PC Graphics Chip Sets--Product Analysis

PRODUCT MARKET SHARE ANALYSIS

The low-end PC graphics market is broken down into four implementations of the graphics solution: merchant chip sets, captive chip sets, proprietary chip sets, and non-VLSI implementations. Data in this section is presented in figure form to compare 1987 and 1988 actual with 1993 forecast data.

Low-End PC Graphics Market Shares by Implementation

The Dataquest estimates for the share of implementations, broken down by VLSI and non-VLSI, are presented in Table 1 and Figure 1. VLSI (chip set) implementations are expected to be used in about 86 percent of solutions by the end of 1989. The shift toward VLSI is expected to approach saturation in the 1992 time frame.

Table 1
Low-End PC Graphics Market Share by Implementation
Estimated Worldwide History and Forecast
(Millions of Units)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Chip Sets</td>
<td>46.7%</td>
<td>67.9%</td>
<td>86.0%</td>
<td>91.0%</td>
<td>95.0%</td>
<td>98.0%</td>
<td>99.6%</td>
</tr>
<tr>
<td>Merchant Chip Sets</td>
<td>49.0%</td>
<td>60.0%</td>
<td>69.0%</td>
<td>78.0%</td>
<td>82.8%</td>
<td>85.0%</td>
<td>86.5%</td>
</tr>
<tr>
<td>Captive Chip Sets</td>
<td>8.0%</td>
<td>14.2%</td>
<td>14.5%</td>
<td>10.0%</td>
<td>7.3%</td>
<td>5.8%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Proprietary Chip Sets</td>
<td>43.0%</td>
<td>25.8%</td>
<td>16.3%</td>
<td>12.0%</td>
<td>9.9%</td>
<td>9.2%</td>
<td>8.5%</td>
</tr>
<tr>
<td>Non-VLSI Implementations</td>
<td>53.3%</td>
<td>32.1%</td>
<td>14.0%</td>
<td>9.0%</td>
<td>5.0%</td>
<td>2.0%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Total Low-End Graphics Devices</td>
<td>9.2</td>
<td>11.1</td>
<td>13.7</td>
<td>14.3</td>
<td>15.8</td>
<td>16.4</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Source: Dataquest
November 1989
Figure 1

Low-End PC Graphics Market Share
VLSI versus Non-VLSI Implementations

1987
9.2 Million Units

Non-VLSI Implementations 53.3%
Chip Set Implementations 46.7%

1988
11.1 Million Units

Non-VLSI Implementations 32.1%
Chip Set Implementations 67.9%

1993
18.3 Million Units

Non-VLSI Implementations 0.4%
Chip Set Implementations 99.6%

Source: Dataquest
November 1989
PC Graphics Chip Sets—Product Analysis

The further breakdown of VLSI implementations into merchant, captive, and proprietary is presented in Figure 2. Merchant implementations are expected to account for 69 percent of all chip sets by the end of 1989 and 86.5 percent by 1993.

Figure 2

Low-End PC Graphics Chip Set Market Share by Implementation

Source: Dataquest
November 1989
Low-End PC Graphics Market Shares by Standard Type

The Dataquest estimates for market share by standard type are presented in Table 2 and Figure 3. VGA accounted for only 16.4 percent of the market in 1987 but is expected to rise to almost 55 percent by the end of 1989. By 1993, the low-end graphics market is expected to be about 92 percent VGA, with the older standards becoming obsolete.

Table 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HGA</td>
<td>35.8%</td>
<td>23.4%</td>
<td>15.4%</td>
<td>13.6%</td>
<td>10.1%</td>
<td>7.3%</td>
<td>3.8%</td>
</tr>
<tr>
<td>CGA</td>
<td>13.0%</td>
<td>9.5%</td>
<td>6.6%</td>
<td>3.1%</td>
<td>1.9%</td>
<td>1.2%</td>
<td>0</td>
</tr>
<tr>
<td>EGA</td>
<td>34.8%</td>
<td>32.9%</td>
<td>23.4%</td>
<td>16.8%</td>
<td>11.4%</td>
<td>7.3%</td>
<td>3.8%</td>
</tr>
<tr>
<td>VGA</td>
<td>16.4%</td>
<td>34.2%</td>
<td>54.6%</td>
<td>66.4%</td>
<td>76.6%</td>
<td>84.2%</td>
<td>92.4%</td>
</tr>
<tr>
<td>Total Low-End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphics Devices</td>
<td>9.2</td>
<td>11.1</td>
<td>13.7</td>
<td>14.3</td>
<td>15.8</td>
<td>16.4</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Source: Dataquest
November 1989
PC Graphics Chip Sets—Product Analysis

Figure 3
Low-End PC Graphics Market Share by Standard Type

1987
9.2 Million Units

1988
11.1 Million Units

1993
18.3 Million Units

Source: Dataquest
November 1989
PC Graphics Chip Sets--Product Analysis

Low-End PC Graphics Market Shares by Implementation within Standard Types

The Dataquest estimates for the different implementations for HGA are presented in Table 3 and Figures 4; for CGA, in Table 4 and Figure 5; for EGA in Table 5 and Figure 6; and for VGA, in Table 6 and Figure 7. This information reflects the same shift toward merchant chip set implementations within each type as is seen in the data for total implementations (Table 1).

