
Crossings of this type, which cannot occur in metallic waveguides, are 
possible because the field functions are frequency dependent. Qualita­
tively, it can be explained by noting that field reversals must take place 
in the core, therefore constraining the central lobe of the E~l more than 
any of the E~2 mode lobes as cutoff is approached. Far from cutoff, 
however, all fields are well constrained and the E~l mode has a larger 
propagation constant than the Er2 mode, as it does for the similar 
metallic waveguide mode with an aspect ratio of 2. 

The effect of finite index difference on the modes can be observed by 
comparing Fig. 16, which is computed for unity aspect ratio and a 
vanishing index difference, with Fig. 18, which is computed for unity 
aspect ratio and a 0.5 index difference. The curves for modes whose 
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0 
0 

Fig. 16 - Propagation curves for the first 16 modes for unity aspect ratio and 
<lnr ~ O. 

field lines reverse direction across the origin are no longer degenerate, 
but those whose field lines do not reverse still are degenerate. For all 
degeneracies to be split, there must exist a finite index difference as well 
as an aspect ratio other than unity. Figure 19 illustrates one such case. 

The effect of index difference on the degenerate principal modes for 
unity aspect ratio is examined in Fig. 20. The curve shows both a low 
and high index difference limit. In the range of interest for optical 

1.0 

O.B 
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(p2 

0.4 

0.2 
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0 

Fig. 17 - Propagation curves for the first 12 modes for alb = 2 and <lnr ~ O. 
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Fig. 18 - Propagation curves for the first 16 modes for unity aspect ratio and 
Llnr = 0.5. 

circuits (0 - 0.1) the vanishing difference curve is an excellent ap­
proximation. The greatest changes occur in the 0.1 - 10 range, which 
is the range of interest for some microwave problems. 

Figure 21 presents the computed results for the effect of index changes 
on the principal modes for an aspect ratio of 2. The effect is much 
stronger on the E~l mode than the E~l mode. In fact, the effect on the 
E~l mode is comparatively small, except near cutoff. 

The effect of aspect ratio on the principal modes is demonstrated for 

1.0r-----,.---,---,-----r--__ r----,...---,.-----,----,----

E~ " 

0.81-----t---t----I-

°0~--~~-~~-~~~t~.6L-£--2.LO---2~.4----2L.8---3~.2---3L.6-~4.0 

<B 

Fig. 19 - Propagation curves for the first 12 modes for alb = 2 and Llnr = 0.5. 
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1.0r---

0.6~---1----~----~----~~~~----+-----+-----r----1----~ 

(J>2 

0.41----+--__l__-~ 

0.21---~----_4~~__l__+_+_~----~----+_----+_----r_--~~--~ 

Fig. 20 - Erl and Efl mode propagation curves for several values of !::..nr with 
unity aspect ratio. 

vanishing index difference in Fig. 22. The curve for infinite aspect ratio 
was obtained from the exact analysis of the slab case. 14 

IV. CONCLUSIONS 

The results of the computations show that the circular harmonic 
method for analyzing rectangular dielectric waveguides gives excel-

1.0r----,-----,----.----.---.---.._----.-----.------,----. 

0.81-----+---

0.6~-----'--------....,._f7~~___+_,~-----L 

(J>2 

---E~ An-p= 2 
0.4r---,----~~~~~~~----------.._----+_---~-~---~ 

0.2 ~--t-_h'--JI'f____,I'_t_,f__ 

Fig. 21 - Erl and E~l mode propagation curves for several values of !::..nr with 
alb = 2. 
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Fig. 22 - Efl and E~l mode propagation curves for several values of alb with 
Anr -7 o. 

lent results for waveguides of moderate aspect ratio. The convergence 
of the computed results was rapid and the results are in agreement 
with those of :NIarcatili's in the regions where his approximations ap­
ply. Furthermore, the results compare very well with Schlosser's 
curves for the principal mode. 

Comparison of the results presented here with lVlarcatili's show that 
the two methods give values of the normalized propagation constant, 
<9

2
, which are within a few percent for (92 > 0.5. Thus for <92 in this 

range his method is to be preferred since the calculations required are 
much simpler. However, for <9

2 < 0.5, and when it is desired to dif­
ferentiate between modes for some of the near degenerate cases, an­
other method must be used. 

The circular harmonic analysis is attractive for small <92 because of 
the nature of the matching boundary. For large refractive index dif­
ference and moderate <92 both the method presented here and the one 
presented by Scholosser can be used. 
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Improved Relations Describing Directional 
Control in Electromagnetic Wave Guidance 

By E. A. J. MARCATILI and S. E. MILLER 

(Manuscript received January 22, 1969) 

The direction-changing capability of electromagnetic waveguides may be 
limited not only by mode conversion but also by radiation if the transverse 
field extends indefinitely into a freely propagating region. This paper gives 
new, more accurate expressions for the permitted bending radius with respect 
to mode conversion, using coupled-wave theory to categorize the wide variety 
of transmission media possible. This paper also makes a suggestion jor 
estimating the permitted bending radius when radiation is a limitation. In 
single-mode "open" waveguides that have transverse fields extending in­
definitely into a freely propagating region (such as a dielectric waveguide), 
the permitted bending radius is lim,ited by radiation effects, whereas in 
either the open or completely shielded multimode waveguides, the permitted 
bending radius is usually limited by mode conversion. 

I. INTRODUCTION 

It is useful to be able to characterize the direction-changing capa­
bility of electromagnetic waveguides without detailed knowledge of 
the waveguiding structure. The first work in this area was reported 
by Miller in 1964.1 A direction-determining parameter Rmill was 
defined 

(1) 

in which Rmill is a bend radius, a is the full transverse width of the 
field distribution, and A is the wavelength in the medium in which the 
waveguide is embedded.~' For bend radii longer than R mill , Ref. 1 in­
dicates that wave propagation is virtually as in a straight guide; at 
radii less than Rmill something drastic happens. Just what changes 

* Notice that we have redefined a here; in Ref. 1 the full transverse width of 
the field distribution was 2a. 

2161 
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occur in a straight guide depends on the nature of the medium in 
detail; for hollow conducting guides the change is large mode conver­
sion and for beam transmission in a sequence of infinitely wide lenses 
the change is also mode conversion appearing as a wide oscillation 
of the beam about the nominal axis of propagation. 

Following similar lines of thought, a parameter 

(2) 

is given to describe the transition region between essentially normal 
wave propagation and the region of drastic changes for abrupt angular 
changes in direction.1 The only restriction on these order of magnitude 
direction-determining parameters given in Ref. 1 is the exclusion of 
degeneracy between the used mode and some other mode coupled by 
the direction change. It is well known that such a degeneracy results 
in complete loss of signal for certain lengths of bent guide regardless 
of the bending radius, and that removal of the degeneracy by dis­
sipative or reactive means can in principle make the bend loss as 
small as desired. 2- 4 

In recent studies of bend losses in dielectric waveguides, Marcatili 
found a serious disagreement between the implications of equation 
(1) and the bend losses predicted by analysis of the particular wave­
guiding structure.5 For an "open" waveguide-that is, one in which 
the transverse field decays exponentially in a transverse plane but ex­
tends to great distances-he found that the bend radius required for 
tolerable losses was much larger than given by equation (1) and it 
followed a different law 'with relation to a and A when only one mode 
could propagate. 

It is now clear that two components of bend loss must be considered: 
the dissipative loss (resulting from either radiation or coupling to a 
high-loss undesired mode) for the normal mode of the bend region 
characterized by an attenuation coefficient (XI', and the mode conver­
sion loss Pc for the straight-guide mode on entering and leaving the 
curved region. If mode transformers were used at the ends of the 
curved region (impractical for occasional bends in most transmission 
situations), the mode conversion loss would be zero and any bend R 
would be acceptable from that criterion. 

Equation (1) relates to the mode conversion loss; it fails to give a 
correct estimate when dissipative loss is important. The permitted 
bend radius R must be assessed with respect to dissipative loss as 



WAVEGUIDE DIREC'l'IONAL CONTROL 2163 

well as mode conversion loss; Section II gives relations which make 
this possible. Improved forms of equations (1) and (2) have also been 
derived which explicitly relate the maximum conversion loss to the 
bending radius for the generalized electromagnetic waveguide. The 
added quantitative factor should provide greater usefulness since the 
improved relations not only identify the transition region between 
virtually straight-guide behavior and violent changes, but also give 
detail about the transition. Section III gives these results and the 
appendices give the derivations. 

II. RADIATION FROM CURVED OPEN WAVEGUIDES 

Figure 1 shows a representation of an open waveguide. The shaded 
wa ve-guiding region has an effective index of refraction larger than 
that of the surrounding region, resulting in a transverse field distribu­
tion for the guided mode F(x) which decays exponentially but re­
mains finite. To derive a generalized expression for radiation loss as 
a function of bending radius R, we visualize this as a two-dimensional 
guide with an isotropic surrounding region capable of supporting a 
free-space radiating wave. We note that at some transverse distance 
XI' the maintenance of a pure guided mode with equiphase fronts on 

WAVEGUIDE 
/ 

Fig. 1 - A two-dimensional open waveguide. 
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radial planes requires energy propagating at the speed of light, and 
for x > xr a pure guided mode implies energy propagating at greater 
than the velocity of light. This is true at some value of Xr for any finite 
bend radius R, since F(x) extends indefinitely in the x direction. We 
postulate that the transverse field distribution F (x) is virtually the 
same in the curved region as in a straight guide for large R. The frac­
tion of the energy in the guided mode at x > Xr is assumed to be lost 
to radiation; this loss is taken to occur in a longitudinal distance 
equal to the collimated-beam length associated with the field F (x). 
All these assumptions imply that any mode propagating along the 
curved open guide radiates. This is indeed the case for the modes in 
the curved dielectric guide analyzed in Ref. 5. 

As developed in Appendix A, the attenuation coefficient for the 
normal mode of the bend region is 

1 0l 
(3) a =--

r 2Zc 0r ' 
where 

01 = f~ F2(X) dx, (4) 
Xr 

0r = i: F2(X) dx, (5) 

2 

Z a 
c = 2X. ' (6) 

_ (kz - k.) R (7) Xr - k ' . 
kz = longitudinal phase constant for the guided mode, 
k. = 271' IX. phase constant for a plane wave in the surrounding region, 

and 
a = effective width of the transverse field F(x). 

Applying this formulation to a curved two-dimensional dielectric­
slab waveguide of width t gives the following. From solutions of 
Maxwell's equations in a straight guide 

t t 
F(x) = cos kxx for -2 ~ x ~ 2 ' 

F(x) t 
for I x I ~ 2' 

(8) 

(9) 
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The resulting ~xpressions for Zc , 01 , and 0 Tare 

(10) 

(11) 

[t + 2< cos ('1) T 
2Xs 

(12) 

These expressions, when put into equation (3), yield a radiation at­
tenuation coefficient of the form'~ 

(13) 

where Cl and C2 are independent of R. As Table I illustrates, in several 
cases of interest Cl and C2 are very large numbers (calculated for A 

= 0.6328 /Lm). Case 1 corresponds to a thin glass sheet surrounded by 
air; cases 2 and 3 correspond to 1 percent and 0.1 percent index dif­
ferences between the guide and the surrounding region, a possible 
guide of interest for miniature laser-beam circuitry.6 Because Cl and 
C2 are so large, reasonable values of ar occur only within a narrow 
range of bend radius R. Figure 2 illustrates a r versus R for case 2. We 
can define a transition radius R t as that value of R which gives (XI' = 
1 neper per meter: 

1 
R t = - log Cl (14) 

C2 

in which Cl and C2 are the constants of equation (13) found by evaluat­
ing equation (3). Because of the exponential nature of ar versus R, 
radii smaller than R t give excessive losses and radii slightly larger 
than R t give negligibly small losses. We may therefore use R t as an 
index of this transition for radiation losses analogous to the Rmin of 
equation (1) for mode conversion losses. 

Notice the size of XI', the transverse distance to where wave propaga­
tion at the velocity of light is required. For cases 1, 2, and 3, XI' has 
the values 1.0, 3.9, and 16.5 /Lm, respectively, for ,(XI' = 1 neper per 
meter. Wave propagation at the velocity of light occurs quite close 
to the center of the guide, well within the bending radius. 

* This paper uses mks units in all formulas. 
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TABLE I-VALUES FOR Cl AND C2 

Sur-
Waveguide Slab rounding R 

Case index of widtht index of Ci (nepers for ar = 1 
refraction (~m) refraction per meter) C2 (meters-i) neper/m 

1 1.5 0.198 1.0 2.57 X 106 3.47 X 106 4.25 JLm 
2 1.5 1.04 1.485 1.04 X 105 1.46 X 104 0.79 mm 
3 1.5 1.18 1.4985 5.4 X 103 81.4 0.106 m 

In Appendix A the results using equation (3) are compared with 
the more exact values of Cl.'r obtained from Maxwell's equations di­
rectly.5 For a given Cl.'r equation (3) yields a value of R about 0.6 
times that obtained from Ref. 5. Moreover, Ref. 5 shows that, as the 
slab width t increases, the radiation loss does not decline indefinitely; 
the normal mode transverse field reshapes itself in the bend to in­
crease F (x) in the Xr region. However, the mode conversion loss usually 
becomes important at those values of t and for incidental bends (that 
is, without mode matching transformers) the mode conversion loss is 
limiting rather than radiation loss. 

Another approach, which yields an expression for the radiation loss 
of the curved guide in terms of constants of the straight guide, consists 

10 
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Fig. 2 - Radiation loss versus bend radius for a two-dimensional dielectric 
waveguide; case 2 of Table 1. 
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of noticing that the boundary value problem, which can be solved 
exactly by matching the radial impedances at each interface, can also 
be solved approximately if the radius of curvature R is so large that 
the field components of the curved guide differ only slightly from 
those in the straight guide.5 Then, all the impedances can be replaced 
by those of the straight guide. except that on the external inter­
face of the bend which, according to Ref. 5, must be multipled by 

1 + i exp (-1R k~D . 
In this expression k xe and kz are the propagation constants in the x 
and z directions in the external medium of the straight guide. The 
attenuation constant of the curved guide results 

(15) 

This expression should give'-greater accuracy in general and does so in 
the case of the slab waveguide used in this section. It also shows that 
waveguides which present imaginary radial impedances have no radia­
tion loss. 

III. MODE CONVERSION LOSSES IN CURVED OPEN OR BOUNDED WAVEGUIDES 

3.1 General Formulation of Tilt Relation 

When a pure mode of a straight multimode waveguide enters and 
leaves a curved region, it generally suffers mode conversion loss. Coup­
led-mode theory has been applied to calculate these losses as a func­
tion of bend radius and to devise lower loss bend structures.3

,4,7,8 In 
these previous contributions, direct solution of Maxwell's equations is 
used to find which of the straight-guide modes are coupled in the 
bend, and for these important modes to find the transfer coupling 
coefficients and the associated differences in propagation constants 
which are needed in the coupled wave solution. 

We present here a generalized use of coupled wave theory which 
gives an improvement on equations (1) and (2) in predicting ap­
proximate values of tolerable bend radius without direct solution for 
the transfer coupling coefficients or the phase constants. We do not 
imply that this provides accuracy comparable to a direct solution. 
It does yield an approximate answer to show where further work to 
get more accuracy is of interest. 
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The first approximation is used to derive the transfer coupling coef­
ficient from the self-coupling coefficient. Consider a tilt (illustrated in 
Fig. 3) for a hollow metallic rectangular waveguide. The self-coupling 
in the tilt from the incident mode to the same mode beyond the tilt, 
of angle .0, is9 

I C. e I 110 1b [(aF)2 (aF)2] (2 0 ) 
o 0 ax + ay exp i -t- x dx dy 

f {[WJ + (:n dxdy 

(16) 

in which Az is the guided wavelength along z. 
The function F is the axial field component which, for hollow metal­

lic rectangular waveguides, is either sin 7rp x/w sin 7rq y/b for TMpq 
modes or cos npx/w cos 7rq ylb for TEpq modes. 

For small tilt angles I esc I is of the form 

I Csc I = 1 - A, (17) 

where A « 1; A corresponds to the energy lost from the input mode at 
the tilt, whether by reflection or transmission into a single or into 
many modes. We now assume the incident mode to be well above cut­
off so that reflection effects are small; that is, wlA > 1 and preferably 
w IA. » 1. We further assume that all the lost energy at the tilt goes 
into a single undesired mode. For such a transfer 

(18) 

where Ct is the transfer coupling coefficient. We then combine equa­
tions (17) and (18) to obtain the transfer coupling coefficient 

:£ 

+ 
I 

D
'-x--

_---- _L ____ ---Q;:-

y ~-b-~ 

Fig. 3 - Tilt in hollow metallic rectangular waveguide. 

(19) 
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and the fraction of the input power that is converted is 

(20) 

Carrying out the integration of equation (16) for the rectangular 
metallic waveguide, assuming OW/Az « 1, gives 

(OW)2 
P t = B ~- . (21) 

Appendix C shows that for the lowest order TE mode TE1o , B is 
5.28. For other modes, B ranges between 5.28 and 1.28; we somewhat 
arbitrarily select the geometric mean of these values to approximate 
P t for any mode. Then, 

(
OW)2 

P t 2.6 -:c ' 

Ct = 1.61(~~) , 
° = 0.62 Az (P t)!, 

W 

which we have derived under the restrictions 

W 
}:» 1, ~1£. « 1. 

(22) 

(23) 

(24) 

Equation (24) is an improved form of equation (2). It shows the approxi­
mate tilt angle permitted versus fractional power converted. Derived 
for hollow metallic waveguide of width w, the "field" width is also W 

which is equivalent to a in equation (2); since \ve required the modes to 
be far from cutoff, Az f'V A; however, we note that the converted power 
P t is smaller in fact than indicated by using Az = A since the guided 
wavelength Az is greater than A. 

3.2 Formulation of Bend Coupling Coefficient 

Using a limiting process, described in Section 2.3.2 of Ref. 10, the 
tilt conversion coefficient can be converted to a continuous bend con­
version coefficient. Consider a sequence of straight guide sections, each 
of length l and connected making a tilt angle -0 (Fig. 4). Let us as­
sume that a mode entering in this guide couples at each tilt mostly to 
itself and lightly to one single spurious mode travelling in the for­
ward direction. The tilt amplitude coupling coefficient is given by 
equation (23). The coupling per unit length is I Ct/ll; letting land 0 
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Fig. 4 - Waveguide bend made of a series of straight segments. 

go to zero simultaneously in such a way that ljS = R, the bend ampli­
tude coupling coefficient en is: 

3.3 Coupled Wave Interaction 

w 
1.61 AzR' (25) 

We are now prepared to discuss the effect of bends in producing 
mode conversion using coupled-wave theory. In this approach the 
signal amplitude El is related to the undesired mode amplitude E2 
by the equations 

(26) 

(27) 

in which 

r l = al + i/31 = propagation constant of signal wave, 
r 2 = a2 + i/32 = propagation constant of undesired wave, and 
k = transfer coupling coefficient. 

These equations have been solved and the resulting wave interactions 
discussed in many papers.3 ,4,S,lO,1l Appendix B gives a few of the ex­
pressions relevant to this disscussion; we will draw from these. We 
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assume a boundary condition, EI = 1.0 and E2 = 0 at z = 0, through­
out. The effects of mode coupling depend importantly on (r l - r 2 ) 

and k. In finding expressions which improve on equation (1) we break 
the discussion of a generalized waveguide down into a, series of cases 
which are classified by the relation between the coupling coefficient k 
and (r l - r 2). 

3.4 Gradual Bends in Low-Loss Waveguides 

vVe categorize the case of gradual bends in low-loss waveguides by 

I e I « ({31 - (32)2, 

(0'1 - 0'2)2 « ({31 - (32)2, 

where L is the length of the bend. 

(28) 

(29) 

(30) 

This is the most likely case to be encountered in waveguides in­
tended for low-loss transmission. The special case of degeneracy, f3I = 
f32, is treated in Section 3.6; degeneracy is not likely to occur ac­
cidentally since it is a very critical condition. Because f3 is very large 
compared with a in typical cases, equation (29) can be satisfied with 
relatively small changes from the degenerate condition, and the present 
case can be considered achievable except under very special circum­
stances. 

With small a'S, k is pure imaginary, k = ic; a value such as given 
by equation (25) applies. vVith equation (30) valid, the signal loss 
oscillates along the bend between zero and a maximum value 

( 
2c )2 

Pc = {31 - {32 . (31) 

To complete our derivation we need ({31 - (32), which should be the 
difference between the phase constants of the modes coupled in the bend. 
We have not determined in our generalized waveguide case just which 
modes are coupled. We use as an approximation the rectangular metallic 
waveguide case of Fig. 3, and calculate the D.{3 for the pth and (p ± 1) 
mode; again requiring the modes to be far from cutoff, we find 

(32) 

Combining equations (31), (32), and (25) with c = I CB I and solving 
for R yields 
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4.1 w3 

R = (2p ± 1)(Pc)l 'A2
• 

(33) 

For the p = 1 mode only, the (+) sign in (2p ± 1) applies; but for 
higher order modes either sign is applicable and the (-) sign will be 
controlling. As a further rough approximation we may drop the ±1 term, 
yielding 

(34) 

Equation (34) has the same general form as equation (1) but gives 
added accuracy by showing the quantitative influence of mode index and 
fractional conversion loss permitted. 

3.5 Gradual Bends in Lossy Waveguides 

Here we keep equations (28) and (29) but address the case where the 
undesired mode coupled to has high loss over the length L of the bend: 

(35) 

N ow, the true situation is very complex. The coupling coefficient k is 
complex and may have real and imaginary components that are equal. 
Energy conservation between Csc and Ct , which was implied by equation 
(18), is not justified. Experience with helix waveguide for TEg1 waves 
shows, however, that the modulus of the helix coupling coefficient is 
comparable to that for a copper tube; therefore, we use equation (25) 
for the I k I and proceed as before. 

As the result of equation (35) the oscillations in the conversion loss 
are damped out and the conversion loss has the form of a simple ex­
ponential; that is, the normal mode of the curved region is set up with an 
attenuation coefficient (aB + al)' where the extra loss resulting from the 
bend is 

<X" ~ real Lr, ~ rJ (36) 

Using equation (25) with I CB I = I k I , this becomes 

4.21 (a2 - a])w6 

aB = (2p ± 1)2 R2'A4 (37) 

This resembles a radiation loss in that it grows with length L, whereas 
in Section 3.4 the oscillatory loss peak was independent of L. 

We can rearrange equation (37) to show the permitted bend radius R, 
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(again dropping the ±1): 

R = 1.05 [(a2 - at)]! w:. 
p aB A 

(38) 

Here aB may be regarded as a design criterion selected to meet the 
requirements of a particular use, analogous to Pc above; as such aB 

may be independent of ).., or may have some).., dependency. 
Expression (38) has a character markedly different from equation 

(1). Since a2 and al are dependent on guide size and wavelength the 
a3/)..,2 dependence given by equation (1) is not valid when coupling 
takes place to a very lossy mode. 

3.6 Bends in a Waveguide with Low-Loss Degenerate Coupled Modes 

vVhen the modes coupled in the bend are degenerate, whether by 
design or misfortune, a far more stringent requirement on R develops. 
In this case 

(39) 

Because attenuation coefficients are small in many typical cases, it is 
relatively easy to obtain coupling coefficients that are larger, that is, 

1 CB 12 » 1 a2 - al 12. 

Then the signal wave output of a bend of length L is 

1 El 1 = 1 cos cBL 1 

or, using the value of equation (25) for eB, 

(40) 

(41) 

(42) 

The signal loss is infinite when the argument of the cosine is an odd 
multiple of 7r/2, and the corresponding bend radius Roo or bend length 
Loo are 

1.02 wL I Roo = mA
z for m = 1,3,5. 

L"" = 0.98 m A: 

(43) 

(44) 

For small fractional power losses Pc, equation (42) may be approxi­
mated by the first term of the expansjon; the resulting permitted 
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bend radius is 

1.61 wL 
R = (Pc)! X· (45) 

When (/31 - {32) is nonzero, the signal transmission oscillates between 
unity and a minimum of 

: {31 - {321 
2c 

(46) 

which merges with equation (30) and the case considered in Section 
3.4. 

3.7 Bends in Waveguides with High-Loss Degenerate Coupled 1l1odes 

When the phase constants of the modes coupled in the bend are 
degenerate-that is, equation (37) holds-but the undesired mode is 
very lossy 

(47) 

Then Appendix B shows that we again have normal-mode propaga­
tion in the bend region (as in Section 3.5) with an attenuation con­
stant Cal + an) where 

2 
Cn 

Using equation (25), this yields a bend radius: 

(48) 

(49) 

This corresponds to very long bend radii in order to have equation 
(47) valid. Just as in equation (38), aB of equation (49) is a dis­
cretionary design parameter. 

IV. COMPARISON WITH KNOWN DIRECT SOLUTIONS 

The principal usefulness of the preceding approximate relations for 
permissible tilt and bend radius is in new unstudied situations, where 
direct solutions are not available. However, we compare here the ap­
proximations with known direct solutions in order to gauge the ac­
curacy to be expected. 
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4.1 Tilt in a Sequence of Cylindrical Lenses: (Two-dimensional Problem) 

The input mode is gaussian, its spot size is W o , and the transverse 
field distribution is exp [- (xjwo) 2]. The normalized power coupled to 
other modes at the tilt (8 « 1) is12 

(.50) 

To compare this exact result with our approximate one, equation (22), 
we must define the width a of the beam. Somewhat arbitrarily we 
choose 

(51) 

thus 95 percent of the power is traveling within the width a. 
Substituting this value in equation (50) we obtain 

P2 = 2.5(~ar· (52) 

This compares to equation (21) with p = 1 and w = a, 

(
oa)2 

P~ = 2.6 T . (53) 

Considering that equation (53) came from rectangular metallic wave­
guide and equation (52) from an open lens waveguide, the corre­
spondence seems excellent. 

4.2 Tilt in a Cylindrical Metallic Waveguide Propagating T E~l 

For TEgl at a tilt, important coupling is known to occur to three 
modes:2.1o 

l\1ode pair Tilt coupling coefficient 

'rEg l - TE~l 0.585 ~o (54) 

TEg l - TE~2 0.98 ~o (55) 

TEgl - TlV1u 0.58 aAo (56) 

where a is the diameter of the round guide and is the full width of 
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the transverse field. This corresponds to equation (23) with w a 
and p = 2 (two extrema in the transverse field), 

ao 
Ct = 1.61 T' (57) 

In the real case, the converted power is the sum of three conversions 
using the above three coupling coefficients; since the three components 
vary with a different period versus A, or distance along the guide after 
the tilt, the actual mode conversion is a complicated function. 
We might take the root-sum-square combination of equations (54) 
through (56) to compare with equation (57), leading to 

(58) 

The converted power loss is 1 Ct 1
2

, so we see that equation (57) gives 
a correct order of magnitude indication, but it lacks significant de­
tail. 

4.3 Bends in Cylindrical M etallic Waveguide Propagating TEg l 

The above discussion for tilt coupling coefficient applies directly to 
bend coupling coefficient in empty round guides, noting the interrela­
tion 

Ie I=W, 
B Ro (59) 

However, the maximum conversion loss in the bend is also controlled 
by the quantity (/31 -(32) as given in equation (31). For the three 
important modes, the values are 

Mode I {31 - {32 I 

TEg l - TE?l 
A 

3.6 2 a 
(60) 

TEgl - TE?2 
A 

4.42 
a 

(61) 

TE~l - TM?l 0 (62) 

where a is again the guide diameter. These are to be compared with 
equation (32) with w = a and p = 2, 

(63) 
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The approximation (63) agrees well with the values for the TEg] - TE~l 
and TEgl - TE~2 from expressions (60) and (61). However expression 
(62) shows that empty round guide has a degeneracy, which controls 
its behavior.2 The permitted bend radius is controlled by the TEgl -
T1Vr~ 1 interaction. Exact theory shows the bend length to the first 
extinction of signal is2 

R'A 
L<iJ = 2.7- I 

a 
(64) 

which is to be compared with equation (44) with w = a and m = 1, 

R'A 
LOC) = 0.98-· 

a 
(65) 

Here the agreement is again quite good. The permitted bend radius 
for Pc fractional power loss, from exact theory is 

and the approximation from equation (45) is 

R = 1.61
1 

aL. 
(Pc)' 'A 

(66) 

(67) 

In practical use of round guides for TEol , however, the bare pipe is 
modified to eliminate the degeneracy. Intentionally making the empty 
guide elliptical is one way;3 it takes only 1.7 percent diameter difference 
to make ({31 - (32)2 = 10(a2 - (1)2, making the relations of Section 2.4 
valid. A more symmetrical modification is to add a thin dielectric lining; 
with a polyethelyne lining only 0.010 inches thick in a 2 inch inner 
diameter guide, the ({31 - (32) for TE~l - TlVI~l is about 60 percent of 
that given above for TEgl - TE~2.12 This also yields ({31 - (32)2 » 
(a2 - (1)2 for all modes. Interestingly, exact theory shows that the 
lining drops the TE~l - TE~l bend coupling coefficient by an order of 
magnitude. 12,13 Thus only two small mode conversions occur in the bend 
of lined waveguide. Taking the simple sum of these conversion losses 
yields, from this "exact" treatment, 

(68) 

The exact radius relation is then 

(69) 
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This is to be compared with equation (33) with w = a and p 

1.02 a3
• 

R = (Pc)! 'A2 

2, 

(70) 

Considering the complexity of the true situation the estimate provided 
by equation (70) is good. 

4.4 Helix Waveguide for TEg l 

The helix waveguide for TEg l is a very special structure designed to 
maximize the attenuation to the undesired modes. 14

,15 This waveguide 
is unusual in presenting very large (a2 - al)' The bend coupling coeffi­
cients k of equations (26) and (27) are no longer pure imaginary as they 
were in the simple metallic tube. For example, the complex nature of the 
helix coupling coefficients are shown for comparison with those of a 
metallic tube; we set k = e' + je", as shown in Table II. The helix values 
correspond to a longitudinal wall impedance of 196 ohms with a capaci­
tive angle of 5 0, both guides at 'A = 5.4 mm and a guide diameter of 
5.08 cm. 

The attenuation coefficient of the normal mode of the bend region is 

n [e ] 
al + L Real (r l -.: rn) (71) 

where the summation represents the contributions of the three modes 
above. Using the helix waveguide coupling values of Table II, the con­
version loss contributions are given in Table III. Note that the con­
tributions of the TE12 and TMll modes are of opposite sign; experi­
ment agrees well with this theory.16 An approximate degeneracy exists 
between TMll and TE12 in the helix waveguide. 

When such direct computations were made over a range of nu­
merical conditions in the 30 to 100 GHz region on helix waveguides 
varying in diameter from 0.25 inch to 3 inches, it was found that the 
mode conversion contribution to the bend-region normal-mode at-

TABLE II-HELIX WAVEGUIDE COUPLING VALUES 

Solid Metallic Tube Helix 'Waveguide 

Mode e'R e"R e'R e"R 

TEll 0 5.5 -0.16 6.86 
TMll 0 5.46 -8.03 -5.71 
TE12 0 9.21 -3.76 11.88 
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TABLE III-CONVERSION Loss IN HELIX WAVEGUIDE 

TEll 
TMll 
TEl2 

",-'(ode 

tenuation coefficient is approximately 

0.713 
8.79 

-8.05 

L = 1.55 

2179 

(72) 

which yields a permitted bend relation from direct solution of the 
helix problem: 

0.095 a1.5 

R = (aB)! A 1.35' 
(73) 

The corresponding approximate relation from Section 3.5 is equation 
(38) with w = a and p = 2, 

R = 0.52(a2 
:: alr ~:. (74) 

To compare functional dependence on a and ).., we need to know how 
(CX2 - al) % [which is (a2) %] varies with a and).. in the helix wave­
guide. Unfortunately this is not readily available although it was 
implicitly used in the work which yielded equation (72). However, a 
single numerical point is known: at a = 5.08 cm and).. = 5.4 mm, CX2 

= 1.4 nepers per meter for TMll , which will control the guide behavior 
in equation (74). With these numbers equation (73) yields 

(75) 

whereas equation (74) yields 

2.76 
Rapprox = (aB)!' (76) 

The approximation is only off a factor of about two, which is re­
markable and may be fortuitous. vVe suggest that equations (38) and 
(74) be considered provisional until proven or disproven by additional 
work. 
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4.5 Curved Beam Guide 

Let us consider a curved beam guide made of a sequence of con­
focal lenses propagating the fundamental gaussian mode. The radius 
of curvature R o , the wavelength A, and the beam size ware found, 
with the help of equation (50), to be related to' the maximum power 
conversion Pc by 

2 3 
R 7r Wo 

6 = "A2(pc)!' (77) 

As in a previous example, the width of the guide containing 95 
per cent O'f the power in the wanted mode is a = 2wo; therefore, 

1.23 a3 

Re = (Pc)§ "A2' (78) 

This exact result compares with the approximate value from equation 
(33) with w = a and p = 1, 

(79) 

Considering that the exact value relates to an open lens waveguide 
and the approximate one relates to a hollow metallic rectangular wave­
guide, the agreement is excellent. 

V. DISCUSSION AND CONCLUSION 

The direction-changing capability of electromagnetic waveguides 
may be limited by (i) radiation, if the guided field extends into an 
open freely propagating region, and (ii) mode conversion. Radiation is 
the limitation for single-mode open guides that have transverse fields 
extending indefinitely into a freely propagating reg,ion. An estimate of 
permitted bending radius may be made by using equations (15) or (3) 
and the knowledge of the field for the straight guide. For a straight 
guide transverse field decaying exponentially [exp (-x/~) ], the radia­
tion attenuation coefficient in a bend of radius R was found to be of the 
form 

i¥R = Cl exp (-C2 R ), 

where Cl and C2 are large constants. As a result, all is large for 

1 
R < - log Cl 

C2 

and small for R greater than that value. 

(13) 

(14) 
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When the guide supports higher order modes, mode conversion loss 
tends to be the controlling factor. In Section III formulas are devel­
oped for permissible bend radius R versus transverse field width a, the 
guided wavelength Az, and fractional power Pc lost to other modes. 
Numerous possible cases are treated, depending on the relation be­
tween the mode coupling coefficients k, the signal mode propagation 
coefficient r 1 = a1 + if31' and the propagation coefficient of the mode 
coupled to, in the bend r 2 = .£¥z + if32. A case which should be very 
common is one of small or moderate losses and gradual bends: 

I e 1« (f31 - (32)2, 

(al - (2)2 «(f31 - (32)2, 

(28) 

(29) 

(30) 

where L is the length of the bend. Then an approximation for the bend 
radius permitted is 

R 4.1 a
3 

= (2p ± l)(P
c
)! }..2 , 

(33) 

and for the permitted abrupt tilt angle 0 

(24) 

in which p is the number of extrema in the transverse field distribution. 
Examples are given in Sections 4.1 through 4.4 which show that known 
theory for several hollow metallic and open lens waveguides agree well 
with these expressions. 

One must use caution in applying these expressions to new wave­
guides where the modes coupled in the bend are not known and, more 
importantly, where the phase constant differences are not known. If 
by design or misfortune a degeneracy exists between modes coupled 
by the bend, f31 = f32, a radically more severe restriction on bend R 
occurs. Sections 3.6 and 3.7 discuss this situation. However, since f3's 
are large compared with typical a'S, it usually is possible to avoid these 
restrictive conditions and justify equations (28) and (29) by small 
modifications of the guiding structure. 

If the mode coupled to is very lossy, so that a2L » 1, equation (33) 
does not hold. Section 3.5 and equation (38) relate to this case. We 
cite one example in Section 5.4 which supports equation (38); but 
more experience with coupling to lossy modes is needed. 
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APPENDIX A 

Supplement to Secl1~on II 

We note that the maintenance of equiphase differences on F (x) for 
all x, but on radial planes differing by 6.cp (Fig. 1), requires 

(80) 

where ks is the phase constant for a plane wave in the region surround­
ing the waveguide. For the equal sign in equation (80) a plane wave in 
the Xr region is traveling at the velocity of light and equation (80) 
yields 

= (kz - k.) 1:'> 
Xr k L-. 

8 

(81) 

The energy traveling at x > Xr is presumed lost to radiation, since to 
remain guided would imply energy traveling at greater than the velocity 
of light. The fraction of the total energy in the cross section at x > Xr 

is 8z/8 T , where 8/ and 8 T are given by equations (4) and (5). How 
rapidly, as a function of distance along the direction of propagation, does 
energy flow out from the main energy packet to this region at x > Xr ? 
For a wave in an infinite uniform medium the energy remains collimated 
for a distance 

(82) 

where a is the transverse field width and As is the wavelength in that 
medium. It may be expected that an approximate distance Zc would be 
required for energy to flow out from the guided field of the same width a. 
Noting a power decay rate e-2az ~ 1 - 2az, the fractional power loss 
becomes 

8/ -- = 2a z 
C' r c 
U7' 

(83) 

or 

(84) 

NumeTical Evaluations at a Specific Case 

The potential usefulness of equation (3) is in estimating radiation 
losses of curved open waveguides for which the straight-guide fields are 
known, but for which a solution in the curved coordinate system is not 
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known. Here we compare the results of using equation (3) with the results 
of a direct solution, to obtain an indication of the accuracy that might 
be expected in other cases. The case is defined by equations (8) and (9), 
which lead to equations (10), (11), and (12) for 8 z , 8 T , and Zc • 

vVe provide additional expressions needed in the numerical calcula­
tions: from known theory5,16 

(85) 

where k is the free space wave number, nl is the index of refraction of 
the dielectric slab, and n3 is in the index of the surrounding region. 
The quantity kx may be obtained graphically as a function of tj A and 
is reproduced here in Fig. 5, from Ref. 5. The quantity A is the 
value of t at which the second propagating mode appears, 

7r A A = -----.! 1 

k(ni - n;)2 2(ni - n;)2 
(86) 

2.8r----r----,----,----,----,-----r----~--~----~--~ 

---I----
~I----

2.4r----+----+_--_+----+----~--~~----~--_+----4_--~ I -' ~_-~ 

-----/~ -------2.0r----+----+_--_+/--~4---~---_~~--~----+----4----~ ........ 
....... y 

kx a:: 1-----+-I-'1-//~/_I_~-T/~/-/-·~+""-""-·--, ""-+-.... _ .... ---+-----+--~l!t; _x __ --+ __ -l 

0.8r----+~n-+_--_+---+--~----~----~-_+----4_-~ 1/. 

°:1 
I 

o 0.2 0.4 0.6 0.8 1.0 1.2 
t kt ,..---­

A = ""7T ljn12 - n;32 

1.4 1.6 1.8 2.0 

Fig. 5 - Normalized transverse wave number k.J;a versus normalized thickness 
t/A for a two-dimensional dielectric waveguide. fundamental mode 
polarized perpendicular to the dieleCtric' sheet and n3 == ndl.5; - - - - -
fundamental mode polarized· perpendicul!;l:r to the sheet and nl/nc -1 « 1, or 
fundamental mode polarized parallel to the sheet and n3 arbitrary. . 
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Also known are 5,9 

2 2e 1 
kz = n3 +?, 

and in the region of considerable interest where 

kx « knl , 
the approximations 

(87) 

(88) 

(89) 

(90) 

(91) 

are valid. Using the above relations, one can calculate an given t, It, 
nl, and n3. 

Ta ble IV lists the principal parameters and a comparison with 
more exact theory for several cases. In Table IV the first five columns 
define the waveguide; Cl and C2 are values from equation (13), found 
in turn by evaluating equations (3) through (7). The table also 
lists the radiation attenuation coefficient ar, the estimate of the asso­
ciated bend radius R, the value of R from Ref. 5, and the ratio. The 
estimate from equation (3) is consistently lower than the true re­
quired R (in the approximate ratio 0.6) for a wide range of index 
differences (ni - n3) and bend radii R. 

The table also lists the transverse distance Xr at which the velocity 
of light condition occurs. It is interesting that it is so close to the wave­
guide. 

Additional support for the approximate calculation based on equa­
tion (3) comes from an additional case. It is readily verified from exact 
theory that the case 1 condition, ni = 1.5 and n3 = 1.0, yields different 
radiation losses for the two polarizations of wave if the thickness t is 
fixed. However, if t is adjusted to give the same external field decay 
constant ~ of equation (9), then the radiation losses are the same for 
the two polarizations of wave. 

APPENDIX B 

Solutions of the Coupled-Wave Equations (26) and (27) 

If one assumes that the coupling coefficient k in equation (26) and 
(27) is pure imaginary, k = ic, one can express the fractional power 



TABLE IV-TABULATION OF IMPORTANT PARAMETERS IN CURVED DIELECTRIC WAVEGUIDES 

t t A Case (10-6 m) nl n3 Cl 

1* 0.198 0.7 1.5 1.0 2.57 X 106 

2t 0.372 0.25 1.5 1.485 0.46 X 105 

3t 1.04 0.7 1.5 1.485 1.037 X 105 

4t 1. 79 1.20 1.5 1.485 1.46 X 105 

5t 2.38 1.6 1.5 1.485 2.18 X 105 

6t 1.18 0.25 1.5 1.4985 0.543 X 104 

-- - - - - - -

* The electric field is parallel to the dielectric slab. 
t Applies for either polarization. 

C2 

3.47 X 106 

2.570 
1.46 X 104 

2.55 X 104 

3.04 X 104 

81.4 

R from Ref. 5 
R ar Xr for same ar 

(meter) (neper/m) (10-6 m) (meter) 

3.54 X 10-6 11.6 0.846 5.49 X 10-6 

6.15 X 10-6 1.34 X 10-3 1.47 11 X 106 

4.17 X 10-3 1.0 6.5 6.89 X 10-3 

0.807 X 10-3 0.776 4.0 1.18 X 10-3 

1.43 X 10-3 0.895 X 10-4 7.09 2.37 X 10-3 

0.355 X 10-3 16.9 2.55 0.593 ± 10-3 

0.442 X 10-3 1.89 3.18 0.711 X 10-3 

0.6 X 10-3 0.0321 4.31 0.948 X 10-3 

0.938 X 10-3 5.97 X 10-4 6.75 1.18 X 10-3 

0.336 X 10-3 7.9 2.7 0.593 X 10-3 

0.423 X 10-3 0.568 3.4 0.711 X 10-3 

0.585 X 10-3 3.97 X 10-3 4.7 0.948 X 10-3 

0.106 1.0 16.5 0.18 

Ratio = 
col (8) 

col (11) 

0.645 
0.656 
0.606 
0.68 
0.60 
0.6 
0.62 
0.63 
0.79 
0.566 
0.59 
0.617 
0.59 

::f1 ... 
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Q 

d 
8 
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(j 
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z ... 
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Z 
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Pc converted out of the signal (that is case 1) mode as 

where 

(93) 

and 

(94) 

In these formulas, r 1 and r z are the propagation constants of the 
wanted and spurious modes, respectively; in general, they are complex 
and their real parts, al and az, are the attenuation constants; their 
imaginary parts, Pl and f32, are the phase constants. We bear in mind 
that k = ic has only been proven valid in lossless waveguides, and for 
one case of coupling to a lossy mode (helix waveguide) k is complex. 

Another useful expression is for the signal wave amplitude El when 
the coupling k is small compared with (r1 - r 2 ), or more specifically, 

(95) 

and 

(96) 

Then we may write 

k
2 

} + (r
l 

_ r
2
)2 exp [(r 1 - r 2)z] . (97) 

The first term corresponds to the low-loss normal mode of the coupled 
region, and the second term to the high-loss mode (we assume a2 > .al). 

For Section 3.4, it is valid to take k = ic; equation (92) yields a con­
version loss of 

P = ( 2c )2 . 2 [({31 - (32)Z]. 
C {31 - {J2 sm 2 (98) 
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For Section 3.5 we use equation (97), keeping a complex k; note 
that for cx2L » 1, only the first term remains significant and the propa­
gation constant of the normal mode is 

(99) 

This yields equation (36) for CXn, the added attenuation resulting from 
the bend. 

For Section 3.7 we again use equation (97); the first term predomi­
nates with the assumption 

(100) 

and equation (99) yields equation (48). 
For Section 3.6, the case of low-loss modes degenerately coupled, 

equation (92) yields 

Po ~ 1 - exp [(a, - a,)zl! cos (cz + D !'. (101) 

It is also well known that the signal amplitude is given by 2-i 

lEI I = I cos cz I , 
the undesired mode amplitude by 

I E2 I = I sin cz I 
and the fractional conversion loss Pc by 

APPENDIX C 

Supplementary Infor,mation Concerning the 
Derivation of Equation (22) 

(102) 

(103) 

(104) 

Carrying out the integration of equation (16) for the rectangular 
metallic waveguide as outlined in Section 3.1 yields a conversion loss 
resulting from the tilt of 

(105) 

where 
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7r
2 

[ (f;)' (f)' 6 l 
H ~ 3 1 ± (f;)' + (~)' "'p'J (IOn) 

The + 01' - sign corresponds to the TEpq or TMpq modes, respectively. 
For the lowest order TE mode, p = 1 and q = 0, B becomes 5.28. 

For the TE or TM mode with p = 1 and q = 1, B ranges from 5.28 to 
1.28 as the dimensions of the guide vary between w « band w » b. 
The limits on Bare 5.28 and 1.28 for any p or q. We somewhat arbi­
trarily chose a. value (5.28 x 1.28) Ih 2.6 to represent all modes 
simultaneously. 
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Some Tlleory alld Applications of 
Periodically Coupled Waves 

By STEWART E. MILLER 

(Manuscript received February 6, 1969) 

Parallel-traveling waves can interact with complete power transfer even 
though they have different phase constants, provided that the coupling is 
periodic. This paper outlines S01ne possible applications of this phenom­
enon, including mode transforming devices, frequency-selective filters in the 
microwave and laser wavelength regions, and parametric amplifiers or 
converters. This paper also gives S01ne coupled-wave equations for inter­
actions in a nonlinear medium and a generalization of the Tien conditions 
for parametric wave interaction. 

1. INTRODUCTION 

In a previous paper it was shown that two parallel-traveling coupled 
waves can interact with complete power interchange even though they 
have different phase constants. l This is accomplished by introducing 
a variation in coupling in the direction of wave propagation. The ideal 
coupling variation is a pure phase variation whose period exactly 
matches the beat period between the uncoupled waves, however, it 
was also shown in that paper that a simple periodic magnitude varia­
tion of the coupling can also yield complete power interchange between 
waves having different phase constants. 

In this paper we outline some of the possible applications of periodic 
coupling. Complete power exchange between two modes of a single 
hollow metallic waveguide is illustrated. In two dielectric or hollow 
metallic waveguides, or in a combination of them, complete power 
exchange (or a desired fractional exchange) can be arranged. Fre­
quency selective filters in the above structures can be obtained or 
broadband interactions can be chosen by suitable design. The periodic 
coupling phenomenon can be applied in lumped element parametric 
devices by modulating the pump "\vayeform periodically; we give the 

2189 
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resulting conditions that the signal frequency, idler frequency, pump 
frequency, and modulation frequency must fulfill. 

Finally, in distributed parametric devices the periodic coupling 
principle can be used to advantage; spatial variation of the coupling 
gives a modified phase-matching relation that may render useful 
long lengths (with guided waves or unguided waves) of materials not 
useful with previous vectorial phase matching relations; time modula­
tion of the pump introduces new frequency relations of possible use 
in modulators or frequency translators. The frequency range in which 
such applications may be useful extends from the laser region to the 
lowest frequency at which distributed coupled-wave interactions are 
convenient. 

Section II presents some theory needed to understand the device 
illustrations. In Appendices A and B and in the discussion of para­
metric devices, we develop some coupled-wave equations to facilitate 
analysis of nonlinear circuits with generalized time- and space- de­
pendent couplings. This paper is a survey of potential applications 
and is intended as a stimulus for further work. Complete design 
relations and experimental verification are not included. 

II. GENERAL THEORY 

We deal with devices or situations in which two waves of amplitude 
El and E2 are coupled according to 

(1) 

(2) 

in which 1'1 and 1'2 are the complex propagation constants and C12 and C21 

are coupling functions. In a previous paper we showed that the coupling 
distributions summarized in Table I lead to wave interactions virtually 
the same as those which are familiar for C21 and C12 independent of z, 
provided that transformations for coupling magnitude c* and differential 
phase constant A{3* are appropriately defined. For El = 1.0 and E2 = 0 
at z = 0 the solutions for equations (1) and (2) are 

exp (-1'1z)[A exp (r1z) + B exp (r2z)] 

exp (-1' l z) 
2 vi [exp (r1z) - exp (r2z)] 

(3) 

(4) 
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2 

3 

4 

5 

in which 

PERIODICALL Y COUPLED WAVES 

TABLE I - VALUES OF C* AND b.f3* FOR VARIOUS 

PERIODIC COUPLING FUNCTIONS 

Coupling Definition c* tl{3* 

C12 = C2l = jc c b.(3 = (31 - (32 

. (. 2~Z) Cl2 = JC exp -J >:;;: 
2~ 

C b.(3 - --

. C 2~Z) Am 

CZ1 = JC exp J >:: 

.. e~z) C 
b.(3 - 2~/Am C12 = C21 = JC SIn >:: 2" 
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--

symmetrical square wave 

2~ [ ( CAm )']' 
C12 = C2l = jc for nAm 2 < z < Amen + t) -c I b.(3 - Am 1 - --;-
C12 = C2l = - jc for en + t)Am ~ ! 

! 

< z < en + I)Am n = 0, 1,2, .... 

raised square wave 2 f,~ - : [1 - (e: H e" ~ e" ~ }2e for n).", } - C 
< Z < Amen + t) ~ 

C12 = C2l = ° for en + !)Am < Z C b.(3 
< (n + 1) Am n = 0, 1,2, .... 

1 
2 

( b.f3 *) .( b.a) ! 2c: -22c: 
2 V 

lll' * = (al - (2) + illf3* 

1'1 = a1 + if31 

1'2 = a2 + if32 

1'1 - 1'2 = lla + illf3. 

(5) 

(6) 

(7) 

(8) 

(9) 
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In Table I we define the quantities c* and ~(3* ; Am is the wavelength of 
the coupling variation as defined in the second column of Table I. 

In Table I, type 1 coupling is the familiar uniform coupling, inde­
pendent of z. For negligible attenuation and for ~(3 = 0 the wave energy 
is exchanged cyclically between the two waves according to 

El = cos (cz) 

E2 = i sin (cz) ; 

(10) 

(11) 

and for other values of ~'Y limited wave interactions occur. This has been 
described previously.2 

In Table I, type 2 coupling corresponds to the exact transformations 
given for c* and ~(3*; the other type couplings correspond to the 
approximate values given for c* and ~(3* . For coupling types 1 and 2, 
equations (3) and (4) give exactly the coupled-wave amplitudes; for 
coupling types 3 and 4, equations (3) and (4) give the coupled wave 
amplitudes exactly at z equal to a multiple of Am/2, and may be in error 
by no more than about 0.2CAm/7r at other values of z. The error may be 
slightly larger for coupling type 5, but is negligible for small CAm' 

Figure 1 shows the initial buildup of the wave amplitude E'2 for 
coupling types 4 and 5. At z = A1I1/2 further extension of uniform 
coupling would result in added components to E'2 at such a phase as 
to diminish E'2. By reversing the sign of the type 4 coupling, the added 
components in the region 0.5 Am < Z < Am cause an increase in E'2' By 
reducing the magnitude of the type 5 coupling to zero at Am = 0.5, no 
components are added to E'2 in the region 0.5 Am < Z < Am. At Z = Am 
the cycle repeats. In this way the amplitude variation in coupling 
versus z causes an average in-phase transfer of energy. The same be­
havior exists for an arbitrary amplitude variation of coupling c(z) ; the 
fundamental Fourier component may be taken as the type 3 coupling 
and the resulting wave interaction calculated. The result is accurate 
provided that cpAm « 1, where Cp is the peak of the coupling waveform. 

III. FREQUENCY SENSITIVITY 

In many coupled-wave devices the objective is to transfer all of the 
power from one wave to the other, and frequency sensitivity may be 
desirable (as in channel-selecting filters of a communication system) 
or may be undesirable. We show the magnitude of this frequency 
sensitivity. 

Consider first two dielectric waveguides where most of the energy 
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travels in the central dielectrics designated n1 and 112 (indexes of 
refraction) in Fig. 2. Periodic coupling is induced by the dielectric 
sheets labeled n3, corresponding to type 5 coupling in Table 1. Then, 
a pproxima tely 

(12) 

in which ;\ is free space wavelength. 'Ve assume the complete transfer 
condition, which is 

2 

with L being the length of the coupling region. Also let 

with 

27r 
Am = !J.(30 

(13) 

(14) 

(15) 

and !J.(30 defined as !J.(3 at the midband frequency f = fa • Now !J.(3* as a 

TYPE 5 __ 
COUPLING 

~- __ TYPE 4 
COUPLING 

Fig. 1-Transferred wave amplitude E:J versus length of coupling region for 
type 4 and type 5 coupling (see Table 1). 
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function of frequency is 

(16) 

Expressing the frequency as a deviation from fa 

f = (1 + o)fo, (17) 

we find 

271" 0 
~(3* = ~ (nl - n z) (18) 

with 1.0 equal to A at f = fo. Using equations (18), (13), and (14) and 
assuming the typical case of negligible dependence of c* on frequency, 
we find 

(19) 

This ratio uniquely determines the frequency sensitivity of the wave 
interaction, according to 

(20) 

Fig. 2 - Dielectric waveguides (having indices of refraction nl and n2) with 
periodic coupling. 
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Fig. 3 - Transferred wave amplitude E2 versus 1l{3*/C*, the frequency dependent 
parameters, for c*L = 7r /2. 

which follows from equation (4) with Aa = O. With complete transfer 
conditions c*L = 7r /2 and with Am chosen to make A{3* = 0 at f = fa, 
equation (20) becomes unity at f = fa and falls off as A{3* (f) differs from 
zero, that is, as 0 differs from zero in equation (17). Figure 3 shows E2 
versus A{3*/C* for c*L = 7r/2; values for this graph can be calculated 
from equation (20) t. Using these results and equation (19) we find the 
bandwidth properties of the periodically coupled wave interaction on 
dielectric waveguides. A few examples are listed in Table II. The first 
three rows illustrate broadband coupling; as long as N (the number of 
coupling periods in the total coupling length L) is five or less, very little 
variation from the complete transfer condition occurs. The fourth row 
illustrates that intentional frequency selectivity can be induced by using 
a large N; the 0.2 percent band at N = 865 yields A{3*/ c* = 3.46, the 
location of the first null in Fig. 3. Structures analogous to Fig. 2 but 
actually fabricated in a solid sheet continuum are under consideration 
for laser beam circuitry. If a 20A bandwidth to the first nulls is desired 
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TABLE II - BANDWIDTH PROPERTIES OF PERIODICALLY 

COUPLED WAVES ON DIELECTRIC WAVEGUIDES 

Percentage 20 log IE21 
Bandwidth Band Edge Loss 

(2005) N (dB) 

10 1 -0.04 
10 3 -0.36 
10 5 -1.1 
0.2 865 - co 

at 10,000A midband and if (nl - n2) = 0.1, we find Am = 10 J,lm and the 
coupling length L = 8.65 mm. Frequency selectivity obtained in this way 
does not require low heat loss in the circuit; as long as the two waves 
have the same attenuation coefficient, loss does not limit the filter 
selectivity. 

For waves in an infinite medium or in other types of waveguides, 
equation (20) remains valid but relations other than (19) must be found 
to describe the way A(3*1 c* varies with frequency. For waves in hollow 
metallic tubes the results are very similar to those for waves on dielectric 
rods. We show this with two illustrative examples as follows. 

In any hollow metallic waveguide the phase constant of a mode is 
given by 

where 

A = free space wavelength, 
J,l = felf, 
f e = cutoff frequency for the particular mode, and 
f = operating frequency. 

By defining AD = A at f = fo 

J,110 = J,l for wave 1 at f = fo 
J,ll = J,l for wave 1 at f = fo(1 + 0); 

(21) 

and using similar definitions (not written out) for wave number 2, we find 

A(3*(f) = A(3(f) - A(3(fo) 

= ~~ (1 + 0)[(1 - J,lD! - (1 - JLD!] 

- ~~ [(1 - JL~o)! - (1 - JL;o)!]. (22) 

To develop a physical model, we take parameters typical of a 24,000 
MHz TEPa - TE~l transducer similar to one described in connection 
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with Fig. 42 of Ref. 2. We keep the same coupling length L = 0.417 m 
for complete transfer of power, corresponding to c* = 3.76 m- l

• We 
arbitrarily choose to explore the bandwidth when Am = L/3 = 0.139 m. 
We keep the same rectangular guide width, 0.340 inches, which at 
10 = 24,000 MHz gives J.L10 = 0.723. This determines that J.L20 = 0.625; 
there is a round guide diameter of 0.96 inches (optionally a particular P,20 

larger than 0.723 could have been selected to give the same /112(fo) / 
and Am). We can now calculate .D,.{3* (f) / c* from equation (22), neglecting 
variations in c* for this estimate. For a 10 percent frequency band, 
that is, 0 = 0.05, we find 11{3*/ c* = 1.01 and the loss 20 10glO E2 = 1.1 dB. 
The case, N = L/Am = 3, thus yields a result very similar to that 
obtained for dielectric ally guided waves using equations (19) and (20) 
and shows broadband interaction capability for waves in guided tubes 
provided N is not too large. Sections V and VI discuss some factors which 
may motivate one to use periodic coupling instead of constant coupling. 

Consider ~ second example in hollow metallic guides to illustrate 
intentional frequency selectivity. Assume we need a filter with center 
frequency I = 50 GHz and a 3 dB bandwidth of 1000 MHz. Then 
o = 0.01 and from equation (20) or Fig. 3 we find (11{3*/ c*) ~ 1.6. We 
keep one wave at P,lO = 0.723 as before and choose P,20 = 0.91. We can 
calculate 11{3* from these choices using equation (22) which yields 
.D,.{3* = 8.95 m -1 at I = 1.01/0 . At this frequency we need (11{3*/ c*) = 1.6, 
so c* needs to be 5.58 m -1 and complete transfer at 10 (that is, c*L = 

7r /2), requires L = 0.28 m. These are reasonable values physically; 
Section IV illustrates possible coupling and waveguide cross-sectional 
geometries. We now note that N = L/Am for this case is 12.7. The same 
values of 0(0.01) and N(12.7) for a dielectrically guided wave pair yield 
from equation (19) 11{3*/c* = 5.1, indicating somewhat more selectivity 
in the dielectric ally guided waves than in the hollow-tube guided waves, 
for the same number of coupling periods N. 

IV. STRUCTURES FOR PASSIVE WAVE INTERACTIONS 

We describe a few structures in which guided waves may be coupled 
periodically. The general diagram is given in Fig. 4. Most typically 
there is no input to wave 2 in this discussion although the transforma­
tions of Table I and equations (1) and (2) may be used to treat gen­
eral inputs to the periodically coupled region. In some cases the two 
waves occupy the same space as discrete modes of a single structure. 
In other cases separate guiding structures for the two waves are 
provided. 

In Ref. 1 a structure is described for hollow metallic waveguide 
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WAVE NO. I 
IN 

WAVE NO.2 ~ ~ WAVE NO.2 

IN L------------t/ OUT 

Fig. 4 - Two coupled waves; the dimension for the coupling region may be 
distance or time. 

TE~o - TE~ coupling which closely approximates type 2 coupling and 
yields the simple transformation for A{3* of Table I without "harmonic" 
transformations for A{3*. The harmonic transformations, discussed 
fully in Ref. 1, are characteristic of square-wave or sinusoidal coupling 
patterns and may yield appreciable wave interactions when A{3* r-v 

A{3p/Am with p an odd integer. The exponential type 2 coupling is thus 
a desirable one. However, because the harmonic interactions are weaker 
than the fundamental and may occur at greatly different frequencies, 
the square-wave and sinusoidal couplings are useful. 

Figure 2 shows two dielectric waveguides periodically coupled with 
dielectric sheets yielding type 5 coupling of Table I. Its possible use as 
a frequency selective filter has already been referred to. Figure 5 shows 
the form it might take in laser circuitry where Am of 10 p,m could be 
sought using photolithographic techniques; the substrate index n. is to 
be less than n 1 and n2 .3 

Figures 6 and 7 illustrate the way two modes of a single hollow metallic 
waveguide can be coupled periodically to achieve complete or partial 

Fig. 5 - Periodically coupled dielectric waveguides. 
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SECTIONS A -A', C-C; 
AND SO ON 

SECTIONS B- B: 0-0; 
AND SO ON 

Fig. 6 - Periodic coupling structure for waves in a hollow, rectangular, metallic 
waveguide. 

power interchange. In Fig. 6 the TE~o and TE~o modes are coupled by 
the dielectric sheet. The fields of these modes in a transverse plane are 
sketched in Fig. 8; a thin dielectric sheet introduces maximum coupling 
at a distance d = O.392a, where the product of the two fields is a maxi­
mum. The coupling between the modes is reversed by m.oving the sheet 
to the opposite side of the guide centerline, as in section B - B' of 
Fig. 6. A similar maximum coupling position can be found for the 
TE~ - TE~ coupling, the fields for which are sketched in Fig. 9; 

. =: ~ =-1=:::::: --: ::~3- ------~-1 n nn-~ln-- co 
T- ----,----------T----------J 

I I I I , I , I 
- - - - _' - - - - i _____ ' __ - _l_ - - - '_ - - _1_ - - - ' __ - - - 4 

-----~ 
c' 0' 

2 

() __ -~----~~=:,:~:C~:,~P::RE:~~~~~~~~=J() 
SECTIONS A-A', C- C, SECTIONS B- B', D-O: 

AND SO ON AND SO or~ . 

Fig. 7 - Periodic coupling structure for waves in a hollow, round, metallic 
waveguide. 
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E 

~-~a~------~----~----~------~~~~ 

Fig. 8 - Transverse field distributions for TElOD and TE2oD. 

Fig. 7 shows the structural form of coupler. In both Figs. 6 and 7 the 
length Am/2 is that at which the coupled modes develop 7r radians phase 
difference. This length is near that for 7r radians phase difference in an 
empty guide, which for Fig. 7 is approximately one diameter. (Specif­
ically, in a i inch-inside diameter guide at 54 GHz the half-beat wave­
length for TE~ - TE~ is about i inch.) Structures of the type in Figs. 
6 and 7 provide mode transformation without complicated and expensive 
shaping of the metallic walls. 

Figures 10 and 111 which show the transverse cross sections of the 
guides, illustrate coupling between modes of different hollow metallic 
waveguides. Although TE~o - TE~ and TE~ - TE~l couplings are 
indicated, any mode pair having common field components at the 
coupling aperture may be used. Figure 12 illustrates the type 5 coupling 
distribution, simulated by a series of discrete point couplings which 
should be spaced no more than about one-third guide wavelength. 
Either broadband power interchange or intentional frequency selectivity 
may be obtained. 

Fig. 9 - Transverse electric field lines for TEllo and TEol o. 
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A-.J 
Fig. 10 - Transverse cross section for TElOD - TEolo coupling in hollow metallic 

waveguides. 

V. LUMPED-ELEMENT PARAMETRIC DEVICES 

Periodic coupling can be applied to lumped-element parametric de­
vices; Figure 13 is a simplified version. The box labelled WI is a filter 
presenting a short circuit at WI and an open circuit at other frequencies; 
the filter box labelled W2 has similar characteristics 

We assume a general time-varying capacitor 

(23) 

in which eo is a constant. Appendix A shows that the normalized 
amplitudes representing the voltages and currents in the two resonant 
circuits can be described by the coupled-wave equations: 

(24) 

(25) 

(26) 

(27) 

Fig. 11 - Transverse cross section for T E 01 0 - T E 01 0 coupling in hollow metallic 
waveguides. 
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00000 00000 00000 
f..m 
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Fig. 12 - Section A-A' for Figs. 10 and 11. 

For ep = 0 the solutions to equations (24) through (27) are of the form 

a l Al exp (jWI t) (28) 

at' At exp (- jWIt) (29) 

a2 A 2 exp (jW2 t) (30) 

a; A; exp (- jW2t). (31) 

We now specify a periodically varying capacitance component 

(32) 

and we proceed to determine the coupling coefficients in equations (24) 
through (27) and to deduce the frequency interrelations governing the 
parametric interaction. 

In equation (24) only the frequencies of the term in d( ) / dt at WI 

result in large coupled-wave interaction; similarly in equations (25) 
through (27) only frequencies near -WI are important. l\1oreover, in 
equation (24) the term in (a l - a'D is a reaction of circuit 1 upon itself, 
which for small coupling is negligible; we drop terms of that type. With 
these criteria for selection of important terms we find that putting 
equation (32) in equations (24) through (27) leads to the following as the 
only significant wave interaction 

Crt) 

Fig. 13 - Lumped element parametric circuit. 
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da l ° .1e d 
dt = .7w t

a
l - 8[e

l1
e

22
]!dt 

2203 

° (at (exp [j(Wpt + wet + cp)] + exp [j(wJ,t - wct + cp)] l) (:13) 

dat _ 0 * .1e d 
dt - -.7W2 a2 - 8[ ]~-d eu e22 2 t 

° (a l {exp [j(wet - wpt - cp)] + exp [j( -wet - wpy - cp)]}). (34) 

Noting that dA ~/dt « (wp ± We) in our loose coupling approximation 
[A ~ defined as in equation (31)] and similarly for dAl/dt, we find 
equations (33) and (34) reduce to 

~~I = jw1a l + cl 2l ai exp [j(wp + wc)i] + c I22at exp [j(wp - we)t] (3.5) 

Cl2l = (36) 

Cl 22 = (37) 

(38) 

(39) 

C2 12 = (40) 

Note that 

(41) 

(42) 

Using relations (28) and (31) for a l and a~ , equations (35) and (38) 
reduce to 

dAl - A* [oC + ) ] dt - Cl21 2 exp .7 Wp We - WI - W2 t 
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d~~ = c21l A I exp [j( -wp - We + WI + W2)t] 

+ C212 A I exp [j( -Wp + We + WI + W2)t]. (44) 

For simple exponential buildup of Al and A ~ there are two possible 
frequency relations; one is 

(45) 

which reduces equations (43) and (44) to 

dAI _ A* + A* (-'2 t) dt - C12I 2 CI22 2 exp J We (46) 

(47) 

Here the C121 - C211 terms are important; the other terms give a small 
cyclical variation on the exponential buildup. 

The other important frequency relation is 

which reduces equations (43) and (44) to 

d~l = C121 At exp (j2wet) + C122 At 

d~~ = C211 A I exp (- j2w e t) + C212 A 1 • 

(48) 

(49) 

(50) 

Here the C122 - C212 terms are important; the other terms give a small 
cyclical variation on the exponential buildup. 

Thus the effect of periodically varying the coupling in the lumped 
parametric circuit is to modify the frequency-relation requirement to 
equations (45) and (48). The result is eminently reasonable and per­
haps superficially obvious. We can see this as follows: equation (32) 
can be rewritten 

Suppose we assume a ep of 

.1e ep = 2 cos [(wp + we)t + '1']. 

Then the previously known frequency condition for strong interac-
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tion is 4 

If instead we have 

~e ep = 2 cos [(W p - wJt + rp]. 

then the frequency condition for strong interaction is 

If we then assume linear superposition (unjustified in the nonlinear 
process) we could expect relations (45) and (48) for ep of equation (32). 
The above analysis and associated discussion indicate the restrictions 
which must be met to achieve the desired result. 

The periodic coupling variation need not be cosinusoida1 as in (32). 
Instead, square wave or even low duty cycle pulse modulation of ep 

again leads to equations (45) and (48), although care must be exercised 
to assure that pulse modulation of the pump properly reproduces the 
signal content in a parametric amplifier. 

VI. DISTRIBUTED PARAMETRIC WAVE INTERACTIONS 

Coupling in distributed parametric wave interactions can be periodic 
in two ways: (i) with respect to time at a particular point, and (ii) 
with respect to distance in the direction of propagation at a particular 
instant of time. We derive the constraints on propagation constants 
and on frequencies which result from such periodicity and then indi­
cate some physical structures in which these wave interactions may 
prove useful. 

Figure 14 shows a simplified model of a distributed transmission 
medium. The distributed capacitance is nonlinear and is a function of 
time as well as of the position z in the direction of propagation. A number 
of waves of frequencies WI , W2 , and Wp may propagate. The distributed 
inductance Ln IS independent of current magnitude but may have 

1 (z, t) L L --
V(Z,t)t . 

o---l(Z,t) l(Z,tl TC(Z,tlT 

Fig. 14 - Distributed parametric circuit. 



2206 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

different values at different frequencies Wn ' In Appendix B the following 
coupled wave equations are derived for the normalized amplitudes of 
the traveling waves in Fig, 14 

d 'Q [ZOt]! (') a(Vep) I d at = -JfJtal - -2- exp -Jw1t --at-
Z w, 

(51) 

dat _ 'Q * [ZOl]! (' t) a(Vep) I 
d - JfJlal - ') exp JW1 at 

Z ... I-W, 

(52) 

da2 __ 'Q _ [Z02]! (_' t) a(vep) I 
dt - JfJ2a2 2 exp JW2 at 

W2 

(53) 

da~ _ 'Q _ [Z02]! , (0 t) a(vep) I 
dt - JfJ2a2 2 exp JW2 at -W2 

(54) 

in which we define, at frequency Wn , 

e(z, t) = eon + ep(z, t) (55) 

[ L J! 
Zon = e:

n 
(56) 

(57) 

The time and space varying portion of e(z, t) is all contained within 
ep(z, t), and eon is dependent only on frequency, 

Equations (51) through (54) may be used to explore the effects of any 
periodic coupling behavior, Because the normalized amplitudes at , a1 , 
a2 , and a~ are dependent on z only (according to equations 142, 143, 130, 
and 131), only the terms of the partial derivatives of (51) through (54), 
which yield zero time dependence of the coupling coefficient, result in 
appreciable coupled-wave interaction, This condition produces the 
frequency interrelations for parametric interaction, Similarly, only the 
terms of the partial derivatives of equations (51) through (54), which 
ultimately yield constant coupling between the traveling waves at all z, 
cause appreciable wave interaction; this condition produces the inter­
relations between the propagation constants (the f3n) necessary for 
parametric interaction, We proceed to apply this technique, 

6,1 Traveling-Wave Pump with Spatial and Time Periodicity 

We specify a function for the nonlinear distributed capacitance (type 
3 coupling of Table I) 

.1e 
ep(z, t) = 2 cos f3cz{ cos [(w + wc)t - f3+z] + cos [(w - wJt - f3-z]} 

(58) 
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in which {3+ is the phase constant at frequency (w + wJ and {3- is the 
phase constant at (w - wJ. This corresponds to driving the nonlinear 
medium with traveling wave at a modulated pump frequency cos wet in 
which We is the modulation; the cos {3ez factor represents a spatial periodic 
variation in the coupling. Structures which produce spatially periodic 
parametric interactions are described later in this section. 

We use equation (58) in equations (51) through (54) and select the 
terms which are capable of yielding a zero time dependence to the 
coupling terms. This shows a l and a~ to be the waves with significant 
coupling and the selected terms are 

~:I = - j{3lal + cl2la; exp [- j({3+ + (3c) + jew + Wc - WI - W2)t] 

+ cl2la; exp [ - j({3+ - (3c) + jew + Wc - WI - W2)t] 

+ c122a; exp [ - j({3- + {3J + jew - We - WI - W2)t] 

+ c122a; exp [ - j({3- - (3J + jew - We - WI - wz) t] (59) 

d:; = j{32a; + c211al exp [j({3+ + (3e) - jew + Wc - WI - W2)t] 

+ c211a l exp [j({3+ - (3c) - jew + We - WI - W2)t] 

+ c212a l exp [j({3- + {3J - jew - We - WI - W2)t] 

+ c21ZaI exp [j({3- - (3e) - jew - We - WI - W2)t] (60) 

in which 

(61) 

(62) 

(63) 

(64) 

From equations (59) and (60) one sees that there are two frequency 
conditions which can yield large wave interactions. When 

(65) 

the e121 and C211 terms dominate and the other terms produce only minor 
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fluctuations. Also, when 

W - We = WI + W2 (66) 

the CI22 and C212 terms dominate. When equation (65) is valid, (w + We -

W2) = WI and the coupling coefficients reduce to 

Note that 

WI * CI2I = - C2ll • 
W2 

(67) 

(G8) 

(69) 

When equation (66) is valid, the coupling coefficients of importance are 
C122 which reduces to equation (67) and C212 which reduces to equa­
tion (68), so that again 

WI * CI22 = - C212 • 
W2 

(70) 

To find the necessary constraints on the phase constants we note that 
in the absence of coupling (that is, Ae = 0) the solutions to equations 
(59) and (60) are of the form 

al = Al exp (- jf3IZ) 

at = At exp (jf32Z), 

(71) 

(72) 

When equation (65) is valid, use of equations (71) and (72) in equa­
tions (59) and (60) reduces them to 

d~1 = cI2 At {exp [ - j(f3+ - f3e - f3I - (32)Z] 

+ exp [ - j(f3+ + f3c - f3I - (32)Z]} (73) 

. {exp [j(f3+ - f3e - f3I - (32)Z] + exp [j({1+ + f3e - f3I - (32)Z]} • 

(74) 

We can now observe two conditions, either of which permit significant 
parametric wave interaction: 
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f3+ - f3c = f31 + f32 

f3+ + f3c = f31 + f32 • 

2209 

(75) 

(76) 

Repeating the above procedure for equation (66) being valid instead 
of equation (65) yields two more permissible conditions at which in­
phase wave interaction occurs at all z: 

f3- - f3c = f31 + f32 

f3- + f3c = f31 + f32 • 

(77) 

(78) 

When one of equations (75) through (78) is valid along with the 
corresponding frequency condition, equations (59) and (60) reduce to 

(79) 

(80) 

These equations are satisfied by exponentials of the form 

exp [± (CI2C21)lz]. 

When (CI2C21)! is pure real, growing and decaying waves are present and 
equations (67) and (68) meet this requirement. The parallel propagation 
of signal WI , idler W2, and pump W results in gain, as is well known. 
Other configurations of signal, pump, and coupling peridocity can result 
in pure imaginary values of (CI2C21)1 in which case a periodic interchange 
of power between waves is indicated. 

The above discussion pertains to type 3 coupling of Table I, the 
difference between the sin and cos being negligible. For square wave 
coupling the physical model is often simpler to construct; we briefly 
consider this situation. In Fig. 15 we assume a region "a" in which the 
coupling is constant but the normal phase matching relations are not 
met, that is, 

Fig. 15 - Model of a transmission medium with periodically. varying properties. 
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Then the proper way to establish the periodic coupling is to make the 
length Za such that the exponentials in equations (73) and (74) (with 
f3c = 0) become a half beat wavelength; for the specific case above 
there are two permissible choices, 

(f3+ - f31 - (32)Za = 71" ± 2p7l" 

({L - f31 - (32)Za = 71" ± 2p7l" 

with the time modulation present; for cw pumping 

(81) 

(82) 

(83) 

with p being any integer. Then, in the "b" region of Fig. 15, the cou­
pling may be zero in which case we have type 5 coupling, or the 
coupling may be reversed compared with the "a" region, in which case 
we have type 4 coupling. In either case we require 

(84) 

The f3's in the "a" and "b" regions need not be the same-the f3's of 
equations (81) through (84) are to be those values characteristic of 
the waves' location. Earlier work has made use of some of these pos­
sibilities.5,6 

Figure 15 shows square-wave coupling which, as discussed above, 
applies generally to passive wave interactions as well as to other 
parametric interactions. The conditions analogous to equations (81) 
through (84) follow from making the exponents in the appropriate 
coupled-wave equations, analogous to equations (73) and (74), equal 
to 71" or an odd multiple of 71". 

6.2 OW Traveling-Wave Pump with Simultaneous Modulation of the 
Entire Medium 

A case related to that discussed in Section 6.1 is described by 

(85) 

Here the pump wave is a continuous wave and the entire array of 
variable capacitors is simultaneously modulated. This may occur when 
the modulating wave We is brought into the nonlinear medium at right 
angle to z, or when We is so small that the entire length of nonlinear 
medium is a lumped element in the We circuit. Analysis similar to that 
in Section 6.1 shows that the frequency conditions are again given by 
equations (65) and (66), the coupling coefficients are twice those given 
by equations (67) and (68), and the phase constant condition is 
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(86) 

6.3 Second-Harmonic Generation with Spatially Periodic Coupling 

The capacitance function for second-harmonic generation with 
spatially periodic coupling is 

(87) 

We look for coupling with W2 = 2WI in equations (51) through (54) and 
find the interaction between al and a2 . The coupling coefficients are 

(88) 

. .6.e (W2)!( (31(32 )! 
C2I = J- - --

4 WI eOI e02 

(89) 

and the phase-constant requirement is 

(90) 

In this case (C12C21) 1f2 is pure imaginary, so the wave solutions, vary­
ing as 

exp [(CI2C21)!Z] ± exp [- (CI2C21)!Z], 

represent a cyclical interchange of power between al and U2. However 
the mathematical model represented by equation (87) is not valid when 
al diminishes appreciably because it no longer is the principal field on 
the variable capacitors as called for in equation (87). 

If square-wave coupling is used in the configuration of Fig. 15, the 
phase constant and length relations are 

(2(3la - (32a)Za = 7r ± 2p7r 
(91) 

(2(3lb - (32b)Zb = 7r ± 2p7r 

with p being any integer including zero; the subscripts a or b on the 
f3's denotes the region of Fig. 15 involved. As in the previous discus­
sion of Fig. 15, a constant coupling in the "a" regions may be paired 
with either zero coupling or reversed coupling in the "b" regions to 
form types 4 or 5 coupling of Table 1. 

6.4 Frequency Converter with Spatially Periodic Coupling 

Consider a medium driven nonlinear simultaneously at all Z by a 
frequency We according to 

(92) 
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With waves of frequency WI and W2 in the medium, from equations (51) 
through (54) we find that there is strong coupling between al and a2 at 
the frequency 

The phase constant condition is 

{3I - {32 = ±{3c 

and the coupling coefficients are 

(93) 

(94) 

(95) 

(96) 

Since (C12C2I)! is pure imaginary there is a cyclical interchange of power 
between waves, and in this case the mathematical model is valid for 
complete interchange of power. If a wave at WI is the input, the output 
will be solely a wave at W2 at a medium length Zt such that 

2 
(97) 

which yields 

(98) 

vVhen square-wave coupling in a periodic structure of the form of 
Fig. 15 is used, the phase constant and length relations become 

({3Ia - {32a)Za = 7r ± 2p7r 

({3Ib - {32b)Zb = 7r ± 2p7r 

with p being any integer. 

6.5 Structural Forms of Periodic Parametric Devices 

(99) 

(100) 

We suggest here a few forms which periodic parametric devices 
might take. Figure 15 has already been referred to; it is apparent that 
the diagram is applicable to all of the preceding cases. The "b" region 
might simply be an index-matching oil without coupling effects. In 
other cases, it may be possible to achieve a reversal of the coupling.G 

Figure 16 shows a centrosymmetric crystal such as (potassium 
tantalum niobate) with associated electrodes and potentials to achieve 
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o 
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Fig. 16 - Model of a nonlinear crystal with wave coupling that is periodic both 
in time and space. 

the periodic coupling. In such a crystal, a change in index of refraction 
is a parabolic function of the biasing field through the electro-optic 
effect. We have in mind laser wavelengths for the WI , W2, and W waves. 
For Va positive and Vb negative in Fig. 16, the slope of index versus 
RF field at frequency W is positive in the "a" region and negative in 
the "b" region. Therefore, a spatial variation of coupling of the general 
form described in Section 6.1 is established; instead of the cos f3cz term 
in equation (58), a square-wave variation results from Fig. 16 with 
Vc(t) = ° and dc biases of Va = + V, Vb = - V. 

With the addition of Vc (t) in Fig. 16, a component cos wet as in 
equation (85) adds a simultaneous modulation of the medium, of the 
general form discussed in Section 6.2; to conform to equation (85) the 
voltages Va and Vb should be made equal to zero. Second harmonic 
generation can be achieved using Fig. 16 with the W wave omitted, 
Ve(t) = 0, Va = V, and Vb = - V. 

Frequency conversion of the type discussed in Section 6.4 might also 
be accomplished in the structure of Fig. 16. In this case the W wave is 
omitted, the cos wet variation of equation (92) is produced by Ve(t), and 
the biases Va and Vb yield a square-wave spatial periodicity. Notice that 
Vb may be zero, approximating a type 5 coupling of Table I. 

Figure 17 shows an alternate wave feeding arrangement for simul­
taneously modulating the entire nonlinear medium at a laser frequency 
rate. This could apply to Section 6.4 as well as to Section 6.2 with the 
addition of an W wave parallel to the WI and W2 waves. 

