general description

NILE-II PT80C525 is a high-performance Microsoft® Windows® 95-compatible PCI-to-PCI bridge interface controller for portable and desktop systems. It is compliant with the PCI Local Bus Specification Revision 2.1 and the PCI-to-PCI Bridge Specification Revision 1.0.

A high performance PCI-to-PCI bridge, the NILE-II expands the bus mastering and the bus loading capabilities of the PCI Local bus in portable or desktop systems. By implementing support for SmartDock™ II technology, Distributed DMA, and Serial IRQ Specifications, NILE-II becomes a docking PCI-to-PCI bridge to enable hot-, warm-, and cold-docking on the PCI bus. It complements National Semiconductor’s VESUVIUS-LS system controller to offer a cost-effective, high performance solution for portable computers with docking stations.

The primary function of NILE-II is to allow transactions to occur between a master on one PCI bus and a target on the other PCI bus. NILE-II allows system designers to overcome electrical loading limits by creating hierarchical PCI buses. The two PCI buses can operate concurrently: a master and a target on the same PCI bus can communicate even if the other PCI bus is busy. NILE-II can thus isolate traffic between devices on one bus from devices on other PCI buses, enhancing overall system performance.

NILE-II functions as a transparent or full bridge. In transparent mode, NILE-II provides a single logical bus with devices on both primary and secondary buses configured by the same Type 0 configuration cycle. The NILE-II register set maintains backward compatibility with NILE PT80C524. The eight-deep buffers within NILE-II allow concurrency by default, thus enhancing the system performance. In full bridge mode, NILE-II creates a new, independent hierarchical PCI bus and implements the configuration space adhering to the PCI-to-PCI bridge header format. The BIOS fully programs NILE-II registers and the operating system performs bus enumeration. As in transparent mode, the data buffers are enabled by default and allow concurrent bus operation.

NILE-II incorporates patent-pending SmartDock docking technology to enable true hot-docking, a significantly superior solution to current cold- and warm-docking methods. With true hot-docking, a portable can be inserted into a docking station while still running. Since the portable computer does not have to be rebooted to activate automatic reconfiguration, true hot docking offers a quick and easy migration to mobile computing with performance and flexibility which parallels a desktop computer.

The NILE-II system block diagrams illustrate typical applications in (1) a dual-ISA system attached to a docking station, and (2) a desktop system. NILE-II has two interfaces: (i) a primary interface that is connected to the PCI bus closest to the CPU (primary PCI bus), and (ii) a secondary interface that is connected to the PCI bus farthest from the CPU (secondary PCI bus). Each interface is capable of passing master operations or receiving target operations.

NILE-II functions as a target on the initiating bus on behalf of the target that actually resides on the target bus. Similarly, NILE-II functions as master on the target bus on behalf of the master that actually resides on the initiating bus. NILE-II is available in a space-efficient 176-pin VQFP package. The device comes with full technical and hardware support, including samples, evaluation boards, and design examples in OrCAD.

features

- Ideal PCI-to-PCI solution to support hot docking, server,
desktop, and add-on peripheral card designs
- Fully compliant with the PCI Local Bus Specification
Revision 2.1
- Fully compliant with PCI-to-PCI Bridge Architecture
Specification Revision 1.0
- SmartDock II docking technology (patent-pending)
enables true hot docking
- Supports Microsoft Windows 95 Plug-and-Play
capabilities, including “Eject PC”
- Supports programmable subtractive or positive decoding
downstream and upstream transactions
 - Eight programmable I/O or Memory Base/limit
 Address registers providing positive programmable
 windows for either downstream or upstream
 transactions
 - Each base and limit address register is
 software-enabled and can be configured to decode
 I/O or memory accesses for upstream or downstream
 transactions
 - Supports up to 64 Kbyte of I/O space with 1-byte
 alignment and granularity for upstream or
 downstream transactions
 - Supports up to 4 Gbytes of memory space with 1-Mbyte
 alignment and granularity for upstream or
 downstream transactions
 - Fourteen software-enabled hardwired memory
 locations for upstream cycles
 - Software-enabled hardwired I/O ranges to support
 audio, network and super I/O for downstream cycles
- Supports multiple NILE-II devices in either serial- or
 parallel-port configuration
- Registers maintain backward-compatibility with NILE
- Fully optimized for VESUVIUS-LS and V-PLUS
- Supports two 32-bit PCI buses
- Supports Bus 0-to-Bus 0 and Bus 0-to-Bus 1
 configuration modes

SmartDock™ is a trademark of National Semiconductor Corporation.
Microsoft and Windows® are registered trademarks of Microsoft Corporation.
OrCAD® is a registered trademark of Cadence Design Systems, Inc.
Features (Continued)

- Supports concurrent cycles on the primary and secondary buses
- Supports VGA-compatible devices on secondary PCI bus
- Supports early cycle start (speculative cycle)
- Supports up to 3-1-1-1 write bursting and 5-1-1-1 read bursting on the primary and secondary buses to enable 120 Mbyte per second sustained PCI bandwidth
- Eight independent 32-bit—one Dword-wide—buffers in each direction
 - Used simultaneously for posted memory writes and read pre-fetches
 - Continuous read pre-fetching on both downstream and upstream transactions
- Supports secondary interface arbiter
 - Supports six REQ#/GNT# pairs
 - Supports programmable, pre-emptable, and non-pre-emptable bus requests
 - Secondary bus parking
- Serial IRQ protocol to support interrupts in a dual-ISA system
- Supports Distributed DMA (Direct Memory Access) protocol
- Propagates and maintains locks upstream and downstream in flow-through mode
- Software-enabled data parity checking and reporting
- Software-enabled forwarding of system errors across the NILE-II bridge
- Supports fast back-to-back cycles as a target
- Supports 33-MHz synchronous clocks for the primary and secondary buses
- Integrated PLL (Phase-Locked Loop) with four secondary PCI clock pins
- 3.3-V core device with 5-V tolerance on primary and secondary PCI interfaces
- Supports one PCI clock latency for signals forwarded across the NILE-II device
- Available in a space-efficient 176-pin VQFP package

System Block Diagram
Portable Computer with Docking Station

http://www.national.com
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.