Table 3
HGA Market Share by Implementation
Estimated Worldwide History and Forecast
(Thousands of Units)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchant</td>
<td>0</td>
<td>0</td>
<td>3.5%</td>
<td>18.4%</td>
<td>30.6%</td>
<td>51.7%</td>
<td>63.0%</td>
</tr>
<tr>
<td>Captive</td>
<td>0</td>
<td>0</td>
<td>0.5%</td>
<td>3.4%</td>
<td>6.7%</td>
<td>5.5%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Proprietary</td>
<td>6.0%</td>
<td>7.6%</td>
<td>13.0%</td>
<td>13.4%</td>
<td>13.0%</td>
<td>15.5%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Discrete</td>
<td>94.0%</td>
<td>92.4%</td>
<td>83.0%</td>
<td>64.7%</td>
<td>49.7%</td>
<td>27.3%</td>
<td>11.0%</td>
</tr>
<tr>
<td>Total HGA</td>
<td>3.3</td>
<td>2.6</td>
<td>2.1</td>
<td>2.0</td>
<td>1.6</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Graphics Devices</td>
<td>3.3</td>
<td>2.6</td>
<td>2.1</td>
<td>2.0</td>
<td>1.6</td>
<td>1.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Source: Dataquest
November 1989
Figure 4

Estimated HGA Market Share by Implementation

- **1987**
 - Non-VLSI: 94.0%
 - Merchant: 63.0%
 - Captive: 6.0%
 - Proprietary: 5.0%
 - 3.3 Million Units

- **1988**
 - Non-VLSI: 82.4%
 - Merchant: 63.0%
 - Captive: 6.0%
 - Proprietary: 7.6%
 - 2.6 Million Units

- **1993**
 - Non-VLSI: 11.0%
 - Merchant: 63.0%
 - Proprietary: 20.0%
 - Captive: 6.0%
 - 0.7 Million Units

Source: Dataquest November 1989
Table 4

CGA Market Share by Implementation
Estimated Worldwide History and Forecast
(Thousands of Units)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchant</td>
<td>33.8%</td>
<td>73.0%</td>
<td>87.0%</td>
<td>92.0%</td>
<td>92.0%</td>
<td>90.0%</td>
<td>0</td>
</tr>
<tr>
<td>Captive</td>
<td>10.0%</td>
<td>4.0%</td>
<td>7.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>10.0%</td>
<td>0</td>
</tr>
<tr>
<td>Proprietary</td>
<td>16.0%</td>
<td>10.0%</td>
<td>6.0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discrete</td>
<td>40.2%</td>
<td>13.0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total CGA Graphics Devices</td>
<td>1.2</td>
<td>1.1</td>
<td>0.9</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Dataquest
November 1989
Figure 5
Estimated CGA Market Share by Implementation

1987
1.2 Million Units
- Non-VLSI 40.2%
- Proprietary 16.0%
- Captive 10.0%
- Merchant 33.8%

1988
1.1 Million Units
- Merchant 73.0%
- Proprietary 10.0%
- Non-VLSI 13.0%

1993
0.2 Million Units
- Merchant 90.0%
- Captive 10.0%

Source: Dataquest November 1989
Table 5
EGA Market Share by Implementation
Estimated Worldwide History and Forecast
(Thousands of Units)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchant</td>
<td>38.8%</td>
<td>49.6%</td>
<td>70.9%</td>
<td>78.0%</td>
<td>83.0%</td>
<td>83.8%</td>
<td>86.6%</td>
</tr>
<tr>
<td>Captive</td>
<td>6.8%</td>
<td>15.9%</td>
<td>13.0%</td>
<td>10.0%</td>
<td>8.0%</td>
<td>6.3%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Proprietary</td>
<td>13.1%</td>
<td>6.5%</td>
<td>10.0%</td>
<td>11.0%</td>
<td>9.0%</td>
<td>9.9%</td>
<td>8.5%</td>
</tr>
<tr>
<td>Discrete</td>
<td>41.3%</td>
<td>28.0%</td>
<td>6.1%</td>
<td>1.0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total EGA Graphics Devices</td>
<td>3.2</td>
<td>3.7</td>
<td>3.2</td>
<td>2.4</td>
<td>1.8</td>
<td>1.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Source: Dataquest
November 1989
PC Graphics Chip Sets—Product Analysis

