VT1621 and VT1621M
TV Encoder

Revision 1.0
June 17, 2002

VIA TECHNOLOGIES, INC.
Revision History

<table>
<thead>
<tr>
<th>Document Release</th>
<th>Date</th>
<th>Revision</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>6/17/02</td>
<td>Initial Public Release</td>
<td>EY</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

REVISION HISTORY ... 1

TABLE OF CONTENTS ... II

LIST OF FIGURES .. III

LIST OF TABLES ... III

PRODUCT FEATURES .. 1

OVERVIEW .. 2

PINOUTS ... 3

PIN DIAGRAM ... 3

PIN LIST ... 4

PIN DESCRIPTIONS ... 5

REGISTERS ... 6

REGISTER OVERVIEW ... 6

REGISTER DESCRIPTIONS ... 7

FUNCTIONAL DESCRIPTION .. 13

ARCHITECTURE DESCRIPTION ... 13

Data Capture ... 13
Color Space Converter ... 13
Scaler and Deflicker ... 13
Encoder .. 13
DAC ... 13
Serial bus Interface ... 14
CRTC ... 14
PLL ... 14

MASTER/SLAVE CLOCK MODE .. 14

Master mode ... 14
Slave Mode ... 14
Digital Video Interface ... 16
Video Standards ... 17
Color Bar Test Pattern Generator ... 27
Subcarrier Generation .. 27
Burst Generation ... 27
Power Down mode ... 27
Macrovision Anti-Copy Protection ... 27
Display Modes .. 27
Filters .. 30
Clock Frequency ... 32

PC BOARD LAYOUT CONSIDERATIONS ... 33

COMPONENT PLACEMENT .. 33

ELECTRICAL SPECIFICATIONS ... 34

ABSOLUTE MAXIMUM RATINGS .. 34

RECOMMENDED OPERATING CONDITIONS ... 34
LIST OF FIGURES

FIGURE 1. FUNCTIONAL BLOCK DIAGRAM...2
FIGURE 2. PIN DIAGRAM (TOP VIEW)...3
FIGURE 3. MASTER CLOCK MODE 1..14
FIGURE 4. MASTER CLOCK MODE 2..15
FIGURE 5. SLAVE CLOCK MODE ..15
FIGURE 6. INPUT INTERFACE PROTOCOL...16
FIGURE 7. INTERLACED 525-LINE (NTSC) VIDEO TIMING...18
FIGURE 8. INTERLACED 525-LINE (PAL-M) VIDEO TIMING..19
FIGURE 9. INTERLACED 625-LINE (PAL-B, D, G, H, I, NC) VIDEO TIMING (FIELDS 1-4)..20
FIGURE 10. INTERLACED 625-LINE (PAL-B, D, G, H, I, NC) VIDEO TIMING (FIELDS 5-8)..21
FIGURE 11. INTERLACED 625-LINE (PAL-N) VIDEO TIMING (FIELDS 1-4)...22
FIGURE 12. INTERLACED 625-LINE (PAL-N) VIDEO TIMING (FIELDS 5-8)...23
FIGURE 13. 525-LINE (NTSC/PAL-M) Y (LUMA) VIDEO TEST PATTERN WAVEFORM..24
FIGURE 14. 625-LINE (PAL-B, D, G, H, I, N, NC) Y (LUMA) TEST PATTERN WAVEFORM..24
FIGURE 15. 525-LINE (NTSC/PAL-M) C (CHROMA) VIDEO TEST PATTERN WAVEFORM..25
FIGURE 16. 625-LINE (PAL-B, D, G, H, I, N, NC) C (CHROMA) VIDEO TEST PATTERN WAVEFORM..........................25
FIGURE 17. COMPOSITE 525-LINE (NTSC/PAL-M) VIDEO TEST PATTERN WAVEFORM..26
FIGURE 18. COMPOSITE 625-LINE (PAL-B, D, G, H, I, N, NC) VIDEO TEST PATTERN WAVEFORM..............................26
FIGURE 19. LUMINANCE LOWPASS FILTER RESPONSE (27 MHZ)..30
FIGURE 20. CHROMINANCE LOWPASS FILTER RESPONSE (27 MHZ)...31
FIGURE 21. GROUND PLANE WITH 4 LAYER PCB...33
FIGURE 22. MECHANICAL SPECIFICATION – 44-PIN TQFP THIN QUAD FLAT PACK...38

LIST OF TABLES

TABLE 1. PIN LIST (ALPHABETICAL ORDER)..4
TABLE 2. PIN DESCRIPTIONS..5
TABLE 3. REGISTER SUMMARY...6
TABLE 4. INPUT DATA FORMAT..17
TABLE 5. DISPLAY MODES FOR PAL (M)..17
TABLE 6. DISPLAY MODES FOR NTSC (M, J) & PAL (B, D, G, H, I, N, NC)...29
TABLE 7. CLOCK SETTINGS..32
VT1621 and VT1621M
TV Encoder

PRODUCT FEATURES

- TV output supporting inputs up to 800x600 graphics resolutions
- Supports digital RGB (15/16 or 24-bit) or YCrCb (CCIR601 or CCIR656) 16 bit 4:2:2 input video data in both interlaced or non-interlaced formats
- Supports NTSC(M and J) or PAL (B, D, G, H, I, M, N and Ne) TV output standards
- Supports Macrovision 7.1 anti-copy protection (VT1621M only)
- Underflow check and coring function for reducing the input noise
- Composite, S-Video and SCART output support
- Flicker filtering to enhance to TV image quality
- Dot crawl control circuit to still this phenomenon
- Master or slave video timing operation
- New Algorithm for text sharpness
- High Quality 3 x 9-bit Video DAC
- Serial bus programming interface
- Programmable power management
- Automatic detection of TV presence
- Buffered crystal clock output pin
- ProScale™ engine support for underscan and overscan mode
- 44-pin TQFP package
OVERVIEW

The VT1621 and VT1621M are television encoders that accept various RGB or YCrCb pixel data streams from a VGA controller or MPEG decoder and generates high quality flicker-free composite and Y/C (S-video) signals. Both of these chips contain the same functionality and register. The only variation is that the VT1621 is Macrovision disabled and the VT1621M is Macrovision enabled. Both of these chips can accept any digital input format from 512x384 to 800x600. The input data is also compliant with CCIR656 and CCIR601.

These two TV Encoder chips use VIA’s ProScale technology to provide the most advanced vertical and horizontal scaling for the display of non-interlaced data on interlaced TV. This ProScale technology also converts the lines of input video stream data to an appropriate number of output lines for producing a full-screen high quality TV image.

Worldwide video standards are supported, including NTSC-M (North America, Taiwan) NTSC-J (Japan), PAL-B, D, G, H, I (Europe, Asia), PAL-M (Brazil), PAL-N (Uruguay, Paraguay) and PAL-Nc (Argentina). The VT1621M can output a video with the Macrovision 7.1 anticopy included video signal. The Macrovision anti-copy process provides a means to deter any unauthorized copying of copy protected analog video signals onto a videocassette. All features are software programmable through a serial bus interface that provides read/write access to all registers.