In all cases, a guided wave may be used in the nonlinear medium 
by having a transverse index variation such as to produce a dielectric 
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Fig. 17 - Parametric device with simultaneous modulation of the entire length 
of the nonlinear medium. 

waveguide effect. This permits much longer regions of nonlinear inter­
action by holding the field within a small transverse area. 

VII. CONCLUSION 

We have outlined a wide variety of coupled-wave interactions in 
which a periodic variation in coupling may be used. The advantage 
in using periodic coupling rather then uniform coupling is frequently 
to achieve large power transfer between waves under conditions where 
uniform coupling will not do so-that is, where it is not possible for 
one reason or another to establish identical phase constants between 
the waves. Then by matching the periodicity of the coupling to the 
difference between the phase constants of the coupled waves, one can 
achieve nearly the same wave interactions as for matched phase con­
stants and uniform coupling. 

With frequency-selective filters, dispersion in the phase constants 
in combination with periodic coupling produces a desirable frequency­
selective transfer of power. In the case of parmetric coupled-wave 
devices, periodic coupling requires a generalization of the Tien condi­
tions which the frequencies and phase constants must meet.1 These 
are outlined in Section VI. 
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APPENDIX A 

Lumped Element Parametric Circuit 

We now derive the coupled wave equations for the lumped circuit 
of Fig. 13 with a general time-varying capacitort 

\tVe define WI and W2 by 

Then 

W~L1ell = 1 

w;L2 e22 = 1 

ell = e 1 + eo 

e 22 = e 2 + eo . 

dl 1 __ .l V 
dt - L1 1 

dI2 _ 1 
dt - -L

2 
V 2 • 

(101) 

(102) 

(103) 

(104) 

(105) 

(106) 

(107) 

With the filter denoted by WI in Fig. 13, a short circuit at WI and an open 
circuit at other frequencies, and similarly for the filter W2 

d 
II = dt ([ e1 + e(t) VI] - e(t) V2} (108) 

d 
12 = dt {[e2 + e(t)V2] - e(t)v1 }. (109) 

Expanding equation (108) 

II = (ell + ep ) d~l + VI :t (ell + ep ) 

V2 :t (eo + ep ) - (eo + ep ) d~2. (110) 

Rearranging terms, 

t We follow the terminology of W. H. LouiselU 
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Similarly, 

dV2 = ~ _ !l. (8 p V2) + L d8 p + (80 + 8v) dV I • (112) 
dt 8 22 dt 8 22 8 22 dt 8 22 dt 

As a result of the action of the WI and W2 filters, VI contains only the 
frequency WI , and V 2 contains only the frequency W2 . Hence dV ddt 
cannot contribute to dVI/dt, and may be dropped in equation (111). 
Similarly, the last term of equation (112) may be dropped. 

IV[ultiplying the remainder of equation (111) by jwl 8 11 , adding 
equation (116), and multiplying each side by (LI)!/2, gives 

(L I )! (dI I + . 8 dV I ) 

2 dt JWI 11 dt 

(113) 

Using the normalized amplitudes al, a2, and their complex conjugates 

(114) 

* - (L I )! (1* . V*) a l - 2 I - Jw 1 8 11 I (115) 

(116) 

(117) 

one may verify that equation (113) becomes 

dal = jw1a1 _ !l. {8 p [Cal - an _ (a2 - a~)J}. (118) 
dt dt 2 8 11 [811 8 22J 2 

Using similar methods one can derive the other coupled wave equations 
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APPENDIX B 

Distributed Parametric lV[ ediwn 

We now derive the coupled-wave equations for the distributed trans­
mission medium of Fig. 14 with the general time- and space-varying 
distributed capacitance. 

(122) 

where eon is a constant relevant at angular frequency Wn • Similarly the 
distributed inductance may have different values Ln at the various wn. 
From circuit theory 

aV 
az 
al 
az 

-L al 
at 

_ a(Ve). 
at 

Noting aejat = aep/at, equation (124) becomes 

We define 

al 
az 

Z02 = 

(31 = wl(Ll e01)! 

(32 = w2(L2e02)!. 

(123) 

(124) 

(125) 

(126) 

(127) 

(128) 

(129) 

Consider the case of propagating two waves in the medium of Fig. 14, 
one at WI and one at W2 . Then define 

+ V~(z) exp (- jW2t) 

fez, t) = fl(Z) exp (jWlt) + f2(Z) exp (jW2t) + fr(z) exp (- jWlt) 

+ 1Hz) exp (- jW2t) 

(130) 

(131) 

where the Vn and In are dependent only on z and the'< denotes the 
complex conjugate. Then Equation (123) becomes 
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+ ... = -jw1L1 exp (jwlt)Il - jW2L2 exp (jw2t)I2 + 
Equating terms of equal frequency 

dV l _ 

dz - - jw1L1I1 

dVr . L 1* -a;- = JW 1 1 1 

dV~ _ 0 L 1* 
dz - JW 2 2 2 0 

Using equations (130) and (131), equation (125) becomes 

( . ) dI l + ( . ) dI2 + . V ( 0 ) exp JWl t dz exp JW2 t dz . .. = - JW1 8 01 1 exp JWl t 

Equating terms of equal frequency yields 

_ a(V8p ) • 

at 

dl1 • V (.) a(V8p ) I dz = -Jw18 01 1 - exp -JW l t --at- w, 

dIr _ 0 V* (0 t) a(V8p ) I 
dz - JW

1
8 01 1 - exp JW

1 at -W, 

dI2 • V (.) a(V8p ) I dz = - JW28 02 2 - exp - JW2t --at- w. 

dI~ . V* CO )a(V8p ) I -d = JW28 02 2 - exp JW2 t -a-t- . 
z -W. 

(132) 

(133) 

(134) 

(135) 

(136) 

(137) 

(138) 

(139) 

(140) 

(141) 

The partial derivatives are to be evaluated in the vicinity of WI for 
equation (138), -WI for equation (139), and so on. Considering only 
forward waves, we define a normalized wave amplitude 

(142) 

(143) 
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Using equations (143), (133), and (138), 

da l 1 [. l I + . II + (. l) a(Vep )] dz = - 2(zol)I .1Wl..11 1 Z()JJW1 e01 I ZOI exp - JW 1 --at- . 

Using equations (143), (128), and (126), 

Hence 

'{3 - jW1 (LI e01)! (ll + I ) 
-J la l = '>()~ 1 ZOI I 

... ZOI (144) 

d _ -'{3 _ (ZOI)~ (_. t) a(Vep ) II (145) 
dz al - J lal 2 exp JWl at WI 

Using similar substitutions one can show that 

dar _ '{3 * (ZOl)! (. t) a(Vep ) I 
dz - J I a l - 2 exp JWl at _ W I 

(146) 

da2 _ -'{3 _ (Z02)! (-' t) a(Vep ) I 
dt - J 2a2 2 exp JW 2 at 

W2 

(147) 

da: _ '{3 * (Z02) t (. t) a(vep ) I 
dt - J 2

a
2 - 2 exp JW

2 at -W2' 
(148) 

With the mode amplitudes normalized as above, the square of the 
amplitudes represents the power carried by the mode. 
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The Cutoff Region of a Rectallgular 
Waveguide with Losses, 
Its Properties and Uses* 

By L. U. KIBLER 

(Manuscript received February 10, 1969) 

The effect of the wall and the dielectric losses on the operation of a 
rectangular waveguide at frequencies in the cutoff region was investigated 
both theoretically and experimentally. A new measurement technique that 
permits determining the electrical properties of metals and dielectrics at 
microwave frequencies was developed from these investigations. 

1. INTRODUCTION 

Physical waveguides have walls with finite conductivity and enclose 
dielectric regions that have finite losses. The usual high conductivity 
metals and low-loss dielectrics have little effect on wave propagation 
at frequencies well above and below the cutoff frequency region.t 

These metallic and dielectric losses, however, have a pronounced ef­
fect in a small frequency region that includes the nominal cutoff fre­
quency for a particular mode as determined for a lossless waveguide 
of the same geometry.1 The purpose of this paper is the theoretical and 
experimental investigation of the properties of a physical waveguide 
operated at frequencies in this latter region. 

The scope of this investigation is limited to a rectangular wave­
guide operated in the 8.2 to 12.4 GHz band of frequency (X band). 
The dominant mode of the lossless waveguide, the TEl{) mode, serves 
as the initial model for an analysis of a similar mode configuration 
when losses are present. The analysis is divided into two parts: first, 
the waveguide is assumed to have two narrow walls with conductivity 

,f From the disertation submitted to the faculty of the Polytechnic Institute 
of Brooklyn in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy (electrophysics), 1968. 

t For a lossless waveguide, the cut frequency. is a singular point for the Propaga­
tion constant of a waveguide mode. 

2221 
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al, and the two broad walls with conductivity a2; and second, the 
same waveguide is analyzed with a lossy dielectric slab centered be­
tween the narrow walls of the waveguide. 

The results of this analysis are examined experimentally using 
waveguide sections that have several different wall conductivities. 
Additional experiments were conducted with two types of lossy di­
electrics. The results of these experiments demonstrate the effect of 
wall losses and dielectric losses on propagation in the cutoff frequency 
region of the waveguide. 

The major use motivating this study of the cutoff properties of a 
lossy waveguide is that of determining the electrical constants of 
metals and dielectrics. The conductivity of three metals, and the 
dielectric constant and loss tangent of two dielectrics are determined 
experimentally using the cutoff properties of the waveguide. Copper, 
nickel, and a nichrome-copper composite were chosen. The effect of 
a dc magnetic field on the conductivity of copper and nickel were 
also investigated. The magnetic field produced no measurable effect 
on copper; however, the apparent conductivity of nickel decreased. A 
tentative explanation of this observation is advanced. Lucite and 
micarta were chosen for the dielectric experiments. 

Experimental values of these physical constants are determined to 
within an accuracy of less than 2 percent. Where puhlished 
values of these constants are available, they are found to agree within 
a few percent with the electrical values we obtained. The difference 
between published values and the values determined by this cutoff 
measurement technique reflect the use of certain approximations in 
the analysis and the experiment errors. These two sources of error 
are not separable, but it is evident that they are quite small. 

This experimental technique provides a marked departure from 
the classical resonant cavity techniques used in the past.2 The chief 
advantage of the waveguide cutoff measurement technique lies in the 
ability to measure the properties of metals accurately at microwave 
frequencies. The properties of dielectrics can also be measured al­
though the accuracy of the cutoff technique is about the same as that 
of the classical resonant cavity techniques. There remains, however, 
the general advantage of having alternate measurement techniques 
which may be more convenient in some instances. 

II. ANALYSIS 

There are many analyses of the effects of losses in waveguides.3- G 

These efforts have been concerned with the effect of wall or dielectric 
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losses at frequencies well above or below the cutoff frequency of a 
particular mode. Barrow and Lender treated the effect of a finite wall 
conductivity on the propagation constant near the nominal cutoff of 
a circular waveguide.7 •s Southworth noted that a decrease in the wall 
conductivity will decrease the frequency at which the cutoff region 
occurs.9 

The classic method of treating wall losses and dielectric losses of a 
single mode in waveguides in the propagation region of the guide is 
to consider the power loss in the walls.lO These approximate solutions 
are not valid in the vicinity of cutoff, since the lossless analysis on 
which they are based has a singularity at cutoff. 

In order to accurately calculate the propagation constant of a 
waveguide with lossy walls and possibly containing a lossy dielectric, 
we must consider what field components must be present in the walls 
and in the dielectric. We will direct our attention to the TE10 mode in 
the lossless waveguide as a starting point. 

Refer to Fig. 1. The TElO mode in the lossless rectangular waveguide 
has the following field components; a v-directed electric field, a z-di­
rected magnetic field and an x-directed magnetic field. 

From these fields of the lossless waveguide, we can consider what 
other field components are necessary when the bounding walls have 
finite conductivity. At the side walls x = 0, x = a, there must be a 
y-directed electric field at the wall. On the top and bottom walls there 
must be an x-directed electric field and a z-directed electric field in 
the metal as a result of the finite currents in these directions. These 
fields must be supported by like directed fields in the dielectric region 
of the waveguide since the tangential electric and magnetic fields 
must be continuous across the dielectric-metal boundaries. Figure 1 
shows the required field distributions. 

In order to solve the field in the waveguide we must find a solu­
tion of Maxwell's equations for a possibly lossy dielectric surrounded 
by walls with finite conductivity. The finite conductive walls will be 
considered to be describable by their intrinsic impedance. 

In a source free region, Maxwell's equations for a source free re­
gion with sinusoidal time dependence can be written for solution by 
vector potentials.1 These vector potential equations became 

1 
E= -VXF-zA+-V(V·A) 

y 

1 
H = V X A - yF + - V(V· F) 

z 

(1) 

(2) 
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Fig. 1- Field distribution of [L lossy, waveguide. 

where A = magnetic vector potential 
F = electric vector potential 

and 

yew) = (J' + jw(e' - je") (admittance per unit length) 
z(w) = jwp, (impedance per unit length) 

j = (-I)! 

e' dielectric constant 
e" dielectric loss factor 

(J' = conductivity 
p, = permeability. 
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The choice of a y-directed complex magnetic vector P Jtential of the 
form 

(3) 

where Am is an arbitrary constant yields, after substitution in equations 
(1) and (2), the complex electric and magnetic field vectors in the 
dielectric region. 

Am sin ICox cos KyoY (k2 _ TT2) (_) 
o 1'i.yo exp 'YZ !Ill 

Yo 

where 

and 

'Y = complex longitudinal propagation constant 
Kxo , Kyo = complex transverse propagation constants. 

(4a) 

(4b) 

(4 c) 

(4d) 

(4e) 

(4f) 

In order to account for the properties of the metals that make up the 
waveguide walls, we define the surface impedance of a metal at micro­
wave frequencies as 

;: 1,_. = Z(side walls) ;= Z, = R, + jX, 

H
Ex 1 = Z(top or bottom walls) == Z T = RT + jX T • (5) 

Z lI=b 
lI=O 

In order to evaluate the surface impedance of the metal waUs of the 
waveguide, we use the surface impedance for TEM waves in an un­
bounded lossy medium. This approximation is exact for a plane wave 
incident on a lossy metal. In the cutoff region the dominant mode fields 
can be approximately described by plane waves reflecting between the 
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side walls. Thus this definition of the surface impedance closely ap­
proximates the lossy waveguide in the cutoff region. 

These wall impedances can be defined from zew) and yew) such that 

Z S. 7' = Re (ZS, T Y + j JJ.ll AG (zs, T y. (G) 
YS.T YS.T 

From (6) the intrinsic wall impedance for the conventional good con­
ductors where CJ' » WE can be obtained as 

Zs = (WJ1.sye l + j) 
2CJ'. 

(7) 

ZT = (WJ1.Ty(1 + j) 
2CJ'T 

The determination. of the propagation constants IC;, K1/' and y 
results from application of the boundary conditions. These boundary 
conditions require continuity of the tangential E and H fields at each 
boundary. From equations (4) with conditions (5) and (7), we obtain 

k: - K~o T7 (WJ1.8)!(1 + JO) 
T? tan H'xoa = 2 
Ll..xoYo CJ's 

(8a) 

1(110 tan I(I/ob = (w
2

J1.T)\1 + j). 
Yo CJ'T 

(8b) 

These equations (8) are transcendental and are solvable on a digital 
computer. Solution of (8b) for Kyo allows the solution of (8a) for Kxo for 
each frequency of interest. The z-directed propagation constant "I can be 
determined by substituting Kxo and Kyo into (4f). 

It is evident that a set of curves for "I can be plotted for various 
values of Rs , T and X s , T • Thus from measured values of "I, the values 
of RS.T and XS,T can be determined, and hence the values of CJ'8 or CJ'T . 

The solutions represented by equations (8) can be used to determine 
the characteristics of the cutoff region of waveguides that have walls 
made of composite or coated metals. The intrinsic impedance of such 
conductors has been solved by Ramo and Whinnery.ll The solution 
is given below. 

(9) 

where 
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d = thickness of coating metal 

71 = (1 + j)(7rffJ.1(Jl)1 

Rl (7r~1r 

(7r~22)~· Rz = v 

(J1 conductivity of coating metal 

(J2 conductivity of coated metal 

fJ.l permeability of coating metal 

fJ.2 = permeability of coated metal. 
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ZCOMP can be substituted for either Zs or ZT in equations (8) depend­
ing on which walls of the waveguide are coated. 

The most general solution of a waveguide in the cutoff region must 
include not only the effects of walls with finite conductivity but also 
the effect of a lossy dielectric. When the dielectric completely fills the 
interior of the waveguide the solutions just given can be used by in­
serting the complex dielectric constant defined above. 

Because of a limited physical size of the available dielectrics or to 
accommodate certain measurement techniques discussed later, it may 
be necessary to use a thin slab of dielectric material that only partially 
fills the interior of the waveguide. Figure 2 is a sketch of such a dielec­
tric slab waveguide. 

WAVEGUIDE ...... , 

I 

b 
I 

--~ 

Fig. 2 - Dielectric slab waveguide. 
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The analysis of a lossy dielectric slab centered in a waveguide whose 
walls have finite conductivity proceeds from equations (1) and (2). 
The field solution if losses are assumed present only in the top and 
bottom walls can be obtained by choosing a y-directed complex elec­
tric vector potential 

F = !lyrp. (10) 

A solution which satisfies the physical requirements of the dielec­
tric slab waveguide dominant mode can be obtained by choosing the 
<p's as 

a-:-d~x~a+d 
Z - - Z 

a-d 
o~x~--- - Z 

where A I and B I are arbitrary constants. The field components in the 
three regions of the dielectric slab waveguide are determined by substi­
tuting the electric vector potentials represented by (10) and (11) into 
the field equations (1) and (2). 

In the dielectric region (a - d)/2 ~ x ~ (a + d)/2, the field com­
ponents are 

EYd = 'YB I cos ICd( X - ~) cos KydY exp (-'Yz)!lv 

EZd = - KYdB I cos KXd( x - ~) sin KydY exp (-'Yz)yz 

H (k~ - K;J B T7 ( a) T7 () Xd = Zd I cos 1~Xd X - 2 cos 1~YdY exp -'YZ!lx 

HYd = ~dl KxJCd sin ICd( x - ~) sin KydY exp (-'Yz)!ly 

HZd = BI~~Xd sin ICd(X - ~) cos KydY exp (-'Yz)yz 

where 

'Y = complex longitudinal propagation constant 
"12 = K;d + K~d - k~ 

(12) 
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K:td = x-directed propagation constant 
K Yd = y-directed propagation constant 
k~ = W2J.J.dEd 

Zd = jWJ.J.d 

a = guide width 
d = width of dielectric slab 

J.J.d = dielectric permeability 
Ed = E~ - jE~' 
E~ = dielectric permitivity 

E~' = dielectric loss factor. 
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In the region defined by 0 ~ x ~ (a - d)j2 the field components 
become 

E~o = ')'Az sin ICox cos KyoY exp (-,),z)yy 

E:o = - KyoAz sin ICox sin I(yoY exp (-,),z)Yz 

H' (k~ - K;J A . TT TT () :to = z SIn L\"xoX cos fiyoY exp -,),z Yx 
zo (13) 

In the region defined by [(a + d)j2] ~ x ~ a the field components are 

Eyo = ')'Az sin ICo(a - x) cos I(yoY exp (-')'z)yy 

Ezo = - I(YoAz sin ICo(a - x) sin ICoY exp (-,),z)Yz 

(k~ - K;J A . TT ( ) TT () z sm L\..xo a - x cos L\..yoY exp -,),z Yx 
Zo 

H AzICJ(yo TT ( ). TT () Yo = cos L\..xo a - x SIn L\..yoY exp -,),z yy 
Zo 

where 

')' = complex longitudinal propagation constant 
')'2 = k;o + K~o - k~ 

ICo = x-directed propagation constant 
I(yo = y-directed propagation constant 

(14) 
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k! = W
2

J..LoEo 

Zo = jWJ..Lo 

J..Lo = permeability of vacuum 
Eo = permitivity of vacuum. 

The total field solution of the dielectric slab waveguide is obtained 
by matching the tangential electric and magnetic fields at the dielec­
tric-air boundaries. Matching these field quantities yields 

KXd T7 d Kxo T7 (a - d) --;:; tan .n. x d 2" = -;: cot ·L\..x 0 -2- (15a) 

(15b) 

(15c) 

where ZT is the surface impedance of the top and bottom walls of the 
waveguide. 

Attempts to include the effects of the finite conductivity of the side 
walls in this solution were not successful. This failure stems from the 
lack of conformance of the boundary conditions and the coordinate 
surfaces. However, the fields in a waveguide operated in the cutoff 
region are approximately TEM waves in the transverse direction. We 
can use this fact to modify equations (15) to include the effects of the 
finite side wall conductivity. For this modifying solution we turn to a 
transverse resonance type of analysis. 

Consider the dielectric slab waveguide in Fig. 2 at cutoff as a loss­
less parallel plate waveguide. The side wall of the waveguide is rep­
resented by its intrinsic admittance, Ys. The center of the guide is 
considered an open circuit. The admittance looking to the right, Yl, 
and to the left, Y2, of the dielectric-air boundary, is given by 

(16) 

where 
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Yo = (~:r 

Yd = (~:Y 
1 

Y. z. 
1 

(WJ.L )\1 + j) 
20"s 

KXd = Wc(J.LdEd)! at resonance 
lCo = Wc(J.LoE.)! at resonance 

We = resonance or cutoff angular frequency. 

The condition for resonance is then given by 

Yl = -Y2· 

Substitution of (16) into (17) yields 

[

1 + jyozs tan lCo( Y)] = 

Yo . (a - d) 
YoZs + J tan ICo -2-

. K d 
- lY d tan x d 2' 

2231 

(17) 

(18) 

Since jyozs will be a small value for practical wall metals, we can 
use the approximation 

JYozs ex ;::::::; tan ex. (19) 

Equation (18) then becomes 

. [1 + tan ex tan Kxo(Y)] 
-lYo = 

-tan ex + tan ICo( a; d) 
(20) 

The bracketed function on the left side of equation (20) IS the 
expansion of cot(A-B) ; hence (20) becomes 

(21) 

Equation (21) has the general trigonometric form of the field solution 
given in equation (15a). Substituting the values for Yo and Yd and mul­
tiplying and dividing by Kxo and lCd yields when the common terms of 
J.Lo , Eo , Ed and J.Ld are cancelled and Kxo and KXd are reintroduced and the 
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equation rearranged 

Kxo cot [ICo(a - d) + ICoz.J = KXd tan IC
d 

0.. (22) 
Zo 2 Zo Zd 2 

Equation (22) is the same form as equation (15a) except for the 
modification of the argument of the cotangent function by the effect of 
the side wall impedance. Because of the evident similarity of equations 
(15a) and (22), we can interpret ICo as the transverse complex propaga­
tion constant that is valid not only at cutoff but over a range of fre­
quencies extending on either side of cutoff. 

The term zs)zo can be expanded by using the definition of the skin 
depth, 0 

(23) 

to yield 

£s. = (1 - j) 0 
Zo 2 

(24) 

The argument of the cotangent term becomes 

K [a - d + (1 - j) oJ . 
Xo 2 2 (25) 

Argument (25) indicates that the width of the air region of the dielec­
tric-slab waveguide is increased by an amount proportional to the 
skin depth. A similar result was obtained by Adler, Chu, and Fano, 
who analyzed the minimum of the standing wave pattern for a plane 
wave at an air-lossy metal interface.12 

The equations which furnish the solution of a lossy dielectric slab 
centered in a waveguide with lossy walls in the region of cutoff are 
given by 

IC n t K [(a - d) + (1 - j) 0] = IC d t T7 0. co Xo 2 2 an 1"'-Xd ') 
Zo Zd ... 

(26a) 

(26a) 

(26c) 

(26d) 

(26e) 
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These are complex transcendental equations and were solved by a 
digital computer. 

Equations (26), which provide the solution for the propagation 
constant of a lossy waveguide with a centered lossy dielectric slab 
operated in the cutoff region, were derived using several approxima­
tions. These approximations are considered quite accurate for fre­
quencies in the cutoff region. At frequencies outside the cutoff region, 
these approximations lead to an increasing error in the computation 
of the longitudinal propagation constant. Thus, the electrical proper­
ties of materials cannot be determined accurately for frequencies out­
side the cutoff region. The accuracy of the measurements in the cut­
off region will be evident from the experimental results. 

III. EXPERIMENTAL CIRCUITS 

The analysis in Section II shows that the cutoff region of a wave­
guide with losses in the walls and dielectric is basically characterized 
by the complex longitudinal propagation constant. The other descrip­
tive parameters such as impedance, admittance, scattering coefficients, 
and so on, depend on this propagation constant. 

The propagation constant can be measured experimentally by de­
termining the total attenuation and the total phase shift of a section 
of uniform waveguide whose length is known accurately. Accurate 
measurement of either attenuation or phase shift is difficult to obtain. 
However, differences in phase shift and in attenuation can be measured 
with great accuracy. 

The experimental circuit was designed to measure differences in 
attenuation and phase shift. Figure 3 shows the basic experimental 
circuit. It is a microwave form of the usual low frequency comparison 
circuit. A common source supplies two paths. The path B is used as 
a reference path. Path A, the comparison path, has two separate test 
paths, Ai and A2 , either of which may be chosen by proper positioning 
of the waveguide switches 1 and 2. The two main circuit paths are 
connected to a phase detector and to an amplitude detector by posi­
tioning switches 3 and 4. 

These experiments could be conducted at any number of micro­
wave frequencies. Available tables of the properties of metals and 
dielectrics show that these materials have a marked change in their 
dc properties in the X band of frequenciesp,13 For this reason and 
the availability of accurate test equipment, the center of the X band 
of frequencies, about 9.5 GHz, was chosen for the design of the ex­
perimental circuit. 
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r-----COMPARISON PATH A----->J 
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I TEST PATH AI I 
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REFERENCE 
TEST PATH A2 

REFLECTION PATH C 

REFERENCE 
PATH B 

Fig. 3 - Simplified schematic diagram of experimental circuit. 

The complete experimental circuit is shown schematically in Fig. 4. 
Standard commercial precision waveguide components were used 
throughout. Isolators were chosen to have voltage standing wave 
ratio's of less than 1.08 and isolation greater than 40 dB. The phase 
detection circuit was the kind described by Cohn.14 It can measure 
phase differences to an accuracy of 0.05°. The amplitude detection 
circuit was used in conjunction with the tandem precision rotary vane 
attenuators (path A, Fig. 4). This combination was capable of measur­
ing attenuation differences to an accuracy of 0.005 dB. 

A precision rotary vane phase shifter was calibrated against the 
phase detection circuit and both were calibrated with selected lengths 
of precision X band waveguide. The phase shifter (path B, Fig. 4) 
and the phase detection circuit were used in combination for phase 
difference measurements. 

Two types of waveguide test sections (see Fig. 5) were designed 
for use in these studies of the properties of a waveguide operated at 
cutoff. We designate these as a type A and a type B test section. Both 
types were electroformed of oxygen-free hard copper. Mandrels of 
the required dimensions for each test section were machined from 
aluminum, and polished to remove any roughness. The wall thickness 
of both types of test sections was a nominal % 6 inch. 

Each type A test section was electroformed in one piece. Standard 
X-band flanges, type UG-39jl, were soldered to each end of a test 
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LAPPED 
SURFACE 