Figure 6
Estimated EGA Market Share by Implementation

1987
3.2 Million Units
- Non-VLSI 41.3%
- Proprietary 13.1%
- Captive 6.8%
- Merchant 38.8%

1988
3.7 Million Units
- Merchant 49.6%
- Captive 15.9%
- Non-VLSI 28.0%
- Proprietary 6.5%

1993
0.7 Million Units
- Merchant 86.6%
- Captive 4.9%
- Proprietary 8.5%

Source: Dataquest
November 1989

© 1989 Dataquest Incorporated November
PC Graphics Chip Sets—Product Analysis

Table 6

VGA Market Share by Implementation
Estimated Worldwide History and Forecast
(Thousands of Units)

<table>
<thead>
<tr>
<th>Year</th>
<th>Merchant</th>
<th>Captive</th>
<th>Proprietary</th>
<th>Discrete</th>
<th>Total VGA Graphics Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>30.5%</td>
<td>0.5%</td>
<td>69.0%</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>1988</td>
<td>51.2%</td>
<td>11.8%</td>
<td>37.0%</td>
<td>0</td>
<td>3.8</td>
</tr>
<tr>
<td>1989</td>
<td>66.7%</td>
<td>16.3%</td>
<td>17.0%</td>
<td>0</td>
<td>7.5</td>
</tr>
<tr>
<td>1990</td>
<td>79.0%</td>
<td>10.1%</td>
<td>10.9%</td>
<td>0</td>
<td>9.5</td>
</tr>
<tr>
<td>1991</td>
<td>84.0%</td>
<td>6.8%</td>
<td>9.2%</td>
<td>0</td>
<td>12.1</td>
</tr>
<tr>
<td>1992</td>
<td>85.9%</td>
<td>5.6%</td>
<td>8.5%</td>
<td>0</td>
<td>13.8</td>
</tr>
<tr>
<td>1993</td>
<td>87.1%</td>
<td>4.9%</td>
<td>8.0%</td>
<td>0</td>
<td>16.9</td>
</tr>
</tbody>
</table>

Source: Dataquest
November 1989
Figure 7

Estimated VGA Market Share by Implementation

1987
Proprietary 69.0%
Merchant 30.5%
1.5 Million Units

1988
Proprietary 37.0%
Merchant 51.2%
16.9 Million Units

1993
Merchant 87.1%
16.9 Million Units

Source: Dataquest
November 1989
MERCHANT CHIP SET PRICING

The Dataquest estimates for average selling prices (ASPs) for merchant chip sets by standard type are presented in Table 7 and Figure 8. Points worth noting include the following:

- Prices are expected to drop sharply between 1989 and 1990. This is due to new vendors coming into the market and creating a situation of oversupply. Competition for VGA market share has driven prices for VGA chip sets down to the level of EGA prices, causing severe price erosion in EGA.

- The weighted average ASP for all merchant graphics chip sets is expected to continue to decline rapidly through 1993, approaching the prices of other commodity VLSI devices. As more high-volume, low-cost producers enter the market, pricing will be cost-based rather than market-based, as it has been until now.

- The ASP forecast was prepared by making assumptions about VGA manufacturing costs, expected premiums required to move up from one standard to the next, and by making comparisons to price trends in similar devices. As VGA becomes the dominant standard, the weighted average ASP begins to reflect VGA pricing.

Table 7
Low-End Merchant PC Graphics Chip Sets
ASPs by Type
Estimated Worldwide History and Forecast