Figure 1. Functional Block Diagram
PINOUTS

Figure 2. Pin Diagram (Top View)

Note: 1. VCC25: 2.5V
2. VCC33: 3.3V
3. VCCPLL: 2.5V
4. VCCDAC: 2.5V
Pin List

Table 1. Pin List (Alphabetical Order)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Pin</th>
<th>Pin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>O</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>I</td>
<td>CONF_XLT</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>IO</td>
<td>CSYNC</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>O</td>
<td>CVBS</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>IO</td>
<td>DS_BCO</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>P</td>
<td>GND</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>P</td>
<td>GND</td>
<td>24</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>GND</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>P</td>
<td>GND</td>
<td>26</td>
</tr>
<tr>
<td>36</td>
<td>P</td>
<td>GND</td>
<td>14</td>
</tr>
<tr>
<td>19</td>
<td>P</td>
<td>GNDDAC</td>
<td>5</td>
</tr>
<tr>
<td>23</td>
<td>P</td>
<td>GNDDAC</td>
<td>16</td>
</tr>
<tr>
<td>34</td>
<td>P</td>
<td>GNDPLL</td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td>IO</td>
<td>HSYNC</td>
<td>30</td>
</tr>
<tr>
<td>37</td>
<td>IO</td>
<td>PCLK</td>
<td>38</td>
</tr>
<tr>
<td>42</td>
<td>IO</td>
<td>PD0</td>
<td>25</td>
</tr>
<tr>
<td>43</td>
<td>IO</td>
<td>PD1</td>
<td>31</td>
</tr>
<tr>
<td>44</td>
<td>IO</td>
<td>PD2</td>
<td>41</td>
</tr>
<tr>
<td>1</td>
<td>IO</td>
<td>PD3</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>IO</td>
<td>PD4</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>IO</td>
<td>PD5</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>IO</td>
<td>PD6</td>
<td>22</td>
</tr>
</tbody>
</table>

Note: Pins with an “O” designation are output pins, while those with an “I” designation are input pins.
Pin Descriptions

Table 2. Pin Descriptions

| SIGNALS |
|-----------------|-----------------|-----------------|
| Signal Name | Pin # | Type | Description |
| PD[11-0] | 11, 10, 9, 7, 6, 4, 3, 2, 1, 44, 43, 42 | IO | Input for pixel data. These inputs can accept 8 or 12 bit multiplexed RGB or YCbCr format. Output for testing only. |
| HSYNC | 40 | IO | When Rx1[2]=0, this pin can accept a horizontal sync input. When Rx1[2]=1, the device will output a horizontal sync pulse through this pin. |
| VSYNC | 41 | IO | When Rx1[3]=0, this pin can accept a vertical sync input. When Rx1[3]=1, the device will output a vertical sync pulse through this pin. |
| XCLK | 39 | I | Reference clock for PDs. It can operate on 1X, 2X or 3X pixel clock. |
| PCLK | 37 | IO | Pixel clock output. This pin can provide and operate on 1X, 2X or 3X pixel clock to VGA. Input for testing only. |
| DS_BCO | 35 | IO | Input for display enable. The rising edge of this signal identifies the first active pixel of data for each active line. Output for providing a 14.31818 MHz clock to other devices. |
| Y | 22 | O | Luminance output for general TV system. |
| C | 21 | O | Chrominance output for general TV system. |
| CVBS | 20 | O | Composite video output for general TV system. |
| CSYNC | 17 | IO | Composite sync. Input for testing only. |
| SBD | 26 | IO | Serial bus data pin. |
| SBC | 27 | I | Serial bus clock pin. |
| TESTMODE | 14 | I | Test mode enable. Pull down for regular operation. |
| CONF_XLT | 15 | I | Selects internal or external oscillator. When pulled low, a crystal must be attached to pins 32 and 33. If pulled high, a stable 14.31818MHz external clock source must be supplied to pin 32, XI. |
| RESET# | 29 | I | When this pin is low, the device is held in the power-on reset condition. |
| XI | 32 | I | A 14.31818 MHz crystal is attached between XI and XO. An oscillator can also be connected to this pin. |
| XO | 33 | I | A 14.31818 MHz crystal is attached between XI and XO. If an external oscillator is attached with XI, this pin should be connected to ground. |
| RSET | 24 | I | An external resistor, typically 4.87kΩ, attached between this pin and ground sets the FS (full scale) range of the DACs. |

Power and Ground

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin #</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC33</td>
<td>38, 30, 12</td>
<td>P</td>
<td>I/O Power. 3.3V</td>
</tr>
<tr>
<td>GND</td>
<td>13, 36</td>
<td>P</td>
<td>I/O Ground</td>
</tr>
<tr>
<td>VCC25</td>
<td>5, 16,</td>
<td>P</td>
<td>Digital Power. 2.5V</td>
</tr>
<tr>
<td>GND</td>
<td>8, 18, 28</td>
<td>P</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>VCCPLL</td>
<td>31</td>
<td>P</td>
<td>PLL Power. 2.5V</td>
</tr>
<tr>
<td>GNDPLL</td>
<td>34</td>
<td>P</td>
<td>PLL Ground</td>
</tr>
<tr>
<td>VCCDAC</td>
<td>25</td>
<td>P</td>
<td>DAC Power. 2.5V</td>
</tr>
<tr>
<td>GNDDAC</td>
<td>23, 19</td>
<td>P</td>
<td>DAC Ground</td>
</tr>
</tbody>
</table>
REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers that apply to the VT1621 and VT1621M TV Encoder. These tables also document the power-on default value (“Default”) and access type (“Acc”) for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), “—” for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1’s to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 3. Register Summary

<table>
<thead>
<tr>
<th>Offset</th>
<th>TV Encoder Registers</th>
<th>Default</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Input Frame Format</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>01</td>
<td>Input Sync Format</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>02</td>
<td>Scaling / Chroma Filter</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>03</td>
<td>Luma Filter</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>04</td>
<td>Output Mode</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>05</td>
<td>Control 1</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>06</td>
<td>Control 2</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>07</td>
<td>Start Active Video</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>08</td>
<td>Start Horizontal Position</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>09</td>
<td>Start Vertical Position</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>0A</td>
<td>Cr Amplitude Factor</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>0B</td>
<td>Black Level</td>
<td>00</td>
<td>RO</td>
</tr>
<tr>
<td>0C</td>
<td>Luma Amplitude Factor</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>0D</td>
<td>Cb Amplitude Factor</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>0E</td>
<td>Power Management</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>0F</td>
<td>Status</td>
<td>00</td>
<td>RO</td>
</tr>
<tr>
<td>10</td>
<td>Special Effect 0</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>11</td>
<td>Special Effect 1</td>
<td>00</td>
<td>RO</td>
</tr>
<tr>
<td>12</td>
<td>PLL P2 Value</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>13</td>
<td>PLL D Value</td>
<td>05</td>
<td>RW</td>
</tr>
<tr>
<td>14</td>
<td>PLL N Value</td>
<td>21</td>
<td>RW</td>
</tr>
<tr>
<td>15</td>
<td>PLL Overflow</td>
<td>04</td>
<td>RW</td>
</tr>
<tr>
<td>16</td>
<td>Sub-carrier Value 0</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>17</td>
<td>Sub-carrier Value 1</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>18</td>
<td>Sub-carrier Value 2</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>19</td>
<td>Sub-carrier Value 3</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>1A</td>
<td>- reserved -</td>
<td>00</td>
<td>—</td>
</tr>
<tr>
<td>1B</td>
<td>Version ID</td>
<td>02</td>
<td>RO</td>
</tr>
<tr>
<td>1C</td>
<td>Overflow</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>1D</td>
<td>Test 0</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>1E</td>
<td>Test 1</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>1F</td>
<td>Test 2</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>20</td>
<td>TV Sync Step</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>21</td>
<td>TV Burst Envelope Step</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>22</td>
<td>TV Sub-carrier Phase Adjustment</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>23</td>
<td>TV Blank Level</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>24</td>
<td>TV Signal Overflow</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>25-49</td>
<td>- reserved -</td>
<td>00</td>
<td>—</td>
</tr>
<tr>
<td>4A</td>
<td>Input Aperture Threshold</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>4B</td>
<td>Input Aperture Delta</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>4C</td>
<td>Aperture Upper Threshold</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>4D</td>
<td>Aperture Lower Threshold</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>4E</td>
<td>Aperture Mode and Delta</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>4F</td>
<td>Coring Function</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>50</td>
<td>Y Delay Control</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>51</td>
<td>UV Delay Control</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>52</td>
<td>Burst Maximum Amplitude</td>
<td>00</td>
<td>RW</td>
</tr>
<tr>
<td>53-FF</td>
<td>- reserved -</td>
<td>00</td>
<td>—</td>
</tr>
</tbody>
</table>
Register Descriptions

