Customizing APPN Services

Part No. 110062 A
Customizing APPN Services

Router Software Version 8.10
Site Manager Software Version 2.10

Part No. 110062 Rev. A
February 1995

Bay Networks
The Merged Company of SynOptics and Wellfleet
Bay Networks Software License

This Software License shall govern the licensing of all software provided to licensee by Bay Networks ("Software"). Bay Networks will provide licensee with Software in machine-readable form and related documentation ("Documentation"). The Software provided under this license is proprietary to Bay Networks and to third parties from whom Bay Networks has acquired license rights. Bay Networks will not grant any Software license whatsoever, either explicitly or implicitly, except by acceptance of an order for either Software or for a Bay Networks product ("Equipment") that is packaged with Software. Each such license is subject to the following restrictions:

1. Upon delivery of the Software, Bay Networks grants to licensee a personal, nontransferable, nonexclusive license to use the Software with the Equipment with which or for which it was originally acquired, including use at any of licensee's facilities to which the Equipment may be transferred, for the useful life of the Equipment unless earlier terminated by default or cancellation. Use of the Software shall be limited to such Equipment and to such facility. Software which is licensed for use on hardware not offered by Bay Networks is not subject to restricted use on any Equipment, however, unless otherwise specified on the Documentation, each licensed copy of such Software may only be installed on one hardware item at any time.

2. Licensee may use the Software with backup Equipment only if the Equipment with which or for which it was acquired is inoperative.

3. Licensee may make a single copy of the Software (but not firmware) for safekeeping (archives) or backup purposes.

4. Licensee may modify Software (but not firmware), or combine it with other software, subject to the provision that those portions of the resulting software which incorporate Software are subject to the restrictions of this license. Licensee shall not make the resulting software available for use by any third party.

5. Neither title nor ownership to Software passes to licensee.

6. Licensee shall not provide, or otherwise make available, any Software, in whole or in part, in any form, to any third party. Third parties do not include consultants, subcontractors, or agents of licensee who have licensee's permission to use the Software at licensee's facility, and who have agreed in writing to use the Software only in accordance with the restrictions of this license.
7. Third-party owners from whom Bay Networks has acquired license rights to software that is incorporated into Bay Networks products shall have the right to enforce the provisions of this license against licensee.

8. Licensee shall not remove or obscure any copyright, patent, trademark, trade secret, or similar intellectual property or restricted rights notice within or affixed to any Software and shall reproduce and affix such notice on any backup copy of Software or copies of software resulting from modification or combination performed by licensee as permitted by this license.

9. Licensee shall not reverse assemble, reverse compile, or in any way reverse engineer the Software. [Note: For licensees in the European Community, the Software Directive dated 14 May 1991 (as may be amended from time to time) shall apply for interoperability purposes. Licensee must notify Bay Networks in writing of any such intended examination of the Software and Bay Networks may provide review and assistance.]

10. Notwithstanding any foregoing terms to the contrary, if licensee licenses the Bay Networks product “Site Manager,” licensee may duplicate and install the Site Manager product as specified in the Documentation. This right is granted solely as necessary for use of Site Manager on hardware installed with licensee’s network.

11. This license will automatically terminate upon improper handling of Software, such as by disclosure, or Bay Networks may terminate this license by written notice to licensee if licensee fails to comply with any of the material provisions of this license and fails to cure such failure within thirty (30) days after the receipt of written notice from Bay Networks. Upon termination of this license, licensee shall discontinue all use of the Software and return the Software and Documentation, including all copies, to Bay Networks.

12. Licensee’s obligations under this license shall survive expiration or termination of this license.
Chapter 1
Advanced Peer-to-Peer Networking
Overview

APPN Networking Overview ... 1-2
APPN Node Types .. 1-2
 Network Nodes .. 1-3
 End Nodes ... 1-3
 Low-Entry Networking Nodes ... 1-3
Control Points and Logical Units .. 1-5
APPN Interfaces, Ports, and Link Stations ... 1-6
 Interfaces .. 1-7
 Ports ... 1-7
 Link Stations ... 1-7
Connection Networks .. 1-8
APPN Services .. 1-10
 Session Services .. 1-10
 Directory Services .. 1-10
 Topology and Routing Services .. 1-11
 Intermediate Session Routing .. 1-12
Chapter 2
Enabling APPN Services

- Enabling APPN over LLC2 Interfaces .. 2-2
- Enabling APPN over LL2 Interfaces Using SRB 2-9
- Enabling APPN Interfaces over SDLC ... 2-15

Chapter 3
Configuring and Editing APPN Parameters

- Accessing APPN Parameters ... 3-2
- Editing APPN Global Parameters ... 3-3
 - APPN Global Advanced Parameters .. 3-7
- Editing APPN Interfaces and Ports .. 3-16
 - Deleting APPN Interfaces ... 3-18
 - Editing APPN Ports .. 3-18
 - Deleting APPN Ports ... 3-21
- Adding Ports to an APPN Interface .. 3-21
- Editing the APPN Advanced Port Parameters 3-25
Editing APPN Adjacent Link Stations ...3-35
Deleting Adjacent Link Stations ..3-40
Adding Adjacent Link Stations ...3-40
Editing the Advanced Adjacent Link Station Parameters3-45