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HGA</td>
<td>7.50</td>
<td>5.70</td>
<td>4.55</td>
<td>3.85</td>
<td>3.25</td>
<td></td>
<td></td>
<td>(18.9%)</td>
</tr>
<tr>
<td>Growth Rate</td>
<td></td>
<td>(24.0%)</td>
<td>(20.2%)</td>
<td>(15.4%)</td>
<td>(15.6%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGA</td>
<td>12.00</td>
<td>11.10</td>
<td>10.26</td>
<td>7.25</td>
<td>5.45</td>
<td>4.05</td>
<td></td>
<td>(17.0%)</td>
</tr>
<tr>
<td>Growth Rate</td>
<td>(7.5%)</td>
<td>(7.6%)</td>
<td>(29.3%)</td>
<td>(24.8%)</td>
<td>(25.7%)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGA</td>
<td>27.63</td>
<td>20.98</td>
<td>18.44</td>
<td>9.25</td>
<td>6.50</td>
<td>4.90</td>
<td>3.95</td>
<td>(27.7%)</td>
</tr>
<tr>
<td>Growth Rate</td>
<td>(24.1%)</td>
<td>(12.1%)</td>
<td>(49.8%)</td>
<td>(29.7%)</td>
<td>(24.6%)</td>
<td>(19.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGA</td>
<td>34.50</td>
<td>31.63</td>
<td>26.41</td>
<td>15.85</td>
<td>11.10</td>
<td>8.30</td>
<td>6.65</td>
<td>(24.0%)</td>
</tr>
<tr>
<td>Growth Rate</td>
<td>(8.3%)</td>
<td>(16.5%)</td>
<td>(40.0%)</td>
<td>(30.0%)</td>
<td>(25.2%)</td>
<td>(19.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Average</td>
<td>26.10</td>
<td>23.90</td>
<td>22.40</td>
<td>13.90</td>
<td>10.20</td>
<td>7.80</td>
<td>6.50</td>
<td>(20.8%)</td>
</tr>
<tr>
<td></td>
<td>(8.6%)</td>
<td>(6.0%)</td>
<td>(38.0%)</td>
<td>(27.0%)</td>
<td>(23.3%)</td>
<td>(17.2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Dataquest
November 1989
PC Graphics Chip Sets--Product Analysis

Figure 8
Low-End Merchant Graphics Chip Set ASP by Standard Type

Source: Dataquest November 1989

SIS Microcomponents © 1989 Dataquest Incorporated November
PC Graphics Chip Sets—Product Analysis

PRODUCT CHARACTERISTICS AND SEGMENTATION

Currently, PC graphics can be divided into two basic types of products: high end and low end. Essentially, the high-end product is an intelligent graphics controller, whereas the low-end product is a simple bit map or collection of memory.

The characteristics of the high-end graphics controller are as follows:

- It has a sophisticated (and high-level) command set for drawing while off-loading the system CPU.
- It may or may not allow direct access to the bit map—i.e., it may or may not allow the system CPU to go around the command set.
- It is capable of higher resolutions and performance.
- It is medium- to high-priced, and it is implemented on a separate add-on board or on the main CPU motherboard.

The high-end graphics segment contains products at the chip level that are sophisticated VLSI graphics coprocessors. These are devices such as the IBM 8514/A, TI TMS34010, Hitachi ACRTC, and Intel i82786. This segment also contains the board-level products that use these coprocessors.

Off-loading the host CPU from the drawing and font creation tedium directly results in an increase in graphics and overall system performance. However, along with the additional computing power comes the requirement for larger memory arrays due to the higher display resolution.

The characteristics of the low-end frame buffer are as follows:

- The system CPU does all graphics drawing; it is not equipped with a high-level command set.
- Essentially, it is a bit map with an addressing scheme.
- Performance at higher resolutions depends on the host CPU.
- It is low- to medium-priced, and it is implemented on a separate add-on board or on the main CPU motherboard.

Graphics systems have two characteristics that are reflected in hardware requirements: Large memories are required to support high-resolution displays, and a lot of computing power is required to generate complex graphic images.
Memory requirements increase with the square of the resolution (for example, a 1,000-line monochrome display without gray scale would require 1 million bits of memory storage, whereas a 2,000-line display would require 4 million bits of memory). A further complication is that for high-resolution displays, more bits must be read from memory in a shorter time. As the number of lines increases, the time available to display each line decreases, since all lines must be displayed within 1/60 of a second. In addition, as the number of lines increases, the number of bits per line also increases. The problem of reading more bits from memory in a shorter time can be solved by faster memories, or by reading more bits at a time, or both. The main point is that graphics displays are memory-intensive and are directly tied to advances in memory technology.

Rapid computation is the other critical factor in graphics applications. Vector information has to be converted to bit patterns and written into the display memory. This process requires a lot of computer power. For example, plotting a straight diagonal line given the end-point coordinates requires a multiplication for each pixel. Circles require a square-root computation for each point, and other shapes can require more complex computations. Special processor chips designed to execute such operations directly in hardware can greatly speed up the plotting process.