Offset 00 – Input Frame Format.. RW

7-5 Frame Resolution
000 512x384.. default
001 720x400
010 640x400
011 640x480
100 800x600
* 101 720x576 (for PAL)
* 101 720x480 (for NTSC)
* 110 800x500 (for PAL)
* 110 640x400 (for NTSC)
111 -reserved-
* interlaced input mode

4 RGB Pass through Mode
0 Disable.. default
1 Enable

3-0 Input Data Format
00xx -reserved-................................. default = 0000b
0100 12-bit multiplexed RGB (24-bit color) input
(“C” multiplex scheme)
0101 12-bit multiplexed RGB (24-bit color) input
(“I” multiplex scheme)
0110 8-bit multiplexed RGB (24-bit color) input
0111 8-bit multiplexed RGB (16-bit color) input
1000 8-bit multiplexed YCrCb (Normal) input (Y,
Cr and Cb multiplexed)
101x 8-bit multiplexed YCrCb (Cr and Cb shift 128)
input (Y, Cr and Cb multiplexed)
110x 8-bit multiplexed YCrCb (Y shift 16 input (Y,
Cr and Cb multiplexed)
111x 8-bit multiplexed YCrCb (Y shift 16 and Cr
and Cb shift 128) input (Y, Cr and Cb multiplexed)

Offset 01 – Input Sync Format.. RW

7 Reservedalways reads 0
6 Field Signal Polarity
0 Active Low ..default
1 Active High
5 DS_BCO Pin Control
0 BCO Output.................................default
1 DS Input
4 Detect Embedded Sync
0 Don’t detect.............................default
1 Sync will be detected from the embedded
codes on the pixel input stream
3 Vertical Sync Direction
0 Input ..default
1 Output
2 Horizontal Sync Direction
0 Input ..default
1 Output
1 Vertical Sync Polarity
0 Active Lowdefault
1 Active High
0 Horizontal Sync Polarity
0 Active Lowdefault
1 Active High
Offset 02 – Scaling / Chroma Filter Control ………………… RW
7-6 Reserved ………………………………. always reads 0
5-3 Scaling Ratio……………………………………. default
 000 1/1
 001 3/4
 010 5/4
 011 5/6
 100 7/8
 101 7/10
2 Reserved ………………………....................... always reads 0
1-0 Chroma Channel Deflicker Adjust
 00 No Deflicker Filter ……………………………. default
 01 1:1:1 Deflicker Filter
 1x 1:2:1 Deflicker Filter

Offset 03 – Luma Filter Control…………………………. RW
7-2 Reserved …………………………………………. always reads 0
1-0 Luma Channel Deflicker Adjust
 00 No Deflicker Filter ……………………………. default
 01 1:1:1 Deflicker Filter
 1x 1:2:1 Deflicker Filter

Offset 04 – Output Mode ……………………………….. RW
7 Reserved …………………………………………… always reads 0
6 YCbCr to YUV Conversion
 0 Disable…………………………………………. default
 1 Enable
5 Reserved …………………………………………… always reads 0
4 PAL_N Mode
 0 Disable (bits 1-0 must be 00b) ……………………. default
 1 Enable (bits 1-0 must be 00b)
3 PAL_Nc Mode
 0 Disable…………………………………………… default
 1 Enable (bits 1-0 must be 00b)
2 Reserved …………………………………………… always reads 0
1 Output Line Selection
 0 625 ……………………………………………………. default
 1 525
0 Output TV Standard
 0 PAL ……………………………………………………. default
 1 NTSC

Offset 05 – Control 1 …………………………………….RW
7 Reserved ………………………………………………always reads 0
6 Master / Slave Clock Mode Select
 0 Master Clock Mode ……………………………….. default
 1 Slave Clock Mode
5 Reserved …………………………………………… always reads 0
4 FSCI Auto Adjust
 0 Disable……………………………………………… default
 1 FSCI Auto Adjust Enable, use 14.31818 MHz
to calculate FSCI [31:0]
3 FSCI Auto Fine Tune
 0 Disable……………………………………………. default
 1 Enable
2 PCLK Clock Polarity
 0 …………………………………………………………. default
 1
1-0 PCLK Output Mode
 00 1X ……………………………………………………. default
 01 2X
 1x 3X

Offset 06 – Control 2 ……………………………………. RW
7 Color Bar
 0 Disable……………………………………………. default
 1 Enable
6-5 XCLK Input Clock Mode
 00 1X ……………………………………………………. default
 01 2X
 1x 3X
4 Edge Used to Latch Input Data
 0 …………………………………………………………. default
 1
3-0 Input Clock Adjust
 0000 ……………………………………………………. default
 …
 1111

Offset 07 – Start Active Video ………………………….. RW
7-0 Start Active Video Bits 7-0 …………………….. default = 00h
Sets the delay from the leading edge of horizontal
sync to start of active video. See Rx1C[3] for bit-8.

Offset 08 – Start Horizontal Position …………………… RW
7-0 Start Horizontal Position Bits 7-0 ………………..default = 00h
Used to shift the displayed TV image in a horizontal

Offset 09 – Start Vertical Position …………………….. RW
7-0 Start Vertical Position Bits 7-0 ……………………..default = 00h
Used to shift the displayed TV image in a vertical
direction. See Rx1C[1] for bit-8.
<table>
<thead>
<tr>
<th>Offset 0A – Cr Amplitude Factor</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0 Cr Amplitude Factor</td>
<td>default = 00h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset 0B – Black Level</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0 Black Level</td>
<td>default = 00h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset 0C – Luma Amplitude Factor</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0 Luma Amplitude Factor</td>
<td>default = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset 0D – Cb Amplitude Factor</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0 Cb Amplitude Factor</td>
<td>default = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset 0E – Power Management</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-4 Reserved</td>
<td>always reads 0</td>
</tr>
<tr>
<td>3 DAC Sense</td>
<td></td>
</tr>
<tr>
<td>0 Disable</td>
<td>default</td>
</tr>
<tr>
<td>1 Enable</td>
<td></td>
</tr>
<tr>
<td>2 Reserved</td>
<td>always reads 0</td>
</tr>
<tr>
<td>1 S-Video DAC Power State</td>
<td></td>
</tr>
<tr>
<td>0 On</td>
<td>default</td>
</tr>
<tr>
<td>1 Off</td>
<td></td>
</tr>
<tr>
<td>0 Composite DAC Power State</td>
<td></td>
</tr>
<tr>
<td>0 On</td>
<td>default</td>
</tr>
<tr>
<td>1 Off</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset 0F – Status</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Macrovision Copy Protection</td>
<td></td>
</tr>
<tr>
<td>0 Disable</td>
<td>default</td>
</tr>
<tr>
<td>1 Enable</td>
<td></td>
</tr>
<tr>
<td>6 Reserved</td>
<td>always reads 0</td>
</tr>
<tr>
<td>5-3 MS_POS</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>default</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 YT</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>default</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 CT</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>default</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0 CVBST</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>default</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Register Descriptions

Offset 10 – Special Effect 0 .. RW
- 7-0 Hue Adjust Bits 7-0 (see Rx11[7-5])... default = 00h

Offset 11 – Special Effect 1 ... RW
- 7-5 Hue Adjust Bits 10-8 (see Rx10)...... default = 000b
- 4 Reserved .. always reads 0
- 3 Dot Crawl
 - 0 Enable.. default = 0
 - 1 Disable
- 2-0 Reserved .. always reads 0

Offset 12 – PLL P2 Value .. RW
- 7-4 Reserved .. always reads 0
- 3-0 Second Post Divider Control............. default = 0

Offset 13 – PLL D Value (05h) .. RW
- 7-5 Resister Selection Bits 2-0 (see Rx15[0]). default = 0
- 4-0 Pre-Divider Control default = 00101b

Offset 14 – PLL N Value (21h) .. RW
- 7-0 VCO Output Division Factor Bits 7-0
 (see Rx15[1] for bit-8).......................... default = 21h

Offset 15 – PLL Overflow (04h) RW
- 7-6 Reserved .. always reads 0
- 5-2 First Post Divider Control default = 0001b
- 1 VCO Output Division Factor Bit-8 (see Rx14)
 .. default = 0
- 0 Resister Selection Bit-3 (see Rx13[7-5]... default = 0