"-
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----4.992----1 ""-,,- r-f.75 1 

~~~~~~~~T~AP~ER~~~~} 
0.900 

(b) 0.400 

Fig. 5 - (a) Type A and (b) type B waveguide test sections. Dimensions are 
in inches. * The widths of the test sections were measured with gauge blocks to 
insure accuracy. 

section. The flanges were machined and lapped to a smooth mating 
surface. Two alignment pins were inserted in each flange. Figure 6 
shows a complete type A section. 

The type B test sections were made in two halves (see Fig. 7). These 
halves were joined along the center of the broad faces of the wave­
guide walls. Each half of the type B test section was mounted in a 
brass channel for rigid support. The joining faces of these brass mount­
ing channels were polished to achieve the required width. Alignment 
pins assured accurate assembly of the two halves. The joining surfaces 
were machined and lapped for accurate mating. The halves were held 

Fig. 6 - A complete type A waveguide test section. 
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together by 24 10-32 bolts. Threaded holes to mate standard X-band 
flanges were placed in each end of the type B test section. A dielectric 
slab is shown inserted in one half. 

The type B test sections were used to examine the conductivity of 
various metals. These metals were placed on the walls of the cutoff 
portion of the type B sections by plating or evaporation. These test 
sections were made in halves for two reasons. First, it was possible 
to obtain uniform metal deposit on the three walls of the channel 
tha t results from making the section in halves. Uniform metal deposits 
on the interior walls of a closed test section was difficult if not im­
possible. Second, when metal is deposited on the walls of a waveguide, 
the interior dimensions are reduced by the metal thickness. At cut-

Fig. 7 - Type B waveguide test section with a dielectric slab in the top half. 
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off these small changes (0.0001 inch or less) in the waveguide height 
are insignificant. However, the same magnitude of dimension change 
in the width are very significant. By using two halves and by deposit­
ing the same thickness of metal on the joining surfaces as on the walls, 
there is an automatic compensation of the width change. The metal 
deposited on the narrow walls decreases the waveguide width, but the 
metal deposited on the joining surfaces increases the width on join­
ing the halves by the same amount. Thus, the waveguide width was 
kept constant regardless of the thickness of the deposited metal. 

IV. EXPERIMENTAL MEASUREMENT PROCEDURE 

The general procedure for measuring the properties of a wave­
guide operated in the cutoff region is divided into three steps. We use 
Fig. 3 to help in the discussion of these steps. First, the phase and at­
tenuation difference between the reference path (B in Fig. 3) and the 
reference test waveguide (A2 in Fig. 3) are measured. This measure­
ment includes both the transmission through, and reflection from 
(C in Fig. 3) the reference test waveguide. Second, the phase and 
attenuation difference between the reference path (B in Fig. 3) and 
the test waveguide section (AI in Fig. 3) are measured. As above, 
this measurement includes both the transmission through and the 
reflection from (path C) the test waveguide section. Third, the phase 
and attenuation difference between the reference test waveguide and 
the test waveguide are determined from the first two measurements. 

The measurement of the effect of copper walls on the properties of 
a waveguide operated at cutoff required a copper type A waveguide 
test section and a copper type B waveguide test section. The type A 
section was placed in the position of the reference test waveguide (A2 
in Fig. 3) ; and the type B section in the position of the test wave­
guide section (AI in Fig. 3). The three part measurement procedure 
was followed. 

These measurements yielded two results. The transmission measure­
ments result in the differences in the total phase shift and the total 
attenuation of the cw signal transmitted through the type A and type 
B waveguide test sections. The reflection measurements yielded the 
difference in the total phase shift and the total attenuation of the cw 
signal reflected from the type A and type B sections. From Fig. 5 
we see that the type A and type B test sections have identical tapers. 
These tapers were adjusted to be electrically equal. The total phase 
shift and attenuation differences thus became the phase shift and at-
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tenuation of the transmission through and the reflection from the 
2-inch-long cutoff section contained in the type B test section. 

The measurement of the effect of the dielectric slabs of lucite and 
micarta on the properties of the waveguide at cutoff followed the same 
procedure. The dielectric slabs (see Fig. 8) were centered in the type 
A and type B copper test sections. Since the tapers at the ends of the 
dielectric slabs are identical, the result of the measurement is the 
phase shift and the attenuation of the transmission through, and the 
reflection from, the dielectric loaded cutoff section of the type B test 
section. 

The measurement of the effect of the other metallic walls, nickel 
and nichrome-copper, required only type B test sections. A copper 
type B test section was placed in the reference test waveguide posi­
tion (A2 in Fig. 3). An identical second copper type B test section 
was placed in the test section position (AI in Fig. 3). The electrical 
difference between these two test sections was determined for use in 
correcting future measurements. 

The type B test section (AI in Fig. 3) was removed and the metals, 
nickel or nichrome, were applied over the copper walls of the cutoff 
region. The type B section was then reinserted into test position AI. 
The measurement steps just described were repeated. The results of 
these measurements after correction for the possible electrical differ­
ence yielded the phase shift and attenuation of the signal transmitted 
through and reflected from the 2-inch long cutoff section of the type 
B waveguide section. The properties of the waveguide with nickel or 
nichrome walls operated in the cutoff region are determined from 
these results. 

(a) 

(b) 

Fig. 8 - Dielectric slabs for (a) type A and (b) type B test sections. Dimensions 
are in inches. 
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These phase and attenuation measurements are used to calculate 
the complex propagation constant of a waveguide operated at fre­
quencies in the cutoff region. These calculations are based on an 
analysis developed by Southworth (see pp. 57 and 58 of Ref. 9). He 
defines a voltage wave progressing down a finite length transmission 
line and suffering repeated reflections from mismatches at the input 
and output of the line. Southworth derives an expression for the steady 
state voltage at any point on the line. Using Southworth's notation 
we define Vz as the voltage transmitted to the output of the cutoff 
section and Vo as the voltage reflected to the input of the cutoff sec­
tion. The difference between these two "voltages" can be written 
using Southworth's results as 

(V z - Yo) = [exp (-"Iol) - 1]. (27) 

The measurement of (V z - Vo) yields from (27), the experimental 
value of "10 , the complex propagation of the cutoff region of the wave­
guide section. 

The experimental measurements given by the phase shifter, the phase 
detection circuit, and the tandem attenuators were used to determine 
the value of (Vz - V o). Figures 3 and 4 should help in the following 
discussion. For the measurement of copper and dielectrics we have a 
type A test section in path A2 and a type B test section in path Al of the 
comparison path A. We consider two voltage waves, Eo and E l . Eo 
propagates in the comparison path A, and El in the reference path B. 

The attenuation and phase shift of test path A2 from the input rotary 
switch to the center of the type A test section is defined as Ao exp (jcf>o) , 
and from the center of the type A test section to the output rotary 
switch as Bo exp (jrf>l). The attenuation and phase shift of test path Al 
from the input rotary switch to the junction of the type B section taper 
and the cutoff section is defined as A~ exp (jcf>~), and from the output of 
the cutoff section to the output rotary switch, E~ exp (jcf>~). The voltage 
wave in the reference path B is defined as El exp (jOl). 

Test path A2 with a type A section inserted is connected to the com­
parison path. With the tandem attenuators set at an arbitrary value, 
the phase shifter is adjusted to provide a 45° phase difference be­
tween the comparison and reference paths. The outputs of the phase 
measuring circuit and the amplitude measuring circuit are propor­
tional to 

<Po + cf>l (28a) 
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and 

EoAoBo = 1110 = SWR meter reading, (28b) 

respectively. 
When the comparison path is connected to test path A1 with a typeB 

test section inserted, the outputs of the phase measuring circuit and the 
amplitude measuring circuit are proportional to CP~ + <I>~ + ~ V I and 
EoA~B~ I Vz I , respectively. 

The tandem attenuators and the phase shifter are adjusted to return 
the outputs of the amplitude measuring circuit and the phase measuring 
circuit to their values when test path A2 was connected to the comparison 
path. This condition is expressed as 

CP~ + CP~ + ~ V I = 01 + Op ± 45 ° 

T1EoA~B~ I VI I = 1110 

(29a) 

(29b) 

where Op is the change in the phase shifter and T 1, the change in the 
attenuators'reading. 

The same analysis is applied to the voltage waves reflected from 
test paths A and B. The reflection from test path B is expressed as 

2CPo = 01 ± 45° 

E02Ao = 1111 . 

The reflection from test path A is expressed as 

2cp~ + ~ Vo = 01 + O~ ± 45° 

T2E02A~ I Vo I = 1111 

(30a) 

(30b) 

(31a) 

(31b) 

where O~ is the change in the phase shifter and T2 is the change in the 
attenuators' reading. 

Subtracting equation (28) from (29) yields 

CP~ - CPo + CP~ - CP1 + ~ V I 

T1A~B~ I VI I = AoBo . 

(32a) 

(32b) 

A calibration procedure determines the difference between CPo and CP~ , 
and CP1 and <I>~ , and the ratio of A~/ Ao and B~/Bo . With these measured 
differences, V z is determined from the phase shifter change, Op in degrees, 
and the tandem attenuators' change, T1 in dB. 

Subtracting equation (30) from (31) yields 

(33a) 
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T 2A~ I Vo I = Ao . (33b) 

Again the calibration procedure furnished the values of CP~ CPo and 
A~/ Ao . The value of Vo was determined from the phase shifter change 
8! and the tandem attenuators' change T2 • The value of Vz - Vo is 
determined by the phase shifter's and attenuators' change in reading. 
The value of 'Yo is calculated from these experimental measurements by 
equation (27). 

This analysis is also applicable to measurements with type B test 
sections in both the reference test path and the test path as required for 
measurement of nickel and nichrome. We define the propagation con­
stant for one type B test section cutoff region (copper) as 'Yo and for the 
second type B test section (nickel or nichrome) as 'Yl . We can then write 
f or the nickel or nichrome section 

(V z - VO)A [exp (-'Y1I) - 1] (34a) 

and for the copper section 

(V z - Vo)cu = [exp (-'Yol) 1]. (34b) 

The difference of these two equations yield 

~A-cu = (V z - VO)A - (V z - Vo)cu 
(35) 

= [exp (- 'Y Il) - exp ( - 'Yo l)] . 

This difference represents the measured difference between a copper 
type B test section and a type B test section with a nickel or nichrome 
cutoff section. The analysis used previously to describe the copper 
cutoff section measurements is applicable here to show that ~A-cu was 
evaluated by this measurement and 'Yo by the copper test section meas­
urement; thus the value of 'Yl is determined. 

Since nickel is a magnetic material, measurements were made on the 
nickel plated type B test section with a magnetic field applied. These 
measurements demonstrated qualitatively that this measuring technique 
could be used to detect the magnetic induced changes in conductivity of 
certain metals. 

The magnetic field was obtained from a surplus horseshoe shaped 
magnetron magnet. The width of the pole pieces was approximately 
two inches and the gap approximately two and one quarter inches. 
The measured field between the poles was approximately 2100 gauss. 
The magnet was oriented with the type B test section to produce 
a magnetic field parallel to the electromagnetic field lines in the 
side walls of the waveguide. Because of its construction (horseshoe 



WAVEGUIDE FREQUENCY CUTOFF 2243 

shape), this magnet produced a nonuniform magnetic field in the wave­
guide walls. Uniform magnetic field sources were not available; hence, 
these experiments were qualitative. 

Measurements were made with nichrome to determine the effect on 
the waveguide cutoff properties of a lossy metal. A second type B test 
section was inserted in test path Al in place of the nickel plated test 
section. The reference type B test section remained in test path A2 • 

The phase shift difference and the attenuation difference between 
test path Al and test path A2 was measured for both transmitted and 
reflected signals. This was done to establish a reference for the type 
B test section in test path A. 

The type B test section was removed from test path Al and disas­
sembled. The two halves of the test section were masked and nichrome 
was vacuum evaporated on the two narrow sidewalls to a thickness 
of SOOA.. The two halves were reassembled and the nichrome type B 
test section reinserted in its original position in test path AI. 

The properties of a waveguide partially loaded with a dielectric 
was examined in the cutoff frequency region. Two types of dielectrics 
were used, one with low loss, lucite; and one with moderate loss, 
micarta.~~ In addition to demonstrating the effects of dielectric at 
cutoff, the dielectric constant and the loss tangent were determined 
from these measurements. Figure S is a diagram of the dielectric slabs. 

V. EXPERIMENTAL RESULTS 

In order to place the results of the experiments in the proper per­
spective, we note that the nominal cutoff frequency of a lossless wave­
guide 0.62150-inch wide operated in the dominant mode is 9502.030 
MHz. 

5.1 Metallic Test Sections 

The general effect of decreasing the conductivity of the waveguide 
walls for frequencies in and near the cutoff region can be seen in Fig. 
9. The conductivity ranges from the dc value of oxygen-free hard 
electro formed copper, 5.S X 105 mho/cm (reciprocal ohms per centi­
meter), to approximately one tenth the conductivity of copper. At a 
single frequency, as the conductivity is decreased, the imaginary part 
of the propagation constant, f3, increases. The real part of the propa­
gation constant, ex, decreases with decreasing conductivity for fre-

* The micarta used was made of woven cotten impregnated with cresylic acid 
formaldehyde resin. 



2244 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

I'IJ 
I 
52 
x 

E 
u 
....... 
(f) 
n:: 
w 

6~-----r_----_,-----_,-----_, 

2f------f-------~-----=~-4~~~--~ 

I'IJ 
I 
52 
>< 

E 
u 

....... 
(f) 

Z 
~ 

fu O.8XI:---==;;;;;;;;;;;o--~· 
o 

"""'---r'----Y0.8 <{ 
n:: 

----------j0.6 ~ z 0.6 f-------f-------t---:::;;;;<""......-:c-----:::;;7' 
~ 

~ 0.4f-----------,,O-:=-~-__=~ ='---------- --x- f3 0.4 co.. 

a = CONDUCTIVITY IN 
MHO/em x 10 5 

~~L98-----9-4L99-----~-----~9~5~0~1-----~9~5gl 
MHz 

Fig. 9 - Propagation constant in cutoff region as a function of conductivity. 
'Y = a + j{3. 

quencies just below cutoff, but a increases for frequencies just above 
cutoff. 

It is interesting that in Fig. 9 there is one frequency in the cutoff 
region for each value of conductivity where the real part of the 
propagation constant (a) in nepers per centimeter equals the imagi­
nary part of the propagation constant (f3) in radians per centimeter. 
This frequency is properly defined as the cutoff frequency when the 
waveguide has walls with finite conductivity. Further examination 
of Fig. 9 shows that this defined cutoff frequency shifts to a lower 
frequency as the conductivity of the waveguide walls is decreased. We 
see that a decrease in conductivity by a factor of ten causes this 
defined cutoff frequency to shift by 850 KHz. Since microwave fre­
quencies in this frequency region can now be measured to 1 KHz, the 
potential accuracy obtained by using this frequency shift for the 
measurement of the conductivity of metals is less than 1 per cent. 

5.1.1 Copper Test Sections 

The copper test section was measured at two different frequencies in 
the cutoff region. These frequencies, 9500.873 and 9497.960 l\1Hz, were 
chosen to cover a region where Fig. 9 shows a maximum difference in 
a and {3 for the range of expected copper conductivity. The calculated 
values of 'Yl (l in cm) for the first test frequency are plotted in Fig. 10 
as a function of the conductivity (in mho/ cm.) The value of 'Yl was used 
instead of 'Y to make comparison with the measured values easier, since 
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the measurement involves the total length of the test section and since 
the experimental errors are in dB and degrees. Each figure contains two 
curves; one for the total attenuation in dB, and one for the total phase 
shift in degrees. 

The experimental values are plotted as points marked aM and f3l1I 

on the figure. The vertical broken lines with markings Lla and Llf3 

indicate the error limits in the experimental measurements. In Fig. 10, 
the error limits are smaller for the f3 M measured value than for the 
aliI value. The results at the second frequency, although not plotted, 
support the plotted results. 

The average value of the conductivity of copper based on the aM 
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Fig. 10 - Copper experimental results at 9500.873 MHz yielding experimental 
value of conductivity. 0 calculated al, X calculated {Jl, and 0 measured values. 
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measurement at the two frequencies is 4.635 X 105 mho/ cm. The 
average value of the {3M values is 4.685 X 105 mho/cm. The average of 
the mean of the maximum and minimum values of aM and {3 M at the 
two frequencies is 4.69 X 105 mho/cm. The best value for the conduc­
tivity of oxygen-free hard electro-formed copper at 9500 MHz is taken 
to be the average of the aM and {3 M averages, 4.66 X 105 mho/ cm. The 
error in this value, based on the errors in the measured values is ± 1.5 
percent. This value of the conductivity of copper is 80.3 percent of the 
dc value of copper. Previously reported values for the conductivity of 
copper in this frequency range, based on measurements of long lengths 
of waveguide operated in the propagation frequency region, vary 
between 85 and 78 percent of the dc conductivity.15 

5.1.2 Nickel Test Sections 

The nickel test section was made by electroplating a O.OOl-inch­
thick layer of commercial grade nickel on the four walls of the cutoff 
section of an electroformed copper test section. The wall conductivity 
of this copper test section was measured before plating. These results 
are not repeated since this measured conductivity agrees with the 
previously measured value of the conductivity of the copper within 
the error limits mentioned earlier. 

The experimental measurements were made in the manner already 
described, at two test frequencies, 9500.873 and 9497.963 MHz. The 
calculated values of yl and the experimental points for the first test 
frequency is plotted in Fig. 11 as a function of conductivity. As was 
done for the copper measurements, two curves are plotted on the figure, 
one for the total real part of yl, and one for the total imaginary part 
of yl. 

Figure 11 shows some interesting features of the cutoff region. The 
total attenuation of the nickel test section is less than that for the 
copper test section, indicating that the cutoff region has shifted to a 
lower frequency. Consistent with this shift in the cutoff region to 
lower frequencies is the increase in the total phase shift. However, as 
the conductivity is decreased below 6 X 104 mho/em, the total at­
tenuation increases. This result indicates that the loss resulting from 
the decreased conductivity is increasing faster than the cutoff region 
is shifting to a lower frequency by the decreasing conductivity. This 
difference leads to a net increase in the total loss of the cutoff section. 

Only the experimental values for the first test frequency are plotted. 
The results at the second frequency support these results. The points 
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Fig. 11- Nickel experimental results at 9500.873 MHz yielding experimental 
value of conductivity including effect of applied dc magnetic field. "Magnet" in­
dicates results with magnetic field applied. 0 calculated ad, X calculated {3l, and 
o measured values. 

labeled a},! and {3 M are the experimental values. The vertical broken lines 
enclosing !la and !l{3 define the error limits in the experimental measure­
ments. The error limits in Fig. 11 are small for the phase measurement, 
{3 M, while the error limits for the attenuation measurement, aM, are 
large; hence the measured {3 value yields the more accurate result. The 
figures for the copper and nickel test sections illustrate a feature of this 
experimental technique. At some frequency in the cutoff region both the 
a and (3 measurement may have the same accuracy, while at another 
frequency either the a or {3 measurement will yield a more accurate 
result. This feature, of course, depends on the errors in the measuring 
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equipment. It does allow one to choose test frequencies which will 
compensate for the errors in the measuring equipment. 

The 13M measurements at the two test frequencies both yield a value 
of 6.10 X 104 mho/ cm for the conductivity of commercial grade nickel 
plating. The aM measurements yield conductivity values of 8.0 X 104 

mho and 6.4 X 104 mho/cm. However, the error limits of the aM meas­
urements include the 13M measured values. In this case, one concludes 
that the most accurate measure of the conductivity of nickel is the 13M 
value. The maximum range of the measured value of conductivity based 
on the 13M measurement is 6.3 X 104 to 5.9 X 104 mho/cm or an error of 
3.6 percent. The minimum range of the measured values is 6.0 X 104 to 
6.15 mho/cm or an error of 1.7 percent. 

The dc conductivity of nickel as given by various tables of the 
properties of metals1G is 1.28 X 105 mho/cm. The experimentally de­
termined value for the conductivity of nickel at 9500 GHz is 6.10 X 

101 mho/cm or 47.6 per cent of the dc conductivity. The conductivity 
of copper at 9500 GHz was determined earlier in this paper to be 80.3 
per cent of the dc value. Electroplated metals have been reported to 
be more porous than solid metals.15 This increased porosity would 
account for the larger decrease in the conductivity of nickel com­
pared with copper in these experiments. 

The nickel plated test section was used for a second experiment. 
The test section was subjected to a magnetic field of 2100 gauss as 
discussed in Section IV. The actual field applied to the nickel was 
difficult to determine accurately because of the size of the Hall plate 
available to measure the field. It is estimated that a field of 500 gauss 
was applied to the nickel walls. This same field was applied to the 
copper test section before plating. No measurable effects were obtained. 

The results of the experiment with the magnetic field are plotted in 
Fig. 11 as the points, LYl\IAGNET and {3uAGNET. It is evident from the 
location of these points on the calculated curves that the application 
of the magnetic field has caused an apparent decrease in the conduc­
tivity of nickel. The mean value of the conductivity resulting from 
the application of the magnetic field is 4.95 X 104 mho/cm. 

The exact cause of this decrease in conductivity is not known. Since 
there was no effect of the magnetic field on the copper test section 
before plating, we can assume that the decrease in the conductivity of 
nickel resulted from the ferromagnetic properties of nickel. This ef­
fect can then be explained by assuming that the magnetic field in­
creases the effective microwave permeability of nickel by the ratio of 
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6.10/4.95. The effect of the conductivity of the metal walls of a 
waveguide enter into the calculation of the propagation constant 
through the expression 

Hence, the increase in the permeability, 0, causes the sume result as 
a decrease in conductivity. It is well known that nickel is ferromug­
netic at low frequencies. The ferromagnetic property is described by 
its permeability. Evidently, if this explanation is correct, nickel ex­
hibits a small ferromagnetic effect at microwave frequencies. 

5.1.3 Nichr01ne-Copper Test Section 
The conductivity of the walls of one of the electroformed copper 

type B test sections was measured and found to agree with the original 
copper test section within the stated error limits. Nichrome was ap­
plied to the two narrow walls as described in Section IV, and an 
experiment was conducted at 9497.936 :NIHz. The calculated values 
and the experimental results are plotted in Fig. 12. This figure shows 
the effect of conductivity on the cutoff region not present in the pre­
vious results. The a and f3 curves have a somewhat unusual shape. 

These new features are not too unusual when it is considered that 
we are dealing with the combination of a composite metal, nichrome 
over copper, on two walls of the waveguide, and a single metal, copper, 
on the remaining walls. The thickness of the evaporated nichrome is 
much less than the nichrome skin depth. The effect of this combina­
tion of metals is best understood by considering the intrinsic wa II 
impedance defined in equation (9). The variation in this wall im­
pedance with the change in the conductivity of the coating metal for 
a fixed coated metal is discussed by Ramo and Whinnery.ll 

The variation in the total attenuation as the nichrome conductivity 
is decreased results from two factors, the shift in the cutoff region and 
the increase in the skin depth of the nichrome. The rate at which these 
two factors change as the conductivity decreases governs the shape 
of the a andf3 curves. This effect can be explained simply by consider­
ing the a curve. The explanation of the shape of thef3 curve is more 
complicated and would involve repeating the analysis of Ramo and 
Whinnery. This is not necessary for our purposes. 

As the nichrome conductivity is decreased, the skin depth of the 
nichrome is increased. The presence of the nichrome has less effect on 
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Fig. 12 - Nichrome-copper experimental results at 9497.936 MHz yielding ex­
perimental value of conductivity. 0 calculated (Xl, X calculated {:3l, and D meas­
ured values. 

the microwave currents and the total conductivity approaches that of 
copper. However, until the nichrome conductivity decreases suf­
ficiently, the conductivity of the nichrome-copper combination is less 
than that of copper and hence causes a shift of the cutoff region to 
lower frequencies with an attendant decrease in the total attenuation. 
As the nichrome conductivity is decreased further, the effective con­
ductivity approaches that of copper and the cut·off region shifts to 



WAVEGUIDE FHEQUENCY CUTOFF 2251 

higher frequencies. The attenuation increases again approaching that 
of a copper test section. 

The experimental value of a, aM , is plotted in Fig. 12. The experi­
mental value of (3, (3.M , lies on the flat portion of the (3 curve with error 
limits that cover the extent of the flat portion plotted. Thus the (3 

measurement gives no accurate measure of the conductivity of nichrome. 
The experimental value of nichrome conductivity at 9497 MHz based on 
the a measurement is 6.4 X 103 mho/cm. The maximum error is 1.5 
percent. The dc conductivity of nichrome is 104 mho/cm (See Ref. 16). 
The measured value of nichrome at 9497 IVIHz is 64 percent of the dc 
value. 

5.2 Dielectric Loaded Cutoff Test Sections 

It is well known that the insertion of a dielectric into a waveguide 
section causes an increase in the phase shift per unit length for fre­
quencies above the cutoff region. The effect of lossy dielectrics placed 
in a waveguide section operated in the cutoff region is not well known. 

Figure 13 shows the effect of a lossy dielectric in a waveguide over 
a frequency range covering the cutoff frequency region. The curves 
of the real and imaginary part of the propagation constant were 
plotted for several dielectric constants and loss tangents for a dielectric 
slab 0.059 inch thick inserted in a copper waveguide 0.62150 inch wide. 
The unloaded cutoff frequency of this waveguide is approximately 
9500 MHz. The waveguide has a wall conductivity of 4.64 X 105 

mho!,cm. 
Examination of these curves shows that increasing the dielectric 

constant for a constant loss tangent shifts the cutoff region to a lower 
frequency (0: decreases, f3 increases). For a constant dielectric con­
stant an increase in the loss tangent shifts the cutoff region to a 
higher frequency (0: increases, f3 decreases). Although not shown in 
Fig. 13, a decrease in the wall conductivity of the waveguide shifts the 
set of curves to a lower frequency. 

5.2.1 Lucite Dielectric 

The copper test section used for the original measurement of the 
conductivity of copper was used for the dielectric experiments. The 
0.056-inch thick slab of lucite was inserted in the copper test sections. 

The experimental values of a and (3 were compared with a series of 
curves calculated for various combinations of dielectric constants, 
E' / Eo, and loss tangents, E"/Eo, for the two test frequencies, 8361.653 
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Fig. 13 - Propagation constant in cutoff region as a function of relative dielec­
tric constant and loss tangent. 0 calculated ad, and X calculated {3l. 

and 8351.945 l\1Hz. Fig. 14 was plotted for those values which agreed 
with the experimental results. The results for 8351.945 MHz are not 
presented because they give the same result as in Fig. 14. The experi­
mental values, a1l{ and {311{ , are plotted on the respective curves of these 
two figures. The vertical broken lines indicate the error limits of the 
measured values. The curve in Fig. 14 was plotted for E' / Eo = 2.55 and 
a range of loss tangent values, /' / Eo • 

The error in the value of the measured a1l{ can be seen to be much less 
than that of {311{ • This is an example of a case discussed in Section 5.1.2 
where one of the parts of the propagation constant can be measured with 
greater accuracy than the other at the chosen frequency in the cutoff 
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region. From the experimental results, the experimental value of the 
dielectric constant of lucite is 2.55. The error limits, although not shown 
on the curves are 2.56 and 2.545. The measured values of the loss tangent 
are 0.0065 and 0.0066 giving a mean value of 0.00655. The error limits at 
8361.653 lVIHz are 0.0064 and 0.0066; and at 8351.945 MHz, 0.0065 and 
0.0067. The maximum error in the mean value of the loss tangent is 
4.5 percent, and the minimum error, 1.5 percent. 

The measured values of {3M do not lie at the same values of loss tangent 
as those of aM . However, the error limits of the experimental values 
of {3M enclose the error limits of the experimental values of aM . The 
measured values of {3 M , while not agreeing with those of aft! support the 
more accurate values of aM . 

The experimental values of the dielectric constant and the loss tangent 
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Fig. 14 - Lucite dielectric experimental results at 8361.653 MHz yielding ex­
perimental values of relative dielectric constant and loss tangent. 0 calculated 
ad, X calcuated j3Z, and 0 measured values. 
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for the lucite dielectric at 8350 IVIHz can be taken as 2.55 and 0.00655, 
respectively. The values reported for lucite at 10 GHz are 2 .. 59 and 
0.006, respectively.13 

5.2.2 M icarta Dielectric 

The lucite dielectric slabs in the copper test sections were replaced 
with 0.031-inch thick micarta slabs for an experiment in which the total 
attenuation and the total phase shift for various values of the dielectric 
constant E' / Eo and the loss tangent E"/Eo were calculated. The results 
which satisfy the experimental results are plotted in Fig. 15 for the test 
frequency 8477.289 MHz. Other experiments were performed at 8455.512 
MHz. These experiments, although not plotted, support the results of 
Fig. 15. 
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Fig. 15 - Micarta dielectric experimental results at 8477.289 MHz yielding 
experimental values of relative dielectric constant and loss tangent. 0 calculated 
ad, X calculated {3l, and D measured values. 
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In these experiments with micarta, the experimental results at 
8477.289 lVIHz yielded a dielectric constant E' / Eo = 3.62, and a loss 
tangent based on the a measurement of e" / Eo = 0.0575, and for the 
{3 measurement, e" / Eo = 0.0580. The results at 8455.512 MHz yielded 
a dielectric constant of 3.60 and a loss tangent for the a measurement of 
0.585 and for the {3 measurement of 0.0585. The mean dielectric constant, 
determined from the measurement at the two test frequencies, is 
e' / Eo = 3.61 with an error of ±1.5 percent. The mean loss tangent 
determined from these measurements is E" / Eo = 0.058 with an error 
of ± 1 percent. 

Published tables of the properties of dielectric materials list dielec­
tric constants ranging from 3.42 to 3.78 and loss tangents ranging 
from 0.05 to 0.08 for micarta at 10 GHz. The range of values stems 
from slightly different formulations used in the manufacture of 
micarta. Since the definite composition of our sample of micarta is not 
known, it is evident that our results are quite justified. 

The results discussed in the preceding sections are summarized in 
Table I, which lists the metal or dielectric, the frequency of measure­
ment, the measured values of the indicated electrical properties, and 
the value of these properties as determined by other measurement 
techniques. 

VI. CONCLUSIONS 

The effects of various metals and dielectrics on the properties of 
the cutoff region of a rectangular waveguide operated in the dominant 
mode have been investigated. It has been shown that a waveguide 
with walls of finite conductivity has a cutoff region instead of a 
singular cutoff frequency associated with a loss less waveguide. As 
the conductivity of the waveguide walls is reduced, the cutoff region 
is shifted to a lower frequency. 

It is evident that the definition of the cutoff frequency for a loss­
less guide does not apply when losses are present. The definition of 
cutoff frequency should take into account the conductivity of the walls. 
The cutoff frequency for a given mode may be defined (for a given 
conductivity) as that frequency where the real part of the propagation 
constant in nepers per unit length is equal to the imaginary part of the 
propagation constant in radians per unit length. For the same physical 
dimensions, a waveguide operated in the dominant mode with walls 
of conductivity 0'1 would have a higher cutoff frequency than a wave­
guide with walls of conductivity 0'2 for 0'1 > 0'2. 
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TABLE I-MEASUREMENTS AT 72°F, 50 PERCENT 

RELATIVE HUMIDITY 

Measured 

Metal 
Conductivity 

(mho/em) 

Copper (electroformed) 4.66 X 10" 

Nickel (commercial 6.10 X 104 

plated) 

Nickel (with 800 gauss 
H field) 

4.95 X 104 

Nichrome (evaporated) 6.4 X 103 

Measured 

Dielectric " /'0 ," /'0 

Lucite (sheet) 2.55 0.00655 

Micarta (sheet) 3.61 0.058 

* See Refs. 6, 9, 15, and 16. 
t See Refs. 9 and 13. 

Frequency 
(MHz) 

9500 

9500 

9500 

9500 

Frequency 
(MHz) 

8350 

8460 

Published Values* 

Conductivity Frequency 
(mho/em) (MHz) 

5.8 X 105 o (dc) 
4.64 X 105 10,000 
3.15 X 105 24,000 

1.28 X 10" o (dc) 

None Available 

1.0 XlO'l o (dc) 

Published Valuest 

Frequency 
~' /'0 ," /'0 (MHz) 

2.59 0.006 10,000 

3.62 0.057 
I 

10,000 

The introduction of a lossy dielectric into a rectangular waveguide 
operated in the dominant mode with walls of finite conductivity has 
a pronounced effect on the cutoff frequency region. A lossless dielec­
tric inserted into a lossless waveguide produces a, singular cutoff fre­
quency at a frequency lower than that of the waveguide alone. When 
the waveguide walls have finite conductivity and the dielectric has 
a finite loss tangent, there is a cutoff region rather than a singular 
frequency, In this cutoff frequency region, for a constant dielectric 
constant, an increase in the loss tangent causes the cutoff frequency 
region to shift to a higher frequency, For a constant loss tangent, an 
increase in the dielectric constant causes the cutoff region to shift to 
a lower frequency, For a constant dielectric constant and loss tangent, 
a decrease in the wall conductivity of the waveguide causes a shift 
of the cutoff region to a lower frequency, 

In the general case of a waveguide with walls of finite conductivity 
and a dielectric with a finite loss tangent, the cutoff frequency may 
again be defined as that frequency at which the real part of the propa­
gation constant in nepers per unit length is equal to the imaginary part 
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in radians per unit length. So defined, there are generally distinct cut­
off frequencies for each combination of wall conductivity, dielectric 
constant, loss tangent, and waveguide dimensions. 

Having discussed the effect of metals and dielectrics on the cutoff 
region of the dominant mode of a rectangular waveguide, we turn to 
uses of this waveguide phenomenon. The most prominent use of the 
cutoff region has been examined in detail; that of measuring the 
properties of metals and dielectrics at microwave frequencies. 

The properties of three metals, copper, nickel, and nichrome, and 
two dielectrics, lucite and micarta, were measured using the effect of 
these materials on the cutoff region. The experimental values of the 
metal conductivities and the relative dielectric constant and loss 
tangent of the dielectrics are given in Section V. The accuracy of all 
measured values was about ±2 per cent, although some measurements 
were accurate to ± 1 per cent. 

There are little published data on the microwave conductivity of 
these metals at the frequencies used for the experiments. What data are 
available agrees with our results to within 5 per cent. The error limits 
of the published values were not given; hence it is not possible to 
check the accuracy of the experimental values in this way. 

The decrease in the conductivity of nickel in the presence of a dc 
magnetic field demonstrates an effect not observed in the measure­
ments of the other metals. The exact cause of this effect is not known. 
It is suggested that, since nickel is ferromagnetic, the magnetic field 
caused a small increase in the microwave permeability of nickel. The 
analysis of a lossy cutoff waveguide operated at cutoff depends on the 
intrinsic wall impedance. Within this approximation, it is evident that 
an aE'sumed increase in permeability produces the same effect as the 
measured decrease in the conductivity of nickel. 

There are published data for lucite at 10 GHz. The values obtained 
from the cutoff waveguide measurements agree within 2 per cent of 
these values. Interpolating between the published values to obtain 
values for 8.5 GHz brings the agreement to about 1 per cent. The 
exact chemical composition of the micarta dielectric was not known. 
There are a range of values given in Tables of Dielectric Properties 
for different micarta compositions.13 These published values bracket 
the experimental results obtained from the cutoff measurements. 

Lucite was chosen as one of the test materials in order to establish 
a known reference to determine the total error inherent in this analysis 
and measurement technique. The experimental results show that the 
measured value of the electrical properties of lucite agree to within 
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1 per cent of values determined by other techniquesY The analysis of 
a lossy dielectric slab centered in a lossy waveguide operated in the 
cutoff frequency region requires more approximations than the anal­
ysis of the empty lossy waveguide. Hence, we would expect the maxi­
mum error to be present in the measurement of the lucite dielectric. 
The small error for lucite, 1 per cent, is indicative of the accuracy of 
this technique for measuring electrical properties of metals and dielec­
trics. 
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Illternl0dal Coupling at tIle Junctioll 
Between Straigllt and Curved Waveguides 

By C. P. BATES 

(Manuscript received March 6, 1969) 

This paper analyses the coupling of electromagnetic 1nodes at the junction 
between straight and continuously curved rectangular waveguides. The 
method of solution is based on an integral equation for1nulation, applicable 
for sharp as well as gradual bends. Such quantities as the average power 
transmitted or reflected into each of the various modes propagating in 
the straight and curved waveguide sections are readily obtained. 

The article presents the results of representative calculations for the two 
types of waveguide bends. These include graphs of the energy distribution 
in the transmitted and reflected 1nodes as a function of dimensionless ratios 
for a sharp bend; the range of values considered allows immediate applica­
tion of the results to standard C-band waveguides. The gradual bend example 
uses parameters encountered in the waveguide connections to an antenna 
in a typical microwave relay network. 

I. INTRODUCTION 

In a microwave system for guiding electromagnetic waves, often 
there are bends formed by connecting straight and continuously curved 
rectangular waveguides (see Fig. 1). Precise numerical computations 
and extensive analytical investigations of the angular propagation con­
stants for the various electromagnetic modes in the curved section 
alone have been published by Cochran and Pecina.1 The propagation 
constants and modal fields which may exist in the straight sections 
alone are trivial. To understand propagation of electromagnetic waves 
through these waveguide bends, therefore, requires a complete com­
prehension of the intermodal coupling that takes place at the various 
junctions and discontinuities. This paper investigates the coupling that 
occurs where straight and continuously curved rectangular waveguides 
join. 

This type of structure has been studied to some extent by others. 

2259 
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Fig. 1 - Waveguide bends formed by connecting straight and continuously 
curved rectangular waveguides. (a) E-plane bend. (b) H-plane bend. 

There is an approach based on a matrix calculus formulation by Rice.2 

Using a perturbation method, Jouguet obtained expressions for the 
fields in the curved waveguide up to terms of second order, that is, to 
terms in 1jR2, where R denotes the radius of curvature of the axis of 
the curved guide.3 He uses these approximate expressions to determine 
the intermodal coupling that results at the junction between the 
straight and curved waveguides for a particular polarization of the 
field. In contrast with J ouguet's approach, the analysis we use permits 
the waveguide bends to be as sharp as desired, while still including 
the gradual bend within the permissible range of parameters. 

Our approach involves the solution of a boundary value problem 
formulated in terms of the appropriate modal expansions for the fields 
in the straight and curved waveguides (see Section 2.1). The modal 
functions and propagation constants in these waveguide sections con­
sist of certain combinations of trigonometric and Bessel functions and 
the zeros of such combinations. Evaluation of the appropriate quan-
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tities for the curved waveguide is one of the more difficult aspects of 
this problem and necessitates not only numerical methods for deter­
mining zeros and asymptotic expansions but also computer algorithms 
for the accurate evaluation of Bessel functions. Such algorithms have 
been recently developed and programmed at Bell Telephone Labora­
tories.4 

With the modal expansions in hand, one can formulate an integral 
equation for the aperture field at the junction between the straight and 
curved waveguides. This equation, as discussed in Section 2.2, may be 
solved numerically by the method of moments to within a reasonable 
accuracy (error criteria are discussed in Section 4.1). A solution for 
the fields in the waveguides can then be easily obtained, and such 
quantities as the power reflected or transmitted into various modes at 
the junction may be evaluated. 

Section 4.2 gives examples of the intermodal power coupling for both 
sharp and gradual bends. Section 4.2.1 presents the results for the 
sharp bend example as a function of certain dimensionless ratios; the 
range of values considered allows direct application of the results to 
standard C-band waveguides. The results clearly demonstrate that 
significant intermodal power coupling takes place; they also establish 
the exaggeration which occurs in the reflected powers near the cutoff 
frequencies of the individual modes. Section 4.2.2 gives the results for 
the gradual bend example and shows that reflections are negligible and 
hence only the forward coupling has significant levels for the gradual 
bend considered. 

II. FORMULATION AND SOLUTION OF THE BOUNDARY VALUE PROBLEM 

2.1 Fields in Straight and Continuously Curved Waveguides 

An arbitrary electromagnetic field, which may exist in either the 
straight or continuously curved waveguide, may be expressed as a sum 
of the longitudinal electric (LE) and longitudinal magnetic (LM) 
modes appropriate to that section (for explicit details on such modal 
representations in a continuously curved waveguide see Cochran and 
Pecina and for the straight waveguide see Harrington!, 5). The LE 
modes have an electric field transverse to the z-direction which means 
this field component lies in the longitudinal plane, while the LM modes 
have their magnetic field similarly positioned. 

The explicit form of the transverse components of the LE model 
expansion, suppressing an exp (jwt) time convention, is given below 
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(for a LE field and straight waveguide) : 

sEe ~ A ± "e ('/~) = L.J .. ':i mn emn exp =FJfJmnY, 
m,n (1) 

with 

"e~n = cp;'(X) tfn (z) X , 

"h:n = 'Q 1 Z dd cp~(x) dd tfn(z)i; + 'Q h~Z CP:"(X) tfn(Z)Z, 
JfJmn U X Z JfJmn 

CP:"(S) = (Em/b)! cos [m7r/b(r2 - X)], 

m = 0, 1, 2, "', Eo = 1, Em = 2, m ~ 1, 

n = 1,2, 

m = 0,1,2, ... , 

n = 1,2, ... , 

and 

k = w/c, Z = jW}l, 

Here BEe is the transverse electric field intensity, SHe the transverse 
magnetic field intensity, W the angular frequency, k the wave number, 
}l the permeability, and c the phase velocity of the medium filling the 
guide. The vector components which make up the field are given by the 
lower case letters. The A!n are the unknown expansion coefficients of the 
individual LE modes in the straight guide with the (±) indicating waves 
traveling either in the positive or negative y-direction (towards or away 
from the junction in the straight section of Fig. la). The propagation 
constant of a particular mode is f3mn, and it is either real or purely 
imaginary (providing the guide is filled with a lossless medium) thus 
indicative of either a traveling or evanescent mode. 

In the curved waveguide, using polar coordinates (p, <p, z), one has 
(for the LE field and curved guide) : 

m,n (2) 

fn,n 

with 
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rh:"n = ~Z- dd CP~tn(l~nP) dd 1/;n(Z)j3 + . h~Z cp:"n(hnp)1/;n(Z)Z, 
]Vrnn P Z JVmn 

cp:"n(hnp) = Cvmn(hnp)/II Cvtnn(hnp) II, 

C v ",,,(hnP) = J: mn(hnr2) Yvmn(hnp) - Y~mn(hnr2)J vmn(hnP) , 

and 

II C vmn(hnp) II = (l~2 C~/ p dp ) ~ . 
In these expressions J v (x) and Y v (x) are the Bessel functions of the 
first and second kind respectively; the prime indicates differentiation 
with respect to the argument. The permissible propagation numbers 
Vmn, in this case, are given by the implicit solutions of 

m = 0,1,2, .. , , 

and again they are either real or purely imaginary providing the guide 
is filled with a lossless medium.6 Section III discusses the modal function, 
C" , in more detail. The C;m are the expansion coefficients of the individ­
ual modes with the (±) again designating the direction of mode travel. 

In equations (1) and (2) the superscript e indicates that the partic­
ular vector is an LE component and the superscript s or c indicates 
that the vector or function is associated with the straight or curved 
sections. The subscripts 1n and n are the modal indices. In Section IV, 
where results are also given for an Lll1 polarization, a superscript m 
designates such fields. 

One may easily verify that these transverse LE field components, 
along with their longitudinal counterparts, satisfy Maxwell's equations 
in the appropriate regions and that the required boundary conditions, 
namely, zero tangential electric field and zero normal magnetic field 
on the waveguide walls, are met. Such representations are complete in 
that any arbitrary fields in the straight and curved waveguides which 
have their electric components confined to the longitudinal plane can 
be expanded in the form of equation (1) or (2), respectively. 

Appropriate expressions may also be written for the transverse com­
ponents of the Lll1 modal expansions. They would also be complete in 
the sense that any arbitrary fields in the straight and curved wave­
guides which have their magnetic components confined to the longitu­
dinal plane could be expanded in such a representation. 

It can be shown, for the geometry indicated in Fig. 1, that an LE 
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source in either the straight or curved waveguide excites only an LE 
field, and conversely an L~~ source excites only an LM field. Hence 
a waveguide bend excited by an LE mode is usually referred to as an 
E-plane bend, in keeping with the fact that the LE source sets up only 
an LE field for which the electric field is confined to the longitudinal 
plane, that is, the plane of the bend. Figure 1a shows the typical wave­
guide geometry for an E-plane bend. Analogously, an H-plane bend is 
one for which the magnetic field is confined to the plane of the bend; 
this occurs when the source and hence the resulting fields are LM. 
Figure 1 b shows typical geometry for this case. 

Notice that the transverse vector components can be shown to satisfy 

(3) 

In equation (3) the integration is taken over the cross-sectional area 
of the appropriate waveguide interior. Such orthogonalities are a con­
sequence of the differential equations and the boundary conditions sat­
isfied by the scalar parts of the transverse vector components. 

2.2 Integral Equation Formulation and Solution 

As discussed in Section 2.1, the fields in the guides need only be ex­
panded in a representation consistent with the given source. In the 
sequel, the unknown coefficients of the modal expansions are deter­
mined through an integral equation approach. 

If there are LE modes incident on the junction in Fig. 1a in both 
the straight and curved guides, the continuity in the transverse electric 
and magnetic fields at the junction between the guides requires 

tn,n 

and 

Ss she "" A- she "" c+ the se Che 
T8 rs -.L..J 1nn mn ==.L..J mn mn - r8 TS· (5) 

m,n m,n 

Here the source coefficients have been designated, for emphasis, by 
S;8 and S~8 for the straight and curved sections, respectively; they are 
assumed specified. The unknowns are the modal expansion coefficients 
A;;;n and C~n' 

Each side of equation (4) is actually an expansion of the unknown 
aperture electric field Ea(x, z). Referring to the orthogonal properties of 

t Kronecker delta. 
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the transverse vector components in Section 2.1, it follows that 

(6) 

and 

(7) 

for m = 0, 1, ... and n = 1, 2, ... with the integration being per­
formed over the aperture area. t Rearranging equation (5) and substi­
tuting the relationships (6) and (7) for the expansion coefficients re­
sults in: 

2S;8 8h~8 + 2S~8 Ch;8 = f Is A Ea(x', z') . G(x, z; x' , z') dA', (8) 

where the dyadic kernel is given by 

G(x, z; x~ z') = L [8 e:nn(x', z') 8h:"n(x, z) + x' ce:nn(x' ,z') ch:nn(x, z)]. (9) 
m.n 

Notice that equation (8) is precisely in the form of a vector Fred­
holm integral equation of the first kind for the unknown aperture elec­
tric field. 

A solution of this integral equation by the method of moments would 
proceed as follows. 7 Expanding the aperture electric field in terms of 
the modes of the straight waveguide gives 

(10) 
m,n 

Substituting into equation (8) and interchanging summation and in­
tegration then requires 

(11) 
m,n p 

with bli/lJn defined by 

(12) 

Taking the inner product of equation (11) with 8h;" finally leads, after 
some algebra, to 

t The indices m and n of the modes are chosen such that in the limit of rl 
-:) 00 the mode in the curved guide with index numbers m and n is asymptotic to 
the mode in the straight guide with index numbers m and n. 
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j = 0, 1, 2, ... , q = 1, 2, ... (13) 

as the infinite set of algebraic equations to be solved for ama , the expan­
sion coefficients of the aperture electric field. 

As a first observation, we note from equation (13) that ama == ° if 
q ~ s, and hence the aperture field is actually given by 

(14) 

that is, the z-variation of the excited modes is the same as the z-varia­
tion of the source mode. At this point, therefore, the second subscript 
may be dropped without loss of generality by merely realizing it is the 
same as the second subscript of the exciting modes. 

Equations (13) form an infinite set of equations for the infinite 
number of unknown expansion coefficients of the aperture field. A trun­
cation is now made in order to solve for a,it by standard matrix meth­
ods, including sufficient terms in the field expansions in order to ensure 
reasonable accuracy (see Section 4.1).t 

2.3 Reflected and Transmitted Modes 

Let us assume here that the expansion coefficients for the aperture 
field have been obtained by solving equation (13). A relationship be­
tween the coefficients of the modes in the straight guide and the aper­
ture field was given by equation (6). Substituting the expansion of the 
aperture field, equation (14), into this equation gives an expression for 
the coefficients of the modes in the straight guide as 

m = 0,1,2, (15) 

Likewise equation (7) yields, for the coefficients of the modes excited 
in the curved waveguide, 

m = 0,1,2, .... (16) 

These relations are deceptively simple in that much of the complex 
interplay between incident, reflected, and transmitted modes is hidden 
in the "assumed known" coefficients am and aq • 

The average power carried by the incident rth mode in the straight 

t The solution of equation (13) also requires knowledge of the bmp defined by 
equation (12). Their determination is at the crux of this method and their 
evaluation will be discussed in Section 3. 
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and curved guide may be determined: 

PI; = - II 8E~ 8H;* ds = j{3r~ * 1 s: 12 (17) 

and 

Pl~ = If CE: CH;*ds = . h
Z

2 

* \ s~ \2t. 
JV r 

(18) 

Here we assume that the incident rth mode is a propagating mode with 
real f3r and Vr, and that (") designates the complex conjugate of a 
quantity. 

The average po\ver coupled into the ?nth mode from the incident rth 
mode may be evaluated in a similar manner yielding for the straight 
guide 

(19) 

and for the curved guide 

pem
e 

r = ~ 1 c+ 12 jvmZ* m· 
(:20) 

The index 'in in equations (19) and (20) is anyone such that f3m or V1ll 

is real; that is, the ?nth mode must be a propagating one which carries 
energy away from the junction. There are, of course, only a finite num­
ber of such propagating modes for a particular operating frequency 
(see Cochran and Pecina!). 

Equations (19) and (20) thus determine the power coupling, that is, 
the power excited in the ?nth propagating mode either transmitted or 
reflected when the rth mode is incident in either the straight or curved 
sections. Naturally, these quantities become of dominant importance 
as one moves away from the junction and the evanescent modal con­
tributions die out. Section 4.2 gives some examples of the power cou­
pling for both sharp and gradual bends. 

A similar analysis can be performed for an L111 excitation. Section 
IV presents the numerical results for this case. 

III. PROPAGATION CONSTANTS AND MODAL FUNCTIONS 

The modal functions for the continuously curved waveguide are de-

:j: At this stage we assume that the waveguides are filled with a lossless dielectric; 
hence, the total power is the sum of the power in each individual mode. 
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fined in terms of Bessel functions of the first and second kind in Sec­
tion 2.1. Obviously they are solutions of Bessel's differential equation, 
which we write in the form 

; ;P (p ;p Cv mn) + (h! - v;;)Cvmn = 0; (21) 

moreover, for LE excitation, they are such that 

d~ Cvmn(hnp) I;:'rl = o. (22) 

The boundary condition at p = r2 is automatically satisfied by the 
particular choice of the cross-product Bessel functions in Section 2.1, 
whereas the boundary condition at p = rl determines the admissible 
angular propagation constants Vmn. 

The real angular propagation constants result in propagating modes 
and hence are the most important in this analysis. These are obtained 
for the sharp bend by a program of precise calculations of the real 
v-solutions of the transcendental equation (22). The Bessel functions 
appearing in equation (22) were approximated with six-figure accu­
racy by the use of algorithms recently developed and programmed for 
a digital computer as discussed in Ref. 1. 

There are other methods to determine the propagation constants of 
gradual bends. For instance, a large parameter expansion of the differ­
ential equation (21) can be made; that is, the modal functions and 
propagation constants may both be expanded in negative powers of r2. 
The unknown coefficients of each series can then be determined by im­
posing the boundary conditions at p = rl and r2. This approach has 
been used by Kislyuk, as well as others; Ref. 8 gives these results. 
Four terms in the expansion are all that are available, because higher 
order terms are extremely tedious to determine. 

A comparison of the real values of v evaluated from Kislyuk's re­
sults with the precise v-zeros of equation (22) shows five digit agree­
ment for gradual bends (rt/b > 12). In the final program, we chose 
to calculate all angular propagation constants by Kislyuk's equation 
for large (rt/b) , that is, 12 or greater. 

In the sharp bend case the imaginary propagation constants cannot 
be obtained precisely, because there are no computer algorithms for 
the evaluation of Bessel functions for this range (imaginary orders). 
So other techniques must be used. 

When the propagation constants lie on the negative imaginary axis, 
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that is, v = -ip. and p. is not close to zero, asymptotic expansions for 
the modal functions can be obtained. One approach is to approximate 
the Bessel functions in ell (the derivative with respect to hnr2 is not 
performed as yet) by the first term of the asymptotic series developed 
by Olver.9 This yields an expression in terms of the familiar Airy func­
tions Ai and Bi. When the Airy functions are approximated by the 
leading terms of their phase-amplitude expansions (see Abromowitz 
and Stegun10

) and the derivative with respect to hnr2 is taken, the ap­
proximation of ell becomes 

(23) 

where 

and 

The imaginary propagation constants for the sharp bend are now de­
termined by numerically finding the p'-zeros of the asymptotic expres­
sions, equation (23). 

The evaluations of the inner products, equation (12), required in 
Section 2.2 are performed numerically. When the propagation con­
stants are real, we again use the computer algorithms for the evalua­
tion of the Bessel functions for both the sharp and gradual bends. The 
latter evaluation was required because the evaluation of the modal 
functions by means of a large parameter series expansion as deter­
mined by Kislyuk's approach (really only three terms available) does 
not exhibit very good agreement with the precise evaluation of the 
modal function even in a region where the agreement between the two 
methods of determining the propagation constant is very good. When 
the propagation constants are imaginary the modal functions for the 
curved waveguide are evaluated by means of the approximate expres­
sion, equation (3), for both the sharp and gradual bends. 

A similar analysis may be made for an LM polarization; Section IV 
presents the results of appropriate numerical calculations, as well as, 
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comments concerning the verification of the numerical solution and 
some representative examples. 

IV. ERROR CRITERIA AND REPRESENTATIVE EXAMPLES 

4.1 Error Criteria 

As discussed in Section 2.2, the solution of the integral equation for 
the aperture field reduces to an infinite set of algebraic equations for 
its expansion coefficients. We make a truncation so that standard ma­
trix techniques may be used to solve for these unknown coefficients. 
Sufficient terms must be included to obtain reasonable accuracy; in­
cluding more terms than necessary wastes computing time. 

One can verify that a particular truncation is adequate by determin­
ing how well the field solutions satisfy the continuity requirement at 
the aperture. The conservation of energy, which requires that the aver­
age power in all the propagating modes traveling away from the junc­
tion between the guides be equal to the average power in the propagat­
ing modes incident on the junction, is always satisfied (within roundoff 
error) by the solution obtained (that is, regardless of the number of 
modes used) ; therefore it cannot be used as an accuracy check. This 
redundancy in the conservation of power, which may be established by 
an analysis suggested by Amitay and Galindo,l1 is a consequence of the 
method of moments approach which has been used to solve the integral 
equation. 

When the incident field is an LE mode, the aperture electric field is 
determined. From this field one can derive the modal coefficients and 
hence the magnetic fields in the straight and curved guides. These de­
rived magnetic fields should be continuous at the aperture; therefore, 
a mean square error (MSE-refer to its application by Cole and oth­
ers12

), normalized with respect to the incident field, can be defined as 

lVISE 
II ("He - CHe). ("He - CHe)* ds 

Jf ("H~ + cHD· ("H~ + CH~) * ds 

The subscript i designates the incident exciting field; the terms in the 
numerator constitute the total fields, all evaluated at the junction be­
tween the guides. This mean square error is a meaningful measure of 
how well continuity in the aperture field is approached, and is, of 
course, a function of the number of modes used in expanding the fields. 
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It was found, in the examples of Section 4.2, that the mean square 
error could be maintained smaller than 10-5

• This corresponds to three 
to four digit agreement between the samples of the transverse com­
ponents of the magnetic fields on both sides of the aperture. A similar 
mean square error may be defined for the LJ.11 case with corresponding 
error levels. 

4.2 Representative Examples 

Some of the following representative examples correspond to very 
sharp bends (r1/b ~ 1); the others correspond to very gradual bends 
(r1/b » 1). 

4.2.1 Sharp Bends 

Figures 2 through 5 and Table I give the results for the sharp bends. 
We give the power transmitted into the modes of the curved guide and 
reflected into the modes of the straight guide for an incident mode in the 
straight guide in terms of the dimensionless ratios bfA, rdb, and a/b. 
Any structure with these ratio numbers has a coupling characteristic as 
displayed. 

The incident modes used in Figs. 2 and 3 are from the set of LM:,.o 
modes in the straight guide which have an electric field given by 

"Em -B:'oh~ (2/b).l . [/b( )] (. )" 
mO = '{3 Y 2 sm m7r r2 - X exp - J{3moY z. 

J ma 

That is, the incident fields are the familiar TEmo modes of a uniform 
rectangular guide. The curved guides used here are referred to as 
H-plane bends since the magnetic field lies in the plane of the bend 
(see Section 2.1). In Figs. 4 and 5 the incident modes are from the LE"".l 
mode set in the straight guide. The curved guides there are referred to as 
E-plane bends since the electric field lies in the plane of the bend. 
The LE~l mode incident corresponds to the familiar TEol mode with an 
electric field given by 

cE~l = A;1(2/ab)! sin (7rz/a) exp (-j{301Y)X 

whereas the LE~l mode incident is a combination of the TEll and TJl.l 11 

modes in a uniform rectangular guide. The coefficients B:'o and A:' l of 
the incident modes are chosen so that the incident power is unity. 

The sharp bend results may be used, for example, to depict the 
operation of the standard C-band guide 0.872 by 1.872 inch for a fre­
quency range from 3 to 18 GHz for the LM excitation and from 3 to 
20 GHz for the LE excitation. For convenience we have superimposed 
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mode = LMto; incident power = 1.0; rdb = 1.068; alb = 0.466.) Solid line is 
for a curved guide; dashed line is for a straight guide. 
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TABLE I-INTERMODAL COUPLING FOR LONGITUDINAL ELECTRIC 

AND LONGITUDINAL MAGNETIC FIELDS FOR A SQUARE 

GUIDE WITH r1/b = 1.068 

Incident Mode 
b/). Power Reflected Mode Power Transmitted Mode Power 

1.19 LM~o = 1.0 LM~o ~ 10-7 LM~o = 0.952174 
LM~o = 0.000012 LM~o = 0.047815 

LE" . 01 = 1.0 LE~l = 0.000001 LE'[n = 0.618860 
LE: l = 0.000046 LEh = 0.376074 
LE~l = 0.000022 LE~l = 0.004997 

1.79 LM:o = 1.0 LMfo = 10-9 LM~o = 0.736720 
LM~o = 0.000001 LM~o = 0.258699 
LM~o ~ 10-7 LM~o = 0.004581 

LE~l = 1.0 LE~l ~ 10-7 LE'iJ1 = 0.456751 
LE~l = 0.000005 LE~l = 0.384346 
LE~l = 0.000001 LEh = 0.153564 
LE~l = 0.000027 LEg l = 0.005306 

another coordinate scale on Figs. 2 through 5 demonstrating the fre­
quency of operation if the guide has these dimensions. The vertical 
arrows on this frequency scale indicate the cutoff frequencies of the 
modes in the straight guide. As these examples show, the frequency band 
covered corresponds to a situation where up to 5 modes can propagate. 
The overmoded operation demonstrates the possible coupling between 
modes. Also notice that for the H-plane bend (Figs. 2 and 3), b is greater 
than a and for the E-plane bend (Figs. 4 and 5) b is less than a. 

The strong coupling between the modes for sharp bends is clearly 
demonstrated for H-plane bends in Figs. 2 and 3. In Fig. 2 we see that 
the LM~o mode incident in the straight guide can actually couple more 
energy into the LM~o than into the LM~(j mode of the curved guide 
when blA is greater than 2.7. Conversely the LM~o mode incident in the 
straight guide can couple more energy into the LM~o , LM~o , and LM~o 
modes than into the LM~o mode of the curved guide for the appropriate 
b lA, as Fig. 3 shows. 

For an L1v[ excitation it is possible to have a mode propagating in 
the curved waveguide while still cut off in the straight waveguide. This 
leads to a value of coupling into the curved guide mode which drops 
sharply as the corresponding mode begins to propagate in the straight 
guide but then increases with increasing frequency. Figures 2 and 3 
show this at b II.. = 1.0, 1.5, 2.0, and 2.5. The reflections are also exag­
gerated at the cutoff frequencies of the modes in the straight guide. In 
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contrast, the cutoff frequencies of the LE modes in the curved guide 
are greater than or equal to those in the straight guide. This leads to 
the possibility of having a mode propagating in the straight guide 
while still cut off in the curved guide. Sharp jumps in reflections and 
transmissions are thus also expected at such cutoff frequencies for this 
situation; unfortunately, we are not able to examine them in detail. 
Recall that the procedure outlined in Section III allows us only to find 
the imaginary propagation constants in the curved waveguide if they 
are not too small. Unfortunately the case just described violates this 
restriction since the pertinent propagation constants in the curved 
waveguide are imaginary with a magnitude infinitesimally close to 
zero. 

In Figs. 4 and 5 one can see that the power coupling at an E-plane 
bend is also very strong. The reflections for this case are more pro­
nounced over a wider frequency band than in the H-plane case. Again 
there are exaggerated reflections at the cutoff frequencies of the modes. 
Notice that with both LE and LJ.1f polarizations, the forward coupling 
is greatest into the modes adjacent to the one corresponding to the 
incident mode. 

It is valuable to compaTe the coupling for an E-plane bend with that 
of a H-plane bend for equivalent problems. To this end, consider a 
square guide with the ratio rl/b set at 1.068 for each polarization and 
the frequency of operation set at the same value for both cases. Table 
I gives the coupling for this situation. (Notice that the number of LE 
modes propagating is one more than the number of LM modes prop­
agating at the frequencies used.) From the results one sees that much 
less energy is forward coupled into the mode corresponding to the in­
cident one when the fields are LE and that the total reflected energy is 
greater in the LE case. This is not unexpected if one examines the dis­
continuity in the geometry encountered by the electric field intensity 
for both cases. 

4.2.2 Gradual Bends 
For a very gradual bend situation we chose square waveguides with 

rdb = 250. This very gradual bend simulates the curvatures encoun­
tered in the waveguide connection between receiver and antenna of the 
Bell System TD-2 microwave relay system (one must realize though 
that waveguides with circular cross sections are used there). Tables II 
and III give some pertinent results. Again a frequency scale is super­
imposed, this time corresponding to a 2.4 inch guide. This value was 
picked so that the fundamental mode in the straight guide with a square 
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cross section would have the same propagation constant as the funda­
mental mode of a straight guide with a circular cross section, 2.812 
inches in diameter. This we felt, permits us to stimulate, at least quali­
tatively, the situation encountered with circular cross section guides in 
the TD-2 system. 

The coupling in the reverse direction (reflected power) was at least 
GO dB down for both LE and LM fields regardless of which mode was 
incident; hence these tables do not give them. The H-plane bend 
(Table II) forward couples power (~40 dB down) into modes adj acent 
to the one corresponding to the incident mode only at the higher fre­
quencies. The E-plane bend (Table III) exhibits much larger forward 
coupled power into such modes (~30 dB down) at these same higher 
frequencies. The levels of the undesired forward coupling at the lower 
freql,lencies is much less (~50 dB down). The results suggest that with 
such gradual bends reverse coupling is totally insignificant and only 
forward coupling can have a meaningful effect. 

All the results discussed in Section 4.2 have been based on the ex­
citation from the straight guide side of the junction. The results for 
excitation from the curved guide side are of the same form, and hence, 
have not been given for the sake of brevity. However, forward cou­
pling into the straight guide from the curved guide may be deduced 
from the data already presented by realizing that the power forward 
coupled into mode m of the straight guide from mode n in the curved 

TABLE II-INTERMODAL COUPLING RESULTING FROM A 

LONGITUDINAL MAGNETIC MODE INCIDENT IN 

STRAIGHT GUIDE WITH r1/b = 250 
f Excited Mode 

(b = 2.4 inches) Incident Excited Power Level 
b/"A GHz Mode Mode (dB) 

0.813 4 LM~o LM~o 0.00 
1.22 6 LM~o LM~o 0.00 

LM20 -55.84 
LM~o LM~o -55.84 

LM20 0.00 
2.24 11 LMfo LM~o 0.00 

LM20 -41.54 
LM~o <-60 
LM40 <-60 

LM~o LM~o -41.54 
LM20 0.00 
LM~o -47.59 

I 
LM40 <-60 
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TABLE Ill-INTERMODAL COUPLING RESULTING FROM A 

LONGITUDINAL ELECTRIC MODE INCIDENT IN STRAIGHT 

GUIDE WITH rl/b = 250 

f Excited Mode 
(b = 2.4 inches) Incident Excited Power Level 

b/X GHz Mode Mode (dB) 

0.813 4 LEgl LEgl 0.00 
LE~l -50.06 

LE~l LEgl -50.06 
LE~l 0.00 

1.22 G LE~l LEgl 0.00 
LE~l -39.39 
LEh <-60 

LE~l LEgl -39.39 
LE~l 0.00 
LEh -55.46 

2.24 11 LEgl LEgl -0.01 
LE~l -27.38 
LE~l <-60 
LEgl <-60 
LE~l <-60 

LE~l LEg! -27.38 
LE~l -0.01 
LE~l -39.88 
LEFn <-60 
LE~l1 <-60 
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guide is the same as the power forward coupled into mode n of the 
curved guide from mode m in the straight guide (reciprocity).t 

v. CONCLUSION 

This paper has investigated the coupling of electromagnetic wavef; 
between straight and curved rectangular waveguides. Numerical re­
sults have been obtained by using a numerical method which leads to 
solutions applicable for sharp as well as gradual bends. Two represen­
tative examples have been given. One was a sharp bend and could be 
used to depict the coupling that takes place, say, in standard C-band 
guides. The other was a very gradual Lend; this was used to obtain 
some insight into the coupling that occurs in the waveguide connec­
tions between the receiver and antenna in typical microwave networks. 

The coupling discussed has been confined to a one junction struc-

t This modal reciprocity, although surprising at first glance, is a direct con­
sequence of Maxwell's equations, the lossless character of the guides, and the 
orthogonalities between the modes as discussed in Section 2.1. 
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ture, that is, a straight to a curved guide or a curved to a straight 
guide. In any practical system, however, at least two junctions gen­
erally occur, that is, one encounters straight-curved-straight or curved­
straight-curved connections. For very gradual bends it is merely neces­
sary to account for the forward coupling at each junction since any 
reflections are negligible. Sharp bends, on the other hand, require one 
to account for multiple reflections; this appears to be most effectively 
handled by the scattering matrix approach. 
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A Quadratic Conduction Gas Lens 

By C. A. FRITSCH and D. J. PRAGER 

(Manuscript received January 17, 1969) 

A lens system for a periodic light-beam waveguide is proposed and 
analyzed in which gas is enclosed in a circular cylindel' heated with a 
cos 2cf> temperature distribution. We show that this temperature distJ'ibution 
may be produced by cutting a cylindrical hole in the center of a square block 
which has two opposite sides of equal tempemtuTe above the ambient tem­
perature, and two sides of a lower temperature. Heat conduction across 
the gas produces an index of refraction variation which, in two orthogonal 
azimuthal planes, increases or decreases as the radius squared. The effect 
of thermal convection is analyzed by solving the governing equations as an 
expansion in powers of the Rayleigh number; the solution reveals that 
convection effects can be made negligible over a practical range of lens 
parameters. The major attributes of the lens system are that only tempera­
ture controls are required and the aberrations associated with thermal 
convection can be readily minimized. 

r. INTRODUCTION 

A gas lens system to transmit a light beam through a tube should 
have a favorable refractive index, negligible aberrations, and a simple 
construction. The favorable refractive index must be such that all 
light rays parallel to the tube axis, but of varying distances from that 
axis, converge at approximately the same point on the axis, the dis­
tance being called the focal length. Within the paraxial ray approxi­
mation it is easy to show that an 1'2 variation of the refractive index 
has this property (see, for example, Refs. 1 and 2). 

Berreman obtained a refractive index (which varied approximately 
as the square of the radius) by flowing a gas through a cold cylinder 
enclosing a warm helix aligned on the axis.3 The interior of the 
helix has the desired refractive index. Marcuse and Miller simplified 
Berreman's lens by considering a cool gas flowing through a heated 
cylinder of uniform temperature (the Graetz problem) .1,2 

2281 
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In order to reduce the distortion resulting from spherical aberra­
tions, Berreman built a counterflow arrangement composed of two 
back to back tubular lenses.4 Marcuse calculated the principal sur­
faces of a flow type lens noting that the one with the light beam 
parallel to the flow differs only slightly from that of the beam anti­
parallel to the flow. 2 He then numerically calculated the fate of a 
beam as it passes through a large number of flow lenses and compared 
the results with those with a counterflow arrangement. 5 This arrange­
ment decreased the distortion. Kaiser later found that this configura­
tion also lessens the asymmetric distortion due to thermal convection.G 

The major drawback to the flow-type lens is the need for control of 
the flow. Gu performed a compressible flow analysis and found that, 
as a result of the wall friction, choking could occur for the optimal 
flow rate in a few hundred meters.7 This could be overcome only by 
further complexities in the system. 

A conduction-type lens was proposed by Suematsu, Iga, and Ito, 
in which they analyzed a configuration composed of hyperbolic, con­
vex inward walls, two of which are at one temperature and the other 
opposing two at a lower temperature.s The concomitant temperature 
distribution varies as the square of the distance in the transverse di­
rection. Then the refractive index bears the r2 variation" in two 
orthogonal planes, being convergent in one and divergent in the other. 
This guadratic variation has two highly desirable characteristics. 
First, within the paraxial approximation, the focal length of every 
ray passing through a quadratic lens is independent of the radius, 
and hence the field reproduces itself after each period.1 Second, 
Marcatili has shown that the eigenfunctions associated with a quad­
ratic lens are Gaussian. Therefore a laser beam which is also Gaus­
sian can be mode-matched to a waveguide consisting of quadratic 
lenses. This means that all the energy will remain in the launched 
mode; the only mode conversion that would take place is that result­
ing from higher order variation, that is, aberrations. 

The advantage of the conduction lens is that only temperature con­
trols are required since no gas flow is involved. However, thermal 
convection is present in this lens and although Suematsu, and others, 
observed a degradation of their lens at high temperature differences 
they did not analyze the thermal convection effects. 

* For negligible pressure changes the refractive index is virtually only a func­
tion of the temperature; for small temperature variations the changes in refrac­
tive index are directly proportional to and of opposite sign from the temperature 
changes. 
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We will consider a quadratic conduction-type lens, which is formed 
by imposing a cos 2cp temperature distribution on the wall of a cir­
cular cylinder. For sufficiently small temperature variations the change 
in the refractive index is approximately quadratic and lensing action 
similar to that of Suematsu, and others, is obtained. The three cen­
tral questions considered are: (i) What are the effects of thermal con­
vection on the quadratic distribution? (ii) How does one readily 
obtain a cos 2cp wall temperature distribution? (iii) "\Vhat are the opti­
cal properties of a waveguide consisting of these lenses? 

vVe show that the cos 2cp distribution can be achieved very simply by 
boring a circular hole in a square block in which two opposite sides bear 
a higher temperature than ambient and the other two bear a lower tem­
perature. If sections of the above lens are placed in tandem, each con­
secutive one rotated by 90 degrees, there then exists in one plane a 
series of alternating, convergent-divergent lenses. In the perpendicular 
plane this series is, so to speak, 180 degrees out of phase. We may 
then use Miller's9 analysis of a sequence of alternating gradient 
lenses,':} and determine criteria for the optical properties as a function 
of the parameters of the system. 

We study the effect of thermal convection by using a straightfor­
ward perturbation analysis which is found to be in agreement with 
preliminary results of an experiment. We investigate the method of 
producing the wall temperature distribution by constructing an ap­
proximate solution which reveals how the wall temperature distribu­
tion can be established, as well as discuss the experimental program 
in progress and compare this lens and the other cited above. 

II. ANALYSIS 

2.1 Analysis of Thermal Convection 

Consider a circular cylinder with the geometry given in Fig. 1. The 
governing equations for the steady motion of the gas within the 
cy linder are: 

(i) continuity equation, 

v· (pu) o· , (1) 

(ii) equation of motion, 

p(u· V)u + Vp - pg - ,uV 2u = 0; (2) 

* Alternating gradient focusing in gas lens systems was first proposed by A. R. 
Hutson.3 
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Fig. 1-Geometry of the lens cylinder. 

(iii) energy equation, 

Here, 

p is the density, 
u the velocity, 
p the pressure, 
g the gravitational acceleration, 
J.1. the viscosity, 
Cp the specific heat at constant pressure, 
k the thermal conductivity, and 

(3) 

<p the dissipation function (associated with the frictional work). 

The boundary conditions at the cylinder surface are 

(4) 

and 

u(a, ¢) = 0, (5) 

where IlT is the maximum excursion about the average wall tempera­
ture, To. 

At this point we use the Boussinesq approximation which consists 
of two elements; the density changes are significant only in the body 
force term, and these changes are a function of temperature only. The 
latter element amounts to neglecting the product of the isothermal 
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compressibility, K, times the pressure change in comparison with the 
product of the volumetric expansivity, f3, times the temperature 
change. In other words, for p = p (p, T) 

dp = 1. (a p) dp + 1: (a
p
) dT 

p p ap T p aT 11 

= K dp - {3 dT, 

and the Boussinesq approximation requires the second term to be 
much larger than the first term but still small enough so that 

(6) 

where the subscript denotes conditions at the center of the cylinder 
in the absence of fluid motion. 

We nondimensionalize the variables in the hope that a perturbation 
scheme for a solution to our problem may be suggested. We define 

x = X/a, (7) 

Since the density changes are considered important only in the body 
force term, equation (1) yields the incompressible continuity equa­
tion, 

\l·U = o. (8) 

The pressure term can be eliminated from the equation of motion by 
taking the curl of equation (2). The result of this operation leads us 
to define the velocity components in terms of the stream function", so 
that in cylindrical coordinates we have 

U", = _a1/;. 
ar 

The continuity equation, (8), is identically satisfied, 
tion of motion becomes 

where 

the Prandtl number, and 

T 2 3 

A = {3.1 :~ppoa , the Rayleigh number. 

(9) 

and the equa-
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Fig. 2 - Contour plot of the first approximation for the stream function with 
values of 1/;(1) on indicated contours: 

A = 0.00001 F = 0.0005 
C = 0.00005 G = 0.001 
D = 0.0001 H = 0.002 
E = 0.0002 

M = -0.002 
N -0.001 
o -0.0005 
P = -0.0002 

Q = -0.0001 
R = -0.00005 
T = -0.00001 

If the velocities are sufficiently small then the viscous dissipation 
can be neglected and the energy equation, (3), in terms of the new 
variable becomes 

\1 2 () _ .! (a l/; ~ _ a l/; ~) () = o. 
r ar a¢ a¢ ar 

(11) 

The boundary conditions, (4) and (5), become 

e(l, ¢) = cos 2¢ (12) 

and 

al/; al/; -a;: (1, ¢) = iii (1, ¢) = o. (13) 

In the case of a small Rayleigh number it is fruitful to seek a solu-
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tion in powers of A; 

(14) 

and 

(15) 

This expansion is valid in the limit, A --7 0, and an upper bound of A 
for the validity of the expansion will be obtained subsequently. 

vVhen we insert equations (14) and (15) into (10) and (11), the 
coefficients of like powers of A must individually be set equal to zero 
for the equations to hold as A is varied. Beginning with the lowest 
order we obtain from equation (11) 

(16) 

The solution to the equation, with the boundary condition given by 
equation (12), is 

(17) 

Next, from equation (10) the lowest order contribution to the 
stream function is obtained from 

aerO) sin ¢ aerO) 
"\141//1) = cos ¢ -- - ---- (18) 

ar r a¢ 

with the boundary conditions given by equation (13). Inserting equa­
tion (17) into equation (18) and expressing the biharmonic operator 
in cylindrical coordinates yield 

( 
a4 2 a3 1 a2 1 a 
ar4 + ;: ar3 - ? ar2 + ? ar 

2 a3 2 a4 1 a4 4 a2,) (1) 

- ? a¢2 ar + ? a¢2 ar2 + ? a¢4 + ? a¢2 t/; =l2r cos ¢. (19) 

The solution to this inhomogeneous biharmonic equation is 

(20) 

Figure 2 is a contour plot of the stream function, equation (20). 
Finally we wish to determine the perturbation on ()(O). This will 

indicate the effect of thermal convection in distorting the lens and 
afford an estimation of the upper bound of the Rayleigh number. 
Again, from equation (11) we get 
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Fig. 3 - Contour plot of the (a) zeroth approximation for the temperature 
distribution with values of 0(0) on indicated contours: 

A = 0.1 -R 
B = 0.2 = -8 
C = 0.3 = -T 

D = 0.4 = -U 
E = 0.5 = -V 
F = 0.6 = -W 

G = 0.7 = -X 
H = 0.8 = -y 
I = 0.9 = -z 

(b) first perturbation for the temperature distribution with values of 0(1) on indicated 
contours: 
A = 0.0001 = -8 C = 0.005 = -U E = 0.015 = -W G = 0.025 = -y 
B = 0.001 = -T D = 0.01 = -V F = 0.02 = -X H = 0.028 = -z 
(c) first approximation for the temperature distribution (A = 103) with values of 
0(0) + AO(l) on indicated contours; 

A = 0.1 = -R 
B = 0.2 -8 
C = 0.3 = -T 

D = 0.4 = -U 
E = 0.5 = -V 
F = 0.6 = -W 

G = 0.7 = -X 
H = 0.8 = -y 
I = 0.9 = -Z 

V 2 ()(1) = 1. (aif;(l) a()(O) _ aif;(l) a()(O») 
r a¢ ar ar a¢ 

with the boundary condition 

()(1) (1, ¢) = o. 
Inserting equation (17) and (10) into equation (21) yields 

(21) 

(22) 
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+ 2(5r4 - 6r2 + l)r cos ¢ sin 2¢. (23) 

The solution which satisfies equation (22) is 

3 

e(l)(r, ¢) = [fl(l) - f2(1)] ~ sin ¢ - [fl(l) + f2(1)] ~ sin 3¢ 

+ fl(r) sin ¢ cos 2¢ + f2(r) cos ¢ sin 2¢, (24) 

where 

and 

f () = ~ (9 4 _ 48(31) 3 _ 2 32(11) ). 
2 r - 4(96) _r 2041 r 4r + 379 r + 2 

A numerical calculation reveals that the maximum value of (}(l) is 
approximately 3 X 10-4 • Since (}(O) is bounded by unity, the expansion 
should be valid for Rayleigh numbers less than the order of 104

• Figures 
3a, b, and c show contour plots of .(}(O), (}(l), and (}(O) + A(}(l), respec­
tively. In Fig. 3c, A = 103 to demonstrate the distortion possible. 

Experiments are being conducted to verify the foregoing results and 
to better understand thermal convection in other circumstances. Fig­
ure 4 is a photograph of the streamlines made visible by the introduc­
tion of cigarette smoke into a circular cylinder having a cos 21> 
temperature distribution. The Rayleigh number is 575. Notice the re­
semblance between this pattern and the contour plot of the preceding 
analytical results (Fig. 2). The slight shift upward of the smoke 
streamlines can be attributed to higher order terms in (} and tf;. The 
steadiness of the observed flow supports our seeking time-independent 
solutions of the equations of motion. 

2.2 Establishing the cos 21> Wall Temperature Distribution 

If one imposes a linear temperature distribution across a slab by 
heating one face and cooling the other, and then if one drills a 
cylindrical hole parallel to the faces of the slab, it is well known that 
a temperature distribution varying as cos 1> will appear on the wall 
of the cylindrical hole. Extending this to a square region with one pair 
of opposite faces heated and the other pair cooled one might presume 
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that a cos 2cp temperature distribution would appear on a cylindrical 
hole cut in the center of the square. To determine the degree of ap­
proximation of this presumption the heat conduction problem in a 
region bounded on the exterior by a square and on the interior by a 
circle is analyzed in the following paragraphs. Figure 5 shows the 
geometry of the problem. 

The problem of a square with a hole in it cannot be solved exactly, 
as we show. An approximate solution could be sought in either cartesian 
or cylindrical coordinates. However, considering the problem in cy­
lindrical coordinates allows one to compare the relative magnitude of 
the portion of the distribution, which varies with cos 2cp, to that as­
sociated with higher order terms. Secondly, the solution is more nearly 

Fig. 4 - Convective motion illuminated by cigarette smoke. 
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8=-8 

8=+8 
+8 

-8 

Fig. 5 - Geometry for conduction problem in solid cross section of gas lens. 

exact on the cylindrical hole if the approximate solution is sought in 
cylindrical coordinates. Furthermore, since the heating arrangement 
has a certain amount of symmetry, only a sector 7r/4 ~ ¢ ~ 7r/2 need 
be considered. 

For steady two-dimensional conduction in a material having constant 
thermal conductivity the heat conduction equation becomes 

a2e + ! ae + 1 a2e _ 0 
ar2 r ar r2 aq/ - . (25) 

The boundary conditions are: 

at r sin ¢ = b, e= -8; (26) 

at r = 1, 
ae 
-= O· ar ' (27) 

at 
7r e = 0; ¢ = -, 
4 

(28) 

at 
7r 

¢ = 2' 
ae 
a¢ = o. (29) 

Notice that e = (T - To) / Ll T as before, where T is the tempera­
ture excursion desired on the cylindrical hole. Consequently, 8 = 
(Tw - To)/ LlTwhere Tw is the wall temperature. The insulated condition, 
(27), assumes that the heat lost to the gas in the hole is negligibly small 
compared with the heat conduction in the solid. This is reasonable as 
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long as ksolid » kgas .* Condition (29) results from the symmetry about 
1f /2. The radius r is normalized with respect to the cylinder radius 
as in the Section 2.1. 

Assume a separable solution of the form 

so that 

e = R(r) CP(cf» , 

r2R" + rR' - ciR = 0, 

cp" + (icp = O. 

The solution of equation (31) and (32) is 

e = A(ra + ~)(C sin acf> + cos acf». 

(30) 

(31) 

(32) 

(33) 

The insulated condition (27) is satisfied if B = 1. To satisfy both 
conditions (28) and (29) simultaneously, C = 0 and 

a = 2n, n = 1,3,5, .... (34) 

Therefore, 

- A ( 2n + ~)( ') en - n r r2n cos ~ncf> , n = 1,3,5, ... , (35) 

where An is determined to satisfy equation (26), that is, 

00 (b2n ) -8 = L An ~ + sin2n cf> cos 2ncf>. 
n=l,3 ,5,··· SIn cf> 

(36) 

Because of equation (26) our problem in r is not a, Sturm-Liouville 
system and we have no assurance that equation (36) will converge 
even if the An's could be determined in general. In what follows we 
determine the first few An's so that equation (36) is satisfied in 
two different senses as accurately as our needs dictate-collocation 
and minimization of the error in a least-squares sense.10 

In the collocation method the error is made to vanish at, say, three 
particular points on the boundary r sin cf> = b. This gives us three 
simultaneous equations through which Al , A3 , and A5 can be deter­
mined. For two different sets of collocation points, the corresponding 
coefficients are listed in Table I for the ratio of the side length to the 

* The k for most plastics is a factor of 10 greater than that for air. For formed 
plastics k solid ~ kgas and the behavior of () at r = 1 can be assessed from the solution 
for conduction in a square with two sides at E> and two sides at - E>. 
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TABLE I-COEFFICIENTS FOR ApPROXIMATE SOLUTION BY COLLOCATION 

Collocation points = 60°, 75°, and 90° 

b = 2 b = 4 b = 6 

al 1.03531 1.08889 1.09191 
a3 -0.11082 -0.10469 -0.10434 
a;; 0.01083 0.01155 0.01159 

Collocation points = 50°, 70°, and 90° 

b = 2 b = 4 b = 6 

at 1.04521 1.09927 1.10232 
aa -0.14096 -0.13457 -0.13421 
as 0.03046 0.03101 0.03104 

cylinder diameter, b = 2, 4, 6. These coefficients are normalized with 
respect to e. Furthermore, some of the dependence on b is suppressed 
when the coefficients are defined as: 

(37) 

so that 

(J I"'V ~ an (2n + 1) 2 Q = L...J b2n r -z-n cos nc/>, 
'C1 n=1.3,5 r 

(38) 

Figure 6 contains a plot of O(r = b/sin C/>, x/b) using both sets of col­
location points. This illustrates the degree of approximation entailed 
at the outer boundary where - ((J/e) should equal unity over 0 ~ 
X/b < l. 

The least-squares method requires that the mean square error over 
the boundary r b/sin C/>, 71'/4 ~ c/> ~ 71'/2, be as small as possible. 
Defining 

€ = (J - (-8); (39) 

,ve then wish to minimize 

(40) 

For convenience we take only the first two terms of equation (35) for 
(J and note that r2n » 1/r2n close to the outer boundary so long as 
b ~ 2. Consequently, 

(41a) 
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and 

~ A b2 cos 2¢ + A b6 cos 6¢. (41b) 
E - 1 sin2 ¢ 3 sin6 ¢ 

Inserting equation (41h) into integral (40), performing the integra­
tion, and setting the derivative with respect to Al and Ag equal to 
zero we find that: 

(J 1.3118 ( :l 1) 0.1805 ( 6 1) e ~ -b-2- r +? cos 2¢ - ~ r +? cos 6¢. (42) 

Figure 6 also has a plot of equation (42) evaluated at r = b /sin cp. 
Apparently the collocation method yields a much closer approxima­
tion for heat conduction problems. (The square of the temperature 
has no particular physical meaning.) 

Returning to the collocation solution (Table I) the temperature 
distribution on the cylindrical wall, for b = 6, is given as 

1.4 r-----,-----,-----,---..,.---------, 

1.2 

1.0 

0.8 

() -e 
50~ 70~ 90

0 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.0 

:rIb 

Fig. 6 - Comparison of approximation at outer boundary in conduction problem. 
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t'.J 0.06066 cos 2¢ - 0.0447 X 10-4 cos 6¢ (43) 

+ 0.0383 X 10-8 cos 10¢, 

and we see that the distribution varies as cos 2¢ within one part in 
10,000. For b = 2 the deviation is somewhat greater, being 

0(1,:; 2) = 0.5176 cos 2¢ - 0.00346 cos 6¢ + 0.02115 X 10-3 cos 10¢. 

(44) 

Similar results can be obtained from equation (42). 
Recall that this solution is for ksolid » kgas • When ksolid ~ kgas the 

deviation of 0(1) from cos 2¢ can be evaluated from the analytical 
solution for a solid square two sides at 8 and two other sides at -8, v. l1 

In doing this we found that the deviations from cos 2¢ are of the same 
order as those cited above. 

The power necessary to operate the lens can be readily found from 
integrating along the radial line at ¢ = 7r I 4. The heat flow rate Q 
through one sector is given by 

. fb 1 ao 
Q = -k ~T - - dr 

1 r a¢ 

(45) 

which is nearly independent of b. In terms of the collocation coef­
ficients, where the b4n term has been neglected, 

k8 ~T ~ 2al - Sa3 + 32as . (46) 

For b = 4 

Q = 3.38k8 ~T = 3.38k(Tw - To). (47 a) 

Since 

0(1, 7r/2; 4) = -0.1368 = -0.136(Tw ~ To) = 1, (47b) 

then for a AT of 1°C excursion T wall - To = 7.4 DC. For a gas lens 
whose solid portion is made of polystyrene (k = 0.1 W/mOC) the heat 
flow rate would be Q = 2.5 W /m for each sector; then the power re­
quirement would be 10 W /m for 1°C AT across the lens. If a foamed 
polystyrene could be used the power requirement would be 3.5 W ImoC. 
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2.3 Optical Properties of the Conduction Lens 

With the effect of thermal convection in mind we now consider how 
to evaluate the optical properties of a gas lens characterized by the 
lowest order temperature distribution (that is, r2 cos 2cp). We wish 
to determine these properties as functions of AT, cylinder radius a, 
and lens section length L; we are constrained by the requirement of 
minimizing AT so that the distortion depicted in Fig. 3c shall be toler­
able. In the following paragraphs we only write down the relevant 
equation; we do not establish explicit design criteria. 

The system of lenses consists of a sequence of sections with each 
succeeding one rotated 90 degrees. Therefore, for any angle, cp (see 
Fig. 1), as one marches axially, the sections act alternately as diver­
gent and convergent lenses. Since the temperature varies angularly, 
as well as radially, so does the refractive index; hence, in addition to 
the ray bending toward or away from the axis it will, in general, be 
twisted. However, atcp = ° and -rr:/2 the refractive gradient has no 
angular gradient and, hence, rays originally in either of those planes 
remain there; they undergo convergent and divergent displacements 
alternately. All other rays have radial displacements intermediate 
to those at <p = 0, 7r/2. 

The trajectories of the rays in thecp = 0, 7r/2 planes may be calcu­
lated analytically and turn out to be sinusoidal and exponential in the 
convergent and divergent sections, respectively. 

Although a numerical solution must be used for the other traj ec­
tories, some qualitative observations may be made. In the neighbor­
hood of <p = ° the angular component of the refractive index causes 
rays to be twisted away from that attitude, while near <p = 7r/2 rays 
are restored to that angular position. Therefore, as one moves down 
a section the density of rays tends to increase near <p = 7r/2 and to 
decrease near <p = 0. 

In order to obtain the intensity of the beam through a lens section, 
the Helmholtz-type equation with the appropriate refractive index 
must be solved. This was done by Marcatili12 for an asymmetrical 
but convergent-type refractive index.~' He established conditions for 
the stability of a lens system and calculated the focal length. 

For our present purposes there is no need for a detailed solution of 
the field equations but. rather for the ray displacement, stability 
criterion, and focal length. Toward this end Miller's9 analysis of the 

* Marcatili informed us that there is no basic reason why his analysis could not 
