DOPED-OXIDE THERMAL DEVICE
generates high voltage in small volume, p 39
(photo below)

FIELD-EFFECT TRANSISTOR
shows negative resistance, p 48

MAGNETIC ROD MEMORY
large output and high speed, p 50
Exceptional quality and reliability is provided in all UTC designs. Over 30 years of engineering knowledge and experience backed by complete environmental testing and life testing facilities assure the highest standard in the industry. Full analysis and evaluation of materials are conducted in UTC's Material and Chemical Laboratories. Rigid quality control measures coordinated with exhaustive statistical findings and latest production procedures result in the industry's highest degree of reliability. Range covered in Audio Transformers is from 0.1 cycles to 400 MC... microwatts to 50 KW.

SOME TYPICAL AUDIO TRANSFORMERS
BRIDGING METAL CASED
CHOPPER MIXING
DRIVER MODULATION
HYBRID MOLDED
INPUT OUTPUT
INTERSTAGE PRINTED CIRCUIT
MATCHING

SPECIAL CUSTOM BUILT IRON CORE COMPONENTS FOR EVERY PHASE OF THE ELECTRONICS ART
POWER TRANSFORMERS
AUDIO TRANSFORMERS
REACTORS
PULSE TRANSFORMERS
ELECTRIC WAVE FILTERS
LUMPED CONSTANT DELAY LINES
HIGH Q COILS
MAGNETIC AMPLIFIERS
SATURABLE REACTORS
REFERENCE UNITS

UNITED TRANSFORMER CORP.
150 VARICK STREET, NEW YORK 13, N.Y.
PACIFIC MFG. DIVISION: 3630 EASTHAM DRIVE, CULVER CITY, CALIF.
EXPORT DIVISION: 13 EAST 40th STREET, NEW YORK 16, N.Y.
CABLES: "ARLAB"
CERAMIC THERMOELECTRIC generator using mixed-valency oxides undergoes test at Army's Picatinny Arsenal. Generator puts out 100 v as electric furnace heats it to 2,400 F. Army may use generator to convert waste heat of rocket exhaust to electricity. See p 39

MILITARY ELECTRONICS. Here's a sampling of technical news that will be made at next week's IRE National Winter Convention on Military Electronics. Ground radar that senses space ship attitude, multicolor display and electronic intelligence system are reported

MISSILE MISS-DISTANCE Is Indicated by Photon Counter. Compact, low-power system gives three-dimensional monitoring of small, tactical missile accuracy. Advanced models to evaluate anti-ICBM missiles are underway

OPTICAL CHARACTER READERS Use Memories for Increased Versatility. Equipment now in production backs up data processing equipment used by businessmen to cut paperwork. Even skewed and mutilated type and variable fonts won't throw off the newer systems

COUNTERMEASURES SIMULATOR Trains B-52 Crews. Preprogrammed to duplicate hostile r-f functions, it is the first of a new series for SAC. Punched cards duplicate any antenna pattern

100-MW AMPLIFIER Uses Microwave "Flywheel." Circular cavity steps up pulse output from 10 Mw to 100 Mw. This is first of a series of superpower systems for plasma and radar research

OXIDE THERMOELECTRIC GENERATOR With High Voltage Output. One side of alumina ceramic plate is sprayed with platinum by a plasma torch. Doped nickel oxide goes on other side. Generator withstands high temperature, has high voltage output. However its resistivity is higher than intermetallic generators.

BEAM-DEFLECTION TUBES Make a Telemetry Diversity Combiner. Control signals from receiver age outputs are applied to deflection electrodes. Circuit offers wide frequency response and a rapid combining rate. This system would be especially useful in a spinning, tumbling space ship traveling at many times the speed of sound. V. A. Ratner

COMBINED OSCILLATOR-AMPLIFIERS for Tone Transceivers. A single transistor circuit can generate an audio tone during transmission and selectively amplify it during reception. Circuit is transformed by slight change in impedance level of an R-C time constant. Math developed applies also to oscillators, Q multipliers, notch filters and selective amplifiers. R. C. Carter
CONTENTS continued

FIELD-EFFECT TRANSISTOR as a Negative-Resistance Device. Voltage-controlled negative-resistance characteristic appears at gate of field-effect transistor when drain-gate distance exceeds channel width and drain is grounded with other electrodes negative. This field-effect transistor is not unipolar. T. Niimi and T. Hayashi 48

MAGNETIC-FILM RODS Provide High-Speed Memory. Three-dimensional memory organization reduces crosstalk. Element is used in destructive readout, word-organized memories with 1 to 5-Mc cycle rates. Present design effort centers on a 128-word, 8-bit-per-word memory with a 5-Mc cycle rate. D. A. Meier 50

REFERENCE SHEET: Calculating Potentiometer Errors. Presence of a finite impedance in wiper arm of a potentiometer makes output voltage differ from no-load value. These nomographs help you to calculate errors due to loading, fixed contact resistance and equivalent noise resistance. H. S. Zablocki 53

DEPARTMENTS

Crosstalk. Bionics and Electronics 3

Comment. More on Electronic Versus Electronics 4

Electronics Newsletter. FAA Starts $500 Million Air Traffic Control Improvements Program 7

Washington Outlook. Tax Credit for Communications Purchases. Space Detection Funds Increased 12

Meetings Ahead. Western Electronics Show and Convention 32

Research and Development. Ferrites Generate Millimeter Waves 58

Components and Materials. Specifying Transformers for Special Needs 62

Production Techniques. Production Methods for Welded Circuits 66

New Products Design and Application. A-C Voltage Standard 72

Literature of the Week 77

Plants and People. CMS Ready to Occupy New Facility 78

Index to Advertisers 85
BIONICS AND ELECTRONICS. Next week we will publish the first of a series of articles on bionics, the study of functional units of life—or, more accurately, how living organisms function and why they function as they do. In some ways, this study is of direct interest to future developments in electronics. Other aspects are of tangential interest.

The intensive investigation of biological "machines" today stems from a need to improve existing manmade devices. Living creatures are highly efficient and are usually exquisitely designed and organized. Bionics pioneers feel that the operating principles of creatures may well be applied to nonliving systems.

In his first article, Assistant Editor Lindgren describes, for example, a prototype ground speed indicator based on the principles of a beetle's visual system. Another development, seen in the photographs, is an electronic neuron network, as assembled to test theories of actual neuron behavior. Real neurons, basic building blocks of the brain, are not yet fully understood because they are so complex. These analogs, developed under an Air Force contract by T. E. Bray, of General Electric's Syracuse Research Labs, grossly represent real neuron behavior. Interest in such devices is high because they can lead to development of artificial intelligence and, in turn, greater capabilities in such systems as computers and automatic control systems.

At first glance, the term bionics looks like a combination of biology and electronics. The actual origin is the Greek bion, meaning a life unit. Bionics embraces not only electronics, but mathematics, biophysics, biology, chemistry, medicine, applied physics and other fields. Unlike electronics, it has started as a melting pot of the sciences. Electronics (the word, by the way, was coined as a name for this magazine 33 years ago) in its early days was almost entirely concerned with what was known as the radio art. It has since broadened its scope until today it embraces virtually the entire range of applied physics and mathematics. Bionics will bring the life sciences more intimately into the fold.

SEMDECTRON. This term was coined by Andrzej Ambroziak, of the Polish Academy of Sciences, to describe a solid-state version of a cold-cathode counting tube. Operating principles will be reported next week. The article, incidentally, is one of the few we have accepted from a Communist country in recent years. Not that we haven't asked for more. We think engineering details on their aerospace equipment in particular would be instructive to Western engineers. But detailed information seems available only for innocuous developments.
COMMENT

Medical Electronics

Your series on medical electronics is excellent.

When one profession broadens its outlook to include the field of another profession, it is to be commended. The growth of the electronics field has been remarkable, and it will continue to be so.

Each individual in each laboratory tends to be specialized in his outlook for the problem. Workers in a field talk one language and are lost in the foreign elements of their neighbors' medical lingo. Your series allows a quick panoramic view into the work of different individuals as they progress along the uncharted courses of research or the clinical, diagnostic and therapeutic application of recent breakthroughs in medical discovery. Herein lies the importance in the worthwhileness of your series of articles.

WILLIAM H. HOVER, M.D.
Upper Montclair, New Jersey

The seven-part medical electronics series appeared on p 49, Jan. 20, 1961; p 46, Feb. 3; p 54, Feb. 24; p 43, June 23; p 63, July 21, p 65, Dec. 15; and p 47, Jan. 19, 1962. We will continue to keep abreast of new developments in this fast-moving field and report them from time to time.

Electronic Versus Electronics

When, in 1930, I first began my R&D and patent developments of musical instruments utilizing electrical methods for generating and controlling musical tones, I was in a quandry of the same kind queried by Mr. Rohrer in the issue of Jan. 12 (Comment, p 4). This year, as I remember, was the same year that Electronics made its appearance. I soon became convinced that mere reinforcement, by public-address system methods, of sounds already produced, as in guitars, organs, pianos or the like, or by pipe organs with electrically-operated actions, should be classed differently than those in which incidental sound took no part, and where indeed that sound, more often than not, required suppression where it, uncontrollable in harmonic content, only blanketed the electrically-generated tones having such harmonic content control. Such tone generators as rotating, vibratory, vacuum-tube, etc., with either silent transducers or silent vacuum tubes providing the desired tones in electrical form, required differentiation from the purely acoustic types using a microphone, amplifier and loudspeaker.

The music trade papers constantly confused the two types, both in their news and the advertising content. My solution for this was to call the electrically-amplified acoustic instruments electrical, and the new types, electronic. This nomenclature gradually took hold in the music instrument industry and is almost uniform today, thirty years later. I say "almost uniform" because there are still a few manufacturers of such instruments as accordions and reed organs, with internal microphones and amplifier-speaker reproducers, who call their instruments electronic, where in fact electronics has nothing at all to do with tone generation, and only a little to do with control of tone quality.

BENJAMIN F. MIESSNER
Miessner Inventions, Inc.
Miami Shores, Florida

Hitachi, Not Hibachi

The company referred to in the second paragraph of the Components and Materials section of the Dec. 29 issue (p 58) is correctly spelled Hitachi.

Hibachi is the wastebasket-shaped utensil, now commonly made of ceramic, in which the Japanese place a few glowing embers for heating purposes. Not just anyone can be warmed by a hibachi: it takes practice, as the glow from the embers is not strong enough to warm the body, but only the soul. This need for practice, in which the young people of Japan today will not persevere, is one more reason that the hibachi is on its way out. Perhaps more important is that the price of charcoal has been steadily rising, the price of kerosene and gas heating appliances steadily decreasing.

Another English-language publication left off the H and wrote it Itachi. Itachi, the Japanese word for skunk, is an error in far worse taste.

CHARLES L. COHEN
Tokyo, Japan
SAVE up to 40% in board space!... with unique design that offers TRUE RADIAL LEAD CONFIGURATION

Plus Provision For Axial Lead Application

\(\frac{1}{4} '' \) multiplied by the number of capacitors used on your circuit boards is the amount of space you can save by substituting "VY" Axial-Radial Capacitors for the axial units you may now be using.* Leads are inboard the body in radial configuration, yet may be moved to a straight axial position when required. Available in four sizes, 0.5 to 5600 mmmf, 300 and 500 v ratings.

*Assuming minimum allowance of \(\frac{1}{8} '' \) for lead bend at each end of body for axial capacitors

CONFORMS TO MIL-C-11272B

© VITRAMON, INC., 1961

February 2, 1962
2N2297 SILICON PLANAR EPITAXIAL

FORWARD CURRENT TRANSFER RATIO AND COLLECTOR SATURATION VOLTAGE VERSUS COLLECTOR CURRENT

ELECTRICAL CHARACTERISTICS & RATING AT 25°C UNLESS OTHERWISE NOTED

Storage Temp.
-65 to +300°C
Operating Temp.
200°C Maximum
Power Dissipation
1 watt @ 25°C ambient temp.
5 watts @ 25°C case temp.

BV_{CEO} @ 0.1 mA
80 volts MIN
BV_{CEO} @ 0.1 mA
7 volts MIN
LV_{CEO} @ 30 mA
35 volts MIN
h_{FE} @ I_c = 150mA
40 to 120

V_{CE} (SAT) @ I_c = 1 ampere
1 volt MAX
I_s = 0.1 ampere

V_{CE} (SAT) @ I_c = 150mA
0.2 volts MAX
I_s = 15mA

V_{BE} (SAT) @ I_c = 1 ampere
2 volts MAX
I_s = 0.1 ampere

C_{OB} @ V_{be} = 10 volts
12 pF MAX

Gain Bandwidth:
@ V_{be} = 10 volts
60 mc MIN
I_c = 50 mA

f = 20 mc
I_{EQ} @ 60 volts (25°C)
10 nA MAX
150°C
10 nA MAX

For more detail see data sheet. Available from distributors.
ELECTRONICS NEWSLETTER

FAA Awards First Project Beacon Contracts

WORK HAS BEGUN on the Federal Aviation Agency's five-year, $500 million effort to develop a new air traffic control system. A presidential task force, Project Beacon, recommended late last year (ELECTRONICS, p 14, Nov. 17) that FAA work out a system using radar and altitude-reporting transponders to replace the present pilot reporting system.

FAA's design team is to submit by this summer a draft of a master plan for carrying out the task force's recommendation. A prototype is to begin operating 18 months later at FAA's experimental center in Atlantic City, N. J. A $2.7 million contract to test and evaluate certain concepts of the system has just gone to the nonprofit Mitre Corp.

Contracts, totaling $174,000 were awarded Hazeltime Corp. and Transco Products, Inc., for transponder development. They'll be called Slate (Small Lightweight Altitude Transmission Equipment). Hazeltime is to have a 10-lb airborne radar beacon ready in 10 months. Transco has a year to follow another approach expected to make a 5-lb unit possible.

Transponders are to report altitude in 500-ft increments from 1,000 ft below sea level to 15,000 ft and have a range of 50 to 100 miles. They'll be used in planes weighing less than 12,500 lb. Longer-range equipment will be developed for airliners.

Magnetic Field Increases Diode Forward Resistance

LARGE INCREASES in forward resistance of indium-antimonide diodes at liquid nitrogen temperatures have been produced by changes of about five gauss in transverse magnetic fields. Reported by J. Menglailis, of MIT Lincoln Lab at the American Physical Society meeting in New York last week, magneto diodes are expected to be useful as four-terminal switches and amplifiers.

H. Riemersma, of Westinghouse Electric, reported achieving a field of 68 kilogauss with a variable composition superconducting solenoid. Designed for 80-Kg field intensity, it has six concentric sections wound with niobium-zirconium wire. It has 25 percent zirconium on the outside and 50 percent on the inside.

Westinghouse scientists also reported they are researching thin films for magnets. Theoretically, critical current density would be increased by a factor of 10 over wire-wound magnets, permitting thinner windings or possibly higher magnetic fields.

Discrimination Radar for Nike Zeus Being Built

ARMY DISCLOSED at a press conference in Los Angeles that the first installation of the Nike Zeus discrimination radar is being made now at White Sands, N. M.

Gen. August Schomburg expressed Army confidence in the ability of this controversial link of the anti-ICBM system to perform its function. He told a somewhat skeptical press group that "no contest exists between Nike Zeus and the USAF's Atlas."

Sperry Gyroscope is building the radar. After brief testing of the initial equipment, it is expected a similar system will be installed on Kwajalein (ELECTRONICS, p 12, Jan. 12).

Schomburg said actual atmospheric testing of Nike Zeus's warhead won't be needed to prove its detonation capabilities.

(A Washington report said work on a discrimination radar at Kwajalein is well advanced and that it would be used during the firing of Atlas nose cones from California.)

FAA Buying $114 Million Airport Electronic Gear

FAA ANNOUNCED last week what air traffic control and navigation equipment it will buy with the $114 million Congress appropriated for fiscal 1962, which ends June 30. Here are major items:

- Two long-range radars, $2.7 million each, for airports at Garden City, Kansas, and San Juan, Puerto Rico; three airport surveillance radars, $307,400 each; improvements in 16 existing long-range radars, $129,500 each.
- Also, 50 vortac stations, $392,000 each; 15 radar beacon systems, $238,600 each; an air route traffic center at San Juan, $2.1 million; equipment for seven new air traffic control towers, $160,000 each; 21 terminal vort stations, $115,900 each; 90 direction finders, $27,800 each.
- Instrument landing systems at 18

Information Technology Rivals Farmer's Almanac

CROP FORECASTING, timber inventories, detecting timber diseases, surveying traffic and slums, measuring mountain snows to estimate water reserves—these are some of the fields opening up to information technology by peaceful applications of military aerial reconnaissance techniques and electronic interpretation of photographic data.

Some of these applications are underway in California. Fast and accurate forecasts of grape crop size and quality, for example, permits pacing deliveries to vintners for market and price stability.

The state is working with Itel Laboratories' Palo Alto division. Techniques are like those for detecting underground nuclear blasts in ARPA's Project Vela. Multicamera reconnaissance and electronic data reduction measure changes in the earth's surface color and brightness near the test site.

February 2, 1962
airports, $163,700 each; directional localizers for 12 instrument landing systems, $163,700 each; 40 visual glide slope lighting systems, $51,000 each; high intensity approach lights, 45 airports at $189,400 each. Costs given are estimated averages.

Addresses—Literally—
Operate This Computer

BRITISH Addressograph-Multigraph Co. has developed an addressing machine that used coded address plates as the input for a digital computer. It was designed to process stock dividend checks.

For each shareholder there's a plate on which his share holding is coded in binary form and his name and address are embossed.

As the plates feed into the machine, photoelectric cells detect the share holding. The computer figures gross and net dividends less taxes. Out comes addressed checks at a rate of 100 dividends a minute.

Air Force Wants Flyable Airport Traffic Controls

AIR FORCE has scheduled for operational use in 1963 an air-transportable, all-weather, emergency air traffic control system. They'll be designed for fast movement to sites without ground-to-air facilities, will be compatible with FAA systems.

Equipment will include search and precision approach radar, communications, Tacan, visual and instrument flight rules towers. Proposals, due Feb. 22, have been invited from 77 companies. A new office—482L—has been set up by the Electronic Systems Division, Hanscom Field, Mass., to manage the program.

Space Vehicles Will be Tracked with Transponders

HIGH-ACCURACY range and range rate measuring system for spacecraft will be developed for NASA by Motorola. The goal, according to NASA, is a system that can tell the position of a vehicle in near space within a few feet and its velocity within fractions of a foot per second. This can be done by placing single stations around the world under the expected orbit and by using three stations in a specific region for triangulation. Stations will be in vans so they can be transported by air to accommodate different orbits.

NASA indicated that carrier and side-tone modulation measurement techniques would be used. Motorola added later that transponders would be carried in the space vehicles.

Oxygen Sensor Provides Its Own Power Supply

FUEL CELL principles are used by General Electric in an experimental oxygen sensor that is its own power supply. It consists of an ion-exchange membrane between two catalytic-platinum electrodes. Hydrogen is supplied to one side and, depending on the amount of oxygen on the other side, oxygen level is read in milliamperes.

GE says an operational instrument, complete with hydrogen supply, for monitoring oxygen levels in spacecraft would weigh about seven ounces. By using oxygen instead of hydrogen as a gas supply, it would become a hydrogen sensor. The sensor could also be used in mines and submarines, GE believes.

Magnetometer to Forecast Solar Proton Showers

ZEEMAN EFFECT magnetometer is under construction at Air Force's Sacramento Peak Observatory in New Mexico to help predict periods of solar proton showers, perhaps the biggest hazard a space traveler will face. Solar proton radiation is intermittent, cannot easily be predicted over long periods. The observatory, operated by AFCLR, will try to extend the forecast period.

All proton showers so far recorded originated in sun spot groups of 100,000 to 200,000 Km diameter. A sun spot center with a complicated magnetic field averages five times as many flares as a center with a simple dipolar or unipolar field. The magnetometer under construction will permit complete mapping of the longitudinal magnetic field of an active center.

In Brief...

A-M STEREO broadcasting proposals will be studied by EIA's engineering department in New York City.

HOFFMAN ELECTRONICS has packed a 33l-45 rpm stereo phonograph, a-m and shortwave radio into a portable the size of a cigar box. It lists at $79.95.

IBM HAS INTRODUCED another large-scale, solid-state scientific computer, the 7094, an expanded 7090. It costs $3,134,500.

MARTIN MARIETTA has a $500,000 feasibility study contract for a new Army antitank guided missile called Tow. Hughes and McDonnell Aircraft have similar contracts. Hughes has a follow-on contract of $750,000 for continued development of guidance for Mauler air defense missile.

QUANTATRON has a Navy contract to apply advanced laser technology to missile guidance problems.

SPERRY GYRO has a $15 million Navy contract for navigation equipment for the 20th to 29th Polaris submarines. A $6 million-plus Navy contract to Magnavox covers classified systems including APQ 94 airborne radar systems.

OTHER MAJOR military contracts include $4 million to Budd Electronics for conversion of 86 Air Force AN/FPS-18 radar to AN/FPS-74; $1.2 million to Astro­nautics Corp. of America for jet aircraft horizon situation indicators; $1 million to Heldor Elec­tronics for AN/TRC-24 Army radio set components; $1 million to National Company for communications equipment and development of a pocket-sized trans­ceiver.

ISOTOPES Development Center has been set up at AEC's Oak Ridge National Laboratory to spur government and private R&D in radioisotope technology.

RCA ANNOUNCES a video recorder with tape speed of 7.5 and 15 ips, said to reduce tape costs. Recorded tracks are five mils wide instead of 10 mils.
HYREL® ST Capacitors, developed and qualified for use in the Minuteman Missile, are NOW available to you in ALL RATINGS!

- Quality 100 times greater than that of former high-reliability components! That's the ultra-high-reliability now demanded of electronic parts in the Minuteman missile's intricate guidance and control system.
- An unmatched test history of over 117 million unit-hours backs up the design of HYREL ST Capacitors to withstand the rigorous performance requirements specified for Minuteman components.
- The pioneer in solid tantalum capacitors, Sprague is one of 12 nationally-known manufacturers chosen to participate in the Air Force's Minuteman Component Development Program of Autonetics, a division of North American Aviation, Inc.
- All of the special processes and quality control procedures that make HYREL ST Capacitors the most reliable in the world can now help you in your military electronic circuitry. A tantalum capacitor engineer will be glad to discuss the application of these capacitors to your missile and space projects. Write to Mr. C. G. Killen, Vice-president, Industrial and Military Sales, Sprague Electric Company, 35 Marshall St., North Adams, Mass.

Sprague Components
CAPACITORS
RESISTORS
MAGNETIC COMPONENTS
TRANSISTORS
INTERFERENCE FILTERS
PULSE TRANSFORMERS
PIEZOELECTRIC CERAMICS
PULSE-FORMING NETWORKS
HIGH TEMPERATURE MAGNET WIRE
CERAMIC-BASE PRINTED NETWORKS
PACKAGED COMPONENT ASSEMBLIES
FUNCTIONAL DIGITAL CIRCUITS

Sprague Components
THE MARK OF RELIABILITY
February 2, 1962
One of these specialized meters is designed for your measuring job

Each of these Hewlett-Packard instruments has its own special usefulness for you. But all of them offer the extra values you expect in an instrument: Realistic specs which every instrument meets, now and next year. Conservatively designed circuitry that will perform for years, without being overworked. Careful amplifier design featuring high feedback that assures constant performance as tubes age. Cleanliness and ruggedness in design and assembly — packaging that makes routine maintenance simple.