Offset 16 – Sub-Carrier Value 0 RW
- 7-0 Sub-Carrier Value Bits 7:0.............. default = 00h

Offset 17 – Sub-Carrier Value 1 RW
- 7-0 Sub-Carrier Value Bits 15:8 default = 00h

Offset 18 – Sub-Carrier Value 2 RW
- 7-0 Sub-Carrier Value Bits 23:16 default = 00h

Offset 19 – Sub-Carrier Value 3 RW
- 7-0 Sub-Carrier Value Bits 31:24 default = 00h

Offset 1B – Version ID... RO
- 7-0 Version ID (VID) always reads 02h

Offset 1C – Overflow .. RW
- 7-4 Reserved .. always reads 0
- 3 Start Active Video Bit-8 (see Rx7)....... default = 0
- 2 Start Horizontal Position Bit-8 (see Rx8). default = 0
- 1 Start Vertical Position Bit-8 (see Rx9) default = 0
- 0 Reserved .. always reads 0
Offset 1D – Test 0

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Software Reset: 0: Reset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-4</td>
<td>Scaler and Deflicker Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>000 Normal...</td>
<td>default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>001 BIST_EN:1:BIST Enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01x -reserved-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1x1 Scale Test Mode 0</td>
<td>(VSI, HSI, PDI[15:12], PDI[11:0])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1x Scale Test Mode 1</td>
<td>(VSI, HSI, PDI[15:12], PDO[11:0])</td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td>Encoder Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(VSI, HSI, DSI, PDI[15:8], PDO[4:0])</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 Normal...</td>
<td>default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01 Chrominance test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Luminance test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 Composite test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Internal Register Parallel Testing (Read Mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PDO[7:0])</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Disable...</td>
<td>default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Internal Register Parallel Testing (Write Mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PDI[14:0])</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Disable...</td>
<td>default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Enable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offset 1E – Test 1

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Test TV Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Turn On Input Clock Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CSYNC Output Enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PD[15:12] Bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Output Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PD[11:8] Bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Output Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PD[7:4] Bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Output Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PD[3:0] Bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Output Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Test Input Pad</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offset 1F – Test 2

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-6</td>
<td>Y DAC Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 Normal function...................................</td>
<td>default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01 DAC off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Test DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 Invert test DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4</td>
<td>C DAC Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 Normal function...................................</td>
<td>default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01 DAC off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Test DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 Invert test DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td>Composite DAC Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 Normal function...................................</td>
<td>default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01 DAC off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Test DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 Invert test DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-0</td>
<td>Test I2C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Offset 20 – TV Sync Step ... RW
7-0 TV Sync Step ... default = 00h
Step value to control the shape / slope of the sync.
The msb is defined in TV signal overflow register Rx24[0].

Offset 21 – TV Burst Envelope Step RW
7-0 TV Burst Envelope Step default = 00h
Step value to control the shape / slope of the burst.
The msb is defined in TV signal overflow register Rx24[1].

Offset 22 – TV Sub-Carrier Phase Adjustment RW
7-0 TV Sub-Carrier Phase Adjustment default = 00h
Step value to control the shape / slope of the burst.
The msbs are defined in TV signal overflow register Rx24[4-2].

Offset 23 – TV Blank Level .. RW
7-0 TV Blank Level ... default = 00h
Step value to control the base level of the blank signal.
The msb is defined in TV signal overflow register Rx24[5].

Offset 24 – TV Signal Overflow RW
7-6 Reserved .. always reads 0
5 Bit[8] of TV Blank Level default = 0
4-2 Bit[10:8] of Sub-Carrier Phase Adjustment
... default = 0
1 Bit[8] of TV Burst Envelope Step default = 0
0 Bit[8] of TV Sync Step (Rx20)......... default = 0

Offset 4A – Input Aperture Threshold RW
7-0 Input Data Threshold default = 00h

Offset 4B – Input Aperture Delta RW
7-0 Input Data Adjustment Value default = 00h

Offset 4C – Aperture Upper Threshold RW
7-0 Text Enhancement Upper Threshold default = 00h

Offset 4D – Aperture Lower Threshold RW
7-0 Text Enhancement Lower Threshold default = 00h

Offset 4E – Aperture Mode .. RW
7 Aperture Mode
 0 Normal ... default
 1 Inverse
6-0 Adjustment Delta default = 0

Offset 4F – Coring Function RW
7 Coring Function
 0 Disable .. default
 1 Enable
6-0 Coring Function Threshold default = 0

Offset 50 – Y Delay Control RW
7-3 Reserved .. always reads 0
2-0 Y Delay Depth default = 0

Offset 51 – UV Delay Control RW
7 Burst Maximum Amplitude Bit-8 (see Rx52) .def=0
6-4 U Delay Depth default = 0
3 Y, Cb, Cr Underflow Check
 0 Disable .. default
 1 Enable
2-0 V Delay Depth default = 0

Offset 52 – Burst Maximum Amplitude RW
7-0 Burst Maximum Value (see Rx51[7]) default = 0
FUNCTIONAL DESCRIPTION

Architecture Description

Data Capture
The 8-bit or 12-bit multiplexed input data is captured by this module and is transferred to 24-bit data for one pixel.

Color Space Converter
The data from the Data Capture module is RGB or YCrCb format. This module converts both formats to YUV 422 format.

Scaler and Deflicker
This module converts the lines of input pixel data to the appropriate number of output lines for producing a full-screen image on the television receiver. The image can be scaled to 100% within the viewable area of the screen. The device can perform vertical filtering to reduce the effects of picture flicker due to the interlacing of the output image. Because this process trades off vertical resolution in order to reduce flicker, the amount of flicker filtering is programmable and allows the process to be optimized for the specific image. This module finally generates the YUV444 pixel data of the interlaced image to the encoder module.

Encoder
This module accepts the YUV444 pixel data and converts it to a standard baseband television signal that is compatible with worldwide standards including PAL (B, D, G, H, I, N, Nc, M) and NTSC (M, J). The Y data can be manipulated for contrast control and a setup level can be added for brightness control. The U, V data can be scaled to achieve color saturation control. Besides, U, V signals are modulated by the appropriate subcarrier sine/cosine waveforms and a phase offset may be added onto the color subcarrier during active video to allow hue adjustment. The resulting U and V signals are added together to make up the chrominance signal. The luma (Y) and chroma signals are added together to make up the composite video signal. Separated luma and chroma signals make up the S-video signal.

DAC
Both VT1621 and VT1621M contain three DACs. Each DAC is used to convert digital composite or luma / chroma data to analog signals and can be individually powered off if not required. The DAC module also has an auto-detection circuit, which provides a way to sense the connection of a TV to either S-video or composite Video outputs.
Serial bus Interface

Both VT1621 and VT1621M contain a standard serial bus control port through which the control registers can be written and read. The serial bus address is 40h.

CRTC

Normally the VGA controller supplies the horizontal and vertical sync signals. However, they could be generated either by the VT1621 or the VT1621M. This module generates the horizontal and vertical sync signals. In CCI656 input mode, the embedded sync may also be used.

PLL

Both VT1621 and VT1621M contain a high accuracy, low-jitter phase-locked-loop to create outstanding quality video. Normal operation requires the encoding clock to be generated by the PLL. In master clock mode, the reference clock of the PLL is provided by OSC and the frequency is 14.31818 MHz. In slave clock mode, the reference clock is from the XCLK pin.

Master/Slave Clock Mode

Both VT1621 and VT1621M can be configured either as master or slave clock mode. In master clock mode, the VT1621 and VT1621M provide the pixel clock signal to the video source and expect incoming data to be available when required. In slave clock mode, the VT1621 and VT1621M accept the external pixel clock from the video source.

Master mode

In master clock mode, the VT1621 and VT1621M work as a master and the video source device works as a slave. The VT1621 and VT1621M provide a clock signal through the PCLK pin to the video source device and the video source device will use this clock as a frequency reference. Then the video source will generate a clock signal into the XCLK pin. The VT1621 and VT1621M will use this clock signal to latch incoming data. The PCLK clock signal can also be used as the input clock signal connected directly to the XCLK pin. The HSYNC and VSYNC signals can be programmed to be either input or output to the TV Encoder. The master clock mode can be configured as mode 1 and mode 2 illustrated in Figure 3 and Figure 4.