be extended to include divergent sections. 
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ray equation is applicable.t He obtained these quantities by solving 
the difference equations which govern the passage of the rays through 
the sequence of lenses. If we only consider the 4> = 0, 7T'j2 planes, then 
the sections act as alternating convergent and divergent lenses, with 
the rays remaining in their original planes; we may then apply Mil­
ler's results. 

Miller obtained the ray displacement after the nth convergent and 
?nth divergent lens for an initially convergent and an initially diver­
gent sequence. He also found the stability condition which keeps the 
ray trajectory bounded after an infinite number of lenses. This con­
dition is 

L 
o < t < 2. (48) 

Here, to serve as an example, we only display the expression for the 
ray displacement after the nth convergent lens for an initially con­
vergent lens: 

(49) 

where 1'0 and r~ are the initial displacement and slope, respectively, and 

(50) 

I -I k- I I c/>l = cos 1 , 

Furthermore, we must stipulate that the ray does not intersect the 
cylinder wall, that is, 

:G:<l. 
a 

(51) 

The relationship between the focal length and the refractive index 
may be obtained from Marcuse and MiUer.l For a thin lens the focal 
length is given by·:~ 

t We are indebted to Marcatili for several clarifying remarks on this subject. 
* A thin lens is one in which the principal surface generated by rays incident 

from the left coincides with that surface constructed by rays incident from the 
right. Since there is no preferred direction with the conduction-type lens it is 
thin; the flow-type lenses cited in Section I may be approximately thin. 
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(52) 

where (30 = 27r/1\, >.. is the wave length of the light, and A</> is the dif­
ference of the phase of a ray incident a distance r from and parallel 
to the axis after traveling a distance L, compared with a rayon the 
axis traveling the same distance. 

To calculate Acp in terms of the refractive index, we invoke the 
paraxial approximation in which the rays are regarded as approxi­
mately parallel to the axis. Then the required phases are easy to 
calculate, that is, 

and 

cf>(0, z) = (3"n(O)L. 

The refractive index at <p = 0 is 

( 0) + ( ) To 1 + no - 1 
nr, = 1 no -1 T(r, 0) = 1 + f1T!; 

To a 

where no is the refractive index at the axis at temperature To· 
Hence, 

and the focal length is obtained from equation (52): 

f 1 a
2
To 

= 2 (no - 1) f1TL 

independent of r. 

(53) 

(54) 

(55) 

(56) 

(57) 

With the aid of equations (48), (49), (51), and (57) we may deter­
mine the focal length and ray displacement as a function of the lens 
section and radius and temperature excursion. For a complete dis­
cussion of the foregoing subj ect, see Ref. 9. 

To establish precise design criteria the foregoing equations must be 
solved on a computer. However, for illustrative purposes and as one 



2300 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

aspect of the problem we shall make use of some of Miller's simplified 
expressions valid in certain limits.9 

If we use equation (49) with the value of the section length to 
focal length ratio which yields the smallest value of the maximum ray 
displacement and, furthermore, insure that the rays do not intersect 
the wall, AT obtained is unacceptable for three major reasons (i) the 
power requirement is excessive, (ii) the moderate Rayleigh number 
will cause appreciable distortion, and (iii) the temperature excursion 
is sufficiently large so that section end effects may be significant. 

In order to overcome these objections we now examine the case of 
weak focusing, that is, 2/ jL » 1. We consider the initial conditions 
such that 

ro « r~f. (58) 

(The opposite inequality for weak focusing yields a trivial design 
problem since it does not involve the focal length.) From Miller the 
maximum ray radius, r max, is !l 

rmax = 2fr~ . (59) 

To insure that the ray does not intersect the wall we have 

~ > rmax. 

L = L (60) 

Inserting equations (57) and (59) into equation (60) yields 

> a To , 
1 = L (no _ 1) !J.T r 0 

• 
(61) 

As an example we use the following values, where air is the medium 
of the lensing action 

To = 290°1(, 

no - 1 = 0.295 X 10-\ 

and 

A (Rayleigh number) = 9.15 X 107 jj.Ta3 

with jj. T in degrees Celsius and a in meters. In addition, let r~ = 10-\ 
a = 3 X 10-3m, and L = 0.5 m. Then from inequality (61) we obtain 

(62) 

Hence, A = 2.9. Consequently, 
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I AO(l) I < 10-3 « I 0(0) Imax . 

It should be borne in mind that with the above values of a and L, the 
weak focusing limit is satisfied for AT :s 5°C. In addition, to satisfy 
inequality (58) with the foregoing values we must have 

1'0 « 1'6f = 1.5 X 10-3 m (63) 

which is easy to satisfy. 
Using equation (47a) , we obtain for the heat flow rate through one 

sector 

Q = 1.5 W/m 

which results in a power requirement of 6.0 W 1m. The required ex­
terior wall temperature is calculated from equation (47b) as T w = 
To + 4.4°C. Therefore, in the limit of weak focusing the temperature 
excursion is sufficiently small to make the lens system promising. 

Considering the flow-type lens of Marcuse and Miller to have the 
same characteristics as the above conduction type lens, we calculate 
the power expended at optimum flow rate to be 1.14 W.1 Hence, the 
lens proposed here requires somewhat more power for heating than 
those previously investigated. Hmvever, the flow-type lens also re­
quires power to drive the gas. 

Since the input beam will be more complicated then was assumed 
above, the foregoing calculation is very cursory. However, the rea­
sonable magnitudes of a and L together with the small Rayleigh num­
ber lend encouragement to a more detailed analysis. 

III. CONCLUSIONS AND RECOMMENDATIONS 

The conduction-type lens proposed here is found to be feasible on 
the basis of negligible distortion resulting from thermal convection 
and reasonable power requirements to maintain the desired tempera­
ture distribution. Although the lens design illustrated was predicated 
on the weak focusing limit a wider range of parameters can be found 
by using Miller's complete expression.9 

The effect of thermal convection was calculated from a two di­
mensional analysis, which is certainly valid away from the ends of 
the section since aiL « 1. For the temperature excursion required 
and the lens illustrated, the convection effect was found to be negligi­
ble. However, at the interface between the sections, the axial tempera­
ture gradients could be large depending on the spacing left between 
sections. Axial gradients were present in the experiments of Suematsu 
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and others for their hyperbolic shaped conduction-type lens system.s 

They found that no significant aberration existed as long as AT < 
42/a1 . 34 (a in millimeters) so that the effects of the axial gradients 
must have been insignificant. 

The analyses presented indicate that a system of conduction-type 
lenses might be practical for an alternating gradient light-beam wave­
guide. Such a system would require straight square rods with a cylin­
drical hole. Two sides of the rod would be heated while the other two 
would be held at a uniform and constant temperature. This could be 
done by attaching aluminum fins which project into a constant tem­
perature heat sink to the cooled sides. Such a heat sink is available 
for buried systems since, at depths greater than about five feet, the 
surface temperature changes are virtually damped out. Therefore, 
cooing is not required. 

The hole in the rod would be of the order of 6 mm in diameter and 
the exterior could be as small as 2.4 cm across a face. Larger hole 
dimensions could be used but, for the same size beam and lensing ac­
tion, the temperature difference and power requirement would in­
crease proportionately. 

After only a preliminary design analysis, where the simplest of 
Miller's expressions have been used, parameters have been obtained 
in the weak focusing limit which yield a power consumption some­
what greater than but of the same order of magnitude as flow-type 
gas lenses.9 Additional investigations are, of course, necessary. The 
distortion of a gaussian beam as it is launched through a lens system 
should be numerically calculated (similar to Marcuse's study for the 
flow-type lens.5

) The effect of the axial gradients that will be present 
at the interface between two lens sections will have to be assessed 
through experimental measurements of the optical performance of 
such a lens system. 
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Resonances in Waveguide Antennas with 
Dielectric Plugs 

By c. P. WU 

(Manuscript received March 19, 1969) 

This paper discusses an analysis of the radiation from a parallel-plate 
waveguide to determine the effects of loading the waveguide with dielectric 
plugs near the aperture. We devote special attention to the situation in 
which the higher order modes, generated by the aperture discontinuity, 
propagate inside the dielectric plug but are evanescent in the unloaded 
waveguide region. We show that the dielectric plug may function as a 
resonant cavity for this type of wave mode. When one of these modes is at 
resonance, it is strongly excited by the incident wave; the presence of this 
resonance is manifested by the appearance of sharp spikes in the reflection 
coefficient either as a function of the frequency or the plug thickness. We 
also discuss the relation between the resonances in a single waveguide and 
in array configuration. 

r. INTRODUCTION 

The radiation from a parallel-plate waveguide with infinitesimally 
thin walls is one of the relatively few electromagnetic boundary value 
problems for which the Wiener-Hopf integral equation technique may 
be applied to obtain a closed form solution.1 Unfortunately, this ele­
gant mathematical technique quickly loses its usefulness even when 
rather minor modifications of the physical system are introduced, 
such as, for example, by allowing the waveguide to have finite wall 
thickness or loading the waveguide with a dielectric material. 

The somewhat simpler problem of determining the radiation admit­
tance of a waveguide terminated in an infinite conducting plane has 
been treated by several workers using the variational technique.2 •3 

The field of the incident wave is used to approximate the true aperture 
field in these calculations. The results thus obtained appear adequate 
for engineering purposes. The implication is that the radiation admit­
tance of an empty waveguide is rather insensitive to the approxima-

2305 
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tion used for the aperture field distribution. There is no way, how­
ever, to ascertain without more elaborate calculations how well the 
aperture field is approximated by that of the incident wave. 

The variational technique has also been widely used in a broad 
class of scattering problems. Although it seems that useful approxi­
mate answers are often obtainable even when rather crude approxima­
tions are used for the trial funnctions, there are numerous instances, 
notably in the area of phased arrays4 and in problems involving di­
electric material,5 wherein it has been found that good approximations 
of the trial functions are necessary to obtain meaningful results. An 
important factor contributing to this knowledge undoubtedly is the 
widespread availability of high speed electronic computers, which have 
made it possible to perform elaborate computations hitherto regarded 
as too time-consuming and costly to be practical. 

In this paper, we discuss the radiation properties of a waveguide 
which is loaded with dielectric plugs near the aperture and is termi­
nated in an infinite conducting plane. A waveguide antenna has the 
advantage that it can be flush mounted. This feature makes it attrac­
tive for applications such as missile and aircraft antennas. Dielectric 
plugs, moreover, provide convenient covers to protect the antenna feed 
system against environmental influences. The introduction of dielec­
tric material, however, makes it possible to excite the wave modes 
which have a surface wavelike field distribution within the wave­
guide because they propagate inside the dielectric plug but are 
evanescent in the empty waveguide region. (This excitation is caused 
by the aperture discontinuity.) 

We show that because of the excitation of this type of wave mode, 
the antenna impedance (or the reflection coefficient) exhibits resonance 
characteristics versus both the frequency and the thickness of the 
dielectric plug. These resonances occur when the parameters are such 
that the impedances of a surface wavelike mode (or "ghost mode") 
satisfy a transverse resonance condition. The implication of this ob­
servation is that the dielectric plug acts like a resonance cavity for 
the surface wavelike modes. When the combination of the parameters 
is such as to permit one of these modes to resonate, the effect is to 
cause rapid variation in the radiation impedances (or reflection coef­
ficient) which are manifested as sharp spikes. 

The radiation patterns generally show smooth variations versus 
the angle of observation. Only when the parameters are in the close 
vicinity of a resonance such that the higher order mode is exceedingly 
strongly exeited do pattern dips appear. Moreover, the dips are rather 
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broad and shallow. It is therefore necessary to exercise extreme care 
in order to detect resonances by examining the patterns alone. 

An earlier analysis of phased arrays using the waveguide at hand 
as the radiation element has revealed that resonance characteristics 
also exist in both the reflection coefficients and the mutual coupling of 
the array.6,7 These resonances are related in certain ways to those of 
the present problem. We briefly discuss the relationship with the view 
toward using a single waveguide for the detection of the resonances in 
an array configuration. 

The boundary value problem is formulated in two ways, one in a 
pure integral equation with the tangential magnetic field as the un­
known and the other in an integro-differential equation with the aper­
ture electric field as the unknown. It appears that no known analytical 
method is available for solving either equation. It is possible, how­
ever, to use numerical technique to determine approximate but ac­
curate solution from the latter equation. vVe discuss the method of 
obtaining solutions by the method of moments; we also point out cer­
tain salient features with regard to the formulation. 

II. FORMULATION OF THE PROBLEM 

Consider a parallel-plate waveguide, terminated in an infinite con­
clucting plane as illustrated in Fig. 1. The waveguide is loaded with 
a dielectric plug (or window) near the aperture. We consider the sys­
tem to be excited by the lowest TE mode incident upon the aperture 
from the waveguide side, and assume the fields to be invariant with 
respect to y. Under these conditions, it is easily shown that the scat-

z 

Fig. 1-A flush mount parallel-plate waveguide with dielectric plug. 
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tered fields consist of TE modes alone. We determine the radiation 
characteristics of the antenna by using the integral equation approach. 

2.1 Integral Equations 

The problem may be formulated in terms of integral equations hav­
ing as the unknown function either the tangential electric field or the 
tangential magnetic field in the plane z = O. In order to do so, we 
must first introduce suitable representations for the tangential fields 
in the regions both inside and outside the waveguide. The application 
of boundary conditions using these field representations across the 
common z = 0 plane then leads to the desired integral equations. We 
derive first the equation with the tangential electric field as the un­
known. 

2.2 Integro-Differential Equation for Aperture Electric Field 

By virtue of the equivalence principle,8 the fields in z ~ 0 may be 
derived from an equivalent magnetic dipole M = E, X z situated 
above a perfectly conducting plane, where E, denotes the tangential 
electric field which exists at the aperture and z is a unit vector in the 
z direction. According to the image theorem, these fields are equal to 
twice the fields produced by the same equivalent source in free space. 
Since E t = yEy(x', 0), M = iEy(x', 0). The vector potential due to 
this source distribution may be determined easily to be 

F = i -;j i Hci 2 \kR)Ey (x' , 0) dx', (1) 

where A denotes the waveguide aperture, Hci2
) (p.) is the zeroth order 

Hankel function of the second kind, and R = [(x - X,)2 + Z2]!. We 
use the time convention exp jwt, which is suppressed for brevity. 

The electromagnetic fields in z ~ 0 may be derived from F by 

E=-\7XF, (2) 

In particular, we find that the tangential field components are given by 

Ey(x, z) = ~ i Ey(x', 0) :z Hci2\kR) dx', 
(3) 
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Notice that the integrals in equation (3) have to be evaluated care­
fully when z approaches O. In particular, the differentiation and inte­
gration in the second equation may not be interchanged when z 4 0, 
because in doing so the integral becomes divergent. 

The fields inside the waveguide are most conveniently expressed 
in terms of the waveguide modal functions. The presence of dielectric 
plugs near the aperture may be accounted for by using appropriate 
modal admittances which are derivable by applying the transmission 
line theory. Assuming that the incident wave originating in the region 
z < - d has unit modal voltage, we may write the tangential electro­
magnetic fields at the aperture as 

00 

L VnCf'n(X) , 
n=I 

00 

Hx(x,O) = -2Y1Cf'I(X) + L Yn VnCf'n(X) , 
n=l 

where 'Pn are the orthonormal modal functions, and 

}Tn = yD Yn + jY~ tan a~d 
n Y~ + jYn tan a~d ' 

with 
Y D Dd ·Y· Dd ' 

I cos a I + J I sm a I 

Y n = ~ and 
WjJ.o 

D 

yD = ~ 
n WjJ.o 

(4) 

(5) 

(a~ and an being the nth propagation constants in the waveguide region 
with and without a dielectric, respectively). The Vn are the modal 
voltages at the aperture. When the modal voltages V n in the empty 
waveguide region are desired, they may be obtained by using the fol­
lowing formula 

Vn = Y~ iT 
y~ cos a~d + jYn sin a~d n 

+ . 2YI sin a~d 
J yD Dd +'Y . Dd DIn 

I COS a I J I SIn a I 

(6) 

where Oin is the Kronecker delta. The reflection coefficient R is obtain­
able from 

1 + R = VI' (6a) 
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The orthonormality of the waveguide modal functions may be applied 
to the first equation of (4) to obtain 

f'n = i EuCx', O)~,,(x') dx'. 

When the result is substituted into the second equation of (4), we 
find 

Hx(x,O) = -2 }\~l(X) + :t Yn~n(x) J ~n(x')Ey(:r', 0) dx'. (7) 
n=1 A 

Notice that the summation and integration in equation (7) are not 
interchangable. The reason is that when the summation is brought 
under the integral sign, the resulting kernel has a singularity of the 
form 1/ (x - x') 2, which is nonintegrable in the usual sense. In order 
to circumvent this difficulty and to put equation (7) into a form suit­
able for combination with equation (3) when the boundary condition 
is applied, we use the following relation 

}Tn~n(X)~n(X') = (:;2 + k2
) ~!': ~,,(x)~n(x'). (8) 

Equation (7) may then be written as 

Hx(x, O) = -2}\~1(X) + (:;2 + e) 
. L [t, ~, q>.(x)q>.(x') ]E.(X', 0) dx'. (Sa) 

An application of the continuity condition on Hx across the aperture 
leads to 

+ -2
1 H6 2 )(k I x - x' 1)]Ey(X', 0) dx' for x I: A. (9) 

W}.Lo 

This is the integral equation having as the unknown function the 
tangential electric field which is nonvanishing only over the aperture 
region. 

Notice that the step introduced in equation (8) to facilitate the 
interchange of integration and summation is not essential in our later 
application of moment method for solution. The procedure, however, 
enables us to obtain a compact integro-differential equation from 
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which a pure integral equation may be derived, thus permitting a 
solution by different techniques. 

2.3 Integral Equation for Tangential Magnetic Field 

We next consider the integral equation using the tangential magnetic 
field at z = 0 as the unknown function. The derivation in this case 
follows the same procedure as discussed in Section 2.2. We first rec­
ognize that the fields in z ~ 0 may be expressed in terms of the tangential 
magnetic field as follows 

- w~o i: H~2)(kR)Hx(x', 0) dx', 

-fr i: :z H~2)(kR)Hx(x', 0) dx', (10) 

Hz(x, z) = fr i: :x H~2>CkR)Hx(x', 0) dx'. 

The limits of integration extend from - 00 to 00 because Hx(x', 0) 
has values over the entire z = 0 plane. The fields inside the waveguide 
are given by 

00 

IIx(x, 0) = L: 1nfPn(x) , 
n=l (11) 

00 

EuCx, 0) = -2Z1fPl(X) + L: zJnfPn(X) , 
n=l 

where 

Z~ cos ex~d + jZl sin ex~d 

Again, the l's are the modal currents defined at the aperture, and 
the modal currents In for the empty waveguide region are related to 
t by 

I = Z~ I 
n z~ cos a~d + jZn sin a~d n 

+ 
. 2Z1 sin ex~d 
J D Oln. 

ZD Dd +·Z· d 1 cos ex 1 J 1 sIn ex 1 

(12) 

The reflection coefficient may be calculated using 

(12a) 



2312 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

Equation (11) may be rewritten by making use of the orthonormality 
relation between the 'P's. Thus, 

In obtaining equation (13), the integration and summation have been 
interchanged. This is permissible because the kernel 

C() 

L ZnCPn(X)CPn(X') 
n=l 

behaves like In I x - x' I so that the integral is absolutely convergent 
for physically acceptable solution H i1J' 

We are now ready to derive the integral equation by applying the 
boundary condition using equations (10) and (13). The limits of in­
tegration in equation (13) may be extended from A to (- co, co) with 
the understanding that the 'P's are defined to be identically zero out­
side the aperture. We thus obtain 

2.z,I',(x) = r [~2.I'.(x)I'.(x') 
-00 <x < 00. (14) 

Notice that equation (9) and (14) may be cast into variational form 
for the input impedance and admittance, respectively. 

III. SOLUTIONS OF THE INTEGRAL EQUATIONS 

Equations (9) and (14) constitute a pair of alternative integral 
equations for the radiation from a parallel-plate waveguide into a 
half space. One of the equations has as the unknown function the 
tangential electric field, while the other has as the unknown function 
the tangential magnetic field. Since there is no known method for 
solving these equations analytically, we have to resort to approximate 
techniques. Because of the infinite limits associated with the equa­
tion for the magnetic field, which is usually rather difficult to handle 
numerically, the one for the electric field is much preferred. 

Strictly speaking, equation (9) is an integro-differential equation. 
We may derive from it a pure integral equation in a similar vein as 
Hallen did for the dipole antenna. The usefulness of this approach is 
currently being investigated. We discuss solutions of equation (9) 
directly by the method of moments.9

,lO To do so, we first approximate 
the aperture electric field by the following representation 
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N 

Ey(x', 0) ~ L: bnUn(x') , (15) 
n=l 

where Un (x') is a set of linearly independent functions which are 
chosen to satisfy the boundary conditions on Ey at both ends of the 
aperture, that is 

Un (0) = Un(a) = o. (16) 

Substituting equation (15) into equation (9) gives 

- N ( a
2 

) f [ 00 Y 2 Y1S01 (x) ~ ?; bn ax2 + k
2 

A ?; ex!!!:' SOn(X)SOn(X') 

+ _1_ H~2) (k 1 x - x' I)J Un(x') dx'. (17) 
2wfJ.o 

We next require the difference between the left and right sides of 
equation (17) to be orthogonal to another set of functions 

Wn(X) , n = 1, 2, ... , N 

with Wn(O) = Wn(a) = 0 (for reasons to become apparent presently). 
This last step then converts the integral equation into a set of algebraic 
equations 

N 

L: Aqpbp = fq , q = 1,2, ... ,N, (18) 
p=l 

where 

00 

Aqp = L: Yn(Wq , SOn)(SOn , Up) 
n=l 

+ 2~fJ.o i dx Wq(X)(~~2 + k
2
) i dx' H~2)(k 1 x - x' i)Up(x'), (19) 

fq = 21\ i dx SOl(X)Wq(x), 

with 

(Wq , SOn) = i dx Wq(x)~n(X). 

For the evaluation of A qp , it is desirable that Up(x) be chosen such 
that the integration of Up (x) and Ho(k I x - x' D can be carried out in 
closed form. Unfortunately, such functions which will also satisfy the 
boundary conditions (16) are not easy to find. This being the case, we 
shall manipulate the expression in equation (19) into forms which are 
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more convenient to implement for numerical integration. Thus, by in­
terchanging one differentiation with the integral with respect to x', and 
then integrating by parts twice (once with respect to x' and once with 
respect to X) , we find 

Jdx lV,/x) aa
2

2 f dx' H62l (k I x - x' \)Up(X') 
A X A 

= -f dx dWq(x) f dx' H~2l(k I x - x' I) dUp(:r') 
A d:r I1 dx' , 

where we have used the relation 

a~ H~2l(k I x - x' \) = - a~7 H62l (k I x - x' \) 

and the fact that the integrated terms vanish on account of the bound­
ary conditions. 

Using this result, we may rewrite equation (19) as 

00 

Aqp = I: Yn(Wq , 'Pn)('Pn , Up) 
n=l 

+ }- [k2 f dx lVq(x) f dx' Hci2l (k 1 x - x' I)Up(x') 
-w~o A A 

- f dx dWq(x)·f dx' Hci2l (k I x - x' \) dU7)(~')J. (20) 
A dx A dx 

The double integrals in equation (20) may be converted into single 
integrals by a transformation of variables. If the waveguide modal 
functions are chosen as both the basis and testing functions and if 
the fact that only modes of even symmetry with respect to yz plane 
are excited is accounted, we obtain 

(21) 

where 

2 [kI2' p7r k,2' q7r J 
( 2 2) p q sm - S - q p sm - s 
q-P7r a a 

q~p 

. p7r 1 
1 J [ ()2J sm - s ;; (a -8) cos~ 8 + k' + ~ ~ J q=p 



WAVl'JGUlDE ANTENNAS 2315 

with 

The last integrals in equation (21) may be evaluated numerically. 
\Ve have found that a fast, accurate, and yet economical way is to 
apply the Simpson's rule with the values of the Hankel function ob­
tained from the Tschebycheff representatioll.ll 

After the matrix elements are calculated, the set of equations (14) 
is ready for a solution. An advantage of choosing the waveguide 
modal functions as both the basis and testing functions in the ap­
plication of the moments method is that the solutions are expressed 
directly in terms of the modal coefficients of the aperture field. The 
reflection coefficients are then easily calculated by using equations 
(6) and (6a). 

The radiation patterns of the antenna may be obtained from equa­
tion (3). Introducing the asymptotic expression for large arguments 
for the Hankel function, we find that the electric field in the far 
zone is approximated by 

Ey(r, e) ~ (2:J l

/

2

c- i
(kr-37r/4l cos e i Ey(x', O)eikSinOx' dx'. (22) 

It is easy to show that the magnetic field in the far zone is related to 
the electric field through the free space admittance. Thus, 

H o(1', e) = 7JoEy(r, e), for kr» 1, 

where YJo is the characteristic admittance of free space. For compari­
son, it is often desirable to normalize the radiation patterns. A com­
monly used normalization is to make the amplitude unity in the di­
rection of maximum radiation. We use a different normalization here, 
however. Our patterns are normalized such that the integral of the 
square of the amplitudes gives the radiated power when a unit power 
is supplied to the incident wave. This way of displaying the patterns 
is more advantageous because it shows the normalized radiation inten­
sity in addition to the information contained in the usual pattern 
presentation; this provides a basis of comparison when the frequency 
is varied. Thus, using expression (15) with {Up (x)} = {Wp (x)} = 
{cpp (x)} and equation (22), we obtain for the normalized radiation 
pattern 
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21e N COS (Ie ~ sin 0) 
(2 )1/2 cos () L b

n 
()[ ( )2J ' 7ral n=I,3,··· n7r 2a . 
- 1 - -sm () 
a n"A 

T(O) (23) 

where al is the propagation constant of the incident wave. 

IV. RESULTS 

We now present numerical results obtained by the method described 
in Section III. The computations are actually performed with exp -
jwt time convention. Table I shows the type of convergence one may 
expect for the reflection coefficient R versus N, the number of modes 
used to approximate the aperture electric field. The parameters used 
in this calculation are € = 6, A/a = 1.5, and d/a = 0.544. This rep­
resents one of the worst situations encountered. Nevertheless, we find 
the convergence is quite rapid. 

The variation of the reflection coefficients versus the thickness of the 
dielectric plug is considered first. Figure 2 shows such a calculation 
for A/a = 1.5 and € = 6. With this value of a/A, only one mode can 
propagate in an unloaded waveguide. The dielectric constant is chosen 
so that the third order mode is propagating inside the dielectric. (The 
second order mode will also be propagating; but this mode cannot be 
excited because of the symmetry in the geometry.) 

The reflection coefficient shows a smooth standing wave like variation 
versus d/ a over the entire range of d considered except in the vicinities 
of d/a ~ 0.54 and d/a ~ 1.31 (where sharp spikes appear). Figure 3 
shows the details of the reflection coefficient near these spikes. 

The maxima (or minima) of the standing wavelike pattern are equally 
displaced at a distance given by 7r / a~ , where a~ is the propagation 
constant of the nth mode of a dielectric loaded waveguide. The separa-

TABLE I-CONVERGENCE OF R VERSUS N 

Phase of R 
N \R\ (degrees) 

1 0,8031 -162.8 

3 0.9213 -169.8 

5 0.9306 -169.2 

7 0.9348 -168.9 

9 0.9372 -168.6 
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Fig. 2 - Reflection coefficient of a waveguide antenna with dielectric plug (€ = 
6 and X/a = 1.5). 

tion between the two spikes b.d is obtainable from the relation a~(b.d) 
= 7r. (Notice that the sharp spikes are frequently preceded by deep 
dips such that they may appear like close-by double spikes as displayed 
by the one at d/ a ~ 1'.31. See Fig. 3.) Figure 4 presents another calcula­
tion using a higher dielectric constant € = 13. Since the propagation 



2318 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

1.0 r-----------t~------__, 

0.9 

O.B 

0:: 0.7 

LL 
o 0.6 

w g 0.5 
I-

Z 0.4 
!,:J 
~ 
:::E 0.3 

0.2 

lBOr-------------~lr_--------------~ 

160 I-

120 I-

(/) 

~ BO I-
0:: 

~ 40-
a 

~ 0-
a: 

~-40 -
Ul 

~ -BO -
~ 
I 
Q. -120 -

-160 -

-200 I-

~--­------'" 

,,' 
I 

I 
I 
I 
I 
I 
I , 
I 
I 
I 
I 
I 
I 

\ I \ , 
\ ' \ I ,_..,1 

_ ... 

-240L--~1-L-1-L-1-L-1-~1{'\\~~L-1-1L--1L-~1L-~1L-~ 
0.52 0.54 0.56" 1.30 1.32 1.34 

d/a 

Fig. 3 - Details of R versus d/a for E = 6 and 'A/a = 1.5. 

constants a~ and a~ are larger when a higher dielectric constant is 
used, the maxima (or minima) and the spikes become more closely 
spaced. Otherwise, the relation stated above remains valid. This ob­
servation suggests that ordinarily the third order mode is only weakly 
excited so that the radiation impedance of the waveguide is determined 
primarily by the fundamental mode. Only when the dielectric plug 
has a certain thickness is the third order mode excited strongly enough 
to influence the reflection coefficient of the fundamental mode. Figure 
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5 shows the solutions for the third order modal coefficients versus d to 
demonstrate that indeed this is the case. 

From the regularity of the intervals between the spikes at which the 
third order mode is excited sufficiently strongly to influence the radia­
tion of the waveguide, it seems reasonable to assume that the dielectric 
plug forms a cavity for the third order mode. This cavity goes into 
resonance only at proper combinations of the wavelength and the 
thickness of the dielectric plug. To verify this conjecture we applied 
the transverse resonance technique at the waveguide aperture using 
the admittances pertinent to the third order mode. Let y be the radia­
tion admittance when a completely loaded waveguide is excited in the 
third order mode. The admittance looking toward the negative z direc­
tion, that is, into the waveguide is given by the appropriate modal 
admittance: 
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Fig. 4 - R versus d/a for f = 13, A/a = 1.5. 
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The condition of resonance is given by* 

1m (Y + Y) = O. 

Figure 6 shows a calculation of the imaginary parts of f and y as 
functions of d. The graph clearly demonstrates that there are inter­
sections occurring at the values for which resonance behavior is ex­
hibited in the reflection coefficients. 

We next consider the variation of the reflection coefficient when the 
frequency is varied. Figure 7 gives a calculation using e = 6 and d/ a = 
0.55. That there are two frequencies at which the reflection coefficient 
displays abrupt variations is quite evident. The details of one of the 
variations are illustrated in expanded scale in the inset. Examination 
of the admittances pertinent to the third order mode again shows that 
the transverse resonance condition is satisfied at both of these fre­
quencies. Another salient feature shown in this calculation is that there 
are several frequencies at which the reflection coefficients are practically 
zero. Therefore, when the parameters are judiciously chosen, the use of 
a dielectric plug does not necessarily degrade the match characteristic 
of the antenna. 

* Strictly speaking, because of the radiation from the waveguide aperture, the 
+- -+ 

resonance condition should be (Y + Y) = O. Since our interest is to obtain the 
condition for maximum excitation of the third order mode as d is varied, this 
should be a good approximation. 
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The radiation patterns of the antenna have also been computed for 
the various values of parameters considered. The results in general 
display smooth variation versus the angle of observation e. Only when 
the parameters are such that the resonating higher order mode is ex­
ceedingly strongly excited do dips appear in the radiation patterns. 
Figure 8 gives some typical results for smoothly varying patterns and 
Figure 9 illustrates the patterns with dips. Notice that the pattern 
dips are exhibited only over a very narrow range of the parameter 
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Fig. 7 - Variation of R with frequency for € = 6 and d/a = 0.55. 
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Fig. 8- Normalized radiation patterns T(o) of a waveguide with dielectric 
plug for e = 6 and Va = 1.5. 

d/a. Moreover, the dips are rather broad and shallow because the 
aperture is small in wavelength, 112 < a/>.. < 1. 

Figure 9 also shows the patterns for the situation when the wave­
guide is completely loaded with a dielectric and is excited in the 
first or the third order mode. The aperture field in such situations 
consists primarily of the incident wave. We observe that a relatively 
small aperture with an aperture field distribution of the third order 
mode is capable of producing a dip in the radiation pattern. Now, 
when the third order mode is at resonance inside the dielectric plug 
so that it is strongly excited, the aperture field contains high content 
of both the incident dominant mode and the third order mode. The 
relative amplitudes and phases of these two modes determine the 
shape of the radiation pattern. The combination sometimes may be 
such as to generate a pattern which exhibits a considerably suppressed 
radiation in the broadside direction as shown in the curve for d/a 
0.545. 

v. CONCLUSIONS AND DISCUSSIONS 

The investigation of the effects of dielectric plugs on the radiation 
from a flush mounted waveguide has shown that dielectric plugs can 
function as a resonant cavity for the wave modes which are propagat­
ing inside the dielectric but evanescent in the unloaded waveguide 
region. Such wave modes have interesting effects on the radiation 
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impedances of the antenna. \Vhen one of these modes is at resonance, 
it is strongly excited by the incident wave; the presence of the res­
onance is manifested in the form of sharp spikes in the reflection 
coeffi cien t. 

Resonances have also been observed in the analysis of phased 
arrays using the present waveguide with dielectric plugs as the radiat­
ing elements. They appear in both infinite and finite arrays. The oc­
currence of these resonances may be identified by the conditions of 
total reflection of the incident power in infinite arrays6 and rapid 
variation of the coupling coefficients in finite arrays.1 Although there 
has been considerable discussion on array resonances in general, it 
appears that no consensus has been reached yet about the basic 
mechanism of this phenomenon. \Ve hope that observation of reso­
nances and our analysis of their causes may shed some light on this 
problem. 

Another aspect which deserves some comment is the use of a single 
array element for the detection of potential difficulty due to reso­
nances. This question is particularly important in array designs using 
antenna elements which are less susceptible to analysis. We realize 
that this is an ambitious question which cannot be answered com­
pletely without a more elaborate analysis. The calculation so far, 
however, has indicated that resonances observed in array configura­
tions are often not exhibited by the radiation characteristics of a 
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Fig. 9 - Pattern dips due to strong higher order mode excitation for f = 6 and 
A/a = 1.5 (-'- 1st mode excitation; .... 3rd mode excitation). 
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single element. For example, in arrays of waveguides with dielectric 
plugs such as the .one considered here,G resonances which are found 
to occur as a result of the interaction with the resonating second order 
mode are not displayed by a single element because this mode is 
usually not excited in the latter situation on account of geometric 
symmetry. When the dielectric constant is large enough to permit the 
third order mode to resonate, it is possible that the resonance condi­
tions resulting from this mode may be uncovered. Even so, resonances 
which are caused by the second order mode are still undetectable. 
Moreover, there are other situations in which resonances do occur 
without the use of dielectrics such as planar arrays of rectangular 
and circular waveguides.12•13 It therefore appears that it is not suitable 
to use a single element in the prediction of potential array resonances. 
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Dielectric Loss in Integrated 
Microwave Circuits 

By M. V. SCHNEIDER 
(Manuscript received March 12, 1969) 

Dielectric loss is important in integrated microwave and millimeter wave 
circuits which require small attenuation. Such circuits are usually built 
with microstrip OJ' suspended microstrip transmission lines. This paper 
shows that the dielectric loss, the filling factor of the microstrip, and the 
stored field energy in the dielectric substrate can be computed from· the 
partial derivative aU / a€r where U is the total electric field energy and fr the 
relative dielectric constant of the substrate. It also shows that the effective loss 
tangent is determined by the partial derivative a€eff/a€r where feff is the 
effective dielectric constant of the microstrip. Useful design formulas for 
computing the dielectric loss are given for the most· important cases. 

r. INTRODUCTION 

The dielectric loss in microstrip or suspended microstrip transmis­
sion lines is an important parameter in the design of hybrid integrated 
circuits which require small attenuation. This loss can be calculated if 
one knows the loss tangent of the dielectric substrate and the electric 
field distribution inside the substrate. Electric field computations are 
usually complicated and not practical for design purposes. It is there­
fore important to find a simple and accurate method for calculating 
the dielectric loss from other well known properties of the microstrip 
transmission line. 

The results of dielectric loss computations for microstrips, which 
have been made by other authors, are quoted in many recent papers. 
on hybrid integrated circuit design.1

-
6 It can be shown that these re­

sults are applicable only if the boundary between the dielectric sub­
strate and air is parallel to an electric field line. This paper presents 
general design equations valid for all microstrip transmission lines 
provided that the propagating mode can be approximated by a TEM 
mode. 

2325 
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II. EFFECTIVE DIELECTRIC CONSTANT AND FILLING FACTOR OF MICROSTRIP 

LINES 

The effective dielectric constant of a microstrip line partially filled 
with dielectric material is defined by 

€eff = (~or, (1) 

where Ao is the vacuum wavelength and A the wavelength of the 
propagating mode on the microstrip. If the propagating mode can be 
approximated by a TEM mode one can also define €eff by 

C 
€eff = Co ' (2) 

where C is the capacitance per unit length with partial dielectric fill­
ing and Co the capacitance per unit length without dielectric material. 

The filling factor q of a microstrip is defined by 

(3) 

where U 1 is the electric field energy stored in the dielectric and U the 
total electric field energy of the microstrip. Notice that some authors 
do not use the same definition for q. Poole and Von Hippel use the 
ratio given by equation (3) .7,8 This definition is useful because it 
simplifies the loss calculation. 

III. PARTIAL DERIVATIVES OF FIELD ENERGY AND EFFECTIVE DIELELCTRIC 

CONSTANT 

If one computes the partial derivative of the total electric field 
energy U with respect to the relative dielectric constant €1 of the sub­
strate, one obtains the basic result 

au UI -=-. 
a€I €l 

(4) 

The Appendix gives the derivation of this equation. 'Ve assume that the 
conductor configuration remains the same and that the potential dif­
ference between the conductors is constant. From equations (2) and 
(4), and from U = CV2j2 we obtain 

(5) 
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The filling factor q is now given by 

(6) 

and the effective loss tangent of the microstrip is 

( ) 
€l a€eff 

tan 0 eff = - -a- tan 0 
€eff €I 

(7) 

with tan B being the loss tangent of the dielectric substrate. One can 
show that the effective loss tangent of microstrips with more than 
one single lossy substrate is given by 

( ) 1 ~ a€eff tan 0 eff = - L..J €n -a- tan On 
€eff n=1 €n 

(8) 

where €n and tan Bn are the relative dielectric constants and loss tan­
gents of each substrate respectively and N the total number of lossy 
dielectric materials in the microstrip. 

IV. DIELECTRLC ATTENUATION AND UNLOADED Q 

The unloaded dielectric quality factor QD of the microstrip is 

1 1 QD = ---
(tan O)eff q tan 0 ' 

(9) 

and the dielectric attenuation in dB per unit length is 

= 2071" q tan 0 = 27 3 (tan O)eff 

aD In 10 A . A ' (10) 

with A being the microstrip wavelength A = Aoj(4ff) %. 

The effective dielectric constant for the standard microstrip of Fig. 
la is known and can be approximated by9 

€ = €I + 1 + €I - 1 (1 + 10 ~)-j . 
eff 2 2 w (11) 

By introducing F(w, h) = (1 + 10 hjw) % we obtain, from equation 
(6) , the filling factor 

1 
(12) 

F-l 
1 + €I(F + 1) 

q= 

Figure 2 is a graph of the filling factor for the standard microstrip as 
a function of w/h with 101 as a parameter. 
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r---w---, 

(a) 

( b) 

Fig. 1- (a) Standard microstrip transmission line and (b) suspended micro­
strip transmission line. 

Computation of q for the suspended microstrip shown in Fig. Ib is 
more difficult. An approximate value can be obtained if w » h, which 
means the fringe field contributions are small. The effective dielectric 
Gonstant is 

eeff = a ~ t ! e (1 + aele~ b) w» h, (13) 

and the filling factor becomes 

q= . 
(ael + b)(ael + b + eel) 

(14) 

A different approach is necessary if the fringe field contribution can­
not be neglected. Figure 3 shows a suspended microstrip which has 
been used in circuits built by Engelbrecht and Kurokawa, Saunders 
and Stark, and Tatsuguchi and Aslaksen.10-12 The effective dielectric 
constant of the configuration with the dimensions given in Fig. 3 has 
been computed by Brenner.13 It is possible to approximate the result 
by Brenner by the simple rational function 

eeff = 1 + 0.38el + 7.70 

From equation (6) we obtain 

(15) 
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q = 2' 
6.38 + 1.63E1 + 0.065E1 

(16) 

Figure 3 is a graph of this filling factor as a function of the relative 
dielectric constant fl. The filling factor reaches a broad maximum for 
relative dielectric constants between 6 and 12. This maximum is ob­
tained for structures with substantial fringe field contributions. If one 
neglects the fringe field the filling factor is substantially reduced and 
decreases if fr is increased. 

V. DISCUSSION 

There are several types of substrates which are useful for building 
integrated circuits. These substrates are 

(i) borosilicate glasses and other commercial glasses with loss 
tangents of the order of 10-2 at microwave and millimeter wave fre-

• 14 quenCles, 
(ii) semiconductor substrates such as Si and GaAs with loss tangents 

determined by tan 0 = 0/ WEoEl where (J" is the substrate conductivity in 
mho per centimeter, Eo the free space permittivity Eo = 8.85.10-14 

F per em, and E1 the relative dielectric constant of the semi-conductor, 
(iii) ceramics such as alumina, beryllia, and rutile with loss tangents 

of about 10-4 at microwave and millimeter wave frequencies, and 

q 

(iv) fused silica with tan 0 = 10-4 in the same frequency range. 

0.4 0.6 0.8 1 

w/h 
2 3 4 6 8 10 

Fig. 2 - Filling factor q for standard micros trip transmission line as a function 
of the ratio w/h with relative dielectric constant f1 as parameter. 
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Fig. 3 - Effective dielectric constant feU and filling factor q for suspended 
microstrip transmission line for w = h = 0.120 inch, a = c = 0.048 inch and 
b = 0.024 inch. 

For glasses one can, therefore, expect an unloaded dielectric quality 
factor of Qn = 100/ q; with high quality ceramics and fused silica one 
obtains Qn = 10000/ q. However, loss tangents of many substrates 
above 30 GHz are presently not available. 

The unloaded Q resulting from conductor loss alone is typically 
Qc = 100 to 1000 for completely shielded microstrips at microwave 
and millimeter wave frequencies. The total unloaded Q is QT = 
QnQc/(Qn + Qc). One concludes that the conductor loss is predomi­
nant for circuits built with high quality ceramics and quartz. For 
microstrips built on glass substrates and some semiconductor sub­
strates, the filling factor is important for computing the total loss of 
the microstrip. 



DIELECTRIC LOSS 2331 

APPENDIX 

Partial Derivative of Field Energy U 

The total electric field energy U stored in a microstrip is given by 
the volume integral 

f 
D2 

U = -dV 
V 2e ' 

(17) 

where D is the displacement, D = fE, andE = Eo . f1 (x, y, z) is an 
isotropic dielectric constant. vVe make a small perturbation subject 
to boundary conditions which follow equation (20). 

aU = f D aD dV - f K~e dV. 
v e v 2e 

(18) 

By using E = -grad cp and div D = p one obtains, from div (cp SD) = 
- E SD + cp div SD, 

oU = Iv <P op dV - Iv div (<p oD) dV - ~ IT E2 oe dV, (19) 

and from the theorem by Gauss 

Iv div ('" OD) dV ~ j;, <PK LK OD. dF ~ t. <PK .QK • (20) 

where the surface integral is carried out over all conductor surfaces 
K. = 1, 2, ... , N. We are interested in a perturbation subject to the 
following boundary conditions: 

(i) The space charge is zero, op = o. 
(ii) The charge on each conductor remains constant, OQK = o. 

(iii) oe is constant in the dielectric substrate, and oe = 0 outside the 
substrate. 

If the dielectric constant of the substrate is e from equation (18) we 
obtain 

f ~E2 dV 
oU = _oe~vl~2 ____ __ (21) 

e 

The volume integral is the electric field energy U I stored in the dielectric 
substrate. For two conductors and !:1<p = <PI - <P2 = constant one has 
oU = +oe· UI/e and consequently 
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Interchannel Interference Considerations in 
Angle-Modulated Systems 

By V. K. PRABHU and L. H. ENLOE 

(Manuscript received November 14, 1968) 

This paper considers the deterioration in performance of angle-modulated 
systems resulting from interchannel interference. We show that with band­
limited white gaussian noise modulation (simulating modulation by a 
frequency division multiplex signal), we can derive an explicit expression 
for the spectral density of the baseband interchannel interference when two 
or more PM waves interfere with each other. 

We show that, if the interference is co-channel, maximum interference 
occurs at the lowest baseband frequency present in the system and we can 
derive upper and lower bounds to this minimum baseband signal-to­
interference Tatio. Fm' high enough modulation index, we show that this 
minimum signal-to-interference Tatio is proportional to the cube of the 
modulation index and that phase modulation can be used with advantage in 
interference limited systems. We do not consider the effects of linear filters 
on angle-modulated systems, but give some results about the effect of adjacent 
channel interference when the interference is in the passband of the receiver. 

1. INTRODUCTION 

The properties of frequency and phase modulation with respect to 
exchanging bandwidth for signal-to-noise ratio are well known/,2 but 
the type of noise considered is almost always limited to be random 
gaussian noise. In the design of any system, where the noise is likely to 
be interference limited, it is necessary to consider other kinds of dis­
turbances such as co-channel and adj acent channel interference cor­
rupting the desired received signal. 

Consider the following situation. In the frequency bands above 10 
GHz where the signal attenuation resulting from rain could be very 
severe, close spacings of the repeaters are almost always mandatory 
for reliable communication from point-to-point and for all periods of 
time.3 ,"", If low noise receivers are used in the system, it is possible 

2333 
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that the total interference power received by the system may be very 
much larger than the noise power in the system. For all practical 
purposes, the performance of such a system is determined by the 
interchannel interference.3 ,4 It, is therefore desirable to evaluate the 
effect of co-channel and adj acent channel interference on the per­
formance of any modulation system like FM or PM (or PCM) so 
that its advantages in combating interference can be determined, and 
any system parameters (such as rms phase deviation, channel separa­
tion, and so on) can be properly chosen to keep the baseband inter­
ference below a certain desired level. (It is possible to reduce ad­
jacent channel interference by using suitable receiving filters, but 
co-channel interference occupies the same band as the signal.) 

The problem of interference in angle-modulated systems has been 
considered by many authors.5

-
12 In the analysis, most of these authors 

have given an approximate expression (the first term in the power 
series expansion) for the baseband interchannel interference, and have 
shown that it can be expressed as the convolution of the spectral 
densities of the angle-modulated waves. The accuracy in this ap­
proximation has not been determined previously. Also, in the calcula­
tion of interchannel interference in high index FM and PM systems, 
most of these authors use the quasistatic approximation, the accuracy 
of which is unknown. 

We first consider a general method of evaluating the baseband inter­
channel interference when two angle-modulated waves interfere with 
each other. We assume that an ideal angle (frequency or phase) demod­
ulator is used in the system. (An ideal angle demodulator does not respond 
to any variations in the amplitude of the wave. This can be achieved in 
practice by using an ideal limiter at the front end of the receiver. If 
A(t)ei<I>(t) is the input to an ideal limiter, its output is given by Aoei<I>(t) 

where Ao is a constant.) 
We obtain a general expression for the baseband interference when 

the modulating wave is gaussian. This expression can be utilized even 
when the baseband signal is passed through a linear network (such 
as a pre-emphasis~de-emphasis network). 

We are specifically interested in calculating the baseband inter­
channel interference between two or more waves phase modulated 
(without pre-emphasis) by band-limited white gaussian random 
processes. It, has been found in practice that such a random gaussian 
noise of appropriate bandwidth and power spectral density ade­
quately simulates (for some purposes) a variety of signals such as a 
frequency division multiplex (FDM) signal, a composite speech 
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signal, and so on.13 Since the determination of the power spectrum is 
fundamental to the evaluation of baseband interference, first we re­
view briefly the methods of obtaining this spectrum for a wave phase 
modulated by band-limited white gaussian noise. 

In the case of band-limited white gaussian noise modulation, if 
the bandwidths of the modulating waveforms for the desired and 
interfering carriers are the same, we show that the determination of 
baseband interference power is relatively simple, and requires only 
the computation of the spectral density of a phase-modulated carrier 
for a variety of values of rms phase deviation. For small values of 
interference and for band-limited white gaussian noise modulation, 
we also show that the first term in the series gives most of the con­
tribution to the baseband interference, and that this first term can be 
used as a good approximation. 

For a co-channel interferer, we show that maximum interference 
occurs at the lowest baseband frequency present in the system (we 
assume that this lowest frequency is f = 0)" and that we can derive 
upper and lower bounds to this minimum signal-to-interference ratio. 
For sufficiently high modulation index, we show that these bounds are 
proportional to the cube of the modulation index, and that phase 
modulation can be used to advantage in combating interferenceY 

We show that maximum interference with an adj acent channel inter­
ferer occurs at the highest baseband frequency present in the system 
if the carrier frequency separation fa between the two channels is 
relatively large compared with the baseband bandwidth W. For a 
set of values of f a/Wand for different modulation indexes of the two 
channels, we compute this minimum signal-to-interference ratio and 
give the results in graphic form. 

We then consider the case in which more than one interferer may 
corrupt the desired received carrier and show that we can derive an 
expression for the spectral density of the resulting baseband inter­
ference. This expression is in the form of an infinite series and for its 
evaluation, in the case of band-limited white gaussian noise modula­
tion and equal modulation bandwidths, it is only necessary to be able 
to compute the spectral density of a sinusoidal carrier phase modulated 
by gaussian noise. In case all these interferers are co-channel and all 
of them have the same (high) modulation index <1>, we show that we 
can derive upper and lower bounds to the minimum baseband signal­
to-interference ratio. 

* We do not imply that maximum baseband interchannel interference· always 
occurs at f = 0 for any general system angle modulated by gaussian noise. 
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II. INTERFERENCE BETWEEN TWO ANGLE-MODULATED WAVES 

We first assume that there is only one interfering wave corrupting 
the desired received signal, and that both of them are angle modulated 
by two independent gaussian random processes. Let the desired angle­
modulated wave be given by 

set) A cos [wot + pet) * cp(t)J 
(1) 

Re A exp {j[wot + pet) * cp(t)J} , 

where A is the amplitude of the wave, 10 = wo/27r its carrier frequency, 
pet) the impulse response of the pre-emphasis network, and 
cp(t) is a stationary gaussian random process with mean zero, and 
covariance function Rrp(r). (We only assume that pet) is the impulse 
response of a linear network through which cp(t) may be passed. Only for 
convenience, we refer to it as the impulse response of the pre-emphasis 
network.) The notation A (x)*B(x) represents the convolution of function 
A(x) with B(x). 

Let the interfering wave i(t) be given by 

i(t) = RiA cos [Wit + Pi(t) * CPi(t) + JliJ (2) 
= Re ARi exp {j[Wit + Pi(t) * CPi(t) + JliJ} , 

where ARi is its amplitude (Ri is the relative amplitude of the interfering 
wave with respect to the desired wave), Wi is its angular frequency, pJt) 
is the impulse response of its pre-emphasis network, and CPi(t) is a 
stationary gaussian random process with mean zero and covarIance 
function Rrp;(r). 

Since set) and i(t) usually originate from two different sources, it 
seems reasonable to assume that Jli is a uniformly distributed random 
variable with probability density 7rl-'i (Jl) where 

( ) = J2
1 

, 0;£ Jl < 271" 
71"lli Jl 171" 

o , otherwise. 

(3) 

Further, we assume that ip(t) and ipi(t") are independent of each other 
and independent of iLi. (Reference 13 treats of the case in which iLi is 
a deterministic constant, and ip (t) and ipi (t) are not independent of 
each other.) 

If we assume that s(t) and i(t) are both in the passband of the 
receiver "used in the "system~ the" total signal" r(t) "incident at the re-
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ceiver is given byt 

ret) = Re A(exp {j[wot + pet) * !p(t)]} 

+ Ri exp {j[Wit + Pi(t) * !Pi(t) + ~i]}) 
Re A(l + Ri exp {j[(Wi - wo)t + Pi(t) * !Pi(t) - pet) * !p(t) + ~i]}) 
. exp {j[wot + pet) * !p(t)]} 

Re Aa(t)eiX(t) exp {j[wot + pet) * !p(t)]} 

Re Aa(t) exp {j[wot + pet) * !pet) + A(t)]} , (4) 

where 

a(t)eiX(t) = 1 + Ri 

. exp {j[(Wi - wo)t + Pi(t) * !Pi(t) - pet) * !pet) + ~i]} . (5) 

Notice from equation (4) that the (excess) phase angle YJ(t), as 
detected by an ideal angle demodulator, is given by 

YJ(t) = !pet) + A(t). (6) 

(The gain-or proportionality factor-of the phase demodulator has 
been assumed to be unity.) Therefore, the spectral density of YJ(t) can 
be written as 

8,/(f) = L: R,/(T)e-i27rfT dT, 

where RYJ (T) is the covariance function of YJ (t), and 

(7) 

(8) 

(The notation (x) represents the ensemble average of random variable 
x.) If there is no interference, and if q (t) is the impulse response of 
the de-emphasis network used in the system, the detected phase angle 
n (t·) can be written as 

[Q(t)hi=O = q(t) * pet) * !pet). (9) 

Q(t) = q(t) * pet) * !pet) + q(t) * A(t). (10) 

Now if we assume that the de-emphasis network is the inverse of 

t In this paper we do not consider the effects of linear filters usually used in 
receiving systems on the interchannel interference between two (or more) angle­
modulated systems. 
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the pre-emphasis network, we have 

q(t) * pet) o(t), 

and 

Q(t) = cp(t) + q(t) * A(t), 

where 8 (t) is the Dirac delta function. 

From equation (5), we have 

A(t) = 1m In (1 + Ri exp {j[Wdt + Pi(t) * CPi(t) 

(11) 

(12) 

- pet) * cp(t) + JLi]}), (13) 

where 

W,z = Wi - Wo . 

Notice that 

In (1 + z) :t (_I)m+l Zm , 

rn=l m 
I z I < 1, 

where z is any complex number. 
Therefore, for Ri < 1, we have t 

A(t) = :t (_l)m+l 
rn=l m 

'R~[exp {jm[wd t + Pi(t) * CPi(t) - pet) * cp(t) + JLi]} 
• 2j 

_ exp { - jm[wdt + Pi(t) * CPi(t) - pet) * cp(t) + JLi]} ] 
2j 

(14) 

(15) 

00 (_l)m+l 
2: R';' sin {m[wdt + Pi(t) * CPi(t) - pet) * cp(t) + JLi]} . 
m=l m 

(16) 

Since 'P (t), 'Pi (t), and fLi are statistically independent random vari­
ables and since (exp (jkfLi) > = 0 with k =1= 0, we can show from equa­
tions (6), (8), (13), and (16) that 

00 R~m 

R'I(r) = Rp(r) * Rcp(r) + ]; 2:n2 cos mWdr 

·exp (-m2{[Rcpp(0) - Rcpp(r)] + [Rcp;Pi(O) - Rcp;Pi(r)]}), (17) 

t For Ri < 1, notice that a(t) > O. 
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and 
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Rp(r) I: p(t)p(t + r) dt, 

Rp.(r) = f_: Pi(t)Pi(t + r) dt, 

R<piPi(r) = Rpi(r) * R<p,(r). 

Therefore, the spectral density of the output is given by 

2339 

(18) 

(19) 

(20) 

(21) 

1 00 R~m 

So(f) = S<pCf) + 1 Hp(f) 12 m~4~ 2 [TmCf - mfd) + TmCf + mfd)]' (22) 

where Hp (f) is the Fourier transform of p (t), and 

TmCf) = I: exp (-m2{[R<pp(0) - R<pp(r)] 

+ [R<piP.(O) - R<p,p,(r)] })e-i21rfT dr. (23) 

From equation (23), we can show that 

(24) 

where~ 

(25) 

and 

VmCf) = I: exp {-m2 [R<piP'(0) - R<piP.(r)]}e- i21rfT dr. (26) 

Equation (22) gives a general expression for the baseband inter­
channel interference when two angle-modulated waves interfere with 
each other. To calculate this interchannel interference, equations (22) 
through (26) show that it is essential to determine the RF spectral 
density of a wave angle modulated by gaussian noise. Methods of 

t Since cp(t) and CPiCt) are assumed to be gaussian, p(t) * cp(t), and Pi(t) * CPi(t) are 
also gaussian.2 ,15 Notice also that the Fourier transform of Rp(r) is equal to I Hp(f) 12, 

if Hp(f) is the Fourier transform of p(t). 
~ Notice that Um(j) and Vm(f) are the RF spectral densities of wayes angle 

modulated by gaussian noise. 
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calculating this spectrum for low and medium index modulation are 
generally available, and the quasistatic approximation has been used 
for high index modulation. 2,13-16 Since the accuracy in the quasistatic 
approximation cannot often be determined, some rigorous methods 
of evaluating this spectrum for high index modulation have recently 
been developed. 2,16 

III. SPECTRAL DENSITY OF A PM WAVE 

In this paper, we are specifically interested in determining the in­
terchannel interference between two or more waves phase modulated 
by band-limited white gaussian random processes. Hence, we now 
review briefly the methods of obtaining the RF spectrum of such a 
wave. A sinusoidal wave of constant amplitude A phase modulated by 
a signal n(t) can be written as 

wet) A cos [wot + net) + OJ, 

Re A exp {j[wot + net) + O]}, 

(27) 

(28) 

where f 0 = wo/27r is the carrier frequency of the wave, and e is a random 
variable with probability density function 

7re(e) = {1/27r' 0 ~ e < 27r (29) 

0, otherwise. 

If the modulating waveform is band-limited and white, its spectrum 
Sn (f) is given by (see Fig. 1) 

-w 

I f 1< W, 

otherwise. 

SPECTRAL DENSITY 
IN RAD2 PER Hz 

2W 

w FREQUENCY, f, 
IN Hz 

Fig. 1- Spectral density of modulating wave, 

(30) 
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Notice that Ref. 16 treats, in detail, the methods of obtaining the spec­
tral characteristics of a sinusoidal carrier phase modulated by such a 
signal. From equation (30) we can show that (see Fig. 2) 

(31) 

For ell:! » 1 and for low frequencies, the quasistatic approximation 
yields2

•
15 

1 ( 3 )! [3 1 (f )2J Sv(f) ~ exp (- <I>2) o(f) + ellW 27r exp -2 ~2 W . (32) 

One can show that the approximation given by equation (32) is only 
good at low frequencies and that it is too small for large j.16 

For large modulation indexes (<p > 1.7432 rad) and for all frequen­
cies, we can show thatt6 

Sv(fJ = exp (-ip') {.(fJ + 2~ [u_,(f + W) - u_,(f - TV)]} 

where 

and 

+ 1 [2ih2( h2 Ys sinh Ys)J --exp - ':i' cos ---- f..L 
27rW 2 Ys ' 

x > 0, 

otherwise, 

(~;~J\l - C) < f..L < (~;~J\l + D), 

cosh Ys sinh Ys f 
---y:- - y~ = ~2W ' 

(33) 

(34) 

(35) 

(36) 

(37) 

vVe can also show that C and D, appearing in equation (35), are less 
than 8 per cent for <P > (10) ~ rad. Further, for all j, one can show 
thaV6 

C < 2% for <I> > 5rad, (38) 

and 

D<2% for <I»5rad. (39) 
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Fig. 2-Covariance function Rn(r). Since Rn(-r) is an even function of r, we 
only show Rn(r) for r ~ O. 

Hence, we can say that 

(40) 

and that the fractional error in this approximation is very much less 
than unity (less than 2 per cent, <1> > 5 rad). 

For I = 0, from equations (33) through (37) we can show that 

0.92 (;7l"Y <I>~ < Sy(f) - exp (- cp2) o(t) < 1.08 (2
37l"Y cp~ , 

cp > (10)! rad. (41) 

For any I and <1>, the determination of the spectral density Sy (f) 
from equations (33) through (40) is rather simple. For any given I, 
<1>2, and W, we calculate Ys from equation (36), and Az from equation 
(37). The spectral density Sv(f) is then calculated from equations 
(33) and (40). 



INTERCHANNEL INTERFERENCE 2343 

IV. INTERFERENCE BETWEEN TWO PM WAVES 

We now assume that cp (t) and CPi (t') in Section II are band -limited 
white gaussian random processes with the same bandwidth Wand rms 
phase deviations <P and <Pi. We also assume that p (t) = Pi(t) = ~(t), 
or that no pre-emphasis-de-emphasis networks are used in the sys­
tem. Therefore, we have 

(42) 

and 

R () = <P~ sin 27l"W T. 
'Pi T • 27l"WT (43) 

From equations (22), (23), (42), and (43) we can write t 

(44) 

where 

(45) 

and 

IIm(f) = L: exp [ -m'W + <li:)( 1 - sin~~ T) Je~;'r" dT. (46) 

Notice that Gm(f) is the spectral density of a sinusoidal carrier (at 
carrier frequency mfd , and having unit amplitude) phase modulated by 
a band-limited white gaussian random process having mean square phase 
deviation m2(cp2 + cp2). Section III gives methods of obtaining this 
spectrum for all values of f; hence, SoC!) can easily be calculated. 
In order to evaluate SoC!) from equation (44), we must be able to 
determine the spectral density of a carrier phase modulated by gaussian 
noise for any arbitrary modulation index. In the case of band-limited 
white gaussian noise modulation the technique presented in Ref. 16 is 
very convenient to calculate this spectrum. The series method of 
determining this spectral density can become rather tedious when cf> or 
cf>i is large. 

When there is no interference, the signal as detected by an ideal 
phase demodulator is given by cp(t), and its spectral density by S",(f). 
Therefore, from equation (44), the spectral density S1 (f) of the base-

tNotice that in this caseQ(t) = 1](t), since pet) ='Pt(t) = o(t) .. ·· 
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band interchannel interference can be written as 

8r(f) = 8n(f) - 81'(1), (47) 

or 

(48) 

Figure 3 is a graph of 81 (f) for fd/W = 0, 1, and 5; <I> = 3 rad, and 
<1>1 = 2 rad. Notice that, for fa/Tf' = 1,81 (f) is maximum at f = 0 or 
that maximum interchannel interference occurs at the lowest baseband 
frequency present in the system. 

In practice the quantity of interest is usually the ratio of the aver­
age signal power to average interchannel interference power. In this 
case this signal-to-interference ratio CT (f) can be written as 

(f) = 81'(f) Af = 81'(f) 
U Sr(f) Af 8 r(f) , 

(49) 

where 6.t is the spot frequency band of interest. Clearly, u(t) is a func­
tion of f and in designing an angle-modulated system one is usually 

10-1 bd--+---+~F--+---+---t--------l 

~I~IO-' 
3: 1O-41----+---+---+---~~-l-----I 

10-51-----+----+----+----+--~~---I 

10-61----+---+---+---+---~~'r---l 

10-7 L....-_--L __ --L __ ...l...-__ ..L-__ L--_--l 

o 2 4 6 

f/w 
8 10 12 

Fig. 3 - Spectral density 8r(j) of baseband interference. <I> = 3 rad; <1>. = 2 rad. 
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interested in the minimum value of u(f) for 0 < I f I ~ W. We denote 
the minimum value of this signal-to-interference ratio by SII. In practice 
a phase demodulator is followed by a linear low pass filter. We assume 
that this filter is ideal and that it removes all the frequency components 
outside the desired signal frequency band 0 < I f I ~ W. 

4.1 Interference Between Two Co-Channel Plvl Waves 

In general, one can show (see Fig. 3) that SI(f) contains a (nonzero) 
Dirac delta function (corresponding to a line spectrum) at the frequency 
±fd' and that the frequency division multiplex channel corresponding 
to this frequency may not be usable. t In case the interference is co­
channel, fd = 0, and the line spectrum lies at the frequency f = O. In 
systems usually encountered in practice, there is no frequency division 
multiplex channel at dc even though the lowest frequency present in the 
baseband signal may approach a frequency arbitrarily close to zero.14 

Notice from equation (48) and Fig. 3 that, in the case of co-channel 
interference between two PM waves, maximum baseband interference 
occurs at the lowest frequency present in the system; we assume that 
this lowest baseband frequency lies arbitrarily close to zero. In this 
case the minimum signal-to-interference ratio therefore occurs at f = 
o and 

where 

<I>2 1 
SII = 2W S~(O) , (50) 

co R2m 
Si(O) = It 2:n2 {H m(f) - exp [ - m2

( <1>2 + <I>:)J o(f)} 1=0 . (51) 

Since the interference is co-channel we further assume that <P = <Pi 
so that the rms phase deviations in the two PM waves are the same. 
'Ve can now write 

co R2m 
Si(O) = ]; 2:n2 [H m(f) - exp (-2m2 

<1>2) O(f)J/=O . (52) 

Consider the case <P > (5)t radians. In this case one can show thaVil 

, 2 2 1 (3)! 
[Hm(f) - exp (-2m <I> ) O(f)J/=O ~ 2m<I>W ;;= , (53) 

and that the error in this approximation is less than 8 per cent. Hence, 

:I: We do not put any lower limit on the width of any frequency division multi­
plex channel present in the baseband signal. 
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we have 

~~ (!/ t,~ < 8~(O) < O;~ (;Y t, ~, <I> > (5)! rad. (54) 

It can be shown that 

00 R:m 2 100 t2 dt I: -3 = Q(R.;) = --t -2"' 
m=l moe - Ri 

(55) 

Therefore, the signal-to-interference ratio at f = 0 is bounded by 

<P > (5)! rad. (56) 

For any value of Ri < 1, equation (56) gives upper and lower bounds 
to S/l. We shall now investigate whether we can derive simpler upper 
and lower bounds to Q(RD. 

From equation (55) 

:t R:: = R: + :t exp [ - m ~n (l/R~)]. 
m=l m m=2 m 

(57) 

Now one can show (see Fig. 4) that 

o < :t exp [- m l~ (l/R:)] < foo exp [-x 1:1 (l/R:)] dx 
m=2 mIx 

= E3[ln (l/R~)J, (58) 

wheret 

E (z) = foo ~~ dt 
3 1 t3 , 

z> O. (59) 

We can show that for Ri < 1, (In l/R~ > 0), (see Ref. 17) 

o < E3(ln l/R:) ~ 2 + l~~(l/R~) , (60) 

or 

(61) 

Since 

t The function E 3(z) is tabulated in Hef. 17 (see pp. 228-248). Notice also the 
inequality En(z) ~ e-z/(z + n - 1) on p. 229. 
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_ EXP [-xQn (1/R~)J 
:x: 3 

o 2 4 6 8 10 12 14 

Fig. 4.-Function exp [-x In (ljRi 2 )]jx3 and ~"'m=2 R i2
m jm 3 • The area in the 

shaded region is less than the area under the curve from x = 1. 

00 R2m 00 R2m 
I: ~ < I: _i = -In (1 - R~), 
m=l m m=l m 

Q(R~) < -In (1 - R:). (62) 

We are thankful to W. T. Barnett for having suggested another upper 
bound R:/ (1 - R:) to Q(R:). 

One can show that the bound given in equation (62) is tighter than 
that given in equation (61) if 

Ri < Ro = 0.695573. (63) 

Let us write 

U(RD (64) 

so that 

R~ < Q(R:) < R~U(R:), 0 < Ri < 1. (65) 

For carrier-to-interference ratio of 10 dB or for R~ = 0.1 

2 00 R~m 2 

Ri < I: -3 < 1.0536 Ri . 
m=l m 

(66) 
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From equations (56) and (65), we next write 

1 ()! 1 1 ()! 1 cP:{ 
0.46 i R~ <1>3 > S/1 > 0.54 i R~ U(R~) , 

cp > (5)! rad, Ri < 1. (67) 

Since the physical characteristics of elements used in a PM receiver 
are far from being ideal, and since thermal noise (which is always 
present) further deteriorates the performance of any PM receiver, we 
often find that R~ < 0.1 in systems currently in use. Equations (66) 
and (67) show that the error introduced in truncating the series at 
1n = 1 is less than 5.36 percent if R~ < 0.1. For any Ri « 1, we therefore 
need take only the 1n = 1 term in equation (54) to estimate the baseband 
interference. Equation (67) gives upper and lower bounds to S/I for 
any Ri < 1. Also, note from equation (67) that co-channel interference 
can be suppressed in PM systems by using a large modulation index cp.14 

4.2 Interference between Two Adjacent-Channel PM Waves 

As mentioned in Section II we do not consider the effects of lineal' 
filters on angle-modulated systems. We assume that the desired and 
interfering wave are both in the passband of the PM receiver used in the 
system, and that no filters are used to reduce the adjacent channel 
interference. 

In any multichannel angle-modulated system generally encountered 
in practice there is usually both adj acent channel and co-channel 
interference. Protection against adjacent channel interference is often 
obtained by proper choice of the channel separation frequency and the 
required (linear) filters generally used in such systems. The assumptions 
made in this section are, therefore, a little unrealistic; hence, the results 
given may serve only as a guide in the actual calculation of adj acent 
channel interference. 

For 0 < fd/W < 1, one can show that SICI) contains a (nonzero) 
Dirac delta function (corresponding to a line spectrum) at the frequency 
±fd and that the frequency division multiplex channel corresponding 
to fd/W may not be usable. 

For fd ~ 0 we can show, from equations (44) through (46), that 

(68) 

where 

(69) 
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and 

Hm(fJ ~ 1: cxp [ -m'(.p' + .pD( 1 - s~;~ r) Je-;'<I< dr. (70) 

For 0 ~ I f I < W, and I fa I » W, one can show (by numerical 
methods) that S I (f) reaches its maximum at f = W, or that maximum 
baseband interchannel interference occurs at the highest frequency 
present in the baseband signal. For other values of channel separation 
frequency, this maximum is to be determined from equations (68) 
through (70). 

For (cI>2 + cp~)! > (30/7r)! rad, the saddle-point method of calculating 
Gm(f) is very convenient;16 and this method can be applied in a straight­
forward manner to estimate SI(f). (Since one can show that the saddle­
point approximation reduces to the quasistatic approximation for 
fd/W « (cp2 + cI>~)!, the quasistatic approximation may be used for 
convenience if this condition is satisfied. However, the error introduced 
as a result of the use of quasistatic approximation cannot often be 
estimated.) For Ri « 1, we can also show that we need take only the 
m = 1 term in equation (68) to estimate S/l with a very small fractional 
error (less than 5.36 percent for Ri < 0.1). 

For fd/W = 2, 4, 6, 8, and 10 and for a set of values of <I> and elli , we 
have calculated this minimum signal-to-interference ratio; Figs. 5 
through 9 give these results. For any value of fd/W and for any S/l, 
the required values of ell and elli may be obtained from these figures. 
Since the effects of linear filters on adj acent channel interference has 
not been taken into account in this paper, these values of ell and ell i 
may serve only as a guide in the design of any angle-modulated sys­
tem. 

V. INTERFERENCE BETWEEN L+l PM WAVES 

We now assume that there are L interfering waves, and that all of 
them are phase modulated by mutually independent gaussian random 
processes.t Let the desired PM wave be given by 

set) = Re A exp {j[wot + <p(t)]}. (71) 

Let the kth interfering wave be represented as 

1 ~ k ~ L. (72) 

t The analysis given in this section can suitably be modified for angl~ modula­
tion by general gaussian random processes (see Section II) . 
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Fig. 5 - Signal-to-interference ratio as a function of rms phase deviations and 
channel separation for <Pi = 2 rad. 

Since the L interfering waves are assumed to originate from L different 
sources, we assume that the J..Lk'S are independent of each other, and that 
J..Lk, 1 ~ k ~ L has a uniform probability density function 'Tr!-lk(J..L) where 

( ) = {1/2'Tr' 'Tr!-lk J..L 
0, 

o ~ J..L < 2'Tr, 

otherwise. 

1 ~ 11, ~ L, 
(73) 

We further assume that cp(t), the CPk(t)'S, and the J..Lk'S (with 1 ~ k ~ L) 
are mutually independent random variables. 

If s (t) and the i k (t) 's are all in the pass band of the PM receiver 
used in the system, the total signal incident at the receiver can be writ­
ten as 
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L 

ret) = set) + I: ik(t) 
k~l 

= Re A( 1 + t. Rik exp {j[Wdkt + CPik(t) - cp(t) + ,uk]}) 

. exp {j[Wot + cp(t)]}, (74) 

where 

(75) 

From equation (74), we can show that the output 8(t) of an ideal 
phase demodulator can be represented as 

e(t) = cp(t) + 1m In (1 + 1; Rik exp {j[Wdkt + CPik(t) - cp(t) + ,uk]})' 

(76) 
N ext we write 

45~--~----~----~----~----~--~~--~ 

15~ __ ~ ____ ~ ____ -L ____ ~ ____ ~ ____ L-__ ~ 

345 6 7 8 9 10 

<p IN RADIANS 

Fig. 6 - Signal-to-interference ratio as a function of rms phase deyiations and 
channel separation for <PI = 4 rad. 
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40~----~----~----~-----r-----.----~----~ 

<t> IN RADIANS 

Fig. 7 - Signal-to-interference ratio as a function of rIr.8 phase deviations and 
channel separation for 4>, = 6 rad. 

(77) 

By the multinomial theorem, we have 

where the a/s are a set of nonnegative integers such that 

40~----~----~----~-----.-----.-----.-----, 

<t> IN RADIANS 

Fig. 8 - Signal-to-interference ratio as a function of rms phase deviations and 
channel separation for CPt = 8 rad. 
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Fig. 9 - Signal-to-interference ratio as a function of rms phase deviations and 
channel separation for <P = <Pi. 

(79) 
r=l 

From equations (73) and (76) through (79), one can show that the 
covariance function Ro (T) of () (t) can be written as 

Ro(r) = (O(t)O(t + r») 

(80) 

If the random gaussian noise is band-limited and white, and if all the 
modulating waveforms have the same bandwidth W, we have 

and 

R",(T) = cp2 .sin 271'W r 
271'Wr ' 

R () 
cp2 sin 271' TV r 

"'k r = k 271'Wr ' 1 ~ k ~ L. 

In this case, equation (80) can be written as 

(81) 

(82) 
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~ 1 [ 2 2 ( sin 27l" W r)] Ro(r) = Rcp(r) + ~ 2m2 exp -m <P 1 - 27rW T 

r=l 

(83) 

Therefore, the spectral density of baseband interchannel interference 
is given by 

r=l 

where 

7'" .. (f) ~ 1: exp [_(l_si~;;~T)(m'iI" + t,a:iI':])e-;''''dT. 
(85) 

Next notice that the methods given in Section III can be used to 
calculate T(f) for all values of <P, and <Pik'S (with 1 ~ k ~ L); hence, 
we can calculate S[(I) for all values of Rik'S such that L ~=1 Rik < l. 
The minimum signal-to-interference ratio SII can then be obtained 
from equation (49). 

Now assume that we have L co-channel interferers and that all have 
the same rms phase deviation <P, or 

<Pr = <P, 

In this case equation (84) yields 

1 ~ r ~ L. 

[ 

L I ( 1)2 II R 2
a

r 

00 1 m. r=l ir 

L92 L ' L Gms(f) , 
m=l _m S II (a

r
!)2 

r=l 

(86) 

(87) 
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where 

Gm.,(f) = i: exp [ -(1 - si~:~:T)(J)2(m2 + ~ a;)Je- ihfT dT. 

(SS) 

From equations (S7) and (SS) and Refs. 2 and 16, one can show 
that the continuous part of SI(f) reaches its maximum at f = 0, and 
that t 

( 
3 )~ 1 1 

0.92 271" ( L)~ lV<p < Grns(O) 
m2 + 2: a; 

T=l 

(
3 )! 1 1 

< 1.0S 271" ( L)~ W(J) , 
m2 + 2: a; 

r=l 

(S9) 

The expression GntS (0) in equation (S9) does not include the delta 
function contained in Gms (n at f = O. 

L 

Since 2: ar = m, one can prove that 
r=l 

2 L 

m<"'2< 2 -L = L..J ar = m . 
r=l 

From equations (S9) and (90) we have 

(3)~ 1 (3)~( 2L)! 1 
0.46; m<pW < Gms(O) < 0.54; L + 1 m(J)W' 

Next 

00 1 
8reO) < ~ 2m2 

If all x/s are nonnegative, one can show that 

2: x~ ~ (2: Xi)2. 

Using equation (93), equation (92) yields 

t We consider only the continuous part of SrCI). 

(90) 

(91) 

(92) 

(93) 
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= 0.27(~)!(~)! _1 f (t,R)'M 7r L + 1 <l>W m=l m 
(94) 

or 

(3)!( 2L )! 1 2 
S[(O) < 0.27;;: L + 1 ¢VV Q(b), (95) 

where 

(96) 

'Ve have shown in Section IV that 

(97) 

Therefore, the minimum baseband signal-to-interference ratio is 
bounded by 

1 (7r)!(L + l)t <1>3 
S/1 > 0.54 3" ---u;- b2 U(b2

) ' 
<I> > (5)! rad, b < 1. (98) 

From equation (87) we can also show that 

1 (L 2 ) S[(O) > 2 f.; R ir G1.(0). (99) 

Equations (89) and (99) yield 

(3)t 1 (L 2 ) 
S[(O) > 0.23;;: W<I> ~ R ir , (100) 

or 

(101) 

Hence we have 

1 (7r)! <1>3 1 (7r)i(L + I)! <1>3 
0.46:3 t m. > SII> 0.54:3 ---u;- b'U(b') ' 

L 

<I> > (5)i rad, b = L Rik < 1. (102) 
k~l 
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For any set of values of Rik'S, 1 ~ k ~ L, and for any ~, bounds to 
the signal-to-interference ratio S/1 can be calculated from equation 
(102), and a proper ~ can then be chosen to keep the baseband inter­
ference below any desired level. 

Notice that the upper bound is a function of the total interference 
power, and the lower bound a function of the sum of the amplitudes 
of all the interfering carriers. In such cases, the distribution of Ril/s 
generally determines the closeness of the two bounds. However, it may 
be observed that both these bounds are proportional to the cube of the 
modulation index <I> (for a high index system). 

VI. RESULTS AND CONCLUSIONS 

In this paper we consider the effect of interchannel interference on 
angle-modulated systems. We also derive an expression for the base­
band interchannel interference when two (or more) waves angle mod­
ulated by gaussian noise interfere with each other. This formula can 
be used even when the baseband signal is passed through a linear net­
work such as a pre-emphasis-de-emphasis network. We show that the 
calculation of the RF spectral density is essential to the evaluation of 
the baseband interchannel interference. 

We then consider band-limited white gaussian noise modulation and 
show that, in the case of co-channel interference, maximum baseband 
interference occurs at the lowest baseband frequency present in the 
system. For moderately high modulation index, we show that we can 
derive upper and lower bounds to this minimum signal-to-interference 
ratio and that these bounds are proportional to the cube of the modu­
lation index. It therefore follows that co-channel interference in PM 
systems can be reduced by expanding bandwidth, and that phase mod­
ulation can be used with advantage in combating interference. We also 
show that the first term in the power series expansion for the baseband 
interchannel interference gives most of the contribution if the carrier­
to-interference ratio is greater than about 10 dB (the error is less than 
5.36 per cent for a carrier-to-interference ratio greater than 10 dB). 

In this paper we also give some results about the effects of adjacent 
channel interference on angle-modulated systems. We assume that all 
the incident signals at the receiver are in the passband of the PM re­
ceiver used in the system. This assumption is justified in the case of 
co-channel interference, but is not realistic in the case of adj acent 
channel interference. However, we feel that the results given in this 
paper for the adjacent channel interference may serve as a guide in 



2358 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER HJ69 

determining the deterioration in performance produced by adj acent 
channel interference. 
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Calculated Qualltizing Noise of 
Single-Illtegratioll Delta-Modulation Coders 

By J. E. IWERSEN 
(Manuscript received March 28, 1969) 

We calculate the granular quantizing noise for €L delta 1Twdulato)' that 
has unequal positive and negative step sizes. The asymmetry leads to a 
highly colored noise spectrum. We perform this calculation by adding a 
ramp function of time to the input of a syml1wtrical coder. The Tesulting 
formulas can also be used for uniform DPCNI and PC1VI coders. The 
idle-channel spectrum consists of discrete lines which scatter somewhat 
irregularly in amplitude and frequency; they can be regarded as the result 
of sampling (aliasing) a sawtooth wave. These lines are phase-modulated 
by a coder input. For a sinusoidal input, discrete side frequencies are 
produced which again have an irregular progression of amplitudes. Gaus­
sian inputs lead to gaussian line shapes; the lines broaden as input power 
is increased. A totally white spectrum (as is often assumed in connection 
with delta-modulation-system, considerations) cannot be attained, however, 
before the onset of slope overload. We give a numerical example that uses 
a coder suitable for telephone applications. One can see that step aSY111,­
metry can be very advantageous in attaining low noise. 

r. INTRODUCTION 

While Laane and lVlurphyl were investigating the encoding of speech 
using delta modulation (,6,JVI) 2 it became apparent to us that existing 
theories of granular quantizing noise3,4 were seriously deficient; they 
did not take into account, except in a very elementary way, the asym­
metry of the positive and negative integrator step sizes. This work in­
tends to correct this deficiency. 

Figure 1 is a block diagram of a ,6,M coder-decoder. An input signal 
is compared with a locally reconstructed version of itself and the 
differential, or error, is quantized into a one-bit code, transmitted, and 
integrated at a receiver to recover the original signal. Quantizing 
noise is produced by the coding process and is also recovered at the 
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CODER 

SIGNAL 
IN 

DECODER-[Sbt~L~.~-----~ 

CLOCK 

INTEGRA TORI ~ -----.... ~~ 

Fig. 1-Delta-modulation coder plus decoder (codec). 

receiver; this noise is the subject of this paper. We limit our considera­
tion to single-integration systems. 

In the past, considerations of b.M noise have been broken into two 
distinct areas: calculation of quantizing noise accompanying a typical 
signal,3 and calculation of idle-channel (zero-input-signal) noise.4 As 
Fig. 2 shows, there is no idle-channel noise for a coder in which the 
plus and minus quanta (steps) fed to the integrator are exactly equal 
in magnitude. The integrator output spectrum contains only the out­
of-signal-band Nyquist frequency, fN (one half the sampling fre­
quency, fs) and its harmonics. In any real coder, however, it is 
impossible to balance the plus and minus steps perfectly, with the re­
sult that the output contains occasional double-plus (or double-minus) 
steps, as Fig. 3 shows. In general, this waveform has signal-band com­
ponents. Wang calculated the noise for this case but his results, while 
adequate as far as they go, are incomplete and nonrigorous.4 Van de 
Weg's calculation of noise in the presence of signal was for an equal­
step (symmetrical) coder.3 We do the calculation for an unequal-

a r 
--1 r-- Ts 

- - - r- r- - - ;- - r- - r--- - - - - r- - -

- ~ '-- - '-- - '-- '- '-- - '-- ~ '- '- '- '-- - '- -

-(1 - TIME-

Fig. 2 - Integrator-output wave from a symmetrical (equal-step-size) coder. 
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Fig. 3 - Integrator-output wave from an asymmetrical (unequal-step-size) 
coder, shown with I u+ I > I u_ I. 

step (asymmetrical) coder and show that there are significant differ­
ences. 

In much of the literature on delta modulators, where noise is treated 
casually, the assumption is made that the total average noise power 
is more or less uniformly distributed in the band from zero frequency 
to the Nyquist frequency. This assumption is a very good approxima­
tion for multibit PCM and DPCM but, as we show, can lead to 
colossal errors for ..6M. 

Results presented for gaussian input are in terms of time-averaged 
noise power. In this form they are directly useful for speech systems 
and typical data systems but are of more limited value for video 
systems, where details of the waveform are perceived. 

In Sections II and III, we set up the method of attacking the prob­
lem. Then in Section IV we treat zero input (the idle channel), in 
Section V a sinusoidal input, and in Section VI a broadband gaussian 
input. The appendixes contain various mathematical developments 
necessary for logical completeness but not important to the reader 
interested in engineering understanding and application of the main 
results (with the possible exception of Appendix D). 

II. QUANTIZING RULES 

The function of the coder (Fig. 1) is, at each clock time or sampling 
instant, to add a positive step (a+) to the integrator output (q) if this 
output is less than the signal input (y) or to add a negative step (a _) 
if the output is greater than the input. If the integrator has instanta­
neous response and infinite time constant, the output is a sequence of 
rectangular pulses, as in Figs. 2 and 3. 

If Yn is the value of the input at the nth sampling instant, and qn 
is the output value just before this instant, the operation can be sum-



2362 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMllER IfJ6fJ 

marized: 

+ 

As we mentioned, it is not possible to make the magnitudes of (T + 
and a_exactly equal in a real coder. Let us therefore define 

(J"_ == -(J" + e, (1) 

where a, the average step size, is a positive quantity. The coder opera­
tion can then be summarized in a single equation: 

(2) 

Weare actually interested in the error, or noise, x == q - y, which 
accompanies the reconstructed signal. (Appendix A shows that x is 
usually uncorrelated with Y and is therefore no~se under any circum­
stances.) Substituting for q in equation (2) gives the noise as a function 
of the input: 

Xn+l - Xn + (J" sgn Xn = -Yn+l + Yn + e (3) 

- [Yn+l - (n + l)e] + [Yn - ne] (4) 

-Y~+l + y~ . (5) 

Thus we are led to a crucial principle: The noise output of an asym­
metrical (e ~ 0) AM coder can be calculated as the noise output of a 
symmetrical (e = 0) coder, if theinput is taken as the actual input plus 
an appropriate ramp or staircase function of time. 

If equation (5) is summed from t = - 00 to just before the nth in­
stant [assuming x( - (0) = y( - (0) = 0], 

n-l 

Xn + (J" L sgn Xi -y~ (6) 
i=-rL;) 

or 

n-l 

q~ = - (J" L sgn Xi • (7) 
i=-oo 

The resulting summation in equation (7) must be an integer alternat­
ing between odd and even values as a function of n. We can, without 
loss of generality, take it even for even n. lIn equation (11) we include 
an arbitrary initial value of amplitude for the ramp; this covers the 
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possibility that the odd-even assumption is consequential.] If we assume 
that the coder does not go into slope overload (that is the input slope 
stays between the limits cr +/r. and cr -IT.), then q~1 cr is the nearest odd 
integer to (y~ + €) I cr for the odd sampling instants and the nearest 
even integer for the even instants. y~ + € appears, rather than y~ , 
because the error must range from cr + € to - cr + € rather than from 
+cr to - cr. The effect of this added € is simply that the coder transmits 
a dc level of € in addition to other signals and noise. Since ~lVl systems 
normally suppress dc, as is mentioned in Section III in connection 
with other reasons, this added € is dropped in the succeeding mathe­
matical development. If it is desired to include it, x - € should be 
substituted for x in what follows. 

We have seen that a ~l\1 coder has two quantizing functions which 
alternate in time. Figures 4 and 5 show these functions; both the input 
and output are normalized to cr. 

q~(y) and q:(y) were called E(y) and O(y) by van de Weg who cast 
them into contour-integral form and used them directly.3 We prefer 
to follow the suggestion of Rice and use the error functions, x(y), 
also shown in Figs. 4 and 5. 5 These functions, periodic in y, are con­
veniently represented by their Fourier series: 

xe = 2: ~l exp (7rilg') , 
l;o!O 7r~ 

(8) 

and 

(9) 

where g' == y' I cr. For a ~lVI coder then, 

(10) 

L ~l exp [7ril(n + g~)] (11) 
I;o!O 7r~ 

where we have introduced 

Yn gn == -, 
cr 

()=~ 
cr 

, (13) 

The last part of equation (13) takes into account an arbitrary initial 
amplitude for the ramp. 
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Fig. 4 - Quantizing and error functions for odd sampling intervals. 

There is actually nothing in equation (12) which constrains the 
change in integrator output to be equal to one step per sampling 
interval. Indeed, the quantizing functions in Figs. 4 and 5 are perfectly 
valid for uniform DPCM systems where changes ±u, ±3u, ... , 
±(2N - l)u are allowed. Thus the formulas developed in this paper 
can be used for DPCM (and PCIVI-see Appendix B) with the provision 
that they are useful for input signals with up to 2N - 1 times the 
maximum slope of the AM system. This provision is not trivial, how­
ever; when signals range over many steps per sampling interval the 
errors tend to be uncorrelated, the noise spectrum tends to be white, 
and the structure (important for AIVI) calculated here is negligible. 

III. NOISE FORMULA 

Results in this paper are given in terms of frequency spectra of 
noise (two-sided unless otherwise identified). It is well known that 
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the spectrum of a pulse sequence can be broken into a factor which 
contains the information about the pulse shape and a factor which 
contains information about the area of each pulse and the periodicity. 
The "shape" factor (called also the "structure" or "aperture" factor) 
depends on the details of the coder circuit response. This factor is 
frequently negligible, because the low pass filter it represents normally 
does not contribute any significant distortion in the signal band. Thus 
we need only consider a 8-function representation of the sampled­
signal, integrator-output, and noise pulse trains, as did van de Weg.3 

The noise wave with the proper area for each pulse is 
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Fig. 5 - Quantizing and error functions for even sampling intervals. 

(14) 
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where T. is the sampling interval (== 1/f.). If x(t) is defined as a con­
tinuous wave with samples Xn = x(nT s ), equation (14) can be written 

co 

vet) = T,X(t) L 0(1 - nT .• ) (1.1) 

co 

= xU) L exp (27rikf.t). (16) 
k=-co 

A convenient form for x(t) is, using equation (12), 

x(t) = L ~l exp {7ril[lYo + (1 - lY)fst + g(t)]} , (17) 
z,,<o 7r~ 

where 

get) == yet) . (18) (j 

Combining equations (16) and (17) gives 

vet) = L f ~l exp [7riWo + 27ri(l(1 -:; lY) + k)fst + 7ril9(t)]. (19) 
Zp'O k=-co 7r~ ... 

Thus the noise wave (before filtering by the shape factor) consists of 
a collection of lines of frequency 

e(l ~ lY) + k)f. , 

each phase-modulated by the input signal through a time-dependent 
angle, 7rlg (t). These lines are examined in Section IV. 

It is well known that the power spectrum of equation (14), and 
therefore equation (19), is periodic in frequency, i, with period is. 
We can thus concentrate on the band from -iN to iN, Because of the 
aliasing or folding problem, all useful signals lie in this band (or any 
band of width is). The total power in (-iN, iN) is (j2/3, which is also 
equal to the mean square error, (X2). Appendix D treats these matters 
explicitly. 

Equation (19) gives the noise generated at the coder, while one is 
ordinarily interested in the noise at a (distant) decoder. Unless the 
decoder has exactly the same step sizes as the coder, the noises are 
different. If the (T'S are different, there is some linear gain or loss in 
the system; signal and noise are affected equally and their ratio, the 
really significant figure of merit, is not affected. If the {}'s are different, 
the noises will differ only by a drift or ramp function of time. To get 
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rid of this ramp (and also because it is necessary to damp out the 
effect of errors in transmission) real systems have low-frequency (be­
low-signal-band) cutoffs, called leaks, built into the integrators. The 
high-frequency cutoffs of the coder and decoder integrators may also 
be different. In the event that these cutoffs affect the signal band 
they can be taken into account as separate factors in determining the 
spectrum. Thus equation (19) can be used to calculate noise at the 
decoder output. 

IV. IDLE-CHANNEL NOISE 

The term "idle-channel noise" is used here as if it were synonymous 
with "zero-input noise." We recognize that this terminology is some­
what loose, in that an idle channel is actually characterized by a 
thermal or other noise input. Nevertheless, this usage seems established 
in the literature and the distinction is not significant for most cases of 
practical interest. 

Figure 3 shows the integrator output of an asymmetrical coder. An 
approximately sawtooth-shaped wave with peak-to-peak amplitude 
~ a is clearly visible C\Vang's "first envelope function").4 Other not­
so-evident sawteeth are also usually present. 

Putting y = 0 into equation (4), we see that the idle-channel noise 
output of an asymmetrical coder can be calculated as the noise out": 
put of a symmetrical coder with a ramp input. Figure 6 illustrates 
this. The error wave in Fig. 6 is the same as the wave in Fig. 3 ex~ 
cept for an inconsequential difference in the pulse shapes. 

The idle-channel output is calculated by setting 9 = 0 in equa­
tion (19) : 

vo(t) = t; k'tC/J7r:Z exp [7riltJo + 27ri(~ (1 - tJ) + k)tstJ (20) 

which describes a collection of discrete lines. Figure 7 shows a number 
of these lines; the symmetry of the spectrum about all integral multi­
ples of iN is apparent. 

For any given value of Z, there is only one value of k which leads to 
a line in the Nyquist interval (-iN, iN). This line, of frequency h, can 
be defined: Let . 

Q(o:).= 0: - N(o:) (21) 

where 

N(o:) integer nearest 0:. 
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Fig. 6 - Input, output, and error waves for a (negative) ramp input to a sym­
metrical coder. 

Then 

(22) 

Ignoring lines outside the Nyquist interval, and combining terms of 
+l and -l, 

(23) 

If we now think of the spectrum as one-sided, we have a collection 
of lines of frequency 

f = Iitz I (24) 

and power 

(25) 

These lines will subsequently be referred to as "main lines," "original 
lines," "carriers," or "l-lines" (2-line, 5-line, and so on). 
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Figure 8 is an example of the spectrum, bringing out some of the 
important qualitative features. One can see that the terms for which 
l = 2, 4, and so on, are the components of the sawtooth, of peak-to-peak 
amplitude u and fundamental frequency fJis , evident in Fig. 3. If we 
choose those values of l which equal aN, where a is a positive integer 
and N is the odd integer nearest l/fJ, we have the components of another 
sawtooth of peak-to-peak amplitude 2u/N ~ 2€ and fundamental fre­
quency 11 - NfJ I /8/2 (Wang's "second envelope function"). In Fig. 
8, N = 19. 

Notice that either the (N - 2)-line or the (N + 2)-line has a fre­
quency equal to that of the 2-line minus that of the N-line and a power 
about equal to that of the N-line (the 21-line in Fig. 8). This line may 
also be thought of as the fundamental of a sawtooth, as may all lines 
at the lower end of the spectrum. 

There is another interesting way of looking at the idle-channel noise 
spectrum. Recalling equations (15) and (17), it is apparent that poet) 
can be thought of as the result of sampling, at a rate /8 , the wave 

xo(t) = L ~l exp {1ril[fJo + (1 - fJ)i.t]} 