In short, you get quality and accuracy and the best test instrument value in America today. Now, to the specs below. Choose the instrument designed for your present job and call your rep for a demonstration.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Primary Uses and Features</th>
<th>Frequency Range</th>
<th>Voltage or Current Range</th>
<th>Input Impedance</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>403A</td>
<td>Solid state ac voltmeter, battery-operated, portable. Fast, accurate, hum-free ac measurements.</td>
<td>1 cps to 1 MC</td>
<td>0.001 to 300 v 12 ranges</td>
<td>2 megohms 40 pf shunt, low ranges; 20 pf, mid ranges; 15 pf, high ranges</td>
<td>$275.00</td>
</tr>
<tr>
<td>400D</td>
<td>Wide range ac voltmeter. High sensitivity, 2% accuracy.</td>
<td>10 cps to 4 MC</td>
<td>0.001 to 300 v 12 ranges</td>
<td>10 megohms 15 pf shunt, high ranges; 25 pf, low ranges</td>
<td>$250.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Primary Uses and Features</th>
<th>Frequency Range</th>
<th>Voltage or Current Range</th>
<th>Input Impedance</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>412A*</td>
<td>Precision VTVM. 1% accuracy; measures voltage, current, resistance; no zero set needed; 1 ohm to 100 megohm center scale for resistance meas., 60 db dc amplifier.</td>
<td>dc</td>
<td>1 mv to 1,000 v 1 µa to 1 amp</td>
<td>10 to 200 megohms, depending on range</td>
<td>$400.00</td>
</tr>
<tr>
<td>413A*</td>
<td>DC null meter, dc voltmeter, 60 db dc amplifier. 2% accuracy, floating input, 1 mv end scale sensitivity.</td>
<td>dc</td>
<td>1 mv to 1,000 v 13 ranges</td>
<td>10 to 200 megohms, depending on range</td>
<td>$350.00</td>
</tr>
</tbody>
</table>
LAB STANDARD ACCURACY IN COMMERCIAL VOLTMETERS!

New individual calibration of meter scales gives you today's highest available accuracy in commercial voltmeters. With a servo system, each voltmeter scale is calibrated to the exact characteristics of its individual meter movement. No preprinted approximate scales are used. Scale tracking error is eliminated. What the voltage actually is—you read!

Individually calibrated meter scales are now furnished—at no increase in cost—on these * instruments: * 400H Vacuum Tube Voltmeter, * 412A DC Voltmeter-Ohmmeter-Ammeter, * 413A DC Null Meter, * 425A DC Microvolt-Ammeter.

Data subject to change without notice. Prices f.o.b. factory.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Frequency/Range</th>
<th>Accuracy</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 400H*</td>
<td>Similar to 400D, 1% accuracy on extra-large 5" mirror-scale meter.</td>
<td>10 cps to 4 MC</td>
<td>0.001 to 300 v to 12 ranges</td>
<td>10 megohms 15 pf shunt, high ranges; 25 pf, low ranges</td>
</tr>
<tr>
<td>* 400L</td>
<td>Logarithmic 400D. Accuracy ±2% constant percentage of reading. For log voltages, linear db measurements.</td>
<td>10 cps to 4 MC</td>
<td>0.001 to 300 v to 12 ranges</td>
<td>10 megohms 15 pf shunt, high ranges; 25 pf, low ranges</td>
</tr>
<tr>
<td>* 410B</td>
<td>VTVM for audio, rf, sh signal measurements. dc voltages, resistances. Minimizes circuit loading, low drift, one zero set all ranges.</td>
<td>dc; ac, 20 cps to 700 MC</td>
<td>dc, 1.0 to 1.000 v to 12 ranges; ac, 1.0 to 300 v, 6 ranges</td>
<td>dc, 122 megohms; ac, 10 megohms/1.5 pf shunt</td>
</tr>
<tr>
<td>* 405</td>
<td>Automatic digital VM. "Touch and read," direct dc voltage measurements, digital readout. Automatic range, polarity readability available for printer, system.</td>
<td>dc</td>
<td>0.001 v to 1,000 v (accuracy ±0.2% of reading ±1 count)</td>
<td>11 megohms</td>
</tr>
<tr>
<td>* 425A*</td>
<td>Microvolt-ammeter reads µV, µA; 100 db amplifier; measures dc voltages, current as in medical, biological, physical, chemical work.</td>
<td>dc</td>
<td>10 µV to 1 v 11 ranges; 10 µA to 3 ma, 18 ranges</td>
<td>1 megohm ±3% (v) 1 megohm to 0.33 ohms (current)</td>
</tr>
<tr>
<td>* 428A</td>
<td>Clip-on dc milliammeter, eliminates direct connection, no circuit loading. Measures dc in presence of ac.</td>
<td>dc</td>
<td>3 ma to 1 amp 6 ranges</td>
<td></td>
</tr>
<tr>
<td>* 428B</td>
<td>Similar to 428A, wider range, recorder output for dc to 400 cps.</td>
<td>dc on meter, dc to 400 cps on recorder</td>
<td></td>
<td>1 ma to 10 amps 9 ranges</td>
</tr>
</tbody>
</table>

HEWLETT PACKARD COMPANY

1501 Page Mill Road, Palo Alto, California. Area Code 415, DA 6-7000. Sales and service representatives in all principal United States areas; Europe, Hewlett-Packard S.A., Rue du Vieux Billard No. 1, Geneva; Canada, Hewlett-Packard (Canada) Ltd., 8270 Mayrand Street, Montreal.
PURCHASES OF ELECTRONIC equipment by regulated communications utilities such as Western Union, the Bell System and independent telephone companies may be stimulated by a proposed four percent tax credit on investment in equipment.

The tax credit plan has received a tentative nod from the House Ways and Means Committee. But help may be a long way off. The committee has a long history of reversing itself on tentative votes made in closed sessions. And besides, any tax bill is subject to many changes before it finally becomes law.

Here's some background: last fall the committee adopted a draft tax revision bill built around an eight-percent investment credit for business. It was designed to stimulate modernization of equipment, but left out utilities.

Now the committee is amending its draft and the utilities are cut in for a four percent credit. It means that utilities would be entitled to reduce their final tax bill for any year by four percent of what they spend on new equipment.

THE PENTAGON is less than candid in releasing budget figures about its planned electronics spending. And that's a gross understatement. For example: Defense Secretary McNamara allows as how increased funds have been set aside for the Space Detection and Tracking System (Spadats). He says next year's sum will exceed the "substantial funds" allocated last year.

The additional money will be spent on development of improved radar, other sensing devices, computers and operation of the system's two parts: the Navy's Space Surveillance System (Spasur) and the Air Force's Space-Track System.

ALSO IN THE "GUESSING GAME" category are the figures on Navy's electronics procurement program. That is, electronics buying not related to other weapons systems such as aircraft or missiles. There will be an increase of about nine percent over this year's level of contracting and 19 percent over last year's.

The Marine Corps will buy increased quantities of the AN/PRC-38 tactical radio. This will be initial procurement of the newly developed item. But according to Secretary McNamara it will fulfill "a substantial part of the objective."

ARMY GETS $296 MILLION for new electronics equipment procurement not associated with other weapons systems. This is slightly under Army's present rate of electronics buying.

Largest item, nearly $30 million, is for the new AN/VRC-12, a rugged and easily serviced vehicular radio set. Another important item is the AN/PRC-25, a man-portable radio to provide field communications for company-sized units. The budget earmarks $13 million for this item.

AT LEAST TWO MORE floating command posts may provide additional high-command backup in case the Pentagon is wiped out in a nuclear attack. The Defense Department wants funds from Congress to convert at least two mothballed light carriers into command and control ships. They would be equipped for constant radio communications between joint command headquarters and strategic retaliatory, air defense and tactical warfare commands in the fields.

There are already at least two alternate high command posts. One is the mountain hideout along the Maryland-Pennsylvania border, the other is aboard the Navy's cruiser-command ship USS Northampton.
New, rugged Westinghouse portable instruments give long-term accuracy never before possible

There's no need to treat them gently. These new Westinghouse portable instruments have neither pivots nor jewels. There is no friction in the movement—no wear—nothing to get out of adjustment. The secret is a unique development—Westinghouse Taut Band Suspension. The moving element is suspended between strong metal bands under high tension. These bands carry the current to the coil and provide torsion against rotation.

In the Westinghouse instrument laboratory, this rugged instrument movement has withstood over 200 shock tests of 2400 G's and retained accuracy within 1/2%. After 24 million full-scale deflections, repeatability remained within 1/20 of 1‰. By contrast, pivot and jewel instruments, after only one million deflections, will have so much friction their accuracy will be questionable. Conclusion: Westinghouse TBS portable instruments are the toughest precision portables ever made. Maintenance, recalibration and other adjustments are practically eliminated.

Westinghouse TBS portable instruments are available as a-c or d-c ammeters or voltmeters, with single or multi-range scales for practically any precision applications. Full-scale deflection as low as 1 microampere is available. Shatterproof glass window, high impact molded case and insulated retractable handle are standard features. Accuracy rating is 1/2% or 1/4%. All Westinghouse portable instruments meet or exceed the requirements of ASA standard C-39.1. Write for complete specifications and a sample of Taut Band Suspension. Westinghouse Electric Corporation, P.O. Box 868, Pittsburgh 30, Pennsylvania. You can be sure... if it's Westinghouse.

DON'T HANDLE WITH CARE

Type 161 TBS Portable Instrument—11.2-inch scale

Type 151 TBS Portable Instrument—6.0-inch scale

Westinghouse

February 2, 1962

CIRCLE 13 ON READER SERVICE CARD 13
OK...

LOCKHEED

Here's what I want

ENGINEERS

Have YOU Answered
This Invitation Yet?

It appeared in the January issues of Scientific American, Aviation Week, Aero Space Engineering, Aero Space Management, Space Aeronautics and a number of other publications. Answers received so far indicate that we already offer a remarkably high percentage of the advantages desired by the majority of Engineers AND THAT WE CAN PROBABLY TAILOR A POSITION TO FIT THE REQUIREMENTS OF THE EXCEPTIONS. You'll never know how well your own desires and requirements can be satisfied unless you challenge us to meet them by telling us WHAT YOU WANT!

We challenge YOU TO DO IT NOW!

MAIL TO:

Hugh L. Gordon
Professional Employment Manager
Lockheed-Georgia Company
834 West Peachtree Street
Atlanta, Georgia Dept. RR-88

THE ENGINEERING CENTER
LOCKHEED-GEORGIA COMPANY
A DIVISION OF LOCKHEED AIRCRAFT CORPORATION
AN EQUAL OPPORTUNITY EMPLOYER

Engineers: check your answer and mail today!

- Opportunity for professional advancement: for instance:

- Opportunity to work on interesting and challenging projects: such as:

- Long range job security: for instance:

- Full opportunity to utilize and capitalize on my education: which is:

- Full opportunity to utilize and capitalize on my experience: which is:

- Year-round recreational facilities: such as:

- Income: such as:

- Professionally advantageous associations: such as:

- Freedom to work with less red tape: for instance:

- Desirable fringe benefits: such as:

- Company stability and prestige: for instance:

- Pleasant Living conditions: such as:

- Opportunities for further education: for instance:

- Recognition of personal contributions: such as:

NAME:
ADDRESS:
PHONE:

electronics
VERSATILITY

... for pulse-sampling applications ... for transistor-rise-time testing ... for semiconductor-diode-recovery-time studies ... for strain-gage and other transducer measurements ... for differential-comparator displays ... for multiple-trace work in general laboratory experiments.

... for single-shot or recurrent or triggered main-sweep presentations ... for either conventional or triggered jitter-free delayed-sweep presentations.

With 16 plug-in units available, the Tektronix Type 545A Oscilloscope holds the capabilities for displaying simply and reliably almost any dc-to-30 mc signal in almost any laboratory application.

And an operational amplifier soon available will even further widen the scope of Type 545A Oscilloscope measurements—through its capabilities for integration, differentiation, amplification, summation, other operations for medium and high-frequency applications.

RELIABILITY

... from a company that has originated its own designs in over 50 different laboratory oscilloscopes—incorporating many special components designed and made by Tektronix to provide optimum performance and assure continuing reliability.

... from a company that has specialized in manufacturing ONLY laboratory oscilloscopes and associated instrumentation.

... from a company that has emphasized quality in design for quality in performance for 15 years.

CONTINUING ASSISTANCE

And to maintain high performance, Tektronix backs up every Type 545A Oscilloscope with comprehensive field services from 36 Field Offices and 20 Repair Centers throughout the United States and Canada. For Tektronix believes that a manufacturer's responsibility to the user of his product continues throughout the life of the instrument.

Call your Tektronix Field Engineer for a demonstration of the versatile and reliable Type 545A Oscilloscope in your own application.
Save 7% of Your electronics

BUYERS’ GUIDE

Advertising Costs

ACT NOW!

Order your advertising for the 1962 electronics BUYERS’ GUIDE now. Study these exceptional discounts. You can earn up to 10% in discounts. You will see four distinct ways to save money.

Here is how the “Early Bird” discount structure works:

In addition to volume discounts for Multiple Page, run-of-press, advertising, a discount of 7% on the earned rate will be allowed on ads of ½ page or more, provided insertion order is received by February 15, 1962, and plates are supplied to the publisher by April 25, 1962.

In addition to the volume rates for inserts, a discount of 7% of those rates will be allowed providing insertion order is received by February 15, 1962, and inserts are supplied to the publisher by May 25, 1962. See your local advertising representative, listed on the last page of this issue for complete details.

Multiple Page Discounts

<table>
<thead>
<tr>
<th>Pages</th>
<th>Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3%</td>
</tr>
<tr>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>6</td>
<td>6%</td>
</tr>
<tr>
<td>8</td>
<td>7%</td>
</tr>
<tr>
<td>12</td>
<td>8%</td>
</tr>
<tr>
<td>16</td>
<td>9%</td>
</tr>
<tr>
<td>20</td>
<td>12%</td>
</tr>
<tr>
<td>24</td>
<td>15%</td>
</tr>
<tr>
<td>28</td>
<td>18%</td>
</tr>
<tr>
<td>32</td>
<td>21%</td>
</tr>
<tr>
<td>over 32</td>
<td>24%</td>
</tr>
</tbody>
</table>

Special rates for furnished inserts

<table>
<thead>
<tr>
<th>Pages</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$715</td>
</tr>
<tr>
<td>4</td>
<td>682</td>
</tr>
<tr>
<td>6</td>
<td>654</td>
</tr>
<tr>
<td>8</td>
<td>616</td>
</tr>
<tr>
<td>12</td>
<td>600</td>
</tr>
<tr>
<td>16</td>
<td>583</td>
</tr>
<tr>
<td>20</td>
<td>566</td>
</tr>
<tr>
<td>24</td>
<td>550</td>
</tr>
<tr>
<td>28</td>
<td>533</td>
</tr>
<tr>
<td>32</td>
<td>517</td>
</tr>
<tr>
<td>over 32</td>
<td>500</td>
</tr>
</tbody>
</table>

(Orders and complete plates to be sent to 330 West 42nd Street, New York 36, N.Y. Inserts to be shipped to National Publishing Co., Lanston Building, 24th and Locust Street, Philadelphia 1, Pennsylvania. Marked: Electronics Buyers’ Guide.)
Acoustical Components of Superior Quality

JAPAN PIEZO supplies 80% of Japan's crystal product requirements.

STEREO CARTRIDGE
Crystal - "PIEZO" Y-130 X'TAL STEREO CARTRIDGE
At 20°C, response: 50 to 10,000 c/s with a separation of 16.5 db. 0.6 V output at 50 mm/sec. Tracking force: 6 ± 1 gm. Compliance: $1.5 \times 10^{-6} \text{cm/dyne}$. Termination: $1\,\text{M}\Omega +150\,\text{pF}$.

Write for detailed catalog on our complete line of acoustical products including pickups, microphones, record players, phonograph motors and many associated products.

Jack Lightfoot, LOCKHEED staff engineer working on the Polaris Missile for the Navy, explains why the COMFORT INDEX in Santa Clara County means better living to him. "It doesn't matter whether it's January or July around here - I can take off for the golf course any week end. And, frankly, I feel that I accomplish more on the job in this all-year mild climate."

Both management and employees have a lot to gain from the mild Santa Clara County climate. Productivity goes up as your COMFORT INDEX approaches the ideal level. But you get more than exceptional livability. This unique location at the Southern tip of San Francisco Bay places Santa Clara County right in the market and transportation center of the West.

First, compare the COMFORT INDEX of each potential industrial site. When you add the other advantages, every fact points to SANTA CLARA COUNTY - for maximum livability and productivity.

COMFORT INDEX-One of many terms used to describe the exact point at which the climate of a particular area approaches an ideal combination of moderate temperature, low humidity.

SEND TODAY for these two booklets and bring your plant site research file up to date: "What Do You Mean - COMFORT INDEX?" and "NEW INDUSTRY SPEAKS".

GREATEN SAN JOSE CHAMBER OF COMMERCE
Dept. 38, San Jose 13, California

CIRCLE 17 ON READER SERVICE CARD 17
HIGH STABILITY 1MC and 100KC OSCILLATOR

The new Model 18-10 Oscillator has dual oven vacuum insulated construction and dual temperature control operated by a high resolution mercury thermostat to insure a high degree of reliability and stability.

Specifications are as follows:
- Output frequencies 1 MC and 100 KC @ 1 volt RMS (phase locked)
- Stability, long term 1 part in 10^6 per day; 5 parts in 10^8 per week
- Stability, short term 3 parts in 10^6 per 5 minutes
- Input voltage, oscillator +35V to +210V at 15 MA (specify voltage)
- Oven voltage @25°C 6.3V, AC or DC, (floating) at 2.5A.; 1A. after 30 min. warmup
- Ambient temperature range (operating) -40 to +55 °C
- Frequency change with B+ approx. 1 part in 10^9 over the range 185 to 235 volts
- Trim range 5 parts in 10^6 minimum
- Setting resolution On the order of parts in 10^10;
- Weight 28 ounces
- Size 6" x 3½"

Other features include:
- Oscillator and divider circuits in inner oven
- Frequency adjustment externally available

PRICE $295.00

NORTHEASTERN ENGINEERING INCORPORATED
DEPT. 3-C MANCHester, NEW HAMPSHIRE
AFFILIATE OF ATLANTIC RESEARCH CORP.

CIRCLE 201 ON READER SERVICE CARD

POWER from NICAD NICKEL CADDIUM

Rechargeable Batteries

DESIGNED FOR
- Low Maintenance Cost
- Instant Efficient Operation
- Durability

NICAD Sealed and Vented Cells make practical the battery operation of many types of equipment not previously suited to dry, mercury, or lead acid types. Capable of sustained or stable voltage over a wide temperature range these NICAD Cells have extremely long life, require little or no maintenance, and are always ready to operate in any position under even the most adverse operating conditions . . . with POWER to spare.

For the full POWER story, write . . .

NICAD BATTERY DIVISION
Gould-National

Get the facts on
CONTROLLED-LOSS
ECCOSORB MF

For waveguide and coax

A series of plastic rod and sheet designed for waveguide and coaxial cable terminations and attenuators. Providing a 50-to-1 range of attenuation values at any microwave frequency. Non-porous, zero moisture absorption. Usable to 350° F. Easily machined to close tolerances for good impedance match. Dielectric constant 1.0 to 30. Dissipation factor .01 to 1.5. Available from stock in standard rod sizes of 1", 2" and 3" diameter, and in ½", 1" and 2" sheet.

For higher temperatures:
ECCOSORB MF 500°F Ask for bulletin 8-2-6A

For complete data, write for technical bulletin 8-2-6

Emerson & Cuming, Inc.
Canton, Massachusetts Gardena (L.A.), California

CIRCLE 202 ON READER SERVICE CARD

electronics
NOW...
SINTERED MOLYBDENUM
FOR THE
CHEMICAL ELECTRONIC
ELECTRICAL GLASS
METALWORKING
INDUSTRIAL HEATING
MISSILES AIRCRAFT
INDUSTRIES

AVAILABLE FROM STOCK IN PRODUCT FORMS TO MEET YOUR NEEDS. Universal-Cyclops now adds sintered molybdenum mill products to its growing line of refractory metals. A leading producer of arc-cast molybdenum and its alloys, the company's Refractomet Division has adapted its years of experience and technical know-how in this area, to the production of sintered molybdenum.

The only integrated producer of molybdenum mill product forms, Universal-Cyclops now provides immediate delivery of sintered product, as well as arc-cast, in all mill forms—for every application in the chemical, electronic, electrical, glass, metalworking, industrial heating, missiles, and aircraft industries.

For complete information, write Refractomet Division or call your nearest district sales office.

UNIVERSAL CYCLOPS STEEL CORPORATION
EXECUTIVE OFFICES: BRIDGEVILLE, PA.
COLUMBIUM • MOLYBDENUM • TANTALUM • TUNGSTEN
HIGH TEMPERATURE METALS • TOOL STEELS • STAINLESS STEELS

February 2, 1962
Radar Will Measure Space Vehicle Attitudes

LOS ANGELES—IRE's National Winter Convention on Military Electronics has on its agenda for next week 91 papers, including 29 classified confidential. Among topics slated for a big play are antisubmarine warfare, lunar landing systems, radar, communications and reconnaissance systems.

Here is a sampling of some of the reports which the technical program committee, headed by Matthew Brady, lists as certain to attract considerable interest:

A. Reich, of RCA, will describe an attitude sensor for space vehicles which needs no optical system or electromechanical parts. Attitude is determined from measurements made with ground radar equipment, using phase modulation coding of radiation lobes transmitted from the vehicle.

Several radiator configurations will satisfy requirements, Reich feels. A circular wave guide will be used in initial prototypes. No particularly new techniques are needed to synthesize antenna patterns. System accuracy depends on signal-to-noise ratio and the functions describing the antenna pattern. A cosine-squared pattern makes the direction of cosines directly available at the receiver output without further computation.

Multicolor Display

A mock antisubmarine warfare battle will be fought at session III-D, as L. J. Hines and H. L. Djelland, of National Cash Register, describe their company's multicolor photochromatic display. A single light source provides all the energy needed for writing multiple tracks and alphanumerics, to illuminate cursors, and to project dynamic information and a static background grid on a rear-projection screen.

Tracks and characters are written in real time by multiple ultraviolet beams. Lens motion is controlled by x-y input signals. Reversible light-sensitive dyes are used on the screen. The film changes from a transparent to opaque state wherever the light beams strike, then is transparent again. Image persistency can be controlled by temperature variation and light control.

Applications include computer output in command and control systems and for real time display in antisubmarine warfare, air traffic control, missile range surveillance and other systems handling continually changing information. Production for a classified Navy torpedo weapon system will begin in mid-1962.

Reconnaissance System

A heretofore unannounced reconnaissance system for electronic intelligence will be described in two papers by ITT Federal Labs personnel. It reportedly has demonstrated remarkable speed, accuracy and ability to detect unusual signals in actual flight tests.

Called Pirate, the system incorporates superheterodyne sensitivity with broad spectrum coverage without sweeping and a simple but all-encompassing form of logic which detects anomalous time- or frequency-domain behavior by signals.

Multiple traveling-wave tubes are used in the polydigital receiver for high sensitivity. Several wide r-f bands are heterodyned into a wideband microwave i-f. Supposedly unique mix-based techniques for encoding received carrier frequencies into a three-digit code partially account for the high traffic capabilities reported. New methods for identifying input bands in both c-w and pulse sections are used.

Video measurement and recording circuitry, the company claims, instantaneously detect, measure and store voltage analogs of pulse parameters such as carrier frequency pulse width, polarization, time of intercept, and signal strength. A direction finding system computes absolute bearing of received pulse signals.

Message Tape Cuts Government Red Tape

Social Security Administration is installing a data communications system between its computer center in Baltimore and 600 district offices. Processing of some three million claims annually will be speeded by eliminating typing, mailing and punched card preparation for computer input. Top photo shows Digitronics Corporation's Dial-O-Verter system magnetic and paper tape transmission units. At bottom, in one of six control centers, is equipment which sorts messages according to information concerned and routes them between computer center and offices. Bell Telephone's DataPhone system is incorporated in the network.
MISSILE MISS-DISTANCE indicator, allied in concept to the photon altimeter reported two weeks ago (ELECTRONICS, p 26, Jan. 19), has been developed by Giannini Controls Corp.