Slave Mode

In slave clock mode, the VT1621 and VT1621M work as a slave and the video source device works as a master. The video source device will generate a clock signal input to the XCLK pin. Through the XCLK pin, the TV Encoder receives a clock from the video source device and uses this clock to latch incoming data. Moreover, this clock will be a reference clock of the VT1621 or the VT1621M for generating a pixel clock. The HSYNC and VSYNC signals can be programmed to be either input or output to the VT1621 and VT1621M. In slave clock mode, both VT1621 and VT1621M can be configured as illustrated in Figure 5.

Figure 3. Master Clock Mode 1
Figure 4. Master Clock Mode 2

Figure 5. Slave Clock Mode
Digital Video Interface
The VT1621 and the VT1621M can both be configured with an 8-bit or 12-bit data bus. It accepts RGB 16-bit, RGB 15-bit, RGB 24-bit or YCrCb 16-bit (CCIR 656) data format.

- **8-bit multiplexed mode**
 - RGB 15-bit: 5-5-5 over two bytes
 - RGB 16-bit: 5-6-5 over two bytes
 - RGB 24-bit: 8-8-8 over three bytes
 - YCrCb 16-bit: Cb, Y0, Cr, Y1

- **12-bit multiplexed mode**
 - RGB 24-bit: 8-8-8 over two words

![Input Interface Protocol](image)

Figure 6. Input Interface Protocol

Each rising edge (or each rising and falling edge) of the XCLK signal will latch data from the video source device. The multiplexed input data formats are shown in Figure 6. The Pixel Data bus represents an 8 or 12-bit multiplexed data stream, which contains either RGB or YCrCb formatted data. In IDF settings 4, 5, 7, 8 and 9, the input data rate is 2X the pixel clock frequency and each pair of P# values (for example, P#A and P#B) will contain a complete pixel, encoded as shown in Table 4. When the input is YCrCb, the color-difference data will be transmitted at half the data rate of the luminance data, with the sequence being set as Cb, Y, Cr, Y. When IDF = 9 (YCrCb 8-bit mode), the H and V sync signals can be embedded into the data stream. In this mode, the embedded sync will follow the CCIR656 convention and the first byte of the “video timing reference code” will be assumed to occur when a Cb sample would occur if the video stream is continuous.
Table 4. Input Data Format

<table>
<thead>
<tr>
<th>IDF</th>
<th>4 24-bit RGB</th>
<th>5 24-bit RGB</th>
<th>6 24-bit RGB</th>
<th>7 16-bit RGB</th>
<th>8 15-bit RGB</th>
<th>9~ 16-bit YCrCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>P#A</td>
<td>P#B</td>
<td>P#A</td>
<td>P#B</td>
<td>P#C</td>
<td>P#A</td>
</tr>
<tr>
<td>PD11</td>
<td>G3</td>
<td>R7</td>
<td>G4</td>
<td>R7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD10</td>
<td>G2</td>
<td>R6</td>
<td>G3</td>
<td>R6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD9</td>
<td>G1</td>
<td>R5</td>
<td>G2</td>
<td>R5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD8</td>
<td>G0</td>
<td>R4</td>
<td>B7</td>
<td>R4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD7</td>
<td>B7</td>
<td>R3</td>
<td>B6</td>
<td>R3</td>
<td>B7</td>
<td>G7</td>
</tr>
<tr>
<td>PD6</td>
<td>B6</td>
<td>R2</td>
<td>B5</td>
<td>G7</td>
<td>B6</td>
<td>G6</td>
</tr>
<tr>
<td>PD5</td>
<td>B5</td>
<td>R1</td>
<td>B4</td>
<td>G6</td>
<td>B5</td>
<td>G5</td>
</tr>
<tr>
<td>PD4</td>
<td>B4</td>
<td>R0</td>
<td>B3</td>
<td>G5</td>
<td>B4</td>
<td>G4</td>
</tr>
<tr>
<td>PD3</td>
<td>B3</td>
<td>G7</td>
<td>G0</td>
<td>R2</td>
<td>B3</td>
<td>G3</td>
</tr>
<tr>
<td>PD1</td>
<td>B1</td>
<td>G5</td>
<td>B1</td>
<td>R0</td>
<td>B1</td>
<td>G1</td>
</tr>
<tr>
<td>PD0</td>
<td>B0</td>
<td>G4</td>
<td>B0</td>
<td>R0</td>
<td>B0</td>
<td>G0</td>
</tr>
</tbody>
</table>

Denotes the pixel number

Video Standards

There are several bits in the Output Mode register at offset 04h (see Rx4[1-0] and Rx4[4-3]) that control the generation of popular video standards. These bits control NTSC and PAL video standard encoding parameters. Other registers may also need to be modified to meet every video parameter of the particular video standard to be output. Video timing diagrams are illustrated in Figure 7 through Figure 12 which summarize all the common video standards.

Composite and S-video outputs are supported in either NTSC or PAL format. Figure 13 through Figure 18 illustrate the composite and S-video output waveforms of color test pattern bars.
Figure 7. Interlaced 525-Line (NTSC) Video Timing
Figure 8. Interlaced 525-Line (PAL-M) Video Timing
Figure 9. Interlaced 625-Line (PAL-B, D, G, H, I, Nc) Video Timing (Fields 1-4)
Figure 10. Interlaced 625-Line (PAL-B, D, G, H, I, Ne) Video Timing (Fields 5-8)
Figure 11. Interlaced 625-Line (PAL-N) Video Timing (Fields 1-4)
Figure 12. Interlaced 625-Line (PAL-N) Video Timing(Fields 5-8)
Figure 13. 525-Line (NTSC/PAL-M) Y (Luma) Video Test Pattern Waveform

Figure 14. 625-Line (PAL-B, D, G, H, I, N, Nc) Y (Luma) Test Pattern Waveform
<table>
<thead>
<tr>
<th>mA</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.19</td>
<td>1.047</td>
</tr>
<tr>
<td>20.86</td>
<td>0.782</td>
</tr>
<tr>
<td>17.05</td>
<td>0.640</td>
</tr>
<tr>
<td>13.26</td>
<td>0.499</td>
</tr>
<tr>
<td>5.91</td>
<td>0.217</td>
</tr>
</tbody>
</table>

Figure 15. 525-line (NTSC/PAL-M) C (Chroma) Video Test Pattern Waveform

<table>
<thead>
<tr>
<th>mA</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.85</td>
<td>1.079</td>
</tr>
<tr>
<td>21.05</td>
<td>0.788</td>
</tr>
<tr>
<td>17.05</td>
<td>0.640</td>
</tr>
<tr>
<td>13.08</td>
<td>0.492</td>
</tr>
<tr>
<td>5.25</td>
<td>0.195</td>
</tr>
</tbody>
</table>

Figure 16. 625-Line (PAL-B, D, G, H, I, N, Nc) C (Chroma) Video Test Pattern Waveform
Figure 17. Composite 525-Line (NTSC/PAL-M) Video Test Pattern Waveform

Figure 18. Composite 625-Line (PAL-B, D, G, H, I, N, Nc) Video Test Pattern Waveform
Color Bar Test Pattern Generator
The VT1621 and VT1621M all have a built-in color test pattern generator that produces 75% amplitude and 100% saturation EIA colors for NTSC and PAL video standards as illustrated in Figure 13 through Figure 18.