l;&O 1rZ 

(26) 

which describes a sawtooth of peak-to-peak amplitude 2u and funda-

1-1 1=-1.k=O 

-3,1 

4,-2 

6,-3 

a 
7i 

1=2,k=-1 1=-2,K=1 
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FREQUENCY 

1=1,k=O -1,1 

3,-1 

-4,2 
5,-2 

Fig. 7 - Example of an idle-channel noise spectrum. All lines for III = 1, 2, 
3, 4, and 12 are given; notice their symmetries. Selected other lines are included 
to show the progressions involved. 
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Fig. 8 - Example of a one-sided idle-channel noise spectrum, for {} = 5/96. 
The most powerful 25 lines are shown along with selected others, in particular 
the harmonics of the I7-line, I9-line, and 2I-line. These and the 2-line plus its 
harmonics make up sawtooth waves. 

mental frequency (1 - iJ)fN. In Fig. 9 this sawtooth is superimposed 
on the wave of Fig. 3. 

All the l-lines are distinct if iJ is irrational, which is expected to be 
the normal case. Appendix B treats rational iJ. 

v. SINUSOIDAL INPUT 

Let us calculate the noise output of a 6M coder for a pure SInU­

soidal input, setting 

get) = A sin (27rfot + cp), (27) 

where If is an ·arbitrary constant phase angle. We put equation (27) 

-(J ~'-
- -(J+E: TIME_ 

Fig. 9 ~ Error wave of Fig. 3 with superimposed sawtooth. The heavy dots are 
the sampling points. Section II explains the vertical offset (e). 
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into equation (19) and make use of the Jacobi-Anger formula: G 

00 

exp [7rilA sin (27T-tot + ip)] = L J m(7rlA) exp (27rimfot + imip) , (28) 

where the Jm are the Bessel functions of integral order of the first 
kind. The result is 

Vsin(t) = t; kt:oo mt:oo 7r:l J m(7rlA) 

·cxp (rriUJ, + im'P) CXP {271i[ C(l ; 11) + k)t. + m/oJ+ (29) 

If we define 

, _ (l(1 - fJ) ) fl = 2 + k(l, m) f. , (30) 

where k(l, m) is chosen so that f~ + 1nfo is in the Nyquist interval, we 
can write (for this interval) 

VNsin(t) = t mtoo !~ J m(7rlA) sin l27r(ff + mfo)t + 7rlfJo + mip]. (31) 

Equation (31) describes a collection of lines consisting of the original 
lines of the idle-channel noise spectrum (or their replicas, h + k f s), 
each with a set of uniformly spaced (±m/o) satellites. The total power in 
an l-group (all the lines governed by the index l) is constant. J~(7rlA) of 
the power remains in the main line; the mth satellite gets J ~(7rlA) of the 
total power. From the symmetry of the spectrum one can see that for 
every l-line satellite which falls outside the Nyquist interval there is a 
corresponding satellite in the Nyquist interval arising from a carrier 
outside the interval. 

The nature of the Bessel function is such that main lines go through 
a series of peaks and nulls as a function of A for a given l, and l for 
a given A. The satellites, in addition, fluctuate in amplitude as a func­
tion of the index m. As a result, for the typical case of a signal band 
which is a small fraction of the Nyquist interval and for an input 
frequency of the same order as the signal bandwidth, the signal-band 
noise power is determined by relatively few lines and can be expected 
to fluctuate irregularly as a function of input amplitude and frequency. 

Jm (z) goes fairly rapidly to zero as a function of m for m > z. 
Thus the full width of an l-group is 

(32) 
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Fig. 10 - The l = 1 and l = 2 lines of the spectrum of Fig. 7, modulated by a 
sinusoidal input with fo :::::: fN/40 and 7I"A = 5. The other lines are omitted for the 
sake of clarity" (The lack of symmetry in this figure, and in Fig. 11, is due to the 
omission of the image groups: l = -1, -2.) Equation (32) gives f::::.f. 

Figure 10 gives an example of the spectrum which attempts to bring 
out the points made above. If 10 and fs are not rationally related, the 
lines are all distinct. Appendix C treats the case of rational folfs. 

VI. BROADBAND INPUT 

As first discussed by Bennett, the average noise performance of a 
coder in the presence of a broadband input signal is best calculated 
by using an input signal of random phase.1 This test signal should 
have the same power spectrum as the input signal under consideration. 
Appendix D gives the mathematical manipulations. 

Briefly the procedure is to calculate the noise power spectrum, 
W (f), by finding the Fourier transform of the autocorrelation func­
tion, R (7'), of the noise wave. The averaging procedure in the defini­
tion of R (7') is carried out assuming the input, g (t), is a gaussian 
variate. This gives R (7') in terms of the autocorrelation coefficients, 
ale, and the mean power of the sequence of input samples; we deter­
mine the ale from the Fourier transform of the input power spectrum, 
U (f). We show that, under an assumption that usually holds in prac­
tice, the dependence on U (f) reduces to a dependence on the rms time 
derivative of the input. A parameter S, which is this time derivative 
normalized to the average maximum slope of the coder, (JIs, charac­
terizes the input in the following (equivalent) formulas: 
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~ ~ r.u
2 

[(7rlkS)2 . ( l(1 - ?J»)] TV(f) L...J L...J -r-l2 exp ---2 + 2mk fr. + 2 ' (33) 
IT'D k=-cn 7r 

Terms of different l do not interact in equations (33) and (34); 
therefore, one may use either formula to calculate the power density 
for a given Z. Equation (33) converges faster for high values of l; equation 
(34) for low values. The crossover occurs at l ~ 1/(7r)lS. 

One can see [most easily from (34)] that the spectrum consists of the 
lines given in Section IV for the idle-channel noise spectrum, each now 
broadened to a gaussian. Notice that some of the power in the wings of 
each gaussian falls outside ( - f N , j N)' Conversely, lines centered outside 
this band have in-band wings. The total in-band power of each Z-group 
is constant. 

One can easily see that the full width of an l-group is 

Af = lSj •. (35) 

Thus for lS « 1 one has a relatively sharp line, while all groups for 
which (ZS ~ 1 sum to a white background. Figure 11 shows the im­
portant qualitative features of the spectrum. 

As S approaches one, equations (33) and (34) lose their usefulness 
because of the onset of so-called slope-overload noise. (Strictly speaking 
equations (8) and (9) do not apply under overload conditions; but 
because the errors resulting from overload and quantization are prob-

21/2 T S u 2 /;f-­

'lT5/2S 

t 
>-

0::1-
UJ­
~(/) 
OZ 
a..~ 

o 
FREQUENCY 

Fig. 11- The l = 1 and l = 2 lines of the spectrum of Fig. 7, modulated by a 
gaussian input with S ~ ~. The other lines are omitted for the sake of clarity. 
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ably largely uncorrelated, one should be able to calculate them separately 
with rea~onable precision.) To give some idea of the effect, we quote 
Protonotarios' signal-to-overload-noise ratios for various input spectra: 
3 to 17 dB for S = 1 and 16 to 31 dB for S = !.8 These values are lower 
limits, and probably poor approximations for high-quality voice sys­
tems, because the total noise was used. Nevertheless, it seems safe 
to say that the occurrence of slope overload will prohibit inputs strong 
enough to whiten the I-group and, usually, the 2-group as well. 

Figure 12 illustrates calculated noise spectra of a coder suitable for 
telephone applications. 1 Notice the enormous differences in power in 
the voice band for different iJ's. For iJ = 0.02 the 2-line, 4-line, and 
6-line centered at 30.88, 61.76, and 92.64 kHz, respectively, can be 
seen. The broad line centered at 38.6 kHz for iJ = 0.05 and S = 2-10 is 
the sum of the 19- and 21-lines. Although the spectra are white for 
S = 2-2 in the frequency range shown, they are not independent of S. 
The 2-line is still spreading out and the I-line is just starting to spread in. 

Figure 13 presents the results of Fig. 12 in the form of noise power 
in dBrnC versus speech input power in dBm. The unit "dBrnC" means 
dB above one picowatt of integrated noise passing through a filter with 
C-message weighting.9 Briefly, this filter, which weights noise according 
to its subjective effect in a telephone circuit, has a pass band with a 
transmission averaging about -0.5 dB from;:::::::; 800 to ;:::::::; 2500 Hz; 
the noise bandwidth is ;:::::::; 2070 Hz. 

The parameter S is turned into speech power as follows: de Jager 
(see p. 447 of Ref. 2) showed that the ratio of the rms slope of the 
average speech spectrumlO to the rms amplitude is given by 

(C
2»)! r == (~2) ~ 27r·800 Hz ~ 5000 rad per s. (36) 

Thus, speech power is given by 

(37) 

In Fig. 13, this quantity is plotted in units of dB above 1 mW. The 
structure in Fig. 13 is best interpreted by referring to Fig. 12. 

VII. SUMMARY AND REMARKS 

We have developed a .6.M quantizing-noise formalism for the case 
of unequal positive and negative integrator step sizes and have given 
the noise spectrum for zero, sinusoidal, and gaussian coder inputs. 
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10-11 .---------------------, 

10-16 L...--.l.._--'-_-'--_...J....-_l....----'-_--'-_-'--_-'-----' 

10-11 .---------------------, 

5=2-10 

10-16 l....--.l.._-'--_-'--_...J....-_l....----'-_--'-_-'--_-'-----' 

10-11 ,..--------------------, 

(el 

10-16 L...--.l.._-'--_-'--_-'--_l....----'-_--'-_-'--_-'-----' 
o 10 ~ .~ ~ ~ ~ m M 00 ~ 

F.REQUENCY .li'J. KHz 

Fig. 12 - Partial one-sided noise spectra for gaussian inputs with q 0.4 
mv/n lh (12-mV steps in 900n), is = 1.544 MHz, and various values of {} and S. 
(a) {} = 0, (b) {} = 0.02, and (c) {} = 0.05. 
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Fig. 13 - Noise versus average speech power for the coder of Fig. 12. See 
text for explanation of units. The circles are the calculated points; the lines 
are only to connect points of the same parameter. 

In .6M systems, as contrasted with multibit PCM and DPC:M, 
the signal typically does not change more than a small fraction of a 
step size in one sampling interval. As a result, the sample-to-sample 
errors are strongly correlated and the noise spectrum is highly colored. 
The main contributions of this paper are to point out that the spectral 
distribution of power is strongly dependent on the step unbalance and 
to provide a means of calculating the spectrum precisely. 

A typical AM system has a signal bandwidth very much smaller than 
the Nyquist bandwidth. The consequences of this situation for the 
idle channel (zero input) are best seen by referring to Figs. 7 and 8. 
There are extreme system-noise variations depending on whether or not 
the system parameters are such as to bring into the signal band one 
of the stronger spectral lines. The III = 2-line, which has ~15 percent 
of the total Nyquist-interval power, is especially important in this 
regard. 

Coder inputs phase-modulate the idle-channel lines; the frequency 
breadth of the sideband structure is proportional to the rms slope 
(roughly, root power times frequency) of the input. Thus, as power is 
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increased, there may be an abrupt increase in noise as the sidebands 
of a strong line come into the signal band. Figure 13 illustrates such 
a situation. 

At very high input powers most of the idle-channel lines are 
broadened to the point where they make an easily calculable white 
contribution to the spectrum. Unfortunately, the most powerful lines 
(Ill = 1 with 61 percent of the Nyquist-interval power, III = 2, and 
so on) can be broadened to whiteness only by inputs powerful enough 
to force the coder into slope overload. It is possible, however, to mini­
mize noise in a given system by dithering, that is, the deliberate in­
jection of certain appropriate signals into the coder (including the 
judicious choice of step unbalance). Dithering requires extensive 
treatment and will be the subject of a future paper. 
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APPENDIX A 

Correlation of Error and Input 

The error wave, 11 (t), consists in general of a part fully correlated 
with the input, y (t), and an uncorrelated part. The uncorrelated part 
is noise in almost any conceivable system; whether the fully cor­
related part is considered noise or not depends on the use to which the 
system is put. Let us investigate the correlation by forming the cross­
correlation function of 11 and g (assuming zero mean for each) : 

. 1 jT 
Rpo(r) == ~~ 2T -T v(t)g(t + r) dt. (38) 

Inserting equation (19) gives 

.jT get + r)e'll"ilO(t) i exp [27ri(l(1 - tJ) + k)fatJ dt. (39) 
-T k~-r:/J 2 

The integral in equation (39) is zero unless g (t) contains components 
locked to the idle-channel-noise frequencies (Section IV) or their 
subharmonics. Thus for typical .6.M systems 
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Rvrlr) = 0 for all T, (40) 

and vet) is a noise wave under any circumstances. 
This conclusion is not applicable to the case of rational t'J, treated 

in Appendix B, where l(1 - t'J) /2 + k = 0 for some values of land 
k; that is, some of the idle-channel-noise frequencies are zero. The most 
extreme case is that of PCl\1 (t'J = 1) where every value of l contributes 
a dc term to the summation in equation (39) and the summation is 
therefore replaced by one. Let us calculate the two parts of vet) for this 
case. 

It is easy to show that Rpg (T) is a maximum for T = 0 and that we 
need consider only instantaneous correlations. This result is physically 
reasonable when one considers that no delay from input to output 
was introduced in the formulation of v(t). If we let ( )IlV stand for 
the integrating-limiting (averaging) process defined in equation (38) 
we can write 

(41) 

The correlated part of v(t) is exy (t), where ex is a constant for a given 
y(t). The uncorrelated part is then v(t) - exy (t) , and the condition for 
determining ex is 

or 

«v - ay)y),J,V = 0, 

(vY)av (vg)av 
al------· - (y2)av - ()(g2)av 

Substitution of a specific input waveform into 

(42) 

(43) 

(44) 

will show that exy is generally negligible compared with v unless (g2)av 
< 1; that is, the signal-to-noise ratio is low. This conclusion is quite 
plausible because of the (g2)-1 dependence of ex and because the oscilla­
tory character of the second factor in the averaging bracket in equa­
tion (44) makes the bracket tend toward zero as g increases. 

For rational values of () ~ 1, the summation in equation (44) is only 
over multiples of an integer L (as shown in Appendix B) and ay is 
negligible for even smaller values of (g2). L = 2 for the van de Weg 
case, () = o. 
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APPENDIX B 

Rational Step Unbalance 

If the fractional step unbalance, fJ, is a rational number, the l-lines 
of Section IV are not all distinct. Indeed, if L is the least positive integer 
for which (L/2) (1 - fJ) is an integer, it is easy to see from equation 
(22) that 

I'+L = I, and h-z = -fz· (45) 

Let us sum up terms of frequency ±I, in equation (23), ignoring for 
the moment the cases l = Land l = L/2 (if it exists). Then 

VONl(t) = ,~ 7r(l !(JZ'L) sin [7r(l + l'L)fJo + 27rI,t] 

+ ,ta 7r(L _ ~(J+ l'L) sin [7r(L - l + l'L) - 27rI,t]. (46) 

A little manipulation of the indices in the second summation gives 

(47) 

= z'~CiJ 7ri(l ~ l'L) exp {i[7r(l + l'L)fJo + 27rf,t]} + c.c.*. (48) 

From Jolley's series Nos. 534 and 535 it is easily established thatll 

CiJ in'" 
~ e ia(1r-.I,) 
L...J -- = 7r CSC a7re 'j' 

n=-CiJ a + n 
for 0 < f < 27r. (49) 

Using this to do the sum in equation (48), 

where 

LfJ1 = least positive quantity == LfJo mod 2. (52) 

* By c.c. we mean complex conjugate. 
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The power at i = I iz I is thus 

2 2 (l ) 20" esc L 7r 

L2 (53) 

Let us compare this with the sum of the powers of the same lines as 
given by equation (25): 

00 (22 22) 
Pf = l~ 7r

2(l -: l'L)2 + 7r
2(L - t + l'L)2 . (54) 

Again, index manipulation yields 

(55) 

This series is easily summed by means of cotangent residues (see 
Section 7.4-4 of Ref. 6) to give 

2 2 (l ) 20" esc L 7r 

Pf = --I-.J2 (56) 

which is identical to equation (53). Thus, all lines with the same fre­
quency, i, where 0 < i < iN, are phased such that their powers add. 
As a result one need not take line degeneracies into special account 
when considering the noise power spectrum. We assume, without proof, 
that this statement is true of sidebands as well as main lines; it is 
elementary that the power in a sine wave is not changed when its 
phase is modulated. 

If L is even there is a line at h/2 = iN, on the border between the 
Nyquist interval and higher frequencies. If one starts from equation 
(20) rather than equation (23), so that the higher frequencies are 
taken into account, equation (51) with l = LI2 will result. 

For l = l' L we get fz = 0, that is, a dc component . .summing up 
these terms of equation (23), 

(57) 

Starting from equation (49), subtracting the n = 0 term (lla) from 
both sides, letting a ~ 0, and combining terms of +n and -n, gives 

(58) 
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Using equation (58) in equation (57) gives 

(59) 

where ill is defined in equation (52). Thus, the dc component fluctuates 
as a function of ill or ilo . If it is averaged uniformly over this parameter, 
the mean value is zero and the mean square is (l /3L 2 • The latter is the 
sum of the powers of the l'L-lines. The dc power varies from zero to 
u2 

/ L 2 • Thus, for rational il, the total noise power in the Nyquist interval 
(counting one-half the power at IN) is not always u

2/3 but can vary 
from this total by -u2/3L2, +2u2/3L2. For smallil and correspondingly 
large L this variation is not very significant. In any case, as Section III 
explains, the usual LlM system suppresses dc at the decoder. 

If the l'L-lines are modulated, we have 

VNL(t) = f l~uL sin 7rl'L[ilo + get)] 
l'-l 7r 

(60) 

(61) 

where ill (t) is defined by using iJo + get) in equation (52) in place of 
ilo . If the excursions of get) are significantly greater than I/L (g2) » 
1/L2, which covers nearly all cases of practical interest) equation (61) 
can be time-averaged uniformly over ill (t). As stated above, the mean 
square will be u

2 /3L 2 • That is, for a practical input signal, the power 
in the l'L-lines is dispersed into sidebands, and the total power in these 
sidebands is equal to that which would be calculated using the formulas 
for irrational iJ. This argument is used to justify the assumption that, 
except for dc power, the noise spectrum for rational il can be calculated 
as indicated in the text for irrational il. 

There are two cases of rational iJ which are of special interest. One 
is il = 0, calculated for gaussian input by van de Weg3

• In this case all 
the even-llines are centered at zero frequency and all the odd-l lines 
at IN. As one can see from Section VI and Figs. 12 and 13, this is a good 
approximation only for a baseband with a width much greater than ills. 

The other case of interest is il = 1. This is equivalent· to using the 
even-instant law of equation (8) for all sampling instants, which is 
equivalent to ordinary uniform PCM (with a step size of 2u). Let us 
consider a typical PCM speech system, for which (see Section VI) 

(62) 
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and 

13 = 8 kHz. (63) 

Then (Appendix D) 

(64) 

Useful input signals are many steps high in amplitude «g2) » 1); thus 
S > 1 and the noise spectrum is substantially white. (See Section VI. 
This range of S is permissible for PCM, since slope overload does not 
occur.) 

If if = 1 is inserted into equation (31) the result can be shown to be 
equivalent to that of Schouten and van't Groenewout for a sinusoidal 
input into a PCM coder if one allows for:12 (i) their nonunity shape 
factor, (ii) their particular choice of phase (cp), (ii~) replacing the last 
sine factor in their expression (17) by a cosine, and (iv) multiplying 
their expressions (15), (16), and (17) by 2. 

APPENDIX C 

Rational Input-ta-Sampling Frequency Ratio 

If the ratio of io to is is a rational fraction, there exists a least posi­
tive integer M for which Miolis is integral. In this case it is easily 
seen, from equation (29), that terms for which the values of m differ 
by a multiple of M have the same Nyquist-interval frequency. Sum­
ming up these equal-frequency terms, we replace equation (29) with 

00 M 00 

Vsin(t) = t; k~oo ]; 7r:Z m'~oo J m+m'1If(7rlA) exp [i(m + m'M)rp] 

. exp {1l"i1t1o + 21l"i[ e(l ;- .1) + k)f. + mf 0 } }. (65) 

One can therefore see that a given l-group consists of a total of M lines, 
the original and M -1 satellites spaced uniformly throughout (-iN, iN)' 

The sum over m' in equation (65), which is the relative amplitude 
coefficient of a satellite [Bm (z, 'P, M) , where z = 7rlA] can be turned 
into a finite sum: 

It is easy to verify that 

1 ~ (27rin( m - p)) 1 
M £...J exp M - = if p = m + m'M 

n=l 

= 0 otherwise, (66) 

where m, m', M, and p are integers. 



CODING NOISE 2383 

Thus 

00 

Bm(z, cp, M) == L J m+m'},f (z) exp [i(m + m'M)cp] (67) 
m' =-00 

= t J1'(z)ei1'CP [1- t exp (27rin(m - p»)] (68) 
1'=-00 lJl n=l M 

= ir t..t J.(z) exp [iP(" - ~)] exp (2~m). 
(69) 

The sum over p is given by equation (28). Thus 

1 ~ [ . . ( 27m) 27rinm] Bm(z, cp, ]vI) = 111 t:t. exp 'tz sm cp - M + ---x;r- . (70) 

We note the dependence on the phase (\/,) of the input signal, which 
indicates that this result could not have been obtained by adding the 
powers of the equal-frequency terms. Indeed, it can be established 
easily from equation (67) that 

1 1271" 2 00 

27r 0 \ Bm(z, cp, M) \ dcp = m'~oo .!~+m' M(Z); (71) 

that is, the sum of the term powers is given by the true satellite power 
averaged uniformly over \/'. 

In order to emphasize this dependence on phase, let us examine the 
highly artificial but simplest nontrivial case, 10 = iN. In this case 
1v[ = 2 and each main line has one satellite spaced iN away. Then 

Bo(z, cp, 2) = B 2 (z, cp, 2) = cos (z sin cp), (72) 

and 

Bl (z, cp, 2) = i sin (z sin cp). (73) 

For \/' = 0, the satellite power is always zero and we get the undis­
turbed idle-channel-noise spectrum. That this is to be expected can be 
seen from equation (27) where \/' = 0 is the condition under which the 
sampling instants fall precisely on the zeroes of the input wave. For 
\/' = 7rj2, where the sampling instants fall on the crests, the power for 
any given l oscillates between main and satellite as a function of 
amplitude. This result may be compared with the incorrect one ob­
tained by summing powers: 

1-1271" \ B ( 2) \2 d = 1 + .!o(2z) 
27r 0 0 z, cp, cp 2' (74) 
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and 

~ 171" 1 B ( 2) 12 d = 1 - J o(2z). 
2 lZ,CP, cp ') 
~ 0 ~ 

(75) 

APPENDIX D 

Calculations for Broadband Input 

The autocorrelation function ofv(t) [defined in equation (14)] is 
given by 

2 ::;,T/T. ::;,(T+T)!r. 

= ~~ ;r n~~/T' m~(-~T)IT' XnXm O[T + (n - m)Ts]. (77) 

We can replace T / Ts with a positive integer N without loss of general­
ity. Let us concentrate on values of T lying between (k - 1/2) Ts and 
(k + 1/2) Ts where k is an integer. Only terms for which n-m = -,k 
fall within this interval. Thus 

for (k - !)Ta < T ~ (k + !)Ts . (78) 

Defining 

(79) 

and joining together the segments of the function given by equation 
(78), we have 

co 

R(T) = Ts L (XnXn+k) OCT - kT8). (SO) 
k=-co 

The Fourier transform of R (T) is the noise-power spectral density, 
first given by Bennett (see pp. 460--464 of Ref. 7) : 

co 

Wet) = Ts L (XnXn+k) exp (2~ikfTs). (Sl) 
k=-co 

It is easy to see that 
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(82) 

that is, the total noise power in the Nyquist interval is given by the 
mean square of the sequence {xn }. 

Next, let us connect (XnXn+k) with the input signal. Using equation 
(12) 

(XnXn+k) = / L L - ~l2,\ 
\ Ir'O Ar'O 7r /\ 

. exp hi[(l + X)Uo + (I + X)n(l - U) + lk(l - U) + 19.+, + XU.]} >. 
(83) 

We carry the averaging bracket inside the summations and examine the 
various factors of the exponential. Since nand gn are uncorrelated, the 
factors containing them can be averaged separately. Let us examine the 
factor 

(e 7ri (I+A)n(l-O». 

For irrational iJ this expression is zero unless l + f.. = 0, in which case 
its value is one. Thus equation (83) reduces to 

2 

( ) 
~ (j 7rilk(l-O)( ['l( )]\ XnXn+k = L.J ~l2 e exp 7r~ gn+k - gn /. 
Ir'O 7r 

(84) 

Notice that (see p. 66 of Ref. 12) 

(85) 

Let us now find the value of the averaging bracket in equation (84) 
for a gaussian input: 

(exp [7ril(gn+k - gn)]) 

= L: L: exp [7ril(gn+k - gn) ]P(gn+k , gn) dgn+k dgn , (86) 

where P(gn+k, gn) is the joint probability density of two gaussian 
variates, which is (see Section 18.8-6 of Ref. 6): 
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where 

(88) 

(89) 

and 

(02
) == (OnOn). (90) 

Combining equations (86) and (87) gives 

(exp [7ril(gn+k - On)]) = exp [_1I"2l2(g2)(1 - ak)], (91) 

a result first obtained by Rice.13 Substituting equation (91) into equa­
tion (84), and the result into equation (81), gives 

00 2 

wet) = L L T 820"2 

Ir'O k--oo 11" l 

[ 2 2( 2)( ) . (f l(l - tJ))J . exp -11" l g 1 - ak + 211"'lk T 8 + 2 . (92) 

This result, with tJ = 0, was given by van de W ego 3 He also used as 
an input a flat signal, band-limited to (-1m' 1m), for which 

(93) 

and inserted 

(94) 

This approximation is made possible by observing that the real ex­
ponential factor in equation (92) is appreciable only for small values 
of the exponent. Thus, if one ignores the region of low signal-to-noise 
ratios (that is, small (g2»), 1 - ak need only be accurately approxi­
mated for small values. (g2) > 0.1 is high enough for the approximation 
to be good for most purposes, and appears to cover nearly all cases of 
practical interest. 

It is not necessary for the input spectrum to be flat. We take a 
spectrum, U (f), even in f and confined to the Nyquist interval. Ap­
pendix E shows that (gngn+k) is given by Rg (kTs) , the autocorrelation 
function of g (t). This autocorrelation function is the Fourier trans-



CODING NOISE 

form of the spectral density. 

<gngn+k) = L: U(t) exp (27rikfT8) dt 

and [using the evenness of U (f) ] 

2387 

(95) 

Using the reasoning given in the previous paragraph, and specifying 
that U (t) be a smooth function of frequency (free of strong narrow­
band components which could make 1 - ak ~ 0 for isolated high values 
of k), gives 

(97) 

It is well known that the integral in equation (97) gives the mean 
square of the time derivative of g( == g). Thus 

(98) 

where S is the rms time slope of the input normalized to the maximum 
average slope of the coder ((Jis). Inserting equation (98) into equation 
(92) gives 

W(j) = b, };~ ~,~: exp [ - ("I~fJ)' + 27rik(fT • + 1(1 ~ tJ))] (99) 

which is equation (33). 
Making use of the Fourier-series expansion of a picket fence of 

gaussians, 

~ 2 2 ~ 7r! [(7rk )2 27rikX] 
L...J exp l-a (x - pXo) ] = L...J -, -I - exp - - + -- , 

p--oo k=-r:LJ a Xo axo Xo 

(100) 

we can rewrite equation (99) as 

which is equation (34). 
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Computationally more convenient versions of equations (99) and 
(101) are, in one-sided form, 

P(f) = 8T '2(l 
7r 

{ 

00 1 [1 00 ( lkS)2) ]} . L"2 - + Lk=l exp -~2 cOS7rlk(l - iJ) cos 27rkfT. , 
l=1 l 2 

(102) 

and 

In equation (102), 1/2 ~ (1/l2) is left in that form in order that the 
power density can be calculated separately for each l. 

APPENDIX E 

Autocorrelatio~Function and Its Samples 

In the absence of aliasing, the autocorrelation coefficients of a se­
quence of samples of a function are equal to the appropriate samples 
of the autocorrelation of the function: 

1 JNT' 00 

= 1~ 2NT. -NT. g(t)g(t + kT.) 1l~00 exp (27ripf8 t) dt 

1 jT 
= ~! 2T -T g(t)g(t + kT.) dt 

== Ru(kT.) 

(104) 

(105) 

(106) 

(107) 

(108) 

(109) 

where the transition from equation (107) to equation (108) is made by 
assuming that get) is confined to the Nyquist interval. For any given 
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value of P ~ 0, equation (107) can be regarded as the correlation func­
tion of get) and get) exp (27ripj.t). The latter represents a carrier wave at 
f = Pta amplitude-modulated by get). None of the sidebands resulting 
from this modulation overlap get) in frequency if get) is confined to the 
Nyquist interval. It is well known that two signals are uncorrelated if 
their frequency bands do not overlap (but not, in general, otherwise) .14 

Dividing equation (109) by {g2) = Rg(O) gives the lemma in nor­
malized form. The procedure given here is a slight generalization of one 
given by Bennett for k = 0 (see pp. 468-469 of Ref. 5). 
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Computer Study of Quantizer Output Spectra 

By G. H. ROBERTSON 

(Manuscript received January 25, 1969) 

This article describes a method for accurately calculating the output 
spectrum of a quantizer. The method was developed for known expressions 
definl"ng the output spectrum of an w'bitrary quantizer with gaussian input 
of arbitrary bandshape. Results obtained for a variety of conditions, 
however, suggest that the calculations are valid even though the input has 
only a minor gaussian component. When sampling is also used, at the 
Nyquist rate or a little higher, the quantizing noise folded into the input 
band is almost flat even when the input bandshape is sharply peaked. When 
interference at the input is increased, the quantizer (preceded by AGe) 
appears to operate like an increasingly noisy linear transducer up to a 
breaking point beyond which its performance (for small signals) degrades 
rapidly and becomes difficult to analyze. 

I. INTRODUCTION 

Several authors have described formulas for calculating the output 
noise spectrum from a quantizer when the input is a gaussian wave­
form. References 1 through 4 are characteristic and contain representa­
tive bibliographies. Evaluation of the resulting expressions is difficult 
because they contain multiple infinite sums of terms containing 
Hermite polynomials whose order increases without limit. Conse­
quently simplifying assumptions are made about the input spectrum 
and quantizer characteristics, or only a few terms are evaluated and 
the rest assumed negligible, to get results. 

This article describes a more fruitful approach in which the Hermite 
polynomials are evaluated in conjunction with other parts of the ex­
pression such that the combination tends to zero as the order increases 
to infinity. The convergence is slow and many terms are needed to get 
sufficient accuracy in the noise spectrum. It is possible to get results 
even when the quantizer is not linear or symmetrical, and for arbitrary 
input spectrum shapes. 

2391 
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For quantizing steps no greater than (j (the rms gaussian compo­
nent) an interesting and useful result is that even when the input 
spectrum is sharply peaked, if the quantized waveform is also sam­
pled uniformly at up to a few times the Nyquist rate for the input 
band, the resulting quantizing noise appearing within the input band 
is nearly flat. Many systems can therefore be evaluated quite ac­
curately with much simpler calculations than those needed to define 
the quantizing noise spectrum. 

Study of quantizers having uniform steps less than (j in amplitude 
show the output spectrum to be practically independent of the loca­
tion of the gaussian mean if it is at least (j from the overload limit. 
Consequently, added signals (whose waveform defines the gaussian 
mean) have a negligible effect on the quantizer output noise as long 
as they do not approach within (j of the limit. A quantizer with many 
steps activated thus produces a noise spectrum virtually independent 
of relatively large signals added to the gaussian component. 

II. DEFINITION OF QUANTIZER 

Figure 1 shows the transfer characteristic of the quantizer where 
the "staircase" relates the output voltage (ordinate) scale to the input 
voltage (abscissa) scale. Assuming that the input waveform is gaus­
sian about some arbitrary mean value, the probability that it is Z or 
more above the mean value is 

Qz = (2:)!cr LtO 

exp (- e/2(i) dt. (1) 

Figure 1 shows that when the input waveform reaches a "riser" of 
the staircase, the output waveform changes abruptly from the value 
on one tread to the value of the one on the other side of the riser. For 
convenience, number the treads and risers starting with 1 at the left. 
There is one more tread than the number of risers, so if the last riser 
is k, the last tread is k + 1. Let Qr be the probability that the input 
waveform is greater than riser r, and the output voltage of step r be 
Wr • The mean value of the output is 

S = W 1(1 - Ql) + W2(Ql - Q2) + ... + W k+1Qk. (2) 

The mean squared value is 

v2 
= Wi(1 - Ql) + W;(QI - Q2) + ... + Wi+lQk . (3) 

The variance of the output is 
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(4) 

Assuming unity impedance, P is the output power after subtracting the 
component caused by the displacement of the mean value of the input 
waveform from zero. 

III. QUANTIZING NOISE SPECTRUM 

Velichkin showed that the correlation function of the quantizer out­
put can be written4 

00 [V-I ( )J2 Rn() 
Ry(T) = L L.1k exp (-aU2(i)Hn- 1 ak -2 x2~ " 

n=1 k=1 (J' 7r(J' n. 
(5) 

RaJ (T) is the input correlation function, a 2 is the input variance, there 
are v treads, ~k is the output voltage difference between treads k + 1 
and k, ak is the input voltage at riser k, and Hr(z) is the Hermite 
polynomial 

Hr(z) = (-If exp (i/2) ::r [exp (-i/2)J. (6) 

Also, where [r /2] is the greatest integer ~ r /2,5 
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(7) 

By the Wiener-Khinchine theorem the power spectrum of the 
quantizer output is 

. i oo 

R;(T) cos (27r"fT) dT. (8) 

Equation (8) can be written 

(9) 

in which the quantizing factor terms F n depend only on the properties 
of the quantizer and n. When n = 1 the component no (f) is the input 
spectrum multiplied by F Ii (T2. All other n give components whose 
bandwidth exceeds that of the input [because the integral in equation 
(9) then represents multiple convolutions of the input band], and 
their sum ne (f) may be called the quantizer error spectrum. The 
quantizer output spectrum is 

(10) 

So far only amplitude quantizing has been considered. Sampling, 
at a rate is, is generally also used,'r. and the output spectrum be­
comes proportional tol 

00 

n.(f) = n(f) + L n(nf. ± f)· (11) 
n=l 

If is is at least twice the highest frequency of the input band, only nc 
can add more noise by fold-over into the range of the input band. 

These re8ults are all known but now follow what are thought to be 
new contributions enabling equation (9) to be evaluated for an 
arbitrary choice of input spectrum shape. Equation (9) can be writ­
ten 

* The result is independent of which is done first. 
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00 F L -;" 2Cn _ 1 [s(f)/2] , 
n=l (T 

(12) 

where Cn-ds(f)J2] is the (n-l)th convolution of the cisoid power 
spectrum s (f) /2. The sinusoid power spectrum is s (f), corresponding 
to the autocorrelation function Rx (T). 

The significance of equation (12) is that whereas the direct calculation 
of R:(T) may be impossible for an arbitrary spectrum shape, Cn - 1[s(f)/2] 
can always be calculated if s(t) is defined. Appendix A describes the 
methods used to calculate Cn - 1 [s(f)/2] in the computer program written 
to evaluate equation (9). 

If G (t) represents the input waveform, the autocorrelation func­
tion at zero lag is 

Rx(O) = ;~ 2~ L: G(t)2 dt 

= (T2 + 8 2
, (13) 

where S is the mean value of the input waveform and (T2 is the variance 
as used in equation (1). Figure 1 shows that the value of the quantizer 
output for a given input waveform is independent of the scale on the 
input axis. For convenience, relabel this scale so that the input mean 
is zero. Consequently, 

(14) 

Normalizing the input power that now contains no dc, so that (T2 = 
1, gives 

(15) 

for all n. By the \Viener-Khinchine theorem the total output power 
PT is 

P T = 100 

QU) df 

= RuCO) 

1 ~ 1 [~ (2/) H n - 1(ak ) J2 
= 271' ~; f:;:.1k exp -ak 2 [(n - I)!]! (16) 

using equation (5). P T is the same as V2 given by equation (3) so the 
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accuracy of computing the quantizing factor terms F n can be checked 
by computing the total power by both these methods. The method of 
equation (3) gives high accuracy very easily, but the Fn terms are 
needed to compute the quantizer error spectrum Oe (f) of equation 
(10) . Appendix B describes the methods used to compute F n for values 
of n up to 10,000, the limit used in the program. 

Recall [after equation (9)] that when n = 1 the resulting component 
of O(f) is the input spectrum multiplied by F 1 /(J"2, where the gain 
factor is 

(17) 

When (J"2 = 1, the total quantizer error power is 

P E = P - Fl , (18) 

where P is given in equation (4). Both P and Fl can be computed 
easily and accurately, so PE can be determined accurately with little 
computational effort. Note that this shows PE to be independent of 
the input spectrum shape. 

A computer program, using the techniques described in Appendixes 
A and B to compute O(f), simulated the effect of sampling (without 
holding) by pivoting 0 (f) about the sampling frequency and its 
harmonics, and computing the contributions thus folded into the 
original band. The total PE is folded into a bandwidth equal to half 
the sampling frequency; and when the latter was less than a few 
times the Nyquist rate for the input band, the level of the error com­
ponent resulting from PE was nearly flat over the input band even 
when the input spectrum was sharply peaked. 

This result is very useful because the performance of quantizers can 
now be evaluated quite accurately using only the simple calculations 
indicated by equations (4) and (17). The error spectrum after sam­
pling was flatter when more levels were used in the quantizer. 

IV. SIGNALS ADDED TO INPUT 

Signals added to the gaussian noise at the input cause the mean 
value of the latter to vary according to the signal waveform. Com­
putation shows that under static conditions the gain factor Fl and 
the total error power PE remain nearly constant when the step size 
is about (T and the mean is no closer than (T to the overload limit. 
Under these conditions the position of the mean has negligible effect 
on the shape of the quantizing noise spectrum. Assuming a signal wave-



QUANTIZER OUTPUT SPECTRA 2397 

form uncorrelated with the gaussian noise, and of a magnitude such 
that the mean rarely approaches within u of the overload limit, it is 
thus quite accurate to assume that the quantizing error is independent 
of the signal when the step-to-u ratio is constant and less than unity. 
A sampling rate, up to a few times the high end of the input band, 
further improves the accuracy of this assumption as the quantizing 
noise then becomes almost flat across the input band even when the 
input spectrum is sharply peaked. 

Assume now that an AGO unit is used to maintain constant power 
into the quantizer so that the wa,veform representing the sum of the 
gaussian component and large signal (interference) very rarely ex­
ceeds the overload limits. As the level of the interference increases, 
the ratio of quantizer step to gaussian rms (rmsg) also increases. 
Assuming no correlation between the interference and gaussian com­
ponents, the degradation from quantizing noise can be estimated from 
the way the parameters F 1 and P FJ vary with the position of the mean. 
The greatest variation in these parameters occurs between the values 
when the mean is at a riser (see Fig. 1) and when it is midway be­
tween risers. 

Figures 2 and 3 show the results obtained for a 16-level quantizer 
with a flat input spectrum and with a sharply peaked input spectrum, 
respectively, in calculations carried out for these limiting cases. Up to 
a breaking point (where the two curves diverge) the quantizer ap­
pears to act like a linear but noisy transducer for input signals. Note 
that the breaking point seems to be independent of the spectrum 
shape. When the interference level is high enough to cause operation 
beyond the breaking point, the spectrum becomes difficult to analyze 
and depends on the interference waveform. At all points on the abscis­
sas of Figs. 2 and 3 below the breaking point, FI and PFJ were found 
virtually constant for all positions likely to be occupied by the input 
mean (determined by the AGO unit). Since the quantizing noise level 
was flat it was therefore proportional to PFJ. The input copy was 
proportional to F I ; the curves in Figs. 2 and 3 show the ratio of the 
level of input copy plus quantizing noise to the level of the input copy 
alone. The degradation these curves indicate, as the interference in­
creases, results from the decreasing ratio of u to quantizing step size 
caused by the AGe unit preceding the quantizer. 

V. COMPARISON WITH MEASUREMENTS 

A sharply peaked spectrum was produced in the laboratory by 
filtering the output of a noise generator, and the resulting waveform 
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was radically clipped before being submitted to a spectrum analyzer. 
A 1910-A recording wave analyzer (made by General Radio Company) 
was used, and several successive traces were superimposed by the 
recorder as the narrowband (10 Hz) filter was slowly swept across 
the spectrum. The spectrum before and after clipping were determined 
in this way; the final results were obtained by drawing a smooth curve 
through the mean of the superimposed traces. Figure 4, where the solid 
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curve is the computed clipper output spectrum when a copy of the 
input is given by the dashed curve, shows the results. Values of the 
measured output spectrum appear as circles and agree well with the 
computed curve. 

Another check between computed and measured results can be 
obtained for a uniform step 16-level quantizer. A band of noise, nearly 
flat from zero to about 330 Hz and falling rapidly at higher frequencies, 
is added to a sinewave at 160 Hz and passes through an AGe unit 
before quantization. The quantizer overload limit is set near four times 
the rms value of the AGe output, and the results are recorded on a 
magnetic tape for various ratios of the sinewave-to-noise power. In 
this capacity the sine wave acts as an interfering signal. A computer 
prog~am processes the tape using a version of the east Fourier trans­
form algorithm to produce estimates of the spectrum level at the 
quantizer output up to half the sampling rate of 1024 Hz.6 Since the 
input spectrum level at 500 Hz is much lower than in the flat part 
below 300 Hz, the increase in noise level estimated at 500 Hz is taken 
as a measure of the quantizing noise introduced as the interfering 
signal increases. Assuming this noise to be flat from 512 Hz to zero it 
is possible to estimate the degradation in signal-to-noise power suf­
fered by a small signal in the flat part of the input band. 

Figure 5 shows the results, as circles superimposed on the solid 
curves, which are computed for a 16-level quantizer sampled at three 
times the high end of an input band of noise flat to zero frequency. 
The quantizer is preceded by an AGe unit and its overload is four 
times the rms input. 
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VI. CONCLUSION 

This article describes a new method of calculating the quantizing 
noise spectrum when gaussian noise with arbitrary spectrum shape is 
applied to an arbitrary quantizer. The novelty is not in the form of the 
expressions that describe the noise spectrum but in the techniques used 
to compute the results. Applying the method to a sharply peaked spec­
trum shows that if the output is sampled at the Nyquist rate, or a little 
higher, the quantizing noise is folded back to cover the input band 
with almost uniform intensity. A clipper (2-level quantizer) and a 
16-level quantizer, preceded by AGe to keep the overload at three 
times the rms input, operate like noisy but linear transducers for 
added signals of power less than one tenth and less than twenty times, 
respectively, that of the broadband background. These useful results 
indicate that the performance of quantizers under such conditions 
can be evaluated without the lengthy computations required to deline­
ate the quantizing noise spectrum. 

APPENDIX A 

Calculating the Input" Spectrum Convolutions 

The input cisoid spectrum is defined and convolved with itself to 
calculate Cn-1 [s(f)/2] whenn.is smalL-Because the input spectrum 
is of finite width, the convolutions tend to take the form of a gaussian 
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distribution as n increases. Since direct computation of the convolu­
tions becomes very lengthy when n is large, it is profitable to compute 
a Gram-Charlier approximation instead (see pp. 257-260 of Ref. 5,.) 
This can be done if the moments for the desired convolution can be 
obtained. The input cisoid spectrum is symmetrical about zero, and is 
defined up to its limiting bandwidth, so all the moments desired can 
be computed for it. If the input spectrum shape is normalized so that 
it covers unit area and it is considered to define a probability dis­
tribution from which random samples are drawn, the nth convolution 
is the same as the probability distribution of (n + 1) independent 
samples of the original distribution.7 The moments of the nth convolu­
tion can thus be obtained from the moments of the input spectrum 
shape as follows. Since we desire ultimately standardized central 
moments, note that the standardized central moments for the sum 
and for the average of N independent samples are the same. Using the 
appropriate multinomial expansion the general term for the vth such 
moment is 

JJ;[ = (l)! L (fJ,p)i(fJ,q)i(fJ,r)k v! N(N - .1) .... (N - J) 
Y NY p! q! r! 1,! J! k! ,(19) 

where 

v = ip + jq + kr, 

the right side being a partition of v, and'(-

J=i+j+k-l. 

(20) 

The sum is taken over all the partitions of v except those containing 
unity (because the first central moment is zero). The term p..p is the 
pth standardized central moment of the original distribution. A pro­
gram was developed to compute such moments; but since the com­
putation rapidly becomes very lengthy when v increases, the number 
of moments used to get the Gram-Charlier approximation was re­
duced as the convolution order increased. This can be done without 
undue sacrifice in accuracy since the distribution tends to become 
gaussian with increasing convolution order. 

APPENDIX B 

Calculation of Quantizer Factor Terms F n 

Equation (8) shows that F n requires computation of terms like 

* A partition of v is a set of positive integers whose sum is v. The terms i, j, k, 
p, q, and r are integers. 
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(21) 

where Hr(x) is a Hermite polynomial for which the recurrence rela­
tion exists8 

H r+1 (x) = xHr(x) - rHr-1(x). (22) 
Therefore 

Fk(n+l) = xkFkn/nl - Fk(n-l)[(n - l)/n]!. (23) 

Since Ho(x) = 1 and Hdx) = x, from equation (21) 

Fkl = exp (-xU2) (24) 

and 

Fk2 = XkFkl' (25) 

Therefore, by using equations (23), (24), and (25), a straightfor­
ward method exists for finding any F kn. When values are to be calcu­
lated using the same Xl.; and many successive values of n, the pro­
gramming can be simplified by saving the computed values for nand 
(n - 1) to be used in equation (23) when the value for (n + 1) is 
desired. Taking advantage of this way of arranging the computa­
tions values were computed for n up to 10,000, enabling determina­
tion of the quantizing noise level at greater than 100 times the input 
bandwidth for a 16-level quantizer. Since recurrence relations like 
that in equation (23) sometimes result in rapid loss of accuracy, a 
few values of Fkn were computed by an independent method, for high 
values of n. 

Hermite polynomials can be evaluated in terms of confluent hy­
pergeometric functions;8 a suitable asymptotic formula for these 

TABLE I-VALUES OF F kn 

Xk n Recurrence Relation I Asymptotic Formula 

1.0 9999 0.3540125940E-Ol 0.35401259262E-Ol 
1.0 10,000 0.60060871554397E-Ol 0.60060871554399E-Ol 
1.0 10,001 -0. 34798910623E-Ol -0. 34798910644E-Ol 

2.0 9999 0.28830572153E-Ol 0.28830572171E-Ol 
2.0 10,000 0.16057291188981E-Ol 0.16057291188984E-Ol 
2.0 10,001 - 0 . 28508000965E-0 1 - 0 . 28508000983E-0 1 

10.0 9,999 -0. 62935376617E-12 -0.629353766E-12 
10.0 10,000 0.1037121050651E-12 o .1037121050655E-12 
10.0 10,001 0.73302922069E-12 0.73302922115E-12 
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functions was obtained in Ref. 9. Although the asymptotic formula 
would give adequate accuracy when n is large, the recurrence relation 
permits much faster evaluations when values are needed over a large 
range of n. Table I compares a few values of Fkn calculated by the 
recurrence relation and the asymptotic formula. Very good agreement 
is obtained justifying the use of the recurrence relation. 
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Addillg Two Information Symbols to 
Certain N onbinary BCH Codes 

and Some Applications 

By JACK KEIL WOLF 
(Manuscript received March 20, 1969) 

This paper is a compendium of results based on a simple observation: two 
information symbols can be appended to certain nonbinary BCH codes 
without affecting the guaranteed minimum distance of these codes. We give 
two formulations which achieve this result; the second yields information 
regarding the weights of coset leaders for the original BCH codes. 

Single-error-correcting Reed-Solomon codes with the added information 
symbols yield perfect codes for the Hamming metric. We use these lengthened 
Reed-Solomon codes as building blocks for perfect single-error-correcting 
codes in another metric. 

1. INTRODUCTION 

This paper is a compendium of results based upon a simple observa­
tion: two information symbols can be appended to the code words of 
certain BCH codes without weakening the error correction capability 
of these codes. 

We define a class of BCH codes called "maximally redundant codes" 
in Section II; for codes in this class a simple method is given for ap­
pending two columns to the check matrix which does not increase the 
number of check symbols for the code nor decrease the error correction 
capability of these codes. Section III gives the parameters for length­
ened Reed-Solomon codes and shows that such codes are perfect for 
single error correction. Section IV discusses a general decoding algo­
rithm for the lengthened codes and shows that these codes are in­
variant under certain permutation operations. 

Section V discusses a method for constructing the lengthened codes 
from cosets of the original code. We use this approach in Section VI 
to determine the lower bounds on the number of high weight cosets 

2405 
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for the original BCH codes. Section VII defines a new metric and gives 
a procedure for constructing some perfect codes in this metric. These 
codes are based upon the lengthened Reed-Solomon codes. The ap­
pendix shows that a necessary and sufficient condition for the non­
zero elements of GF (p) to be partitioned into mutually exclusive and 
exhaustive four element subsets of the form 

{x, /3x, -x, -/3x}, /3, X E GF(p) 

is that there exists an integer t such that 

/32t == -l(mod p). 

II. BCR CODES 

BCH codes are random-error-correcting codes for symbols from GF(q) 
where q is a prime (in which case q is replaced by p) or a power of a 
prime.1

-
3 Let a be an element of GF(qm) and let the order of a be n. 

That is, an = 1 and a i ~ 1 for i < n. The check matrix of a BCH code 
with designed distance d can then be given as 

H ~ l; a~~::~' (~:~::::, 
The code words are all n-vectors, C, with entries from GF(q) which 
satisfy the equation 

HC = O. 

(Unless stated to the contrary, all vectors are column vectors.) 
The proof that such codes have minimum distance at least d follows 

from demonstrating that all sets of d - 1 or fewer columns of H are lin­
early independent over GF(q). Actually, the proof shows more than this: 
it shows that all sets of d - 1 or fewer columns of H are linearly indepen­
dent over any extension field of GF(q). To establish this linear inde­
pendence let us consider the columns jl ,j2 , ... ,jd-l and the determinant 
of the corresponding Cd - 1) by (d - 1) array of symbols from GF(qm). 
Then, 

(amo)i' (a mO )i2 (amO)id-t 

det 
(amo+l)i' (a mo +1)i. (amo+1)id-l 

(amo +d-2) i 1 (amo+d-2)i 2 (amo +d-2) i d- t 
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1 1 1 

it c/O id-l 
= amo(il+i,+·"+id-tl det a a 

(a i1 )d-2 (a i2 )d-2 (ai d-,)d-2 

The latter determinant is a Vander 1\10nde determinant and is known 
to be nonzero if a i 

i ~ a i 
k for i ~ k. Since the elements of the matrices 

in question are elements from GF(qm), the nonvanishing of the determ­
inant ensures that any set of d - 1 columns of the check matrix are 
linearly independent over GF(qm). The special case of m = 1 defines a 
subset of BCH codes called Reed-Solomon codes.4 

The number of check symbols in the code is upper bounded by 
m(d - 1) since these are the number of rows in the check matrix after 
each symbol from GF(qm) is replaced by an m-vector with elements 
from GF(q). The reason that m(d - 1) is merely an upper bound is that 
the number of check symbols is equal to the number of linearly inde­
pendent rows in the check matrix [when expressed in terms of elements 
from GF(q)]j in general this number can be less than m(d - 1). In this 
paper, codes for which the number of check symbols is equal to m(d - 1) 
are called "maximally redundant" BCH codes. Binary codes (codes 
for which q = 2) are examples of nonmaximally redundant codes while 
Reed-Solomon codes (codes for which m = 1) are examples of maximally 
redundant codes. 

Let us now consider appending two columns to the check matrix, 
H, to form the new check matrix, H', 

H' 

1 0 

o 0 

o 0 

o 1 

H· 

It is now easy to see that any (d - 1) columns of H' are linearly inde­
pendent over GF(qrn). [Determinants formed from (d - 1) columns, 
excluding the first two columns, are (d -'I) by (d - 1) Vander Monde. 
Determinants formed from (d - 1) columns, including one of the first 
two columns, are (d - 2) by (d - 2) Vander Monde after expansion 
about the column in question. Determinants formed from (d - 1) 
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columns, including both the first and second column of H', are Cd - 3) 
by Cd - 3) Vander Monde after expansion.] 

The number of symbols per block in the lengthened code is thus two 
more than the corresponding number for the BCH code. The number of 
check symbols mayor may not be increased in accordance with 
whether or not the number of linearly independent rows remains the 
same after the addition of these two columns. One class of BCH 
codes for which the number of check symbols does not increase is 
the maximally redundant codes. This class includes all Reed-Solomon 
codes as well as other codes. 

It is possible that in some cases more than two columns can be ap­
pended to the parity check matrix while preserving the designed dis­
tance of the code. No general results have been found, however, for 
such cases.'':' For example, if a column is appended which contains a 
single 1 in the (l + l)th position of the column vector, the resultant 
determinant after expansion and factoring is of the form 

1 1 1 

0/ 1 c/o a i d-. 

Dz (ai,Y-1 (a i2 )Z-1 Caid-.)I-l . 
(a i.) 1+1 (ai.)I+l (a id-.)I+l 

(a i1 )d-2 (a i .)d-2 (a id -.)d-2 

Such a determinant can be evaluated as 
d-2 

Dz = II (a i • - a ik
) [sum of all products of Cd - 2 - l) distinct at' I]. 

i>k 

The latter sum of products can be zero even if all the ail are distinct. 

III. LENGTHENED REED-SOLOMON CODES 

The Reed-Solomon codes codes with symbols from GF(q) are BCH 
codes formed by choosing the parameter m = 1. These codes have 
parameters 

block length n = q - 1, 

check symbols per block r = d - 1, 

* An exception is d = 4 and q even where three columns can be appended to 
the parity check matrix. The appended columns are then the 3 X 3 identity 
matrix. 
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and correct any pattern of [(d - 1)/2] or fewer errors in a block of 
length n. Any t error-correcting linear code can have no fewer than 2t 
check symbols; this bound is achieved by the Reed-Solomon codes if 
d is an odd integer. This is not to say that the codes cannot be im­
proved upon: in particular, the lengthened codes formed as described 
in Section II represent a minor improvement. 

The lengthened code has parameters: 

block length n' = q + 1, 

check symbols per block r' = (d - 1), 

and corrects any pattern of [Cd - 1)/2] or fewer errors in a block of 
length n' symbols. The lengthened codes are maximum distance 
separable (l\1DS) in that they have the maximum possible minimum 
distance for a given block length n', and code size q(nl-r

/
). These codes 

complement the set of maximum distance separable codes given by 
Singleton.5 The weight distributions of the code words of maximum 
distance separable codes are given by Berlekamp.6 The case of single 
error-correcting lengthened Reed-Solomon codes (that is, d = 3) are of 
particular interest in that they are perfect codes. That is, bounded 
distance decoding results in the use of every syndrome. Specifically, 
there are q2 distinct syndromes. There are (q - 1) different errors which 
can occur in any of the (q + 1) different positions resulting in q2 - 1 
different error patterns. The all zero error pattern (no errors) in addition 
to the (q - 1)(q + 1) = q2 - 1 single error patterns use all q2 syndromes. 

IV. DECODING AND SYMMETRY OF LENGTHENED MAXIMALLY REDUNDANT 

BCH CODES·lEo 

The columns of the parity check matrix are conveniently labeled: 

( n' ) 

1 0 1 1 1 1 

0 0 1 a (a) 2 (ar'-a 

H' 0 0 1 2 (a2) 2 (a2t'-a a 

0 1 1 d-2 (ad- 2)2 (ad- 2t'-3 a 

label 0 CX) 1 2 n'-a a a a 

* This section is based on suggestions from E. R. Berlekamp of Bell Telephone 
Laboratories. 
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where a is a primitive element of GF(qm) and mo has been taken equal 
to zero. If the second column were omitted from this matrix, the re­
sultant code would be an extension of a BCH code of designed distance 
d - 1. That is, the resultant code is obtained by appending an overall 
parity check digit to a BCH code of designed distance d - 1. The code 
with the second digit omitted (block length n' - 1) is called a "singly­
lengthened" BCH code. The code of block length n' (which includes all 
digits) is called a "doubly-lengthened" BCH code. 

For d odd, one decoding algorithm for the correction of [(d - 1)/2] 
or fewer errors for the doubly lengthened BCH codes is: 

(i) Ignore the last syndrome digit (the only equation involving the 
symbol in position labeled (0) and decode as in Section 10.3 of Ref. 6 
for extended BCH codes. Let D be the number of errors indicated by 
the decoding algorithm. If D < (d - 1):/2, decode all positions ex­
cept the position labeled 00 and then use the last parity check equation 
to decode the position labeled 00. 

(ii) If D = (d - 1):/2, assume that the digit in position 00 is correct, 
modify the syndrome accordingly, and decode as in Ref. 6 using all 
digits in the modified syndrome. 

The lengthened primitive BCH codes have interesting symmetry 
properties. Since the singly-lengthened primitive BCH code is an ex­
tension of a primitive BCH code with designed distance one less, it is 
invariant under the affine permutation group on GF (q), as Thr-orem 
10.37 of Ref. 6 shows. 

One might hope that the doubly-lengthened BCH code would be 
invariant under the triply-transitive linear fractional group on 
GF(q) U 00 (page 358 of Ref. 6). This is not really the case since the 
code is not invariant under the simple permutation x ~ l/x. The 
doubly-lengthened BCH code is invariant, however, under the multiply 
and permute operation of order two specified: 

(i) Exchange digits at 0 and 00. 

(ii) Multiply digit at a i by a-i(d-2) and then move it to position a-i. 

This operation transforms the H' matrix into the same matrix with the 
rows listed in reverse order. Since this operation preserves Hamming 
weights, it ensures considerable symmetry. 

V. ALTERNATIVE FORMULATION OF LENGTHENED MAXIMALLY REDUNDANT 

BCH CODES 

We will now describe an alternative formulation of lengthened maxi-
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mally redundant BCH codes which is more complicated than that 
described in Section III. However, its real utility is that it gives in­
sight to the problem of determining the weight distribution of coset 
leaders for the (unlengthened) BCH codes (a subject discussed in 
Section V). 

Consider an (unlengthened) maximally redundant BCH code [with 
symbols from GF (q)] with check matrix 

1 

H = 1 a 
mo+] 

1 amo +d - 2 (amo +d - 2)2 (amo +d - 2)n-l 

where a is an element of GF(qm). Consider an n-vector X [with entries 
from GF(q)] such that 

O"ll 

0 

0 

HX = 

0 

0 

0"2 

where 0"1 and 0"2 are elements from GF(qm). We now prove the following 
inequalities regarding the weight of X, denoted W (X). 

Inequality 1: If 0"1 = 0"2 = 0, W(X) ~ d for X p O. 

Proof: The vectors X which satisfy HX = 0 are the code words of the 
code with check matrix H and have minimum distance at least d. Thus 
the weight of any nonzero code word is greater than or equal to d. 

Inequality 2: If 0"1 = 0 and 0"2 pOor if 0"1 p 0 and 0"2 = 0, then 
W(X) ~ d - 1. 

Proof: We first note that X p 0 since either 0"1 or 0"2 is nonzero. Next 
consider the case where 0"1 p 0 and 0"2 = 0 and form a new check matrix 
H(!) obtained by deleting the first row of H. Now H(1) X = 0 so that X 
is a code word corresponding to the check matrix H(1) . But any (d - 2) 
columns of H(1) form a (d - 2) by (d - 2) Vander lVlonde determinant 
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so that the weight of X is at least (d - 1). The proof for the case where 
0"1 = 0 and 0"2 ~ 0 follows similarly by noticing that X is a code word in 
a code corresponding to a check matrix formed by deleting the last row 
ofH. 

Inequality 3: If 0"1 ~ 0 and 0"2 ~ 0, then W(X) ~ d - 2. 

Proof: Again X ~ 0 since both 0"1 and 0"2 are nonzero. Now consider a 
check matrix formed by deleting the first and last rows of H. Since X is 
in the null space of this new check matrix, every such nonzero vector 
must have weight at least (d - 2). 

The lengthened code is now formed of (n + 2)-tuples of the form [ = ;]. 
From before we see that all such nonzero vectors must have weight at 
least d. It is easy to verify that the set of code words from a linear code 
and indeed that such a linear code is the null space of the check matrix 

1 0 

o 0 

H' = 0 0 H . 

o 1 

VI. WEIGHTS OF COSETS OF MAXIMALLY REDUNDANT BCH CODES 

In this section we digress from the main theme of this paper to pre­
sent some results on another problem: determining the weights of 
cosets (that is, coset leaders) for maximally redundant BCH codes. It 
should be emphasized that this problem differs from the widely re­
searched problem of determining the weights of the code words them­
selves. 

The complete weight enumeration of the cosets is known only for a 
very few classes of codes.6 This knowledge is crucial to determining 
the performance of codes using a complete decoding algorithm (that is, 
maximum likelihood decoding). 

In this section we are not able to determine the complete weight 
enumeration for the codes under consideration. Rather we can only 
give lower bounds to the number of coset leaders whose weight exceeds 
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certain values. However, we believe that this knowledge is both new 
and useful. 

Specifically we are concerned with the weights of coset leaders of 
maximally redundant primitive BCH codes. Our main result is: 

[Number of coset leaders of weight ~ d - j] 

~ (qm)i-l[(j + l)qm _ j] _ 1 for {j ~ 1 
2j < d. 

This result shows that for a maximally redundant BCH code of 
minimum (designed) distance d, in addition to having as coset leaders 
all vectors of weight less than or equal to [(d - 1)/2], coset leaders exist 
for all weights up to and including (d - 1). The actual minimum distance 
of the code, dA CT, may exceed the designed distance d. If[(dA CT -1)/2] < 
d - 1, the codes cannot be perfect codes and if [(d A CT - 1)/2] < d - 2, 
the codes cannot be quasiperfect. For Reed-Solomon codes dA C T = d 
and the codes are not perfect for any d and not quasiperfect for d > 3. 

Proof: Consider a coset leader X' corresponding to the syndrome, S, 
where 

HX' = S = 

CTl 

o 
o 

o 

d _ 1 where CT. £ GF(qm) i=O,1,···.J. 

Consider a new check matrix obtained by deleting the first i rows and 
the last (j - i) rows of H. X' must be a vector in the null space of this 
new check matrix and will be nonzero unless CTl = CT2 = ... = CTj = O. 
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Furthermore every such nonzero vector must have weight at least 
d - j since any set of d - 1 - j columns of this new check matrix forms 
a Vander Monde determinant. A counting problem remains: counting 
the number of distinct nonzero syndromes having a run of d - 1 - j 
consecutive zeros. For i = j, there are (qm) i_I such patterns corres­
sponding to the qm different values for each (Ji (excluding (Jl = (J2 = ... 
= (Ji = 0). For each i < j, there are (qm - l)(qm)i-l such patterns 
corresponding to the (qm - 1) distinct nonzero values for (Ji+l and the qm 
distinct values for all other (Jk , k ~ i + 1. Counting in this fashion, if 
2j < d we include each such pattern once and only once resulting in a 
total of 

(qm)i _ 1 + j(qm _ l)(qm)i-l = (qm)i-l[(j + l)qm - j] - 1 

such patterns. 
The above proof not only yields a bound to the number of high 

weight coset leaders but also gives an easy way of recognizing their 
occurrcnce from their respective syndromes. Thus if one were to use 
bounded distance decoding (decoding only coset leaders of weight ~ 
[Cd - 1)/2]), many nondecodable cosets would be easily recognizable by 
the form of the syndrome. 

A tighter bound can sometimes be obtained by noticing that the 
parity check matrix 

1 a 
mo 

(a
mo

)2 (amor- 1 

1 a 
mo+a (amo +a)2 (amo+a)n-l 

H= 1 mo+2a (a mo +2a)2 (amo +2a)n-l a 

1 a 
mo+ (d-2)a (amo + (d-2) a)2 (amo +(d-2)Q)n-l 

yields a code with a minimum distance of at least d if a and n are rela­
tively prime. Thus the zeros in the syndrome that signify a high weight 
coset need not occur as a single burst but rather can occur with a fixed 
periodicity. 

VII. SOME PERFECT SINGLE-ERROR-CORRECTING CODES FOR ANOTHER METRIC 

In this section we use the lengthened Reed-Solomon codes to construct 
codes for a new metric. In particular, we consider the case where q = p, 
a prime, and we are interested in codes that correct errors of the form 
±1, ±2, ... , ± T in a "single position" of a code word. In particular, 
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codes are given for T = 1 and T = 2. For T = 1, these codes are single­
error-correcting Lee metric codes.7 

The lengthened Reed-Solomon code used in the construction of these 
codes has a check matrix 

""'E(:---- n' = p + 1 ---)~ 

1 1 1 

where a is a primitive element from GF(p). The null space of this matrix 
is a perfect single-error-correcting code for the Hamming metric. That is, 
it corrects any error [±1, ±2, ... , ±(p - 1/2)] which occurs in anyone 
position in a code word. 

Consider the case where it is required only to correct an error of the 
form ±l. Also consider the new check matrix 

~n" = ~ ~ l)n' 

H" ~ [H' 2H' 3H' 

p2 _ 1 
-2--+ 

To show that the null space of H" will correct any single error of the 
form ±1, we need only show that all columns of H" are distinct from each 
other after multiplication by ± 1. This follows immediately from noticing 
that all pairs of columns of H' are linearly independent over GF(p). 

We prove the code is perfect by noting that 2n" + 1 = p2 syndromes 
are needed to correct a ± 1 error in each of the n" positions (plus the all 
zero error pattern). But since H" has two rows, there are exactly p2 
syndromes; every syndrome is used to correct the required error patterns. 

The above code has the same block length, number of check symbols, 
and error corrections capability as Berlekamp's perfect megacyclic single­
error-correcting Lee metric codes. 6 

The form chosen for H' with the first row consisting of all ones and a 
single zero makes the decoding algorithm easy. Let 

s ~ [::J where (p - 1) < u. < p - 1 ". = 1 2 
2 =.= 2 ~ ,. 

The algorithm is as follows. 
(i) If 0"1 = 0, the error is in position 2 + CI 0"2 1 - l)n' and has value 

sgn (0"2). 

(ii) If U2 = 0, the error is in position 1 + (I Ul 1 - l)n' and has 
value sgn (UI). 
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(iii) If 0"1 ~ 0 and 0"2 ~ 0, let x be the solution to the congruence 
0"1 ax == 0"2 mod (p). The error is then in position (x + 3) + (10"11 - l)n' 
and has value sgn (0"1). 

As an example, consider the code for p 5 with a = 2, a primitive 
root. Then 

H' = [~ 0 1 1 1 ~] 1 1 2 4 
and 

H" = [~ 0 1 1 1 1 2 0 2 2 2 :l 1 1 2 4 3 0 2 2 4 3 

Consider an error pattern resulting in the syndrome [-;]. Solving 
. for x [in accordance with (iii) above] we have 

(-2)2X == 2 mod (5) 

2x == -1 mod 5, 

which has the solution x = 2. Thus we have an error in position 

(x + 3) + (10"1 I - l)n' = (2 + 3) + (I -2 I - 1) 6 = 11 
having the value -1. 

A more interesting case arises when one desires to correct a single 
error of magnitude +1, -1, +2, or -2. We give a construction pro­
cedure which results in perfect codes for the case where the prime p is 
such that there exists a least positive integer t which satisfies the con­
gruence 

22t == - 1 mod p. 

Form the multiplicative subgroup 

1 248 ... 22t == -1 

Let ao = 1, and consider the coset table: 

ao 2ao 4ao 8ao 

a1 2a1 4a1 8a1 

a2 2a2 4a2 8a2 

aZ- 1 2aZ-l 4az-1 8aZ-1 

where 4tl = p - 1. 

-aZ- J -2aZ-1 

(24t-1)ao 

(24t - 1)a1 

(24t - 1)a2 
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Now again begin with the check matrix for the lengthened Reed­
Solomon single error-correcting code 

( n' = P + 1 ---:)~ 

11 0 1 1 1 

H' = lo 1 1 a a 2 

and form the new check matrix 

H'" = [aoH' 22aoH' 24aoH' ... 22(t-1)aoH' a1H' 22a1H' 

· 22<t-1)a1H' ... al-1H' 22az_ 1H' ... 22
(1-1) aZ_1H']. 

The block length of this code, n"', is 

(p - 1) p2 - 1 
n'" = Un' = n' = ---. 

4 4 

In order for the code to correct all single errors of the form ±1, ±2, 
we would require 4n'" + 1 = p2 syndromes. Since the code has two 
check symbols, it has exactly p2 syndromes available for error correction. 
Thus the code will be a perfect code if we can prove that its error correc­
tion capability is as asserted. 

Proof: We must prove that any column of H"', when multiplied by 
+ 1, -1, + 2, or - 2, is distinct from any other column of H'" when 
multiplied by + 1, -1, + 2, or - 2. If the two columns in question come 
from two distinct columns of H', then this is certainly the case since the 
columns of H' are linearly independent over GF(p). Let the pair of 
columns in question be derived from the same column of H', say h. One 
such column is of the form 22

(1
1

) ai1h and the other is of the form 22
(1.) 

ai.h where (0 < l1 , l2 ~ t - 1) and (0 ~ j1 , j2 ~ l - 1). Now let z be 
any member of one of the cosets. Then - z, + 2z, and - 2z are also 
members of that coset; so we need only consider the case i1 = j2 • But 

(1)(221.) = 221 • (1)(221 .) = 221• 

(2)(221.) = 221.+1 (2)(221 0) = 221 .+1 

( _1)(2211) = 22(1.+0 ( _1)(22z .) = 22 (Zo+t) 

( _2)(221.) = 22(1.+&)+1 (- 2) (221 .) = 22(z.+0 +1, 

and no term in the left four equations can equal a term in the right four 
equations for II ~ l2 , 0 ~ l1 , l2 ~ t - 1. Thus the assertion is proved. 

As an example, let p = 13 where 2 is a primitive element of order 
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4t = 12. Thus t = 3 and l = 1. The matrix H' can be taken as 

H' = [~ 0 1 1 1 1 1 1 1 1 1 1 1 ~] 1 1 2 4 8 3 6 12 11 9 5 10 

and H'" is 

H'" = [H' 4H' 3H']. 

As a second example let p 17. The coset table is 

1 2 4 8 16 == -1 15 13 9 

3 6 12 7 14 11 5 10 

The check matrix H'" is 

( 72 ) i 
H"'= [H' 4H' 3H' 12H'] 2 

1 
where H' is a two row by 18 column check matric formed in the manner 
described. Berlekamp has given a code for p = 17 with block length 
72 with Lee distance 5 that requires four check symbols. 6 The above 
code requires only two check symbols but corrects only a small subset 
of the class of errors correctable by Berlekamp's code. Wyner has found 
several classes of codes which correct two errors per block, each error of 
the form ± 1. 8 One such class has a block length of p and requires three 
check symbols. 

In the proof we have given a decomposition of the integers 1, 2, ... , 
p - 2, p - 1 = 4m into disjoint sets 8 18 2 ••• 8 m each containing four 
elements, such that the elements of each set are of the form x, 2x, - x, 
and - 2x (mod p). A sufficient condition for this decomposition was 
that there exists a least positive integer t such that 22t == -1 (mod p). 
The appendix shows that this condition is necessary for this decom­
position. 

In particular we consider the following question in the appendix: 
For which primes p and elements (3 from GF(p) is it possible to partition 
the nonzero field elements (1, 2, ... , p - 1) into four element subsets, 
8 i , such that 8 i = {Xi, {3Xi , - Xi - {3Xi} (mod p), where each nonzero 
field element occurs in one and only one subset? We show that the 
answer is: Such a partition can be achieved if and only if there exists a 
least positive integer t such that {32t == -1 (mod p). Stein has considered 
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a more general version of this problem.9 The results in the appendix 
were proved independently of Stein. 

VIII. ACKNOWLEDGMENTS 

The comments and suggestion of E. Berklekamp, R. Graham, 
J. lVlacWilliams, and A. Wyner are gratefully acknowledged. 

APPENDIX 

On a Partitioning of the Nonzero Elements of GF (p) 

By R. L. Graham and J. K. Wolf 

A.I Introduction 
The problem we consider is: For which primes, p, and elements, /3, 

from GF (p) is it possible to partition the nonzero field elements of 
GF(p) into mutually exclusive and exhaustive four element subsets, 
Si, such that 

Si = {Xi' {3Xi , -Xi' -{3xd, (mod p)? 

A necessary condition for the existence of such a partition is that 

J±l 
{3 ~ 1 0 mod p; 

otherwise the subsets would not contain four distinct elements. 
We will show that a necessary and sufficient condition for this parti­

tion is that there exists a t such that {32t == -1 (mod p). Further we 
will show that for a prime of the form p = 8k + 5 such a partition 
always exists for {3 = 2. 

A.2 Proof of Assertion 

First notice that a necessary condition for this partition to exist is 
that p = 4m + 1 for some m ~ 1, since p - 1 must be divisible by 
four. A second necessary condition is that 

~ ~ J ~ 
1-1 

(mod p). 

Let r be a primitive root of p so that r2m == -1 (mod p). Define a 
as the smallest positive integer such that r a == {3 (mod p). By assumption 
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{3 ~ -1 (mod p), so that a ~ 2m. The subset So must then consist of 
the four elements 

S . - {Ill lIi+a r lli +2m rlli+2m+a} • - r ,r, , 

so that an equivalent problem is to decompose the additive group 
Zp-l = {O, 1, 2, ... , p - 2 = 4m - I} into mutually exclusive and 
exhaustive subsets of the form S~ = {Yi ,Yi + a, Yi + 2m, Yi + 2m + a} 
mod (4m)]. 

This problem can be viewed geometrically as that of covering the 
vertices of a regular 4m-gon placed on a circle by translates of the 
pattern {O, a, 2m, a + 2m}. This pattern is symmetric modulo 2m, so 
the problem reduces to covering the vertices of a regular 2m-gon 
placed on a circle by translates of the pattern {O, a}. This pattern 
{O, a} can be viewed as a chord spanning a vertices. For example, for 
m = 6 and a = 5, this covering is shown in Fig. 1 while for m = 6 and 
a = 4, no such covering is possible. 

o 

3 
9 

6 

Fig. 1-A covering for m = 6 and a = 5. 

In terms of sets, the problem now is to decompose the additive group 
Z2m into m mutually exclusive and exhaustive two-element subsets, 
S~' , of the form S~' = {Yi' Yi + a} (mod 2m). 

In the following, we denote by [2m, a] a covering of the 2m-gon by 
chords spanning a vertices. Letting 2m = 2'Y (2v + 1) we now prove 
the following theorem. 

Theorem 1: A [2m, a] covering exists if and only if 2'Y ,r a. We prove this 
theorem by first proving the following lemmas. 

Lemma 1: A [2m, a] covering exists if *(2m, a) = 1. 

* (x, 1/) = greatest common divisor of x and 1/. 



CODING SYMBOLS 2421 

Proof: Let S~' = {2(i - l)a, (2i - l)a} (mod 2m), i = 1, 2, ... , m. 
Then the subset S~' is of the proper form and it remains to show that 
each element of Z2m appears in one and only one subset. Assume that 
an element of Z2m appears in more than one subset. Then for 0 ~ i ~ 
j ~ 2m - 1, 

ia ~ ja (mod 2m) 

or 

(j - i) a ~ 0 mod 2m. 

But by assumption (2m, a) = 1 so 2m and a have no common factors. 
Thus 2m I (j - i) which is impossible since (j - i) < 2m. We have 
then shown that no element of Z2m appears in more than one subset. 
But there are 2m elements in the m subsets so that each element of Z2m 

must appear once and only once in those subsets. 
The decomposition used in the proof of Lemma 1 can also be viewed 

as taking alternate edges of the regular star of step size a. For ex­
ample, the covering in Fig. 1 can be viewed as taking alternate edges 
of a star of step size a. In Fig. 2, this star is shown for m = 6 and a = 
5 with the alternate edges as solid lines. 

Lemma 2: A [x, a] covering exists if and only if a [kx, ka] covel'ing exists, 
where k ~ 1. 

Proof: If a [x, a] covering exists, a [kx, ka] covering can be obtained 
by simply interleaving the [x, a] covering k times. If a [kx, ka] cover­
ing exists, the chords must span exactly ka vertices. Thus deleting all 

o 

3 
9 

6 

Fig. 2 - A star of step size 5 for m = 6. 
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vertices except those congruent to zero modulo k, we have a [x, a] 
covering. 

Lemma 3: A [x, a] covering does not exist for x odd. 

Proof: The covering problem is that of partitioning the integers 
{O, 1, ... , x - I} into two element subsets. For this to be possible two 
must divide x. 

Lemma 4: Let 2m = dM and a = dA, where (A, M) = 1. Then a 
[2m, a] covering exists if and only if M is even. 

Proof: From Lemma 2, a [2m, a] = [dM, dA] covering exists if and 
only if a [M, A] covering exists. But from Lemma 3, a [.ilf, A] cover­
ing will not exist if M is odd. If M is even, since (A,llf) = 1, Lemma 
1 insures the existence of a [M, A] covering. 

Proof of Theorem 1: Let 2m = 21' (2v + 1) = dM and a = dA where 
(A, M) = 1. If 21' I a, then 21' I d and .ill will be odd. By Lemma 4, a 
[2m, a] covering will not exist if .il1 is odd. Conversely, assume that 
2'Y ,r a. Then 2 I M and M is even and by Lemma 4, a [2m, a] covering 
exists. Q.E.D. 

Using Theorem 1 we now prove the main result, which is given as 
Theorem 2. 

Theorem 2: The nonzero elements of GF(p) can be partitioned into 
mutually exclusive and exhaustive 4 element subsets, Si' such that Si = 
{Xi' {3Xi' - Xi, - {3xd (mod p) if and only if there exists a positive 
interger t such that {32 t == - 1 (mod p). 

Proof of Theorem 2: From Theorem 1, such a partition is possible 
if and only if2'Y ,r a. Let us first assume the existence of a positive 
integer t such that {32t == -1 (mod p). But ra == {3 (mod p) so that 
ra2t == -1 (mod p). Since 1'0 == -1 (mod p) implies 

o = p ~ 1 + l(p - 1) = (2I + 1) ~ ~ 1) = (2I + 1) (2m) , 

for some I, then a2t = (2l + 1)(2m) = (2l + 1)(2v + 1)2'Y. Thus at = 
2'Y- 1 (2l + 1)(2v + 1) and 2'Y ,r a. 

Next assume that 2'Y ,r a. There exists a y such that ray == {3Y -
-1 (mod p) if and only if 

ay = (p ~ 1)(2q +. 1~ = 2m(2q -: 1) = 2'Y(2v + 1)(2q + 1) 
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for some q. But 21' l' a, so y must have an even factor, that is 21 y. 
Thus y can be written as y = 2t and (32t == -1 (mod p). Further notice 
that the condition 

f
+1 

(3 ~ 0 (mod p) 

l-l 
is subsumed by the condition (32t == -1 (mod p). Q.E.D. 

A.3 A Special Set oj Primes with the Desired Partition 

Each of the two theorems in Section A.2 give a necessary and suf­
ficient condition for the desired partition. Either condition, however, 
requires some calculation to discover whether p admits such a parti­
tion. The following discussion yields an easily recognizable class of 
primes, p, for which the partition will always be possible if f3 = 2. 

The Legendre symbol (alp) is defined as 

J 1 
if x 2 = a has a solution in GF(p) (that is, a is a 

quadratic residue mod p) 
x 2 = a does not have a solution in GF(p) (that is, 
a is a quadratic nonresidue mod p) 
a = O. 

(alp) = 1-01 if 

if 

Lemma 5: A sufficient condition jar the partition to exist is ((3lp) 
= -1. 

Prooj: By Euler's criterion 

a(P-l)/2 == (alp) mod p. 

Since p - 1 = 4m, if ((3lp) = -1 then (32m == -1 mod p, and the 
partition is possible for that {3 and p. 

One can show (p. 172 of Ref. 6) that (2Ip) = -1 if p = 8k + 5 for 
some k. Thus if f3 = 2 and the prime p is of the form p = 8k + 5 
such a partition can be achieved. 
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Synthesis of Pulse-Shaping Networl(s in 
the Time Domain 

By DAVID A. SPAULDING 
(Manuscript received February 11, 1969) 

A fundamental problem in the design of data transmission systems is the 
synthesis of pulse-shaping networks which satisfy specifications in both 
the time and frequency domains. This paper considers the problem of 
designing a network to shape an arbitrary input pulse into a band-limited 
pulse having minimum intersymbol interference. The design procedure uses 
the zeros of the network transfer function to achieve the band-limiting 
properties (using a modified Temes and Gyi constraint) while the transfer 
function poles are optimized with a computer to give the desired time response. 

By limiting the specifications on the shaped pulse to an absolute minimum, 
very accurate results are achieved with simple networks. Some sample 
designs and experimental results are included. For example, an 11th order 
transfer function is designed to shape rectangular pulses for a synchronous 
baseband pulse amplitude modulation system. The shaped pulses have a 
bandwidth 20 percent in excess of the Nyquist bandwidth and a theoretical 
worst-case distortion of 2.1 percent. An active realization of this transfer 
function achieved a worst-case distortion of about 2.5 percent. 

1. INTRODUTION 

A fundamental problem in the design of data transmission systems 
is the synthesis of pulse-shaping networks which meet both time and 
frequency domain specifications. This paper considers the problem of 
designing, for a synchronous system, a network whose response to an 
arbitrary input pulse is a band-limited pulse with minimum inter­
symbol interference.1 The design procedure uses a slightly modified 
Temes and Gyi procedure to keep the pulses band-limited;2 the time 
response is optimized by using a computer. By focusing attention only 
on the important instants of time, very efficient and accurate designs 
result. We include some sample designs and experimental results. 

2425 
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II. PROBLEM DESCRIPTION 

Consider a baseband pulse-amplitude modulation system in which 
information is coded as the amplitude values of a single pulse shape 
x (t). Assume that a pulse is transmitted every T seconds over a chan­
nel, which for the present is ideal. The received signal, s (t), is 

00 

set) = L anxCt - nT), 

where an is the amplitude of the nth pulse. The receiver samples s (t) 
at T second intervals to determine the an. If one requires that the 
amplitude of any particular transmitted pulse can be determined by a 
single sample of the received signal, that is, for all integers m, 

00 

s(mT + T) = L anx(mT + T - nT) = am , 
n=-oo 

then x (t) must be a pulse with zero intersymbol interference; that is, 

x(nT + T) = Dno, (1) 

where T is some appropriate reference time and Dmn is the Kroneker 
delta function. 

Insofar as detecting the transmitted amplitude is concerned, no other 
specification on x(t) is required. However, in most situations it is 
desirable, if not mandatory, to band-limit the spectrum of x(t) to 
frequencies less than some cutoff We • Of course, the smallest allowable 
value for We is 7r/T, the Nyquist frequency. Such a band-limiting con­
straint might result from a requirement to limit adjacent channel 
interference. In many cases band-limiting is the only frequency domain 
specification which is required. These simple time and frequency domain 
specifications represent the minimum requirements that a pulse-shaping 
network must meet in order to be useful in many pulse amplitude 
modulation systems (see Fig. 1). It is important to observe that such 
specifications do not uniquely define x(t) except for the case where 
We = 7r/T. 

Given these specifications, the problem now becomes that of generat­
ing a realizable rational transfer function which can achieve the specifi­
cations for a given input; that is, the approximation problem must be 
solved. With this problem solved, the physical network can be con­
structed using known techniques. 

There are numerous ways of solving the approximation problem both 
in the time domain and the frequency domain. However, a more complete 
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• • • • • • • • 
t-

Fig. 1- Minimum time and frequency domain specifications. 

specification is generally required to use these techniques. For example, 
a standard frequency-domain approach is to completely specify a 
satisfactory x(t) and to form the ideal transfer function of the network 
as X(w)/Y(w), where Yew) is the Fourier transform of the network input. 
This transfer function is approximated by a rational function. The 
disadvantages of this straightforward approach are (i) whatever fre­
quency domain measure of approximation accuracy is used, errors in 
the frequency domain are not easily related to errors at the sampling 
instants in the time domain, and (ii) completely specifying x(t) requires 
the network to perform more shaping than is actually necessary. A 
particular selected x(t) might give a transfer function which is more 
difficult to approximate than some other equally acceptable x(t). Since 
the x(t) most easily approximated is not known, specifying a particular 
x(t) may require a transfer function of unnecessarily high order to achieve 
acceptable results. 

Solving the approximation problem in the time domain permits 
more direct control of time domain errors. DIstad has achieved good 
results in this manner; however, he completely specified X(t).3 In gen­
eral, time-domain approximation procedures provide no direct control 
of the band-limiting properties of the network and one msut rely upon 
an accurate approximation of a completely specified x(t) to achieve 
the band-limiting. Furthermore, when added weight in the approxima­
tion procedure is put at the sample times, the band-limiting properties 
of the network become increasingly difficult to control. This conflict, 
between approximating in the time domain with stress on sample times 
and achieving given band-limiting properties, seems to be common to 
most time-domain approximation techniques. 

Jess and Schussler considered the optimization of pulse-forming 
networks simultaneously in the time and frequency domains.4 Their 
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approach, although a step in the right direction, minimizes the tails 
of the pulse; this does not necessarily give an acceptable value of 
intersymbol interference when the rate at which pulses are transmitted 
is a significant percentage of the Nyquist rate for the bandwidth 
available. 

What is required is a method of approximating in the time domain 
which constrains the frequency domain behavior to be band-limited. 
Ternes and Gyi show how to develop transfer functions which have 
band-limited impulse responses. 2 These ideas can be applied, with 
some modification, to give a useful solution to the problem of pulse 
shaping. 

III. PULSE SHAPING USING THE TEMES AND GYI CONSTRAINT 

For convenience, Appendix A reviews the manner in which Ternes 
and Gyi develop a low-pass transfer function which has an equal­
ripple stopband behavior. This is accomplished by expressing the 
transfer function in partial fraction form and constraining the re­
sidues to depend on the poles in a particular manner. If G (s) is a 
transfer function with one zero at infinity, it is expressed as 

N R. 
G(s) = L: -'- , 

i=l S - Si 
(2a) 

where 

(2 b) 

and z~ = s~ + w~ , Re Zi ~ 0; We is the low-frequency edge of the stop­
band and K is the maximum gain in the stopband. It is important that 
this transfer function has all its zeros on the jw axis and is therefore 
minimum phase. 

In general, and specifically for the case where the input to the pulse­
shaping network is a rectangular pulse, a minimum-phase transfer 
function does not have enough freedom to shape a pulse into a Nyquist 
pulse. (If a Nyquist pulse has a bandwidth of (1 + ahr/T, where 0 < 
a < 1, then its Fourier transform must have linear phase over the 
frequency interval from zero to (1 - ahr/T. To see this, compute the 
Fourier transform of the sampled pulse. This linear phase condition 
cannot be achieved, in general, with a minimum-phase shaping net­
work.) To remedy this, the transfer function of equation (2) is multi-
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plied by an all-pass transfer function which has the form, 

N+L 
H(s) = II -s -Si ; 

'~N+1 S - S. 
Re s. < O. (3) 

The transfer function resulting from the product of equations (2) and 
(3) is band-limited and has arbitrary low-pass gain and phase char­
acteristics. Observe that all the zeros of the transfer function G(s) 
H (s) (half of the available degrees of freedom) are constrained to be 
functions of the poles in order to get the band-limiting behavior. The 
poles (the remaining degrees of freedom) can now be used to optimize 
the time behavior of the pulse. 

Assume for the present that the pulse to be shaped is rectangular, 
that is, 

yet) = u(t) - u(t - To), (4) 

where u (t) is the unit step function and To the pulse width. From 
equations (2), (3), and (4), the output pulse x(t) is 

N+L+1 
x(t) = :E CR i {u(t) exp (Sit) - u(t - To) exp [Si(t - To)]}, (5 a) 

where 

CRi = 

i=1 

G(Si) IT - (Si + Sf) 
Si i~N+1 (Si - Sf) , 

Fi 

G(O) , i = N + L + 1 (SN+L+1 = 0) 

and only simple poles are assumed to occur. 

(5b) 

Equation (5) gives the output pulse in terms of the network poles. 
The pulse can now be optimized in the time domain using a digital 
computer and an appropriate optimization technique. For the particular 
application considered here, only the values of x(t) at equally spaced 
intervals of time are important, that is, t = kT + to, where k is a 
positive integer, T is the sampling interval, and - T < to ~ O. By 
concentrating on these instants of time rather than on the entire pulse 
waveform, excellent pulse-shaping networks can be designed which are 
not excessively complex. 

The pulse shaping networks given in the following examples were 
designed by using a general purpose optimization program written 
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by Mrs. J. M. Schilling. The program used a steepest descent minimi­
zation technique. Typical running times on an IBM 7094 were about 
three to four minutes. 

Figures 2 through 12 show the results of two sample designs and 
some experimental measurements. The first example (Figs. 2 through 
6) is a seventh-order network which shapes a rectangular pulse into 
a Nyquist pulse with 50 percent excess bandwidth. l:· The network 
stopband rejection is 40 dB and the output pulse has a worst-case 
distortion of 0.38 percent. t The second example (Figs. 7 through 12) 
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Fig. 2-Time response of a seventh order pulse-shaping network (one all-pass 
section) resulting from a rectangular input pulse of unit amplitude and of five 
seconds duration. The network has 40 dB stopband rejection, 50 percent excess 
bandwidth, and worst-case distortion of 0.38 percent. The Nyquist frequency is 
0.1 Hz (T = 5 seconds). 

shapes a rectangular pulse into a Nyquist pulse with 20 percent excess 
bandwidth. The worst-case distortion is 2.1 percent. For this example 
experimental measurements are shown for an active network realiza­
tion using Tow's technique. 5 

* For a 50 percent excess bandwidth pulse, the low frequency edge of the stop­
band is at (1.5/2T) Hz. 

t Worst-case distortion is defined as k'E.co \ x(kT + to) \, where x(koT + to) = 1. 
>"ko 
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Fig. 5 - Delay of the network giving the output pulse shown in Fig. 2. 

THE NUMERATOR POLYNOMIAL IS THE DENOMINATOR POLYNOMIAL IS 

+ 3.99b795E-02S~* 6 + 1.000000E+005** 7 

+-2.709413E-02S** 5 + 1.835959E+00S** b 

+ 1.275938E-015** It + 2.200246E+OOS** 5 

+-8.224750E-02S** 3 + 1.799349E+005** 4 

+ 9.840381E-02S** 2 + 1.018142E+OOS** 3 

+-5.361433E-025** + 4.043381E-01S** 2 

+ 1.244372E-02Su 0 + 1.012517E-01S** 

+ 1.244925E-02S** 0 

THE POLES ARE THE ZEROS ARE 

-1.999273E-01 ± 4.918577E-01J 3.389439E-01 :tZ.046168E-01J 

-1.220059E-Ol !. 7. 300850E-OlJ o. !9.768803E-OIJ 

-3.389429E-01 i2.046175E-01J o. ±1.442686E+OOJ 

-5.142068E-01 O. J 

Fig. 6 - Transfer function data for the network of Figs. 2 through 5. 
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Fig. 7 - Time response of an eleventh order pulse-shaping network (two all­
pass sections) resulting from a rectangular input pulse of unit amplitude and of 
five seconds duration. The network has 35 dB stopband rejection, 20 percent ex­
cess bandwidth, and worst-case distortion of 2.1 pereent. The Nyquist frequency 
is 0.1 Hz (T = 5 seconds). Note: 35 dB network stopband rej ection gives 40 dB or 
better rejection of signal energy when a rectangular pulse of five seconds dura­
tion is the network input. 
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Fig. 9 - Gain of network giving the output pulse shown in Fig. 7. 
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Fig. 10 - Delay of the network giving the output pulse shown in Fig. 7. 
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THE NUMERAT0R P~LYNWMIAL IS 

+ 9.010491E-025**10 

+-7.116008E~025** 9 

+ 3.996278E-015** 8 

+-2.963901E-015** 7 

+ 5.232092E-015** 6 

+-3.347661E-015** 5 

+ 2.679873E-015** 4 

+~1.276737E-01S** 3 

+ 4.917976E-02S** 2 

+-1.105460E-02S** 

+ 1.200169E-03S** 0 

THE P0LES ARE 

-'Ie 895659E-01 ± 4.42421itE-01 J 

-1. 116714E-01 ± 5. 789655E-OIJ 

-8.819848E-02 'Z6.881603E-OlJ 

-2.081902E-Ol !1.23718IE-OIJ 

-1.866162E-01 ~3.768048E-OIJ 

-1.580778E+OO O. J 

THE OEN0MINAT0R paLYN~MIAl 15 

+ 1.000000E+005**11 

+ 3.749382E+00S**10 

+ 6.603178E+005** 9 

+ 8.185644EtOO5** 8 

+ 7.463441E+00S** 7 

t 5.326736E+005** 6 

+ 2.948257E+005** 5 

+ 1.289339E+005** 4 

+ 4.230783E-OlS** 3 

t 1.019484E-015** 2 

+ 1.56502lE-025** 

of 1. 194575E-03S** 0 

THE ZEROS ARE 

1.866781E-Ol '!3.168034E-01J 

2.081920E.-01 ! 1.237177E-OIJ 

o. !.7.677332E-OlJ 

o. !9.111657E-OIJ 

o. !1.620049E+OOJ 

Fig. 11- Transfer function data for the network of Figs. 7 through 10 and 12. 
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Fig. 12 - Experimental data on an active network realization of the transfer 
function given in Fig. 11. (a) Response of the network to a rectangular input 
pulse. The Nyquist frequency for the filter was 1800 Hz. (b) Eight level eye 
patterns generated by a random sequence of rectangular pulses with eight distinct 
amplitudes. 
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It should be stressed that although the design procedure used here 
gives excellent results, they are not necessarily optimum in any par­
ticular sense. It is clear from the complex way in which the poles 
enter into the time response of the output pulse that the error between 
the pulse samples, realized by equation (5) and the desired pulse 
samples, may not have a unique minimum; therefore, the computer 
program used to optimize the pole locations may actually converge 
to a local minimum. However, with a little experience the initial pole 
positions can be selected to give very satisfactory results. 

IV. EXTENSIONS TO SHAPING ARBITRARY INPUTS 

So far, only the shaping of a rectangular pulse has been considered. 
There are many situations where nonrectangular pulses must be 
shaped. For example, consider the case where the network is to shape 
a rectangular pulse to be transmitted over a channel which is no longer 
ideal as has been assumed so far; now the channel is assumed to in­
troduce a known, fixed amount of amplitude and delay distortion. In 
this case, the pulse at the receiver is unchanged if the pulse-shaping 
network and the channel are interchanged (see Figs. 13a and b). Now 
the pulses presented to the shaping network from the channel are no 
longer rectangular. By having the network shape the channel output 
into a Nyquist pulse, the overall cascade connection of the pulse­
shaping network and the channel shape a rectangular pulse into a 
Nyquist pulse. It is assumed that a solution to this problem is theo­
retically possible. A case which does not have a solution occurs when 
the channel is band-limited to less than (lj2T) Hz. 

For this example one might ask why the design process is rearranged 
in this manner. A more straightforward approach is to calculate the 
channel input required to give a particular Nyquist pulse at the chan­
nel output. The channel input is then approximated by the output of 
the shaping network. This approach has two disadvantages: (i) the 
channel output is over-specified, and (ii) the shaping network must 
approximate the channel input at more time points than is necessary 
in the other case. 

In order to determine the output of the shaping network, x(t), re­
sulting from an arbitrary input, y (t), one must perform a convolution. 
In general, a convolution is a very time-consuming calculation to carry 
out on a digital computer;-* however, because the pulse-shaping net-

* A convolution must be performed many times when the poles of the pulse­
shaping network are optimized by using a digital computer. 
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work is band-limited and we are interested in only equally spaced 
samples of the output pulse, this convolution can be made very ef­
ficient even without resorting to fast Fourier transform methods. 

Since the pulse-shaping network is band-limited, an ideal band­
limiting filter with the same bandwidth can be placed in front of it 
without appreciably affecting the shape of the output pulse (see Fig. 
13b and c). Some effect occurs because the pulse-shaping network is not 
ideally band-limiting; this effect is small for reasonable stopband re­
jection levels. Now the input to the pulse-shaping network is band­
limited. Since this is the case, the convolution can be performed using 
samples spaced at intervals of (n/ wJ seconds or less, where We is the 
cutoff frequency of the pulse-shaping network (see Figs. 13c and d). 
There is some aliasing error because the pulse-shaping network is not 
ideally band-limited; but this can be made small. 

The bandwidth, We, of the pulse-shaping network in all cases is 