In the Photon Target Scoring System, the radioisotope source and the photon detector are two separate units. One is located in the intercepting missile and the other in the target. Miss-distance is calculated from the number of photons detected.

Prototype systems for evaluating such tactical missiles as Sidewinder and Sparrow are being used at the Pacific Missile Range. These systems typically require only about one-half watt of input power.

More sophisticated systems are underway, Giannini says, for evaluating anti-ICBM missiles. Among the reported advantages is that unlike r-f signals, radiation energy propagation is affected little by ionized shock waves which develop around missiles during reentry. Also, source units are physically small, don't alter missile characteristics, don't interfere with r-f apparatus and provide three-dimensional indication of miss-distance.

The source used on small tactical missiles is Ta 182, a high-energy gamma ray emitter, mounted in a ring configuration. If desirable, the source could be placed in the target and the detector in the interceptor.

The detector is a plastic scintillator coupled to a multiplier phototube. The tube amplifies impulses by a factor of one million or more. Output pulses have a rise time on the order of 10 nsec. They are further amplified, shaped and passed through a pulse discriminating network. This network, essentially a bandpass filter in the energy spectrum, rejects most of the cosmic ray background.

A scaling network matches the pulse repetition rate of the detector to the limited bandwidth of the telemetry system. Pulses modulate the f-m-f-m carrier and are transmitted to the data processing subsystem.

Equipment in the towing aircraft converts the pulse data to display miss-distance in feet and also records the information. Data can also be recorded by a ground station. Future systems may improve accuracy by using digital computers and curve fitting techniques.

Magnetometer Finds Snow-Buried Skiers

NEXT WEEKEND, two members of the National Ski Patrol will be buried under a simulated avalanche at the Soda Springs ski area in northern California. They'll be testing a new way of finding lost skiers.

Each skier will carry a small permanent magnet. Searchers will use a Varian Associates M-49 portable magnetometer.

Boots fitted with heel magnets have been located in a few minutes. Tests have been made in Switzerland, where the technique was proposed by Harry Weaver and Attilio Melara, of Varian, and Franz Schaefer, a Swiss Army avalanche and rescue expert.

The two Americans, on a ski holiday, heard of a skier being lost 30 days under an avalanche as rescuers tried to find him using conventional probe rods. From 30 to 300 people are buried each year in Switzerland.
MAGNETIC SHIELDS
Illustrated are a few of the stock mumetal or niceloy magnetic shields for multiplier photo tubes and cathode ray tubes. Stock shields are available for all popular tubes. Custom designed shields are made for special applications.

JAMES MILLEN MFG. CO., INC.
MALDEN
MASSACHUSETTS

NEED
65-80 db
ISOLATION
BETWEEN
TRANSFORMER
WINDBINGS?

You do if your project involves very low signal levels. This was the case recently when a major transistor manufacturer specified EIC custom transformers with 65 db isolation between windings, from 60 cycles to 10 kc. (We can give you 80 db if required.) Insulation resistance specified (winding to winding and winding to case) was 300,000 megohms. Send us your complete specifications for prompt price and performance quotations.

ELECTRODYNAMIC INSTRUMENT CORPORATION
Subsidiary of Reed Roller Bit Company
JA 6-3761 • 1841 Old Spanish Trail • Houston 25, Texas

...for reliable, economical*
COMMUNICATIONS SYSTEMS
Carrier • Microwave • Paging
For Common Carrier, Industrial, Public Safety, Transportation and Business Applications
We invite your inquiry for free B.E.C. Spec File or Systems Engineering assistance.

*Because Budelman equipment performs better, costs less to buy and maintain.
systems analysts:

Quantify the complex on important projects at Hughes!

SURVEYOR (soft lunar landing spacecraft), SYNCOM (synchronous communications satellites), ARPAT (terminal anti-ballistic missile defense system), BAMBI (anti-ballistic missile defense feasibility study). These are a few of the many important and complex projects under design, development and study at Hughes.

Because of these projects and others important to the nation's defense, preparedness and space effort, Hughes offers more opportunities to Systems Analysts than ever before.

Involved with these positions are the consideration of many basic problems such as: the proper mix of manned vs. unmanned satellites; the requirements of manned space flight; IR systems requirements for high speed strike reconnaissance systems or unmanned satellites; analysis of weapon systems from conception through development, test and customer use; and many others.

Inquire today. If you are a graduate engineer or physicist from an accredited university, a U. S. citizen, and believe that you can contribute to and benefit from the important projects at Hughes, contact us today. Airmail your resume to:

Mr. Robert A. Martin,
Supervisor of Scientific Employment
Hughes Aerospace Divisions
11940 W. Jefferson Blvd.,
Culver City 42, California

We promise you a reply within one week.

An equal opportunity employer.
Utica does it again with a special tool-of-the-month designed to meet the increasingly demanding needs of the electronic industry. The 774-5½ Electronic Pick-up and Wiring Plier features a dowel pin located in the jaws to assure perfect alignment and positive gripping control for looping, twisting and bending. And the finely tapered nose...only ¾" at the tip...will pick-up and hold the finest wire used in electronic production work. Covering a wide range of wiring applications, this new plier is especially useful in handling delicate work in restricted work areas. The Bauer-type grip release spring and heavy plastisol grips offer ease of handling...increased production line efficiency.

Utica Tools • Division of Kelsey-Hayes Company, Utica 4, New York

Operational guidance for buyers

That's what your 1961 *Electronics* Buyers' Guide and Reference Issue gives you...this year more than ever before.

Your EBG is bigger and better this year than ever...and more helpful than ever...with more new exclusive features than ever. Keep it close at hand, you'll find it's useful day in and day out.

Meyerhoff (Ed.): DIGITAL APPLICATIONS OF MAGNETIC DEVICES. Electrical, logical, system design for developing digital systems using the toroidal magnet or magnetic core as basic circuit element. 1960. 604 pages. $14.00.

Pitman (Ed): INERTIAL GUIDANCE. Covers all aspects including instruments, components, design, systems for cruise vehicles and space navigation. 1962. Approx. 496 pages. $16.50.

Louissell: COUPLED MODE AND PARAMETRIC ELECTRONICS. First to apply the coupled mode approach to space charge waves, parametric amplifiers, and related devices. 1960. 268 pages. $11.50.

Polydorof: HIGH-FREQUENCY MAGNETIC MATERIALS. First comprehensive guide to ferromagnetic materials and their applications, with tests, measurements, examples. 1960. 220 pages. $9.00.

Bundv-Hibbard-Strong (Eds.): PROGRESS IN VERY HIGH PRESSURE RESEARCH. Pivotal topics are equipment, methods, structure and behavior of materials formed under very high pressure. 1961. 314 pages. $12.00.

Harris: INTRODUCTION TO FEEDBACK SYSTEMS. Covers all areas of application in electronics, communications, and control systems. 1961. 363 pages. $10.50.

Hurley: TRANSISTOR LOGIC CIRCUITS. Includes both theory and practice, with examples to point up basic ideas. 1961. 363 pages. $10.00.

Send now for your On-Approval Copies. JOHN WILEY & SONS, Inc. 440 PARK AVENUE SOUTH, NEW YORK 16, NEW YORK
Optical Character Readers Use Memory Drums, Matrices to Increase Versatility

By WILLIAM E. BUSHOR
Senior Associate Editor

WASHINGTON — Businessmen confronted with ever-mounting stacks of paperwork can take heart from availability of optical reading machines able to swiftly feed printed information into data processing systems. Some recent systems are selective in what they read, tolerant of faulty printing and able to read varying type styles.

Several such systems were described here at a symposium sponsored late last month by the Office of Naval Research and National Bureau of Standards.

Business machine journal tape characters can be recognized by National Cash Register's Bi-code system even if they are skewed 7.5 degrees. The system also has a memory and can be instructed to edit and rearrange data read.

Top and bottom sections of characters are each assigned five zones. Vertical stroke in a zone produces a binary ONE; absence, a binary TWO. A 10-bit binary word represents stroke location.

As the tape moves over the reading head, the print image is periodically reflected through optics (see figure) so it periodically coincides with one of 18 four-aperture sets around the rotating drum. The sampled image is ducted by light guides to multiplier phototubes. Tube output corresponds linearly to white level, delineating ink strokes.

An amplifier and acg loop take care of variations in lamp intensity, paper reflectivity, aperture area and power supply voltage. "White level" circuits allow only ink stroke waveforms into peak sampling and clipping level circuits. Feedback from the peak detector establishes a new clipping level for subsequent peaks.

The peak detector's shaped pulse output goes to a column counter that steps with the right-hand edge of each character. One memory position is assigned each character. Plugboard wiring determines which column is stored in which memory position. The lower reading phototube and the memory control the decoder.

Farrington Electronics showed its Selected Data Page Scanner, which can be instructed what to read on such documents as invoices. Instruction selectors are interchangeable panels that can be wired to any reading mode and to arrange data as desired. Switches, counters and an individually addressable 32-position accumulator can also be used to control the data.

A reader that will tolerate some print mutilation and up to a 10-degree character tilt was developed for the Signal Corps by Control Instrument division, Burroughs Control Corp. It reads pages of double-spaced elite type at a rate of 75 characters a second.

An automatic handling system moves the document about a rotating drum. A flying spot scanner generates a signal whose level is proportional to reflected light. Each character is read as a particular pattern of 96 black or white points, which are compared with a stored library of patterns.

To compare, the serially-generated video data is converted to parallel form so signals for a character are all presented at one time. This is done by passing video signals through delay lines with 96 parallel output taps. Each tap has twin...
Cycloid paper pickup developed by Rabinow handles flimsy papers

leads for black and white points.

Each lead connects to a magnetic core, which is set to a **ONE** state by a pulse from the lead. Wires are threaded through the cores in a character recognition pattern. The pulse generated in each wire is proportional to the number of switched cores through which it is threaded. This voltage is matched against reference voltages representing each character and the one with least mismatch is read out as a five-unit teletype code.

Rabinow Engineering made three developments public: two experimental readers and a cycloid paper pickup mechanism.

One machine uses a full retina of photocells to examine characters, identifying them by correlation matrices. The second uses multiple curve tracing to examine such characters as handwritten numerals. As long as line quality and size are kept within reasonable limits, numbers can be read even though written without restraint.

The paper pickup handles flimsy paper at rates up to 20 documents a second, reportedly more than double previous speeds. This narrows the gap between input feed rates and scanning speed, which at present is up to 25 times faster.

A timing gear rotates a disk carrying 12 to 15 cone shaped vacuum pickups. As a cone whirls around, it picks up a corner of a document, rolls it to the disk and releases the vacuum. Rollers then pull the document along in the usual way.

Among feasibility models reported was an RCA multfont machine for automatic language translation or autoabstracting. One approach is to use a photographic matrix mask for memory and recognition by optical correlation. A second technique is electronic page scan with automatic line and character location.

Faraway Weather Data Gathered by Photometer

OZONE DISTRIBUTION in Arctic regions has been measured at the Naval Ordnance Test Station in China Lake, Calif. UCLA and Navy researchers made the readings with a two-color photoelectric photometer, using the Echo satellite as a sunlight reflector. The photometer measures the ratio of light intensity, in blue and orange, as Echo enters the earth's shadow.

The technique could provide weather information from other inaccessible regions. Daily variation of ozone content indicates atmospheric movements. Ozone distribution at altitudes above 30 Km may provide clues on the relationship of solar radiation and surface weather. An installation similar to that at China Lake is being planned to cover the Antarctic. It will probably be in Chile.

Exhaust Probes Monitor Helicopter Rotor Icing

SOLID-STATE aircraft deicing control system developed by Cook Electric is reported to be small enough for private planes and helicopters.

It weighs only 12 pounds, occupies about one-sixth the volume of electromechanical systems and improves deicing reliability, says Daniel Shevelenko, executive engineer.

In a typical two-engine helicopter installation, one differential air pressure probe is placed in each engine duct, providing redundancy should one engine fail. When the probe is blocked by ice, a pair of electrical contacts close so that the probe is deiced.

Icing pulses are counted by a binary network while a transistor timer measures intervals between pulses. Output goes to a latching relay memory which decides when icing on rotors is hazardous.

Four icing pulses within intervals of 30 seconds or less cause a pulse generator to trigger a deicing program. The deicing time required at a given ambient temperature is determined by a thermistor sensor and a resistive network.

Rotor blades are deiced, a section at a time, by heating a strip on the leading edges. A binary counter monitors this operation. Engine deicing follows after a half-minute overhang and windshields after two minutes.
System Simulates B-52 Countermeasures

By JOHN F. MASON
Associate Editor

ELECTRONIC COUNTERMEASURES simulator delivered to the Air Force can duplicate existing or predicted r-f environments that a bomber flying over enemy territory might encounter.

Although bought by USAF to train electronic warfare officers of B-52 bombers, the simulator, designated T-4, can be adapted for ecm training on other current or projected aircraft.

The T-4 is the first of a new series of electronic mission training systems being built for the Strategic Air Command by Reflectone Electronics, Inc., a subsidiary of Universal Match Corp. The $11.8 million contract was awarded by the Aeronautical Systems Division of the Air Force Systems Command, Wright-Patterson AFB, Ohio. The simulator was developed under the engineering cognizance of ASD's Bombing, Navigation and Ecm Branch, Director of Aerospace Ground Equipment Engineering Deputy for Engineers.

The new system differs from Reflectone's B-58 Defense Systems Operator simulator (ELECTRONICS, p 26, Apr. 7, 1961) in that the B-52 training device simulates only ecm. The older plane undoubtedly requires more sophisticated ecm gear than the newer B-58 since it is slower and will spend more time over enemy territory in a jamming, enemy radar, missile-attacking environment.

T-4 provides all countermeasures equipment an electronic warfare officer (EWO) must operate to detect and take action against hostile signal transmission. It can duplicate practically all types of signals in the r-f spectrum over a very wide range.

The T-4 includes a signal generation section of nine cabinets, a systems simulation section with seven cabinets (providing signals to simulate operation of student station equipment), an instructor's station and a student's station.
is essentially a physical duplication of the operational EWO portion of the B-52. The trainer fits into an area 30 ft by 28 ft.

A large number of radar or communication stations can be simulated simultaneously. New stations can be introduced by leap-frogging back to use those no longer in the mission problem.

The simulator duplicates r-f transmission by preprogramming 19 functions. These include such signal characteristics as frequency, pulse repetition frequency (prf), pulse width, polarization and pulse mode. Other parameters include radar range, detection range, geographic position and the particular action an enemy station takes when it detects the B-52 and when the B-52 jams it. After detecting a target, the enemy radar may change from a search mode to a tracking mode. It may for a time go off the air. Back-up radars may come on when the target is fully in range. To counter jamming, a radar station may slide or jump to a different frequency. It may also change, for example, from a fixed frequency to varying modulation.

Any antenna pattern can be duplicated. The resulting signal is recorded on one channel of a continuous-loop, 50-channel tape recorder, which preprograms up to 50 different antenna signal characteristics. A semi-automatic punch card system selects the desired antenna characteristic and combines it with the appropriate video-audio signal to provide complete simulation of any radar or other r-f signal.

Project Engineer, Major P. Fasules, estimates that the cost of airborne training that can be accomplished in the simulator during one four-month period equals the cost of the simulator.

The B-58 ECM trainer has been in operation at SAC's Carswell AFB, Texas, for about a year. In one training period, 30 students averaged about 27 hr each, "flying" 497 missions totaling some 800,000 miles.

February 2, 1962

Machlett Laboratories, Inc.

A Division of Raytheon

Springdale, Connecticut

15 Mw Modulator Power
3.0 Mw R-F Power

ML-7560

Ceramic Triode

Coaxial terminal, thoriated-tungsten cathode ML-7560 provides:

- **15 Mw Pulsed Modulator Power Capability at 1% duty**
 - DC Plate Voltage Max 50 kv
 - Pulse Cathode Current Max 550 amps

- **3.0 Mw R-F Pulsed Power capability at 5% duty**
 - Peak Plate Pulse Supply Voltage Max 40kv
 - Pulse Cathode Current, Max 550 amps

Send for 74 page brochure, "Hard Pulse Modulator Tubes", containing useful information for Radar Design Engineers and others.
“Flywheel” Pumps Pulse Power

MICROWAVE POWER amplifier, capable of attaining a peak pulse power of 100 Mw at a frequency of 5.5 Gc, went into operation late last month at the Polytechnic Institute of Brooklyn's Long Island Graduate Center, Farmingdale, N. Y.

The amplifier was designed and built by the Sperry Electron Tube division of Sperry Rand Corp. It delivers pulses with a peak power of 10 Mw. A “microwave flywheel” — something like a cyclotron — steps up power to 100 Mw. The amplifier is coupled to a circular, 500-ft-long pipe. Energy is multiplied as it circulates around in the cavity.

Brooklyn Poly will use the output to observe the reaction of gases and solid materials under high peaks of electrical power. Studies of superpower microwave materials, plasma conductors of high-frequency, high-energy power, and aerodynamic shock tube studies are among research applications. The research program is sponsored by Air Force Systems Command. Sperry plans a line of such amplifiers.

Racetrack Computer Totes Payoff Odds

RACING FANS around the country will be getting the good news a few minutes earlier at tracks equipped with computers which figure payoffs as soon as the race is completed. American Totalisator Co. is starting to equip its wagering systems with small digital computers to increase speed and accuracy. The company services some 150 jockey clubs and associations in 24 states, using 60 systems to equip 40 tracks at one time.

Totalisator inaugurated service with its new system at Santa Anita Racetrack recently, after testing reliability at five tracks. A second system has been completed and four others are being built at the company’s plant in Baltimore. Oscar Levy, vice-president, expects use by 15 to 20 major tracks.

The computer is a modified Clary Corp. DE-60. It is portable, operates on line power and doesn’t require special air conditioning. Tracks are equipped with basic cabling and housings, so systems can be transported from track to track overnight.

Pooled figures on the Tote board are scanned, recorded and translated into the numerical system used by the DE-60. While the horses are running, state and track percentages are deducted. When winners are announced, win, place and show prices are calculated and displayed. This takes about 84 seconds, about 1.5 minutes less than manual methods. The computer is programmed for more than 30 payoff variations.

Error factor is estimated at 0.0003 percent, a figure compiled from the $3.75 billion registered by Totalisator machines in 1960.
This ELECTRICALLY TUNED RECEIVER that fits in any odd space on planes or on ships that lets you look at a signal you hear on a companion receiver that should be kept near that has no moving parts that sweeps the full band or shows on expanded mode a signal just scanned comes from the house—that TRAK built

TRAK PANORAMIC RECEIVER TYPE PAN 1-F
Frequency range: 100-150 MC. Dynamic range: 60 db. Scan rate: 22 sweeps/second. Measures frequency to 0.2%. Tangential sensitivity .25 microvolt.

TRAK AUTOMATIC ACTIVE COUNTERMEASURES SYSTEM
Electrically tuned receiver searches, stops, listens, evaluates. Transmitter automatically tunes to target frequency and jams for predetermined interval.

TRAK MODEL 2887 ANTENNA SWITCH
Allows signals from two, three, or four antennas to be displayed simultaneously on a single panoramic receiver. Electrically switched. No moving parts. 90-160 MC.

The Communications and Reconnaissance Dept. of Trak Electronics designs and manufactures on a quantity or single basis, completely within their own plant. This permits "package cost" quotation at your design conception stage. Our Engineering Section will be glad to offer design and specification assistance if requested. Simply write 59 Danbury Road or telephone POrter 2-5521.
Syracuse, (Olive 1-3220)
Schenectady, on all Hansen
SEND MANUFACTURING
HANSEN
starting, (2) no time loss or gain, (3) absence of malfunction, and, (4) reliable,
Carefully controlled testing was based on four specifications:
PRINCETON, INDIANA
motors operate at either
continuous operation for periods of a year or more. Depending on installation,
the split-second
COMPANY, INC.
SYNCHRON TIMING MOTORS
SYNCHRON
the "heart"
controlling
HANSEN
scheduling of
SCHULMERICH CARILLONS, INC., world's largest manufacturer of electro-mechanical carillons, uses Hansen SYNCHRON Timing Motors to drive the program clock governing the all-automatic operation of these precision, perfect-tune instruments. Clock programming is offered at 15-minute intervals, 24 hours a day, 7 days a week. Scheduled to play at specified times, exactly to the minute—there is no allowance for plus or minus variation.
HANSEN SYNCHRON TIMING MOTORS were selected as an integral part of Schulmerich Carillon Bells because they outperformed all other motors tested. Carefully controlled testing was based on four specifications: (1) instantaneous starting, (2) no time loss or gain, (3) absence of malfunction, and, (4) reliable, continuous operation for periods of a year or more. Depending on installation, motors operate at either 110 or 220 volts—50 or 60 cycles.
SEND TODAY for informative folder containing specifications and technical data on all Hansen SYNCHRON motors and clock movements.

HANSEN REPRESENTATIVES:
THE FROMM COMPANY
5150 W. Madison, Chicago, Illinois
H. C. JOHNSON AGENCIES, INC.
Rochester, N. Y. — Buffalo, N. Y. — Syracuse, N. Y.
Binghamton, N. Y. — Schenectady, N. Y.
ELECTRIC MOTOR ENGINEERING, INC.
Los Angeles, Calif. — (Olive 1-3220)
Oakland, California
WINSLOW ELECTRIC CO.
New York, N. Y. — Essex, Conn. (South 7-8229)
Philadelphia, Penn. Cleveland, Ohio

MEETINGS AHEAD

REDUNDANCY TECHNIQUES FOR COMPUTING SYSTEMS. Office of Naval Research; Dept. of Interior Aud., Wash., D. C., Feb. 6-7.
MILITARY ELECTRONICS, PGML of IRE; Ambassador Hotel, Los Angeles, Feb. 7-9.

APPLICATION OF SWITCHING THEORY TO SPACE TECHNOLOGY Symp., USAF, Lock heed; at Lockheed, Sunnyvale, Calif., Feb. 27-Mar. 1.

SCINTILLATION AND SEMICONDUCTOR Counter Symp., PGNS of IRE, AIEE, AEC, NBS; Shoreham Hotel, Washington, D. C., Mar. 1-3.

MISSILES & ROCKET TESTING Symp., AF Com. & Electronics Association Cocoa Beach, Fla., Mar. 6-8.
EXTRA-HIGH VOLTAGE COMMUNICATION, CONTROL & RELAYING, AIEE; Baker Hotel, Dallas, Tex., Mar. 14-16.

IRE INTERNATIONAL CONVENTION, Coliseum & Waldorf Astoria Hotel, New York City, Mar. 26-29.

SOUTHWEST IRE CONFERENCE AND SHOW; Rich Hotel, Houston, Texas, April 11-13.

JOINT COMPUTER CONFERENCE, PGEC of IRE, AIEE, ACM; Fairmont Hotel, San Francisco, Calif., May 1-3.

HUMAN FACTORS in Electronics, PGHE of IRE; Los Angeles, Calif., May 3-4.

ELECTRONIC COMPUTERS Conference, PGPC of IRE, AIEE, EIA; Marriott Twin Bridges Hotel, Washington, D. C., May 8-10.

NATIONAL AEROSPACE ELECTRONICS Conference, PGANE of IRE; Biltmore Hotel, Dayton, Ohio, May 14-16.

ADVANCE REPORT

WESTERN ELECTRONICS SHOW AND CONVENTION, WESCON: at Los Angeles in the California Memorial Sports Arena and Statler-Hilton Hotel, August 1-3, 1962. Authors should submit the following materials by April 20 to WESCON Business Office/Technical Program Chairman, 1435 S. La Cienega Blvd., Los Angeles 45, Calif.: (1) 100 to 200 word abstract including title of paper, name and address of author; (2) 500 to 1,000 word summary of paper; (3) indication of technical field in which paper falls using IRE professional group classification.