Subcarrier Generation
This device uses a 32-bit-word to synthesize the subcarrier. The value of the sub-carrier increment required to generate the desired subcarrier frequency is found with the following equations:

NTSC: \[F_{SCI[31:0]} = 2^{32} \times \left[\frac{455}{2 \times H_{Total}} \right] \]

PAL: \[F_{SCI[31:0]} = 2^{32} \times \left[\frac{(1135/4 + 1/625)}{H_{Total}} \right] \]

The 32-bit Sub-Carrier Value, FSCI, is defined in Rx16-19. H_Total is the number of output pixels desired per line. Fclk is the encoder clock frequency if Rx5[4]=0 (FSCI Auto Adjust Disabled); Fclk=14.31818MHz if Rx5[4]=1 (FSCI Auto Adjust Enabled). This allows the generation of any desired subcarrier for any desired video standard. The 32-bit subcarrier increment FSCI[31:0] must be loaded by the serial interface before the subcarrier can be enabled. In order to prevent any residual errors from accumulating, the subcarrier is reset every two lines for the NTSC standard and every field for the PAL standard.

Burst Generation
Subcarrier burst generation is a function of the video standard (e.g. NTSC or PAL), the subcarrier frequency increment (FSCI), and the burst horizontal begin and end register settings. The burst will automatically be blanked during horizontal sync to prevent invalid sync pulses from being generated. The burst blanking is automatically controlled by the selected video format. The burst rise and fall times can be configured by programming the chip registers.

Power Down mode
The VT1621 and VT1621M can be powered down by programming their registers. All register contents are maintained when the TV Encoder chip is in power down mode.

Macrovision Anti-Copy Protection
The VT1621M features Macrovision 7.1 anti-copy protection. This algorithm modifies the NTSC/PAL signals to inhibit recording on VCR devices, while not affecting direct TV viewing. All of the parameters that control the anti-copy protection block are fully programmable.

Display Modes
There are a total of 27 display modes. Each mode is determined by four factors: Input resolution, TV standard, TV lines, and Scaling Ratio. Both VT1621 and VT1621M are designed to accept input resolutions of 640x480, 800x600, 640x400 (including 320x200 scan-doubled output), 720x400, and 512x384. The VT1621 and VT1621 are also designed to support output to either NTSC or PAL television standards. The VT1621 and VT1621M all provide interpolated scaling with selectable ratios of 1:1, 3:4, 5:4, 5:6, 7:8 and 7:10 in order to support adjustable overscan or underscan operation when displayed on TV. These combinations of ratios result in a matrix of useful operating modes. PAL-M has 525 lines just like NTSC but the horizontal frequency and the frame rate are different from NTSC. Therefore, PAL-M and NTSC share the same modes but the pixel clock frequency varies. All the modes are listed in Table 5 and Table 6 below.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rx00 [7-5]</th>
<th>Rx04 [5-0]</th>
<th>Rx02 [5-3]</th>
<th>Input Format</th>
<th>H_Total * V_Total</th>
<th>Pixel Clock</th>
<th>Output Standard</th>
<th>Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>000</td>
<td>10</td>
<td>010</td>
<td>512 x 384</td>
<td>800 x 420</td>
<td>20.160020</td>
<td>PAL(M)</td>
<td>5/4</td>
</tr>
<tr>
<td>3</td>
<td>000</td>
<td>10</td>
<td>000</td>
<td>512 x 384</td>
<td>784 x 525</td>
<td>24.696025</td>
<td>PAL(M)</td>
<td>1/1</td>
</tr>
<tr>
<td>6</td>
<td>001</td>
<td>10</td>
<td>010</td>
<td>720 x 400</td>
<td>945 x 420</td>
<td>23.814024</td>
<td>PAL(M)</td>
<td>5/4</td>
</tr>
<tr>
<td>7</td>
<td>001</td>
<td>10</td>
<td>000</td>
<td>720 x 400</td>
<td>936 x 525</td>
<td>29.484029</td>
<td>PAL(M)</td>
<td>1/1</td>
</tr>
<tr>
<td>10</td>
<td>010</td>
<td>10</td>
<td>010</td>
<td>640 x 400</td>
<td>840 x 420</td>
<td>21.168021</td>
<td>PAL(M)</td>
<td>5/4</td>
</tr>
<tr>
<td>11</td>
<td>010</td>
<td>10</td>
<td>000</td>
<td>640 x 400</td>
<td>840 x 525</td>
<td>26.460026</td>
<td>PAL(M)</td>
<td>1/1</td>
</tr>
<tr>
<td>12</td>
<td>010</td>
<td>10</td>
<td>100</td>
<td>640 x 400</td>
<td>840 x 600</td>
<td>30.240030</td>
<td>PAL(M)</td>
<td>7/8</td>
</tr>
<tr>
<td>16</td>
<td>011</td>
<td>10</td>
<td>000</td>
<td>640 x 480</td>
<td>784 x 525</td>
<td>24.696025</td>
<td>PAL(M)</td>
<td>1/1</td>
</tr>
<tr>
<td>17</td>
<td>011</td>
<td>10</td>
<td>100</td>
<td>640 x 480</td>
<td>784 x 600</td>
<td>28.224028</td>
<td>PAL(M)</td>
<td>7/8</td>
</tr>
<tr>
<td>18</td>
<td>011</td>
<td>10</td>
<td>011</td>
<td>640 x 480</td>
<td>800 x 630</td>
<td>30.240030</td>
<td>PAL(M)</td>
<td>5/6</td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td>10</td>
<td>011</td>
<td>800 x 600</td>
<td>1040 x 630</td>
<td>39.312039</td>
<td>PAL(M)</td>
<td>5/6</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>10</td>
<td>001</td>
<td>800 x 600</td>
<td>1040 x 700</td>
<td>43.680044</td>
<td>PAL(M)</td>
<td>3/4</td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>10</td>
<td>101</td>
<td>800 x 600</td>
<td>1064 x 750</td>
<td>47.880049</td>
<td>PAL(M)</td>
<td>7/10</td>
</tr>
<tr>
<td>25</td>
<td>101</td>
<td>10</td>
<td>000</td>
<td>720 x 480</td>
<td>858 x 525</td>
<td>13.513514</td>
<td>PAL(M)</td>
<td>1/1</td>
</tr>
<tr>
<td>27*</td>
<td>110</td>
<td>1000</td>
<td>640 x 400</td>
<td>910 x 525</td>
<td>14.332515</td>
<td>PAL(M)</td>
<td>1/1</td>
<td></td>
</tr>
</tbody>
</table>