greater than (niT) radians per second (T is the time between successive 
pulses) and is usually less than (27l" / T) radians per second. For this situ-

~L_S_~~_~_~_:G----,t-------ll CHANNEL It-----""""~----(O 
(a) 

T, 
r----(~O~---(O ~ PULSE 

CHANNEL t-----...., SHAPING 

. Id (t) '---_--.l :x:(t) 

(b) 

LOW PASS FILTER 

1Gln<:, 
We 

(c) 

LOW PASS FILTER 

1Gln <f 
We 

(d) 

Fig. 13 - Approximately equivalent systems. 
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ation the output of the network can be found most conveniently by 
performing the convolution with samples spaced at intervals of length 
T 1 = T /2. Although a larger T 1 (T 1 ~ 7r/ wJ could be used, it requires 
interpolation to find the output at required sample times. 

Figure 14 shows the results of the design of a pulse-shaping network 
to shape a nonrectangular pulse. The filters of a vestigial-sideband 
data transmission system were designed using a standard frequency­
domain approach. The system was then simulated on a digital com­
puter (assuming an ideal channel) and a binary eye pattern generated 
as Fig. 14a shows. The system was not ideal, as the figure indicates, 
because of errors introduced by the filters. The worst-case distortion 
was 64 percent. 

The low-pass filter which follows the demodulator of the system 
was then designed, using the time-domain procedure described here. 
The order of the filter was kept the same. The portions of the data 
transmission system preceding the low-pass filter assumed the function 
of the channel as shown in Fig. 13. Figure 14b shows a binary eye 
pattern generated by a computer simulation of the data transmission 
system which incorporates the filter designed in the time domain. The 
worst-case distortion was 16 percent. The results in Fig. 14 occur with­
out the aid of an automatic transversal equalizer. 6 When such an 
equalizer is used the results for both cases improve significantly and 
the advantage offered by the network designed in the time domain is 
reduced depending, of course, on the number of taps on the equalizer. 

v. CONCLUSION 

This paper has discussed a method of designing networks to shape 
arbitrary input pulses into band-limited Nyquist pulses. A modified 
Temes and Gyi constraint is used to keep the shaped pulses band­
limited; the time responses are then optimized only at those time in­
stants of interest. The resulting networks accurately realize both time 
and frequency domain specifications with minimum network com­
plexity. 
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Fig. 14 - Computer generated binary eye patterns for a vestigial-sideband data 
transmission b'Ystem. (a) Results occurring when the filters are designed using 
frequency domain techniques. (b) Results occurring when the low-pass filter fol­
lowing the demodulator is designed by the technique described in Section 4. 
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APPENDIX 

Arbitrary Passband, Equal-Ripple Stopband Transfer Function of 
T emes and Gyi2 

This appendix explains the procedure used by Temes and Gyi to 
develop G(s), a low-pass, equal-ripple stopband, arbitrary passband 
transfer function. A rational G(s) should (i) realize a gain less than or 
equal to some constant I( for frequencies in the stopband, I w I ~ We and 
(ii) have an arbitrary gain in the passband, I w I < We • This is achieved 
basically by using the poles of G(s) to give the desired passband gain 
and the zeros of G(s) to give the desired equal-ripple stopband gain. 

To develop a transfer function with the desired gain properties, we 
consider the function G(8)G( -8). For 8 = jw, G(8)G( -8) equals the 
magnitude squared of G(jw). Now consider the mapping of equation (6) 
which maps the s-plane to the z-plane: 

Re (z) ~ 0, z = x + jy. (6) 

This mapping causes the stopband portion of jw axis in the s-plane to 
correspond to the entire jy axis of the z-plane and the passband portion 
of the jw axis in the s-plane to correspond to a portion of the x axis of 
the z-plane. The function G(8)G( -8) can be transformed by equation 
(6) to the z-plane and, as will be shown, can be made to have equal­
ripple stopband behavior by giving it the form of H(z) in equation (7), 
where 

K2 
H(z) = 1 + R(z)R( -z) (7a) 

and 

R(z) = zF(z)/E(z). (7b) 

R (z) is a z-plane reactance function, and E (z) and F (z) are even 
functions. By transforming H (z) to the 8-plane and properly factor­
ing it into G (s) G ( -8), the equal-ripple stopband transfer function 
is generated. 

The z-plane reactance function in equation (7b) is written as an 
odd function over an even function. The reactance function could be 
the reciprocal of equation (7b); but, this form would not yield a ra­
tional G (s). Since a reactance function has alternating poles and zeros 
on the jy axis and is pure imaginary there, H (jy) has equal-ripple 
behavior ranging between K2 when jy is a zero of R (z) and zero when 
jy is a pole of R(z). If F(z) and E(z) are the same order, R(z) has a 
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pole at infinity; therefore, G(s) has a zero at infinity. If F(z) is of 
order two less than E(z), R(z) has a zero at infinity and G(s) is not 
zero at infinity. 

To determine G (s) explicity, H (z) is transformed into the s-plane 
and factored. To do this, H (z) is written, using equation (7), as 

[E(z) - zF(z)][E(z) + zF(z)] 
(8) 

Since zF(z)jE(z) is a reactance function, E(z) + zF(z) has roots in 
the left-half z-plane and E (z) - zF (z) has roots in the right-half 
z-plane. Assuming that the polynomial E (z) + zF (z) is nth order and 
the coefficient of zn is unity, equation (8) can be factored into 

where Zi are the roots of E(z) - zF(z) = o. Using equation (6) and 
s~ = z~ - w~, the s-plane version of H (z) becomes 

= G(s)G( -s). 

The Si are the left-half plane images of the Zi • Therefore, 

G(s) = K~(z) IZ'=8'+"': (9) 
II (s - Si) 
i=1 

is a realizable, rational transfer function. Note that E(z) is an even 
function of z and thus is a rational function of s. Also all the zeros of 
G(s) lie on the jw axis in the stopband. 

The construction of G(s) is such that the poles, Si , can be arbitrary 
(of course constrained to occur in comples conjugate pairs in the left­
half plane). The numerator of G(s) is found as a function of the poles by 
computing the polynomial 

n 

E(z) - zF(z) = II (Zi - z), 
i=1 

where z~ = s~ + 1, Re (Zi) > O. The even part is taken and transformed 
back to the s-plaue. 
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G(s) can conveniently be expressed in partial fraction form as 

G(s) = t~, 
i~1 S - Si 

(lOa) 

R j 

KE(Zi) (lOb) 
" II (Si - Sk) 
k~1 

'i"'i 

where all the poles are assullled to be distinct and n is odd, so that 
0(8) has a zero at infinity. E(z;) can be simplified: 

and 

n 

E(z) + zF(z) = II (Zk + z), 
k~1 

n 

E(z,) + ZjF(Zi) = 2Zi II (Zk + Zi), 
k~1 

'i"'i 

E( -Zi) - ziF( -Zi) = 0 = E(Zi) - ZiF(Zi)' 

The last equation is true since E(z) and F(z) are even functions of z. 
Adding the last two equations gives 

which results in 

n 

E(z,) = Zi II (Zk + Zi), 
k=1 

'i"'i 

R _}7 IIn 

Zi + Zk 
i - ",-Zi . 

k=1 Si - Sk 
"ci 

(IOc) 

Thus, if the poles Si are given, the residues Ri found from equation 
(lOc) give a transfer function with equal-ripple stopband behavior. 

Using this result the impulse response of G(s) becomes, for odd n, 

n-1 
-2"-

get) = Rn exp (Snt) + L exp [Re (Si)tJ 
;=1 

·[2 Re (Ri) cos {1m (s;)t} - 2 1m (R i ) sin {1m (Si)t}J. (11) 

The real pole is Sn. 
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A Model for Generating On-Off Speecll 
Patterns in Two-Way Conversatioll 

By PAUL T. BRADY 
(Manuscript received February 17, 1969) 

This paper describes a model that generates on-off speech patterns 
representative of those in experimental two-way telephone conversations. 
The model assumes a conversant to occupy one of three speaking or one of 
three silent states. Transitions among the states arc determined by Poisson 
processes governed by six parameters (one for each state). The validity of the 
model is tested by comparing the model computer simulation of 16 conversa­
tions with 16 real conversations. Cumulative distribution functions are 
compared for ten events (such as talkspurts, pauses, mutual silences, and 
so on) defined on the speech patterns. The model yields good fits to all 
events except "speech before interruption;" when an interruption occurs, 
a model speaker tends to interrupt the other's talkspurt later than a real 
speaker does. 

Theoretical behavior of the model is also studied. A II events consist of 
concatenations of exponentially distributed "state durations," even though 
most events are not themselves exponential. For some purposes, the ex­
ponential distribution is a satisfactory empirical fit to talkspurts, but not 
to pauses. Possible applications of the model include studying people's 
motivations to talk and fall silent on different circuits, and predicting 
statistical behavior of voice operated devices on the circuits. 

I. INTRODUCTION 

1.1 Applications of the Model 
A model for generating on-off speech patterns in two-way con­

versations may have two uses: 

(i) It may provide insight on the dynamic processes which deter­
mine when a person talks or is silent. For example, the model pro­
posed here allows a person to be in one of six states, depending on 
whether he is talking, listening, or both conversants are talking, and 
so on. Each state is associated with a parameter which could be in-

2445 
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terpreted as a "motivation" for either starting to talk or falling silent. 
As a subject talks over different experimental conditions, changes in 
the "motivation parameters" might be correlated with changes in sub­
jective opinion of the circuit. 

(ii) The model may predict the statistical behavior of voice-operated 
devices (such as echo suppressors, voice-switched amplifiers) as the 
circuits are changed. One alternative to using a model is to have peo­
ple talk over different circuits and study the circuit behavior. This is 
often unsatisfactory because too much data may be required to isolate 
the effects of a particular circuit change. Another alternative to a 
model is to record an experimental prototype conversation and then 
play it over different circuits. This is also usually unsatisfactory be­
cause the conversants cannot react to circuit changes; their behavior 
remains the same. A model has the advantage of keeping the statistical 
structure of the "conversants" unchanged while allowing them to re­
act as the circuit parameters are varied. 

A model of on-off speaking patterns is not a new concept. The de­
sign of Time Assignment Speech Interpolationlf was aided by the use 
of a number of one-way (that is, single speaker) models in parallel to 
simulate speech from many subscribers.1 .Taffe, and others, have pro­
posed a simple two-way Markovian model intended to study the 
speech behavior of psychiatric patients.2 H. 'V. Gustafson of Bell 
Telephone Laboratories has proposed some improvements on the 
l\1arkovian model to allow better prediction of speaker alternations. 3 

The author has twice suggested a model; the first, with Mrs. N. 'V. 
Shrimpton (unpublished work), suggested a simple exponential fit to 
basic events such as talkspurts, and the second used a queueing system 
of "ideas" and "utterances" to yield a more complex model for talk­
spurts.4 

The model proposed in this paper was developed after considering a 
large body of data from experimental two-way conversations con­
ducted on telephone quality circuits containing no transmission delay 
or other degradations (See Table II footnote and Ref. 5).t To evalu-

* TASI is essentially a bank of voice-operated switches which may disconnect a 
subscriber from a channel when he is not talking to permit a talking subscriber to 
use the channel. 

t Reference 5 describes an extensive statistical analysis of speech patterns in 
16 conversations, and defines many "events," such as "talkspurt," "alternation 
silence," "pause in isolation," and so on. Average and median lengths for the 
events are tabulated, and cumulative distribution functions are included. The 
present paper assumes prior knowledge of Ref. 5. Notice that "event" is used 
to mean an interval of time, such as the interval of a talkspurt, and does not 
mean the occurrence of a probabilistic phenomenon such as the arrival of a 
pulse. 
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ate the model, we shall compare its simulation of the 16 conversations 
with data from the real conversations. 

1.2 Relation of Model to Speech Detector 

A speech detector is a rule which transforms speech into oIl-off 
patterns. Speech detectors are usually designed for specific needs, 
and vary considerably in their specifications. If a model is fit to one 
speech detector's output, then the model cannot be expected to be 
valid for all other detectors; but with minor changes, it may be 
adaptable to many of them. 

The author's speech detector has previously been documented, and is 
described briefly here. 5

,6 An initial hardware detector, with virtually no 
"pickup" and "hangover," yields a pattern of "spurts" and "gaps," 
after segmenting the speech into 5 ms intervals. All spurts ~ 15 msec are 
presumed to be noise and are rejected (for throwaway); then all gaps 
~ 200 ms are filled in, as they were probably stop consonants or other 
minor breaks in continuous speech. The final on-off pattern contains, by 
definition, "talkspurts" and "pauses." No talkspurt can be ~ 15 ms; 
no pause can be ~ 200 ms. The model described here therefore generates 
talkspurts ~ 20 ms and pauses ~ 205 ms. 

The speech patterns from a speech detector are strongly influenced by 
choice of threshold. In this study, the Ref. 5 data taken with a -40 dBm 
threshold were used as a basis for the simulated conversations. 

1.3 Goals of This Paper 

The remainder of this paper is divided into two main parts. Sec­
tion II describes the model and illustrates its empirical behavior by 
comparing its output with real conversations. The question considered 
is: "Can this model generate patterns statistically similar to those 
of a randomly selected conversation 1" 'Ve do not present data on ap­
plications such as determining differences among speakers or studying 
the behavior of a single speaker as he engages in various tasks. Future 
work is planned to investigate these problems. 

Section III is a mathematical analysis of the model's behavior. 
From this analysis, one can gain an intuitive feeling of the model be­
havior, and acquire insight into the manner in which the two speakers 
interact. For a basic treatment of the model, however, Section III may 
be omitted. Section II assumes an elementary knowledge of probability 
theory; Section III requires some background in stochastic processes. 
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II. MODEL DEFINITION AND EMPIRICAL BEHAVIOR 

2.1 The Model 

2.1.1 One-Port versus JJ1 any-Port Model 
Consider speakers A and B to be engaged in conversation. We shall 

model only speaker A's behavior and make no attempt to include B's 
behavior in the formulation. That is, speaker B's patterns are re­
garded only as they appear to A. It may be that B is really talking, 
but A does not receive him because of a blocking on the transmission 
line. Or, B may be delayed, and A may be receiving B's previous 
speech when in fact B is presently silent. We shall designate our model 
as a "one-port" model, since only one port, that is, A's side, is formu­
lated. To use the model, it could be connected to anything, such as 
another one-port model, or a one-port model connected via a trans­
mission delay, or several one-port models as in a conference circuit. 
(It may be invalid to assume that speaker A can be modeled the same 
way in a conference as in conversation with a single other speaker, 
but the model does at least allow such a connection to be formu­
lated.) 

In a many-port model, the entire system is modeled, with the 
drawback that a separate structure is required when special circuits 
are inserted between speakers. In addition, a one-port model leads to 
a description of each speaker, while if a many-port model is used, 
and a real conversation between A and B differs from one between 
A and C, it may not be possible to ascertain the change in speaker A's 
behavior. All we know is that the pair A-B is different from the pair 
A-C. 

2.1. 2 Description of the Model 
Speaker A is either talking or silent, and he views B as either talk­

ing or silent. As Fig. 1 shows, in the simplest case four states occur at 
A's side. A is talking in the upper (shaded) half; B is talking in the 
right half. In considering transitions from state to state, as shown by 
the arrows, we apply the restriction that the two speakers cannot 
change their states at precisely the same time. Thus, in Fig. 1, diagonal 
crossings are prohibited. 

Preliminary work with the Fig. 1 model showed that it was inade­
quate, especially in predicting events surrounding double talk. A 
natural extension of Fig. 1 is to expand each state into two states, the 
dichotomy decided by the previous state. Figure 2 illustrates the re­
sulting 8-state model. Consider for example "A talks, solitary": to 
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MUTUAL 
SILENCE 

B IS SILENT 
AT A's SIDE 

B TALKS, 
A SILENT 

B 15 TALKING 
AT A's SIDE 
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Fig. 1-A four-state speech pattern model for speaker A. The shaded area 
indicates A is talking. 

get to this state, either both speakers previously were silent or both 
were talking. 

Figure 3, which is a reduction of Fig. 2, shows the model that the 
author has chosen to use. The upper left and lower right quadrants 
have been collapsed back to one state; simplicity has been gained at 
the expense of some loss of precision in modeling speech patterns. 

Allowable state transitions are indicated on Fig. 3. There is no at­
tempt to control B's behavior; he starts and stops talking in his own 
manner. Notice that his state changes cause horizontal transitions. 

Vertical transitions are determined by A. If he is talking, he stops 
when a "fall silent pulse" occurs (Gustafson's terminology), and if silent 
he starts when a "start talking pulse" occurs. We call these (3 - and 
a-pulses, respectively. These pulses are a result of Poisson processes, * so 
that, for example, if A is talking and B is silent (A solitary talk state), 
he stops talking in the next dt sec with probability (3~l • dt. 

For notation, the subscript on /3, the fall silent parameter, describes 
the present state, while the subscript on a, the start talking parameter, 
denotes the event that will occur if the pulse occurs. The superscript 
refers to A or B. The six values for (3 and cx are denoted (3sol, (3ted, 

/3tor, apse, CXalt, and aint (See Fig. 3) in which the abbreviations mean 
solitary, interrupted, interruptor, pause, alternate, and interrupt. 

* Poisson processes are tutorially discussed b~ Cox and Smith.7 
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A SPOKE 
LAST 

,- I 
MUTUAL SILENCE 

1 __ --.1 

B SPOKE 
LAST 

B IS SILENT 
AT A's SIDE 

PREVIOUS 
DOUBLE 

TALK 

1--1 
B TALK, A SILENT 

L __ I 

PREVIOUS 
MUTUAL 
SILENCE 

B IS TALKING 
AT A's SIDE 

Fig. 2 - An eight-state model in which each state of Fig. 1 is divided into two 
states. 

It is very important to understand the nature of the a: or f3 param­
eters. They are not probabilities. However, if any a or f3 is multiplied 
by dt (for example, dt = 0.005 s), then adt is the probability that A 
will leave the corresponding silence state "of his own volition" during 
the next dt seconds. (He may of course also be forced out of the state 
by B's action.) The adt's and {3dt's are "transitional" probabilities and 
do not represent the probability of being in each state. These "state" 
probabilities must be solved for, and can at times be difficult to ob­
tain; they must consider the interaction of speaker A with his cor­
respondent B. This is more fully discussed in Section III. 

The a' and f3's have a more appealing physical interpretation than 
just probability parameters. If some a: = 2.5, this implies that there 
is an "input stream" of a-pulses trying to drive A out of his state; 
the pulses occur at random times but at an average rate of 2.5 pulses 
per s, or with an average between-pulse interval of 1/2.5 s. The units 
of a and f3 are pulses per second. 

In general, none of the a'S or f3's is time dependent, so that the dura­
tion of occupation of a state has no effect on the value of that state's 
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a or [3. An exception is that when A becomes silent, all a'S are zero 
for 205 ms (so that only horizontal transitions can occur), after which 
time they resume their model values, and when A starts to talk all 
(3's are zero for 20 ms. This guarantees that all silences are> 200 ms, 
and talkspurts are > 15 ms. (If an a-pulse occurs at the 210th ms, a 
205 ms interval has occurred for that state, and the remaining 5 ms 
are assigned to the new state.) 

A summary of the assumptions made in the model is: 

(i) At any instant of time, A exists in one of six possible states. 
(ii) A's talk-silence behavior is governed by Poisson processes, 

whose parameters are functions of the state A is in, but not of the 
length of time in the state (except for the previously noted minimum 
event length requirement). 

8 IS SILENT 
AT A'S SIDE 

B TALKS, 
SILENT A SILENT 

l -::~A~KING 
AT A's SIDE 

Fig. 3 - The six-state model used in this study. Vertical transitions are a result 
of Poisson processes at A's side. Horizontal transitions, resulting from B, are in 
A's external environment and are not generated by A's model. 
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(iii) The speakers cannot both change their speaking status at 
precisely the same instant of time. t 

2.2 Extracting the Model Parameters 

The six parameters for each of 32 speakers engaged in 16 conversations 
were derived in a very simple way: transition frequencies from state to 
state of the Fig. 1 model were counted by a brute-force stepping through 
each conversation. 

To illustrate the process, recall that each person's speech is coded into 
5 ms on-off intervals. Say that speaker A is in the solitary talk state 
(state 1, Fig. 3). f3~z can be found from a frequency count of A's falling 
silent from the state. Thus, 

f310z • dt = f31o:' (0.005) 

number of times A falls 
silent from state 

number of times A is in state, in­
cluding numerator of this fraction 

(1) 

Whenever A is in a state, his behavior can be regarded as a succession of 
Bernoulli trials, in which case the above ratio is a best unbiased estimator 
for f31oz' (0.005), and hence of f310z • 

There are certain "trials" or 5 ms intervals which are not included 
in the frequency count. If A just begins to talk, he cannot leave the 
state until the talkspurt > 20 ms, or there are four intervals of 0.005 
s; therefore, the first four intervals are not included. In silences, the 
first 21 intervals (205 ms) are not included. Also, if B's behavior pro­
duces a horizontal transition, this interval is not included, although 
the intervals up to that one are counted. The rare intervals contain­
ing both a horizontal and vertical transition are counted as vertical 
transitions. Table I is a list of the a and f3 values for all 32 speakers 
in 16 conversations. 

2.3 Testing the Model 

2.3.1 Method of Testing 
To investigate the behavior of the model, a Monte Carlo simulator 

generated a model conversation of any desired length in a form 
which could be analyzed by Mrs. N. W. Shrimpton's speech analysis 

t In the author's simulation, they cannot both change status in the same 5 ms 
time slot. This does occur in the author's data from the speech detectors, but it is 
very rare. 



(3001 

1.261455 
0.996458 
0.836082 
0.614610 
0.755323 
1.334627 
0.963705 
0.920078 
0.494011 
0.229878 
0.487893 
0.606033 
1.148240 
0.945180 
0.733397 
0.710458 
0.773362 
0.660433 
0.823098 
0.670252 
0.444459 
0.372235 
0.569062 
0.755803 
0.797666 
0.693121 
0.768697 
0.779857 
1.075338 
0.866694 
0.652447 
1.671175 

TABLE I-a AND (3 VALUES FOR 32 SPEAKERS, 16 CONVERSATIONS 

{3led (3lor Conversation Speaker apse aal1 

3.411029 2.116402 1 1 1.831701 1.818579 
2.225755 1.921885 1 

~ 
2 2.457002 1.285416 

2.018229 2.496434 2 H 1 3.610856 1.586914 
1.817570 1.236264 2 < 2 3.177857 0.735383 
2.134756 1.428163 3 ~ 1 1.391631 0.913121 
1.687075 1. 746107 3 ~ 2 1.701480 1.061364 
2.773246 3.626714 4 ~ 1 1.497570 0.840841 
1.170079 3.011515 4 2 1.514693 0.575869 
1.156069 2.501303 5 

1 
1 2.033156 1.644157 

1.290323 2.326664 5 2 3.231441 0.812301 
1.976664 2.629389 6 1 1.880036 1.282691 
1.421352 0.921261 6 2 3.042993 2.743970 
2.318487 2.191781 7 1 1.442522 0.990402 
3.740648 2.219321 7 2 1.271811 0.805795 
2.586904 2.464066 8 ~ 1 2.099086 0.511809 
1.932367 3.339192 8 H 2 2.207059 0.588446 
1. 574803 2.679831 9 < 1 1.606426 0.925181 
1.994681 2.577710 9 ~ 2 1. 742712 0.873Y08 
4.733728 1.898734 10 

1 
1 1.790183 0.746016 

6.010929 4.713805 10 2 1.646938 0.462535 
1.107595 3.638569 11 1 2.203568 2.091714 
1.805869 2.231405 11 2 3.431840 0.867276 
1.234167 0.665083 12 1 1.260504 0.910657 
1.996370 1.760921 12 2 1.784675 0.525237 
1.438849 1.886792 13 1 1.798942 0.988468 
1.790580 2.906574 13 2 3.064182 1.193967 
1.940035 1.702128 14 ~ 1 1.563188 1.446204 
2.012072 1.672862 14 H 2 2.225986 0.989827 
1.115880 2.577320 15 < 1 2.040816 0.521993 
1.822600 1.962533 15 ~ 2 2.952029 0.979129 ~ 2.364865 3.157895 16 ~ 1 2.615694 0.292312 
2.427184 2.173913 16 2 4.990944 1.389631 
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program. (The output of the program is illustrated in Ref. 5 and some 
of it is shown here.) The general procedure was to extract parameters 
from a real conversation and then simulate a conversation of 20 min­
utes duration. The original conversations were between 7 and 10 min­
utes long, but the simulated ones were longer to better estimate the 
true theoretical behavior. (Economic considerations prohibited simula­
tions significantly longer than 20 minutes.) 

If we could regard the two conversations of a real-simulated con­
versation pair as independent samples from two populations (or the 
same population), then classical statistical tests (such as t-test on 
means) would be appropriate. Unfortunately, the simulated conversa­
tions were derived from measurements of the real conversations, and 
standard tests no longer apply. For example, say that the talkspurt 
average lengths were very close for real and simulated conversations. 
With independent samples, this would suggest a good fit, but it may 
be that we have forced a good fit by setting simulated parameters 
equal to measured parameters of real speech. 

Instead of using statistical tests, we define a "fit parameter," or 
FP, to indicate the correspondence between real and simulated events. 
This correspondence is examined for three quantities: average lengths 
of the events, cumulative distribution functions (cdfs) of the events, 
and rate of occurrence (for example, number of talkspurts per second). 
These three quantities are not independent; for example, a good fit of 
the cumulative distribution function (cdf) implies a good fit to the 
average (but the converse is not true). In assessing a good or bad fit 
of the model to the speech data, the fit parameters are not treated as 
yielding three independent pieces of information, but rather as rep­
resenting three viewpoints of the goodness of a fit problem. 

Table II is a list of the ten events. Two events, double talks (3) 
and mutual silences (4), merit a brief comment. In the experimental 
conversations, with no circuit degradation or delay, these events are 
identical for both speakers. However, for consistency with the other 
events, comparisons of the fit parameter are made twice, once for 
each speaker. This causes some redundancy in the tabulated com­
parimns of events 3 and 4 in Tables III through V. 

2.3.2 Average Lengths 

For average lengths, we define 

FP (x) (fit parameter) == (2) 
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TABLE II-CATEGORIZED SPEECH EVENTS 

Number 

1 
2 
3 
4 
5 
6 
7 
s 
9 

10 

Event* 

Talkspurt 
Pause 
Double talk 
Mutual silence 
Alternation silence t 

Pause in isolation 
Solitary talkspurt 
Interruption 
Speech after interruption 
Speech before interruption 

* For definition of "event" see Ref. ,15. 

2455 

t In Fig. 6 of Ref. 5, the alternation silences illustrated in the sample patterns 
are all incorrectly labeled. The A's and B's are transposed. 

that is, the normalized difference between the means. If the observat·ons 
were independent and from the same population, FP (x) would be 
normal, J1. = 0, (J'2 = 1. Independence is violated here, but we still can 
regard F P as an indication of similarity, and arbitrarily regard the fit 
as "bad" if I F P (x) I > 1.96. Table III lists F P (x) for 10 events, 32 
speakers. (See Ref. 5 for tabulated average lengths of real speech events.) 

2.3.3 Cumulative Distribution Functions 

In a two-sample Kolmogorov-Smirnov test, in which nl observations 
are made for one sample and n2 for the other, the test statistic D is 
the maximum vertical discrepancy (absolute value) between the cumu­
lative distribution functions for the two samples. If both nl and n2 

exceed 40, the identical population hypothesis is rejected at 0.05 level 
(see p. 131 of Ref. 8) if 

(3) 

Again, in our data the samples are not independent, and although 
nsim almost always exceeds 40, nreal often does not exceed 40 for those 
events surrounding interruptions. Nevertheless, we define 

FP cd! == 1 ~6 (nln~2nJ!· (4) 

If FPCdf > 1, the fit will be considered bad. Table IV lists FPcdf for 
10 events and 32 speakers. 

Comparative plots of cdfreal versus cdfsim for all 10 events and all 
32 speakers were generated. The curves for events 1 and 10 for speaker 



TABLE III-FP:f FOR 32 SPEAKERS IN 16 CONVERSATIONS 

Event 

Conversation Speaker 1 2 3 4 5 6 7 8 9 10 --- ---
I 1 0.81 1.22 0.42 0.18 1.05 0.49 1.66 0.12 -0.24 1.50 

2 -0.06 -0.57 0.42 0.18 -0.35 -0.41 -0.34 0.50 0.87 -2.44' 
2 1 0.54 0.65 0.14 0.44 0.81 -0.86 0.66 -0.40 -0.40 -1.07 

2 0.23 -0.38 0.14 0.44 1.25 -0.54 2.12* -1.91 0.01 0.17 
3 1 1.60 -1.12 1.28 -0.23 1.88 -1.05 3.67* 0.87 0.94 -2.58' 

2 0.67 1.26 1.28 -0.23 1.37 -2.50' 0.96 0.63 -0.38 -2.83' 
4 1 -0.39 0.79 0.10 1.35 2.56· -0.60 -0.03 0.54 -1.67 -2.62' 

2 -0.04 -0.42 0.10 1.35 1.08 -0.96 1.23 0.61 0.24 -2.56* 

5 1 -1.53 -0.24 -0.15 0.46 0.26 -0.73 -2.35' -0.48 -0.40 -1.20 
2 -0.63 -1.07 -0.15 0.46 0.19 0.56 -0.32 0.06 0.70 -2.25* 

6 1 0.40 0.18 -0.04 0.34 -0.54 -0.50 1.67 -1.33 -1.58 -3.04* 
2 -0.44 0.37 -0.04 0.34 0.66 0.48 2.24' -0.06 1.23 -0.64 

7 1 -0.82 0.35 -0.44 1.06 1.97' 1.04 -.53 0.57 -1.17 -1.42 
2 0.24 -0.17 -0.44 1.06 0.30 -1.96' 1.31 -1.38 0.22 -1.19 

~ 1 -0.43 0.04 0.53 0.72 0.96 -0.15 0.58 -1.38 0.97 -2.63' 
2 1.30 0.18 0.53 0.72 0.26 0.18 2.02* -1.13 -0.05 -0.07 

S 1 0.58 0.62 0.39 0.03 -0.60 0.14 1.32 0.66 0.02 -0.47 
2 0.89 -0.27 0.39 0.03 -1.47 1.20 1.45 -1.33 -1.85 -0.23 

10 1 0.39 0.25 0.15 0.93 -0.13 0.71 0.88 -0.17 0.19 0.87 
2 0.19 -0.08 0.15 0.93 -0.70 1.05 -0.23 0.16 -1.01 -0.39 

11 1 0.81 -0.15 0.13 0.82 1.80 -0.67 2.73' -0.84 -0.28 -0.50 
2 -0.52 0.26 0.13 0.82 0.96 -1.43 0.71 -0.53 -0.68 -2.47* 

12 1 1.20 0.28 0.61 0.21 -0.77 -1.39 1.80 1.25 -0.03 -0.35 
2 -0.01 0.04 0.61 0.21 2.39* 0.43 -0.58 1.06 -0.87 -1.12 

13 1 0.57 -0.78 -0.05 0.63 1.52 0.12 1.52 -0.61 -1.05 -1.66 
2 0.24 0.57 -0.05 0.63 -0.17 -0.23 1.62 -0.79 -0.21 -1.29 

H 1 0.58 0.05 -0.64 0.23 0.75 -0.54 0.92 0.17 0.47 -3.12* 
2 0.39 -0.07 -0.64 0.23 0.45 -0.70 1.41 -0.87 0.66 -1.84 

15 1 0.19 0.14 0.69 0.09 1.10 -1.16 0.55 -0.24 -0.35 -0.35 
2 0.33 -0.20 0.69 0.09 0.98 -0.85 0.96 -0.57 0.40 -1.60 

16 1 0.05 -0.42 -1.26 -0.20 2.05* -0.81 1.21 -0.39 1.47 -2.42" 
2 0.34 0.24 -1.26 -0.20 -0.05 -1.31 -0.00 -1.20 -1.49 -1.37 

Tot:1.l number of "bad" fits 0 0 0 0 4 2 6 0 0 11 

FPx Xr.al - Xsim 

( 2 2)' crreal + crsim 

nTeal nsim 

The fit is considered "bad" if IFPI ~ 1.96; however, this must not be regarded ad a sta­
tistical test. Bad fits are marked with asterisks. For typical values of Xreal see Table IV of 
Ref. 5. Conversations 5 through 12 involve men, the rest involve women. 
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TABLE IV-FP cd! FOR 32 SPEAKERS IN 16 CONVERSATIONS 

Event 

Conversation Speaker 1 2 3 4 5 6 7 8 9 10 

1 1 0.53 0.56 0.46 0.63 0.68 0.46 0.89 0.66 0'.39 0.89 
2 0.59 1.44* 0.46 0.63 0.75 0.59 0.33 0.40 0.41 1.47* 

2 1 0.87 0.74 0.47 0.51 0.53 0.78 0.93 0.34 0.49 1.07* 
2 0.39 1.17" 0.47 0.51 0.75 0.58 0.98 0.55 0.34 0.45 

3 1 0.85 0.84 0.72 0.62 1.01* 1.15* 1.24" 0.37 0.49 1.63· 
2 0.97 0.74 0.72 0.62 0.65 1.02- ' 0.76 0.53 0.87 1.17*' 

4 1 0.80 0.97 0.56 0.69 1.28- 1.05* 0.67 0.52 0.80 1.16* 
2 0.40 1.15- 0.56 0.69 0.76 1.24- 0.66 0.23 0.56 0.91 

5 1 0.61 1.16- 0.64 0.62 0.81 0.86 0.67 0.38 0.59 1.20-
2 1.21- 0.69 0.64 0.62 0.52 0.47 1.13· 0.64 0.34 1.03-

6 1 0.77 1.11* 0.62 0.66 0.76 0.63 0.70 0.59 0.94 1.23· 
2 0.78 1.12* 0.62 0:66 0.68 0.62 1.06* 0.37 0.48 1.23-

7 1 0.76 0.48 0.38 0.74 0.84 0.8S 0.50 0.53 0.46 0.69 
2 0.61 0.66 0.38 0.74 1.26- 0.9 0.76 0.72 0.47 0.89 

8 1 0.90 0.63 0.47 0.65 0.99 0.70 0.70 0.54 0.41 1.14* 
2 1.38- 0.89 0.47 0.65 0.97 0.88 1.69* 0.37 0.42 1.15* 

9 1 0.42 0.77 0.85 0.48 0.53 0.30 0.86 0.38 0.63 0.85 
2 0.52 0.84 0.85 0.48 0.76 0.48 0.78 0.58 0.82 0.86 

10 1 0.90 0.89 0.45 0.54 0.69 0.79 0.98 0.62 0.40 0.58 
2 0.72 0.57 0.45 0.54 0.66 0.44 0.61 0.63 0.57 0.52 

11 1 0.81 0.42 0.84 1.08· 0.92 0.49 1.25- 0.56 0.33 0.85 
2 0.88 0.75 0.84 1.08- 1.33" 0.60 0.46 0.91 0.88 0.79 

12 1 0.78 0.63 0.52 0.55 0.34 0.72 1.25- 0.62 0.54 1.07* 
2 0.27 0.64 0.52 0.55 0.97 0.42 0.34 0.57 0.64 1.06* 

13 
1 0.60 0.78 0.56 0.39 0.54 0.62 0.78 0.49 0.39 1.10· 
2 0.52 0.41 0.56 0.39 0.46 0.45 0.56 0.51 0.48 0.50 

14 1 1.24* 1.15- 0.59 1.08· 0.92 0.42 1.37" 0.28 0.50 0.95 
2 0.57 0.71 0.59 1.08* 1.22· 1.11* 0.64 0.32 0.77 0.77 

15 1 0.50 0.96 0.83 0.57 0.59 1.03* 0.42 0.42 0.45 0.83 
2 0.53 0.58 0.83 0.57 0.96 0.60 0.66 0.70 0.40 1.08* 

16 1 0.62 0.86 0.54 0.48 0.85 0.55 0.93 0.41 0.74 0.77 
2 0.65 0.68 0.54 0.48 0.33 0.71 0.72 0.56 0.63 0.78 

Total number of 
"bad" fits 3 7 0 4 5 6 7 0 0 15 

-----

FP - D nrealnBim 

( )

t 
cd! = -- , 

1.36 nTeal + n.im 

where D is the maximum absolute vertical distance between the two cumulative distribution 
functions. A "bad" fit occurs if FP cd! ~ 1.0, as marked by asterisks. Cumulative distribution 
functions for events for all speakers collectively (for example, all tulkspurts lumped together) 
are shown in Ref. 5. 

o 
Z 
I 
o 
t:rj 
t:rj 

r.n 
I-d 

~ o 
~ 

I-d 

~ 
~ 
Z 
r.n 

l.-,j 
H:o­
CJ1 
oo",J 



rr V V FP RATE OF OCCURRENCE OF SIMULATED EVENT 
ABLE - ALUES FOR " 

RATE OF OCCURREXCE OF EVENT IN REAL CONVERSATION. 

Eyents 

Conversation Speaker 1 2 3 4 5 6 

I 
7 8 

1 1 1.072 1.074 1.039 1.029 1.016 1.183 1.091 1.047 
1 2 0.976 0.978 1.039 1.029 0.966 0.955 0.832 1.036 
2 1 1.065 1.065 1.012 1.041 1.066 1.104 1.082 0.974 
2 2 0.983 0.986 1.012 1.041 1.016 0.898 0.920 1.061 
3 1 0.990 0.990 0.972 1.080 0.980 0.960 0.960 1.065 
3 2 1.101 1.099 0.972 1.080 0.992 1.305 1.197 0.910 
4 1 1.040 1.042 0.924 1.022 1.011 1.128 1.068 0.891 
4 2 0.959 0.957 0.924 1.022 0.968 0.950 0.966 1.008 
[) 1 0.912 0.908 0.983 0.862 0.890 0.864 0.771 1.054 
5 2 0.879 0.884 0.983 0.862 0.859 0.877 0.681 0.941 
6 1 1.028 1.026 1.046 0.986 1.023 1.196 1.148 1.045 
6 2 0.996 0.996 1.046 0.986 0.926 1.001 0.911 1.061 
7 1 1.006 1.006 0.931 1.012 1.029 1.031 1.011 0.833 
7 2 0.999 0.996 0.931 1.012 0.960 1.039 1.034 0.994 
g 1 0.982 0.979 0.957 1.052 1.008 1.040 0.976 0.702 
8 2 1.079 1.079 0.957 1.052 1.042 1.088 1.106 1.117 
9 1 1.082 1.082 0.943 1.087 1.021 1.266 1.188 0.849 
9 2 1.018 1.020 0.943 1.087 1.022 1.031 1.005 1.056 

10 1 1.039 1.037 0.919 1.053 1.105 1.046 1.036 0.892 
10 2 1.023 1.026 0.919 1.053 1.128 0.998 1.074 0.945 
11 1 1.037 1.037 1.021 1.024 1.039 0.968 0.812 1.119 
11 2 1.005 1.005 1.021 1.024 1.027 1.182 1.025 0.905 
12 1 1.075 1.075 1.020 1.066 1.041 1.160 1.119 1.021 
12 2 1.022 1.022 1.020 1.066 1.001 1.044 0.994 1.042 
13 1 1.016 1.014 1.019 1.050 1.013 1.047 1.003 0.999 
13 2 1.058 1.060 1.019 1.050 1.019 1.112 1.036 1.046 
14 1 1.030 1.028 0.839 1.080 1.131 1.084 1.086 0.856 
14 2 1.018 1.018 0.839 1.080 1.080 1.036 1.082 0.801 
15 1 1.027 1.027 0.976 1.028 0.999 1.131 1.140 0.972 
15 2 1.009 1.009 0.976 1.028 1.037 1.008 0.984 1.009 
16 1 0.921 0.917 0.822 1.056 1.005 0.949 1.034 0.846 
16 2 1.053 1.054 0.822 1.056 1.074 1.079 1.074 0.802 

Events 8, 9, and 10 occurred an equal number of times and have equal FPn • 
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2 of conversation 12 were arbitrarily selected for inclusion in this paper 
as Figs. 4 and 5. They illustrate a good and bad fit of the cumulative 
distribution functions, respectively. The plotted points are not data 
points; they represent category intervals of 15, 20, 30, ... 200 ms, and 
1, 2, 3 s, and so on. Thus, the number of asterisks in the cumulative 
distribution functions of real speech, or of breakpoints in the con­
nected curves of cumulative distribution functions of simulated speech, 
do not equal nrcal and nsim, respectively. 

2.3.4 Rate of Occurrence 

To compare rate of occurrence of events 

nBim/length of sim conversation 
F P,. == . . (5) 

nTeaz/length of real conversatIOn 

For a good fit, F P n should be close to 1.0. 'Vhen either n is small, 
FP n may be changed considerably by the addition or subtraction of 
even one event, and unfortunately, FPn does not consider the absolute 
values of the n's in the comparison, as do the other two FP's. In addi­
tion, we have not found a statistical test which is suitable for com­
paring rates of occurrences of events such as our speech events. Table 
V therefore is included only as a listing of the values of FP n for eight 
events, 32 speakers without specifying good or bad fits. (Events 8, 9, 
and 10 occur an equal number of times; thus FP n is equal for the 
three events.) 
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Fig. 4 - Real and simulated talkspurt distributions for speaker 2, conversation 
12, illustrating a good fit. Circles are not data points; they occur at arbitrary 
category intervals. Circles represent real speech; connected curve, simulated 
patterns. 



2460 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

z 1.00 
o 
f= 
u 
Z 
::J 
lL 0.75 
z 
Q 
I­
::J 
m 
cr 0.50 
l-
(/) 

is 
w 
> 
f= 0.25 
~ 
-.J 
::J 
~ 

3 0 ~ 

0 ~V 
~ ~ 

'.-

&1 ~ 
dV' 

_QraV 
m~V V 

0& / 0 

0 

~ 

0.01 0.02 0.04 0.1 0.2 0.4 0.6 1 2 4 6 8 10 20 40 60 100 
TIME IN SECONDS 

Fig. 5 - Real and simulated speech before interruption distributions, speaker 2, 
conversation 12, illustrating a bad fit. 

2.4 Discussion 

2.4.1 Goodness of Fit 

In this study, the model is regarded as successful if it can match the 
distributions and rates of occurrence of the ten events listed in Table II. 
To see how well this criterion is met, the three F P's are considered 
separately. 

First, notice in Table III that several columns (events) have no "bad" 
fits for average lengths. Now, in 32 trials of a legitimate 0.05 level test, 
we would expect about 1.5 failures; the six columns with no failures 
represent 160 trials (192 trials minus the 32 redundant trials for events 
3 and 4) with eight expected failures. The lack of failures tends to rule 
out the N(O, 1) distribution of entries in a column. Further, inspection 
of column 2, for example, reveals a variable which is apparently not 
N(O, 1); 28 out of 32 (87.5 percent) of observations are within ±1, as 
opposed to 68 percent for N(O, 1). This substantiates our earlier state­
ment that use of the F P does not constitute a legitimate statistical test. 

Without regard to statistics, however, the Table III data do show a 
"good" correspondence between real and simulated (that is, model 
predicted) averages for all events except 10 (speech before interruption) 
and possibly 7 (solitary talkspurts). Looking now at Table IV, the model 
is clearly inadequate for event 10, but event 7 is not much worse than the 
rest. The Kolmogorov-Smirnov test (using FP cd ! ~ 1 as failure criterion) 
is powerful and would be a severe test if statistical tests were valid; for 
this reason, we regard the cumulative distribution functions fits as 
generally successful (except for event 10), but with room for improve­
ment. Further, some fits are remarkably close, such as the talkspurt 
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cumulative distribution functions for conversation 12 speaker 2 (see 
Fig. 4). 

The rate of occurrence ratios in Table V are generally close to 1.0; 
there are a few scattered discrepancies but the model does not appear 
to have serious problems in generating a realistic number of events. 

Regarding individual conversations, a study of Tables III and IV 
shows no tendency for the model to fail on particular speakers. The 
speakers in conversation 3 have a few more failures than seems nor­
mal, but even here the model exhibits "acceptable" fits for most events. 
The model appears equally valid for men (conversations 5 through 12) 
as for women (1 through 4 and 13 through 16). 

2.4.2 Conversational Behavior 

The failure of the model in predicting speech-before-interruption 
intervals may shed some light on the behavior of the subjects. Table 
III shows that the simulated intervals are too long; real people tend 
to interrupt sooner than predicted by simulation. This may be a 
question of reaction time. The model assumes that the instant A (who 
is silent) hears B begin to speak, A is immediately in a "listen to B" 
state and will speak only if he wishes to interrupt. In reality, A may 
require some time-perhaps 200 ms-before he adjusts to the presence 
of B's speech; in the meantime A's speech may not be intended as an 
interruption. A more sophisticated model might in fact assume the 
existence of a short delay in A's reception of B. 

The numerical values of the a'S and f3's (Table I) also provide clues 
to behavior. The absolute values are a little hard to interpret since 
they are so closely related to the design of the author's speech detec­
tor. But notice that aalt is less than apse for each speaker, confirming 
our intuitive belief that a person is more likely to resume talking after 
a pause he generates than after a pause the other party generates. 
This also justifies having two different states for A in which B is 
silent; the model would certainly deteriorate if the states were merged 
to one with an "averaged" a parameter. 

Considering /3tor and /3ted, there is no consistent difference; /3ted > 
/3tor for 15 of the 32 speakers. Thus, 15 (about half) of the subjects 
are more likely to terminate double talking if interrupted than if they 
are interruptors. A simpler model might merge these states, but serious 
errors might result for some subjects, since /3ted is often considerably 
different from /3tor. 

The lowest of the a'S is predictably aint. A person is less likely to 
start talking when his correspondent is talking than when he is silent. 
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The precision of the a's and {3's merits some attention. Because these 
quantities were measured over a person's entire conversation, they are 
not statistical estimators, but exact measures, correct to six figures. If 
you wish to regard the conversation as a sample of a larger population, 
however, you could regard an estimated value of a or {3 as a measure of 
a population a or {3 and establish confidence limits. The a's and {3's were 
measured from Bernoulli trials where n varied from about 1000 to 40,000, 
depending OIl the conversation and parameter to be measured. Although 
the n's were large, the p values (a dt) were generally very small, typically 
about 0.005; standard deviations of a or {3 estimates could equal about 
0.1, with resulting 95 percent confidence limits of about ±0.2. 

2.4.3 Scope of the 1I10del 

Telephone conversations usually begin with a brief but rapid inter­
change of short words ("hello," and so on). In many calls the calling 
party then assumes dominance, and then possibly the other party 
may dominate. Our model attempts to duplicate speech patterns using 
six time-invariant parameters for each speaker and cannot, except 
by chance, generate the alternation of dominance which often occurs 
in real conversations. 

The model is, however, a very simple one. 'Vith only six states we 
are attempting to simulate the utterance patterns of a person, who is 
certainly not a six-state device. Simplicity is also achieved by the 
lVlarkovian technique of having a person leave a state with a time­
invariant probability, independent of the duration of state occupa­
tion. (The minimum pause and talkspurt lengths constitute minor 
violations of this philosophy, but add little to the complexity of the 
model.) 

The real issue here is not whether such a simple model can duplicate 
all aspects of conversation behavior, but rather whether such a model 
is useful on its own. The author plans to test it by using it to investi­
gate speech behavior on circuits with transmission delay; another 
group at Bell Laboratories is studying its applicability to circuits 
with switched-gain amplifiers. The ease with which the model can 
be simulated, plus its success in matching overall patterns, gives it 
the potential of becoming an important tool in the study of conversa­
tional dynamics. 

It may eventually prove worthwhile to extend the model and try 
to get a closer match to the dynamics of conversation. One way to do 
this would be to increase the number of states. This might improve 
the fit to the "total pattern" distribution, but might require a huge 
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number of states before a realistic "dominance alternation" occurs. 
Another way would be to introduce time-varying a andf3 parameters 
in the present six-state model. It appears that the development of 
either of these extended models (or a combination of them) would 
require an intensive amount of additional research. 

III. MATHEMATICAL ANALYSIS 

The principal goal of this section is to find theoretical distribution 
functions of the ten speech events in Table II. A complete analysis 
of the Fig. 3 model is not possible, but it is possible to analyze a 
simplified model and extend the results. For analysis, the model must 
be connected to another speaker. Section 3.1 considers speakers A and 
B to be directly connected with no minimum pause and talkspurt 
restrictions. Section 3.2 introduces these restrictions, to make the 
model match the author's speech detector. Section 3.3 considers an 
exponential approximation to talkspurts and pauses, and Section 3.4 
discusses the effects on the analysis of introducing special circuits be­
tween subjects (transmission delay, echo suppressors). 

3.1 Direct Connection of Two Spealcers 
Let the speech pattern model (Fig. 3) for speaker A be directly 

connected with one for speaker B. The entire A-B system thus exists 
in six states, since each state for A can be shown to correspond to a 
unique state for B. If all a'S are forced to zero in the first 200 ms of 
silence, then a 200 ms minimum pause restriction is achieved; if f3's are 
zero for 15 ms of talking, a 15 ms minimum talkspurt is achieved. In 
this section, we do not use these restrictions; we regard all a'S and f3's 
as time invariant. Because each state is terminated by a Poisson pulse 
from either A or B, the entire system is Markovian and the duration of 
each state has an exponential distribution. 

This is illustrated, for example, by state 5. A will leave state 5 of his 
own volition in dt seconds with probability ex~l t • dt. State 5 for A corre­
sponds to state 4 for B; hence, B causes A to leave state 5 with prob­
ability ex:s •• dt. A remains in state 5 with probability 1 - ex~l t • dt -
ex: •• . dt. * State 5 is thus terminated by a Poisson process with parameter 
(ex~lt + ex: • .); its duration is exponentially distributed with that param­
eter (see p. 154 of Ref. 9). 

The appendix shows that even if only those events are considered in 
which A happens to terminate a state, these events are also exponential 

* Cox and Smith give an expository treatment of this kind of analysis.7 
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with the parameter equal to the sum of the A and B "exit" parameters. 
For example, a "solitary talkspurt," in which A generates a talkspurt 
entirely within B's silence, is terminated when A leaves state 1 because 
of a f310l - pulse. Nevertheless, A's solitary talkspurt is exponential 
with parameter (f3:ol + afnt) and therefore has an average length of 
1/(f31ol + afnt). (State 1 at A's side corresponds to state 6 at B's side.) 

This prediction for solitary talkspurt average lengths is well sup­
ported by simulation and is in fair agreement with actual speech data. 
Table VI compares the predicted average talkspurt lengths for 32 
speakers with the measured averages from simulation. Only 2 out of 
32 fail a 5 percent level test, which indicates that the simulator (that 
is, model) behaves as predicted. 

Table VI also shows data from real speech. It is more appropriate 
to compare the real speech averages with simulated averages than 
with theoretical predictions, since the simulator contained the 15 ms 
and 200 ms minimum talkspurt and pause restrictions. Table III 
showed that 6 of the 32 average lengths of simulated solitary talk­
spurts were judged to be "bad" fits to empirical averages. In addition, 
a product-moment correlation of 0.91 is found for the two columns of 
average lengths in Table VI. A reasonably good fit is thus suggested; 
but Table VI shows that the real speech average exceeds the simulated 
average in 25 of the 32 cases. There is therefore a definite but mild 
tendency for the model (that is, simulator) to predict solitary talk­
spurts which are too short. This in no way refutes the result of the 
appendix, which is related only to the theoretical model. 

In summary, the six-state Markovian system in this section may 
be solved by standard techniques. The following conclusions seem 
most relevant to speech analysis. 

(i) A solution of the steady state probabilities of being in each of six 
states (that is, percent time in each state) may be obtained by routine 
solution of Markovian transition equations. This solution is not pre­
sented here because it is cumbersome, and it is not required for finding 
the distributions of durations of many of the states. 

(ii) The distribution of the duration of A's being in anyone of the 
six states is exponential with its parameter equal to the sum of the A 
and B parameters for leaving the state. 

(iii) The distribution of three speech events may be immediately 
deduced. The events are: 

(a) Alternation silence from B to A, in which B stops talking, there 
is a mutual silence, and A starts. This is distributed as the duration of 
state 5: exponential (a~lf + a:~e). 
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TABLE VI-PREDICTED AND EMPIRICAL AVERAGE 

SOLITARY TALKSPURT LENGTHS 

Simulated Real Speech 

Conversation Speaker Predicted (8) n Ave (s) n Ave (8) 

1 1 0.541 342 0.556 H.i8 0.655 
2 0.641 246 0.628 149 0.606 

2 1 0.971 377 0.983 183 1.03f.i 
2 1.070 149 0.995 85 1.343 

3 1 0.846 213 0.7n 116 1.172 
2 0.592 380 0.566 166 0.621 

4 1 0.906 374 0.969 208 0.960 
2 0.832 231 0.834 142 0.952 

5 1 1.476 122 2.225* 87 1. 631 
2 2.968 73 3.282 59 3.045 

6 1 0.850 79 0.729 38 1.135 
2 0.987 175 0.957 106 1.259 

7 1 0.739 363 0.832* 181 0.796 
2 0.936 320 0.942 156 1.064 

8 1 1.072 222 1.114 117 1.192 
2 1.251 333 1.160 155 1.380 

9 1 1.010 280 1.013 82 1.203 
2 1.123 231 1.025 80 1.242 

10 1 1.079 356 1.071 116 1.157 
2 1.268 226 1.271 71 1.234 

11 1 1.390 144 1.290 51 1.879 
2 1.267 82 1.214 23 1.467 

12 1 1.237 226 1.130 77 1.405 
2 0.973 172 1.027 66 0.948 

13 1 0.945 214 0.880 76 1.087 
2 1.032 282 1.012 97 1.238 

14 1 1.130 336 1.121 118 1.221 
2 0.880 244 0.860 86 1.047 

15 1 0.645 203 0.629 56 0.684 
2 0.932 388 0.893 124 0.992 

16 1 1.004 116 0.958 18 1.335 
2 0.554 864 0.549 129 0.549 

2465 

Predicted averages for A speakers (speakers 1) = l/(i1.oI A + aintB ), for B 
speakers = l/(i1soIA + aintA ). Values for a'S and i1's were obtained from Table 1. 
This prediction is slightly in error because of the 200 ms minimum pause requirement, 
as explained in Section 3.2. Significance (marked by asterisks) is at 0.05 level; x is 
assumed normal with mean = predicted average, (]" = mean/(n)!, since for a single 
observation from exponential distribution, (]" = p.. (Simulated and real speech n's 
are considerably different because lengths of conversations are different.) Product­
moment correlation of simulated and real averages = 0.91. 

(b) Pause in isolation, which has the distribution of state 4: 
exponential (a:se + a:lt). 

(c) Solitary talkspurt which is exponential with parameter 
((3:01 + afnt)· (State 1 also has this distribution; but A's being in state 1 
does not imply a solitary talkspurt, since state 1 can be entered from 
double talking.) 

(iv) Two distributions are a little more difficult, but straightforward. 

(a) Double talk, in which states 2 and 3 are each exponential, but 
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with different parameters. The double talk density function is an average 
of the two exponential density functions, each weighted by the steady 
state probabilities of the states 2 and 3, respectively. The resulting 
distribution probably resembles an exponential, but is in general not 
strictly exponential unless states 2 and 3 are identically distributed. * 

(b) IVlutual Silence, which is the same as in the case of double talk, 
but with states 4 and 5, which are each exponential. 

(v) The distributions of the remaining events of Table II are very 
difficult to derive. For example, we notice that a talkspurt can consist 
of an infinite possible sequence of states 1, 2, and 3.t Although there are 
techniques for handling problems of this type, they are complicated and 
in this case may yield formidable analytic expressions. 

Notice that for this completely IVlarkovian system of the ten speech 
events of Table II, only three-alternation silence, pause in isolation, 
and solitary talkspurt-are strictly exponentially distributed. But all 
events consist of concatenations of the six states, which in turn are 
exponential. We could think of these states as exponential "building 
blocks" with which the speech events are constructed. 

3.2 Effect of Minimum Pause and Talkspurt Length 

The introduction of time-varying parameters to obtain mmlmum 
lengths for pauses and talkspurts ruins the IVlarkovian structure of the 
model, and standard techniques are not applicable for solution. However, 
certain results are still obtainable. 

First of all, in the speech model, the 15 ms minimum talkspurt 
requirement is included because the author's speech detector, used to 
collect the speech data to test the model, uses a 15 ms throwaway for 
noise rejection in the raw speech data; hence all measured talkspurts 
exceed 15 ms. Even without the 15 ms restriction in the model, most 
simulated speech events are much longer than 15 IDS, and we can 
anticipate only minor errors by ignoring the minimum length in the 
analysis. 

The 0.2 s minimum pause is harder to deal with; it is long enough to 
affect the results. In general, constant lengths of 0.2 s are added to ex­
ponentially distributed silent state durations. We refer to the resulting 
distribution as constant-pIus-exponential. 

In some cases, one of the state exit parameters (say fJ) may be zero 
for 0.2 s, while the other (a) remains at its usual value. Then, the first 

* Averaging two density functions is not equivalent to averaging two independ­
ent exponential random variables. The latter operation yields a gamma distribu­
tion. 

t Certain sequences are not possible, such as 1, 3, 2; but there are still infinitely 
many allowable ways A can wander among the three states before falling silent. 
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0.2 s is exponential with parameter a, and the probability that the 
interval will extend beyond 0.2 s is e-O

•
2a

• Intervals beyond 0.2 s are 
constant-plus-exponential distributed, with constant = 0.2 sand 
exponential parameter = (a + (3). Since the relative fraction of less-than 
versus greater-than 0.2 s intervals is known, the total distribution can be 
found by combining the pre- and post-0.2-s exponential segments. 

These results can be used to draw the following conclusions regard­
ing event distributions. 

(i) Alternation silence (state 5): assuming A has not talked for 200 ms 
prior to the state entry;* this is exponential (a;;Zt) for 0.2 s, and then 
expo nen tial (a;;z t + a:a.)' 

(ii) Pause in isolation (state 4): these must be at least 0.2 s long, since 
A cannot terminate state 4 until that time. Hence, these are constant­
plus-exponential distributed; constant = 0.2 s, exponential param­
eter = (a:se + a~Zt). 

(iii) Solitary talkspurt tends to be exponential ({3~oz + a~nt); most 
state 1 durations are unaffected by the minimum pause requirement. t 

(iv) Double talk: states 2 and 3 distributions are completely unaffected 
by the minimum pause requirement, but their relative steady state 
probabilities may be changed somewhat, thus affecting the blend of the 
two density functions. The effect is probably slight, however, and the 
general shape of the distribution still looks very much as it did without 
the minimum pause length. This has the appearance of an exponential 
distribution, although not precisely exponential. 

(v) IVIutual Silence: this distribution was predictable without the 
minimum pause requirement, but it now appears to be very complex 
and strongly affected by the 200 ms constant. All mutual silences which 
are "pauses in isolation" are at least 200 ms long, and those which are 
"alternation silences" usually start exponentially with parameter a;;lt , 
and after 200 ms they become exponential with parameter (a;;z t + a:sJ. 
Figure 5 of Ref. 5 clearly shows the importance of the 200 ms constant 
in mutual silences. 

(vi) Remaining events are too complex to predict. Certainly, however, 
all talk spurts start with a 15 ms constant duration, and pauses start 
with a 200 ms constant duration. 

3.3 Exponential Approximation to Talkspurts and Pauses 

Exponential and constant-plus-exponential events are easy to simu-

* Ref. 5 data suggest that less than 10 percent of state 5 intervals begin within 
200 ms of A's speech. 

t Based on data from Ref. 5, we estimate that only about 6 or 7 percent of 
state 1 intervals begin with 200 ms of B's speech. 
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late. If one wanted to generate artificial talkspurts and pauses and 
was unconcerned with speaker interaction, could he use such a sim­
plified model? We tried such a fit to the empirical talkspurt and pause 
distributions of the conversations described in Ref. 5. 

Talkspurts were fit by a straight exponential distribution, without 
a 15 ms constant, in which the exponential parameter was deduced 
from the average event length. That is, for a particular speaker let 

{jts == l/average talkspurt length; (6) 
then 

Prob (T ~ t) (cumulative function) = 1 - exp (-(jtst). (7) 

For pauses, we used a constant-pIus-exponential. Let 

apse == l/(average pause length -0.2), (8) 

that is, the reciprocal average of the above 200 ms part of all pauses. 
Then 

Pr (T ~ t) = J 0 for 0 ~ t ~ 0.2 (9) 

11 - exp [-apseCt - 0.2)J for t > 0.2. 

For comparing distribution functions, a Kolmogorov-Smirnov test 
was used to see if the empirical distribution function came from the 
particular exponential function based on {3ts or apsc.10 Once again, the 
statistical test is not strictly appropriate, since the mean of the ex­
ponential function is forced equal to the sample average. It still ap­
pears, however, to be a reasonable heuristic method to determine if 
the "shape" of the curve is exponential. Only four out of 32 sets of 
talkspurts fail the test, suggesting that the exponential model is a good 
approximation for talkspurts. This is in agreement with the findings 
of Jaffe and others.2 None of the pauses fit constant-pIus-exponential. 
This probably results from trying to fit one distribution to two dis­
tinctly different kinds of pause: pause in isolation, which occurs be­
tween words and is short, and the long silence which occurs when 
listening to the other speaker. 

The good exponential fit to talkspurts might cause one to feel that 
the talkspurts could be modeled by a single parameter Poisson process. 
This would be achieved by having a single "talk" state, instead of 
three; once the state is entered, the speaker would ignore the other's 
speech and stop talking when his single parameter {3-pulse occurred. 
Although a reasonable talkspurt fit would be achieved, other speech 
events, such as double talk and interruptions, would be poorly 
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matched for most speakers. This is true because the measured values 
of the threef3's of Fig. 3 are generally quite different, with the two 
double talking f3's often different from each other and typically at 
least twice f3sol (see Table I). A single parameter Poisson process 
would incorrectly assume thesef3's to be equal to each other. 

Why, then, do we get a good exponential fit to the general talk­
spurt distribution? Table II of Ref. 5, for -40 dBm threshold, shows 
that state 1 accounts for about 88 percent of A's talking time, so that 
the different f3's during double talking exert only a minor effect upon 
the predominant state 1 single parameter Poisson process.'~ That is, 
the long and frequent state 1 intervals tend to obliterate the fine 
structure of the double talks. 

3.4 Connection oj Two lJ10dels Over Special Circuits 
vVhen A and B are directly connected, equations at A's side are 

easily written because knowledge of A's state at a random instant 
implies knowledge of B's state. (Once again, for simplicity, assume a 
Markovian model with no minimum event length requirements.) 
Analysis becomes very difficult when the circuit prohibits such knowl­
edge. Two such circuits are considered here: Circuits with transmission 
delay and with echo suppressors. 

3.4.1 Delay 

The feasibility of transmitting two-way telephone calls over satellite 
circuits has generated widespread interest in the effects of transmission 
delay on the behavior of the conversants. We have previously dealt with 
a system which connected two three-state IVlarkovian devices over a 
channel with transmission delay.4.1l The following conclusions are of 
interest here. 

(i) If the delay is "short" (in the order of average pause lengths or 
less, as occurs in cases of practical interest, where D ~ 1200 ms), an 
exact analysis has not yet been found, and approximations are required 
to solve even the simple three-state system. 

(ii) For very long delays, asymptotic system behavior of the model 
is obtainable; but the model is of doubtful validity since an entirely 
different kind of speech behavior might result from excessively long 
delays. 

* One or the other speaker, but not both, talks for 100-24.99 (mutual silence) 
- 4.62 (double talk) = 70.39 percent of the time; this accounts for states 1 and 
6 at A's side. State 1 is occupied about half this time, or 35.20 percent. This is 
88 percent of 3520 + 4.62, which is A's talking time. 
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3.4.2 Echo Suppressors 

For our purposes, echo suppressors are devices which occasionally 
block the A to B or B to A (or both) transmission paths, at times 
depending on the interaction of the A and B speech patterns. (For 
further details on echo suppressors see Ref. 12.) There may also be 
delay, but even without delay the time dependency and uncertainty in 
the system is apparent and virtually prohibits formal analysis. 

For both delay and echo suppressors, simulation is not difficult (the 
author's simulator already incorporates delay) and provides at present 
the only means of assessing the performance of the model. 

3.5 Summary 

The six-state model described by the author contains time depend­
encies which prevent formal Markovian analysis, but there is a 
tendency for the speech events to be formed from exponential, and in 
some cases, constant-plus-exponential "building blocks." Practically 
all of the exponential blocks or exponential parts of the constant-plus­
exponential blocks have distributions with parameters equal to the 
sum of the A and B "exit probability" parameters; and even those 
events which seem exclusively a result of one speaker (such as solitary 
talkspurts) are in fact influenced by both speakers in a predictable 
way. 

Although several theoretical results are obtainable, one is forced 
to turn to simulation for complete quantitative results. The ease by 
which the model is simulated helps compensate for the numerous com­
puter runs required for studying model behavior as a function of 
parameter or circuit changes. 
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APPENDIX 

Distribution of a State Terminated By a Particular Speaker 

This appendix is a derivation of the result stated in Section 3.1, that 
if, for example, one considers only those state 1 intervals terminated 
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by A, these will have an exponential distribution with parameter 
((3~ol + afnt). For shorthand, we call the parameters {3 and a. Let state 1 
begin at time t = O. The joint probability that it is t s long and termi­
nated by A is: 

PI' (terminated by A in t, t + dt) = e-(a+{3)t. {3 dt; (10) 

that is, neither an a - or {3 - pulse can occur in (0, t), and one (3-pulse 
must occur in (t, t + dt). Integrating equation (10) over all t, 

PI' (state terminated by A at any time) 

= 100 

(10) dt = {3/(a + (3), (11) 

as it should. We desire the conditional probability that state 1 ends in 
(t, t + dt) given that it is terminated by A. By Bayes' rule, 

PI' (state ends in (t, t + dt) I terminated by A) 

= ) oint Pr (state ends in (t, t + dt) and is terminated by A) 

PI' (terminated by A) 

equation (10)/equation (11) = e-(a+{3)t(a + (3) dt, (12) 

which is recognized as an exponential density function with parameter 
(a + (3). 
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Mobile Radio Diversity Reception 

By E. N. GILBERT 

(Manuscript received January 24, 1969) 

This paper examines a particular kind of diversity system, under 
conditions of multipath fading, when there is interference from either 
random noise or from an unwanted station. The transmitter sends a pilot 
wave along with the modulated signal. The receiver's mixer stage heterodynes 
the signal with the pilot (instead of with a locally generated tone). Doppler 
phase distortion, which affects the signal and pilot in nearly the same way, 
cancels out during mixing. The diversity system with N antennas adds the 
outputs from N such mixers. This kind of diversity tends to add the N 
signal outputs in phase, while random noise components as well as certain 
other interferences add powerwise. In the presence of an interfering station, 
diversity smooths out" amplitude fluctuations. It thereby reduces the prob­
ability that the interference will override the desired station. 

I. INTRODUCTION 

D. O. Reudink, in an unpublished work, has suggested a diversity 
system especially suited for mobile radio. In his system the transmit­
ter sends a pilot wave along with the modulated signal. The receiver's 
mixer stage beats the signal against the received pilot (instead of 
against a locally generated tone). Doppler distortion, which affects 
the signal and pilot in nearly the same way, cancels out during mix­
ing. The diversity system with N antennas adds the outputs of N such 
mixers and demodulates the sum by means of an ordinary AM or FM 
detector. 

The receiver obtains a signal-to-noise advantage by adding signal 
components from the N mixers in phase while adding most interfer­
ence terms powerwise. To obtain this advantage under multipath 
propagation conditions, the receiver's IF (that is, the difference! 
between the signal and pilot frequencies) must be chosen small enough. 
It suffices to make ! so small that the propagation times along the 
different paths all agree to within a small fraction of II! (see Section 

2473 
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2.2). The analysis presented in this paper is only valid for the situa­
tions in which signal components add in phase. 

The effectiveness of these receivers is most clearly seen by examin­
ing the signal and noise levels at their outputs. Here the noise in 
question may be either random noise or an unwanted beat from an 
interfering station. Several kinds of signal-to-noise ratios can be de­
fined because the signal and noise levels fluctuate as the receiver 
moves. The ratio snr of output signal power to output noise power 
depends on the receiver's position. Here snr is regarded as a random 
variable and its probability distribution function is derived. A simpler 
ratio, called SNR, is obtained by dividing the mean output signal 
power by the mean output noise power. SNR is simply a fixed number 
but it gives less information about receiver failure than the distribu­
tion of snr does. 

The probability distribution of snr is derived for cases in which 
the signal experiences rayleigh fading. The rayleigh fading model 
is known to agree well with experiment within small areas, say ten 
wavelengths across, although it cannot account for largescale effects 
like shadowing by buildings and hills.1 SNR is derived without as­
suming rayleigh fading. 

Table I gives excerpts from more complete tables which follow. It 
compares receivers under rayleigh fading conditions by giving trans­
mitter powers needed to keep snr above 3 dB or 10 dB with proba­
bility 0.99. The transmitter powers are given in decibels above a com­
mon level which need not be specified at this point. Of course the 
required powers depend on the interference power and on the propaga­
tion losses, but these terms are the same in all cases; they contribute 
a constant number of decibels to all the tabulated values. Only dif­
ferences in decibel values need be considered when comparing re­
ceIvers. 

The table considers four kinds of interference and gives the signal 
power needed to keep snr at the given level for each separately. Ran­
dom interference is supposed to be gaussian noise. In diversity re­
ceivers an interfering station produces three noise signals having 
different properties. These are called 2PS', 2P'S, 2P'S', the letters 
denoting the components which beat to produce the noise. Thus 2P'S 
is a beat between interfering Pilot and desired Signal. For comparison, 
the conventional receiver has only one kind of output noise. Notice 
that the relative strengths of the three noises in the diversity receiver, 
and hence the character of the combined noise, depends both on Nand 
on the signal level. Even a two-antenna diversity system has a noise 
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TABLE I-RELATIVE TRANSMITTER POWERS (DB) REQUIRED FOR 

o .01 PROBABILITY OF snr ~ 3 DB OR 10 DB 

Diversity Receivers 
snr Conventional 

(dB) Interference N = 1 2 4 8 Receiver 

3 
random 26.0 14.3 6.6 1.4 20.0 

2PS' 23.0 U.5 6 ') .0 1.9 
~tatioll '2P'S 23.0 12.5 6.3 1.9 23.0 

'2P'S' 21.5 13.5 9.3 6.8 

10 
random 36.0 24.3 16.6 11.4 :~O .0 

2PS' 30.0 19.5 13.3 8.9 
station 2P'S 30.0 19.5 13.3 8.9 33.0 

2P'S' 25.0 17.0 12.8 10.3 

--, 

advantage over the conventional system and has immunity to doppler 
distortion too. 

II. THE DIVERSITY RECEIVER 

The transmitter sends a pilot tone A cos 27r'Ft along with the modu­
lated signal AB cos [27r' (F + f) t + 8]. Here f is an intermediate fre­
quency, small compared with F but large enough so that the signal 
spectrum does not overlap the pilot. B and 8 are an amplitude and a 
phase, either one of which may be varied slowly to represent the 
modulating signal. The receiver (see the block diagram, Fig. 1), con­
tains elements SQ which square received antenna voltages. Each 
square contains a component at frequency f which results from a beat 
between the pilot and the modulated signal. This component contains 
the modulation, AM or FM, of the original transmission. The N 
squares are added and the sum is filtered to remove other components 
at frequencies far from f. The filtered sum is an IF signal to be de­
modulated in the usual way. 

2.1 Single Path In Phase Addition 
In effect the transmitted pilot tone replaces the local oscillator tone 

which a conventional receiver generates internally. The advantage is 
that any doppler distortion affects the pilot as well as the modulated 
signal. As a result, the circuit of Fig. 1 tends to add IF components 
in phase if f is small. This may be seen as follows. 

Figure 2 shows N antennas receiving a signal which arrives from 
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ANTENNA 1 ANTENNA 2 ANTENNA :3 ANTENNA N 

6 
I 

TO 
IF STAGE 

Fig. 1-Diversity receiver. 

the direction indicated by the arrow. Suppose for the moment that 
this is the only incident signal (no multipath effects). Now consider 
two typical antennas, say 1 and 2. Let the difference between the 
lengths of the paths from 1 and 2 to the transmitter be called s. 

If the voltage in antenna 1 is 

A cos (27rFt + cp) + AB cos [27r(F + f)t + 1f'], (1) 

then the voltage in antenna 2 is 

A cos [27rF(t - sf c) + cp] + AB cos [27r(F + f) (t - sf c) + 1f'], (2) 

where c is the velocity of light. After squaring, the IF components are 
!A2B cos (27rft + 1/1 - cp) from antenna 1, and !A2B cos (27rft + 1/1 -
cp - 27rfsf c) from antenna 2. 

o 

S 

ANTENNA 2 

o 

\ 
\ 
\ 
\ 

\ 

ANTENNA 1 

o 

o 

o 
ANTENNA N 

Fig. 2 - Reception by N antennas. 
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These two components differ in phase by 27rfs/ c radians. To keep 
this angle small, s must be a small fraction of c/f, the wavelength at 
IF. For instance if the IF is f ~ 1 MHz and if no two antennas are 
more than ten feet apart, then s is less than 0.01 wavelength and the 
N beat components are in phase to within 3.6°. 

2.2 Multipath Inphase Addition 

Under multipath conditions cross beats occur between pilots and 
modulated signals received via different paths. This section derives a 
more stringent sufficient condition for inphase addition. N ow the 
lengths of all major propagation paths from transmitter to receiving 
antennas must agree within a small fraction of the IF wavelength. 
For example, if the IF were 100 kHz, the wavelength in question 
would be 3000 meters. Path differences of hundreds of feet would still 
permit nearly inphase addition. Path differences of this size might 
occur if only nearby buildings serve as reflectors. The data which 
W. R. Young took in New York City shows that some longer path 
dierences can be expected there. l 

The voltages in antennas 1 and 2 of Fig. 2 are now sums of voltages 
received over different paths. The kth path contributes terms like 
(1) and (2) but with parameters Ak , cPk , tPk , and Sk which depend on k. 
Suppose the kth path has length Lk . Then cPk is a sum of phase shifts 
at reflections plus a propagation term -27rFLk/c. Likewise tPk is a sum 
of the same phase shifts at reflections, a propagation term - 27r(F + 
f)Ldc, and the modulation angle e. Then tPk = cPk + e - 27rfLk/c. At 
antenna 2 the kth pilot is P k = Ak cos (27rFt + cPk - 27rFsk/c) and the 
kth modulated signal is Sk = AkB cos [27r(F + f)t + e + cPk - 27rfLk/c -
27r(F + f)sd c]. At antenna 1 the kth path produces voltages of the 
same form but with Sk = O. 

When the antenna 2 voltage is squared, cross beats between the 
jth and kth paths occur. The IF part of PkSi is 

PkSi : !AkAiB cos [27rjt + e + cPi - cPk 

There is also a PiSk beat, and the sum of the two beats contains the IF 
component 

PkSi + PiSk : AkAiB cos [27rft + e - 7rf(Lk + Li + Sk + sJ/c] 

. cos [cPi - cPk - 7rf(Li - Lk + Si - Sk)/C - 27rF(Si - Sk)/C], 
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The same expression gives the IF component of PkS j + P jSk at antenna 
1 when S j and Sk are replaced by zero. In this expression the first cosine 
contains the time dependence while the second cosine is purely an 
amplitude factor. 

Now suppose, as in Section 2.1, that S1 , S2, ••• , are all so small that 
the terms 7rfSklc are small angles. Then the first cosine in the Pk8 j + 
P jSk contribution is nearly the same at antenna 2 as it is at antenna l. 
However the second cosine contains the large angle 27rF(sj - Sk) Ie at 
antenna 2 only. Indeed one can construct numerical examples to show 
that further assumptions are needed to make the total IF outputs of the 
two squarers be inphase. It will suffice to assume that the path lengths 
L1 , L2 , ••• , are nearly equal, differing from one another by only a 
small fraction of elf. Under this extra condition, the first cosine factor 
is approximately cos (27rft + (J -27rL1/c) for all k, j and at both anten­
nas. For a given k, j the second cosine factor can still have opposite signs 
at the two antennas. However, when all beats are combined, the ampli­
tude at antenna 2 is approximately 

! L AkAiB cos [cJ>i - cJ>k - 27rF(Si - sk)/c] 
k, i 

!B Re L AkAi exp i[cJ>i - cJ>k - 27rF(Si - sk)/c] 
k,i 

!B Re \ L Ai exp i[cJ>i - 27rFsdc] \2, 
i 

which is positive. The same argument with Si = a gives a positive 
amplitude at antenna 1; the two sums are inphase. 

In New York City large path differences are observed. There it may 
be difficult to make f small enough to satisfy always the condition just 
derived. However if the total number K of paths is small, there is still 
some tendency for the phases from squarers 1 and 2 to be close. For 
although the P k 8 i contributions from antennas 1 and 2 differ in the 
K(K - 1) cases with j ~ k, the argument of Section 2.1 shows that the 
two antennas give equal contributions in the K cases with j = k. One 
can analyze simple models in which Lk and other parameters are ran­
domly chosen and still conclude that the IF outputs from the two 
squarers are correlated, but to an extent that decreases as K increases. 
However I omit those details and assume from now on that signal 
outputs from the squarers add inphase. I also assume that F is large 
enough, say about 1000 lVIHz, so that the phases of noise received in 
antennas placed a few feet apart can be considered independent. 
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III. RESPONSE TO RANDOM NOISE 

This section considers the effect of random noise on diversity re­
ception and gives expressions (16), (17), and (18) for output noise 
spectra. Multipath fading effects make the output signal to noise 
ratio, snr, depend on the position of the receiver. A single mathe­
matically convenient figure of merit is the ratio of expected signal 
power to expected noise power. This ratio is called SNR here. Before 
the mathematical details begin, some of the results will be summarized. 

SNR increases linearly with the number N of antennas [equation 
(20) ]. For a given amount of total transmitter power, the largest out­
put signal power is obtained by transmitting equal amounts of power 
in the pilot and modulated signal. The diversity system will be com­
pared with a conventional system using the same transmitter power. 
If N is small, the conventional system has a slight noise advantage be­
cause it uses the full transmitter power for the modulated signal (the 
pilot is generated in the receiver). The diversity system with N = 3 
has about the same SNR as a conventional system. However, the 
probability distributions of snr for these receivers are very diffp,rent; 
the one for the diversity receiver is more sharply peaked. As a result 
a diversity system, even with N = 2, produces a small snr less often 
than the conventional system (compare with Table I) . 

vVhen making SNR comparisons one must also recognize qualitative 
differences between the output noises from different receivers. The 
conventional receiver has a steady noise output resulting from input 
noise beating against the steady local oscillator signal. In the diversity 
system the output noise results largely from input noise beating 
against fluctuating pilot and modulated signals. During fades the 
output noise from the diversity receiver also fades while the noise 
from the conventional receiver does not. Thus, the diversity receiver 
has acceptable snr more often than a conventional receiver with the 
same output SNR. 

3.1 Noise Spectra 

The mathematical treatment will begin with the case N = 1; the 
extension to more antennas will be easy. The input to the squarer is 
the sum of three voltages: 

Pilot 

Signal 

pet) = A cos (2nPt + cp), 

set) = AB cos [27r(F + t)t + 1f], 

(3) 

(4) 
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Noise (5) 

Here the noise is represented, as by S. O. Rice/ as a sum of sinusoids 
with random phases ~i and amplitudes ni. Rice studied the effect of 
squaring a random noise; this section adapts his work to the present 
problem. 

The received pilot power is lhA 2 (into a one ohm load); likewise 
the signal has power 1/2A 2 B2. The noise has a one-sided power spec­
trum function w (v) such that 

w(v) ~v =! L n~ 
.<li<.+6. 

represents the noise power in the frequency band from v to v + Llv. 

The shape of the function w (v) is determined by the tuned circuits 
(not shown in Fig. 1) which filter the antenna signal before squaring. 
Figure 3 shows a typical case 

w(v) = {No, 
0, 

F - b ~ v ~ F + t + a, 
(6) 

otherwise, 

which uses a band-pass filter slightly wider than necessary to pass the 
pilot and signal at frequencies F and F + f. 

Squaring P + 8 + n produces six terms; p2, 8 2
, n2, 2P8, 2Pn, 28n. 

p2 and 82 contribute nothing to the output after the output filter re­
moves components remote from frequency f. The other contributions 
are 

(7) 

A L ni cos [27r(fi - F)t + ~i - cp] from 2Pn, (8) 

AB L ni cos [27r(fi - F - t)t + ~i - If] from 2Sn, (9) 

PILOT SIGNAL 

~~8(v-F) tA2 8 2 8 (V-F-f) 

NOISE 

~--------------------~------~----v 
F-b F+f+a 

Fig. 3 - Power spectra at the input to a squarer. 



DIVERSITY SYSTEM 

L nini cos [27r(fi - fi)t + ~i - ~i] from 
i<i 

2 n. 
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(10) 

The 2PS contribution is the desired output; its power is lhA 4B2. 
The spectra of the other contributions appear in Fig. 4. The spectral 
density functions are 

A 2w(v + F) 

A2B2w(F + f + v) 

from 2Pn, 

from 2Sn, 

2 i oo 

w(x)w(v + x) dx from 2 n. 

(11) 

(12) 

(13) 

Functions (11), (12), and (13) assign some power to negative values 
of v; these are to be aliased to positive frequencies. This aliasing ac­
counts for the peculiar discontinuities in the spectra at low frequencies. 
The dotted lines show functions (11), (12), and (13) before aliasing. 
The values of a and b will be assumed smaller than f so that, as in 
Fig. 4, the noise power densities at frequency fare A2No for Pn noise 
and A2B2No for Sn noise. 

In the case of gaussian noise, the phases ~i in functions (8), (9), 
and (10) are independent. It then follows that the three kinds of out­
put noise components at a given frequency v are uncorrelated. Then 
these noises add powerwise and the total noise spectral density is the 
sum of functions (11), (12), and (13). 

3.2 Noise in Diversity System 

In a diversity system the same kind of analysis applies for each of 
N antennas. The amplitudes and phases would now be written as 
Ak , nik , 1/;k , 'Pk , and ~ik where the subscript k (k = 1, ... , N) specifies 
the antenna. All these random variables are independent of one another 
except for 1/;k and 'Pk which satisfy 1/;1 - 'PI = 1/;2 - 'P2 = ... = 1/;N -

'PN = () because, as discussed in Section II, the 2PS terms have a com­
mon phase angle e. Thus the N signal components add voltage-wise 
and the expected signal power at the output is 

!B2E(L AD2 = !B2E{NE(A4) + N(N - 1)[E(A2)]2}. 

Let ko denote the (dimensionless) ratio 

(14) 

For rayleigh fading, ko = 2. For no fading ko = 1. The expected output 
signal power is 
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PILOT X NOISE 

" 

~'-----------, .~ I I 
-b 0 b f f + a 

-f-b o a f f+b 

NOISE X NOISE 

~; 
o f f+a+b 

TOTAL h.~ 
o f 

Fig. 4 - Output noise spectra. 

E(Signal Power Out) = !N(N + ko - 1)[E(A2)]2B2 

= !N(N + 1) [E(A2) ]2B2(rayleigh). (15) 

According to equations (3) and (4), !E(A2) and !B2E(A 2) are the 
expected received powers of the pilot and signal. With fixed transmitter 
power [fixed !(1 + B2)E(A2) = Po], the output signal, equation (15), 
is maximized when the transmitted power is divided equally between 
pilot and signal [B = 1, E(A 2) = Pol. Then equation (15) becomes 
E(Signal Power Out) = !N(N + ko - l)P: . 

The noise terms (11), (12), and (13) for the N antennas add power­
wise and the expected output noise power spectrum is a sum of three 
terms 

NE(A2)W(V + F) from 2Pn, 

NB 2E(A 2)w(F + f + v) from 2Sn, 

and 

2N fo~ w(x)w(v + x) dx from n 2
• 

(16) 

(17) 

(18) 
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.3 SN R Formulas 

For a typical case, suppose w (v) is the function (6) with a < f 
and b < /. Suppose also that the output filter in Fig. 1 has a narrow 
rectangular transfer function with bandwidth 6./ about frequency f. 
Then the expected output noise power is 

E(Noise Power Out) = 2NNo[Po + No(a + b)]6j (19) 

where again Po = l/:dl + B2)E (A~) is the total expected power which 
an antenna receives from pilot and signal. In this case the output 
noise power does not depend on B and the choice B = 1 maximizes 
not only the output signal power but the output signal to noise ratio 
as well. With B = 1, equations (15) and (19) combine to give 

(20) 

where ko is given by equation (14) (ko = 2 for Rayleigh fading). 
If the input noise spectrum is not fiat as in Fig. 3, the output noise 

contributions (16) and (17) do not combine into the term 2NNoPo6./ 
which appears in equation (19). In that case the value of B which 
gives the best output SNR may not be one but will depend on the 
input noise power densities at F and F+ /. 

Formulas (11), (12), and (13) also apply, with slight reinterpre­
tations, to the conventional receiver without diversity. IhA 2 is the 
power of a local oscillator and IhA 2B2 is the received signal power. 
Then A has a well determined value, but B is a random variable 
having perhaps a Rayleigh distribution. Now Po is E (lhA 2B2). The 
desired output signal has amplitude A 2 B and so has expected power 
E (Signal Power Out) = lhA 4E (B2) = A 2 P o. The local oscillator is 
deliberately made much stronger than the incoming signal or noise; 
then the output noise components (12) and (13) are negligible com­
pared with formula (11). For the output filter of bandwidth 6./, 
E (Noise Power Out) = A 2W (F + f) 6.f. 'Vhen w (v) is the function 
(6) again, 

(21) 

The output signal to noise ratio in equations (20) and (21) differ 
by a factor 

(SNR)conventional/(SNR)diversi ty 

= 4[1 + (a + b)No/Po]/(N + ko - 1). (22) 
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The term (a + b)N 0/ P 0 represents that part of the input noise to 
signal ratio which results from noise arriving outside the band F ~ 
v ~ F + f. Then this term will be small in any useful case. The remain­
ing factor 4/(N + ko - 1) gives the conventional system the advantage 
unless N ~ 5 - ko • When Rayleigh fading holds, a three-antenna 
diversity system has the same output SNR as the conventional system. 

3.4 snr Distribution 

As mentioned in Section 3.3, the signal and noise levels of conventional 
and diversity receivers fluctuate differently as the receiver moves. In 
the case of Rayleigh fading one can obtain the probability distribution 
functions for snr = (Signal Power Out/Noise Power Out) for the two 
receivers. Again take the simple input noise spectrum of equation (6) 
with small values of a and b. 

Expressions (7), (11), and (12) show that snr = (4N o .6.f)-1 L: A~ for 
the diversity receiver (B = 1). Each Rayleigh amplitude Ak may be 
expressed in terms of independent gaussian variables Xk, Yk of mean 
zero and unit variance by means of A~ = !Po(x~ + Y~). 

Then snr = (x;N/8)(Po/No.6.f) where X;N = Xi + ... + Xi" + 
Yi + ... + Y;, has the chi-squared probability distribution with 
2N degrees of freedom. The same result might be obtained by inter­
preting the receiver as a maximal ratio combiner.3 

Expressions (7), (11), and (12) also apply to the conventional re­
ceiver if, as explained above, A is a fixed number while B is a small 
rayleigh variable. Only 2Pn noise need be considered; then snr = 
(2No.6.f)-lA 2B 2 = !X;(Po/No.6.f) , where again x; has the chi-squared 
distribution, now with two degrees of freedom. 

Suppose the system fails when snr is below some known critical 
value. Suppose such failure can be tolerated only a small fraction Q of the 
time. The given value of Q is reached at some X2 value which can be read 
from probability tables. To achieve the desired small failure probability 
the ratio Po/(No.6.f) (a kind of input SNR) must be 

Po/(No .6.1) = {(8/X;N) snr (diversity) 

!(8/x;) snr (conventional) 

Table II gives 10 log (8/X~N) as a function of Q. Thus for a 0.01 
probability of failure, P 0/ (N o.6.f) must exceed the critical snr by 26.0 dB, 
14.3 dB, 6.87 dB, and 1.39 dB for diversity systems of one, two, four, 
and eight antennas. The conventional receiver requires 26.0 - 6.0 = 

20.0 dB and so is intermediate between diversity systems with N = 1 
and 2. 
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TABLE II-VALUES OF 10 LOG (8/x~,'/) FOR WHICH PROBABILITY 

OF FAILURE = Q 

Number of 
Q 

Antennas 0.001 0.005 0.01 0.025 0.05 0.1 

1 36.0 29.0 26.0 22.0 18.9 15.8 
2 19.5 15.9 14.3 12.1 10.5 8.78 
3 13.3 10.7 9.62 8.01 6.89 5.60 
4 9.74 7.75 6.57 5.65 4.67 3.60 
5 7.36 5.70 4.95 3.92 3.08 2.16 
6 5.61 4.15 3.50 2.59 1.85 1.03 
7 4.23 2.96 2.35 1.53 0.86 0.12 
8 3.15 1.92 1.39 0.64 0.02 -0.63 

IV. INTERFERENCE FROM A SECOND STATION 

Suppose a diversity system tries to receive a desired signal while 
another station uses the same channel. The pilots and modulated 
signals of the two stations produce a variety of beat components, 
three of which cause interference at IF [functions (23), (24), and 
(25) below]. Two sound like doppler-distorted versions of the modu­
lated signals from the desired station and its competitor. The third 
is an undistorted copy of the modulated signal from the competing 
station. 

Under multipath conditions, the two doppler-distorted beats have 
phases which are uncorrelated from antenna to antenna. The output 
SNR's for these noises grow linearly with the number N of antennas 
[equation (26)]. The third components from the separate squarers 
add in phase. Then the SNR for this interference is not reduced by 
increasing N [equation (27)]. However, increasing N reduces the 
variability of the power levels of the output signal and noise. Thus, 
if the desired station is a few decibels stronger than the competing 
station, increasing N reduces the chance that multipath fading will 
allow the competing station to override the desired station (Table 
III) . 

One may reuse much of the formalism of Section III. A single 
antenna again receives a pilot [equation (3)], modulated signal 
[equation (4)], and a noise which is a special case of equation (5). 
The noise now has only two components. One is a pilot P' (t) of 
frequency F, phase 'P', and amplitude A'. The other is a modulated 
signal S'(t) of frequency F + f, phase tf;', and amplitude A'B'. 

Squaring produces IF components which are obtainable from func-
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TABLE III-VALUES OF 10 LOG F SUCH THAT PROBABILITY 
OF FAILURE = Q (2P'S' NOISE) 

Q 
Number of -----------------------
Antennas 0.001 0.005 0.01 0.025 0.05 0.1 0.25 0.50 

--------------------------------. -

1 30.0 23.0 20.0 15.9 12.8 9.54 4.77 0 
2 17.3 13.6 12.0 9.82 8.05 6.14 3.14 0 
3 13.0 10.4 9.27 7.64 6.31 4.84 2.50 0 
4 10.8 8.74 7.80 6.46 5.36 4.13 2.14 0 
5 9 .. 56 7.70 6.88 5.71 4.79 3.67 1.90 0 
G 8.35 6.92 6.19 5.16 4.29 3.32 1.73 0 
7 7.73 6.33 5.70 4.75 3.94 3.04 1.58 0 
8 7.17 5.86 5.29 4.42 3.69 2.88 1.49 0 

tions (7), (8), (9), and (10). The desired signal component is funr.­
tion (7) again. The 2Pn component, function (8), has two parts, onp 
of which [P (t) beating against P' (t)] contributes nothing. The re­
maining IF contribution from function (8) is 

AA' B' cos (27rft + tI/ - <p) from 2P S'. (23) 

Likewise functions (9) and (10) contribute only 

AA'B cos (27rft + 1/; - <p') from 2SP', (24) 

and 

A ,2B' cos (27rft + 1/;' - <p') from 2P' S'; (25) 

the 288' and 8'2 terms do not contribute at IF. 
The three interference terms (23), (24), and (25) have different 

characteristics. The 2P8' and 2P'8' components carry the modulation 
(AM or FM) of 8'(t) and act like interfering stations at IF. Likewise 
the 2SP' term sounds like a station with the desired modulation of 
S(t). As the receiver moves, the two angles tf;', and cp undergo different 
doppler shifts. Then the 2PS' component contains a residual doppler 
distortion. Likewise the 28P' component is doppler distorted and so 
will be considered a noise. By contrast, as in the 2PS term. the doppler 
shifts in the 2P'S' term cancel out leaving an undistorted interfering 
signal. 

Because the 2P'S component has both the desired modulation and 
doppler distortion it is not clear whether it should be treated as a 
signal term or as a noise term. If it were counted as part of the sig­
nal, the 2P'S term would be a source of fluctuation of the output sig­
nallevel (it differs in phase from the 2PS term by a random amount). 
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To call the 2P'S term a kind of noise is probably overconservative if 
the system uses FlY! of index high enough to make the doppler distor­
tion unimportant. It turns out that the power levels of the 2PS' and 
2P'S terms have the same probability distribution. Thus, whenever 
other interference terms are small it does not matter much whether 
2P'S components are treated as signal or as noise. 

4.1 8NR Formulas 

As in Section 3.3 one can compute an SNR, defined as E(Signal Power 
Out)/E(Noise Power Out), for each of the three interferences. Again 
multipath fading conditions will be assumed so that pilot amplitudes 
and phases from the N antennas are independent variables. The con­
ditions 1/11 - 'PI = 1/12 - 'P2 = ... = 1/IN - 'PN = f) and 1/Ii - 'Pi = 
1/1~ - 'P~ = ... = 1/I/v - 'P/v = f)' relate the signal phases to the pilot 
phases. 

The expected signal output power is given by equation (15) as before. 
The expected power from the N terms of type 2PS' is E(L !A~A~2B'2) 
= !NB,2E(A 2)E(A'2). Likewise the 2SP' power has expected value 
!NB2E(A2)E(A'2). The SNR's are SNR = (N + ko - 1)(B/B')2E(A2)/ 
E(A'2) for 2P8' interference and SNR = (N + ko - I)E(A2)/E(A,2) 
for 28P' interference [recall the definition of ko given by equation (14)]. 
When B = B' = 1 and the expected received powers from the two 
stations are Po and P~ , both interferences have 

SNR = (N + ko - I)Po/P~ . (26) 

The expected power of 2P'S' interference is given by equation (15) 
with A' and B' replacing A and B. Then, if B' = B, the SNR for 2P'S' is 

(27) 

The two expressions (26) and (27) have interesting differences. They 
depend on N in different ways because the 28P' and 28' P components 
from separate antennas add with random phases while the 28' P' com­
ponents add in phase. The input signal to noise ratio P 0/ P~ appears with 
different exponents in equations (26) and (27) because equation (26) 
relates to beats between the desired station and the interfering one, 
while equation (27) relates to beats of the interfering station with itself. 

Because of these differences, either kind of output noise can be the 
more serious one, depending on the situation. For a given number of 
antennas, the 2S' P and 2SP' noises are stronger than the 2S' P' noise 
when P 0/ P~ is large. As P 0/ P~ becomes smaller, all noises increase and, 
at Po/P~ = N + ko - 1, they have equal powers. When Po/P~ is still 



2488 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

smaller, the 2S' P' noise (undistorted copy of the interfering signal) 
predominates. With Rayleigh fading and N = 4 antennas, the 2S' P' 
noise predominates at input signal to noise ratios of 7 dB or less. 

In conventional systems, an interfering station produces only one 
output noise component. It has 

(28) 

N one of the noise components of the diversity system are as bad as 
this unless the interfering station is stronger than the desired one. 

4.2 snr Distributions, 2P' S' Noise 

Equation (27) shows that adding more antennas does not improve 
the SNR for 2P'S' noise. However, diversity helps by reducing the 
chance that a large fluctuation of the interfering signal level will cause 
the system to fail. To study this effect let Al , ... , AN be signal ampli­
tudes, as in expressions (7) and (8), received by the N antennas. Like­
wise let these antennas receive A{ , ... ,Ak from the interfering station. 
Under severe multipath conditions these 2N amplitudes may be re­
garded as independent random variables. Again take B = B' = 1 so 
that E(AD = Po, E(A£2) = P~. The desired and interfering stations 
produce output signals with amplitudes L A~ and L A£2. Then 

snr = (L AU L A£2)2 (29) 

is the random variable which must be studied. 
The probability distribution function for snr can be obtained easily 

in the case of rayleigh fading. Each Rayleigh amplitude A may be 
represented by the formula A 2 = X 2 + y2 where X and Yare inde­
pendent gaussian variables with variance E(X2) = E(y2) = !Po • 

In these terms, the quantity 

(Xi2 + Yi2 + X~2 + ... + Y'~)/(!P~) F = ~~~--~~~------~~~~~~ 
(Xi + Yi + X; + ... + Y~)/GPo) 

(30) 
F = (P o/P~) snr -! , 

is the ratio of two sums of 2N independent squares of gaussian variables 
of unit variance. Statisticians use such ratios frequently and have 
tabulated their probability distributions. Abramowitz and Stegun give 
such a table.4 In their notation the cumulative probability function for 
F is P(F 12N, 2N), a special case of their P(F I VI, V2). Their Table 
26.9 gives Q(F I VI , V2) = 1 - P(F I VI , V2), so that snr has the dis­
tribution function 

Prob {snr ~ (Po/P~)2F-2} = Q(F 12N, 2N). (31) 
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Table III reproduces part of Abramowitz and Stegun's table after 
converting F values to decibels. The numbers tabulated are values 10 
10gloF which are needed to make the probability of equation (31) a 
small value Q = 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, or 0.5. To use 
Table III one must first know how small snr can become before the 
system will fail; one also decides on an acceptable probability Q of 
failure. The table gives a corresponding value of F and the conditions 
for not failing are met as long as the input signal to noise ratio P 01 P~ 
satisfies 

F snrl/2 ~ Pol P~ . (32) 

For example, suppose the system fails if snr becomes as small as 
3 dB. Suppose failure can be tolerated only 1 percent of the time. The 
tabulated values of F for Q = 0.01 and N = 1, 4, 8 are 20.0, 7.80, and 
5.29 dB. Then inequality (32) requires the input signal to noise ratio 
to be 

20.0 + 1.50 = 21.5 dB 
7.80 + 1.50 = 9.30 dB 
5.29 + 1.50 = 6.79 dB 

for one antenna, 
for four antennas, 
for eight antennas. 

In the case of one and four antennas at these signal levels, equations 