HANSEN CARILLONS, INC.
Super Squaremu "79" is a new high-purity alloy of closely controlled composition, an exclusive development of Magnetic Metals. When used in Centricore tape-wound cores, it assures the magnetic amplifier designer the ultimate in core performance and consistent reproducibility of his designs.

Compared with conventional alloys of the same nominal composition, Super Squaremu "79" offers these advantages:

- High flux density
- Greater gain
- Increased linear range
- Greater thermal stability
- Improved uniformity of performance

Centricores made of Super Squaremu "79" deliver the same consistently high performance from core to core and lot to lot, as proved through production quantity runs. They're now available in a new hermetically sealed case, in all standard sizes and shapes. Write or call today for complete specifications. MAGNETIC METALS COMPANY, Hayes Avenue at 21st Street, Camden 1, N. J.
When must contact be "Good as Gold"?

When time means harmful tarnish!

Of course gold is a natural wherever rotary or push-button switches must remain in any one position for months-on-end. Simply because it assures perfect, lasting contact without care where switches are operated infrequently.

Under other circumstances, however, contact "good as gold" may call for radically different construction, different selection of metals, as you well know. All the picky considerations so familiar in switch design are thoughtfully gone over in full each time OAK develops a switch recommendation. Common, ordinary silver plate may be best of all. (Generally gives outstanding results where 10,000 cycles use-life is sufficient ... and then provides brass-to-brass contact up to 200,000 cycles of operation where a bit of circuit noise can be tolerated.)

Then, perhaps, that "good-as-gold" answer will be OAK CMS-202 high-temperature alloy ... or simply a more familiar silver alloy. OAK recognition of countless significant details helps you save by preventing over-engineered switches — as well as by safeguarding performance.

So let OAK unravel the tedious details: choice of contacts ... make-up of metals ... proper insulators and frame design. Creating superior switches and complete switching subassemblies is our full-time business — probably the best reason of all for making OAK your switch-engineering "right arm."
OAK ideas cut cost of switches for countless applications — Good switch-engineering, as you know, doesn’t mean designing the most expensive item to do the job, under all conditions, for a hundred years. It means creating the lowest-cost component that can handle the job and provide proper use-life. Be it push-button, rotary, lever or slide switch — send your performance and application data along when you order.

Although you may have been dealing with us for years — you can enable us to do a still better job for you. As a switch specialist, OAK can spot needless costs in mechanical and electrical specifications and help control or eliminate them.

OAK assemblies can cut production costs ... free-up manufacturing facilities — Given circuit data and opportunity, OAK will also build complete subassemblies, and can often combine switches with related circuitry to produce cost-saving “package” plug-ins. Sometimes we can even eliminate expensive components such as relays.

OAK-built components and subassemblies all are life- and environment-tested. Products subject to MIL SPECS (including 3786-A) are checked for performance under vibration, shock, salt spray, humidity, high altitude and temperature extremes.

You’ll find OAK engineers eager to assist with problems. We urge that you take full advantage of their unique capabilities.

OAK schedules help speed your production efforts — Need a prototype fast? Order it from OAK; generally it’s completed in 3 days! And compare our new, faster production cycle — now insured by expanded plant capacity.

Layout sheets are readily available at no cost, to help in diagraming your switch requests. For specific information, products, or prototype service, contact your OAK representative, or OAK directly.
Radiation’s Telegraph Distortion Measurement System effectively reduces costly downtime in wire or radio telegraph and data links. A compact, self-contained unit, TDMS provides continuous on-line monitoring and alerts even the non-technical operator when a circuit is deteriorating.

TDMS offers additional advantages which increase the efficiency of communication systems. It transmits perfect telegraph test signals, for example, permits adjustment of telegraph relays during operation, and tests start-stop mechanisms. It can also replace most equipment needed for teleprinter terminal maintenance and monitoring.

TDMS (and other Radiation commercial equipment) owe their advantages to Radiation’s unequaled experience in advanced aero/space communication systems. To find out how TDMS can service your network, write Dept. EL-22, Radiation at Orlando, 5800 McCoy Road, Orlando, Fla.
"SEE IT BIG
AND KEEP IT SIMPLE"...

an engineering byword
and a mnemonic well worth
remembering. Take Varian
power klystrons, for example.
Varian internal cavity design
minimizes maintenance.
Absence of sliding joints and
contacts eliminates RF leakage
and cuts down self-oscillation.
Tube and circuits are an integral
structure, ready for transmitter
installation. Tubes are self-centering
in electromagnets. Non-critical
magnetic focusing requires no physical
adjustment. High density metal cathodes
permit automatic fault recycling at full
power. Input and output couplings are pre-
set to optimum for flat transmission lines
(again, there's no need for adjustment).
Just connect coolants, cathode terminals,
RF input and output lines, and tubes
are ready to operate.

If you need such long-lasting,
reliable klystrons, Varian has (or
can design) the ideal tube for you.
Contact Tube Division.
NOTHING REPLACES A PHILCO MADT®

A replacement is not a replacement, if it offers only some of the original product's benefits. Philco MADT's give you MORE device per dollar than any germanium "replacement" transistor: • MADT delivers higher h_{FE}; • MADT offers better emitter-base diode stability; • MADT types offer higher frequency capability; • MADT types offer higher current capability; • MADT process-controlled geometry assures tighter parameters; • MADT types are optimized for specific applications; • MADT is inherently avalanche-free in practical switching circuits.

For top switching capability, use the world's most popular germanium transistor, with uniformity assured by industry's only fully-automatic transistor production. Insist on Philco MADT. For complete data on MADT circuit benefits, write Dept. E2262.

THESE PHILCO MADT's OFFER OPTIMUM VALUE FOR SPECIFIC NEEDS

- **2N768**: Optimum performance at low power. $f_t = 170$ mc at 1v, 1 ma.
- **2N1499A1, 2N204B**: High frequency performance at low cost. $V_{CE} = -20V$.
- **2N501A1, 2N15001, 2N779B**: High speed logic transistors.
- **2N976**: World's fastest switch. $f_t = 900$ mc.
- **2N1204A**: High power, low speed. Max. $I_C = 500$ ma. $f_t = 400$ mc. $P_T = 200$ mw.
- **2N1494A**: High power, low speed. Max. $I_C = 500$ ma. $f_t = 400$ mc. $P_T = 400$ mw.

*Micro Alloy Diffused-base Transistors.
*Military types.
Ceramic technology is used to produce an experimental thermoelectric generator capable of producing 100 volts in a twenty cubic inch package heated to 2,400 degrees F.

By R. D. FENITY
Minneapolis-Honeywell Research Center, Hopkins, Minnesota

This center has been engaged for about four years in the investigation and development of oxide semiconductors and devices based on their properties. Recently, Picatinny Arsenal supported a program on the use of these materials as thermoelectric generators. The first portion of the sponsored work involved a survey of the thermoelectric properties of a limited number of materials and the initiation of a study of the mechanisms involved. The second phase of this program required the design and fabrication of a generator using the best materials found in the first phase. This resulted in a device capable of generating 100 volts and occupying a space of only twenty cubic inches.

This generator was designed to obtain high voltage output in a...
small volume without regard to current. These design ends were met by an unusual physical construction using ceramic technology. An exploded view of the device is shown in Fig. 1. It consists of an alumina ceramic plate to which has been applied a platinum layer which overlaps the opposite side. A plasma flame sprayed layer of doped nickel oxide is applied to the second side and there was a tapering off of this voltage starting at a differential of about 500 °C. The latter effect has been shown to be due to leakage through the ceramic substrate that proved to have appreciable conductivity at about 1,000 °C. The low-temperature effect is attributed to a modification of the properties of the oxide semiconductor that occurred when exposed to the extreme temperatures of the plasma flame torch. Both of these effects can be overcome with a resulting improvement of a factor of four in performance.

Figures 3B and 3C illustrate the voltage and current characteristics of this generator with varying load impedance. The power output peaked at 650,000 ohms load, the generator internal impedance.

Oxide semiconductors used for thermoelectric generation are oxides of the transition metals that are doped by the mixed-valency principle to yield properties similar, but not identical to, the normal band conduction semiconductors. An example of the doping reaction is

\[
\begin{align*}
\left(1 - \frac{z}{2}\right) \text{FeO}_x + z \text{TiO}_2 & \rightarrow \\
\text{Fe}_{1-z}^{2+} \text{Fe}^{3+} \text{Ti}^{4+} \text{O}_4 + \frac{z}{4} \text{O}_2 & (1)
\end{align*}
\]

or

\[
\begin{align*}
\text{NiO} + z \text{Li}_2 \text{O} + \frac{1}{2} \text{O}_2 & \rightarrow \\
\text{Ni}_{1-z}^{3+} \text{Ni}^{2+}_{z+1} \text{Li}^{+} \text{O}_{1/2} & (2)
\end{align*}
\]

In both of these cases, the doping agent (TiO₂ or Li₂O) enters the lattice of the host material creating a charge imbalance that must be corrected. The balance is restored by a valence change in an equivalent number of the host ions. Now ions of different valencies of the same element occupy equivalent positions in the lattice and electron or hole transfer can occur between these positions resulting in semiconduction.

The vast majority of thermoelectric research at present is being concentrated on the intermetallic compounds. Perhaps the best known of these materials is lead telluride. As a basis for evaluation, some of the properties of this material are shown in Table I along with the properties of doped iron oxide and doped nickel oxide.

The thermoelectric properties described in this table are greater than those exhibited by the generator. This is due to a number of factors but most importantly denotes a decided improvement in these materials since the generator was completed.

Lead telluride can be machined with difficulty and is not easy to fabricate due to extreme brittleness and poor strength. The oxides can be fabricated by normal ceramic methods and are considerably stronger. Parts can be machined with diamond tools. Oxides may be operated at much higher tempera-

TABLE—COMPARISON BETWEEN Pb₄Te AND DOPED Fe₂O₃-NiO THERMEOLECTRIC GENERATOR MATERIALS

<table>
<thead>
<tr>
<th></th>
<th>Pb₄Te</th>
<th>Fe₂O₃</th>
<th>NiO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Machineability</td>
<td>Not advisable</td>
<td>Not advisable</td>
<td>Possible*</td>
</tr>
<tr>
<td>Operating temperature (T₀)</td>
<td>594 C°</td>
<td>1,300 C°</td>
<td>1,300 C°</td>
</tr>
<tr>
<td>Resistivity at 24°C</td>
<td>5 x 10⁻⁴ ohm cm</td>
<td>3.8 x 10⁻⁴ ohm cm</td>
<td>6 x 10⁻³ ohm cm</td>
</tr>
<tr>
<td></td>
<td>3 x 10⁻⁴ ohm cm</td>
<td>3 x 10⁻³ ohm cm</td>
<td>3 x 10⁻² ohm cm</td>
</tr>
<tr>
<td></td>
<td>4 x 10⁻⁴ ohm cm</td>
<td>5.6 x 10⁻⁴ ohm cm</td>
<td>7.2 x 10⁻³ ohm cm</td>
</tr>
<tr>
<td></td>
<td>3.8 x 10⁻⁴ ohm cm</td>
<td>5.2 g/cc</td>
<td>5.2 g/cc</td>
</tr>
<tr>
<td></td>
<td>3 x 10⁻³ ohm cm</td>
<td>6.3 g/cc</td>
<td>6.3 g/cc</td>
</tr>
<tr>
<td></td>
<td>3 x 10⁻² ohm cm</td>
<td>12 x 10⁻⁴°C</td>
<td>12 x 10⁻³°C</td>
</tr>
<tr>
<td></td>
<td>18 x 10⁻⁴°C</td>
<td>13 x 10⁻³°C</td>
<td>13 x 10⁻²°C</td>
</tr>
<tr>
<td></td>
<td>0.02 watt/cm°C /°C</td>
<td>0.02 watt/cm°C /°C</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>0.02 watt/cm°C /°C</td>
<td>0.02 watt/cm°C /°C</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>0.02 watt/cm°C /°C</td>
<td>0.02 watt/cm°C /°C</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>0.02 watt/cm°C /°C</td>
<td>0.02 watt/cm°C /°C</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>135 mv</td>
<td>228 mv</td>
<td>600 C</td>
</tr>
<tr>
<td>Design ΔT</td>
<td>556 C</td>
<td>600 C</td>
<td>600 C</td>
</tr>
<tr>
<td>Voltage/junction</td>
<td>125 mv</td>
<td>135 mv</td>
<td>228 mv</td>
</tr>
</tbody>
</table>

* Requires diamond tools
* Requires nonoxidizing atmosphere
* 10 C for Pb₄Te and 600 C for oxides
* 594 C for Pb₄Te and 1,200 C for oxides
differential and the thermoelectric specified in the table. the total resistance. The thermal conductivity of lead telluride at room temperature is lower, which should contribute to better thermal shock resistance. The thermal conductivity of doped nickel oxide has been measured at greater than 1,000 μV per degree C, and, if operated between room temperature and 1,300 C, would generate more than one and one-fourth volts per junction. This, however, would be at a relatively high resistance and little power would be obtained. Since the resistivity of these oxides decreases exponentially with temperature while the Seebeck voltage decreases linearly with decrease in the differential temperature, power output increases rapidly as the cold end temperature is raised, assuming a constant hot-end temperature.

To indicate the order of thermal efficiency presently available, a calculation can be made from recent test data using $T_h = 1,473$ K (hot-end temperature), $T_c = 873$ K (cold-end temperature), $a = 580$ μV per degree C (open circuit), $p_c = 0.017$ ohm cm, and $p_o = 0.076$ ohm cm. The latter two are average resistivities over operating range $T_h - T_c$.

Assuming that the doped nickel oxide has approximately the same thermal conductivity as the doped iron oxide (0.019 watt/cm sec), the zeta factor and thermal efficiencies can be calculated.

From Ioffe, the Z factor is

$$Z = \frac{a^2}{(\sqrt{K_{p_t}} + \sqrt{K_{p_o}})^2}$$

Where a is the open circuit Seebeck voltage, K is the thermal conductivity, and ρ the resistivity. Then

$$Z = \frac{(5.80 \times 10^{-4})^2}{(0.019 \times 0.017 + 0.019 \times 0.076)^2} = 1.07 \times 10^{-4} \text{ per degree C}$$

With this, calculate thermal efficiency N:

$$N = \frac{1}{2} \frac{\Delta T}{T_1 + \frac{Z}{2} - \frac{1}{2} \Delta T}$$

$$= \frac{1}{2} \frac{600}{1473 + \frac{2}{1.07 \times 10^{-4} - \frac{1}{2} (600)}} = 0.015$$

This indicates that 1.5 percent of the thermal energy introduced into the hot end of this material is converted into electrical energy. This figure can be compared with 7.85 percent reported for lead telluride.

It is not the purpose of the above comparison to imply that in the present state of knowledge, oxide thermoelectric materials can compete from a thermal efficiency standpoint with intermetallics. The purpose is to suggest that they may be useful in applications requiring greater voltage output, better oxidation resistance and superior physical properties.

It is also suggested that a further study of these materials as thermoelectrics and a better understanding of the mechanisms involved in conduction and thermoelectricity in oxides could lead to considerable improvement in the efficient generation of power in these materials.
Telemetry Diversity Combiner

USES BEAM DEFLECTION TECHNIQUE

Circuit responds to high-frequency fading and has wide bandwidth.

Control voltage goes to beam-deflection plates

Small size of the combiner enables flexibility in installation

By V. A. RATNER
Director, Systems Engineering,
Defense Electronics, Inc.,
Rockville, Md.

DIVERSITY RECEPTION techniques applied to radio telemetry place some unusual requirements on the art of diversity combining. Most conventional communications systems need only be responsive to relatively slow fading rates and be capable of handling relatively narrow bandwidths. A tumbling, spinning, missile or spacecraft traveling at several times the speed of sound however, may exhibit fades occurring at rates up to several kilocycles. In addition, high bit-rate rem and other types of telemetry modulation systems require base-band frequency responses from a few cps to over one megacycle. The problems are even further complicated by the fact that a single installation may be required to operate with several different bandwidths from day to day, and subsequent data storage and data processing equipment usually have limited dynamic ranges and require that the diversity system have a nearly constant level output.

Conventional noise sampling combiners have proven impractical because signals of differing bandwidth must be accommodated, and full utilization of bandwidth allows no unused spectrum from which to derive a sample of noise that is free of signal energy. Receiver age has therefore been selected as an analog of signal strength and hence signal-to-noise ratio, for use as a combiner control signal. Age in most telemetry receivers is an approximately logarithmic function of signal strength. A control amplifier may be designed with a transfer function to give the ratio-squared combining law, which has been proven optimum for post-detection combining. Post-detection combiners using age control have been designed using both the expander-compressor technique and the common cathode circuit configurations. Both types however, have suffered from limitations of over complexity, poor fading response, inadequate frequency response, critical balancing controls, and the presence of control voltage variations in the combined output.

A different approach to the problem has resulted in a new type of basic circuit using beam-deflection tubes as combiner elements. This configuration automatically results in ratio-squared combining, and suffers from none of the limitations of previous methods. The circuit of the complete two-channel combiner, Fig. 1, has only five active tubes and is packaged in a 31-in. standard relay rack space.

The circuit uses the RCA type 7360 beam-deflection tube. This tube, intended for use in single-sideband balanced-modulator applications, has the property of providing output currents that are functions of the product of two input signal voltages. It contains a single cathode, control grid, and screen grid, a pair of deflecting electrodes, and two plates arranged so that a voltage differential impressed across the deflection electrodes causes the beam current to be unequally divided between the plates and proportional to the deflecting potential difference.

The basic combiner circuit consists of two 7360 tubes with corresponding deflection electrodes tied together and opposite plates connected together sharing a common
load resistor. The video signals to be combined are fed directly to the grid of each tube individually while the control voltages are applied to the respective deflection electrodes, Fig. 1. Then as the control voltages vary, the total current in the common plate load R_c remains the same but the relative proportion contributed by each video signal changes. The combined output, taken as signal voltage across the common plate load, will not vary in amplitude as long as the two video inputs are of equal amplitude and in-phase. This is normally accomplished by adjusting the attenuators in the video input line and is critical for rejection of control signal variations. Thus, the variations in control voltage do not appear in the output signal.

The required linear control signal for application to the deflection electrodes is derived from the receiver age outputs. Standard telemetry receivers have age output voltages that are a nearly logarithmic representation of the r-f input levels, and hence signal-to-noise ratio. A direct-coupled differential amplifier is incorporated in the combiner. By applying the receiver age voltages (through variable attenuators) to each of the differential amplifier inputs, an exponential transfer function is attained, which establishes an approximately linear relationship between control signals. Use of the differential amplifier accomplishes one other important function—the maintaining a constant mean potential between the deflection electrodes and the cathode of the 7360 to preserve balance and prevent nonlinear operation due to distortion of the beam symmetry.

The circuit is superior to the common cathode combiner in both video frequency response and maximum combining rate. This is because a push-pull arrangement is not necessary to cancel control voltage variations in the combiner output. Video transformers or phase-splitters with their attendant time constants and balancing controls are not required.

Since the combiner requires that the video inputs as well as the age control voltages be closely balanced, both video and age metering provisions have been incorporated. Earlier combiner designs used individual meters in each channel and were difficult to adjust due to interaction between channels and variations in meter calibration. The metering circuit in the beam deflection combiner however, uses the unused pair of plates in a bridge type of circuit, Fig. 1. A single zero-center microammeter, Fig. 2, indicates the actual ratio of plate currents, which corresponds directly to the combining ratio. The meter is calibrated in db and gives a more meaningful indication of the combining operation than do individual channel meters. Positive adjustment of the beam deflection combiner with this type of metering may be accomplished within a few seconds, in contrast to the trial and error procedure required of conventional combiners.

The beam deflection combiner, for which a patent application has been filed, may also be incorporated into other communications systems for improved diversity reception.

FIG. 1—System consists of four major circuits. Two type 7360 beam deflection tubes in the combiner circuit are the heart of the device.

FIG. 2—Control panel illustrates operational simplicity. Built-in metering circuit provides for quick adjustment.
Combined Oscillator-Amplifier

How to design cascaded common-base and common-collector stages that can be transformed from an amplifier to an oscillator by changing impedance level of an R-C time constant

By R. C. CARTER, Texas Division, Collins Radio Co., Dallas, Texas

IN TRANSCEIVERS, if one circuit can generate a tone during transmission and selectively amplify that frequency while receiving, the circuit will have advantages over other circuits that may be used for the same application. Such a dual circuit operating at 170 cps has been developed.

One advantage is the smaller number of components in the dual circuit: four frequency determining elements, two transistors and two biasing resistors. Another advantage is that the only transistor parameters that gain and frequency stability depend upon are the grounded-base current gain, and the grounded-collector voltage gain. Both these parameters are stable. Also, practical design equations for the circuit are simple.

The circuit is transformed from a band-pass amplifier to an oscillator by a slight change in the impedance level of an R-C time constant. Using the generalized circuit of Fig. 1A a whole family of circuits can be described. The family includes various oscillators, Q multipliers, notch filters and band-pass, low-pass and high-pass amplifiers. The Butler oscillator may be considered as a member of this group.

Open-loop gain will be considered first by breaking the circuit at point X of Fig. 1A and redrawing as in Fig. 1B

\[i_2 = G_i i_1 = \alpha n i_1 \approx i_1 \]

(1)

where \(G_i \) is the current gain of a common-base stage. Voltage at the output of \(Q_1 \) is

\[e_4 = G_v e_3 \]

(2)

where \(G_v \) the voltage gain of a common collector stage, is

\[G_v = \frac{r_L}{r_e + r_v(1 - \alpha) + r_L} \approx 1 \]

(3)

if \(r_L >> r_e + r_v (1 - \alpha) \) voltage \(e_4 \) can be expressed as

\[e_4 = i_2 (Z_1 + R_{in}) \approx Z v i_2 \]

(4)

if it is assumed \(R_{in} << Z_1 \). Point B of Fig. 1B will eventually be returned to point A where \(R_{in} \) becomes the input impedance of \(Q_1 \). Since the input impedance is usually less than 50 ohms, Eq. 4 may be easily satisfied. At the input to \(Q_1 \)

\[e_3 = Z v i_4 \]

(5)

It is assumed \(i_{in} << i_b \). This will be true so long as

\[r_b + R_2 r_v + Z_1 \approx Z_2 \]

(6)

Combining Eq. 1, 2, 4 and 5

\[G_v = \frac{i_2}{i_1} = \frac{G_v Z_1 Z_3}{Z_5 Z_7} \approx \frac{Z_1}{Z_2} \]

(7)

where \(G_v \) is the open-loop current gain. From feedback theory, the relationship between closed-loop \((G_v) \) and open-loop \((G_v) \) gain (for positive feedback) is

\[G_v = G_v/(1 - G_v) \]

(8)

Combining Eq. 7 and 8 gives

\[G_v = \frac{1}{Z_1} \frac{Z_1}{Z_2} \approx \frac{1}{Z_2 - 1} \frac{Z_1}{Z_2 - 1} \]

(9)

Consider \(Z_1 \) a series \(R \) and \(C_1 \), and \(Z_2 \) a parallel \(R \) and \(C_2 \), thus

\[Z_1 = R_1 + \frac{1}{sC_1} = \frac{sR_2 C_1 + 1}{sC_1} = T_{V} + \frac{1}{sC_1} \]

(10)

\[Z_2 = \frac{R_3}{sC_2} = \frac{R_2}{sR_2 C_2 + 1} = T_{V} + \frac{1}{sC_2} \]

(11)

FIG. 1—Circuit (A) is redrawing (B) to provide basis for design equation derivation.
for Tone Transceivers

![Root-locus plot of loop gain (A). Circuit for band-pass amplifier and oscillator (B)](image)

where

\[T_1 = R_1 C_1 \quad \text{and} \quad s = j\omega. \]

Combining Eq. 9, 10 and 11

\[G_s = \frac{G_s R_s C_s}{(T_1 s + 1)(T_2 s + 1) - G_s R_s C_s}. \]

Equation 15 may be analyzed by the root-locus method if \(K \) is considered as a gain factor. Note, however, that \(K \) may be varied only by varying \(R_s \) or \(C_s \) (Eq. 16), this would also vary the time constant \(T_1 \) or \(T_2 \) which would be inconvenient. Time constants \(T_1 \) and \(T_2 \) may be made independent of \(K \) provided two, rather than one, elements are varied. If \(K \) is increased by increasing \(R_s \), \(T_1 \) may be maintained constant by decreasing \(C_s \) from \(T_1 T_2 s^2 + (T_1 + T_2 - K)s + 1 \)

where

\[K = G_p R_s C_1 \quad \text{and} \quad G_p = G_s. \]

The root locus of Eq. 15 may be determined as shown in Fig. 2A. The two poles and one zero of the closed-loop response are as shown. Poles of the closed-loop response approach the open-loop poles if \(K \) approaches zero and proceed along a certain locus to the zeros of the open-loop response as \(K \) approaches infinity. For more on Root Locus see W. R. Evans, Graphical Analysis of Control Systems, Trans AIEE, 67, p. 547. Also W. R. Evans “Control System Dynamics” and J. G. Truxal, “Automatic Feedback Control System Synthesis,” both McGraw-Hill Book Co., N. Y.