PC GRAPHICS STANDARDS: AN EVOLUTION IN RESOLUTION

The evolution of graphics adapters has lead us from the original Hercules Graphics Adapter (HGA) to the Video Graphics Array (VGA), which is now the standard on the IBM PS/2 line of computers. Between these two products have been several other graphics iterations such as the Color Graphics Adapter (CGA), the Multi-Color Graphics Adapter (MCGA), and the Enhanced Graphics Adapter (EGA). All of these display products are originsations by IBM. Also, as they were improvements on one another, only a few are relevant to today's market requirements, as follows:

- HGA—The Hercules Graphics Adapter was conceived by Hercules Corporation as one of the first third-party add-on boards for the IBM PC. It is monochrome but offers a higher display resolution than the monochrome display adapter (MDA) introduced with the PC. The HGA card was first introduced in 1982. Technically, it fits near the bottom of the display resolution ranks. Though it is a long way from today's VGA products, the Hercules specification is upheld in backward compatibility within existing graphics products. The resolution for the HGA is 720 x 350 pixels.

- CGA—The Color Graphics Adapter was the first color specification after the monochrome Hercules adapter. CGA is very limited in its color offering but began life as an alternative to monochrome display solutions. The resolution for CGA is 320 x 200 pixels with 4 colors.
PC Graphics Chip Sets—Product Analysis

- EGA—The Enhanced Graphics Adapter builds on the CGA and increases the number of colors available at the same and higher resolutions. The resolution for EGA is 640 x 350 pixels with 16 colors.

- VGA—The Video Graphics Array is the first graphics standard to be included on the system board as an integral feature. VGA offers still higher resolution and more colors than EGA. The resolution for VGA is 320 x 200 pixels with 256 colors or 640 x 480 with 16 colors.

Table 8 presents the PC graphics standards and their various specifications, including enhancements.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Resolution</th>
<th>Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA</td>
<td>320 x 200</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>640 x 480</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>640 x 480</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>800 x 600</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>800 x 600</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>800 x 600</td>
<td>Monochrome</td>
</tr>
<tr>
<td></td>
<td>960 x 720</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>960 x 720</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>960 x 720</td>
<td>Monochrome</td>
</tr>
<tr>
<td></td>
<td>1024 x 768</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1024 x 768</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1024 x 768</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1024 x 768</td>
<td>Monochrome</td>
</tr>
<tr>
<td></td>
<td>1280 x 960</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1280 x 960</td>
<td>Monochrome</td>
</tr>
<tr>
<td>EGA</td>
<td>640 x 350</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>640 x 480</td>
<td>16</td>
</tr>
<tr>
<td>CGA</td>
<td>320 x 200</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>640 x 200</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>640 x 400</td>
<td>Monochrome</td>
</tr>
<tr>
<td>HGA</td>
<td>720 x 350</td>
<td>Monochrome</td>
</tr>
</tbody>
</table>

Source: Dataquest
November 1989
PC Graphics Chip Sets—Product Analysis

The following is a list of PC graphics chip set vendors:

- Acer Laboratories, Inc., USA
 926 Thompson Place
 Sunnyvale, CA 94086
 Phone: 408-733-3174
 Fax: 408-733-2569

- Chips and Technologies, Inc.
 3050 Zanker Rd.
 San Jose, CA 95134
 Phone: 408-343-0600
 Fax: 408-434-9315

- Cirrus Logic, Inc.
 1463 Centre Pointe Dr.
 Milpitas, CA 95035
 Phone: 408-945-8300

- Genoa Systems Corp.
 75 East Trimble Rd.
 San Jose, CA 95131
 Phone: 408-432-9090
 Fax: 408-434-0997

- Headland Technology, Inc.
 (formerly Video-7)
 46335 Landing Parkway
 Fremont, CA 94538
 Phone: 415-656-7800
 Fax: 415-656-0397

- Intel Corp.
 3065 Bowers Ave.
 Santa Clara, CA 95051
 Phone: 408-987-8080

- NSI Logic, Inc.
 259 Cedar Hill Rd.
 Marlboro, MA 01752
 Phone: 508-460-0717
 Fax: 508-460-0847

- Oak Technology, Inc.
 139 Kifer Ct.
 Sunnyvale, CA 94086
 Phone: 408-737-0888
 Fax: 408-737-3838

- Trident Microsystems, Inc.
 321 Soquel Way
 Sunnyvale, CA 94086
 Phone: 408-738-3194
 Fax: 408-738-0905

- Tseng Laboratories, Inc.
 10 Pheasant Run
 Newtown, PA 18940
 Phone: 215-968-0502
 Fax: 215-860-7713

- United Microelectronics Corp. (UMC)
 13th Floor, No. 687
 Min-Sheng East Road
 Taipei, Taiwan, R.O.C.
 Phone: (02) 715-2455
 Fax: (02) 716-6291

- Western Digital Imaging
 800 East Middlefield Rd.
 Mountain View, CA 94043
 Phone: 415-960-3353
 Fax: 415-968-1974