(26) and (27) show that the other noise components 2SP' and 2PS' are 
stronger than the 2P'S' component. Thus the snr for 2SP' and 2P S' 
noises must be considered later. 

To show the advantage of diversity over a conventional system, one 
may examine the probability distribution function for the conventional 
snr. This function is not just equation (31) with N = 1. A conventional 
system has snr = (AB)2/(A'B,)2 = (X2 + y2)/(X,2 + y,2) instead 
of equation (29). To get a ratio of sums of squares of gaussian variables 
with unit variance, one must now define F = (Pol P~)/snr instead of 
equation (30). The value of F for a given failure probability Q 
is again obtained from Table III with N = 1. The input signal to 
noise ratio P 01 P~ must then satisfy 

(33) 

instead of inequality (32). To have snr as low as 3 dB for only a fraction 
Q = 0.01 of the time, the input signal to noise ratio must now be 23 dB 
or more. 

4.3 snr Distributions, 2SP' and 2P' Noises 

The SNR calculation showed that 2SP' and 2PS' components are 
apt to be the strongest noises when N is small. The distribution functions 
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for their snr may also be derived. Again rayleigh fading is assumed and 
B' = B = 1. The latter assumption makes the 2P S' and 2SP' com­
ponents have the same snr distribution [compare expressions (23) and 
(24)]. 

It is convenient to rewrite the 2P S' component (23) in terms of 
cosine and sine amplitudes 

X' = A' cos (v/ - cp), Y' = -A' sin (t/;' - cp). (34) 

Then expression (23) becomes AX' cos 27rft + A Y' sin 27rft. Now X' and 
Y' are independent gaussian random variables with mean zero and 
variance ! P~ . When there are N antennas, equations (34) give ampli­
tudes X, and Y, for the kth antenna. The kind of argument that pro­
duced equations (28) and (29) now leads to 

(L: A~)Z 
snr = (L: AkX~r+ (L:-AkY~)z' (35) 

I t is possible to transform equation (35) into a form to which an 
F-distribution again applies. As a first step, introduce two new 
random variables 

x' = "" A X'/(1.P' "" A ~)! L..J kk2oL..J " 

For any AI' '" , AN, x' and y' are independent gaussian variables 
of mean zero and variance 1. Now equation (35) becomes 

(36) 

N ext one can express the pilot pet) in terms of cosine and sine ampli­
tudes. In this way one obtains A~ = !Po(x~ + y~), where Xk and Yk are 
independent gaussian random variables of mean zero and variance 1. 
Finally equation (36) becomes 

snr = (Pol P~)/G, (37) 

where G = (x'Z + y'Z) I L: (x~ + YD. 
Again the snr involves a ratio G of sums of squares of gaussian varia­

bles and formulas for a suitable F -distribution are applicable. This time 
the numerator and denominator of the ratio contain unequal numbers 
of terms; the appropriate definition of F is F = NG. In the notation 
of Abramowitz and Stegun4

, the cumulative probability function for 
F is 1 - Q(F I 2, 2N). From their table, I obtain Table IV which gives 
values of 10 log G which may be used with equation (37). Thus if 
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TABLE IV-VALUES OF 10 LOG G SUCH THAT PROBABILITY 

OF FAILURE = Q (2SP' AND 2PS' NOISES) 

Q 
Number of -----------------------
Antennas 0.001 0.005 0.01 0.025 0.05 0.1 0.25 0.50 

--------------------
1 30.0 23.0 20.0 15.9 12.8 9.54 4.77 0 
2 14.9 11.2 9.54 7.26 5.40 3.34 0 -3.83 
3 9.54 6.86 5.61 3.84 2.33 .61 -2.32 -5.85 
4 6.64 4.41 3.34 1. 79 .45 -1.09 -3.82 -7.24 
5 4.74 2.76 1. 79 .37 -.86 -2.34 -4.95 -8.28 
6 3.34 1.52 0.61 - .70 -1.88 -3.31 -5.85 -9.12 
7 2.25 0.53 -.32 -1.59 -2.72 -4.09 -6.64 -9.83 
8 1.37 -.27 -1.08 -2.32 -3.43 -4.76 -7.24 -10.5 

a given output snr must be maintained for all but a fraction Q of the 
time, Table IV determines G. Then equation (37) determines th einput 
signal to noise ratio Pol P~ = G snr. 

Continuing the earlier example with snr = 3 dB, and Q = 1 percent, 
Table IV gives G values of 20.0, 3.34, and -1.08 dB for 1, 4, and 8 
antennas. The required input signal to noise ratios are 

20.0 + 3.0 = 23.0 dB 
3.34 + 3.00 = 6.34 dB 

-1.08 + 3.00 = 1.92 dB 

4.4 Transmission Path Lengths 

for one antenna, 
for four antennas, 
for eight antennas. 

Suppose that a vehicle receives a station D miles away while a second 
station D' miles away interferes. If the two stations radiate equal powers, 
the ratio P 01 P~ is determined by the path losses to the two stations. 
For example, with isotropic antennas and inverse square law propagation 
PoIP~ = D'2ID2. 

The numbers in Tables III and IV can be used to set limits on D'. 
For example, suppose snr must be above 3 dB with probability 0.99; 
then 2P'S' noise is the most serious one. Po and P~ must differ by at 
least 9.3 dB for a four-antenna diversity receiver or by 23 dB for a 
conventional receiver. If the inverse square law held, D' would have to 
be at least 2.9 D for four-antenna diversity reception and 14.1 D for 
conventional reception. While the inverse square law holds in free space, 
waves near the earth's surface attenuate more rapidly. l\1easurements 
by W. C. Jakes followed roughly an inverse fourth power law for ranges 
between 2 and 15 miles. Then, allowed values of D' can be as small as 
1.7 for four-antenna diversity receivers and 3.8 for conventional re­
ceivers. 
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An Analysis of Time Usage in Bell System 
Business Offices 

By W. H. WILLIAMS and H. CHEN 
(Manuscript received November 4, 1968) 

The everyday contact with customers of the Bell System is carried out in 
approximately 2100 business offices. The assessment of such a large number 
of offices makes the continued improvement of formal office measurement 
schemes attractive. This paper describes an analysis of models for time 
usage in Bell System business offices. In addition, it was hoped that these 
models would be potentially useful for interoffice comparisons. A model for 
single offices is described first. This is followed by the development of a 
multioffice model which is constructed in such a way that it has good statisti­
cal characteristics and attempts to make the office comparisons as fair as 
possible. 

The inputs to the multioffice model are: (i) the gross time used by each 
business office, (ii) the number of contacts that each office had with business 
and residence customers, (iii) the number of accounts carried by each office, 
and (iv) certain characteristics which were judged to reflect the nature of the 
exogenous demand put on the office, for example, percent of business main 
telephones. 

r. TIME MEASUREMENT SCHEMES AND THE BELL SYSTEM BUSINESS OFFICES 

The everyday contact with customers of the Bell System is carried 
out in approximately 2100 business offices. These offices have many 
functions. To specify just a few, most orders for telephone service, toll 
inquiries, and complaints of various kinds are handled by them. Con­
sequently these offices are very important and need to be well run. 
However, their large number emphasizes the need for formal office 
measurement schemes which can be studied objectively. 

While such schemes can be very useful, they can also contain very 
troublesome features. The first of these troubles relates to the opera­
tional definition of the word efficiency. It should not be so broad as to 
be meaningless or misleading, nor should it be overly narrow. The re-
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suIt of a narrow definition of efficiency is likely to be multiple meas­
ures which would be very unwieldy with a large number of offices. Ad­
ditionally, this definition must reflect the internal and external officE' 
characteristics that are statistically associated with efficiency. 

While the problems of meaning and measurement are obvious (but 
are not necessarily easy to solve), the problems which come about as 
a result of the influence of the measurement scheme on the office itself 
are not usually so obvious. If a scheme is not carefully evaluated it 
can modify the office itself in undesirable ways. On the other hand, the 
influence of a measurement plan on the behavior of the office is po­
tentially useful for inducing desired objectives. However, to attempt 
such inductions requires a good deal of knowledge about the offices. 

A final, and perhaps tangential, difficulty with any analytic meas­
urement scheme is that it will not itself separate the offices into those 
which are "efficient" and those which are "inefficient." Such a separa­
tion is usually achieved by a comparison with norms which may be 
obtained from statistical studies or from theoretical considerations. At 
some stage the separation always requires the judgment of manage­
ment. 

In summary, a measurement scheme, to be useful to management, 
must relate to and measure some understandable characteristics of 
office work performance in such a way that it is informative, and not 
potentially misleading. At the same time it must not interact with the 
actual office procedure in such a way that it invites the offices to. be­
come less efficient. It must allow the local managers to be flexible. It 
naturally follows that if meaningful office measurements can be con­
structed, they would be very helpful to. both the immediate office man­
agement and the higher staff personnel. 

This analysis was performed in conjunction with studies by the 
American Telephone and Telegraph Company and Bell Telephone 
La bora tories. 

II. THE DATA 

All analysis was carried out on an "entity" basis. The entities are 
groupings of office locations and "departments" such that each entity 
carries out approximately the same set of work functions. For example, 
some larger offices have part of the handling of telephone orders car­
ried out by separate groups and not by the service representatives; 
these groups may even be at a different location but must be included 
in any interoffice comparisons. There are other similar situations and 
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it was clearly necessary to construct groups as nearly alike in function 
as possible. While this grouping is necessary for consistent analysis, 
the details of it are not necessary for this paper. Finally, while the 
entities described above do not necessarily correspond to any other 
definition of a business office, they are referred to as offices in the re­
mainder of this paper. No misunderstanding of this terminology should 
occur. 

The basic data were of five different types: (i) daily counts of cus­
tomer contacts, (ii) daily gross time data, (iii) daily work sampling 
observations, (iv) monthly numbers of accounts carried by the offices, 
(v) profile survey variables. Each of these types of data played an 
important role in the development of the statistical models; however, 
the final models do not use work sampling. Let us take a closer look 
at these data types. 

(i) Much of the work of the business offices is generated by the cus­
tomer on the telephone; some personal contact occurs in public offices, 
but relatively little. Most of these customer contacts are counted and 
classified. Eight of the categories are orders, toll inquiries, other billing 
inquiries, and miscellaneous contacts, each for business and residence 
customers. These eight are among the most important classifications, 
and account for most of the office working time. 

(ii) The daily gross time spent on all categories of work is available 
as a normal accounting item. This gross time is the total work time 
for which commercial employees in an office are paid. It includes: (a) 
time spent for the previously mentioned eight classifications of cus­
tomer contacts; (b) time spent in the company's public office; (c) time 
spent on treatment work; (d) time spent on teller work; (e) normally 
scheduled relief time and personal time; (f) idle time; (9) time spent 
on work classified as general activity; and (h) time spent on miscel­
laneous activities. These categories are listed mainly for information 
and understanding. The bulk of the analysis is dependent only upon 
the availability of gross time data. Time does not have to be available 
in subcategories. 

(iii) Time slice work sampling studies were carried out in 46 offices 
of the System in 1964. This study gave daily estimates of the total 
time spent on the various work categories including the eight cate­
gories mentioned in item i. In 42 of these offices, data were gath~red 
for a 13-week period from May through July, and in the remaining 
four categories, the study continued for s~ven months through Novem­
ber 1964. 

(iv) The number of accounts carried by each of the 46 offices was 
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obtained for each month the office was in the study. The numbers used 
are totals of both business and residence accounts. 

(v) A profile survey was made of all offices in the System to deter­
mine basic characteristics about each office and its environment. Data 
on over 200 exogenous variables were obtained, 55 of which were 
studied in detail. Only those used in the models described in this paper 
are explicitly introduced. 

III. THE DEVELOPMENT OF THE SINGLE OFFICE MODEL 

To construct a first model for daily time expenditure in a single 
office, assume that time is used up partly as a result of direct customer 
demands, and partly by overhead time, see equation (1). 

[
time spent on all] [time required fOr] 
commercial office = [overhead time] + customer generated . 

work demands 
(1) 

N ext, suppose that the time required to carry out a single customer 
contact in the jth work category is ai, and that it is performed Fii 
times on day i. Then the total time spent that day on category j is 
Fiiai and the right bracket of the right side of equation (1) could be 
written as 'L,:=lFiiai , where k is the total number of work categories. 
Thus, if ao denotes overhead time, equation (1) can be written as 

k 

Ti = ao + 'L, Fijai , 
;-1 

(2) 

where Ti is the total time expenditure on day i, i = 1, 2, 3, ... , n. 
Since it is doubtful that such exact relationships ever hold, the model 
given in equation (2) needs to be modified. Only the specific modifica­
tions used in this paper are discussed. For a more general discussion 
see Ref. 1. 

The first modification was a transformation of all observations to 
logarithms. This transformation was performed because plots of the 
estimated daily time on each of the eight categories (using data from 
the work sampling study) against the corresponding daily contact fre­
quencies showed that the two were related approximately logarith­
mically. Consequently such a transformation could be expected to im­
prove the statistical characteristics of the models. 

The second major modification in the model formulation was the 
reduction in the number of categories. This came about because multi­
collinearities among the independent variables led to an extensive 
study to find which work categories were the best predictors of time. 
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The result was that two rategories, total number of business contacts 
and total number of residence contacts were found to be better sta­
tistical predictors of time than any other combination of single cate­
gories or groupings of categories. While these two modifications are 
important they are intermediate steps and so the details have not been 
presented. 

Consequently, the model used for each single office had the func­
tional form, 

i = 1,2, ... ,n 

where Ti is the gross time on commercial operation on day i, 
Fli is the total daily number of business contacts, 

and F 2i is the total daily number of residence contacts. 

(3) 

At this point, log /30 is an estimate of overhead time in an additive 
model like equation (2), and /31 and /32 are estimates of the average 
time requirements on a log basis. 

This model was applied to each of the 46 offices individually. The 
statistical details using the data from an individual office are pre­
sented in a paper which emphasizes the statistical development of this 
mode1.2 

IV. THE DEVELOPMENT OF THE MULTIOFFICE MODEL 

4.1 Selection oj an Appropriate 1110 del 

The models used in Section III are of the general form t = q (tI, j2, 
... , !k) which relates the demand put on an office and the time con­
sumed by it. Possibly the most interesting use of these models is to 
give estimates of the time required by an office to carry out a given 
demand load. Such an estimate could then be compared with the actual 
time used to produce an efficiency factor. A natural way to do this is 
as a ratio, E = allowed time/actual time. These factors could be com­
puted monthly to follow the progress of an office. 

The comparison of different offices is not so simple, however. There 
are a number of possible approaches. One of these is to obtain a model 
fit and an efficiency score, E, for each of the offices for a specified 
month and then to compare the office E scores. This is in effect fitting 
a model to all the offices in which each office is associated with an 
individual set of parameters (/30, /31, /32)' But such a model has two 
major defects for use in interoffice efficiency comparisons. 

The first is that the approach would be very cumbersome for use 
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with such a large number of offices, but the second is the most devas­
tating. It is that comparisons of two offices by use of such a model gives 
an inefficient operation a time allowance which is based on its own 
inefficient procedures. Similarly, an efficient office would be hurt in the 
comparison by being given only a time allowance based on its own 
efficient organization. This is clearly what is not wanted. 

This defect suggests fitting a three parameter model to all offices. 
This would allow all offices the same standard overhead time and the 
same standard times for business and residence contacts. Such a model 
would be tractable and would eliminate the defect of allowing each 
office a standard time based on its own procedures. 

However, the proposal of a three-parameter model makes it very 
clear that there really may be valid reasons why one office should have 
different time allowances from another. Consequently, we seem to 
stand between two models, one which allows every office the same over­
head and average time allowances, and one which gives every office 
different allowances based on their individual performances. 

What is clearly needed at this stage is a method and a model which 
gives offices a fair time allowance, based on the factors which actually 
influence the performance times. Operationally, this means relating the 
estimates of ((30, (31, (32) for each office to the exogenous variables 
which were measured in the profile survey. 

4.2 The Adjustment for Overhead Time 

It has been pointed out that the log f30 can be interpreted as measures 
of overhead time.* It has also been pointed out that it does not seem 
reasonable for interoffice comparisons to allow each office its own 
overhead time. There are two reasons for this. One is that such a 
procedure allows an inefficient office a time credit based on its own 
inefficient procedures. The other is that one would expect that a well-run 
large office might have more overhead time associated with it than a 
poorly-run small office. This means that a measure of office size must be 
introduced to scale these estimates of overhead time. The one selected 
was Ai, the monthly number of accounts carried by the office. Figure 1 
is a plot of log ~Oi against log (AJI00). There is one point for each of the 
46 offices. A linear regression model was fitted to these data. While the 
statistical details of the "fit affect the decision to use Ai as a scale variable, 
they only indirectly affect the final model, and consequently are not 
presented. 

* Overhead time, as used here, means time for which no frequency count can 
sensibly be made. 
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Fig. 1-The number of office accounts versus the estimates of overhead time. 

The good linear relationship between log ~Oi and log (A;/100) suggests 
modifying the model by inserting c¥oA~' for the ~oi • This modification 
gives rise to equation (4), 

i = 1,2, ... ,46 (4) 

where the parameters C¥o , al , {31 , (32 are common to all offices. Again the 
statistical details of the fit are not included. 

4.3 Adjustment fo), Contact Factors 

As has been pointed out, the time that it takes an office to carry out a 
business or residence contact may well be influenced by outside factors. 
The hope was that the estimates ~l and ~2 of the business and residence 
contact times would be related to variables that were included among 
the profile variables. Consequently, a search of these variables was 
undertaken. 
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Perhaps surprisingly, a number of good relationships were found. 
More, in fact, than were used. Percent service representative losses and 
number of main business telephones were found to be nicely related to 
the business parameter, f31' Percent business main and number of cus­
tomer bills handled were found to be usefully related to the residence 
parameter, /32, The relationships were approximately logarithmic. Con­
sequently, the multi office model was modified in a manner similar to 
that for overhead time. Specifically, the multioffice model was put in 
the form, 

(5) 

where C1 and C2 are the selected profile variables and the other vari­
ables, T, Fl and F2 remain as previously specified. In this form the 
time allowances (log basis) , f31 and f32 have been modified so that each 
office's allowance is adjusted by the related profile variable. 

So for example, if C 1 is percent service representative loss and C 2 

is percent business main, the time allowance for an office would be 
made up of two components as originally specified. 

[
time] [OVerhead time] [allOWance for time] 

allowance = allowance + generated by . 
customer demands 

(6) 

Now, however, the overhead time allowance is based on the size of the 
offices as specified by the number of accounts it carries. In addition, 
the time allowed for customer generated demands is based on the (log) 
number of contacts multiplied by an allowed time per contact. The 
time per business contact is bigger for offices with higher service rep­
resentative losses. For residence, however, the time per contact is 
higher for offices which have a higher business main percentage. Ap­
parently in these cases the residence customer requires more time to 
handle. 

Percent service representative losses and percent business main 
telephones are not the only factors that can be used successfully. As 
sta,ted earlier, a number of other variables are nicely related to the 
parameters f31 andf32 and have approximately the same statistical 
efficiency. In addition, the inclusion of even more exogeneous variables 
can reduce the residual mean square error of the fit. For example, in 
Ref. 2 the average time required for a residence contact is effectively 
related to both percent business main telephones and the total number 
of main stations. Then the model takes the form, 

(7) 

where C3 is the total number of main stations. 
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TABLE I-ANALYSIS OF VARIANCE (LOG BASIS): 
MODIFIED lVloDEL 

Degrees of Sum of Squares 
Source Freedom (Fitted in order) ':-'lean Square 

log ao 1 96,482.4814 96,482.4814 

al 1 781.4373 781.4373 
/'0 1 111.4103 111.4103 
00 1 38.6524 38.6524 
/'1 1 6.8262 6.8262 
<'it 1 24.7510 24.7510 

Subtotal 
al/'ooo/'lOl 5 963.0752 192.6150 

Residual 2952 98.4815 0.0333 
Total 2958 97,544.0410 

For illustration, Table I gives the details of the analysis of variance 
for the model of equation (5), where 0 1 is percent service representa­
tive loss and O2 is percent business main telephones. Table II gives 
the estimates of the parameters from the complete fit, along with their 
standard errors. Table III presents the correlations among the esti­
mated parameters. One important aspect of such correlations is that 

TABLE II-ESTIMATES OF PARAMETERS: 
MODIFIED MODEL 

Parameter Estimate Standard Error 

log ao 0.1763 0.0040 
al 0.4400 0.0131 
/'0 0.1440 0.0074 
00 0.2935 0.0106 
/'1 0.0413 0.0027 
01 0.2507 0.0092 

TABLE III - CORRELATION OF ESTIMATES OF PARAMETERS: 
MODIFIED MODEL 

log 000 001 ')'0 00 71 01 

log ao 1.000 -0.622 0.386 0.027 -0.035 -0.370 
a1 -0.622 1.000 -0.458 -0.724 0.128 0.400 
/'0 0.386 -0.458 1.000 -0.090 -0.038 -0.663 
00 0.027 -0.724 -0.090 1.000 -0.235 -0.070 
/'1 -0.035 0.128 -0.038 -0.235 1.000 0.047 
01 -0.370 0.400 -0.663 -0.070 0.047 1.000 
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the actual values obtained as estimates of the parameters cannot be 
separated from the model used to obtain them. For example, the esti­
mate ofS! is not the same in the models of equations (5) and (7). 

Another feature of these exogencous varia hIes is that their selection 
and use in a measurement scheme will be heavily influenced by non­
statistical factors. The reason is that the mere selection of variables to 
be included in a measurement scheme can influence the operation of 
the office. If not carefullly selected the measured variables may be­
come ends in themselves and the office may operate in such a way 
that its objective is not performing the real work function, but rather 
getting credit for the measurement scheme. Such a situation could 
even prevent office reorganization. An office may not feel inclined to 
automate if such a modernization would eliminate items for which 
credit is given. These are undesirable results; but it is also true that 
this type of an interaction can be used to bring about more favorable 
ends. For example, if larger offices are thought to be desirable, the 
allotment of larger time credits to larger offices would probably create 
a movement towards consolidation. 

It is interesting to ask how the inclusion of percent service repre·· 
sentative losses in a measurement scheme would affect the offices. One 
answer is that it seems unlikely that a manager would or could try 
to remove employees in order to increase the turnover rate. He al­
ready has considerable pressure on him to keep these losses as small 
as possible. However whether this is an accurate statement or not, 
this example makes it clear that major management decisions are 
needed during the development of any measurement plan. 

In summary, it seems clear that the decision to include any variable 
in a measurement plan should be influenced not only by the statistical 
characteristics of the variable but also by very careful management 
considerations. 

V. SOME ACTUAL OFFICE COMPARISONS 

The suggested measurement basis gives each office a time allotment 
based on the number of business and residence contacts handled and 
an adjusted (by the profile variables) standard time per contact, plus 
an allotment for overhead time based on the size (number of ac­
counts) of the office. The formula is given in equation (8) using per­
cent service representative losses and percent business main. This 
allotment ,is to be compared with the actual time consumed. Presum­
ably this would be done each month. 

It seems most natural to compare the allotted and actual times as 
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a percentage; see equation (9). Other comparisons would be possible, 
such as one based on the difference of the actual and allotted times, 
but the percentage seems preferable because of its more natural scaling. 
The formula used is 

[ alloted tim.e] _ 1193Ao.440Fo.144+0.041C1Fo.293+0.21i1C. 
for office ~ -. i 1i 2i 

where A i is the monthly number of accounts carried by the office, 
Fli is the daily number of business contacts, 
F2i is the daily number of residence contacts, 
C1 is the monthly percent Service Representative loss, 
C 2 is the percent business main telephones for the month. 

E = time allotment X 100. 
actual time reported 

(8) 

(9) 

Thus at the end of each month each office receives a rating which 
tells how it performed in relation to its own time standard. This al­
lows two types of comparisons. The first is the month to month com­
parison of each office with itself; the second is the comparison of offices 
with each other on the basis of their percent efficiency. It is important 
to notice that these are different comparisons. It would not be im­
possible for an office to slip in comparison with itself from one month 
to the next but rank higher when compared with all other offices. 

Based on the data of the three month study, the suggested procedure 
gives the rankings shown in Table IV. Notice that the rankings are 
relatively stable and that cases do occur in which the E number and 
the ranking go in opposite directions from one month to the next. For 
example, consider offices 4 and 34. 

After these rankings were calculated, they were checked for obvious 
systematic behavior. None was found. The E values are not related 
to the gross time used by the office nor to any of the variables used as 
inputs to the estimated time. This means that the scheme does not 
seem to be favoring offices with special characteristics. 

VI. PRINCIPAL STEPS IN FORMING THE MODEL 

The key steps which lead to the final model formulation are: 

(i) The formation of the entities. This allows analysis of comparable 
office groupings without which consistent statistical relationships would 
probably not have been found. 

(ii) The recognition that the relationship between time consumed 
and demand load is nonlinear and that a log transformation allows 



2504 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

TABLE IV -- OFFICE E NUMBERS AND RANKINGS 

:\Jonth 1 :\Ionth 2 I Month 3 
OfIice ------------------

I' ('signa tiun Hank E-Value Hank H Value Hank E-Value 
--------------------------

1 26 96.11 37 93.98 27 99.42 
2 41 S3.52 34 94.69 32 95.40 
3 15 105.77 16 107.29 20 104.57 
4 18 98.87 20 102.67 36 92.44 
5 11 111.60 8 118.58 3 123.10 

------
6 34 93.18 21 102.63 14 108.40 
7 29 94.40 32 96.07 38 92.26 
S 20 9R.41 22 102.06 21 103.27 
9 S 115.29 12 114.08 11 115.09 

10 27 95.57 39 92.94 41 85.66 

11 42 80.50 45 75.73 43 78.75 
12 39 89.58 23 101.13 22 101.21 
13 10 112.04 11 115.40 8 119.22 
14 46 70.79 46 74.32 45 73.34 
15 3 123.27 4 121.93 5 121. 50 

------
16 19 98.61 24 99.38 24 100.47 
17 4 120.53 7 119.10 10 116.77 
18 33 93.2,1) 3.5 94.46 31 95.78 
19 21 98.01 38 93.97 23 100.65 
20 7 116.60 .1) 120.60 6 120.83 

21 9 114.94 6 120.53 2 129.1.1) 
22 36 91.23 36 94.07 34 93.67 
23 13 109.49 15 111.11 9 117.14 
24 23 97.31 26 99.15 33 94.12 
25 1 159.53 1 138.73 7 120.68 

26 5 118.60 13 111.73 16 107.15 
27 6 118.48 3 128.52 4 121.97 
28 2 130.53 2 130.76 1 132.68 
29 35 92.62 25 99.17 35 93.26 
30 38 89.81 30 96.48 29 98.34 

31 28 94.80 U) 103.05 12 112.83 
32 14 109.22 10 116.47 19 106.14 
33 37 90.41 27 99.00 30 96.08 
34 31 93.69 33 94.94 17 106.60 
35 32 93.51 31 96.11 37 92.33 

36 22 98.00 40 91.44 40 86.92 
37 24 97.12 28 97.94 15 107.29 
38 25 96.12 17 105.94 25 99.95 
39 30 93.78 29 97.41 28 98.43 
40 17 102.32 14 111.26 26 99.92 

41 45 74.47 43 77.79 42 80.03 
42 43 79.23 41 81.59 39 90.83 
43 40 84.41 44 77.15 44 76.83 
44 44 75.79 42 78.32 46 72.17 
45 16 104.34 18 104.60 18 106.50 
46 12 110.14 9 116.77 13 112.13 
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simple and effective fitting. This transformation also has the im­
portant advantage of stabilizing the variances, thus making the spread 
of the resulting E estimates about the same for different classes of 
entities. 

(iii) The recognition that the business-residence classification of 
customer contacts was more closely related to time usage than any 
other work categories. This grouping not only predicts time very well, 
but also requires substantially less data gathering than the more de­
tailed classifications. In addition, since System offices tend to be 
organized according to the business-residence function, data gathering 
for this classification might possibly be completely automated. 

(iv) The recognition that gross time can be predicted with more 
accuracy than the time associated with any subcategories. This means 
that work categories for which no frequency counts are available, are 
included in the analysis as "overhead" time. It also means that no 
work sampling is required. 

(v) The introduction of the number of accounts as a measure of 
office size and its use in scaling the estimates of overhead time. Simi­
la,rly, the use of the profile variables for adjusting the average time 
made the office comparisons more equitable. 

VII. SUMMARY 

This paper has described the development of statistical models for 
time usage in Bell System business offices. These experimental models 
have been designed so that they are good predictors of time, and can 
be used to give time allowances to different offices in an equitable 
way. The latter requirement means that suitable external variables 
have to be included. The manner in which this is carried out (see Sec­
tion 4) is one of the key parts of the paper. 

Finally it is pointed out that although work sampling may give 
very useful information in time studies, the use of a measurement 
scheme based on statistical models of the kind suggested in the paper 
would not require it. Data obtained by work sampling was used in 
the analysis but is not necessary for the general application of this 
approach. 
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A Heterodyne Scanning Systenl 
for Hologram Transmissiont 

By ARTHUR B. LARSEN 

(Manuscript received November 19, 1968) 

This paper describes the experimental realization of a recently proposed 
scanning reference beam technique for hologram transmission. The appara­
tus uses an extremely simple method for obtaining the two different but 
phase-locked optical frequencies necessary for the heterodyne mode of 
operation. The paper shows reconstructions obtained from transmitted 
holograms of two- and three-dimensional objects, analyzes the signal-to­
noise ratio and resolution attainable with this technique, derives a new 
general theorem concerning the detectability of the interference between two 
arbitrary beams, and discusses the theorem's applications to this system. 

I. INTRODUCTION 

The transmission of holograms over electrical channels is of interest 
not only because of the three-dimensional images obtainable with 
such a system but also because of the possible advantages of the 
holographic process as a coding technique for subj ectively more error­
resistant transmission of two-dimensional material. Indeed, the trans­
mission of thin holograms over conventional television systems pre­
sents no conceptual difficulties and has already been demonstrated 
with low resolution holograms.1 However, the necessity of resolving 
the holographic carrier fringes, as well as other unnecessary spatial 
frequency components, results in the waste of % of the resolution 
capability of the camera. Although recently devised techniques can 
avoid this waste, the use of these techniques in useful holographic 
transmission systems is still limited by the resolution of camera tubes. 2 

This paper describes the experimental realization of a scanning ref­
erence beam technique for hologram transmission recently published 
by Enloe, Jakes, and Rubinstein.3 This technique not only eliminates 

t This paper was presented at a meeting of the Optical Society of America, 
Pittsburgh, October 9-12, 1968. 
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the camera tube but also requires minimum resolution from the optical 
scanner used in its place. Furthermore, the advantages of this system, 
because they accrue through the elimination of totally extraneous 
components present in all holograms, can be obtained while simul­
taneously using other bandwidth reduction schemes, such as those of 
Lin or Haines and Brumm.4,5 

We briefly describe the system here, and give more specific ap­
paratus information in Section IV. As Fig. 1 shows, the scanning sys­
tem replaces the conventional reference beam by a focused spot which 
is optically scanned in a raster fashion over the surface of a large 
area photodetector. The detector provides an output current propor­
tional to the integrated intensity of the total incident light. The time­
varying interference between the stationary object beam and the 
constant amplitude scanning spot causes a variation in the detector 
output. This signal is amplified and transmitted electrically to a 
receiver, where it modulates the kinescope intensity. The hologram 
made by photographing the kinescope display is then used to recon­
struct the original scene. 

II. ANALYSIS OF HETERODYNE SCANNING 

For mathematical simplicity and ease of understanding, the original 
analysis of the operation of this system as given by Enloe and others, 
was based on the assumption that the focused spot of the scanning 
reference beam could be represented by a delta function. 3 Actually, 
the reference beam cannot be focused to a mathematical point but is 
spread over a nonzero area. The shape and size of the limiting aperture 
in the system determine the nature and amount of this spreading and 
hence, the possible resolution. The limiting aperture in a real system 
is typically determined by the optical deflection system. We will here 
analyze the simple but practically important case of a focused spot 
formed from a uniform plane wave passing through a circular aperture. 

Assuming the limiting aperture and center of deflection of the scan­
ning beam to be located at the front focal point of the focusing lens, 
the distribution of eR (r, t), the electric field at a detector located in 
the rear focal plane of the lens, is given by 

(1) 

where a = 27rb IIA, b is the radius of the limiting aperture, I is the 
focal length of the focusing lens, l' is the radial distance measured 
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Fig. 1- Simplified heterodyne scanning system diagram. 

from the geometric center of the focused spot, and E R, WR, CPR, and A 

are the amplitude, angular frequency, phase, and wavelength of the 
reference beam. The object field eo is of the form 

(2) 

that is, a plane wave of amplitude Eo, angular frequencywo, and phase 
CPo incident on the detector at an angle of () = kA/27r with respect to the 
normal. (Because they are virtually equal for all purposes of this 
derivation, no distinction is made between the wavelengths of the 
object and reference beams.) 

With the scanning spot moving at a horizontal velocity u and a 
vertical velocity v, J(r, (), t), the intensity at any point (r, ()) on the 
detector surface as measured from the geometric center (x = ut, Y = 
vt) of the focused spot, is given by 

I( t) 1 ( t) + ( t) 1
2 = E2 + 4E~Ji(ur) + 4EREoJ 1(ur) 

r, e, = eRr, eor, 0 (ur)2 (ur) 

. cos [k(ut + r sin e) + (wo - WR)t + cf>o - cf>n]. (3) 

The detector output current i (t) is proportional to the integral of 
this intensity over the detector surface of area A. Incorporating the 
necessary physical constants to allow writing an equality, and assum­
ing that the detector intercepts all of the significant energy of the 
scanning beam so that the integrations over r can be extended to 
infinity, we have 

iCt) = Z~~v J l(r, e, t) dA 

= ~ {E!A + foo 1211- 4E~Ji~ur) r de dr 
Z ohv T = a 0 = a ( ur) 
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roo r" 4ERE oJ 1((J"r) . , + .I r-O .1
8

=0 --(J"r-- cos [kent + r 8m 0) 

+ (wo - Wll)t + ¢o - ¢R]r dO dr} , (4) 

where-rJ is the detector quantum efficiency, e the electronic charge, hll 
the photon energy, and Zo the impedance of free space. 

The first of the two integrals in equation (4) can be evaluated by a 
technique outlined by Born and "Volf (see p. 398 of Ref. 6) ; the total 
dc component of the detector current then becomes 

ide = ZrJ
h
e (E~A + 47rB~1 (J"2) . 

'..J o II 
(5) 

The last integral of equation (4) gives the ac (signal) component 
of the detector output current and can be further simplified to 

·/:0 J 1((J"r)J o(kr) dr. (G) 

Equation (6) can then be evaluated to yield 7 

J 
rJe 87rEREo 

Zohv (J"2 cos [(ku + Wo - WR)t + ¢o - ¢lll 

10 
for k < (J", that is, 0 < bit 

for k > (J", that is, 0 > blf. 

i.(t) (7) 

Thus, the scanning spot cannot resolve the phase variations in an 
off-axis plane wave unless () < blj. In other words, the object beam 
must appear to come from within the active aperture of the lens used 
to form the scanning spot. Therefore, a beamsplitter of some type must 
be used in this system to recombine the object and reference beams. 

If ,CJ)o = WR, equation (7) shows the maximum electrical output fre­
quency to be kul27r = u()/A. With a scanning system that provides a 
peak-to-peak angular beam deflection of 0, the scan length in the 
focal plane of the scanning beam focusing lens is oj. At a horizontal 
scan velocity of u, this length will be traversed in oj lu seconds, dur­
ing which time a maximum of ob/A cycles will be generated. Thus, 
the maximum number of resolvable line pairs (or phase changes) is 
completely determined by the clear aperture and angular deflection of 
the optical scanner. Because the information to be modulated onto 
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the spatial carrier contains both positive and negative spatial fre­
quencies, the maximum allowable modulating spatial frequency is 
just one-half of that determined above, giving a usable resolution of 
nb/2A line-pairs per scan line. (A more detailed discussion of the res­
olution and bandwidth requirements for this and the following case 
may be found in Ref. 3.) 

With Wo ~ W R , equation (7) shows the ac output frequency to be 
limited only by Wo - W R • The maximum value of k is still restricted as 
before, but if Wo - W R is chosen greater than ukma'K. , the entire range of k 
values can be used to contain a single sideband of object information, 
effectively doubling the scanner resolution. In this mode of operation, 
the transmitted holograms should yield image reconstructions having 
the same resolution that could be obtained by using the scanner as a 
flying spot image dissection system. (It may also be possible to obtain 
increased resolution in the case of Wo = W R by operating in a single­
sideband mode; this has not yet been experimentally investigated.) 
The method of obtaining the two different, but phase-locked, optical 
frequencies needed for this maximum resolution heterodyne operation is 
described in Section 4.1. In both cases, the resolution in the direction 
parallel to the carrier fringes is determined only by the spot size. 

III. SIGNAL-TO-NOISE RATIO 

Under optimum conditions, the only significant noise source will 
be the shot noise generated in the photodetector by the dc component 
of the detected signal. Substituting ide as given by equation (5) into 
the conventional shot noise formula gives a mean-square noise cur­
rent of 

(8) 

where B is the electrical bandwidth required by the system. 
Using the rms signal current as given by equation (7), the signal­

to-noise (power) ratio becomes 

~i = 327r27JE4~E~/ (E~A + 47r~ i) . (9) 
~n ZohVCT B CT 

As is usual with holography, Ell and Eo will be obtained from the same 
laser and will thus be subject to the constraint that 

E~A + 47rE~/CT2 ~ ZoPo , (10) 

where Po is the laser output power. [Equation (10) states that the sum 
of the object and reference beam powers cannot exceed the laser power.] 
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It can then be shown that when E!A = 47rE~/q2 = tZoPo , equation (9) 
has a maximum given by 

(11) 

Defining an equivalent scanning spot radius req such that a field of 
uniform intensity E B incident on a circular area of radius r eq provides 
the same photo detector current as the actual incident field, we have, 
using the appropriate term from equation (5) 

(12) 

'Vith N s , the number of resolvable spots, then giycn approximately by 
Ns = A/7rr2eq = Aa2/4?T, equation (11) becomes 

(~) max = ;~. ' (13) 

where N p = P ~/hv is the number of photons per second incident on the 
detector. To transmit a hologram in a specified time, B will have to 
be increased as Ns increases, in which case the signal-to-noise ratio 
decreases with the square of the number of resolvable spots. 

IV. EXPERIMENTAL APPARATUS AND PRELIMINARY SYSTEM OPERATION 

Figure 2 is an overall diagram of the apparatus used for the experi­
mental verification of the heterodyne scanning system. 

4.1 Object and Reference Beam Generation 

A Spectra-Physics Model 125 50-mw He-N e laser operating at 
6328 A is used as the optical source. The portion of its output trans­
mitted by beamsplitter 1 is used for object illumination; the remainder 
is reflected at normal incidence from the moving mirror M. This intro­
duces a Doppler shift and is the method by which the two different but 
phase-locked optical frequencies are obtained. The large motions re­
quired (~ 0.1 mm peak-to-peak) are readily obtained by using a modi­
fied loudspeaker assembly for the mirror driver. The Doppler-shifted 
light returns to the beamsplitter, where the transmitted portion proceeds 
to the optical deflection system. 

4.2 Beam Deflection and Focusing 
The first deflection (horizontal) is performed by an American Time 

Products type 44 optical sCanner operating at 7.2 kHz. This unit has 
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a clear aperture of 2 mm radius and provides a 6° peak-to-peak scan. 
The line scan thus formed is then deflected vertically by a second scan­
ner that affords a clear aperture radius of 8 mm with a 15° peak-to­
peak deflection at 60 Hz. Both scanners operate in torsional-mechan­
ical resonance and hence provide only sinusoidal deflections. 

Lens Ll transforms the angularly deflected beam into the focused 
scanning spot. The unavoidable physical separation of the two optical 
deflectors separates the horizontal and vertical centers of deflection, 
causing the locus of the waist of the scanning spot to be astigmatic. 
Compensation for this effect is provided by the inclusion of cylindrical 
lenses L3 and L4 in the object beam path. Spherical lens L2, in con­
junction with L3 and L4, corrects for the curvature of field of the 
focusing lens Ll and expands the object beam to the size required to 
match the scanning spot raster. 

4.3 Detection 

Beamsplitter 2 is used to recombine the object and reference beams. 
As Section II shows, the use of a beamsplitter for this purpose is a 
necessity rather than a convenience. The actual detection was done 
using United Detector Technology type PIN-IO large area silicon 
photo diodes. The sensitive surface of the photodetector was originally 
placed at the locus of the scanning beam waist; it is still convenient 
to consider the detection process to occur there. However, it was ex­
perimentally observed that this particular detector location is not 
only unnecessary but undersirable. It is unnecessary because it can 
be shown that the detected beat signal is independent of the detector 
position provided the detector intercepts all of the area common to 
both beams. The special case where both beams are essentially plane 
waves has been long known and used by those engaged in optical 
heterodyne experiments, but to our knowledge, the general case has 
not. A derivation of this very useful result, modeled after one first 
given by H. Kogelnik, may be found in the appendix, which also 
contains other interesting applications of the general theorem. 8 

With no need to either carefully position the detector or require 
its surface to conform to the locus of the scanning beam waist, it 
can be located away from the focus, thereby reducing, by orders of 
magnitude, the peak instantaneous power densities at its surface. In 
addition, the effects of dust particles and other local anomalies of the 
detector surface are considerably reduced by an out-of-focus loca­
tion. In all cases, the equivalent hologram is made at the locus of 
the scanning beam waist, independent of the actual detector position. 
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4.4 Hologram, Display and Recording 

The amplified and processedt output of the detector is used to in­
tensity modulate a ,Vestinghouse ,VX-30l76P lO-inch high resolution 
kinescope. Synchronizing pulses from the optical deflectors are used 
to regenerate the sinusoidal sweeps necessary to match the kinescope 
i:lweeps to the optical ones. Because the horizontal and vertical optical 
deflection systems are both free-running oscillators, the kinescope dis­
play has random interlace. In conjunction with the several seconds 
of exposure required to record the kinescope output on Polaroid 46-L 
transparency film, this random interlace causes the scanning lines to 
be smeared together and undiscernible in the final hologram, eliminat­
ing the problem of diffraction by them. 9 

4.5 Reconstruction 

The still limited resolution available with this system requires ob­
ject-reference beam angles of less than 2°. To separate the real image 
from the direct beam and virtual image when reconstructing, the 
Fourier transform technique described by Enloe and others is used, 
the only modifications being the inclusion of cylindrical lenses in the 
final imaging process.1 These permit compensation for astigmatic ef­
fects arising from both the oblique optical paths through the second 
heamsplitter and geometric distortions caused by disparities in the 
optical and electrical sweeps. 

v. SIGNAL FJNHANCEl\IENT TECHNIQUES 

In addition to the desired signal [equation (7)] and shot noise 
[equation (8)], the detector output includes ac components due both 
to variations in the laser source output and position dependent modu­
lations of the scanning beam. The largest of the source variations are 
periodic and result from plasma oscillations within the laser active 
medium. These are suppressed by the use of 1'f excitation of the dis­
charge. The smaller, random, source fluctuations remaining, though 
comparable in amplitude with the desired signal, can be considerably 
attenuated by using two photodetectors in a balanced modulator con­
figuration, as shown in Fig. 2. Source amplitude fluctuations, which 
produce in-phase variations in both photodetector outputs, are can­
celed in the following difference amplifier; the desired interference 
terms give rise to out-of-phase signals which are enhanced. As shown 

t Various techniques for improving the signal-to-noise ratio which are used arc 
discussed in the Section V. 



2516 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

in the appendix, this out-of-phase condition for the desiredinterfer­
ence term can be assured only when using a lossless beamsplitter. 

Position dependent modulations of the scanning beam are caused by 
dust and imperfections on the beamsplitter and detector surfaces as 
well as by multiple reflections. The poor impedance match between 
silicon and air causes particularly severe reflections at the detector 
surface. When conditions are right for this reflected light to be re­
turned to the detector surface by a second reflection at some other 
optical surface, a modulation of the detector output in synchronism 
with the scanning spot position results. Either of these effects produce 
on the display kinescope a stationary pattern which can be distin­
guished from a true hologram by its presence in the absence of the 
object beam. Such position dependent modulations can be greatly at­
tenuated by photographing the kinescope display with a double ex­
posure technique: half of the necessary exposure is made in the usual 
way, while for the remainder the reference beam path is lengthened by 
a half wavelength and the gain of the final video amplifier is reversed 
in sign. This combination of optical and electrical phase shifts leaves 
unchanged those components of the video signal arising from inter­
ference between the object and reference beams, but reverses the 
polarity of the position dependent modulations described above. The 
position dependent modulations during the second exposure thus 
cancel those of the first, leaving only the desired object-reference 
beam interference terms. 

The efficacy of these signal enhancement techniques is demonstrated 
in Fig. 3, which compares the outputs obtained using single detection, 
Fig. 3a, balanced detection, Fig. 3b, and balanced detection with 
double exposure, Fig. 3c. The presence of a significant amount of 
random noise, indicated by poor definition and contrast, is readily 
evident in Fig. 3a. The suppression of this noise by a balanced detec­
tion system yields considerable improvement, as shown by Fig. 3b. 
It is not possible, by inspection of Fig. 3b only, to determine whether 
or not any position dependent modulations are present. However, com­
paring it with Fig. 3c, in which they are suppressed, shows the nature 
and severity of their contribution. 

VI. EXPERIMENTAL RESULTS 

6.1 Resolution 

When operated in the heterodyne mode, that is, with the off-axis 
reference beam simulated by a controlled frequency difference between 



Fig. 3 - Effects of signal enhancement techniques on hologram quality: 
(a) single detection, (b) balanced detection, (c) balanced detection with phase­
reversal and double exposure. 
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the object and on-axis reference beams, this system should produce 
holograms that yield reconstructions with resolutions equal to those 
obtainable when using the same deflection system as a conventional 
flying-spot scanner. This assumes that the kinescope-camera portion 
of the system has a resolution capability of at least twice that of the 
optical scanner. 

How well this prediction is met can be seen by comparing Fig. 4a, 
a photograph of the kinescope display taken when operating the sys­
tem as a flying-spot scanner, with Fig. 4b, the real image reconstruc­
tion of the same object made from a transmitted hologram. Calcula­
tions, based on the parameters of the optical deflection system used, 
predict a resolution capability of 200 line-pairs; this value is reached 
in the flying-spot display of Fig. 4a. The measured limiting resolu­
tion of Fig. 4b, though only 160 line-pairs, is considerably in excess 
of the theoretical maximum of 100 obtainable with nonheterodyne 
scanning. 

Figure 4a also shows the ability of the random interlace, when 
used in conjunction with a long exposure, to reduce the visibility of 
the scanning lines; the 60 lines per frame would otherwise produce a 
very coarse raster. Figure 5 indicates the subjective quality of the 
reconstructions obtainable with this system. 

6.2 Transmission of Three-Dimensional I mages 

Heretofore it has been tacitly assumed but not really required that 
the subjects be two-dimensional. Actually this assumption may be 
dropped and more complicated objects considered. The next step in 
complexity, the simplest three-dimensional scene, consists of two (two­
dimensional) transparencies separated longitudinally. The hologram 
transmitted for such a three-dimensional "object" (a vertical grating 
of period 0.5 mm located 5 cm behind a transparency portrait) is 
shown in Fig. 6. 

The necessarily nondiffuse nature of both the illumination and the 
subj ect transparencies used in this experiment results in an extremely 
limited field of view, preventing the use for depth cues of not only 
binocular vision but also parallax. Demonstration of the three-dimen­
sional nature of the reconstruction obtained from this hologram is 
therefore limited to showing the optimum focus for different portions 
of the reconstruction to lie in different planes. The real image recon­
struction from Fig. 6, when taken in the plane of best focus for the 
grating, is shown in Fig. 7a. Figure 7b shows the corresponding re-
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Fig. 4 - Comparison of image quality of flying-spot and heterodyne scanning 
transmissions: (a) flying spot, (b) heterodyne scanning. 
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Fig. 5 - Two-dimensional portrait reconstructed from transmitted hologram. 

suIt when the reconstructed image is recorded in that plane that pro­
vides optimum focus for the portrait, thus demonstrating the three­
dimensional nature of the reconstructions obtainable with this system. 

VII. SUMMARY AND CONCLUDING REMARKS 

A heterodyne scanning system for transmitting holograms, which 
requires no camera tube and the theoretically minimum resolution 
from the optical deflectors, has been constructed. This required the 
development of a technique for obtaining two different but phase­
related optical frequencies. Analyses have been made for the signal­
to-noise ratio and resolution as functions of the system parameters, 
and the resolution predictions verified experimentally. Several tech­
niques for improving the system signal-to-noise ratio have been im­
plemented. The use of random interlace and many-field exposures 
avoided the problems of diffraction by the scanning lines when recon­
structing. Off-axis holograms of both two- and three-dimensional ob­
jects have been transmitted and reconstructed. 

The kinescope-camera receiving system, though easily implemented 
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in the laboratory, is not only limited in its resolution capability, but 
is also unsuited for real-time operation. However, a receiver operating 
on the Eidophor principle would not only solve the real-time problem 
but the resulting phase holograms would also provide increased optical 
efficiency in reconstruction.10 

Because of its compatibility with other bandwidth reduction 
schemes, the heterodyne scanning technique should find application 
wherever holographic information is to be transmitted over systems 
having limited resolution or bandwidth. The present edge in resolution 
held by conventional camera tubes over optical scanning devices is 
expected to disappear as a result of the considerable effort now being 
applied to optical deflection techniques. 

The experimental observation and subsequent proof that the de­
tector output is independent of the position of the scanning beam 
waist relative to the detector should prove to be important not only 
to the successful operation of this experiment but to the extension of 
flying-spot scanning techniques into areas where depth of focus prob­
lems have heretofore prevented their application. 

Concurrent with the submission of this paper and the publication 

Fig. 6 - Hologram of three-dimensional scene. 
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Fig. 7 - Demonstration of three-dimensional nature of image reconstructed 
from hologram shown in Fig. 6: (a) bars in optimum focus, (b) portrait in opti­
mum focus. 

of Ref. 3, Bertolotti and others published the results of their analysis 
and experiments on a one-dimensional holographic transmission sys­
tem.3

,ll The transmitter described here, when operated in a non­
heterodyne mode, is similar to theirs, but their analysis and proposed 
receiving system are different. The interested reader will find it worth­
while to become acquainted with their approach to the problem of 
hologram transmission. 

VIII. ACKNOWLEDGMENTS 

The author acknowledges fruitful discussions with L. H. Enloe, 
H. Kogelnik, R. C. Brainard, and C. B. Rubinstein. 

APPENDIX 

Conservation of Beat Energy 

A.1 Derivation 

We consider the limitations and conditions under which the beat 
signal obtained by detecting the interference between two optical 
beams is independent of the detector location. The analysis is modeled 
after one proposed by H. Kogelnik. 8 
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Consider a volume containing no optical sources or sinks and hav­
ing a boundary that is everywhere in free space. Under these condi­
tions, Poynting's theorem for any incremental volume in this region 
can be written 

V.s + aH' = 0 
at ' (14) 

where S = EXH and W = !eE2 + !p,H2. E and H, the resultant real 
electric and magnetic fields produced by the combination of the two 
beams, can be written as the sum of the single frequency real fields 
corresponding to each beam: 

E = EI exp iw1t + Et exp -iw1t 

+ E2 exp iW2t + Et exp -iW2t 
(15) 

H = HI exp iwlt + Ht exp -iw1t 

+ H2 exp iW2t + Ht exp -iW2t, 

where WI and W2 mayor may not be equal. Substituting the values of 
E and H from equation (15) into equation (14), and comparing beat 
terms varying as exp i(WI - W2)t, we have 

V·(EI X Ht + Et X HI) = -i(Wl - w2)(eE1 ·Et + P,Hl·H~). (16) 

Equation (16) rewritten in the integral form gives 

c 

= -i(WI - W2) 111 (eEl ·Et + P,HI ·H~) dV, (17) 
v 

where the surface C encloses the volume of integration V. A photo­
detector intercepting these fields will provide a beat signal current, II), 
having a complex amplitude given by 

(18) 

where D is the area of the detector and K incorporates several physical 
constants. The left side of equation (17) is now recognized as giving, 
within a constant multiplier, the response of a detector intercepting all 
of the beat energy crossing surface C. For the case where WI = W2 , the 
right side of equation (17) is identically zero. Under appropriate condi-
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tions, defined in Section A.3, it is possible for the right side to be negligi­
bleeven with WI ¢ W z • The following three important results, derivable 
from this theorem assume a zero right side. 

A.2 Applications 

A.2.1 Oonstancy of Detected Beat 

Consider, as shown in Fig. 8a, a volume through which the com­
bined beams are propagating. Let 0 1 contain all of the surface 0 
common to the two beams as they propagate into the volume, and 
O2 contain all of 0 common to the beams as they leave. Then, by 
definition, the vector product is zero everywhere except over some 
regions of 0 1 and O2 , and equation (17) can be written 

If (EI X H~ + E~ X HI)·dA 
. c, 

+ fL. (EI X H~ + E~ X HI) ·dA = O. (19) 

Taking into account the relative directions of the vector products and 
the surface normals at 0 1 and O2 leads to the conclusion that a detec­
tor intercepting the beams crossing O2 yields identically the same out­
put as a similar detector intercepting the beams crossing 0 1 • Since the 
separation of 0 1 and O2 is arbitrary, the detector output is independ­
ent of its location, provided all of the area common to both beams is 
intercepted. 

A.2.2 Phase Relationships with a Lossless Beamsplitter 

In the case shown in Fig. 8b, the surface 0 encloses a lossless beam­
splitter which is combining two input beams into two output beams, 
each output containing a part of both inputs. 0 1 and O2 again contain 
all the portions of 0 that are common to both beams. As before, the 
cross-product is, by virtue of the definition of 0 1 and O2 , zero every­
where except on 0 1 and O2 , so that equation (19) still applies. How­
ever, when the relative directions of the beat energy flux and the sur­
face normals are taken into account, we arrive at the result that the 
interaction at one detector must be the negative of that at the other, 
yielding detector outputs 1800 out of phase. 

A.2.3 Oombining Beams without a Beamsplitter 

The last case to be considered involves two otherwise separate beams 
brought in at appropriate angles so they overlap at the detector sur-
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Fig. 8 - Applications of theorem on conservation of beat energy: (a) inde­
pendence of detector position, (b) phase relationships with losslessbeamsplitter, 
(c) combining beams without a bearhsplitter. 
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face. As shown in Fig. 8c, the surface C is chosen in this case to pass 
just in front of the detector and to close in some region of space where 
the two beams are separate. Now the interaction term is everywhere 
zero on C except at C3 , where the two beams overlap. Equation (17) 
for this situation reduces to 

If (EI X H~ + E~ X HI)·dA = 0, 
c. 

(20) 

which says that no interference is detected in this arrangement. This 
identical result was derived in a completely different fashion in the 
body of the paper in connection with the analysis of the system res­
olution. 

A.3 Extensions and Lirnitations 

Notice that these derivations require absolutely no assumptions as 
to the structure of either of the fields other than that they obey Max­
well's equations. Furthermore, there are no restrictions on any dis­
tances involved. 

For the heterodyne case where WI - W2 =;t. 0, equation (17) has a 
nonzero right side. However, for small beat frequencies the above 
rules are still true. Although evaluation of the right side of equation 
(17) for the general heterodyne case is impractical, a simple example 
can be analyzed to indic'ate when it may reasonably be ignored. 

Imagine a region of free space containing two plane waves with 
the same polarization but different frequencies, both propagating in 
the +z direction. It can easily be shown that the single (z-directed) 
beat frequency component of the Poynting vector has an amplitude 
which is independent of z. However, its phase does vary with longitu­
dinal position, changing by 71"/2 for every change in z of 71"cj2 (WI - (2). 

For the 3-MHz beats observed in this experiment, this quarter-wave 
distance was 25 meters, much larger than the dimensions of the ex­
perimental apparatus. It is reasonable to assume that a similar phase 
variation would be found in the general case. 

Although the amplitude of the interaction was constant even in the 
heterodyne case for the plane wave example, it can be shown to de­
crease with z for gaussian beams.s This amplitude change, however, 
typically occurs over distances orders of magnitude larger than that 
for the phase change; even for the extreme case of different wave­
length gaussian beams fo.eu~ed by an.! /1 optical system, significant 
phase variations of the detected beat signal occur with detector move-
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ments an order of magnitude less than required for correspondingly 
significant amplitude changes. 
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Jump Criteria of Nonlinear Control Systems 
alld the Validity of 

Statistical Lillearizatioll Approximation 

By SANG H. KYONG 
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We study the conditions for the unique response in a class of nonlinear 
control systems subject to random inputs using statistical linearization 
approximation. As in the case of sinusoidal inputs, we show that jump 
phenomena may occur if the inverse vector locus of the linear part passes 
th1'Ough certain regions on the complex plane, where the regions are defined 
by the characteristics of nonlinear part. Such jump phenomena regions 
for several typical nonlinearities are given; we also show that, among a 
restricted class of nonlinearities, the saturation and dead zone produce 
the largest jump phenomena regions. 

A new result concerning the validity of statistical linearization approxi­
mation of nonlinear control systems is also presented. We show that the 
condition for the uniqueness of response to a given input in a nonlinear 
feedback system obtained through statistical linearization approximation 
is compatible with a related rigorous result, thus providing additional 
confidence in the applicability of statistical linearization. 

1. INTRODUCTION 

It is well known that jump resonance can occur in nonlinear con­
trol systems with attendant worsening of the control performance. 
In the case of periodic input signals, the rigorous conditions for the 
unique response,* or equivalently, for the absence of jump resonance, 
are available.1 In addition, various authors have studied the conditions 
for the absence of jump resonance using the describing function 
method (see Refs. 2 and 3); the describing function method criteria 

* Although the present terminology is widely used, a more precise term will 
be "unique solution to the equations arising from the steady state situation for 
a given input realization." 

2529 
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for jump resonance have been found for many common nonlinearities. 
For systems with random inputs, the exact condition for the unique 
response is not known, although a rigorous condition for the converg­
ence of a successive approximation is available.4 

A useful approximate technique for studying the performance of 
nonlinear feedback systems subject to random inputs is Booton's 
method of statistical linearization.5 Although the method of statistical 
linearization has been widely used, the conditions for its validity arc 
not fully known. 

The first part of this paper concerns the determination of the cri­
teria for unique response, in a class of nonlinear control systems sub­
ject to random inputs, using statistical linearization approximation. 
We present the statistical linearization criteria for unique response 
for several common nonlinearities. ,Ve also show that an idealized 
saturation and an idealized deadzone yield the limit jump phenomena 
regions among a restricted class of nonlinearities. 

In view of the uncertainty concerning the conditions for the validity 
of statistical linearization approximation, it is of interest to compare 
the results of statistical linearization analysis with those of a rigorous 
analysis. The second part of this paper presents a result that provides 
new evidence on the validity of statistical linearization approximation. 
More specifically, the conditions for the unique response obtained in 
the first part on the basis of statistical linearization are compared with 
a rela.t.ed result of Holtzman/ which is a rigorous sufficient condition 
for the convergence of a successive approximation starting with the 
statistical linearization approximation. ,Ve show that the two condi­
tions are "compatible"; that is, the satisfaction of the rigorous condi­
tion for the convergence of the successive approximation guarantees 
the satisfaction of the conditions for unique response based on sta­
tistical linearization. However, since Holtzman's rigorous condition 
guarantees only the convergence of a specific successive approximation 
but not necessarily a unique reponse, while the conditions derived from 
statistical linearization are for the globally unique response, the pre­
cise interpretation of the present comparison is largely open to debate. 
The present comparison lacks the finality of a similar comparison con­
cerning the method of describing function in the case of periodic 
inputs.6 Still, the comparison appears to provide some additional con­
fidence in the validity of statistical linearization approximation. 

Section II defines the class of nonlinear control systems to be 
studied and derives the conditions for the unique response based on 
the statistical linearization analysis. Section III presents such condi-
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tions for the unique response for several typical nonlinearities. Sec­
tion IV shows that if the conditions for the unique response are met 
by saturation and deadzone nonlinearities, then a large class of other 
nonlinearities will also meet the conditions. Section V shows that the 
statistical linearization conditions for the unique response are com­
patible with a related rigorous condition. 

II. CONDITIONS FOR THE UNIQUENESS OF RESPONSE 

Consider the nonlinear feedback system of Fig. 1. The nonlinear 
characteristic f ( .) is assumed to be single-valued, odd, and piecewise 
continuously differentiable, and to satisfy 

o ~ a ~ f'(m) ~ b (1) 

for all real m, where a and b are real. Concerning the linear element, it 
is assumed that: 

(i) G(jw) is the Fourier transform of a real function g satisfying 

(ii) 

i: I get) I dt < 00, 

1 + Ha + b)G(jw) ~ 0 

for all w £ (- 00, (0), and 

(iii) 

(2) 

(3) 

(4) 

for all w £ (- 00, (0), where Kea is the equivalent gain of the nonlinear 
characteristic t(·) obtained by statistical linearization; that is, 

K = E[mf(m)]. 
eq E[m2] (.5) 

In equation (5), E[·] denotes expectation taken over the probability 
distribution of m. The input r to the feedback system is assumed to be 
a zero-mean, stationary gaussian random function with the power 
spectral density given by (J;CPr(w). 

,Ve further assume that m can be represented by a zero-mean 
gaussian probability distribution. That 1n can be zero-mean follows 

r ~c fl·) ~ G(jw) 
x 

Fig. 1-Basic feedback system. 
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from f ( .) being odd. This assumption is consistent with the usual one 
made in connection with a statistical linearization analysis of non­
linear feedback systems.5 

If the nonlinearity f ( .) is replaced by the equivalent gain K cq , then 
the variance of m can easily be determined from 

2 1 jCQ CT;cPr(W) d 
CTm = 271" _CQ 11 + ICqG(jw) 12 w. (6) 

From equation (6), it is seen that 

(7) 

for all w t (- 00, 00) is sufficient to guarantee* 

for all CT r • (8) 

Condition (8) implies that CT m is a monotonically increasing function 
of CTr , which in turn implies that there is a unique value of CTm given by 
equation (6) for a given CTr • This is the context in which the term 
"uniqueness" is used in this paper. Suppose that (dCTr/dCTm) < 0 in a 
certain interval of the values of CT r • Then, the curve of CT m versus CT r 
will have the shape given by either Fig. 2a or b. Figure 2a indicates 
nonunique CT m, and hence nonunique responses, or the presence of 
jump phenomena in the nonlinear feedback system of Fig. 1. Thus, the 
condition giien by equation (7) is sufficient for the absence of jump 
phenomena in the system of Fig. 1. 

Rewriting equation (7) with H(jw) = G-1(jw), Re H(jw) = L, and 
1m H(jw) = 7Jw , one obtains 

(
t + K + CT m dK e a) 2 + 2 (CT m dK e a) 2 

"W ea 2 dCTm 7Jw > 2 dCTm (9) 

Thus, inequality (7) is equivalent to the condition that the locus of 
H(jw) = G-1(jw), when plotted on the complex plane for w t (- 00, 00), 
remains outside of the circle centered at 

( _ [K", + CT')m dICa] , 0) 
... dCTm 

(10) 

and with radius 

* Inequality (7) may be considered to be necessary as well as sufficient for con­
dition (8), in the sense that if the inequality is reversed in inequality (7), then there 
is at least one I/Jr("')j for example,l/Jr("') = 0('" - ",'), such that condition (8) is violated 
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Fig. 2 - Curves of ITm versus ITr • 

p = 1 U m dK eq I. 
2 dUm 

(11) 

The union of all such circles for all nonnegative real values of U m gives 
a region on the H(jw)-plane such that the sufficient condition (on the 
basis of statistical linearization) for unique response or for the absence 
of jump phenomena is that the locus of H(jw) = G-1(jw) remains outside 
of that region as w is varied on (- 00, 00). 

As in Ref. 3, the circles defined by equations (10) and (11) will 
be called the iso-um circles, and the union of all iso-um circles for posi­
tive U m will be referred to as the jump phenomena region. Both the 
iso-urn circles and the jump phenomena region are determined by the 
characteristics of nonlinearity only. 

III. JUMP PHENOMENA REGIONS FOR TYPICAL NONLINEARITIES 

Centers and radii of iso-um circles for several typical nonlinearities 
are tabulated in Table I along with their normalized characteristics. 
Figure 3 shows the jump phenomena regions of these nonlinearities. 

IV. LIMIT JUMP PHENOMENA REGION 

Fukuma and Matsubara have shown that, using the describing 
function method for the system of Fig. 1 subject to sinusoidal inputs, 
the jump resonance regions for idealized saturation and idealized 
deadzone include the jump resonance regions for all other nonlineari­
ties satisfying 

o ~ t'(m) ~ 1, (12) 

in addition to being single-valued and odd.3 The idealized saturation 
is given by 
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TABLE I-CHARACTERISTICS OF NONLINEARITES 
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Fig. 3 - Jump phenomena regions: (a) relay, (b) relay with deadzone, (c) 
saturation, (d) saturation with deadzone, (e) deadzone, (f) f(m) = m 2 sgn(m), 
and (g) f(m) = m 3 • 
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m < -a, 

f(m) -a ~ m ~ +a, 
+a < m, 

and the idealized deadzone is given by 

f(m) 

m < -{J, 

-{J ~ m ~ +{J, 

+{J < m, 

(13) 

(14) 

where a and f3 are positive real constants. Such limit jump resonance 
regions are determined by finding the nonlinearity satisfying in­
equality (12) which maximizes the radius of the circle given the co­
ordinates of the center of the circle. 

In this section we show that the idealized saturation and idealized 
deadzone give a limit jump phenomena region also in the case of 
random inputs, if f ( .) is restricted to those satisfying inequality (12). 

Notice that 

~m ~~:q = ! E[mf(m)] - lCq , 
where v = u~. From a theorem given in Ref. 7, (d/dv)E[mf(m)] = 
E[f'(m)] + !E[mf"(m)], where prime denotes differentiation with re­
spect to the argument. Integrating the first term on the right by parts, 

E[f'(m)] = K.q. (15) 

These relations reduce to 

~m ~~:q = !E[mf"(m)]. 

If f(·) is such that f"(m) is piecewise continuous, then the right 
side of the above equation may be integrated by parts to give 

dK 1100 

~rn du:
q 

= -2" -00 f'(m)[p(m) + mp'(m)] dm. (16) 

For the gaussian probability density function for p(m), 

m2 

mp'(m) = --2 p(m). 
urn 

Therefore, equation (16) may be rewritten as 
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U
m dK.q = .! 100 (nf _ 1)!'(m)p(m) dm. (17) 

2 dUm 2 -00 U m 

If 1'(m) is only piecewise continuous (as in the case of saturation 
and deadzone given by equations (13) and (14), respectively) then 
f" (m) is not piecewise continuous, and the integration by parts used 
above to obtain equation (16) may not be valid in the ordinary sense. 
However, if the meaning of the integration 

E[m!"(m)] = i: mp(m)!"(m) dm 

is extended, and is considered as an operation of a distribution f" (m) 
on an infinitely smooth function mp (m), then a generalized integra­
tion by parts can be used. 8 The use of integration by parts, in the 
generalized sense, does not change the result in the present case, and 
equation (17) remains valid. 

Now, combining equation (17) with equation (15), 

- (Ke q + ~m ~~:q) = -~ i: (~ + 1 )f'(m)p(m) dm. (18) 

Suppose that the coordinate of the center of the circle is fixed, that is, 

-(K + U
m dKeq) = -A 

eq 2 dUm ' 
(19) 

where A is a constant. Clearly from equation (18), 0 ~ A ~ 1 for f'(m) 
satisfying inequality (12). From equations (18) and (19), 

i: (m2 + u!)f'(m)p(m) dm = 2AU~ . (20) 

The nonlinearity ihat gives the limit jump phenomena region is 
found by determining l' (m) such that it maximizes 

1 
Um dKeq 1 = ~ 11

00 

(m2 
- u!)!'(m)p(m) dm 1 (21) 

2 dUm 2um - 00 

subject to the constraints given by equations (12) and (20). 

By using Pontryagin's maximum principle the appendix shows that 
the solution of above optimization problem is given by an idealized 
saturation and an idealized deadzone, or the nonlinearities of the form 
of equations (13) and (14), respectively. In other words, the idealized 
saturation and idealized deadzone yield the limit jump phenomena 
regions among all nonlinearities which are single-valued and odd, and 
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satisfy 0 ~ rem) ~ 1, in the case of gaussian random input, as well 
as in the case of sinusoidal input. 

Suppose that the unit of the signals r, m, and so on, is normalized 
such that U m is taken as the unit. Then the appendix also shows that the 
jump phenomena circles giving the maximum radius are centered at 
(- Al , 0) for the idealized saturation with ex = 1 in equation (13) and 
at (-A2 , 0) for the idealized deadzone with (3 = 1 in equation (14). 
where 

"'I - _1_ [11 

-,,(/2 1/2 d + 11 -,,(/2 -1/2 d ] 
1\ - 2(27r)~ 0 e 'Y 'Y 0 e 'Y 'Y, (22) 

"' - _1_ [fOO -,,(/2 1/2 d + fOO -,,(/2 -1/2 d J. 
1\2 - 2(27r)! 1 e 'Y 'Y 1 e 'Y 'Y (23) 

In both cases, the magnitude of the maximum radius is given by 

- - _1_ [11 

-,,(/2 -1/2 d _11 -,,(/2 1/2 d J. 
p - 2(27r)! 0 e 'Y 'Y 0 e 'Y 'Y (24) 

The values of the integrals in equations (22) through (24) are tabu­
lated in Ref. 9; it is found that 

Al = 0.44072, A2 = 0.55928, p = 0.24197. 

v. COMPATIBILITY OF CONDITIONS 

In this section, we compare inequality (7), which is an approximate 
condition for the uniqueness of response or the absence of jump phe­
nomenon based on statistical linearization, with a related rigorous 
condition to obtain further evidence concerning the validity of sta­
tistical linearization approximation. Section II showed that inequality 
(7) implies the condition that the locus of H(jw) = a-1(jw) must remain 
outside of the circle defined by equation (10) and (11) on the complex 
plane as w is varied on (- C(), C()). 

On the other hand, the rigorous sufficient condition for the conver­
gence of a successive approximation is given in Ref. 4 as 

",~l'.Wl 11 + H:U:;) b)G(iw) I ~(b - a) < 1. (25) 

Inequality (25) implies that the locus of H(jw) = G- 1(jw) on the H(jw)­
plane, as w is varied on (- C(), C()), must not enter the circle centered at 

(-![a + b], 0) (26) 
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with radim;; 

p = Hb - a). (27) 

The circle defined by equations (10) and (11) intersects the real axis 
of the complex plane at -Keq and -[Keq + um(dKeq/dum)] with its 
center lying on the real axis. Similarly, the circle defined by equations 
(26) and (27) intersects the real axis at -a and - b with its center 
also lying on the real axis. Thus it suffices to show 

a ~ Keq + U m dd
Keq ~ b, 
Urn 

(28) 

and 

(29) 

for all positive U m • 

But inequality (29) follows immediately from equations (15) and 
(1). Combining equations (17) and (18), 

Keq + U m ddKeq = 12 Joo m 2 f'(m)p(m) dm. 
Urn U m - oo 

(30) 

From equations (1) and (30), a ~ Keq + um(dKeq/dum) ~ /3, which is 
the inequality (28). 

Thus, inequalities (28) and (29) are satisfied for all UII! > 0, which 
implies the two conditions are compatible; that is the satisfaction of 
condition (25) implies the satisfaction of condition (7) for all am > 0, 
and conversely, the violation of condition (7) for some am > 0 im­
plies the violation of condition (25). 

VI. CONCLUDING REMARKS 

The conditions for the unique response in a randomly excited non­
linear control system were studied using a statistical linearization ap­
proximation. The jump phenomena regions of several common non­
linearities were giveri. It was shown that, among nonlinearities satis­
fying ° ~ f'(m) ~ 1, the idealized saturation and idealized deadzone 
yield the limit jump phenomena regions. 

It was also shown that, concerning the uniqueness of the response 
in nonlinear feedback systems subject to random input, the criterion 
obtained by the statistical linearization approximation is not con­
tradicted by a related, although not equivalent, rigorous result. How­
ever, as mentioned in the introduction, the interpretation of this 
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result is largely open to debate since (i) the comparison made is be­
tween an approximate and a rigorous sufficient condition, and (ii) 
the two sufficient conditions are not concerned with exactly the same 
requirement. More specifically, the approximate criterion obtained in 
Section II is for a globally unique response, while the rigorous result 
of Holtzman, with which the comparison is made, is for the conver­
gence of a specific successive approximation. 

It is shown in Ref. 10 that, in a system closely related to that with 
which the present paper is concerned, there is a unique response up 
to an equivalence to an input r satisfying 

li~-->~up 2~ L: 1 r(t) 12 dt < 00, 

if the condition identical to condition (25) is satisfied. This result 
strongly suggests that condition (25) may be sufficient not only for 
the convergence of a specific successive approximation as shown in 
Ref. 4, but also for a globally unique response (up to an equivalence). 
If this is true, then the meaning of the result of comparison made in 
the present paper is correspondingly strengthened. 

It is interesting to compare the limit jump phenomena regions of 
the present approximate analysis (Fig. 3c and e) with the circle of 
rigorous analysis, and to notice that the limit jump phenomena re­
gions occupy substantial portions of the interior of the circle of ex­
act analysis. Also notice that in view of inequalities (25) and (29), 
the statistical linearization analysis of the system of Fig. 1 always 
has a solution under the conditions dicussed in Section II. 
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APPENDIX 

Optimization Problem 

The following optimization problem is stated in Section IV: Maxi­
mize I pi, where 

p = 21 21 00 

(m2 
- u!)f'(m)p(m) dm, 

U m -00 

(31) 

by choosing f' (m), - 00 < m < 00, satisfying the condition 
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o ~ f'(m) ~ 1, (32) 

subject to the constraint 

L: (m2 + (l)f'(m)p(m) dm = 2AU~ , (33) 

where A is a given constant such that 0 ~ A ~ 1. This problem may be 
solved by making use of Pontryagin's maximum principle. 

Since both (m2 - u~)p(m) and (m2 + (2)p(m) are even functions of 
m, it suffices to find f'(m) for m ~ 0, and to let 1'( -m) = f'(m). Thus, 
the problem may be reformulated in the following way. Let 

xl(m) = (m2 - u!)p(m)f'(m) , (34) 

x2(m) = (m2 + u!)p(m)f'(m) , (35) 

where Xl (0) = X2(0) = o. We want to minimize or maximize Xl (00) sub­
ject to X2( (0) = AU~. Pontryagin's maximum principle may be used 
to the above reformulation. The Hamiltonian function is 

H = gl(m)(m2 - u~)p(m)f'(m) + g2(m)(m2 + u~)p(m)f'(m), (36) 

where gl (m) and g2(m) are the adjoint variables. Clearly, (11 (m) = 
(h(m) = o. 

Suppose first that Xl ( (0) is to be minimized. Then gl may be set as 
gl = -1; and maximizing the resulting H with respect to f'(m) satis­
fying inequality (32), one obtains, 

f'(m) = ! + ! sgn [- (m2 - u~) + g2(m2 + u~)]. (37) 

It is easy to determine that 

(38) 

to satisfy the constraint X2( (0) = AU!. For the values of g2 satisfying 
inequality (38), equation (37) and f'(m) = 1'( -m) give 

1 
(1 + g2)! 1; Iml=::; r-=- Urn, 

f'(m) = g2 

. (1 + g2)! 
0, I m I > 1 _ g2 Urn, 

(39) 

as the one that minimizes Xl ( 00 ). The actual value of g2 is determined 
from equation (33), or 

l Ci 

(m2 + u!)p(m) dm = AU! , (40) 

where a = (1 + g2/1 - g2)!Um • 
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Proceeding similarly, the function f'(m) which maximizes X1( (0) IS 

, 10 ; I m I ~ (~ ~ o:Yum 
, 

f'(m) = 0 

1; I m I > (~ ~ ~:Y U m , 

(41) 

where -1 ~ 02 ~ 1. The actual value of 02 is found from equation (33), 
or 

~oo (m2 + u!)p(m) dm = t-u~ , (42) 

where {3 = (1 - [h/1 + g2)!Um • 

The functions f'(m) of equations (39) and (41) correspond to 
idealized saturation and idealized deadzone, respectively. Thus, among 
nonlinearities giving p < 0, f' (m) of equation (39) yields the limit 
jump phenomena region, and among the ones giving p > 0, f' (m) of 
equation (41) yields the same. 

Having determined the functions f'(m) that maximize I p I, it is 
also of interest to determine the actual values of maximum I p I and 
the location of the center of the corresponding circles on complex 
plane. In case of idealized saturation, the maximum of I p I cor­
responds to the minimum of p, and 

P = ~ l a 

(m2 
- u!)p(m) dm, 

U m 0 
(43) 

where a is given following equation (40) . We want to find the value of 
t-, 0 ~ t- ~ 1, such that p above is further minimized, and to find that 
minimum value of p. Differentiating equation (43) with respect to t-, 

d p 1 ( 2 2) ( ) da 
dt- = u! a - u m p a dt-· (44) 

But, from equation (40), 

( ) da u~ 
p a dt- = u! + a2 (45) 

Thus, equation (44) becomes 

dp a
2 

- u! 
dt-=a2 +u!· (46) 

For minimum p, a = U m or 01 = o. Thus, 

Pmin = ~ {"m (m2 
- u!)p(m) dm, 

U m Jo 
(47) 
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and the corresponding value of A is given by 

(48) 

In order to obtain the results which are independent of the particu­
lar signals used, suppose that the idealized saturation being consid­
ered is further normalized such that 

f -1; m < -1, 

f(m) = 1 m; -1 ~m~ 1, (49) 

l' 1 < m. , 
The units of the signals are also normalized such that (Jm is taken as 
the unit. With these normalizations, the integrals of equations (47) 
and (48) may be evaluated using the tables in Ref. 9 to obtain Al = 

0.44072, Pmin = 0.24197. 
In a similar manner, for the normalized idealized deadzone given by 

f(m) 
Jm+ 1; 

1 
0 . 

m - 1: 
it is found that A2 0.55928, Pmar. 
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A Video Encoding System With Conditional 
Picture-Element Replellishnlent 

By F. W. MOUNTS 

(Manuscript received January 29, 1969) 

This paper describes an experimental method for encoding television 
signals which takes advantage of the frame-to-frame correlation to reduce 
transmission bit rate. The technique encodes only those elements that 
change between successive frames instead of encoding every element of every 
frame. We have demonstrated the method in real-time using the head-and­
shoulder view of a person in animated conversation as the picture source, 
such as is likely to be encountered in a visual communication system. An 
average transmission rate of one bit per picture element gives quality 
comparable with standard eight-bit PCM transmission. 

I. INTRODUCTION 

Most known methods for efficiently transmitting pictures over com­
munication circuits exploit point-to-point correlation along a scan­
ning line. In particular, point-to-point predictive quantizing systems 
have been successful, but it is known that there is more correlation 
between television picture elements in the frame-to-frame time di­
mension than there is between adj acent elements in a single frame. 
This is especially true when using the head-and-shoulder view of a 
person as the picture source, such as is likely to be encountered in a 
visual communication system. Now that devices for storing large 
amounts of data and integrated circuits for complex digital processing 
are available, it is not only possible to take advantage of this fact in 
picture coding, but it is also economically attractive. 

In this paper, we describe one method of encoding television signals 
which takes advantage of the frame-to-frame correlation to reduce 
the transmission bandwidth. We also describe the experimental facility 
and the results of initial experiments. 

We want to emphasize that the picture source for these experiments 
is a head-and-shoulder view of a person carrying on an animated 

2545 
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conversation in real time. Thus, the results are not particularly 
relevant to stationary graphics or to commercial television where 
frames are switched, panned, and zoomed. Our experiments have been 
confined to noninter laced, 60 frames per second television pictures. 

II. GENERAL DESCRIPTION 

The technique encodes for transmission only those elements that 
change between frames instead of encoding every element of every 
frame. This method has been described previously by R. D. Kell, 
A. J. Seyler, and T. C. Damen.1 ,2,3 Seyler has published statistics of 
frame-to-frame differences for commercial television signals4 and has 
proposed coding methods5 that are based on this information. E. R. 
Kretzmer has investigated the correlation between successive frames 
of motion-picture films showing that there is redundancy that may be 
exploited.G When using video-telephone-like signals with moderate 
motion in the scene, we find, on the average, that less than one-tenth 
of the elements change between frames by an amount which exceeds 
1 percent of the peak signal. vVe regard such 1 percent changes as 
being significant. 

We shall describe a complete transmission system that makes use of 
frame-to-frame redundancy to gain encoding efficiency. The technique 
which we call "conditional replenishment" is found to be particularly 
useful for the pictures encountered in visual communication systems. 
The conditional replenishment system uses a memory to store a refer­
ence picture, and only those elements of the picture that have changed 
significantly between frames are updated (or replenished). Only the 
picture information necessary to update the reference picture need be 
transmitted. At the receiver, this information is used to update a simi­
lar stored reference picture which is intended to track the one stored 
at the transmitter. 

In order for the receiver to correctly update the picture elements, 
two pieces of information must be conveyed to the receiver-the new 
value and the position of the element to be replenished. Because this 
information occurs at a random rate, buffers are used to redistribute 
and present the information to the transmission channel at a uniform 
bit rate. In order to regulate the average replenishment rate to match 
the channel capacity, the threshold (which determines whether or 
not a significant change in the picture information has occurred) is 
varied as a function of the amount of information stored in the buffer. 

This method of encoding requires that only the information pertain-
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ing to the active region of the picture format be transmitted. The 
receiver reinserts the horizontal and vertical blanking interval within 
the reconstructed video information. 

III. TRANSMITTER 

Figure 1 shows the operations performed by the transmitter. The 
video signal from the camera is band limited, sampled, and digitized 
into eight-bit PCM. A selector switch is provided which either con­
veys new information to the input of the reference frame memory 
whenever a significant difference is detected or alternatively re­
circulates the information presently stored in the frame memory. The 
frame memory consists of delay lines and has sufficient capacity to 
store one complete frame of video information-each sample encoded 
as eight-bit PCM. 

New information from the camera is compared with the refer­
ence picture stored in the frame memory by a subtractor circuit 
which yields the absolute difference between the new sample of in­
formation and the reference value corresponding to the same picture 
element. During each sample period, the control logic makes a de­
cision, depending upon the magnitude of the difference signal, as to 
whether a significant difference between the signal values exists. If 
the difference is significant, the output of the control logic operates the 
selector switch to strobe the new signal value into the frame memory. 

TELE­
VISION 

CAMERA 

SELECTOR SWITCH--.., 

8-BIT 
PULSE CODE~~--o 
MODULATION 

ENCODER 

PICTURE FORMAT 

WRITE 
PULSE 

G~~~~~~;R i-------+t.------.J TRANS~ISSION 
CHANNEL 

Fig. 1- Conditional replenishment transmitter terminal. 
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If the difference is insignificant, the signal value stored in the frame 
memory is recirculated. In addition to replenishing new information 
in the frame memory, the control logic also causes the new signal 
value, accompanied by its address, to be stored in a buffer. The buffer 
store matches the varying data rate to the constant bit rate of the 
transmission channel. The information stored in the buffer is read at 
a constant rate, first-in, first-out. 

In the implementation of the experimental system, the amplitude 
information is expressed as eight-bit PCM with an additional seven 
bits being used to identify the position information-a total of 15 
bits comprising each word transmitted to the receiver. Seven bits in 
the address is sufficient only to give the horizontal position along the 
active region of a scanning line. Ambiguity in the vertical position is 
avoided by always sending the first active sample of each line whether 
it changes or not. A unique code word defines the first active element 
of the frame. 

In order to force the average replenishment rate to match the chan­
nel capacity, the significant change threshold is varied as a function 
of the amount of information stored in the buffer. This may be ac­
complished by the control logic characteristic shown in Fig. 2. We 
express the absolute value of the frame-to-frame difference signal, 
derived by the subtractor circuit, along the ordinate with a range of 
o to 255 discrete levels. The number of replenished elements stored 
in the buffer is expressed along the abscissa and may range from 0' to 
M-the maximum capacity of the buffer. The staircase curve rep­
resents the threshold corresponding to each buffer state. The area 
above the curve represents a significant change in picture information 
where the control logic forces replenishment. The shaded area below 
and to the right of the curve represents an insignificant change where 
the control logic causes the information stored in the frame memory 
to be retained. 

Three properties of this control function should be noted: 
(i) As the subject becomes more active, causing an increased num­

ber of samples to be stored in the buffer, the value of the significant 
change threshold is increased to permit only the more significant 
changes in the picture to be replenished. As the subj ect becomes less 
active, causing fewer elements to be stored in the buffer, the thresh­
old is decreased in value permitting the less significant changes to be 
corrected. 

(ii) It is desirable to keep some minimum amount of data in the 
buffer at all times so that data is always available for transmission, 
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AREA IN WHICH PICTURE ELEMENT 
IS REPLENISHED 

(SIGNIFICANT CHANGE) 

a A B c D E F 
(MINIMUM) NUMBER OF WORDS STORED IN BUFFER 

Fig. 2 - Control logic characteristic. 
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G M 
(MAXIMUM) 

especially in readiness for the vertical blanking interval when data 
leaves the buffer but none enters. To ensure the buffer does not 
empty, the significant change threshold is lowered to zero whenever 
the buffer count falls below a chosen amount. 

(iii) Whenever the number of samples stored in the buffer is 
equivalent to the capacity of the buffer, all replenishment is stopped­
independent of the frame-to-frame difference. This causes picture 
breakup as shown in Fig. 5b. 

IV. RECEIVER 

Figure 3 shows a buffer placed at the receiver to store the received 
picture information until it can be strobed, in the proper time se­
quence, into the receiver's frame memory. A transfer of new informa­
tion from the buffer to the frame memory occurs whenever the output 
of the picture-format address generator agrees with the address in­
formation of the picture element to be read from the buffer. This 
agreement is determined by the address comparison circuit which 
operates the selector switch to enable the new amplitude information 
to flow from the buffer into the frame memory. The buffer readout 
then advances to the next element. When the addresses do not co­
incide, the information stored in the frame memory recirculates and 
the readout cell of the buffer is held fixed. The information stored in 
the frame memory, when decoded, provides the video information 
for visual display. 
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TRANSMISSION 
CHANNEL 

SELECTOR SWITCH _ ..... , 

NEW SIGNAL VALUE" 7"---J----, 

\ 
\ 
\ 

ADDRESS--

PICTURE FORMAT 
ADDRESS 

GENERATOR 

Fig. 3 - Conditional replenishment receiver terminal. 

v. EXPERIMENTAL SYSTEM 

In order to evaluate this method of encoding video information in 
real time, only the equipment for the transmitter terminal was as­
sembled as shown in Fig. 4. The information stored in the trans­
mitter's reference frame memory is decoded to recover the video in­
formation for visual display. The functional blocks are the same as 
described for the transmitter except for the buffer which is replaced 

TELE­
VISION 

CAMER 

SELECTOR SWITCH __ 

8-BIT 