As \(K \) increases from zero the poles of the closed-loop response break away from the real axis between \(-1/T_1\) and \(-1/T_2\) and eventually reach the imaginary axis. At this point the circuit has enough gain to just break into oscillation.

The value of \(K \) at this point may be determined by observing that \(K \) must have a value that renders the denominator of Eq. 15 to be purely imaginary. The coefficient of the \(s \) term must be equal to zero. Thus the requirements for oscillation is

\[\omega_n = \frac{1}{\sqrt{T_1 T_2}} \]

It is convenient to let

\[T_1 = T_2 = T_v \]

Then

\[\omega_n = \frac{1}{T_v} \]

Combining Eq. 12, 13, 16 and 17

\[R_s G_p/2 = R_1 \]

\[C_s G_p/2 = C_2 \]

The relations in Eq. 18, 19, 20, 21 and 22 determine the parameters for designing an oscillator. For a practical oscillator, however, \(R_3 \) should be slightly smaller than \(R_1 G_s/2 \) so the circuit is definitely unstable. Too great a decrease in \(R_3 \) results in waveform distortion.

For a band-pass amplifier, \(K \) is reduced to make
circuit stable. An equation that expresses the relationship of \(Q \) and the circuit parameters may be developed by comparing the denominator of Eq. 15 to the characteristic equation for a series RLC circuit

\[
LC\dot{x}^2 + R\dot{x} + 1 = 0
\]
(23)

Since

\[
Q = \frac{\omega_c}{R} = \frac{1}{R_w C}
\]
(24)

Equation 23 may be rewritten

\[
\frac{T^2}{\omega_c^2} \omega^2 + \frac{T}{Q} \omega + 1 = 0
\]
(25)

where \(1/\sqrt{LC} = \omega_c = 1/T \), which is the resonant frequency in radians per second.

Comparing the denominator of Eq. 15 to Eq. 25

\[
T_1 + T_2 - K = T_1 Q
\]
(26)

and

\[
T_1 T_2 = \frac{T^2}{Q} \leq T^2, \text{ if } Q > 5
\]
(27)

If \(T_1 = T_2 = T_c \), Eq. 26 becomes

\[
Q = 1/(2 - G_p R_2/R_1)
\]
(28)

A typical value for \(G_p \) would be 0.98. For a desired \(Q \) of 20, \(R_2 \) would be \(R_2 = 1.99 R_1 \).

For an amplifier, the gain must be related to frequency and circuit parameters. One way of using Fig. 2B as an amplifier is to inject a constant-current source input to the emitter of \(Q \), and considering the emitter voltage of \(Q \), as the output.

Under these conditions it is desired to determine the transresistance \(R_{in} \) as a function of frequency

\[
R_{in} = \frac{Z_i}{G_p Z_e - 1}
\]
(29)

Combining Eq. 29 and 7

\[
R_{in} = \frac{1}{G_p} \frac{Z_i}{Z_e - 1}
\]
(30)

where \(G_p = G_c G_e \).

Comparing Eq. 30 to 9

\[
R_{in} = G_c Z_1
\]

Thus where \(Z_1 = (T_c + 1)/T_c C_1 \) and \(Z_e = R_2/(T_2 + 1) \)

\[
R_{in} = G_p R_2 \frac{T_2 + 1}{T_2 T_c \omega^2 + (T_2 + 1)\omega + 1}
\]
(31)

Using Eq. 26 and 27 and setting \(T_1 = T_2 = T_c \)

\[
R_{in} \leq \frac{T_2 \omega + T_2}{T_2 T_c \omega^2 + (T_2 + 1)\omega + 1} \text{ (for } Q > 5)\]

(32)

Setting \(s = j\omega \) and taking the absolute value

\[
|R_{in}(\omega)| = G_p R_2 \frac{1 + T_2 \omega^2}{\sqrt{(1 - T_2 \omega^2)^2 + (T_2 \omega)^2}}
\]
(33)

Equation 33 is shown in Fig. 3 for \(Q = \infty \) and 10. Note that the value of \(Q \) virtually has no effect upon the response at frequencies more than about 10 percent away from \(1/T_c \).

![Figure 3](image)

FIG. 3—Effect of \(Q \) on transresistance

Setting \(s = j/T_c \) in Eq. 32

\[
R_{in} = G_p R_2 (1 - j)
\]
(34)

and the absolute value

\[
|R_{in}| = \sqrt{2 G_p R_2 Q}
\]
(35)

Equations 34 and 35 give the gain at the point of maximum response. At \(\omega = 1/T_c \), the phase shift is approximately \(-45\) degrees and the gain is a direct function of \(Q \). For a typical oscillator application: assume it is desired to design an oscillator at resonant frequency of 100 cps and the power supplies are \(+ \) and \(-15\) volts. Refer to Fig. 2B. To obtain maximum output before limiting, the quiescent operating collector voltage of \(Q \), should be \(-7.5\) volts. A good operating current for \(Q \), is 1 milliampere, therefore, \(R_1 = 7.5\) volts/1 milliampere = 7.5 kilohms.

Selecting \(R_1 \) fixes the values of \(R_2 \), \(C_1 \), and \(C_2 \). Using Eq. 18, 19, 21 and 22: \(C_1 = 0.212 \mu\text{F}, R_2 = 3.674 \text{ kilohms, } C_2 = 0.424 \mu\text{F}, \text{ assuming } G_c = 0.98.\)

The values of \(R_2 \) and \(R_1 \) (Fig. 2B) are determined only by operating-point considerations. Thus, if both \(Q \) and \(Q \) are to be operated at one milliampere, then \(R_2 = 15,000 \text{ ohms and } R_1 = 22,500 \text{ ohms.}\)

It is desirable to adjust the values of the capacitors to RETMA values: \(C_1 \) could be 0.2 \mu\text{F} and \(C_2 \) could be 0.39 \mu\text{F}. It is not absolutely necessary that \(T_2 \) be exactly equal to \(T_c \), but for oscillation \(K \) must be equal to or slightly greater than \(T_1 + T_2 \).

From Eq. 21 and 22

\[
R_1 = \frac{R_2(G_p - C_2/C_1)}{G_p}
\]
(36)

which may be used to determine the relation between resistances when capacitors are arbitrarily chosen.

The frequency of oscillation will be

\[
\omega_0 = \frac{1}{T_c \sqrt{(G_p C_1/C_2 - 1)^2 + (G_p C_1/C_2 - 1)^2)}}
\]
(37)

For a typical bandpass amplifier application: assume it is desired to design a bandpass amplifier with a center frequency of 100 cps and a \(Q \) of 20. It is desired to have at least a 5-v peak-to-peak output voltage swing from a signal source to 100 \mu\text{amps p-p} at
center frequency. Power supplies available are + and -15 volts.

From Eq. 35, \[R_2 = \frac{|R_a|}{\sqrt{2G_rQ}} = \frac{5 \times 10^{-4}}{(\sqrt{2}(0.98)(20))} = 3.54K \]

This value of \(R \) will give the required gain. To put the collector of \(Q \), at 7.5 volts, which allows symmetrical clipping on strong signals, the current required would be

\[I = \frac{5V}{3.54K} = 1.42 \text{ mA} \]

This is a good operating point for \(Q \), however, if more gain is not objectionable, \(R \) may be 7.5 K as in the last example.

Resistance \(R \), is then given by Eq. 28

\[R_1 = \frac{G_pR_2}{2 - \frac{1}{Q}} = 7.77K \]

and by Eq. 20, 12 and 13, \(C_1 = 0.422 \mu F \) and \(C_2 = 0.212 \mu F \).

For arbitrarily chosen capacitors and a given \(Q \) then relation between resistors is

\[R_1 = R_2 \left[\frac{G_pC_2}{C_1} \right] + \frac{1}{2Q} - 1 + \frac{1}{Q} \left(\frac{G_pC_1}{C_2} \right)^{1/2} \]

(38)

However, in the practical case, \(C_1 \) and \(C_2 \) are chosen to the closest RETMA values as determined by Eq. 20, 12 and 22 and \(R \), and/or \(R \), are trimmed to give the required \(Q \). To maintain the same center frequency while varying \(Q \), resistors \(R \) and \(R \), must be varied in the opposite directions according to

\[\Delta R_2 = -2 \Delta R_1 \]

(30)

To maintain a constant \(Q \) while varying center frequency, resistors \(R \) and \(R \), must be increased or decreased together according to

\[\Delta R_2 = -2 \Delta R_1 \]

(40)

Resistors \(R_1 \) and \(R_2 \) in Fig. 2B are determined as before and are 15 K and 22.5 K respectively.

Figure 4 shows a typical application of the band-pass case where the center frequency and \(Q \) are adjusted by separate and independent controls. Center frequency is nominally 0.66 cps and \(Q \) is nominally 20. Resistors \(R \) and \(R \), are ganged so that increasing \(R \), decreases \(R \). This is the \(Q \) control (and controls gain). Resistors \(R \) and \(R \), are ganged so that they vary together to control frequency.

The input is introduced to the base of \(Q \), rather than the emitter. This raises the input impedance and allows easier driving. No modification of the design equations is necessary since in Eq. 4 it is assumed that \(Z \), >> \(R \), where \(R \), is the impedance looking into the emitter of \(Q \). This is still true in spite of the added base resistance.

The output may be taken from either the emitter or collector of \(Q \). Although the impedance level is low at the \(Q \), emitter, no appreciable power may be taken off at this point without adversely affecting the circuit characteristics. If the load is constant, the circuit may be readjusted after adding the load. It is usually best to couple into the circuit with an emitter follower at the \(Q \), emitter. If the output is taken from across a resistor in the collector circuit of \(Q \), no adverse loading effects will be noted, but this reduces the dynamic range for a given supply voltage.

Figure 5 shows how \(Q \) and center frequency vary with temperature for an amplifier having a center frequency at 170. No temperature compensation techniques were used other than selecting stable components. In this case 2N338 silicon transistors, deposited carbon resistors, and polystyrene dielectric capacitors were used.

It can be shown that the percentage change in the transresistance will be 2Q times the percentage change in \(G_p \). Although \(G_p \), is temperature stable, it is best not to try for too high a \(Q \) in one circuit. A nominal \(Q \) of 20 will give stable gain over a large temperature range. Larger values of \(Q \) may be used if the temperature range is limited or temperature compensation is used.
Variation of mechanical configuration of field-effect transistor produces a device with various negative-resistance characteristics

By TATSUYA NIIMI
TOSHIYA HAYASHI
Electrical Communications Laboratory, Tokyo, Japan
Nagoya Institute of Technology, Nagoya, Japan

Field-effect transistor resembles a conventional alloy-junction transistor

Field-Effect Transistor as a FIELD EFFECT transistors have a negative resistance characteristic at their gate. In recent work on various geometrical configurations of field-effect transistors, a new form was developed, also with a negative resistance characteristic. Results of efforts to improve this characteristic have been disclosed.

Configuration of this field-effect transistor, Fig. 1, is similar to an alloy-junction transistor with a ring base electrode. The base material is n-type germanium, but the base width is much narrower than those of conventional transistors. Two electrodes, labeled gate and drain, Fig. 1A form the p-n junction with the base material. The third electrode, source, makes resistive contact with the base.

To operate the device successfully, the distance \(W \) between the drain and gate must be larger than the channel width \(W_1 \). Channel width \(W \), corresponds to the base width of a conventional alloy transistor.

Figure 1B shows a typical operating schematic. The drain is connected to ground, and the other two electrodes are biased negatively. Two batteries supply drain voltage \(V_D \) and gate voltage \(V_G \). If gate voltage \(V_G \) is reduced to zero, two p-n junctions at the drain and the gate become biased in the forward direction and drain current \(I_D \) flows from the drain to the source through the channel. Similarly, gate current \(I_G \) flows from the gate to the source.

Under operating conditions, however, gate voltage \(V_G \) is not zero, so the p-n junction at the gate is biased in the reverse direction. Current \(I_G \), instead of \(I_D \), Fig. 1B, will flow in the gate circuit. Increasing voltage \(V_G \) makes the space charge layer widen into the deeper interior of the channel. This increases the resistance of the channel region. Since an increase in the channel resistance results in a larger voltage drop at the channel, an increase in \(V_G \) will reduce the forward bias voltage of the drain p-n junction. Currents \(I_D \) and \(I_G \) also decrease. When gate voltage \(V_G \) reaches a pinch-off voltage \(V_p \), drain current \(I_D \) and gate current \(I_G \) become zero. Therefore, a voltage-controlled negative-resistance characteristic appears at the gate circuit.

This field-effect transistor is not a unipolar transistor since minority carriers play an active role in its operation. Frequency characteristics can be considered the same as a conventional transistor.

The most important parameters are the pinch-off voltage \(V_p \), maximum gate current \(I_G \) (max) and cut-off frequency \(f_c \). Pinch-off voltage determines the voltage operating region of the device. It can be calculated by applying the resistivity of the base material and the channel width \(W \),

\[
V_p = \frac{q (N_s - N_a)}{2k \epsilon} \frac{W_1}{r_1^2} (1)
\]

where \(k \epsilon \) is the dielectric constant of germanium, \(q \) is the charge, \(N_s \) the donor density and \(N_a \) the acceptor density in the base material.

Equation 1 becomes Eq. 2 when type n germanium with a resistivity of 10 ohms cm at room temperature is used for the base material and the width \(W \) of the channel is

| SPECIFICATIONS OF TYPICAL FIELD-EFFECT TRANSISTOR |
|---|---|
| Pinch-off voltage | 5 V |
| Width \(W_1 \) | 0.1 mm |
| Width \(W_2 \) | 0.007 mm |
| Width \(W_3 \) | 0.04 mm |
| Radius \(r_1 \) | 0.1 mm |
| Radius \(r_2 \) | 0.15 mm |
| Radius \(r_3 \) | 0.4 mm |

Base material is type n germanium with resistivity of 10 ohms per cm at room temperature.
Negative-Resistance Device

given in microns

\[V_s = 0.098 W_n \quad (2) \]

Assume a channel width of 7 microns. Then voltage \(V_s \) will be 5 v. Best performance of the device was obtained using the type \(n \) germanium as base material. The requirements of good electrical characteristics with sufficient mechanical strength dictated the choice of this base material. Also to successfully form a channel using electrolytic etching, a type \(n \) germanium material is necessary.

Cutoff frequency \(f_c \) is about the same or slightly lower than that of an alloy transistor. Maximum gate current is about the same order as the saturation current of an alloy transistor operating with a grounded emitter. The accompanying table lists the physical parameters of this example. Figure 2 illustrates the static characteristic of a transistor with these dimensions at room temperature. From the curves, pinch-off voltage is 5 v for various values of drain voltage. Maximum gate current never rises above 4 ma.

In the fabrication of a field-effect transistor with negative resistance characteristics, the alloying processes are substantially the same as for conventional transistors except that alloying temperatures are about 600 C. This is necessary to obtain a wide recrystallized region \(W_n \), Fig. 1A, to assure adequate mechanical strength.

Electrolytic etching equipment, Fig. 3, etches the channel to the proper width. Electrolyte is 10 percent potassium hydroxide. The cathode is a platinum plate and the anode is the germanium wafer being etched. Variable resistance \(R_g \) adjusts drain current which is read by ammeter \(M_A \). Gate voltage is set by variable resistance \(R_v \). Ammeter \(M_A \), reads electrolytic current.

In etching, a gate voltage equal to the desired pinch-off voltage is applied. The drain current decreases during etching. The gate voltage must be held constant. When the drain current reaches zero, the channel for the pinch-off voltage has been formed.

Pinch-off voltage can be set at will, and the on-off ratio of the gate current is 1,000 or more.

REFERENCES

Practical high-speed memories can be achieved using cylindrical elements that make effective use of thin magnetic films and permit memory organization that reduces crosstalk. Large outputs are provided that reduce other system requirements and semiautomatic fabrication can be used.

By D. A. MEIER
Electronics Div.,
The National Cash Register Co.,
Hawthorne, Calif.

HIGH-SPEED MEMORIES have been proved practical using cylindrical thin magnetic film elements. The rods permit effective use of thin magnetic film properties and a three-dimensional memory organization that limits crosstalk. The memory elements provide outputs that reduce requirements for noise cancellation and gain-bandwidth of sense amplifiers. The small size of the rod elements limits line inductances and propagation delays in high-speed memory systems.

Higher operating speed is a continuing goal of many designers of digital systems, and component designers are striving to provide faster memory elements to satisfy this desire. New elements having high speeds are announced almost every week, many of which look promising. However, these elements are often described only by switching speeds and have not been thoroughly analyzed to determine their suitability for use in high-speed memories. A memory element capable of 1-nsec switching may not be practical for use in computers.

To evaluate a memory element realistically for its ultimate application, many factors must be considered. It should be reproducible and capable of providing long life. The environment required for its operation must be considered, and the device must be compatible with other components and practical for system applications. Physical and electrical characteristics of the element as well as its cost must be considered, and it must comply with requirements of the firm using it. Finally, it must do the job better than any other element.

If a memory element does not fulfill even one of these requirements, it sometimes must be rejected. However, even if all these requirements are satisfied, it cannot be assumed that a new memory element will function adequately when used in large numbers in systems. Although no attempt will be made to rate the magnetic rod element in accordance with these criteria, presentation of these considerations indicates some of the tests to which a new element may be subjected before acceptance.

The rod element comprises a cylindrical thin magnetic film electrodedeposited over a conductive substrate, as shown in Fig. 1A. Silvered-glass rod and a BeCu wire have proved satisfactory.

The magnetic material is 97 percent Fe and 3 percent Ni and thickness is about 4,000 Angstroms. The hysteresis loop is square, which is required in remnant flux storage applications to provide good signal-to-noise ratio and a threshold for which no switching occurs. The material is also relatively insensitive to variations in ambient temperature, as shown in Fig. 2.

The cylindrical shape of the element reduces some of the problems of thin magnetic films. It permits tight coupling between windings and magnetic material, producing typically 30 to 40 mv per turn, and it facilitates multiple-turn windings that provide large uniform switching fields with reasonable currents. The small diameter solenoids also limit winding inductances.

The rod is a continuous magnetic medium, and a single bit is designated by the location of the solenoid...
Coaxial winding is shown enlarged on rod of partly assembled memory module, while word windings, like the one also enlarged, are prefabricated on solenoid and rods inserted later.

High-Speed Memory

Winding along its length. Solenoid length and the space between adjacent solenoids determine linear bit density of the rod, which should be as high as possible to limit propagation delays. A 10-mil diameter rod that stores 10 bits per linear inch is typical. Each bit usually has switching characteristics like those in Fig. 3, where \(t_s \) is switching time, \(\mu V \) is undisturbed one, \(dV \), is disturbed one, and \(dV \), is disturbed zero output voltage.

The axial-switching mode results in an open flux path element in which the return path for the magnetic flux leaves the magnetic film at one end of the solenoid and returns through the air to the other end. With this arrangement, the element is sensitive to stray magnetic fields, and the demagnetizing field produced by the discontinuity limits minimum physical length. Both effects can be limited by using a magnetic material for the mem-

FIG. 1—Rod structure with solenoid windings is shown at (A), shared sense-digit winding bridge at (B) and memory organization at (C).
ory elements having higher coercivity. The large coercive force of the rod material (15 oersteds) makes special shielding from stray magnetic fields unnecessary and contributes to the nanosecond switching time because of the large excessive fields that can be used. Although the large coercivity requires a large switching field, it can be provided by the small multiple-turn solenoids with reasonable currents.

In a tightly coupled memory module, crosstalk, noise and recovery transients can arise from many sources. Capacitive coupling must be uniform and balanced, and inductive coupling must be limited. Machine winding techniques have been developed that provide sufficiently uniform windings, and the rod element facilitates a three-dimensional memory organization with orthogonal winding that minimizes crosstalk. Typical packing density of present rod modules is 1,000 bits per cubic inch, and an increase to 4,000 bits per cubic inch is planned for the near future. A two-winding word-organized memory is shown in Fig. 1B and C, and a memory module ready for assembly is shown photographically. A shared sense-digit winding is used in a bridge arrangement that has proved effective in high-speed operation. The word windings are prefabricated on solenoid planes and the rods inserted later. Both coaxial and solenoid plane windings are machine wound.

Significance of the rod element is its use in destructive readout (DRO), word-organized memories with cycle rates of 1 to 10 Mc. (Cycle rate includes word-addressing time and read-restore or clear-write time.) In any memory, economics requires that many bits share sense and digit circuits. However, fewer bits can share circuits as cycle rate increases, more because of propagation and recovery effects than switching time of individual elements. This limit to sharing is generally true of any high-speed DRO memory. Bit-sharing capability at different cycle rates is shown in Fig. 4A. For a balanced 1,000-bit sense winding, propagation time can be reduced to 0.04 nsec per bit for a delay time of about 20 nsec.

The first DRO word-organized memory using the magnetic rod and shown in the photograph has been operating continuously for more than two years with no degradation in operating characteristics noted. It has 64 words of 16 bits per word and a design cycle rate of 1 Mc, although it was bench-tested at a 2-Mc rate. Required word driver current is 260 ma, digit current is 260 ma, and read d-c bias is 130 ma. Sense-winding output voltage produced across 50 ohms by a word-current with a 0.1 \mu s rise time is 125 mv.

Maximum potential speed of thin-film rod DRO memories using the many new and more promising high-speed semiconductor components now available is being studied. Present design effort centers around a 128-word, 8-bit-per-word memory with a 5-Mc cycle rate. Using a rod with slightly lower coercivity has reduced switching current requirements sufficiently to make practical a 5-Mc rate using single-transistor drivers.

The time between the voltage change on a selected word line and sense-amplifier output is about 50 nsec, as shown in Fig. 4B. This time includes driver current rise time, time for the rod to switch to the same amplifier voltage threshold, and propagation and delay time of the sense line and sense amplifier. Sense amplifier gain-bandwidth is about 3 \times 10^6 cycles.

This work demonstrates that the rod element is practical for high-speed memories. Driver-current requirements are reduced, making megacycle repetition rates practical for semiconductor components. In addition, the rod element permits continuous fabrication and testing and the use of automated windings.

The author acknowledges the assistance of A. J. Kolk, I. Richman, R. Clinehens, E. Ostroot, R. Winfield, L. Douglas and the many others who contributed to the program.