interlaced input mode
Table 6. Display Modes for NTSC (M, J) & PAL (B, D, G, H, I, N, Nc)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rx00 [7-5]</th>
<th>Rx04 [1-0]</th>
<th>Rx02 [5-3]</th>
<th>Input Format</th>
<th>H_Total * V_Total</th>
<th>Pixel Clock</th>
<th>Output Standard</th>
<th>Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>00</td>
<td>010</td>
<td>512 x 384</td>
<td>840 x 500</td>
<td>21.000000</td>
<td>PAL</td>
<td>5/4</td>
</tr>
<tr>
<td>1</td>
<td>000</td>
<td>00</td>
<td>000</td>
<td>512 x 384</td>
<td>840 x 625</td>
<td>26.250000</td>
<td>PAL</td>
<td>1/1</td>
</tr>
<tr>
<td>2</td>
<td>000</td>
<td>11</td>
<td>010</td>
<td>512 x 384</td>
<td>800 x 420</td>
<td>20.139860</td>
<td>NTSC</td>
<td>5/4</td>
</tr>
<tr>
<td>3</td>
<td>000</td>
<td>11</td>
<td>000</td>
<td>512 x 384</td>
<td>784 x 525</td>
<td>24.671329</td>
<td>NTSC</td>
<td>1/1</td>
</tr>
<tr>
<td>4</td>
<td>001</td>
<td>00</td>
<td>010</td>
<td>720 x 400</td>
<td>1125 x 500</td>
<td>28.125000</td>
<td>PAL</td>
<td>5/4</td>
</tr>
<tr>
<td>5</td>
<td>001</td>
<td>00</td>
<td>000</td>
<td>720 x 400</td>
<td>1116 x 625</td>
<td>34.875000</td>
<td>PAL</td>
<td>1/1</td>
</tr>
<tr>
<td>6</td>
<td>001</td>
<td>11</td>
<td>010</td>
<td>720 x 400</td>
<td>945 x 420</td>
<td>23.790210</td>
<td>NTSC</td>
<td>5/4</td>
</tr>
<tr>
<td>7</td>
<td>001</td>
<td>11</td>
<td>000</td>
<td>720 x 400</td>
<td>936 x 525</td>
<td>29.454545</td>
<td>NTSC</td>
<td>1/1</td>
</tr>
<tr>
<td>8</td>
<td>010</td>
<td>00</td>
<td>010</td>
<td>640 x 400</td>
<td>1000 x 500</td>
<td>25.000000</td>
<td>PAL</td>
<td>5/4</td>
</tr>
<tr>
<td>9</td>
<td>010</td>
<td>00</td>
<td>000</td>
<td>640 x 400</td>
<td>1008 x 625</td>
<td>31.500000</td>
<td>PAL</td>
<td>1/1</td>
</tr>
<tr>
<td>10</td>
<td>010</td>
<td>11</td>
<td>010</td>
<td>640 x 400</td>
<td>840 x 420</td>
<td>21.146853</td>
<td>NTSC</td>
<td>5/4</td>
</tr>
<tr>
<td>11</td>
<td>010</td>
<td>11</td>
<td>000</td>
<td>640 x 400</td>
<td>840 x 525</td>
<td>26.433566</td>
<td>NTSC</td>
<td>1/1</td>
</tr>
<tr>
<td>12</td>
<td>010</td>
<td>11</td>
<td>100</td>
<td>640 x 400</td>
<td>840 x 600</td>
<td>30.209790</td>
<td>NTSC</td>
<td>7/8</td>
</tr>
<tr>
<td>13</td>
<td>011</td>
<td>00</td>
<td>010</td>
<td>640 x 480</td>
<td>960 x 500</td>
<td>24.000000</td>
<td>PAL</td>
<td>5/4</td>
</tr>
<tr>
<td>14</td>
<td>011</td>
<td>11</td>
<td>000</td>
<td>640 x 480</td>
<td>840 x 625</td>
<td>26.250000</td>
<td>PAL</td>
<td>1/1</td>
</tr>
<tr>
<td>15</td>
<td>011</td>
<td>00</td>
<td>011</td>
<td>640 x 480</td>
<td>840 x 750</td>
<td>31.500000</td>
<td>PAL</td>
<td>5/6</td>
</tr>
<tr>
<td>16</td>
<td>011</td>
<td>11</td>
<td>000</td>
<td>640 x 480</td>
<td>784 x 525</td>
<td>24.671329</td>
<td>NTSC</td>
<td>1/1</td>
</tr>
<tr>
<td>17</td>
<td>011</td>
<td>11</td>
<td>100</td>
<td>640 x 480</td>
<td>784 x 600</td>
<td>28.195804</td>
<td>NTSC</td>
<td>7/8</td>
</tr>
<tr>
<td>18</td>
<td>011</td>
<td>11</td>
<td>011</td>
<td>640 x 480</td>
<td>800 x 630</td>
<td>30.209790</td>
<td>NTSC</td>
<td>5/6</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>00</td>
<td>000</td>
<td>800 x 600</td>
<td>944 x 625</td>
<td>29.500000</td>
<td>PAL</td>
<td>1/1</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>00</td>
<td>011</td>
<td>800 x 600</td>
<td>960 x 750</td>
<td>36.000000</td>
<td>PAL</td>
<td>5/6</td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td>11</td>
<td>011</td>
<td>800 x 600</td>
<td>1040 x 630</td>
<td>39.272727</td>
<td>NTSC</td>
<td>5/6</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>11</td>
<td>001</td>
<td>800 x 600</td>
<td>1040 x 700</td>
<td>43.636364</td>
<td>NTSC</td>
<td>3/4</td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>11</td>
<td>101</td>
<td>800 x 600</td>
<td>1064 x 750</td>
<td>47.832169</td>
<td>NTSC</td>
<td>7/10</td>
</tr>
<tr>
<td>24*</td>
<td>101</td>
<td>00</td>
<td>000</td>
<td>720 x 576</td>
<td>864 x 625</td>
<td>13.500000</td>
<td>PAL</td>
<td>1/1</td>
</tr>
<tr>
<td>25*</td>
<td>101</td>
<td>11</td>
<td>000</td>
<td>720 x 480</td>
<td>858 x 525</td>
<td>13.500000</td>
<td>NTSC</td>
<td>1/1</td>
</tr>
<tr>
<td>26*</td>
<td>110</td>
<td>00</td>
<td>000</td>
<td>800 x 500</td>
<td>1135 x 625</td>
<td>17.734375</td>
<td>PAL</td>
<td>1/1</td>
</tr>
<tr>
<td>27*</td>
<td>110</td>
<td>11</td>
<td>000</td>
<td>640 x 400</td>
<td>910 x 525</td>
<td>14.318182</td>
<td>NTSC</td>
<td>1/1</td>
</tr>
</tbody>
</table>

* interlaced input mode
Filters
The Y components are low-pass filtered, upsampled and low-pass filtered again (for removing the image of upsampling) with a filter response illustrated in Figure 19. The UV components also have the same operations; the filter response is illustrated in Figure 20. The pixel clock is different for each display mode. Therefore, the filter coefficients should be different for each mode so that the TV Encoder can generate a high quality TV image. All the filter coefficients are programmed through the serial bus interface to provide a controllable bandwidth output on both composite and S-video signals.

Figure 19. Luminance Lowpass Filter Response (27 MHz)
Figure 20. Chrominance Lowpass Filter Response (27MHz)
Clock Frequency

A crystal must be present between the XI and XO pins for generating a 14.31818 MHz reference clock for the PLL (Phase Lock Loop). In master clock mode, the PLL uses this clock as a reference. In slave mode, the PLL uses the clock from the XCLK pin as a reference clock. The PLL generates 2 clocks: One is pixel clock output on the PCLK pin (for master mode use only) and the other is the pixel clock used by the Scaler and Encoder engines. The frequency is calculated by the following formula:

\[F_{\text{clk}} = \frac{F_{\text{RefClk}} \times N}{(D \times P)} \]

The settings of the PLL control registers are listed in Table 3 on page 6.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Pixel(MHz)</th>
<th>D</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.000000</td>
<td>2.5</td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>26.250000</td>
<td>2</td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>20.139860</td>
<td>3.5</td>
<td>64</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>24.671329</td>
<td>2.5</td>
<td>56</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>28.125000</td>
<td>4</td>
<td>55</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>23.790210</td>
<td>2.5</td>
<td>54</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>29.454545</td>
<td>2.5</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>25.000000</td>
<td>3.5</td>
<td>55</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>31.500000</td>
<td>2</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>21.146853</td>
<td>2.5</td>
<td>48</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>26.433566</td>
<td>6.5</td>
<td>96</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>30.209790</td>
<td>6.5</td>
<td>96</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>24.000000</td>
<td>3.5</td>
<td>88</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>26.250000</td>
<td>3</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>31.500000</td>
<td>2</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>24.671329</td>
<td>2.5</td>
<td>56</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>28.195804</td>
<td>6.5</td>
<td>128</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>30.209790</td>
<td>6.5</td>
<td>96</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>29.500000</td>
<td>14.5</td>
<td>239</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>36.000000</td>
<td>2.5</td>
<td>44</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>39.272727</td>
<td>3.5</td>
<td>48</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>43.636364</td>
<td>3.5</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>47.832169</td>
<td>6.5</td>
<td>152</td>
<td>7</td>
</tr>
<tr>
<td>24*</td>
<td>13.500000</td>
<td>2.5</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>25*</td>
<td>13.500000</td>
<td>2.5</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>27*</td>
<td>14.318180</td>
<td>2</td>
<td>28</td>
<td>14</td>
</tr>
</tbody>
</table>
PC BOARD LAYOUT CONSIDERATIONS

Component Placement

The TV Encoder chip should be close to the video connectors and close to the video source device (e.g. VGA controller). All other digital components and high-speed digital signal traces should be located as far away as possible from analog circuits. Analog components or analog sections of mixed signal components should be placed directly over the analog power and ground planes and the same applies to the digital counterparts.