~~~ti~~g~~+-+-~ 
ENCODER L----+_---' 

TRANSMISSION 
WORD RATE 

Fig. 4 - Conditional replenishment test terminal. 
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by a forward-backward counter in order to obtain a count of the 
data that would have been stored in a buffer had one been used. The 
count is increased by "one" whenever a picture element is replenished 
and decreased by "one" each time a word is transmitted. The state of 
the counter provides feedback to the control logic representing a meas­
ure of buffer fullness. In this way, we ignore transmission error and 
we have eliminated the actual buffer for experimental purposes. 

In the initial experiment, the simulated buffer was assumed to have 
sufficient capacity to hold data relating to as many elements as there 
are in two complete frames, a total of 51,240 words, each word com­
prised of 15 bits. In practice, this would result in an inherent one-way 
signal delay of one-half second. The backward count rate of the 
counter was set to be one-eighth of the transmission rate required to 
send the picture directly as eight-bit PCM. The head-and-shoulder 
view of a person, as might be used in a visual communication system, 
was used as the picture source. The video information generated by 
the camera was band limited to 0.75 MHz. The picture format was 
composed of 140 picture elements per line with 183 lines per frame 
sequentially scanned at a rate of 60 frames per second. The active 
region of the picture format was composed of 120 picture elements by 
171 lines. The highlight luminance of the picture was 70-80 fL 
(24-27.4 cd/m2

) and the ambient illumination was 125 fc (1350 
Im/m2). 

VI. RESULTS 

Photographs of a single frame of video information are used to 
illustrate the effects of conditional replenishment. These photographs 
are not very effective in portraying picture quality subjectively since 
impairments are produced only in the presence of motion. 

The following results have been obtained for the experimental sys­
tem outlined above: 

(i) When motion is moderate, the picture quality is nearly the same 
as for eight-bit PCM coding as shown in Fig. 5a. 

(ii) As the motion of the subject becomes more rapid, th~ number 
of picture elements stored in the buffer increases. This causes the 
significant change threshold to be increased so that small changes in 
the picture are not reproduced. The reproduction becomes somewhat 
poorer since all picture elements are not represented with the same 
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Fig. 5 - Single frames of video information processed in real time by the 
conditional replenishment system. 

accuracy and the result resembles a scene viewed through a dirty 
window. 

(iii) When the subject becomes very active, that is, when the pic­
ture contains sustained rapid motion covering a large part of the field 
of view, the buffer becomes saturated, allowing no more changes to be 
accepted. This condition is referred to as buffer overload and causes 
picture breakup as shown in Fig. 5b. Picture breakup is only momen­
tary and a quick recovery takes place as soon as the subj ect slows 
down. This might be a serious defect except that there is still much 
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that can be done with buffer and threshold strategy to reduce this 
effect. 

Figures 5c and d show pictures depicting the output of the system 
with markers or flags purposely superimposed upon the picture when­
ever a picture element is replenished (they are not a defect in the 
system). When the subject is not moving, as shown in Fig. 5c, the 
points are replenished more or less at random since the peaks of noise 
exceed the low threshold. As soon as the subject moves, as shown in 
Fig. 5d, the changing elements of the picture take precedence and one 
can see that replenishment concentrates on the subject as one might 
expect. The background noise causes very few picture elements to be 
replenished. 

By viewing the accumulation of markers representing replenished 
points, we observe that the picture is replenished very quickly around 
the moving subj ect and that it takes a much longer time to randomly 
replenish the other elements. Left to chance, there are a few parts 
that are not replenished for a long time. We demonstrated that it is 
more efficient to gradually update all picture elements according to a 
predetermined pattern, rather than to lower the threshold to permit 
noise to cause replenishment. 

VII. SUMMARY 

We have presented a method of encoding television signals taking 
advantage of frame-to-frame redundancy. Only the address and am­
plitude of elements that have changed significantly between succes­
sive frames are transmitted. Varying the significant change threshold 
value helps to match the average rate of replenishment to the capacity 
of the transmission channel. A buffer then smooths the data flow for 
transmission. 

Conditional replenishment lends itself to many ways of efficiently 
encoding pictures for transmission. We think that the buffer capacity 
and transmission requirement can be considerably reduced over that 
demonstrated here. 
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Design of Dither Waveforms for 
Quantized Visual Signals 

By J. o. LIMB 
(Manuscript received January 22, 1969) 

Dither signals may be added to coarsely quantized picture signals to 
mask undesirable contours. We show that a class of differential quantizers 
is equivalent to ordinary quantizers with respect to the design of dither 
signals. We give a design method for a number of deterministic and random 
dither waveforms and evaluate their visibility using a simple model of 
threshold vision. 

I. INTRODUCTION 

Television signals are invariably generated in an analog form. To 
obtain the advantages of digital transmission, it is necessary to quan­
tize the signal in some way. In ordinary quantization the output 
levels of the quantizer are uniformly spaced throughout the range of 
the input signal; in the absence of any coding it would require six 
bits to send a signal quantized to 64 levels. In practice, at least 64 
levels are required to produce a high quality picture. 

A strong incentive to reduce the number of levels is that it would 
reduce the number of bits transmitted. For example, if the quantizer 
step size is doubled, the number of levels can be halved and the bit 
rate of the source can be reduced from six to five bits per sample. If 
this is done, the picture quality is degraded, but primarily for only 
one type of picture material, those areas in which the luminance 
changes slowly. These areas will be referred to as low-detail areas. 
The degradation takes the form of curved lines which look very much 
like contour lines on a map; thus this type of degradation is referred 
to as contouring.'~ The problem, then, is to eliminate the objectionable 
effect of contouring, which occurs only in the low-detail part of the 
picture, without using a larger number of levels. 

* For example, see Fig. 3b of Ref. 1 for a differentially quantized picture show­
ing contouring. 

2555 
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An effect similar to increasing the number of levels can be achieved 
by adding a dither signal to the true input signal. The dither signal 
produces rapid switching between the quantizer levels on either side 
of the true input signal. This switching is arranged so that the time 
one spends at a level depends on how close the true input signal is to 
that level. Thus in Fig. la when the signal lies midway between two 
levels, it oscillates between the two levels, spending equal time at 
each. In Fig. lb the input lies a quarter of the distance up from the 
lower level; consequently, the required switched waveform should be 
down for three samples and up for one. The output waveform ob­
tained when a dither signal is added to the input will be referred to 
as the chopped waveform or chopping pattern. 

One could ask why such a strategy should be any good. While it 
is true that on the average the output signal will have the same ampli­
tude as the input, it now has an additional error component which 
could degrade the signal further. Thus it is necessary to compare the 
visibility of the chopped waveform with the visibility of the contours 
that would otherwise be seen. Visibility is used here in the subjective 
sense of how easy is it to see an object. An objective visibility scale 
can be constructed using a fairly well defined subjective point on the 
visibility scale, that is, threshold, the point at which an object just 
becomes (or just ceases to become) visible. If the objective measure 
of the amplitude of a stimulus at threshold level is large, the stimulus 
has low visibility; conversely, the smaller the amplitude of the stimu­
lus, the greater the visibility. 

For signals near threshold, the visual system acts like a low-pass 
filter so that the chopped waveforms with the highest frequency com­
ponents will be attenuated most and hence will be the least visible. 
Thus the pattern of Fig. la will be less visible since its repetition fre­
quency is twice that of the pattern of Fig. lb. In choosing suitable 
chopped waveforms we attempt to select those signals which have the 
least visibility. 

The chopping patterns can be random or deterministic. Figure lc 
shows a typical sample of a random pattern for an input halfway be­
tween the two quantizer levels (the same input amplitude as in Fig. 
la). The probability of each sample being high or low is one-half and 
is independent of previous samples. Since there is a finite chance that 
a given segment of the random sequence contains frequency compo­
nents lower than those of the waveform of Fig. la, the random se­
quence of Fig. lc is more visible than the deterministic pattern of 
Fig.la. 
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Let us now consider the problem of designing a dither signal which 
will produce an optimum chopping pattern at various levels. Goodall 
first observed that by adding a small amount of noise to the input, 
contouring was almost eliminated at the expense of a small increase 
in the granularity (or noisiness) in the picture.2 Roberts examined the 
problem quantitatively and showed that in order to produce a random 
chopping pattern, which always averaged out to the same amplitude 
as the input, the probability density function (PDF) of the noise 
should be rectangular with a maximum amplitude of plus and minus 
half a quantizing interval.3 He further showed that if one subtracted 
at the quantizer output the same noise that was added at the input, 
the root mean square error in the output signal is halved (if one for­
gets the correction term for the quantizing intervals at the end of the 
range). Limb considered the visibility of the granulation in the 
quantizer output.4 Using a simple model of the visual process, it was 
shown that the visibility of granulation resulting from independent 
random samples with a rectangular probability density function of 
the correct amplitude is zero when the input equals a quantizer out­
put level, and reaches a maximum when the input is midway between 
levels. Further, by introducing negative correlation between samples, 
the visibility can be reduced by about 50 percent. 

INPUT 
LEVEL 
~ 

"" 
""" ___ ) QUANTIZING LEVELS 

_---.---r j -l--.--r--i-j---'--'--f ~ - fT""""""T-r_ B ---- - )t' <;! 
/ 

/ 
/ 

----------------_1 
(a) 

INPUT 

L~L --f--B-8---j----
(b) (c) 

Fig. 1- Chopping patterns for (a) input half way between levels, (b) input 
quarter way between levels, and (c) random pattern with input half way between 
levels. 
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In this paper we look at the problem of applying dither to differen­
tial quantization as opposed to ordinary quantization. The approach 
is the same as with ordinary quantization; design a dither waveform 
which, when added to the input, produces the required chopping pat­
tern at the output (see Fig. 2a). All the components of the differential 
quantizer are assumed to be ideal. The chopped waveforms produced 
by the differential quantizer will depend on how the levels of the 
quantizer within the loop are positioned close to the zero level. Two 
commonly used configurations are (i) a decision, or input, level placed 
at zero (Fig. 2b), and (ii) a representative, or output, level placed at 
zero (Fig. 2c). We consider only the second configuration (however, 
see Section VII). We show that under fairly general conditions a dif­
ferential quantizer, containing a quantizer stage with a representative 
level at zero, behaves the same as an ordinary quantizer (with equal 
level spacing) with respect to dither. We design a set of dither signals, 
both random and deterministic, which produces chopping patterns 
with a low visibility. The visibility of the chopping patterns is calcu-

DITHER 
SIGNAL 

(b) 

INPUT 

OUTPUT (SIGNAL 8. 
CHOPPING PATTERN) 

(a) 

OUTPUT 

INPUT 

(c) 

Fig. 2 - (a) Dither applied to differential quantization. (b) Transfer charac­
teristic of quantizer with decision level at zero. (c) Transfer characteristic of 
quantizer with representative level at zero. 
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lated, enabling a comparison to be made between random and deter­
ministic dither. It is anticipated that two-dimensional dither signals 
will reduce the visibility of contours by a factor of six. 

If one decides to subtract the dither signal from the averaging pat­
tern as Roberts did, the rules for generating the best dither waveforms 
have to be rederived. When this is done, it is found that subtracting 
dither signals is barely superior to not subtracting them. 

II. DIFFERENTIAL QUANTIZER-QUANTIZER CHARACTERISTIC 

A quantizer may be divided into two sections, the classifier which 
divides the signal into a number of ranges according to the position of 
its decision levels, D i , and the weighter which assigns a value to each 
range according to the settings of the representative levels R i . Figure 
3a shows the quantizer characteristic as it is generally drawn. An 
alternative representation is given in Fig. 3b, where the vertical dashes 
represent the decision levels, and the crosses represent the representa­
tive levels. This representation is more convenient since we are con­
cerned with the positions of the representative levels relative to the 
positions of the decision levels. 

The input level to the classifier, in the absence of the dither signal, 
is denoted by ~ and expressed as a fraction of r, the distance from Ro 
to Rl (Fig. 4). Since we are considering slowly changing input signals, 
~ will always lie in the range R-l to Rl . 

We assume that the quantizer has a representative level at zero as 
Fig. 4 shows. The only levels that affect the design of the dither signal 
are the two decision levels, D-l and D l , lying closest to zero and the 
adjacent representative levels R-l and Rl . Furthermore, we assume 
that R-l, D-l' Ro, D l , and Rl are equally spaced. This is probably 
the most useful configuration since it satisfies Max's first condition 
for minimizing error, that is, the decision levels should lie midway 
between the corresponding representative levels. 5 In addition, Rl = 
2Dl which is on the stability boundary and hence corresponds to the 
maximum setting of Rl if limit cycles are not to occur.6 

III. DESIGN OF DITHER SIGNAL 

When rectangular random noise is used as a dither signal, the 
chopped waveform has a granular appearance and the visibility of 
this granulation depends on the amount of correlation in the wave­
form. For example, when the correlation is positive, the waveform is 
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Fig. 3 - Quantizer characteristic (a) usual representation and (b) alternative 
representation. 

more likely to contain large runs of O's and l's (if we use 0 and 1 to 
denote the two quantizer levels between which the output is chop­
ping) ; if the waveform is negatively correlated, a 1 is more likely to 
follow a 0 and the waveform will switch back and forth more rapidly. 
Notice that the visibility of a perturbation is approximately propor­
tional to the area when the area is small. Consequently, long runs of 
l's or O's are much more visible than the negatively correlated wave­
form containing a higher probability of short runs. 

If we restrict the chopped waveform to be described completely by 
a second order probability density function, there are limits on the 

1 -----x-----+I-----X-----4I-----x-----
R_I D_I Ro D, R, 

k---- r----~ 
-~ l1 r--

t INPUT LEVEL 

Fig. 4 - Quantizer characteristic-configuration with representative level at zero. 
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amount of negative correlation that can be achieved.4 This restricted 
chopped waveform with maximum negative correlation can be gen­
erated with a dither signal having the second order probability density 
function shown in Fig. 5. Here Xl and X2 represent adj acent samples of 
the dither signal. The negative correlation produces a sharp minimum 
in the visibility of granulation in the waveform when the input to the 
classifier is close to Dl (or D-d, that is, when A = 0.5. The dashed 
curve is for uncorrelated noise and is shown for comparison. 

The dither noise can also be represented as shown in Fig. 6a, which 
better illustrates the time series nature of the process. For example, 
a sample occurring at random in the top half of the amplitude range 
will, for the next sample, occur in the lower half. The nature of the 
second order probability density function ensures that the random 
sample oscillates between the upper and lower half of the range. This 
type of dither will be referred to as two-step random dither. 

Dither waveforms can be generated for any number of steps, al­
though with an increase in the number of steps, the visibility of 
granulation will reach a minimum and then start to increase. Figure 
6b shows an example of four-step dither. Notice that when the input 
level lies on the boundary between two steps, deterministic chopping 
patterns are produced. Furthermore, these patterns should have the 
least visibility of any chopping pattern with the same average level. 
In general, a low visibility pattern (LVP) has the minimum allowable 
cycle length (for example, cycle length of 3 at A = lis) and has the 
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Fig. 5 - Two-step random dither signal: (a) probability density function of 
correlated noise and (b) visibility of noise. 
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Fig. 6 - Dither signal represented in time series form: (a) two-step dither, 
(b) four-step dither, (c) attempt to construct six-step dither, and (d) seven­
step dither. 

shortest maximum run of either value (for example, 1010100 is a low 
visibility pattern for A = 3/7 but 1100100 is not). 

Can an n-step low-visibility chopping pattern be generated with 
second order noise for any value of n? The answer is no, as the fol­
lowing attempt to reconstruct patterns for six-step and seven-step 
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dither shows. In Fig. 6c the first step has been assigned arbitrarily to 
t1, while the second step must then be assigned to t4 so that when the 
input gives A = 113, every third sample exceeds threshold (LVP = 
1, 0, 0). There is no sample to which the third step can be assigned to 
give a low visibility pattern of (1, 0) as required for A = 1/2. 

For the seven-step case (Fig. 6d), the first step is assigned to t1 , 

the second step may be assigned to either t4 or t·5, both giving low 
visibility patterns (assume t4 ). The third step, if assigned to t6 , will 
again give a low visibility pattern (1, 0, 0, 1, 0, 1, 0). Similarly, all the 
other steps can be assigned to give low visibility patterns. 

In the general case of n-step dither, tests for low visibility patterns 
can be made as follows: 

Assign first step - tl 
second step - tn/2 n even 

and third step - tn/4 n divisible by 4. 
To have the least visibility, the resulting pattern after assigning the 
third step must not have runs of O's differing in length by more than 
one, otherwise the position of a 1 could be moved to shorten the long­
est run. However, this would affect steps 1 and 2 which have given 
low visibility patterns. Thus any multiple of 4 equal to or greater 
than 8 will not give low visibility patterns. Again: 

Assign third step -t(n±2)/4 n even, not divisible by four. 
By the same argument as above for n ~ 6 and even, low visibility 
patterns are not obtained. Similarly, the odd numbers can be tested. 
In all, low visibility patterns can be obtained for n = 2, 3, 4, 5, and 7. 

In the scheme considered so far, each step in the quantizing inter­
val has been filled with rectangular noise of amplitude equal to the 
step height. Random patterns are produced whenever A lies within a 
step, while a deterministic pattern is generated when A lies exactly 
on the boundary between two steps. Consider changing the rectangular 
noise to a fixed level at the midpoint of the step. The chopping pattern 
will now switch from one deterministic pattern to another as A changes. 
We examine the visibility of granulation associated with both random 
and deterministic dither in Section IV. 

Implementation of either random or deterministic dither schemes 
would be a simple matter requiring little additional hardware. Fig. 
7 shows the output from a computer simulation of a differential quan­
tizer with four-step deterministic dither in Fig. 7a and seven-step de­
terministic dither in Fig. 7b. The visibility of granularity in these two 
dither schemes will differ; in Section IV, calculations of visibility are 
made to enable the most promising schemes to ·be selected. 
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Fig. 7 - Chopping patterns resulting from deterministic dither signal for 
(a) four-step dither and (b) seven-step dither. The straight lines denote the 
inputs. 

IV. VISIBILITY OF THE CHOPPED WAVEFORM 

The measure of the visibility of the discrete waveform is based 
upon a simple model of threshold vision that has proved reasonably 
accurate.4

,7 Briefly, threshold vision is assumed to act like a spatial 
low-pass filter, and the difference in visibility between two displays 
(in this case the display resulting from the analog signal and the dis­
play resulting from the quantized signal) is measured by the differ-
ence between the filtered version of the two signals. * Two different 
measures of the difference are considered: one is the mean square, and 
the other is the mean modulus. The measure of visibility is denoted by 
U (~), which depends on ~ since the value of ~ determines the shape 
of the chopped waveform. 

4.1 Deterministic Patterns 

The solid-line curves in Figs. 8 and 9 show the calculated visibility 
of granulation for three- and four-step patterns at a viewing distance 
of 36 inches. The visibility is shown for only half the range of ~, 

* Appendix B gives more detail. 



DITHER WAVEFORMS 2565 

0.20 

- - ERROR WITH NO DITHER 

0.15 

U 

0.10 

0.05 ~EOF SYMMETRY 

0.1 0.2 0.6 

Fig. 8 - Visibility of granularity produced by, three-step dither at 36 inches 
viewing distance (-- random; --- deterministic). 
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Fig. 9 - Visibility of granularity produced by four-step dither at 36 inches 
viewing distance (- - random; ---- deterministic). 



2566 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969 

since U (A) is symmetrical about A = 0.5. The arrows on the abscissa 
indicate the amplitude levels of the dither pattern. Thus until the 
value of A exceeds 0.167 in Fig. 8, no switching occurs in the out­
put. There are minima at A = lis and 21s as expected for three-step 
dither. The curves of U (A) for the two criterion functions are similar 
in shape, the rms curve lying slightly above the mean modulus curve. 
In Fig. 9 the minimum at A = 0.25 is not very large, and one would 
expect granulation to be more visible for patterns having a greater 
number of steps. Figure 10 clearly shows this for a five-step pattern 
which has a higher minimum than Figs. 8 and 9. By comparing the 
average value of U for three-, four-, and five-step patterns, four-step 
is just better than three-step, and both are superior to five-step pat­
terns. 

Figure 10 also gives U for a five-step dither at a viewing distance 
of 72 inches. The spread of the visual impulse response is now much 
greater in relation to the size of a picture element. In fact, U (A) is 
not very different from what would be expected with infinite smooth­
ing by the eye. With infinite smoothing all minima would be zero and 
joined to the maxima at 0.1 by straight lines; that is, five equal 
triangles of amplitude 0.1. The similarity of U to the result expected 
for infinite smoothing would suggest that a pattern with a larger num­
ber of steps would be superior. Going to the maximum of seven steps 

0.20,----------:-----------------, 

u 

0.6 

Fig. 10 - Visibility of granularity produced by a five-step dither at 36 and 72 
inches viewing distance; meaD square error criterion. 
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(Fig. 11) significantly reduces the mean value of U, and the curve is 
no longer similar to the curve for infinite smoothing. By comparing 
Fig. 11 with Fig. 9, one can see that increasing the viewing distance 
by a factor of two has reduced the calculated visibility of granula­
tion by about one-half for the best pattern in each case-a not alto­
gether surprising result. 

4.2 Random Patterns 

Random noise was added to the deterministic patterns in the man­
ner shown in Figs. 6 and 7. Notice that the pattern generated after 
quantization is deterministic when the decision level lies at the junc­
tion of two steps and is the same as the pattern produced in the 
absence of noise. Figs. 8, 9, and 11 give the calculated visibility of 
random patterns for mean square and mean modulus error criteria. 
As required, the random curves touch the deterministic curves be­
tween steps, and in most other places the curves lie above them. Four­
step dither still gives the smallest average U, <U)av; three-step dither 
is the next best. 

4.3 Deterministic versus Random Patterns 

With deterministic patterns, n-step dither results effectively in in­
serting n-l levels in the original quantization interval. The brightness 
at these new levels is not constant, however, and has a variance about 
the true analog input value given by the minima, U (~min)' As ~ 
changes from ~min, the variance remains unchanged but a constant 
error is introduced since the average value of the output no longer 
equals the average value of the true analog input. 

vVith random patterns, the average value of the output always 
equals the average value of the input. Thus at the maxima of U (~) , 
the variance of the perceived image with deterministic patterns is less 
than with random patterns, but there is an additional error resulting 
from differences in the perceived average values of the true analog in­
put and the chopped waveform. By using a decision theory model of 
threshold vision, the visibility in the two situations could be com­
pared. However, such models have not proved accurate enough to 
apply to this type of second order effect. 

On the basis of the mean square and mean modulus criteria it ap­
pears that deterministic dither is slightly superior; but because each 
case has different distributions for the perceived brightness, such com­
parisons are risky and best wait experimental confirmation. 
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Fig. 11-Visibility of granularity produced by seven-step dither at 72 inches 
viewing distance; random and deterministic, mean square error criterion. 

V. DITHER APPLIED IN TWO AND THREE DIMENSIONS 

Devising low visibility patterns in two dimensions is more difficult 
than in one dimension. In fact it appears that there are only two 
equivalent, trivial low visibility patterns. These patterns occur for 
two by two step interpolation; they are, 
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For larger patterns it appears that we must settle for something less 
ideal. A four by four step pattern was generated by considering it to 
consist of four two by two patterns, which were themselves generated 
in the manner of a two by two pattern, as the partly completed pat­
tern in Fig. 12a shows. 

The computer program used previously for the one-dimensional 
case was extended to calculate the visibility of the four by four pat­
tern. U (~) is shown in Fig. 13 for a viewing distance of 36 inches and 
a mean square error criterion. (U)av has been reduced to about one­
third in going from one dimension to two in this example. This pattern 
does not have minimum visibility. This can be seen for ~ = 14 where 
a lower visibility pattern could be obtained by the chopping pattern 
of Fig. 12b. This would make little difference to (U)av, however, since 
U (~) for ~ = 14 is already very small. Undoubtedly patterns ap­
proximating the ideal could be found for a larger number of steps. 

In applying dither in the time dimension, care must be taken not 
to introduce "temporal granularity," that is, flicker. To study the 
visibility of flicker would require an entirely new model, accounting 



DITHER WAVEFORMS 2569 

for the variation in sensitivity over the retina to temporal changes in 
luminance. Flicker occurs when large picture areas differ in luminance 
periodically from frame to frame. By arranging for the average 
luminance of an area to change as little as possible from frame to 
frame, flicker can be minimized. Thus the two-dimensional pattern 

- Distance ~ 
1 15 7 10 Frame 1 

'Time 12 5 14 4 Frame 2 

1 
8 9 2 16 Frame 3 

13 3 11 6 Frame 4 

which was built up with the help of the two by two low visibility pat­
tern, will have an average luminance which varies at most by JiG of 
a quantizing interval from frame to frame. This is not true of the 
sequence, 

- Distance ~ 
1 13 4 16 Frame 1 

Time 9 5 12 8 Frame 2 

1 
3 15 2 14 Frame 3 

11 7 10 6 Frame 4 

which is simply derived from the two by two pattern and nearly 
identical to the pattern of Fig. 12a. Notice that if the input signal has 
a uniform distribution over the quantizing interval, the average 
luminance of each frame will be the same. For example, for 0 < A < 
0.25, frames 1 and 3 have greater average luminance, while for 0.5 
< A < 0.75, frames 2 and 4 have greater average luminance. Since 
the probability of obtaining signals that do not vary (lie within one 
step) over "large" areas is small for high quality pictures (which 
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Fig. 12 - Generation of four by four step pattern: (a) partially completed 
pattern (b) two dimensional chopping pattern having lower visibility than the 
corresponding pattern resulting from (a). 
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consequently have a small step size), the probability of obtaining 
flicker should be small. There is advantage in using the second pat­
tern since it provides better smoothing. 

Dither applied in the time domain should be more successful than 
in one spatial dimension at a 36-inch viewing distance since the tem­
poral impulse response, even at high ambient illumination, probably 
has a greater spread; the problem of flicker, however, should be kept 
in mind. Another advantage of the temporal dimension is that the 
amount of smoothing should be independent of the viewing distance. 

In comparing deterministic patterns with random patterns, temporal 
smoothing has often been neglected; this leads to incorrect conclusions. 
For example, if deterministic two-dimensional spatial dither is com­
pared with random dither, the random pattern would provide smooth­
ing in three dimensions since added noise components in adj acent 
frames are uncorrelated, and, as just shown, the improvement in 
smoothing provided by an additional dimension is large. A valid 
comparison could be made by using "frozen" noise, that is, noise that 
repeats from frame to frame. 

Section 3.43 of Ref. 1 describes results that were obtained when 
two types of dither waveform were added at the input of a differential 
quantizer. The first pattern was a one dimensional four step waveform 
added vertically. The second pattern was a four by four step pat­
tern added horizontally and vertically. Figure 3d of Ref. 1 shows the 
effect of adding the two dimensional dither to a picture while Figs. 6c 
and 6d of Ref. 1 show the effect of adding one and two dimensional 
dither respectively, to a low amplitude ramp waveform. 

VI. RECEIVER SUBTRACTION 

Roberts added pseudorandom noise having a rectangular probability 
density function to the signal prior to quantization, and subtracted 
the same noise from the signal at the receiver.3 Neglecting end effects 
from the smallest and largest quantization levels, a reduction of one­
half in the variance of the output signal is obtained. Roberts states 
that adding noise to the input and subtracting it from the output is 
equivalent to adding a level of noise to the signal, but that this is not 
the same noise as was added to the input. Since we are concerned with 
the exact sequence in the output signal (this will critically affect the 
visibility of the added noise), the relation between the added input 
noise and the equivalent output noise will be derived. 

In Fig. 14, rectangular noise is added to the input signal of value 



DITHER WAVEFORMS 2571 

0.10 r-------------------------, 

u 

0.6 

Fig. 13 - Visibility of granularity produced by two dimensional four by four 
step pattern. Viewing distance is 36 inches with mean square error criterion. 

Rn + ~. All noise components which cause the input signal to exceed 
Dn are represented by Rn + 1, and all components producing a com­
bined signal less than Dn are represented by Rn. Thus, in subtracting 
the input noise from the quantized signal, components lying between 
r /2 - ~ and r /2 are subtracted from Rn + 1, while the other compo­
nents are subtracted from Rn. When the noise is subtracted one sees 
that the whole process is equivalent to adding noise of the same am­
plitude to the unquantized signal. The noise to be added can be ob­
tained from the input noise by inverting separately amplitudes 
greater and less than r/2 - ~ as Fig. 14 shows. For example, ampli­
tudes above Dn [such as (r/2 - ~) + r] go to r/2 - r where r is any 
increment between 0 and ~. This relationship is very useful since now 
we can forget the quantization and consider just the distortion of the 
added noise component. 

If an n-step dither sequence is quantized and the original sequence 
subtracted, inversion occurs at every step except where ~ is less than 
r /2n. Consequently, n - 1 new sequences will be produced and only 
in special cases will the new sequences be the same as the original. A 
technique will be developed for rapidly estimating the new output 
sequences from the input sequence. 

A sequence can be written as a function of time, 

Time 1, 2, 3, 4, ... , n 

Amplitude A l , A2 , ... , An 

where Ai is an integer between 1 and n denoting the step. A sequence 
can also be written 

Amplitude 1, 2, 3, , n 
Time T 1 , T 2, T 3 , , Tn 
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Rn+l 

Dn 

INPUT LEVEL 

Rn 

Dn-l 

INPUT SIGNAL QUANTIZED NOISE SUBTRACTED 

Fig. 14 - Derivation of the properties of add-subtract noise patterns. 

where Ti is an integer between 1 and n denoting the time slot in which 
the ith amplitude occurs. Conversion from the time representation to 
the amplitude representation can be simply accomplished. For ex­
ample, at amplitude Al the corresponding time slot is 1; that is, T 
corresponding to Al is 1. 

Consider the sequence TI ... T i , T j ••• Tn. For A lying between the 
ith and jth steps, the new sequence is Ti ... T I , Tn ... T j • Notice that 
the cyclic order is reversed but otherwise unchanged. Thus if A changes 
by i steps, the amplitude sequence shifts by i steps but the order is un­
changed unless A is less than r/2n, in which case the order reverses. 
However, since the visibility of a sequence does not change if the 
order is reversed, this may be neglected. A cyclic shift in the amplitude 
sequence must now be converted to the time sequence, since we use 
the time sequence to calculate visibility. A shift by one step in the 
amplitude representation corresponds to an addition or subtraction 
by one, modulo n (depending on the direction of the shift), in the 
time representation. Thus if the time sequence was 1, 2, ... ,n (a bad 
sequence from the point of view of visibility), the sequence at the ith 
level would be n - i + 1, ... 1, 2, ... , n - i, which is in fact the 
same sequence. This particular case is one of a set of sequences that 
remain unchanged as A changes from step to step. 

6.1 Visibility of Sequences 

There are at most (n - 1) !/2 different sequences that can be gen­
erated for a particular value of n where sequences are regarded as 
different if they have different visibilities; that is, they are not shifted 



DITHER W A VEFORl\IS 2573 

in time or reversed versions of another sequence. There is only one 
unique sequence for n = 3 and three unique sequences for n = 4. For 
n = 4 the three possible sequences are: (i) 1,2,3,4; (ii) 1,3, 2, 4; 
(iii) 1, 2, 4, 3. Sequence i produces three output sequences which are 
the same as itself. Sequence ii produces the output sequences 

Input 1,3,2,4 =1..1,3,2,4] 
4,2,1,3 = 1,3,4,2 l 
3,1,4,2 = 1,3,2,4 J 
2,4,3,1= 1,3,4,2 
1,3,2,4 

and iii produces the output sequences 

Input 1,2,4,3 = 1, 3,4, 2] 
4,1,3,2= 1,3,2,4 ] 
3,4,2,1 = 1,3,4,2 
2,3,1,4 = 1,3,2,4 
1,2,4,3 

Output 0 
1 
2 
3 

Output 0 
1 
2 
3 

These outputs are just shifted versions of one another and they 
should yield the same overall value of U. The output sequence 1, 3, 
2, 4 provides better smoothing than 1, 3, 4, 2 which contains lower 
and hence more visible frequency components. This can be seen in 
the curves of U for the two sequences which were calculated inde­
pendently of the arguments of this section (Fig. 15). 

For comparison, U (A) is shown for the case previously considered 
in which the dither waveform is not subtracted from the output. The 
subtraction method gives a slightly lower average value of U ( < 2 
percent lower). The value of U for uncorrelated rectangular noise 
with subtraction is also shown. U is now independent of A. However, 
the problems associated with comparing random and deterministic 
dither schemes should be borne in mind (see Section 4.3). 

6.2 Constant Sequences 
Here is a technique for finding sequences which do not change as A 

changes from step to step (constant sequences). A step change in 
A results in an increment, modulo n, of each number in the sequence; 
thus, the numbers must be arranged so that the order remains un­
changed after a shift. Constant sequences can be constructed simply 
by using a geometric method. In Fig. 16, five points are spaced equally 
around a circle, each point corresponding to a number in the sequence. 
Starting from any point, a line is drawn to another point to cor-
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Fig. 15 - Visibility of granularity produced by four-step add-subtract dither 
pattern. Viewing distance is 36 inches (-- input sequence 1, 3, 2, 4; -­
----input sequence 1, 2, 4, 3; - - - - addition only 1,3,2,4). 

respond to a shift of the number of points cut off by the line: 1 in 
Fig. 16a and 2 in Fig. 16b. This second point is then shifted the same 
distance in the same direction. The shifting process is repeated until 
all points are covered, and we arrive back at the starting point if the 
number of points shifted is not a divisor of n (excluding 1). The 
number of unique constant sequences for an n-step pattern is equal 
to the number of nondivisor integers less than n/2 plus 1. Thus Figs. 
16a and b represent the two constant sequences for n = 5. Unfortu­
nately, for larger n, constant sequences do not have low visibility, as 
the five constant sequences, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 
1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6 
1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8 
1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9 
1, 10, 8, 6, 4, 2, 11, 9, 7, 5, 3 

show for n = 11. Probably the best sequence is the third, but this is 
significantly inferior to a sequence such as 

1, 11, 2, 10, 3, 9, 4, 8, 5, 6, 7. 

Figure 17 is a graph of U (il) for n = 5 for the constant sequence 
1, 4, 2, 5, 3 and sequence 1, 2, 5, 4, 3. The constant sequence has an 
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2 5 4 O:---+--+---->J 3 

SEQUENCE 1,2,3,4,5 SEQUENCE 1,4,2, 5,3 

(a) (b) 

Fig. 16 - Generation of constant sequences. 

average value (U)av of 0.095, which is lower than the other sequence 
and the low visibility pattern derived in Section 4.1 (which is also 
shown for comparison). The subtracted sequences for n = 4 (Fig. 
15) give a slightly greater value of (U)av (0.099) compared with 
n = 5. Notice the very low minimum at A = 0.2 for the nonconstant 
sequence. The sequence producing this minimum may be calculated 
by subtracting one from each digit of the input sequence and is thus 
1,4,3,2,5. 

VII. DISCUSSION 

The quantizer configuration with a decision level at zero was re­
ferred to briefly in the introduction. This configuration results III an 

u 
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0.2 0.4 0.6 0.8 1.0 

Fig. 17 - Visibility of granularity produced by five-step add-subtract dither 
pattern. Viewing distance is 36 inches. 
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even number of representative levels and has received more attention 
in the literature. In the absence of a dither signal the output will 
oscillate between Rl and R-l, but otherwise has no inherent dithering 
ability of its own. It will produce contours in low detail areas with 
much the same visibility as the quantizer configuration we have in­
vestigated. For an uncorrelated random dither signal, the switching 
waveform is not constrained to lie between the two adjacent quantizer 
levels as it is with a representative level at zero. For illustrative pur­
poses, two switching waveforms have been generated for two differ­
ent input levels assuming a random, uncorrelated dither signal (Fig. 
18). Although it would be more complex to do so, one could calculate 
the visibility of these types of waveforms as done previously and 
compare the results with those just obtained. One problem is to 
decide upon the relative amplitudes of Rl and R-l for the two con­
figurations. 

VIII. SUMMARY AND CONCLUSIONS 

The design of dither signals for ordinary quantizers is the same as 
the design for differential quantizers for quantizer characteristics of 
specific types. The requirements for equivalence are that the char-

--+----x I x:---+__-

---1 r ~--
D-l R-l Do R, D\ 

INPUT LEVEL 
~ 

INPUT LEVEL 
~ 

(al 

tb) 

Fig. 18 - (a) Quantizer characteristic with decision level at zero. (b) Chopping 
pattern for input at Ll = o. (c) Chopping pattern for input at Ll = 1/2 R1. 
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acteristic have a representative level at zero and uniform spacing of 
the adj acent pair of representative and decision levels. 

Dither patterns may be three dimensional in design, varying hori­
zontally, vertically, and from frame-to-frame. A pattern that varies 
in only one dimension can be generated having two, three, four, five, or 
seven amplitude levels (and no others), such that the visibility of the 
added pattern is a minimum for each level of the pattern. 

We predict that a deterministic four-level pattern will give mini­
mum visibility or granularity for Picturerphone® visual telephone 
viewed at 36 inches. The use of this one dimensional dither signal 
should reduce the visibility of contours by a factor of about two when 
compared with a picture with no dither. 

At 72 inches viewing distance (or say 36 inches with twice the 
sampling frequency) seven level dither should be used. 

Four-level dither applied in two dimensions should reduce the 
visibility of contours by a factor of six compared with a picture hav­
ing no dither. A further significant reduction should occur when dither 
is applied to the temporal dimension as well. 

The dither signal may be subtracted from the received signal to 
further reduce the visibility of the added waveform. But the rules 
for determining the best patterns are different. For four-level dither 
the best addition-subtraction patterns give results that are only 
marginally better than the best patterns when they are not subtracted 
from the receiver. 

APPENDIX A 

Equivalence of Dither for Quantization 

The method of proof is to show that for a Markov dither pattern 
(having an arbitrary conditional probability density function) the 
conditional probability of the switching pattern being at either level, 
given the previous value of the dither signal, is the same for both 
ordinary and differential quantizers. 

Assume a Markov dither pattern described by the transition prob­
ability density function P(XJXi-l) where I Xi I ~ r/2. The pattern 
could be either deterministic or random. For ordinary quantization, the 
probability of obtaining level Rn and level Rn+l for an input analog 
amplitude of Rn + A (see Fig. 19b) is 

j
(r/2l-a 

Pr {Rn/Xi-l} =. P(X)Xi-l) dXi = II 
(-r/2l 

(1) 
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Fig. 19 - Equivalence of dither for ordinary and differential quantization­
definition of tenns-(a) conditional probability density function, (b) ordinary 
quantization, and (c) differential quantization. 

and 

(2) 

where Pr{ alb} is the probability of event a occurring given that event 
b has occurred. Thus the probability of obtaining levels Rn and Rn + 1 

is conditional only on Xi - 1 • 

For differential quantization, feedback occurs from the previous 
sample value, and it becomes necessary to distinguish between the 
output of the quantizer (primed) and the output of the complete 
differential quantizer (unprimed). Again, for an analog input of Rn + D.., 
assuming equal spacing of R-l' D-l' Ro, D l , and Rl we have 
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j
(r/2l-1l 

= P(XJXi-l ; Xi-l < (r/2) - .1) dXi 
-(r/2l 

(3) 

j
(r/2l-1l 

= PI' {Xi-l < (r/2) - .1} P(XJXi-l) dXi 
- (r/2l 

= PI' {Xi-l < (r/2) - .1} {II}' (4) 

Now 

Pr {Rn/Xi-l ; Xi-I> (r/2) - .1} 

= PI' {R~l/Xi-l - r; Xi-I> (r/2) - .1} 

= Pr {Xi-I> (r/2) - .1} PI' {R~l/Xi-l - r}. (5) 

But since 

PI' {R~l/Xi-l - r} = PI' {RVXi-l} = PI' {Rn/Xi-l} ' 

PI' {Rn/Xi-l ; Xi-I> (r/2) - .1} = PI' {Xi-I> (r/2) - .1} {II}' 

(6) 

Thus from equations (3) and (6) one can see that Pr{Rn/xi} is in­
dependent of the previous state of the differential quantizer and equal 
to the value obtained for the ordinary quantizer. By a similar argu­
ment, Pr{Rn + dXi _ d can be equated for the two quantizers. 

APPENDIX B 

Calculation of Visibility of Dither Signals 

B.1 1I10del of Vision 

Figure 20 shows a simple model used to describe the visibility of 
small amplitude signals.7 I (x, y, t) represents the spatial and tem­
poral luminance pattern incident at the eye. The filter ,,-(x, y, t) ac­
counts for spread of the signal in space and time caused by the 
optics, the receptors, and subsequent neural processing. The amplitude 
of the hypothetical signal E (x, y, t) is proportional to the observed 
visibility of the display. Thus the difference in visibility between two 

I(x,~,t) 

Fig. 20 - Model of threshold vision. 
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displays can be measured by evaluating the average of some function 
of the difference between the value E resulting from one display, and 
the value of E resulting from the other. 

We wish to know how well the discrete waveform with added dither 
approximates the analog signal in flat areas where contours are most 
bothersome. Thus it is reasonably accurate to represent the analog 
signal by a constant amplitude Ea , and the measure of the visibility 
of the discrete waveform is 

U(D.) = E{f[Ea - EA(x)]}, 

where E { .} denotes the expected value and, as before, A denotes the 
position of the input within the quantizing interval. E (x) varies with 
A since the chopping pattern I(x) changes as A is varied. In a number 
of cases, U (A) has been evaluated for two different f functions, the 
square and the modulus. 

B.2 Visibility of Waveform 

The method of evaluating the visibility differs from that used pre­
viously.4 Earlier, E (x) was calculated for every possible input com­
bination occurring in a signal segment of the length of the significant 
part of the impulse response. The probability density function of 
E (x) was then calculated by weighting each output by the probability 
that the corresponding input occurred. From the probability density 
function the error can be calculated for the required criterion func­
tion. 

The method now used is to first calculate a combined impulse re­
sponse for the reconstruction filter and visual filter: this is then con­
volved with the input signal to obtain an output from which a measure 
of the granularity is derived. This technique is fast and accurate for 
deterministic signals which repeat after a short length, but slower if 
accurate results are required for random inputs. Fortunately, most of 
the signals investigated were deterministic. 

Denoting the impulse response of the low-pass filter by hdx) and 
the visual spatial filter (for example, in the horizontal dimension) by 
h'2 (x), then the combined impulse response is given by 8 

>-(x) = i: h1(y)h2(x - y) dy. 

This integral was evaluated for 
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and 

h,(x) = ,..-11' exp [ -O.0833(~,X)'] , 
where x' is the spatial Nyquist interval and A, which depends upon 
the viewing distance, is the width of a picture element in minutes of 
arc; h2 (x) is the same impulse response as used previously.4 

Figure 21 shows the combined impulse response of the normalizing 
low-pass filter and the visual system for Mod. II Picturephone® visual 
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Fig. 21- Combined spatial impulse response in one direction at viewing dis­
tances of 36 and 72 inches. 

telephone viewed at 36 inches. The corresponding impulse response 
for a viewing distance of 72 inches (or alternatively, for 36 inches at 
twice the sampling frequency) is also shown and agrees to three 
decimal places with the impulse response of the visual system itself. 
In other words, the visibility of threshold detail is almost completely 
unaffected by the horizontal resolution of the display at 72-inch view­
ing distance (resolution limited by eye). 

For a given input I (x) the output is (using the convolution 
theorem) , 

E(x) f_: I(y)}..(y - x) dy. 
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The limits of the integral can be reduced so as to integrate over only 
those values of (y - x) for which).. is significantly greater than zero 
(in practice, greater than 0.1 percent). For random inputs, simula­
tions were run for between 300 and 900 samples. 
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Digital Differential Quantizer for Television 

By J. o. LIMB and F. W. MOUNTS 

(Manuscript received January 23, 1969) 

Correct tracking between the transmitter and receiver is difficult to main­
tain when a long integrator time constant is used. We describe a differential 
quantizer which has a digital integrator; this integrator enables perfect 
tracking to be achieved at the output of the integrator without any adjust­
ments. 

The differential quantizer gives high quality pictures when seven, eight, 
and nine quantizer output levels are used. We present a scheme for trans­
mitting the nine-level signal at the rate of three bits per picture element. 

Picture quality is improved significantly by adding low-amplitude dither 
patterns to the input signal to mask contours. The coder is more susceptible 
to transmission errors than coders having an analogue integrator with a 
short time constant; we discuss two methods for reducing the susceptibility. 

I. INTRODUCTION 

Differential quantization is well suited to visual signals for two 
reasons.1 First, the quantizer acts like a predictive encoder, taking 
advantage of the large amount of correlation between adj acent ele­
ments of a picture to obtain a good prediction of the amplitude of the 
point being quantized.2 Thus, the differential quantizer makes use of 
some of the statistical redundancy in the source. Second, the quantiza­
tion can be partially matched to the changing sensitivity of vision.3 

To understand this, remember that the sensitivity of the visual system 
to small differences in luminance decreases markedly at boundaries be­
tween light and dark areas. The signal that is applied to the quantiza­
tion stage of a differential quantizer is very nearly equal to the change 
in amplitude between adjacent elements. Thus, by quantizing small 
amplitude samples finely and large amplitude samples more coarsely 
a picture can be obtained which is partially matched to visual require­
ments. 

Figure la is a block diagram of a differential quantizer; it differs in 
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Fig. 1- (a) Differential quantizer (DPCM coder-decoder). (b) Transfer char­
acteristic of a quantizer. (c) Digital differential quantizer. 

one small aspect from the usual representation. The quantizer section 
of the differential quantizer is considered as two separate parts. The 
first part, the classifier, contains the decision levels which divide the 
input signal range into a number of intervals (see Fig. lb). Thus, 
the signal at the output of the classifier is digital and just denotes the 
interval in which the signal sample occurred. The signal at this stage 
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is encoded for transmission to the receiver. The second part, the 
weighter, assigns an amplitude or weight (representative value) to each 
section that can have either a digital or analogue value. The integra­
tor is usually an analogue device in which case the weights are gen­
erated as analogue values. 

In practice, it is difficult to resynthesize a high-quality picture at 
the decoder. The longer the time constant of the encoder and decoder 
integrators, the greater the precision required in implementation to 
prevent the received picture from differing from the sent picture 
(referred to as mistracking). A short integrator time constant, on the 
other hand, makes mistracking less of a problem but introduces effects 
similar to noise. These, generally, are not too serious if the inner pair 
of levels alone is used to make the correction for integrator leak. Mis­
tracking can stem from three sources: 

(i) The representative levels at the encoder and decoder can be 
mismatched. While the setting of the largest pair of levels is not quite 
as critical since it is seldom used, the smallest levels must be adjusted 
quite accurately, especially when the integrator time constant is long. 

(ii) The frequency response of the integrators can differ. 

(iii) An analogue component of the signal can bypass the classifier 
stage (hence analogue breakthrough) and feed through the analogue 
weighter into the integrator. The analogue breakthrough is generally 
prevented from reaching the integrator in the decoder by digital regen­
eration in the signal path, and so a mismatch between the encoder and 
decoder can occur. The problem can be overcome by carefully gating 
the digital output of the classifier stage to remove any vestige of 
analogue signal. 

In an attempt to overcome decoder mistracking and still have a 
long integrator time constant, it was decided to perform the opera­
tions of weighting and integrating digitally. This should ensure exact 
tracking of the decoder under all conditions except for the obvious 
cases of either a digital circuit malfunction or an error occurring dur­
ing transmission. 

Figure lc is the block diagram of the digital differential quantizer. 
The analogue parts are distinguished from the digital parts. An extra 
block is required since it is necessary to convert the output of the 
accumulator (digital integrator) to an analogue quantity prior to 
subtracting. 

The digital encoder-decoder completely eliminates mistracking; 
thus, the picture at the receiver cannot be distinguished from the 
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quantized picture at the transmitter. High precision analogue weight­
ers and integrators are now replaced by digital circuits and, further, 
the classifier design need not be precise. Indeed, analogue break­
through, unless it is large enough to switch a digital circuit, is in­
effectual and small variations in the position of the decision levels 
have negligible effect on picture quality. Requirements on the digital­
to-analogue (D-A) converter are not very strict. Nonlinearity in the 
characteristics of the D-A converters has the effect of producing a 
change in the gamma of the signal, of which the eye is not very 
critical. In fact, changes in the D-A converter produce similar ef­
fects to changes in the D-A converter of an ordinary PCM system. 

In quantizers used for ordinary PCM encoding the appearance of 
contour lines in low-detail areas sets the lower limit on the number 
of quantizing levels that can be used. For the differential quantizer 
a similar effect occurs. As the weight assigned to the smallest pair of 
representative levels is increased, contour lines become more visible. 
Addition of random and pseudorandom noise improves picture quality 
for ordinary quantizers having less than about 100 levels.4

,5 A theo­
retical study of the use of dither signals with differential quantizers 
suggests that even at a close viewing distance dither should prove 
effective in improving picture qualit.y for a given number of levels.6 

This paper first describes the digital differential quantizer and the 
results obtained with it. The reduction in the visibility of contours by 
adding specially designed dither signals in both the horizontal and 
vertical directions is then explored. The problem of overcoming the 
effects of channel errors is also briefly discussed. 

II. DESCRIPTION OF SYSTEM 

2.1 Analogue Section 

See Fig. 1c. The subtractor is an emitter-coupled pair circuit that 
is ac coupled at both the input and feedback terminals. The classifier 
comprises a set of eight threshold circuits connected in parallel. Their 
threshold levels can be adjusted independently to give the desired 
partition of the input. For example, setting two decision levels to the 
same value reduces the number of intervals by one. 

The classifier design is simplified by making the positive and nega­
tive stages identical. This is made possible by feeding them separately 
with signals of opposite polarity; such signals are generated by the 
emitter-coupled pair of the subtractor. Sampling is inherent in the 
operation of the decision circuits. Narrow. sample pulses with a base 
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width of approximately 20 ns are amplitude modulated by the signal. 
The decision as to whether the sample exceeds the threshold is then 
made using a high speed flip-flop. When the flip-flop is set, the signal 
is considered to have exceeded threshold. A reset pulse is applied to 
aU flip-flops prior to the occurrence of the next sample pulse. The 
classifier successfully uses only emitter-coupled integrated circuit logic 
elements (for essentially analogue operations) to obtain fast decisions 
« 30ns) and good stability. 

2.2 Digital Section 
Because a parallel classifier is used, all threshold circuits with 

thresholds less than the input signal value are triggered. For example, 
if the signal to the classifier exceeds level number three, then an out­
put occurs on level number three and also on levels number two and 
number one. The outputs of the threshold circuits are combined 
logically to give a sign bit and four other binary signals-one for 
each level. A particular signal takes the value "one" when the input 
to the classifier falls in the interval associated with that level. This 
code allows no more than one of the four outputs to be a "one" for 
any sample. A zero on all four bits denotes the zero interval of the 
classifier. This code change is not essential, but it allows the weights 
associated with each interval to be controlled independently, which 
is convenient in an experimental coder. 

Each output is connected to a word generator which generates a 
binary number specifying the amplitude of the representative level. 
Notice that this method of weighting means that only symmetrical 
weighter configurations can be investigated because the magnitude 
of the levels is generated independently of the sign. The experimental 
arrangement allowed any set of digital weights to be wired on a small 
plugboard. 

The accumulator uses a seven bit adder that sets the precision with 
which the weights can. be assigned (Fig. 2). The contents of the adder 
for the previous sample are fed back into the adder together with the 
new difference signal. For a zero difference signal it can be seen that 
the same seven bit amplitude signal would circulate through the adder 
and delay stage without change. The operation of the accumulator can 
be expressed as Yn = Yn-l + Xn-l, where Xn and Yn would be the values 
of the input and output, respectively, of the accumulator for the nth 
sample. 

Under certain conditions the adder could overflow or underflow, say 
for a large peak in the input video signal. This is prevented by the 
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Fig. 2 - Digital section of differential quantizer. 

FROM 
CLASSIFIER 

" ..-----.\ 

addition of overflow logic. The circuit holds the adder output at level 
127 if overflow occurs or at level zero if the adder underflows, that is, 

Yn = 127 if Yn-l + Xn- 1 ~ 127 
and 

Yn = 0 if Yn-l + Xn- 1 ~ O. 

The overflow logic effectively clamps the accumulator when it is under­
driven; we make use of this action to fix the dc level in the coder. 
The delay period of one element is realized with a clocked flip-flop. 

The digital-to-analogue converter uses the ladder method of con­
version. The seven-bit converter was built using selected 1 per cent 
resistors and has a settling time of less than 50 ns. Resampling for 
display purposes was not considered necessary; within the loop the 
classifier resamples. 

2.3 Alignment 

Setting the input and output levels of a quantizer accurately is 
normally a tedious problem requiring precise equipment. In this sec­
tion we describe a self-alignment technique using the digital-to­
analogue converter of the differential quantizeI'; the level adjustment 
problem then becomes quite trivial. 

Since the representative levels of the weighter are assigned digitally, 
they can be set exactly with the wired plugboard. The decision levels, 
however, are analogue levels, and they need to be set up accurately 
both in relation to themselves and to the representative levels. To do 
this, the feedback loop is broken between the classifier, and the 
weighter and the classifier levels are set up digitally in the weighter at 
twice the desired value. The sign bit to the accumulator is alternated 
each sample period so that the output of the digital-to-analogue con-
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verier is a square wave of twice the desired amplitude. The input video 
signal is disconnected so that only the square wave is coupled to the 
classifier. Since the signal is ac coupled, the excursions from the mean 
are of the right value to set both the positive and negative decision 
levels. The control on the position of the threshold is adjusted until 
the decision stage just triggers. Nothing more complex than a volt­
meter is required to make this adjustment. 

III. INVESTIGATIONS 

3.1 I deal W eig hter-Integrator 
Probably the most significant difference between previous analogue 

implementations of the differential quantizer and the present digital 
implementation is the fact that the weights are known exactly and 
the integrator accumulates exactly until it is reset at the end of a line. 
Thus, the weights of the larger levels can be set at values which are 
exact multiples of the smallest (or inner) levels. For example, if the 
inner pair of levels was set at 3j128ths and the other three pairs of 
levels were set at 6j128ths, 12j128ths, and 21j128ths, this would be 
called a multiple setting of the weighter. A multiple setting is a neces­
sary condition for producing clear contour patterns that are the same 
as one gets with ordinary quantization. Figure 3b, which shows a pic­
ture processed by the digital differential quantizer, illustrates these 
contour patterns; for comparison Fig. 3a shows the original signal. The 
picture was chosen because of its fiat background which has the effect 
of emphasizing contours. A coarse quantizer setting with only seven 
levels is used to make them more visible. 

By going to a nonmultiple setting, the coded amplitude in a fiat 
area of the picture will vary from line to line depending upon what 
levels were used in the previous part of the line. It might be argued 
that this effect could be used to mask contouring. It can, but it is not 
very successful as Fig. 3c shows. There is still contouring on the left 
side of the picture; the right side is quite streaky compared with what 
can be done using other methods (Fig. 3d). These methods are dis­
cussed further in Section 3.4. 

Thus, for a multiple setting of the weighter the low-detail areas of 
the picture are quite free from random noise. Quantizing errors show 
up as more or less visible contours (depending on the level setting 
and the type of picture material) which are quite sharp if the input 
signal-to-noise ratio is high. Quantization error at edges and in high 
detail areas, on the other hand, is more random in nature. 
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Fig. 3 - Pictures processed by digital differential quantizer: (a) original 
analogue signal, (b) processed picture-seven levels with multiple setting of 
levels, (c) processed picture-seven levels with nonmultiple setting, and (d) 
processed picture-same level setting as (b) with 4 X 4-step dither signal added. 
(The scan lines and printing screen cause moire patterns that are not in the 
originals.) Glossy prints of this figure can be obtained by writing to the authors. 

3.2 Quantizer Characteristic 

We are limited to symmetrical configurations of the decision and 
representative levels because of the way the quantizer was designed. 
However, there is nothing to suggest that a nonsymmetrical setting 
would have any significant advantage. Many settings were tried 
using nine representative levels-four positive levels, four negative 
levels, and a zero level. The scale of Table I was found to give good 
results-no contouring is apparent but the skilled viewer can detect 
slight degradation at edges. The best setting changes only slightly 
with the subject matter. For contrasty pictures and graphics, edges 
can be improved by expanding the scale slightly. This is done by 
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reducing the input amplitude and increasing the output amplitude 
by a compensating amount. 

Eight-level settings of the weighter were investigated using the same 
configuration as with nine levels, except that the zero representative 
level was removed by moving the first pair of decision levels at ± 1 
percent to zero. The smallest output step of this configuration, however, 
is unchanged. Edges should also be reproduced with the same fidelity. 

The pictures obtained with eight levels are very similar to the nine­
level pictures. Contours still occur with about the same visibility for 
coarse-level settings but now a constant amplitude consists of an 
oscillation between two levels separated by an amount equal to the 
smallest step size. This oscillation is largely removed by the filter­
ing at the receiver and the filtering taking place in the eye. 

Since there is little choice between the picture qualities of the 
eight-level setting and the nine-level setting, the eight-level setting 
would be preferred since fewer levels are required. However, the nine­
level configuration of Table I can be altered to significantly reduce 
the visibility of contours by placing the first pair of decision levels 
at half the value given in Table 1. One can show that this is equiva­
lent to adding a deterministic, two amplitude dither signal (which is 
random in the vertical and temporal directions) in the horizontal di­
rection (see Section 3.4 and Ref. 6). The quantizer levels can now be 
expanded (taking advantage of the reduction in visibility of con­
tours) to reproduce high-detail areas more accurately, giving an over­
all improvement in picture quality. 

In a number of analogue differential quantizers built previously by 
others, representative level settings of approximately 1, 3, 7, and 20 
percent (for example, Ref. 2) have been found satisfactory. This set­
ting compares with approximately 2, 6, 14, and 24 percent for the 
digital differential quantizer. The difference in the inner level settings 

TABLE I-LEVEL POSITIONS OF QUANTIZER* 

Level ±1 ±2 ±3 ±4 
-----------------

Decision 
Level ±1 ±4 ±1O ±19 

---------------
Representative 
Level 0 ±2 ±6 ±14 ±24 

* Expressed as percent of peak-to-peak signal. 
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is quite large and is almost surely the result of the different integrator 
characteristics. 

The picture quality is rather insensitive to a change in input signal 
amplitude. For example, an increase of 4 dB in signal level causes a 
slight loss of sharpness at edges with a decrease in the visibility of 
contours, while a decrease of 4 dB improves the edges and makes the 
contours a little more visible. 

3.3 Sign Predictor 

If there is to be no further coding of the digital signal (apart from 
assigning a constant length word to each output sample), it is more 
efficient to have the number of quantizer output levels equal to a 
power of two. Thus, the improvement in quality obtained using nine 
output levels would be negated if four bits instead of three had to be 
assigned to each picture sample. 

Now we describe a simply implemented scheme (which may also 
be used with differential quantizers having analogue integrators) for 
reducing the required number of levels by one. The scheme enables 
the nine-level setting to be used with a channel transmitting at the 
rate of three bits per picture element. 

The probability of having the largest level (level number four) 
preceded by a level of the opposite sign is small. One factor tending 
to reduce this probability is the smoothing provided by the normaliz­
ing filter at the input to the differential quantizer.* Consequently, the 
sign of an outside level can be predicted fairly accurately by assum­
ing that it is the same as the previous sign. If the prediction is wrong, 
a number three level, rather than a number four level, is used and will 
thus have the correct sign. 

Thus, a level is effectively eliminated since instead of indicating 
that the fourth positive or the fourth negative level has occurred (one 
of two possible events), it is only necessary to indicate to the decoder 
that the fourth level has occurred (one event) and the decoder then 
assigns the sign of the previous sample. The signal is modified in this 
way immediately after the classifier stage; this modification is best 
regarded as an adjnnct to classification. Thus, the encoder and de­
coder keep in track; in the event of an outside level being preceded 
by a level of the opposite sign, the slope capability of the encoder 
and decoder is reduced. For most pictures it is difficult to detect any 

* The input filter is 3 dB down at 670 kHz and 14 dB down at half the sam­
pling frequency (1 MHz). The output filter is 6 dB down at 1 MHz, giving an 
overall attenuation of 20 dB at 1 MHz. 
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change in picture quality when level elimination is used with nine 
levels. It is simple to implement-in fact it requires only an addi­
tional flip-flop and two gates. 

3.4 Dither 

3.4.1 Straight Quantization with Dither 
In quantizers used for straight PCM encoding, contouring becomes 

obvious if less than about 100 levels are used. However, small am­
plitude, high frequency waveforms may be added to the coarsely 
quantized signal to reduce the visibility of the contours. The penalty 
associated with adding dither (as these added waveforms will be 
called) is that the background noise level in the picture is increased 
slightly. The task in designing dither waveforms is to select that 
waveform which has the minimum visibility and hence disturbs the 
picture the least. In the past, random and pseudorandom waveforms 
have been investigated/,7 but more recent calculations have been made 
with deterministic waveforms (or patterns) indicating their superio­
rity.6 

3.4.2 Differential Quantization With Dither 

Dither can be used to advantage in the digital differential quan­
tizer. The quantizer levels are generally set so that contouring is not 
detectable; but if dither is used, the level spacing can be expanded 
to either enable the number of levels to be reduced (say from nine to 
seven) or improve the picture quality by reproducing edges more 
sharply. 

For a certain quantizer configuration, the design of the dither 
waveform becomes identical to the design for ordinary quantizers.6 
Figure 4 shows this configuration, which has a representative level at 
zero and the first pair of representative levels set at twice the value 
of the first pair of decision levels. On the other hand, dither with a 
decision level at zero produces complex multilevel output waveforms 
and is not considered here. 

Dither may be applied in two ways; the design of the waveform 
depends on the way it is applied. In the first way it is just added at 
the input. In the second way, besides adding the waveform at the in­
put it is subtracted from the output. For random uncorrelated wave­
forms Roberts has shown· that for random dither the addition-sub­
traction technique is superior to addition alone5-the variance of the 
output waveform is reduced by one half. 
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Fig. 4 - Configuration of quantizer with representative level at zero. 

However, for a deterministic waveform it has been predicted that 
there is little difference in the visibility of waveforms designed for 
addition and waveforms designed for addition-subtraction.6 This 
prediction has been tested using a four-amplitude (four-step) pattern 
with the sequence 1, 3, 2, 4 applied to one dimension, the vertical 
dimension (Fig. 5). Notice, that although the added waveform is 
written 1, 3, 2, 4, it has a mean of zero and the levels are positioned 
uniformly within the quantizing interval as shown in the figure. 
Theoretically, this is the best one-dimensional, four-step dither wave­
form for the addition method. The design technique for the addition­
subtraction waveform is different from the design for the addition 
waveform and, in fact, there are two waveforms that have minimum 
visibility; they are sequence 1, 3, 2, 4 (as for the addition method) 
and sequence 1, 2, 4, 3. 

3.4.3 Result with Dither 

We now describe the results obtained by adding the waveforms to 
two particularly sensitive types of display. The first display is a 
ramp applied in the horizontal direction (Fig. 6); the second is a 
picture with large flat areas (Fig. 3). For the addition method, the 
waveform introduces a small amount of frame flicker as a result of 
interlace since the component added to the first and third lines (field 
one) is not equal to the component added to the second and fourth 
lines (field two). Although the add-subtract method does appear to 
give a smoother looking display, the difference is very slight. 
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Fig. 5 - Four-step dither waveform. 

Fig. 6 - Ramp signal processed by digital differential quantizer: (a) Original 
analogue signal, (b) processed signal-no dither, (c) processed signal-dither 
added in vertical direction with four-step pattern, and (d) processed signal­
dither added in vertical and horizontal directions with 4 X 4-step pattern. (The 
scan lines and printing screen cause moire patterns that are not in the originals.) 
Glossy prints of this figure can be obtained by writing to the authors. 
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The 1, 2, 4, 3 pattern, as expected, gave the same results as the 
1, 3, 2, 4 pattern for the addition-subtraction method. For the addi­
tion method, frame flicker was eliminated with a 1, 2, 4, 3 pattern but 
the output waveform was more visible since the dither waveform is 
less suitable. 

A two dimensional 4 X 4 step dither waveform was generated for 
the horizontal and vertical dimensions. Table II shows the pattern. 
With reference to Table II, the sequence 1, 9, 3, 11, 1, 9, 3, 11 ... 
was added to the first line; 14, 6, 16, 8, 14, 6, IH, 8 ... was added to 
the second line, and so on. Thus 1, 9, 3, 11 ... would be added again 
to the fifth line. 

Since we have interlace, line one is in a different field than line 
two. The average contribution to each field can be found by adding 
the numbers in each line. The first and third lines contribute to the 
first field and have a total of 24 + 28 = 52. The second and fourth 
lines contribute to field two and have a total of 44 + 40 = 84. Hence, 
the average contribution to field one is not equal to the average con­
tribution to field two and a small amount of 30 Hz flicker results. 

The pattern in Table III does average out over a frame and hence 
would produce no flicker but was not investigated at this time. Fig­
ure 3d shows the improvement obtained by using the dither signal of 
Table II, compared with not using dither (Figure 3b). The photo­
graphs indicate fairly accurately the improvement due to dither, 
since this particular dither waveform does not rely on time averaging. 

An attempt was made to quantitatively assess the improvement 
resulting from dither. Theoretical predictions were that four-step 
interpolation would reduce the visibility of contours by 7.1 dB and 
4 X 4-step dither by 16.8 db.6 The method used to test these figures 
was to add dither to the quantized ramp display (Fig. 6b). A sub­
ject attenuated the displayed picture signal until the visibility of the 
display without dither was equal to the display with dither. The 
amount of attenuation was then recorded. The viewing distance was 

TA.BLE II-Two DIMENSIONAL 4 X 4-STEP DITHER WAVEFORM 
WITH UNBALANCED FIELD CONTRIBUTIONS 

Vertical 
! 

1 
14 
4 

15 

Horizontal --t 

9 
6 

12 
7 

3 
16 
2 

13 

11 
8 

10 
5 

Line Totals 

Field 1 24 
Field 2 44 
Field 1 28 
Field 2 40 
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36 inches. For the four-step pattern (Fig. 6c), four technical sub­
jects gave an average value of 9 dB with a spread of 4 dB, probably 
reflecting the difficulty of making a match in the presence of flicker. 
For the 4 X 4-step pattern (Fig. 6d), three subjects gave an average 
attenuation of 14.3 dB with a spread of 1 dB. These measurements 
support the theoretical figures of 7.1 dB and 16.8 dB. 

A quantitative comparison with picture material would be more 
difficult and has not been attempted. The method above is not suitable 
because attenuating the amplitude of the output signal for the picture 
without dither produces displays that are quite different in appear­
ance. Qualitatively, the reduction in visibility of contours in low­
detail areas of the picture is quite dramatic. 

3.5 Further Coding 

When subsequent coding is permitted, the whole approach to the 
design of the encoder changes. For example, applying dither in the 
horizontal direction would lead to a less efficient Huffman code (as 
would a short integrator time constant) while dither applied vertically 
or temporally would have little effect. 

3.6 Transmission Errors 

A chief disadvantage of the digital accumulator is that an error 
in transmission will affect subsequent picture elements until the ac­
cumulator is reset. Thus, each error will produce a horizontal streak 
which starts at the point where the error is made and persists to the 
right edge of the picture where the accumulator is reset. With an 
analogue integrator the length of an error streak is commensurate 
with the time constant of the integrator (time constants as short as 
six picture elements have been used) ; however, as mentioned previ­
ously, a short time constant has other disadvantages. 

The length of an error streak in the digital implementation can be 
shortened by updating the accumulator during the line. For example, 

TABLE III-Two DIMENSIONAL 4 X 4-STEP DITHER WAVEFORM 

WITH BALANCED FIELD CONTRIBUTIONS 

Vertical 
1 

1 
10 
4 

11 

Horizontal ~ 

14 
5 

15 
8 

3 
12 
2 
9 

16 
7 

13 
6 

Line Totals 

Field 1 34 
Field 2 34 
Field 1 34 
Field 2 34 
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a full seven-bit PCM signal may be transmitted halfway through 
each line. The accumulator at the receiver could be updated to this 
value thus truncating any error which may have occurred. Of course, 
this process could be repeated more often (with a consequent reduc­
tion in information transmission efficiency) for a high transmission 
error rate. This method of reducing the effect of errors is analogous 
in a way with shortening the time constant of an analogue integrator 
without the same disadvantage. 

The precision of digital integration leads to another method for 
reducing the effect of errors. Assume that overflow or underflow of 
the transmit accumulator is inhibited. Then, when the coder at the 
transmitter is reset to a pre-assigned value at the end of a block of 
data (say a line), the decoder at the receiver should recover to the 
same value. If it does not, transmission errors have occurred. Errors 
that would escape detection in this way are self-correcting errors, for 
example, level "a" is received as level "b" followed by level "b" re­
ceived as level "a". In practice, the probability of an error being of 
this type would be small. 

When a block of data is detected as being in error it can be re­
placed by an estimate of that block. Now since there is a large amount 
of unexploited redundancy in a television signal, a reasonable estimate 
of the line can be made. For example, the previous line could be used 
or the next and previous lines could be averaged. This technique would 
probably be satisfactory down to error rates where the probability of 
obtaining errors in adj acent blocks becomes significant. If the block 
length was one quarter of a line, error rates of one per line or ap­
proximately one in 103 might still give a reasonable picture. The 
degradation would appear as a slight loss in vertical resolution. This 
proposal has the disadvantage that at least two lines of storage 
would be required at the receiver. 

IV. SUMMARY 

We were able to construct a rugged, adjustment-free quantizer 
with low precision components by using digital techniques at cer­
tain points in the path of a differential quantizer. High quality pic­
tures are obtained by using either seven, eight, or nine quantizer out­
put levels. The quality appears somewhat different from the pictures 
obtained with analogue implementations. The pictures appear less 
noisy. This is attributed to two facts: (i) the values of the quantizer 
output levels are assigned digitally allowing the larger levels to be set 
at an exact multiple of the smallest level; (ii) integration is also per-
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formed digitally, resulting in a virtually infinite time constant. 
A simple technique was described whereby the number of quantizer 

output levels required to be transmitted can be reduced by one. Thus, 
a nine-level picture, which gives an improvement in picture quality 
over an eight-level picture can be transmitted at the rate of three bits 
per picture element. 

By expanding the quantizing scale (spacing the levels further 
apart), edges were reproduced more sharply; however, contouring 
(exactly as encountered in straight quantization) becomes obvious in 
low-detail areas of the picture. By adding specially designed dither 
waveforms to the input signal, contours were "washed out" at the ex­
pense of a very small increase in background noise. Changing the 
input amplitude by ±4 dB produced little change in picture quality. 

Because of the long effective time constant of the digital integrator, 
transmission errors are more visible than in differential quantizers 
employing a short integrator time constant. Two methods for reducing 
the visibility of such errors were discussed. 

In a visual communication system, a coder must be reliable and 
have a long adjustment-free life under a wide variety of environ­
mental conditions. Further, a decoder must be capable of working with 
every encoder in the system. The digital differential quantizer is 
ideally suited to such a situation. 
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