REFERENCES

CALCULATING

Potentiometer Errors

Nomographs speed calculation of potentiometer errors caused by resistance loading and by contact and equivalent-noise resistance of wiper circuit

By HENRY S. ZABLOCKI
Markite Corp., N. Y., N. Y.

POTENTIOMETER requirements usually dictate linearity, noise and other specifications. Sometimes overlooked are a number of additional potentiometer errors that can result from the installation itself. These errors include general mechanical errors resulting from mounting and coupling, that is, angular displacement and misalignment, and electrical errors that occur when a finite load impedance is present in the wiper circuit.

The presence of a finite impedance in the wiper circuit of any potentiometer, linear or nonlinear, influences the output voltage so that it differs from its no-load value. Consider the total error to consist of loading error, fixed contact resistance error and equivalent noise resistance error.

Loading error is due to the internal resistance of the potentiometer. The equivalent-Thévenin-theorem internal resistance is the resistance (excluding contact resistance) between the potentiometer wiper and ground or reference point, with all battery supply points shorted. The internal resistance and resistance in the wiper circuit form a voltage divider that causes the output voltage to be less than the open-circuit voltage at the wiper point. The loading error varies from point to point.

\[
D_L = \frac{S^2(1 - S)}{L + S(1 - S)}
\]

where \(D_L\) = loading error (expressed as voltage ratio), \(S\) = wiper position in fractional resistance at the wiper point, and

FIG. 1—Maximum possible loading error, plotted for various ratios of load-to-potentiometer resistances
$L = \text{the ratio of load resistance to potentiometer track resistance (load ratio).}$

The maximum loading error occurs at approximately 67 percent of the total resistance (66.7 for $L \rightarrow \infty$; 68.9 percent for $L = 1$.) Figure 1 presents this maximum error effect as a function of the load ratio (L). The loading error can be compensated for during manufacture of the potentiometer by tailoring the resistance element to take into account the droop in output caused by load resistance.

The presence of actual or apparent contact resistance in the wiper circuit results in a voltage dividing action between it and the load. Thus, if a potentiometer is compensated for loading error only, an error could still occur because of voltage drop in the contact resistance. This error is a fixed percentage of the output voltage and can be compensated for by adjustment of system gain.

A wiper circuit also has an equivalent resistance that varies with wiper position. This equivalent noise resistance also forms a voltage divider with the load resistance, and causes the output voltage to differ from the ideal. The magnitude of this error is also determined from Fig. 2

$$D_N = \frac{N R_c}{R_c + R_L}$$

where $D_N = \text{error in voltage ratio due to equivalent noise resistance}$ and $R_c = \text{noise resistance}$. With conductive plastic potentiometers, repeatable noise caused by definite variations in apparent contact resistance can be compensated during manufacture.

Consider a potentiometer with these parameters: track resistance is 10,000 ohms; contact resistance is 200 ohms; equivalent noise resistance is 100 ohms; and load resistance R_L is 50,000 ohms. Thus, $L = 50,000/10,000 = 5$.

From Fig. 1, maximum loading error is 2.9 percent of full scale. This occurs at about 67 percent of full output voltage.

In Fig. 2 the 50,000-ohm load resistance and the 200-ohm contact resistance lines intersect at a full-scale error of 0.4 percent. Therefore, the contact resistance error at the maximum loading error point is $0.67 \times 0.97 \times 0.4 \text{ percent} = 0.26 \text{ percent}$.

In Fig. 2, the 50,000-ohm load resistance and the 100-ohm contact resistance lines intersect at a full-scale error of 0.2 percent. Therefore, the equivalent noise resistance error at maximum loading error point is $0.67 \times 0.2 \text{ percent} \times 0.97 = 0.13 \text{ percent}$.

Thus, the total error at the 67 percent point that is caused by wiper circuit impedance is (in percent):

$$2.9 + 0.26 + 0.13 = 3.2$$

Note that this analysis must be applied to each section of the resistance network in a potentiometer that generates non-monotonic functions.
New NATVAR Special-Purpose INSULATIONS

<table>
<thead>
<tr>
<th>APPLICATIONS</th>
<th>ACRYLIGLAS**</th>
<th>ISOTERAGLAS**</th>
<th>EPOXY COATED GLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operating Temperature</td>
<td>130°</td>
<td>155°</td>
<td>155°</td>
</tr>
<tr>
<td>Base Fabric</td>
<td>Straight Cut Fiberglas®</td>
<td>Dacron Warp Glass Filler</td>
<td>Straight Cut Fiberglas®</td>
</tr>
<tr>
<td>Coating</td>
<td>Fully Cured Acrylic Resin</td>
<td>Elastomeric Isocyanate Type for Maximum Conformability</td>
<td>Fully Cured Epoxy Resin</td>
</tr>
<tr>
<td>Applications</td>
<td>Suitable for slot liners, phase separators and layer insulation in all acrylic systems. Combines toughness and high moisture resistance with low extractable content.</td>
<td>For motors, generators, heavy duty relays and other types of equipment requiring high electrical protection and toughness under stretch. Stays flexible under heat.</td>
<td>For ground, layer and barrier insulation in dry type transformers, slot, phase and field insulation in motors and generators where high dielectric strength, toughness and compatibility is required.</td>
</tr>
<tr>
<td>Form</td>
<td>Sheets, Rolls, Tapes .005" to .010" and .012"</td>
<td>Sheets, Rolls, Tapes .008" and .010"</td>
<td>Sheets, Rolls, Tapes .003" to .007" and .010"</td>
</tr>
</tbody>
</table>

These three new Natvar insulating materials will solve production problems for many manufacturers of electrical and electronic equipment. They were developed to take advantage of the latest technological advances in the manufacture of synthetic varnishes and resins. As a result, finished products can be improved, and, in many cases, with significant savings. Natvar quality is maintained through systematic and rigorous quality control, to assure uniform excellence. And the Natvar research program means that new materials are constantly being tested and evaluated and utilized to give you improved insulations.

Natvar flexible insulations are available from your distributor's stocks or our own. Samples on request.
Mallory tantalum foil capacitors..even

Mallory tantalum foil capacitors consistently exceed capacitance stability, leakage and power factor requirements of MIL-C-3965B. Choose from plain or etched foil types, polarized or non-polarized, in hundreds of ratings, and with or without a Mylar* insulating sleeve.

Widest selection available anywhere
Unmatched for variety and completeness, the Mallory line of tantalum capacitors includes wet slug, solid electrolyte, miniature, microminiature, and high temperature (to 200°C.) types. For our latest literature, or to arrange a consultation, write Mallory Capacitor Company, Indianapolis 6, Indiana.

<table>
<thead>
<tr>
<th>Type</th>
<th>Mallory Designation</th>
<th>Temp. Range</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAIN FOIL</td>
<td>Type TAP</td>
<td>-55°C to 85°C</td>
<td>CL24, CL25</td>
</tr>
<tr>
<td>Type TAG</td>
<td>-55°C to 125°C</td>
<td>CL20, CL21,</td>
<td>CL22, CL23</td>
</tr>
<tr>
<td>ETCHED FOIL</td>
<td>Type TBF</td>
<td>-55°C to 85°C</td>
<td>CL24, CL25</td>
</tr>
<tr>
<td>Type TBG</td>
<td>-55°C to 125°C</td>
<td>CL20, CL21,</td>
<td>CL22, CL23</td>
</tr>
</tbody>
</table>

Supplied in all military case styles and all ratings.

Du Pont trademark
better than MIL specs!

<table>
<thead>
<tr>
<th>MIL-C-3965B Limits</th>
<th>Typical Test Values: Mallory Type TAF (160 mfd 15 VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 2000 hour life test at 85°C:</td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td>48 µa</td>
</tr>
<tr>
<td>Change in Capacity</td>
<td>±25%</td>
</tr>
<tr>
<td>Power Factor</td>
<td>19.5%</td>
</tr>
<tr>
<td>25°C:</td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td>48 µa</td>
</tr>
<tr>
<td>Power Factor</td>
<td>19%</td>
</tr>
<tr>
<td>−55°C:</td>
<td></td>
</tr>
<tr>
<td>Change in Capacity</td>
<td>−35%</td>
</tr>
<tr>
<td>Impedance</td>
<td>14.0 ohms</td>
</tr>
</tbody>
</table>

Delivered from stock at factory prices by these distributors:

- Baltimore, Md. Radio Electric Service
- Binghamton, N.Y. Federal Electronics
- Boston, Mass. Cramer Electronics
- DeMambro Radio Supply Co.
- Lafayette Radio
- Bridgeport, Conn. Westconn Electronics
- Buffalo, N.Y. Wehi Electronics
- Chicago, Ill. Allied Electronics Corp.
- Newark Electronics Corp.
- Cincinnati, Ohio United Radio
- Cleveland, Ohio Pioneer Electronics
- Dallas, Texas Engineering Supply Co.
- Dayton, Ohio Allied Supply Co.
- Denver, Colo. Denver Electronics
- Houston, Texas Harrison Equipment Co., Inc.
- Lenert Company
- Indianapolis, Ind. Graham Electronics
- Los Angeles, Calif. Allied Radio of California
- California Electronics
- Kierulf Electronics, Inc.
- Radio Product Sales
- Minneapolis, Minn. Midwest Radio
- Monrovia, Calif. Lynch Electronics
- Montreal, Que. Berulif Electronics
- Canadian Electrical Supply Co.
- Mountainside, N.J. Federated Purchaser, Inc.
- Newark, N.J. Lafayette Radio
- New York, N.Y. Harrison Radio Corp.
- Harvey Radio Co., Inc.
- Lafayette Radio
- Milo Electronics
- Terminal Hudson Electronics
- Oakland, Calif. Elmar Electronics, Inc.
- Orlando, Fla. East Coast Electronics
- Ottawa, Ont. Weckid Radio-TV Lab.
- Palo Alto, Calif. Zack Electronics
- Perth Amboy, N.J. Atlas Electronics
- Pittsburgh, Pa. Radio Parts Co.
- Salt Lake City, Utah Kimball Electronics
- St. Louis, Mo. Olive Electronics
- Seattle, Wash. F. B. Connelly Co.
- Tampa, Florida Thurow Electronics, Inc.
- Toronto, Ont. Alpha Arcon Radio Co.
- Electro Sonic Supply
- Wholesale Radio & Electronics
- Tulsa, Okla. Engineering Supply Co.
- Washington, D.C. Capitol Radio Wholesalers
- Electronic Industrial Sales
- Westchester, N.Y. Westchester Electronic Supply Co., Inc.
- Winston-Salem, N.C. Dalton-Hedge Inc.

February 2, 1962
Millimeter Waves Are Generated With Ferrites

Harmonic generation using ferromagnetic resonance has produced 60 watts output at 70 Ge and comparable output is expected at 140 Ge. Carefully engineered apparatus and growth of a low-loss single crystal with planar anisotropy promise further improvements. The work was done at the Defense Research Telecommunications Establishment, Electronics Laboratory, Ottawa, and described in a paper by G. W. Williams and A. W. Smith at the Canadian Electronics Conference.

A free electron in a magnet field precesses about the direction of the field at a frequency equal to the product of the field and the ratio of magnetic moment to angular momentum. This ratio is 2.8 Mc per oersted so resonant frequency is in the X band with a 3,600-oersted field. Resonance can be driven by a microwave field circularly polarized in a plane perpendicular to the d-c field. Individual electron spins in the ferromagnet in Fig. 1 are aligned by exchange interaction, producing domains of magnetization. An external field simply aligns the domains. The sample can be represented by a magnetization vector that is the sum of the spins, with resonance determined by the whole sample.

If the sample is driven by a circularly polarized magnetic field, the vector precesses about the magnetic field direction. Resonant frequency is determined by the internal magnetic field and the angle by sample loss (line width). With the linearly polarized field in Fig. 2, the vector relaxes toward the d-c field direction, and the path of the vector on the sphere containing it becomes an ellipse instead of a circle.

A second harmonic in the path provides second harmonic power with amplitude proportional to the square of driving field amplitude. In the limiting case of completely damped motion, the vector is just driven in an arc. The second harmonic component is maximum but most input power is consumed in sample loss and conversion efficiency is low.

Sample shape also causes the magnetization vector to deviate from a circular path. In a disk magnetized in the plane, precessing the magnetization out of the plane generates an internal demagnetizing field that opposes vector motion, forcing it into an elliptic path. This approach promises good conversion efficiency since it does not depend on sample loss but limits sample volume because the disk must be thin.

Most ferrites have a cubic structure with an anisotropy field below 50 gauss, but hexagonal ferrites may have fields of tens of kilogauss. If the anisotropy coefficient is positive, the crystal has an easy axis of magnetization. By applying an external field at an angle to the axis, the magnetization has an equilibrium position between the two directions that can enhance harmonic generation as in a thin disk. If the anisotropy constant is negative, the crystal has an easy plane of magnetization. Applying the field in this plane confines the vector to the plane, producing a large second harmonic.

With either type of anisotropy, low loss materials can be used and volume is not limited. Also with high anisotropy materials, the field is added to the internal field resulting from the external applied field. Thus requirements on the magnet at high frequencies are reduced.

The waveguide test section is a tapered transition from input to harmonic frequency guide. The out-
what every engineer knows about constant-current power supplies... How do you check the peak inverse voltage rating of a solid state junction? the breakdown voltage of a reference diode at a specified current? the dynamic impedance of a reference diode? and the many other parameters that are so easily checked with constant-current power supplies?

It's an easy matter to convert some voltage-regulated power supplies to current-regulated operation. At least it's easy with an E/M® Regatron Programmable Power Supply. But for true constant-current performance, there's no substitute for a power supply specifically designed for constant-current operation.

Take Electronic Measurements' Model C638A shown here. It's an easy matter to set the current control to any value desired—from a few microamperes up to 100 ma—manually or programmably. And there's no juggling with makeshift, extra circuitry. Then you can adjust the voltage compliance to any value from 0 to 1500 V. There's no fear that the voltage may be too great or not enough; the voltage control sets the upper limit.

Here are some additional features of the C638A: Output impedance is 10^7 megohms at 0.5 µA to 0.5 megohms at 100 ma. Above 2.2 µA, regulation is better than 0.15%, line or load, Ripple is less than 0.01% + 1 µA rms. A modulation input is provided.

But to get back to the point; to check the peak inverse voltage rating of a solid state junction, simply set the output current control of an E/M Constant-Current Power Supply at the specified current. Connect the output to the junction, turn the power supply on, and measure the voltage drop across the junction. What could be easier? And other measurements can be made almost as easily.

For a complete discussion of constant-current power supplies with ratings up to 1A, ask for Specification Sheet 3072B. It lists all the models and specifications, too.

©Registered U. S. Patent Office. Patents Issued and Pending.
Pick any pulse for spectrum analysis

Polarad's Multipulse Spectrum Selector, Model SD-1, is the only instrument that permits a spectrum-analyzer examination of any individual pulse within a multipulse train. The spectrum selector automatically gates a spectrum analyzer during the interval of pulse analysis and can be used with any analyzer with an IF of 160 mc (140 mc available on special order).

Pulse selection and gating are visual. The entire pulse group is displayed on the instrument's CRT, and any one pulse in the group is brightened to indicate its selection for analysis. A group of pulses up to 180 microseconds (350 microseconds on special order) in length can be accommodated. Sweep expansion permits detailed examination of closely spaced pulse groups.

For complete specifications, write Polarad or call your local Polarad Representative (he's listed in the Yellow Pages).

Polarad Multipulse Spectrum Selector Model SD-1

Polarad Electronics Corporation
43-20 34th Street, Long Island City 1, N.Y.

FIG. 5—Harmonic power of two best samples is shown at left, while output and conversion efficiency for all samples is shown at right.

Variations in second harmonic with input power are shown in Fig. 5 for the two best samples. Saturation in low-loss samples of a manganese ferrite disk occurred in the X band. This single crystal with resonance line width of 25 gauss saturates at 100 watts. All samples followed a square law below saturation and best conversion efficiency was -10 db.

At 35 Gc input, the uniaxial crystal slab had wide line width. Power input was limited at nearly 2 Kw only by arcing. Conversion efficiency was -14 db and maximum power output was 60 watts.

Sample Performance

Sample TT2-111 in Fig. 5, a ceramic nickel-zinc ferrite for K-band isolators, is fairly lossy. The YIG crystal, grown at the laboratory, was left as a raw crystal to raise saturation level. Samples R1 and R4 (Ferramic), ceramic magnesium manganese ferrite, are quite lossy. The planar ferrite is an oriented ferrite but was too lossy to provide the expected performance of a planar ferrite.

The single crystal hexagonal ferrite, probably barium ferrite was obtained from A. O. Smith Corp. It has an anisotropy field of 14 kilogauss, which would give zero field resonance at 51 Gc. It was operated at a resonance at 3,500 gauss, where domain structure must be retained. Harmonic output was enhanced by the test position, but existence of domain structure makes an explanation of the high efficiency difficult. This crystal will be operated at a high enough field to saturate it, Gc. It is expected to deliver quite useful power at a frequency of 140 Gc.
10MC COUNTER INTRODUCES ELECTRO-LUMINESCENT READOUT

The Beckman® 8370 Universal EPUT® and Timer—the most widely accepted 10MC counter-timer—now offers a totally new concept in digital readout. . . . Electroluminescent display.

EL digits are in-line and in the same plane—assuring fast, accurate readings from extreme angles without the confusion of "stacked" digits. The soft green illumination is uniform and highly legible—no glare to cause eye fatigue.

The 8370 also offers the plus features of automatic decimal point and MC, KC, mSEC, or SEC in the EL display for complete recognition of measurements even at a distance.

Beckman's application of solid-state EL follows 2 ½ years of close collaboration with Sylvania Electric Products, Inc. during which Beckman research engineers perfected a digital configuration and logic circuitry that capitalize fully on the significant advantages of Sylvania Panelescent® electroluminescence.

This EL feature is also available in other Beckman digital counters.
Specifying Transformers for Special Needs

By R. QUIMBY
E. PODSIADLO
Raytheon Company, Microwave and Power Tube Division, Magnetics Operations, Waltham, Mass.

WHILE IT IS POSSIBLE to quickly and economically obtain reliable standard components such as tubes, resistors and capacitors, the range of electrical requirements for transformers is so great that only representative types are usually listed in manufacturers catalogs. And this often creates a specification problem for equipment design engineers who seek special transformers.

The fact that standard electronic components are fixed mechanically simplifies the problem of chassis layout, size and weight estimating, and manufacturing for both the component supplied and the equipment manufacturer. The military recognized the advantage of standard case sizes for cased, hermetically-sealed transformers when it specified standard Mil Cases in the replacement of Jan T-27 with the now well-known MIL-T-27A specification some years ago.

Raytheon's standardization program is currently confined to 60 and 400 cycle power transformers, but will include other transformer types such as audio, pulse, signalling transformers, etc. Development of a line of minimum weight, premium grade aircraft transformers to meet all military requirements using wound cores and encapsulated for full moisture protection is presently underway. Each basic line of standard sizes will include cased-hermetic designs, encapsulated core and coils, and open varnish-treated core and coils. The first two are designed to meet Mil-T-27A grade 4 or 5 and temperature classes R and S. A more limited line of silicone encapsulated units are available for Class T requirements and cased-hermetic designs in the Class U range for a maximum temperature of 325 C.

It is possible to anticipate possible combinations of electrical characteristics required by the equipment designer in advance, and to design prior to receiving an inquiry. This technique also enables the manufacturer to prepare data from which the user can determine the size of component that meets his requirements.

The user selects the style of transformer he needs based on environmental conditions and then calculates the total load in volt-amperes (LI for inductors). Derating factors for voltage, frequency, and number of load circuits are then applied to this figure to determine the power output under a particular set of electrical requirements. A graph is consulted which shows power output and regulation for various package sizes and values.

The following example illustrates the method for specifying transformers:

A class R, cased, hermetically-sealed transformer is to be specified with the electrical requirements shown in Fig. 1. Ambient temperature is 65 C, allowable time rise is 40 C, and regulation is 4 per cent. The total va output is calculated, \(S_1 = 100 \text{ va}, S_2 = 100 \text{ va} \) for a total of 200 va.

Electrical requirements complicated by lower frequency, voltage input taps, high test voltages and rectifier loads are adjusted by

![FIG. 1—Electrical requirements of transformer in example](image-url)
New Transfilter® Combinations

Greater selectivity in a miniature package

...and increased stability at a decreased cost. Further, magnetic shielding can be eliminated as well as the necessity for factory and field alignment. That's why CLEVITE'S ceramic i-f filters are rapidly replacing conventional components in today's mobile or high quality commercial receivers. Basic component of these rugged fixed-tuned devices is the CLEVITE piezoelectric "Transfilter" developed especially for great stability of resonant frequency with respect to time and temperature. Cascading and coupling these resonators provide excellent selectivity at desired bandwidths. Size, 1½" x ¾" x 2.0" high; Center Frequency, 455 kc; Shape Factor (60/6db), 3:1 to 6:1; Bandwidth, 4 to 20 kc; Insertion Loss, 6 to 12 db max. (depending on bandwidth); Impedance, 2700 ohms in and out; Temperature Range, -20°C to +90°C. Call, write or wire for complete details.

CLEVITE ELECTRONIC COMPONENTS
232 Forbes Road, Bedford, Ohio / Division of CLEVITE Corporation

CIRCLE 63 ON READER SERVICE CARD
NOW
A family of Precise Thermistors

YSI produces a family of precise thermistors which match standard Resistance-temperature curves within ±1 %.

You can now use stock YSI thermistors interchangeably as components in any temperature transducer or compensator circuit without individual padding or balancing.

DATA
Base resistances at 25° C. of:
100 Ω 1 K 10 K
300 Ω 3 K 30 K
100 K

- Each family follows the same RT curve within ±1% accuracy from -40° to +150° C.
- Cost under $5.00 each, with substantial discounts on quantity orders.
- Quantities under 100 available from stock at YSI now.
- YSI can produce precise thermistors with different base resistances and beta’s where design requirements and quantities warrant.

For complete specifications and details write:

YELLOW SPRINGS INSTRUMENT CO., INC.
Yellow Springs, Ohio

simple conversion methods to va values which can be applied to the basic power curve.

The size of the unit is selected from the basic power curve in Fig. 2.

Note that the LB case must be used to get 4 per cent regulation. Temperature rise will be only 30 C. The KB case could be used if regulation requirement is relaxed to 5 per cent. Assume that the KB case is selected.

The terminals are selected from chart in Fig. 3. Using operating voltage and current ratings, the following selections are made:

Terminal Selections
Numbers Made
1 & 2 P1
3 & 4 P1
5 & 6 P2

The terminal areas are checked from the chart. If it is desired to have terminals in the center area of the case, KA must be used.

This concept of standardization integrates mechanical design with electrical output by relating volt-amperes to case size, and ensures most of the advantages of both catalog and custom design approaches.

FIG. 2—Basic power curve used in selecting transformer size

FIG. 3—Terminals and terminal layout guide
MINIATURE A.C. GEARMOTORS

Globe Type SC and MC motors with planetary or spur gearheads provide more than 101 standard ratios, even and odd. Custom winding and gearing provide all in-between speeds for the exact speed-torque you need—up to 1000 inch ounces. SC and MC motors are hysteresis-synchronous or induction types, 115 to 208 v.a.c., 60 or 400 cycle or variable frequency, weigh 2½ and 6½ oz. respectively; gearheads add 1½ to 6 oz. depending on type and ratio of gearing. MIL specs are routine. Ask about commercial versions and check us if you need larger or smaller gearmotors. Please specify your speed; many prototypes shipped in one day, larger quantities soon after. Bulletin SMG.

AEROFOLEX LABORATORIES
INCORPORATED
48-25 36TH STREET • LONG ISLAND CITY 1, N. Y.

WEE LINES
SOLVE YOUR DELAY LINE PROBLEMS
FAST!