Figure 21. Ground Plane with 4 Layer PCB
Electrical Specifications

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>
| T
| STG | Storage Temperature | –55 | | 125 | ºC |
| T
| C | Case Operating Temperature | 0 | | 55 | ºC |
| V
| I | Input Voltage (all digital pins)| GND – 0.5 | | VCC+0.5 | V |
| V
| ESD | Electrostatic Discharge (Human Body) | | 2 | kV |
| T
| VPS | Vapor Phase Soldering (1 min.) | | | 220 | ºC |

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC33</td>
<td>I/O Voltage</td>
<td>2.97</td>
<td>3.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>VCC25</td>
<td>Digital Power Supply Voltage</td>
<td>2.25</td>
<td>2.5</td>
<td>2.75</td>
<td>V</td>
</tr>
<tr>
<td>VCCPLL</td>
<td>PLL Power</td>
<td>2.25</td>
<td>2.5</td>
<td>2.75</td>
<td>V</td>
</tr>
<tr>
<td>VCCDAC</td>
<td>DAC Power</td>
<td>2.25</td>
<td>2.5</td>
<td>2.75</td>
<td>V</td>
</tr>
<tr>
<td>RL</td>
<td>Output load to DAC outputs</td>
<td>37.5</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>
Power Supply Current and Total Power Consumption Specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(_{D33})</td>
<td>VCC33</td>
<td>10</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(_{D25})</td>
<td>VCC25</td>
<td>50</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(_{A\text{all}})</td>
<td>VCCDAC + VCCPLL (concurrent, Composite & S-Video)</td>
<td>150</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(_{ASV})</td>
<td>VCCDAC + VCCPLL (S-Video only)</td>
<td>120</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(_{A\text{Comp}})</td>
<td>VCCDAC + VCCPLL (Composite only)</td>
<td>80</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(_{\text{Tot}})</td>
<td>Total Power Consumption</td>
<td>533</td>
<td>mW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: (Operating Conditions: TC = 25°C, RSET = 4.87kΩ)

DC Specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC33</td>
<td>I/O voltage</td>
<td>3.0</td>
<td>V</td>
<td>3.6</td>
<td>V</td>
<td>Normal op.</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input low voltage</td>
<td>–0.5</td>
<td>0.3 VCC</td>
<td>V</td>
<td>non 5V tolerant</td>
<td></td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Input high voltage</td>
<td>0.7 VCC</td>
<td>1.05 VCC</td>
<td>V</td>
<td>non 5V tolerant</td>
<td></td>
</tr>
<tr>
<td>(V_{IHST})</td>
<td>Input high voltage</td>
<td>0.7 VCC</td>
<td>5.5 V</td>
<td>V</td>
<td>5V tolerant</td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output low voltage</td>
<td>-</td>
<td>0.1 VCC</td>
<td>V</td>
<td>(I_{OL}=3.2,\text{mA})</td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output high voltage</td>
<td>0.7 VCC</td>
<td>-</td>
<td>V</td>
<td>(I_{OH}=-200,\text{mA})</td>
<td></td>
</tr>
<tr>
<td>I(_{OZ})</td>
<td>Input leakage</td>
<td>–10</td>
<td>10</td>
<td>mA</td>
<td>(0 < V_{IN} < \text{VCC})</td>
<td></td>
</tr>
<tr>
<td>C(_{IN})</td>
<td>Input capacitance</td>
<td>-</td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(_{OUT})</td>
<td>Output capacitance</td>
<td>-</td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DAC DC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Output Delay</td>
<td></td>
<td>14</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Rising Time</td>
<td></td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Falling Time</td>
<td></td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Settling Time</td>
<td></td>
<td>20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Glitch Energy, DAC step settling within ±1LSB</td>
<td></td>
<td>75</td>
<td></td>
<td>pV*s</td>
</tr>
<tr>
<td>PSRR</td>
<td></td>
<td>45</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>DAC to DAC Crosstalk</td>
<td></td>
<td>TBD</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>DAC Matching</td>
<td></td>
<td>TBD</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

Note: (VDDA2=2.5V; RL=37.5Ω; RSET=4.87kΩ; Temp=60°C, unless otherwise noted)

DAC AC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Output Delay</td>
<td></td>
<td>14</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Rising Time</td>
<td></td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Falling Time</td>
<td></td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output Settling Time</td>
<td></td>
<td>20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Glitch Energy, DAC step settling within ±1LSB</td>
<td></td>
<td>75</td>
<td></td>
<td>pV*s</td>
</tr>
<tr>
<td>PSRR</td>
<td></td>
<td>45</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>DAC to DAC Crosstalk</td>
<td></td>
<td>TBD</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>DAC Matching</td>
<td></td>
<td>TBD</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

Note: (VDDA2=2.5V; RL=37.5Ω; RSET=4.87kΩ; Temp=60°C, unless otherwise noted)
Display Signal Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Clock Width</td>
<td>10</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>Horizontal Sync Width</td>
<td>1</td>
<td></td>
<td></td>
<td>tp</td>
</tr>
<tr>
<td>Setup time from Pixel Data to Pixel Clock</td>
<td>3</td>
<td></td>
<td>17</td>
<td>ns</td>
</tr>
<tr>
<td>Hold time from Pixel Clock to Pixel Data</td>
<td>2</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

PLL Characteristics

<table>
<thead>
<tr>
<th>Operating Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>2.25</td>
<td></td>
<td>2.75</td>
<td>V</td>
</tr>
<tr>
<td>Clock Output Duty Cycle</td>
<td>45</td>
<td></td>
<td>55</td>
<td>%</td>
</tr>
</tbody>
</table>

Note: Crystal Spec: 14.31818MHz (± 50 ppm)
PACKAGE MECHANICAL SPECIFICATIONS

Figure 22. Mechanical Specification – 44-Pin TQFP Thin Quad Flat Pack

CONTROL DIMENSIONS ARE IN MILLIMETERS.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MILLIMETER</th>
<th>INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MIN.</td>
<td>NOM.</td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>—</td>
</tr>
<tr>
<td>A2</td>
<td>0.05</td>
<td>1.00</td>
</tr>
<tr>
<td>D</td>
<td>12.00 BSC.</td>
<td>0.472 BSC.</td>
</tr>
<tr>
<td>D1</td>
<td>10.00 BSC.</td>
<td>0.393 BSC.</td>
</tr>
<tr>
<td>E</td>
<td>12.00 BSC.</td>
<td>0.472 BSC.</td>
</tr>
<tr>
<td>E1</td>
<td>10.00 BSC.</td>
<td>0.393 BSC.</td>
</tr>
<tr>
<td>R2</td>
<td>0.08</td>
<td>—</td>
</tr>
<tr>
<td>R1</td>
<td>0.08</td>
<td>—</td>
</tr>
<tr>
<td>θ1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>θ2</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>θ3</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td>—</td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>L1</td>
<td>1.00 REF</td>
<td>0.039 REF</td>
</tr>
<tr>
<td>S</td>
<td>0.20</td>
<td>—</td>
</tr>
<tr>
<td>b</td>
<td>0.22</td>
<td>0.30</td>
</tr>
<tr>
<td>e</td>
<td>0.80 BSC.</td>
<td>0.031 BSC.</td>
</tr>
<tr>
<td>D2</td>
<td>8.00</td>
<td>—</td>
</tr>
<tr>
<td>E2</td>
<td>8.00</td>
<td>—</td>
</tr>
</tbody>
</table>

TOLERANCES OF FORM AND POSITION

aaa	0.20	0.008
bbb	0.20	0.008
ccc	0.10	0.004
ddd	0.20	0.008

NOTES:

1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

2. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM b DIMENSION BY MORE THAN 0.08 mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07 mm FOR 0.4 mm AND 0.5 mm PITCH PACKAGES.

3. DIMENSION "b" DIFFERENT FROM JEDEC SPEC:
 - ASE: 0.22 / 0.30 / 0.38
 - JEDEC: 0.30 / 0.37 / 0.45