Wee Lines are unique sectional, custom-fabricated delay lines shipped from the factory to you 24 hours after the order is received. Do away with costly waiting for other types of delay lines. Save time, money and still achieve extra high performance. Design with sectionalized Wee Lines. Available with delay times of 10 nanoseconds to 100 nanoseconds in 10 nanosecond increments. Sections are also available with 200 nanoseconds delay.

For complete descriptive literature, write to Dept. WL-2, or phone 464-9300.
Production Methods for Welded Circuits

By LLOYD ARMSTRONG
Space Technology Labs.,
Los Angeles, Calif.

Fabrication methods and practices, equipment and personnel selection, and inspection and quality control procedures have been investigated at STL as part of a study of welded modules. The information developed has proved useful in the Titan and Minuteman programs and can be applied to commercial and industrial electronics production.

For prototype and pilot production, each welding station is supplied with one or two welding heads equipped with treadle type switches, a five-power magnifying glass and an adjustable lamp. Most lead and wire materials can be welded with miniature capacitance discharge d-c welders. Their short welding times prevent heat damage to sensitive components and help prevent shorts through components, as previously discussed (Electronics, p 72, Sept. 22, 1961). An a-c welder with a thyatron contractor and heat program timer is used for certain types of welds, such as copper-to-copper, or when it is desirable to approach an anneal process for the metals welded.

Electrode materials depend on the materials being welded. In each case, the best compromise between high thermal conductivity, low specific resistivity, wear resistance and strength should be selected. Lead materials with high conductivity require electrodes or electrode tips of higher resistance and vice versa. Different upper and lower electrodes can be used to weld dissimilar metals. Electrodes recommended for various materials are shown in the table.

Typical electrode configurations are shown in Fig. 1. Shanks can be coated with polyurethane to help prevent shorts. Color-coding the coating simplifies storage and identification and the color also helps show coating wear and peeling.

Redressing of electrodes by the operator should be avoided, especially if tips are tapered or welding schedules are critical. A supply of freshly dressed electrodes may be supplied. Any redressing on the machine should be minimal and should be done lightly with fine emery paper on a paddle. Offset electrodes are needed to reach into confined spaces. Their alignment should be checked with a triangular tool.

A variety of accessories, tools, jigs and fixtures have been developed. Some of these are shown in the photos. The butterfly jig, for example, facilitates the construction of wafer board modules. The plastic end wafers are held apart at a distance convenient for component insertion, after which the wafers are brought together. Spacers can then be inserted between the plates or can be built into the fixtures.

Special jigs and molds can be devised for any module design. For
for communications engineers:

2 problems in magnetic design
SOLVED BY PIC

1: An instrument for calibrating television equipment needed these unusual filters . . .
TRUE INSERTION LOSS:
5.5 db ± 0.15 db
OPERATING TEMPERATURE:
-20°C to +50°C
Z out: 18,000 ohms, CT, isolated.
ATTENUATION:
Filter #1
90 ± 1.5 db
(150 ± 1.5 db)
(300 ± 3 db)
> 30 db 54 and 150 cps 90 and 250 cps
DIMENSIONS: 1 1/4" x 1 1/4" x 2 3/4"

SOLUTION:
Borrow this filter for your own tests — samples can be made available if required.

2: Communications engineers asked for this filament regulating magnetic amplifier . . .
Input: 200 V ± 7%, 36, 400 cps ± 5%
Output: 6.4 V, 5-30 amps.
Regulation: ± 0.25 V for any combination of line, load, frequency and temperature.
RIPPLE: 20 mv rms max.
OPERATING TEMPERATURE: -55°C to +85°C
SIZE: 3" x 3 1/2" x 12"

SOLUTION:
Borrow this magnetic amplifier for your own tests — samples can be made available if required.

Honeywell
Precision Meters

where electronics meets the eye

Honeywell's sealed, ruggedized panel instruments are about as tough as meters can get. They shrug off all kinds of shocks, vibrations, stresses and strains. They're immune to dust, moisture and ordinarily troublesome climatic and atmospheric conditions. They're not affected by magnetic panels because of the special plated steel case. A three-point rubber mounting cushions internal shock. New fastening techniques and materials prevent magnet fracture, increase shear resistance, and minimize whipping and collision between the dial and pointer assembly. High torque-to-weight ratios permit larger radius pivots and reduce the load on bearings. Special beryllium copper hairsprings reduce zero shift, raise the fatigue point, and reduce deformation. For a catalog describing the full line of Honeywell meters (including ruggedized models) write to Honeywell Precision Meters, Manchester, New Hampshire.
Q. HOW THIN CAN METAL TUBING WALLS BE?

A. AS THIN AS 0.0005 INCHES!

It’s a fact... fine seamless tubing with wall thicknesses as ultra-thin as 0.0005 inches! This is precision tubing drawn to any specified O.D. from 0.010" to 0.375" within tolerances of ±0.00005 inches.

Techniques for redrawing tubing so thin and within such close tolerances were developed in response to many requests for lightweight tubing with the properties of the many common metals and alloys. Accordingly, ultra-thin tubing is available in 304, 310, 316, 321 and 347 stainless steels, Monel, Inconel, Nichrome V, Tophet A, nickel, copper, beryllium copper and glass-sealing alloys.

Ultra-thin tubing is available cleanly cut to any specified length up to six inches. And speaking of light weight—500 feet of ultra-thin 304 SS tubing with an O.D. of 0.375" and a wall thickness of 0.0005" weighs only one pound! Rigid quality control assures you that every bit of ultra-thin tubing falls within the close tolerances.

If you need fine precision tubing with all the inherent properties of a particular metal or alloy listed above and must have the added advantage of light weight, investigate UNIFORM ultra-thin tubing by phoning or wiring the numbers below. Ask, too, about UNIFORM’s proved abilities for fabricating tubular parts to exacting specifications. UNIFORM specializes in craftsmanship and fast delivery for fine tubing in most alloys and precious metals.

Electrode alignment tool helps insure standard practices

Example, a diode matrix required some 600 parts; these are inserted in a preformed, three-ply, laminated plastic block before welding. Tooling included a Silastic mold for the block and an aluminum pattern for exact placement of the diodes.

Production Control

An assembly line technique is recommended for weld reliability. Each machine is set to the proper weld schedule and is not changed. Work is passed from machine to machine. The operator has no other job except to place the proper two wires between two electrodes and press the foot pedal. Therefore, a thorough dexterity test is one of the most important personnel evaluation tools.

Inspection stations are equipped with 30-power binocular microscopes for weld inspection. Stress testing of welds in modules is likely to impair reliability while radiography yields little information on resistance weld strength. The best quality assurance is rigid control of equipment, process and materials variables, and the establishment of correct weld schedules. Employees should be thoroughly trained and impressed with the need for reliability. Visual aids can continually emphasize proper technique.

The human element can be minimized by following such general rules as; limit the operators’ responsibility for changing pressure and energy settings; group and standardize electrodes for families of welds; redress and maintain electrodes in the machine shop; use fixtures and jigs to support modules during welding; use alignment tools to position electrodes; lay out modules so weld positions are easily accessible in sequence; and attach risers or extension leads at test points so they can be clipped off after electrical tests.

Destructive tests can be made on coupons furnished for each different weld at regular intervals. Information should be quickly fed back to the production shop. Machine pressure and force should be periodically calibrated. Changes indicate the frequency of calibration required and will also indicate preventive maintenance needed.

Since it is difficult to rework welded modules, 100 percent testing of components before assembly is recommended. Circuit performance should be tested before potting and again after potting.

Inspection Procedure

The leads of components should be inspected as part of incoming inspection. Variations in lead coating, thicknesses, consistency and composition must be controlled.

The inspection procedure recommended is to clip 12 leads from one side of parts in lots of 100 or less. The samples are welded to an interconnecting lead material according to a previously developed weld schedule for that material. Eleven of the weld samples are tensile tested to failure and the results compared with the strength established for that material. If discrepancies are slight, a metallurgical examination is made of the twelfth sample and compared with data used in developing the original weld schedules.

If variations are excessive, the lot must be rejected or a new weld schedule developed.
IRE SHOW

presenting

"THE GOLDEN
AGE OF
ELECTRONICS"
March 26-29, 1962
The New York Coliseum
...part of the
International Convention of the IRE

The Institute of Radio Engineers
1 East 79th Street • New York 21
Members $1.00. Non-members $3.00. Age limit: over 18
CIRCLE 210 ON READER SERVICE CARD

Since 1901

ELECTROPLATED WIRES

Quality at Moderate Cost
Long experience, technical know-how and specially
built equipment enable us to plate wire of uniformly
high quality at moderate cost. One application is
the Gold plating of Nickel wire. This combines the
desirable characteristics of the base metal with the
corrosion-resistance of Gold. In our process of
continuous electroplating, adherence and quantity
deposited are precisely controlled.
Send us details of your specific requirements

SIGMUND COHN
Mfg. Co., Inc.
121 South Columbus Ave.
Mount Vernon, N.Y.

Since 1901

DELTA
the air line with the BIG JETS
GENERAL OFFICES: ATLANTA, GEORGIA

CIRCLE 71 ON READER SERVICE CARD
A-C Voltage Standard
ACCURACY TO ±0.05 PERCENT

WILK INSTRUMENTS, 3700 South Broadway, Los Angeles 7, California recently announced Model P-4, a new instrument designed for rapid and accurate calibration of a-c voltmeters, ammeters, wattmeters, power-factor meters, phase-angle meters and for use as a precision a-c supply and current transformer. The unit can operate between 50 cps and 5 Kcps supply frequency and has output ranges from 0 — 1,511 v in 0.1 v increments and 0 — 151.1 v in 0.01 v increments. The heart of the calibration unit is a precision tapped transformer having 42 separate windings specially positioned to insure minimum capacitance effect and leakage reactance to maximize frequency response of the system. A special expanded-scale, high-accuracy voltmeter with an accuracy of ±0.05 percent of the center-scale value between 50 cps and 5 Kcps is used. The meter is calibrated for rms reading of a sine wave. As shown in the sketch, output is determined by four switches with associated dial indications. An illuminated decimal point is automatically positioned by the range switch.

Salt Spray Chamber
MULTIPURPOSE DESIGN

STANDARD CABINET CO., INC., 56 Washington Ave., Carlstadt, N.J. Line of moderately priced salt spray, salt fog, high relative humidity test chambers feature heavy gage steel construction with rubber composition liner. Chambers meet MIL requirements. Standard sizes range from 2.6 to 22.5 cu ft of work space. Temperature range is ambient to +160 F; humidity range 95 percent, ±5 percent.

High Speed Converter
ANALOG-TO-DIGITAL

RAYTHEON CO., 1415 Providence Highway, Norwood, Mass. Model AD-10A operates at up to 500,000 electronics
NEW 7-INCH VOMs AT $49.95

Single Switch Selects Range
Choice of Two Most Popular Range Selections

From whom but Simpson (makers of the world famous 260 Volt-Ohm-Milliammeter) could you expect testers like Models 267 and 268?

Although their price tags fall in the same area as other makes with small 4½" meters, Models 267 and 268 give you big, easy-to-read 7" meters plus quality features such as: self-shielding, core-type movements with spring loaded jewels . . . single-switch range selection . . . black and red scales that are spread out for close repetitive reading . . . Adjust-A-Vue handles . . . plus all the rugged, stay-put accuracy that you expect and get from Simpson.

Vital statistics for Models 267 and 268 are: DC sensitivity, 20,000 ohms per volt; AC, 5000 ohms per volt. Accuracy: DC volts, ±3% of full scale; AC volts, ±5% of full scale.

Have your distributor bring one out for trial.

Simpson
SIMPSON ELECTRIC COMPANY
5203 W. Kinzie St., Chicago 44, Illinois
Phone: ESterbrook 9-1121 (Area Code 312)
In Canada: Bach-Simpson Ltd., London, Ontario

Choice of 250 or 300 Volts

<table>
<thead>
<tr>
<th></th>
<th>Model 267</th>
<th>Model 268</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC VOLTS</td>
<td>0.35/2.5/10/50/250/500/1000</td>
<td>0.35/12/60/300/600/1200</td>
</tr>
<tr>
<td>AC VOLTS</td>
<td>0.25/10/50/250/500/1000</td>
<td>0.35/12/60/300/600/1200</td>
</tr>
<tr>
<td>DC MICROAMPERES</td>
<td>0-50</td>
<td>0-60</td>
</tr>
<tr>
<td>DC MILLIAMPERES</td>
<td>0-1/10/100/500</td>
<td>0-1/12/120</td>
</tr>
<tr>
<td>DC AMPERES</td>
<td>0-10</td>
<td>0-12</td>
</tr>
<tr>
<td>DB SCALE</td>
<td>-30 to +10 dB</td>
<td>-12 to +12 dB</td>
</tr>
<tr>
<td>OUTPUT RANGES</td>
<td>AC Volt ranges to 250 V with</td>
<td>AC Volt ranges to 300 V with</td>
</tr>
<tr>
<td></td>
<td>1 mfd condenser in series</td>
<td>1 mfd condenser in series</td>
</tr>
<tr>
<td>CMHS Ranges</td>
<td>RX1</td>
<td>RX100</td>
</tr>
<tr>
<td>Const. Value</td>
<td>12</td>
<td>1200</td>
</tr>
</tbody>
</table>

Also Available: carrying cases, high-voltage multipliers, and special types of test leads.

Model 267 or 268 complete with test leads and operator manual $49.95

See Your Distributor Also
For Simpson's Famous 260. Outsells All Other VOMs Combined. Still Only $43.95

Famous around the world...260° VOM
Six Pole D-T Relay

HIGH CONTACT PRESSURE

ELECTRO-TEC CORP., 1 Henderson Drive, West Caldwell, N. J. Mark II type 1000 Wedge-Action relay meets requirements of MIL-R-5757D for 125 C operation. It employs a powerful plunger type solenoid to actuate the six moving contacts. These movable contacts are positioned between two rigidly mounted stationary contacts. In either the energized or de-energized position, contact pressure increases between the moving contact and the fixed contact. Contact resistance is 0.015 ohm.

CIRCLE 305 ON READER SERVICE CARD

Soft Tube Modulator

THREE PULSE WIDTHS

THE NARDA MICROWAVE CORP., Plainview, L.I., N.Y. Model 11040 soft tube modulator provides peak power outputs up to a maximum of -33 Kv at 33 amp. It is furnished with three standard pulse widths of 0.5, 1.0 and 2.5 µsec, the pulse repetition rate being continuously variable from 200 to 2,000 pps. Price is $9,650.

CIRCLE 308 ON READER SERVICE CARD

Radio Altimeter

TRANSISTORIZED

INTERCONTINENTAL ELECTRONICS CORP., 300 Shames Drive, Westbury, L.I., N.Y. The AM-220 transistorized radio altimeter features zero to 1,000 ft range. A guaranteed accu-
accuracy of ±3 ft under 50 ft and ±6 percent above 50 ft is claimed over the full range of temperature and operating conditions. Also featured are modular construction for easy maintainability, compact size, and a total system weight of 18.6 lb.

CIRCLE 309 ON READER SERVICE CARD

Transducer Converters
THREE MODELS
SANBORN CO., 175 Wyman St., Waltham 54, Mass. Series of transducer converters permits use of differential transformer-type transducers with 28 v d-c and 115 v a-c power sources. They produce d-c signals proportional to the input, ready for monitoring or recording with a general-purpose d-c amplifier. No carri＝er amplification is needed. Two models that accept 28 v d-c contain a 5 Kc oscillator, demodulator and filter. Third model accepts 115 v ±10 percent, 60-cycle a-c.

CIRCLE 310 ON READER SERVICE CARD

Toggle Switches
SHOCK RESISTANT
ELECTROSPACE CORP., 12 Morris Ave., Glen Cove, N. Y. Line of toggle switches has electronic circuit switching engineered for aircraft, missiles, ground handling equipment and other applications. Units are military approved and meet applicable requirements of MIL-S-3950. Electrical ratings: 10 amp at 125 v a-c, or 30 v d-c. Endurance: greater than 10,000 cycles at +85 C. Dielectric strength: over 1,000 v, 60 cps a-c. Insulation resistance: over 1,000 megohms.

CIRCLE 311 ON READER SERVICE CARD

February 2, 1962

MEASURE RF MILLIWATTS
30 TO 500 MC

Bird's new TERMALINE RF Milliwattmeter provides direct, simple and inexpensive absorption measurement of RF power at milliwatt levels in coaxial systems.
No calibration charts. No adjustments. No calculations. No batteries or auxiliary power required.

Specifications: Bird Model 6254

Power Ranges: Any one of six standard scale ranges of 25, 50, 100, 250, 500 and 1000 milliwatts. Specify scale range desired.
Frequency: 30—500 mc
Impedance: 50 ohm nominal
VSWR: Less than 1.15
Accuracy: ± 5% of full scale
Input Connector: Female BNC
Weight: 2.2 pounds
Size: 5 7/8" x 4 1/4" x 3 1/4"
Price: $85.00, F.O.B. Factory

Contact us for further information on this instrument and other Bird products.

BIRD ELECTRONIC CORPORATION
30303 Aurora Rd., Cleveland 39 (Solon), Ohio
Churchill 8-1200 TWX CGN F5 679
Western Representative: VAN GROOS COMPANY, Woodland Hills, Calif.

CIRCLE 75 ON READER SERVICE CARD
We at Lapp are mighty proud of our record in the field of tower insulators. Over 30 years ago, the first insulated broadcasting tower was erected—on Lapp insulators. Since then, most of the large radio towers in the world have been insulated and supported by Lapp insulators. Single base insulator units for structures of this type have been design-tested to over 3,500,000 pounds.

A thorough knowledge of the properties of porcelain, of insulator mechanics and electrical qualities has been responsible for Lapp’s success in becoming such an important source of radio insulators. Write for description and specification data on units for any antenna structure insulating requirement. Lapp Insulator Co., Inc., Radio Specialties Division, 188 Sumner Street, LeRoy, N. Y.
Literature of the Week

DISK INTEGRATOR Disc Instruments, Inc., 3014B S. Halladay, Santa Ana, Calif. Illustrated 4-page booklet details performance capabilities of the series 200 disk integrator. (326)

POWER RESISTOR DECADES Clarostat Mfg. Co., Inc., Dover, N.H. Catalog contains electrical and mechanical specifications for power resistor decades. (327)

AUTOMATIC CONTROL Zenith Electric Co., 152 W. Walton St., Chicago 10, Ill. A 64-page catalog provides complete information and prices on electromagnetic controls and timing devices. (328)

SERVO RECORDERS Houston Instrument Corp., P.O. Box 22234, Houston 27, Texas. Four-page folder contains illustrated description, ordering information and prices for T-Y moving pen recorders. (329)

MODULAR POWER SUPPLIES MicroPower, Inc., 20-21 Steinway St., Long Island City 5, N.Y. Data and selection guide for a line of modular power supplies for microwave tubes is available. (330)

D-C VOLTAGE REFERENCE Binary Electronics, Inc., 30-48 Linden Place, Flushing 54, N.Y. Bulletin describes a precision, dual-channel, d-c voltage reference, featuring electrical program ability through specially designed binary-coded decimal, Kelvin-Varley resistive dividers. (331)

FRACTIONAL H-P MOTORS Motordyne, Inc., 2221 Barry Ave., Los Angeles, Calif. Catalog is devoted to p-m and wound fractional h-p d-c motors, as well as centrifugal blowers, and axial fans. (333)

COMPOSITION RESISTORS Ohmite Mfg. Co., 3694 Howard St., Skokie, Ill. Bulletin 140 describes Little Devils molded composition resistors available in resistance values as low as 2.7 ohms in the 1/2 and 1-w sizes. (334)

February 2, 1962

P.I. tape recorder secret
is an open book

A unique stacked-reel tape magazine is one of many space-saving secrets which enable Precision instrumentation recorders to out-perform conventional magnetic tape instruments many times their size. Other design secrets are push-button selection of function and speed, light beam end-of-tape sensing, front panel calibration and testing, interchangeable tape loop magazines, and all-solid-state plug-in electronics.

All the secrets of these recorders are unveiled in detailed new brochure 55B. Write for your copy today.

P.S. — Here's an installation secret — two complete 14-channel analog (or 16-channel digital) recorders mount in only 51" of vertical rack space.

P.L. invites inquiries from senior engineers seeking a challenging future.
PEOPLE AND PLANTS

CMS Ready to Occupy New Facility

CLEVELAND METAL SPECIALTIES CO. will move into its new plant on Cleveland's southwest side, on April 1. The plant, located on a one-acre site, is designed for rapid expansion. Even before occupancy, a 2,000-sq-ft addition was built, making total space 9,000 sq ft.

The 55-year-old company entered the electronics field several years ago. It produces photoengraved printed circuits, partial and complete subassemblies, system subassemblies and packaging, and microminiature product design and assembly.

Roger Middlekauff, president, says the company provides complete printed circuit services, from conversion of schematics to artwork, through production.

CMS, which recently acquired prime contractor status from Army Ordnance Corps, is now engaged in a classified warhead fuzing program. It recently designed and packaged, with Diamond Ordnance Fuze Laboratories, a miniature arming programmer-timer that has had five successful test flights.

The company's industrial and commercial nameplate and jewelry divisions will also be housed in the new plant.

DATA-tronix Corp.
Elects V-P

ELECTION of David N. Dry as vice president and director of DATA-tronix Corp., Norristown, Pa., has been announced. DATA-tronix is a recently formed telemetry components and systems company.

Before joining the firm, Dry was chief engineer of Sonex, Inc., Philadelphia, Pa. He was formerly supervisor of the analog telemetry group, American Bosch Arma Corp., with responsibilities for both airborne and ground station component design. While with Philco Corp., Dry also designed and developed circuits for new compact portable tv units.

Daystrom Appoints
Eric Weiss

ERIC WEISS was recently appointed to a staff position as technical advisor for Daystrom, Inc., Control Systems Division, LaJolla, Calif. He had been one of the division's original members when it was established in 1956.

Most recently Weiss was general manager of Rheem Advanced Technology Laboratory, LaJolla, which became the LaJolla Division of United ElectroDynamics, Inc.

Babcock Electronics
Hires Dressel

D. W. DRESSEL recently joined Babcock Electronics Corp., Costa Mesa, Calif., in the new position of manufacturing manager.

Prior to joining Babcock, Dressel served as factory manager with the Astronics division of Lear Inc.

Set Up New Company
In Microwave Field

AMONG newest entries in the field of microwave components and subsystems is Applied Microwave Laboratory Inc., of Wakefield, Mass.

The company, which emphasizes design and manufacturing of devices employing cavities, was founded in October 1961 by a group which included five engineers
IRE SHOW

presenting

"THE GOLDEN AGE OF ELECTRONICS"

March 26-29, 1962

The New York Coliseum

... part of the International Convention of the IRE

The Institute of Radio Engineers

1 East 79th Street • New York 21

Members $1.00. Non-members $3.00. Age limit: over 18

CIRCLE 212 ON READER SERVICE CARD

FOR PRINTING of

ELECTRONIC COMPONENTS of almost any shape:

REJAFIX MARKING MACHINES

Hand-operated, semi-automatic and fully automatic models.

Why not send us samples of your products. They will be test-printed and returned to you for your examination?

Est. 1922

POPPER & SONS, INC.

300 Park Ave. South New York 10, N. Y.

CIRCLE 213 ON READER SERVICE CARD

Is your advertising selling the same four key buyers your salesmen call on? Competition demands it! Only advertising in electronics reaches and sells the electronics man wherever he is: in Research, Design, Production, and Management. Put your advertising where it works hardest...

in electronics

Today you must sell all four!

J. T. Baker electronic chemicals offer you the highest standards of purity in the industry—proved by the Actual Lot Analysis and Actual Lot Assay on the label. Your variables are minimized... rejections are fewer... product performance is improved.

IMPORTANT: 'Baker Analyzed' Reagents have consistently met or exceeded the requirements of the electronics industry. Through a continuing program of establishing additional and more stringent specifications, the 'Baker Analyzed' label consistently defines a degree of purity so high that special electronic labeling is unnecessary.

YOURS FOR THE ASKING—

Important Guide to Electronic Chemicals

Describes J. T. Baker chemicals of exceptional purity for semi-conductors, vacuum tubes, ferrites, thermistors, etc. Also includes specification sheets that define the high standards for 'Baker Analyzed' Reagents. Write for your copy today.

J. T. Baker Chemical Co.

Phillipsburg, New Jersey

CIRCLE 79 ON READER SERVICE CARD
New long term diversified development and design contracts create unusually attractive opportunities at the Link Division of General Precision, Inc. Qualified men, proficient in broad systems and equipment engineering, will be interested in these commercial and military projects. Both aircraft and space vehicle systems are involved. Excellent salaries and ideal living in the Binghamton, New York area will attract the qualified professional man or manager seeking advancement opportunity and challenging work.

PROJECT MANAGER—laboratory precision measurement, visual displays and special projects including G.S.E., simulators and checkout equipment. PROJECT MANAGER—electro-optical precision measurement systems. MANAGER PRODUCT SUPPORT — 12-15 years mechanical design, electronic packaging, model shop construction, and department supervision in military programs. Direct product design department, model shop, product programs and advanced development.

PRINCIPAL ENGINEER—visual systems projects.
OPTICS—optical, electro-optical measuring, inspection and scanning systems. OPTICS—periscopic, projection and relaying lens, analysis of optical problems, laboratory proposals.
DIGITAL—transistor circuits, switching circuits, computer logic, "NOR" logic, direct-coupled transistor logic, proposals. VISUAL DISPLAYS—electronic systems project responsibility. Supervise design, test and verification of prototype model and preparation of engineering data. SIMULATION—analog computing devices, audio systems, transistorized amplifiers, radio aids, radio navigation, aircraft communications. SIMULATION—program digital computers, digital systems design. SIMULATION—define problems, program and solve equations of flight simulation, specify components, initiate requirements for design and configuration of electronic and electro-mechanical systems.
MECHANICAL—systems design of servos, hydraulics, missiles, life support systems. MECHANICAL—systems design of mechanisms, structures, hydraulics, electro-mechanical packaging, materials, plastics.
AERONAUTICAL—simulation, project responsibility for computation of equations, defining motion and engine performance of aircraft, specification interpretation, concept determination, data search and liaison, data analysis and processing, test guide inception and computation. AERONAUTICAL—process raw aerodynamic coefficient data and engine data into equation form for electronic simulation, engine performance calculations, test guide to check simulator. ELECTRONIC SCIENTIST—airframe and spacecraft performance, stability and control, engine performance, analog simulation and digital computations.

All positions require an appropriate degree—advanced degree is highly desirable for managerial and senior positions. Minimum experience required is 4 years—an additional 4 years experience is required for managerial and senior positions.

Qualified men are invited to phone collect (RAymond 3-9311) or write Mr. James T. Gibbons. An equal opportunity employer.

Electronics Capital Appoints Root
DONALD E. ROOT has joined Electronics Capital Corp., San Diego based small business investment company, as senior management services officer. Previously, he was associated from 1953 to 1961 with Cubic Corp. of San Diego, where he was general manager of that company's industrial instrument division.

Mazzarese Joins Digital Equipment
APPOINTMENT of Nick J. Mazzarese to the post of computer applications engineer at Digital Equipment Corp., Maynard, Mass., is announced.

Prior to joining Digital, Mazzarese was an engineer at Hazeltine
George Harmon Co.
Expands Facilities

THE GEORGE HARMON CO., INC.,
Northridge, Calif., announces expansion of facilities to handle a $4 million backlog of commercial and military electronic products. Manufacturing floor space has been increased from 5,500 to more than 11,000 sq ft, and engineering and production personnel have been added.

Proprietary products currently in production include an automatic crash locator beacon for aircraft, a personnel locator beacon, and several types of impact and pressure switches for military applications.

No other 10-amp relay like it

A good heavy-duty relay that will dependably switch 5- or 10-amp loads is not as easy to find as you might think. By "good" we mean one actually designed for commercial equipment such as machine tool control panels and ground-based military equipment—not just an existing open-frame type repackaged in the familiar square plastic case with an octal plug-in base. (The practice, while common, is like putting a suit of armor on a midget and then sending him out as St. George.)

About a year ago we decided we'd try to correct these sins of the relay industry (and our own) and deliberately design a relay for this unglamorous but deserving application. We did, it's the AC or DC DPDT Series 46, and it will switch one-amp loads at least 10 million times and 10-amp loads 500,000 times. Here are some of the reasons it will work dependably in your "heavy-duty" application, and how it differs from many competitive types:

- Parts are rugged, few in number, and not fastened to phenolic boards with rivets, screws, etc. Each part does several jobs to make the best use of the space available. This leaves room for a big coil with substantial safety margins in operating power, contact force and heat dissipation. The frame is completely independent of the enclosure so the latter can't get hot and melt or give you a shock.

- Moving contacts are mounted on unusually long, U-shaped spring strips, so that the flexing stresses of several million operations will be distributed over large areas. These springs, the contacts, and other conducting members are all big enough to prevent heavy currents from heating the parts.

- Design and construction of the base effectively get around many of the drawbacks often found in this type of relay. All electrical connections (except coil leads) are made by fastening parts directly to rigid, solid base pins. (Ordinary tube bases were meant for tubes, and are not rated to carry anything like 10 amps.) This helps reliability by reducing the total number of connections and eliminating all solder joints but two. The base aligning plug is also solid—so much so, in fact, that you have to clamp it in a vise to break it off. Molded barriers between parts and recessed holes for base pins provide good insulation resistance.

Just think of it—all this, with "industry standard" wiring so you can plug it right into sockets in existing equipment—at a regular competitive price. That's Designsville, man!

SIGMA INSTRUMENTS, INC.
62 PEARL ST., SO. BRAIN TREE 85, MASS.

February 2, 1962
ATTENTION: ENGINEERS, SCIENTISTS, PHYSICISTS

This Qualification Form is designed to help you advance in the electronics industry. It is unique and compact. Designed with the assistance of professional personnel management, it isolates specific experience in electronics and deals only in essential background information.

The advertisers listed here are seeking professional experience. Fill in the Qualification Form below.

STRICTLY CONFIDENTIAL

Your Qualification form will be handled as "Strictly Confidential" by ELECTRONICS. Our processing system is such that your form will be forwarded within 24 hours to the proper executives in the companies you select. You will be contacted at your home by the interested companies.

WHAT TO DO

1. Review the positions in the advertisements.
2. Select those for which you qualify.
3. Notice the key numbers.
4. Circle the corresponding key number below the Qualification Form.
5. Fill out the form completely. Please print clearly.

COMPANY SEE PAGE KEY #
DALMO VICTOR COMPANY 116* 1
Div. of Textron, Inc.
Belmont, California

EITEL-McCULLOUGH INC. 84 2
San Carlos, California

ESQUIRE PERSONNEL SERVICE INC. 116* 3
Chicago, Illinois

GRUMMAN AIRCRAFT ENGINEERING CORP.
Bethpage, L.I., New York

LINK DIVISION
General Precision Inc.
Binghamton, New York

LOCKHEED CALIFORNIA CO. 84* 6
A Div. of Lockheed Aircraft Corp.
Burbank, California

LOCKHEED-GEORGIA CO. 14 7
Div. of Lockheed Aircraft Corp.
Atlanta, Georgia

MICROWAVE SERVICES INTERNATIONAL INC. 116* 8
Donrille, New Jersey

MINNEAPOLIS HONEYWELL 102* 9
Boston Division
Boston, Massachusetts

REMINGTON RAND UNIVAC 77* 10
Div. of Sperry Rand Corp.
St. Paul, Minnesota

UNION CARBIDE NUCLEAR CO. 84 11
Oak Ridge, Tennessee
P-7950

These advertisements appeared in the 1/26/62 issue.

NAME ...

HOME ADDRESS

CITY ...

HOME TELEPHONE

EDUCATION

PROFESSIONAL DEGREE(S) ...

MAJOR(S) ...

UNIVERSITY ...

DATE(S) ...

CATEGORIES OF SPECIALIZATION

Please indicate number of months experience on proper lines.

Research (pure, fundamental, basic) ...

Research (Applied) ...

Systems (New Concepts) ...

Development (Model) ...

Design (Product) ...

Manufacturing (Product) ...

Field (Service) ...

Sales (Proposals & Products) ...

CIRCLE KEY NUMBERS OF ABOVE COMPANIES' POSITIONS THAT INTEREST YOU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P-7950
Complete aircraft guidance and control system hardware evaluation and testing is done before flight at Grumman. Our three-axis flight simulator furnishes the "tilt." Used with pressure simulators and one of our analog computer facilities, the three-axis table imparts to the attitude and angular motion sensors of a guidance system the same dynamic motions encountered in the flight of an actual high performance aircraft or missile. Accurate evaluation of the system behavior is possible under controlled laboratory conditions. Thoroughly tested on this facility, the guidance and control hardware for Grumman's new Hawkeye (AEW) and Intruder (Attack) aircraft proved an outstanding success.

Developing advanced electronics equipments in the pre-flight evaluation of both aircraft and space hardware is just one of the many stimulating work situations that confronts the electronics engineer at Grumman. Qualified individuals with a similar bent are urged to consider the following immediate positions:

Digital Computer Systems Engineer—BSEE with a minimum of 4 years experience in the analysis design and development of digital computers. Will participate in the integration of digital computer into a complex weapons system. A significant part of the effort will be devoted to extensive laboratory and flight development programs.

Systems Engineer—BS or advanced degree, experienced with digital computers and their applications to the mechanization and control of weapons systems. Working knowledge of the components which comprise these systems such as radars, inertial platforms, aircraft data units, star trackers, and displays is desirable. Will be responsible for conceiving, developing, integrating and system engineering complex weapons delivery and reconnaissance systems involving aircraft, missiles and space vehicles.

Data Processing Engineers—Background in digital data processing, logic circuit design, memory devices, R-F modulation techniques and related digital techniques required. Opportunity to participate in advanced design of systems concepts and hardware development. BSEE or BS in Physics with a minimum of 3 years' applicable experience is required.

Laboratory Equipment Engineers—BSEE with 5-10 years experience in laboratory test programs of airborne electronics equipment. A working knowledge is required in a majority of the fields of airborne communication radar, navigation and digital computers. Work will be conducted in our new Electronics Systems Center with the finest facilities and equipment available. Applicants must be willing to extend their technical capabilities to new challenging areas ranging from DC to microwaves.
EMPLOYMENT OPPORTUNITIES

MICROWAVE COMMUNICATIONS ENGINEERS

Ankara - Teheran - Karachi
Bangkok - U. S.

Work involves engineering, supervision of installation, operation and maintenance of microwave communications systems.

College Degree Mandatory

MICROWAVE COMMUNICATIONS TECHNICIANS

Must be qualified by education and experience to inspect, operate and maintain microwave communications systems to insure quality and performance standards.

Technical or trade school training mandatory.

Families May Accompany

Usual Overseas Benefits

Send detailed resumes to:
P-7950, Electronics
645 N. Michigan Avenue, Chicago 11, Ill.

POSITION VACANT

MANUFACTURERS' REPRESENTATIVES IN THE ELECTRONIC INDUSTRY

SAMUEL K. MACDONALD, INC.
manufacturers representatives over 25 years
1531 SPRUCE STREET, PHILA. 2, PA.

Territory: Pennsylvania • New Jersey
Delaware • Maryland
Virginia • West Virginia
District of Columbia

Chief Office: Pittsburgh
Br. Offices: Baltimore
Washington, D. C.

MFRS. REPS:

DID YOU KNOW THAT . . .

when you advertise in the electronics BUYERS' GUIDE we reprint your advertising and mail it to over 3,500 Sales Managers of electronic equipment manufacturing companies?

THIS IS COVERAGE BEYOND OUR BUYER'S GUIDE SUBSCRIBERS . . .

ADVERTISE IN THE 1962 EBG AND GET THIS EXTRA COVERAGE

Electronic Instrument Technicians

The Oak Ridge National Laboratory
Operated by
UNION CARBIDE NUCLEAR COMPANY

at Oak Ridge, Tennessee

Has openings for

Highly skilled electronic instrument technicians to work with electronic engineers in the development, installation and maintenance of electronic systems. Digital data handling, transistorized pulse height analyzers, analog and digital computer systems are only a few examples.

Minimum high school education, with additional training in electronics and at least three years' experience in installation and maintenance of complex electronic systems. Entrance rate $3.10 per hour; $3.16 per hour after six months. Reasonable interview and relocation expenses paid by Company.

Excellent Working Conditions

and

Employee Benefit Plans

An Equal Opportunity Employer

Send detailed resume to:
Central Employment Office
UNION CARBIDE NUCLEAR COMPANY
Post Office Box M, Oak Ridge, Tennessee

ACCESSORY PRODUCTS FOR TUBES

Accessories Products Division with responsibility for design and manufacture of klystron hardware, waterloads, sockets, cavities and coils has immediate openings for:

PRODUCTION DEPARTMENT HEAD

Requires ability to plan, schedule and manage all production activities integrating assembly departments with production control and production engineering. Must have at least 7 years' related manufacturing experience.

SENIOR EE

Must plan and carry out development and production refinement projects on electrical accessories related to tubes. Requires BS EE plus 5 or more years' related design experience involving cavities and sockets for high power tubes.

Send resume to: DONALD K. SMITH
EITEL McCULLOUGH, INC.
301 Industrial Way, San Carlos, California
AN EQUAL OPPORTUNITY EMPLOYER

Republic Aviation.

an engineer... with the talent to prove it... Reach him...Recruit him... he reads:
INDEX TO ADVERTISERS

Aerodex Laboratories, Inc 65
Applied Research, Inc 65
Baker Chemical Co., J. T 79
Beckman Instruments, Inc 61
Bird Electronic Corporation 78
Budelman Electronics Corp 22

Clevite Electronic Components
A Div. of Clevite Corp 65
Cohn Corp., Sigmund 71

Daven Company, The 3rd cover
Delta Air Freight 71

Electrodynamic Instrument Corporation
.. 22
Electronic Instrument Co., Inc. (EICO) 24
Electronic Measurements Co., Inc ... 59
Emerson & Cuming, Inc 18

Fairchild Semiconductor Corp 6

General Precision Inc., Link Division 59
Hobo Industries, Inc 62
Gould National Batteries, Inc 18
Greater San Jose Chamber of Com-
merce 17

Hanson Mfg. Co., Inc 52
Hewlett-Packard Company 16, 11
Hughes Aircraft Co., Aerospace Divi-
sions 23

Institute of Radio Engineers 71, 79
Japan Pieno Electric Co., Ltd 17
Jerrold Electronics Corp 4
Lapp Insulator Co., Inc 76
Lockheed-Georgia Company 14

Machlett Laboratories, Inc 29
Magnetic Metals Company 53
Mallory and Co., Inc, P. R 56
Millen Mfg. Co., Inc, James ... 51

Honeywell, Precision Meters 67

Natvar Corporation 55
Nytronics Inc 65

Oak Mfg. Co. 34, 35

Philco Corporation 38
Polarad Electronics Corporation .. 60

Polyphase Instrument Co 67
Pomer & Sons, Inc 79
Precision Instrument Co 77

Radiation Inc 26
Radio Corporation of America . . . 4th cover

Schroder Organ Co 85
Sigma Instruments, Inc 81
Simpson Electric Company 73
Sprague Electric Co 9, 38

Tektronix, Inc 15
Tektronix Electronics Co 31

Uniform Tubes, Inc 64

Universal Cycles Corp 19

Ultron Drop Forge & Tool
Division, Kelsey-Hays Co 24

Varian Associates 37
Vectron Engineering, Inc, A subsidi-
ary of Sprague Electric Co 74

Vibruman, Inc 5

West Penn Power 56

Westinghouse Electric Corp 13
Willey & Sons, Inc, John 21

Yellow Springs Instrument Co., Inc 64

MANUFACTURERS' REPRESENTATIVES

McDonald Inc, Samuel K 84

CLASSIFIED ADVERTISING

F. J. Eberle, Business Mgr

EMPLOYMENT OPPORTUNITIES .83, 84

INDEX TO CLASSIFIED ADVERTISERS

Eitel McCollough Inc 84
Grumman Aircraft Engineering Corp 83

Union Carbide Nuclear Company 84

You can assemble
this new Schober Spinet Organ for $550
or half the cost of comparable instru-
ments you have seen in stores. The job is
simplicity itself because clear, detailed step-
by-step instructions tell you exactly what
to do. And you can assemble it in as little
as 50 hours.

You will experience the thrill and satisfac-
tion of watching a beautiful musical instru-
ment take shape under your hands. The new
Schober Electronic Spinet sounds just like
a big concert-size organ—with two key-
boards, thirteen pedals and magnificent pipe
organ tone. Yet it's small enough (only
38 inches wide) to fit into the most limited
living space.

You can learn to play your spinet with
astounding ease. From the very first day
you will transform simple tunes into deeply
satisfying musical experiences. Then, for
the rest of your life, you will realize one of
life's rarest pleasures—the joy of creating
your own music.

For free details on all Schober Organs,
mall the coupon now. No salesman will call.

THE SCHOBER ORGAN CORPORATION
43 West 61st Street, New York 23, N. Y.
Also available in Canada and Australia.

MAIL THIS COUPON TODAY

The Schober Organ Corporation
Dept. EL-4
43 West 61st Street
New York 23, New York

☐ Please send me FREE booklet and other
literature on the Schober Organs.

☐ Please send me the Hi-Fi demonstration
record. I enclose $2 which is refundable
when I order my first kit.

Name
Address
City Zone . . State
Pre-production Training of a Work Force at No Cost to You

This is a time-tested and proved-in-use plan in WESTern PENNSylvania by which employees will be trained in whatever skills are needed for YOUR particular operation at no cost to you. For details on labor and training . . . and for complete information on 100% financing of plant space at low, low interest rates . . . and WESTern PENNSylvania's favorable tax climate, wire or call collect or mail coupon below today.

WEST PENN POWER
an operating unit of ALLEGHENY POWER SYSTEM

Now available: Shell buildings at $2.95 to $3.25 a sq. ft. can be completed to your specs in 60-90 days. Or select from 200 other industrial properties.

WEST PENN POWER Phone: Temple 7-3000 Area Development Department (Area Code 412)
Greensburg, Pennsylvania 500 Fifth Avenue, Oxford 5-5959
Pre-production Training of a Work Force at No Cost to You

Name:
Title:
Company:
Address:
City:
State:
Phone:

R. S. QUINT: Assistant Publisher
FRED STEWART: Promotion Manager
B. ANELLO: Marketing Service Manager

JAMES T. HAUPTLI
Advertising Sales Manager

RICHARD J. TOMLINSON:
Production Manager

GEORGE E. POMEROY:
Classified Manager

Hugh J. Quinn:
Circulation Manager

ADVERTISING REPRESENTATIVES

NEW YORK (36):
Donald H. Miller, Henry M. Shaw, George F. Werner
500 Fifth Avenue, Oxford 5-5959

BOSTON (16):
William S. Hodkinson, Donald R. Firth
McGraw-Hill Building, Copley Square, Congress 2 1160

PITTSBURGH (22):
David M. Watson
Four Gateway Center, Express 1-1314

PHILADELPHIA (3):
Warren H. Gardner, William J. Boyle
6 Penn Center Plaza, LOCust B-4350

CHICAGO (11):
Harvey W. Wernette, Robert M. Donnedl
645 North Michigan Avenue, Mahawk 4-5800

CLEVELAND (13):
Paul T. Feegley
55 Public Square, Superior 1-7000

SAN FRANCISCO (11):
R. C. Alcorn
255 California Street, Douglas 2-4500

LOS ANGELES (17):
Peter S. Carberry, Ashley P. Hartman
1125 W. 6th St., Huntley 2-3450

DENVER (2):
J. W. Paten
Tower Bldg., 1700 Broadway, Alpine 5-2981

ATLANTA (9):
Michael H. Miller, Robert C. Johnson
1375 Peachtree St. N.E., Trinity 5-0523

HOUSTON (23):
Joseph C. Page, Jr.
Prudential Bldg., Holcomb Blvd.,
Jackson 6-1281

DALLAS (11):
Frank Le Beau
The Vaughn Bldg., 1712 Commerce St.,
Riverside 7-9721

LONDON W1:
Dennis McDonald
34 Dover St.

FRANKFURT/Main:
Stanley R. Rimes
85 Westendstrasse

GENEVA:
Michael R. Zeynel
2 Place du Port

"Headquarters for Business Information"

McGraw-Hill Technical and Business Publications

American Machinist/Metalworking Manufacturing
Aviation Week and Space Technology
Business Week
Chemical Engineering
Chemical Week
Coal Age
Construction Methods and Equipment
Construction Daily
Central Engineering
Electrical Construction
and Maintenance
Electrical Merchandising Week
Electrical Newsletter
Electrical West

Electrical Wholesaling
Electrical World
Electronics
Engineering Digest
Engineering and Mining Journal
E & M Metal and Mineral Markets
Engineering News-Record
Factory
Float Owner
Industrial Distribution
National Petroleum News
Nuclear News
Platt's Oilgram News
Platt's Oilgram Price Service
Power

Available by subscription only — to qualified persons actively engaged in the field of the publication. For subscription rates and information describing the editorial coverage of any of the above publications, write to: Subscription Manager, Circulation Department, McGraw-Hill Publishing Company, 330 West 42nd Street, New York 36, N. Y.
Daven revolutionizes switch availability by putting the equivalent of 2,001 standard types on your local selected distributor's shelf, ready for immediate delivery. That's 97% of all your switch needs brought right to your door, usually within 24 hours.

Daven does it by designing the characteristics of 2,001 switches into 87 easy-to-stock, easy-to-use adjustable stop switches. The result: instant availability and maximum flexibility (you can change the number of switch positions at any time). The cost is the same, or less, than its standard counterpart.

Daven adjustable stop switches are built in square configuration, in 1¾" and 2¼" sizes. Like all Daven switches, their metal parts are fabricated from corrosion-resistant materials... plastics are heavily filled with non-organic fibres and are capable of withstanding high temperatures... switch contacts and rotor arms are solid silver alloy. Daven's patented knee action, tamper-proof rotor is standard. All applicable paragraphs of MIL-S-3786 and MIL-E-5272 are met and exceeded.

For your new switch catalog, with details on the new adjustable stop switches and a complete Replacement List, write today!

THE DAVEN COMPANY, Livingston, New Jersey

TODAY, MORE THAN EVER, THE DAVEN STANDS FOR DEPENDABILITY
RCA, world leader in photoelectronics, now offers a wide choice of Cascaded Image Tubes for light detection at very low levels of light.

Completely at home even in near darkness, RCA Cascaded Image Tubes can deliver the ultimate in accurate images of scenes with as little as 10^{-9} foot candle illumination on the tube. In astronomy, for example, these tubes are used in the spectroscopy of very faint stars. Stars many light years away can be photographed in $1/1000$th of the time normally required.

RCA Cascaded Image Tubes also provide a new tool for study of the atom and its nucleus. The Cascaded Image Tube provides a means for improved identification of particles by permitting photography of selected nuclear events within 1 microsecond of the time of occurrence.

RCA can design and make the Cascaded Image Tube you need.

RCA can design and build Cascaded Image Tubes with very high sensitivity—out to the threshold of absolute darkness—for operation in various regions of the spectrum.

Talk over your needs with your RCA Industrial Tube Representative. He can help you draw upon the same research and development capabilities that have made RCA photo-multipliers, phototubes, and other photoelectronic devices famous for a generation. Or, write: Marketing Manager, RCA Industrial Tube Products, Lancaster, Pennsylvania.

RCA ELECTRON TUBE DIVISION

The Most Trusted Name in Electronics