Editing APPN Connection Networks ...3-54
Deleting APPN Connection Networks ...3-56
Adding APPN Connection Networks ...3-56
Editing APPN Connection Network Ports ...3-59
Deleting APPN Connection Network Ports ...3-60
Adding APPN Connection Network Ports ...3-61
Editing the APPN Advanced Connection Networks Parameters3-62

Editing APPN Directory Entries Parameters ..3-68
Adding APPN LU Names to Directory Services ...3-73

Index
Figures

Figure 1-1. APPN Network with Different Node Types .. 1-4
Figure 1-2. CP-CP and LU-LU Sessions ... 1-5
Figure 1-3. Interface, Port, and Link Station Relationship ... 1-6
Figure 1-4. Sample APPN Connection Network ... 1-9
Figure 1-5. Nonadjacent LU-LU Session through an Intermediate Node 1-13
Figure 2-1. Wellfleet Configuration Manager Window ... 2-2
Figure 2-2. Add Circuit Window ... 2-3
Figure 2-3. Select Protocols Window .. 2-4
Figure 2-4. Source Route Encapsulation Dialog Box .. 2-5
Figure 2-5. APPN Local Node Name Configuration Window .. 2-5
Figure 2-6. APPN Configuration Window .. 2-7
Figure 2-7. Adjacent Link Station Dialog Box .. 2-9
Figure 2-8. Source Route Encapsulation Dialog Box .. 2-10
Figure 2-9. Source Routing Global Parameters Window ... 2-11
Figure 2-10. Edit SR Interface Window ... 2-13
Figure 2-11. APPN Virtual Ring Number Window ... 2-14
Figure 2-12. SDLC Line Parameters Window ... 2-16
Figure 2-13. Select Protocols Window .. 2-19
Figure 2-14. APPN Local Node Name Configuration Window .. 2-19
Figure 2-15. APPN Configuration Window .. 2-21
Figure 2-16. Adjacent Link Station Dialog Box .. 2-22
Figure 3-1. Wellfleet Configuration Manager Window ... 3-2
Figure 3-2. Edit APPN Global Parameters Window .. 3-3
Figure 3-3. Advanced APPN Global Parameters Window ... 3-7
Figure 3-4. APPN Interface List Window ... 3-16
Figure 3-5. APPN Port List Window ... 3-19
Figure 3-6. Port Configuration Window .. 3-22
Figure 3-7. APPN Port Window .. 3-25
Figure 3-8. APPN Adjacent Link Station List Window 3-35
Figure 3-9. Adjacent Link Station Port Configuration Window 3-41
Figure 3-10. Adjacent Link Station Configuration Window 3-42
Figure 3-11. APPN Adjacent Link Station Window .. 3-46
Figure 3-12. APPN Connection Networks Window ... 3-54
Figure 3-13. Connection Network Parameters Window 3-57
Figure 3-14. APPN Connection Network Ports Window 3-59
Figure 3-15. Connection Network Port Parameters Window 3-61
Figure 3-16. APPN Connection Network Advanced Parameters Window 3-63
Figure 3-17. APPN Directory Entries Window ... 3-69
Figure 3-18. Directory Entry Parameters Window ... 3-73

Tables
Table 3-1. Link Activation Limit Default Values .. 3-29
If you are responsible for configuring and managing Wellfleet routers that use Advanced Peer-to-Peer Networking (APPN), you need to read this guide. This guide provides information on how to customize Wellfleet router software for APPN services.

Refer to this guide for

- An overview of APPN, as implemented on Wellfleet routers and Site Manager software (see Chapter 1, “APPN Overview”)
- Instructions on enabling APPN services using Wellfleet Site Manager (see Chapter 2, “Enabling APPN Services”)
- Instructions on configuring APPN parameters using Wellfleet Configuration Manager software (see Chapter 3, “Configuring and Editing APPN Parameters”)

About This Guide
Before You Begin

Before you use this guide, you must complete the following procedures, as described in Configuring Wellfleet Routers:

- Create and save a configuration file that contains at least one interface for your network.
- Open the configuration file in local, remote, or dynamic mode.

How to Get Help

For additional information or advice, contact the Bay Networks Help Desk in your area:

- United States 1-800-2LAN-WAN
- Valbonne, France (33) 92-966-968
- Sydney, Australia (61) 2-903-5800
- Tokyo, Japan (81) 3-328-0052

Conventions

- **angle brackets (< >)**: Indicate that you choose the text to enter based on the description inside the brackets. Do not type the brackets when entering the command. Example: if command syntax is `ping <ip_address>`, you enter `ping 192.32.10.12`
- **arrow character (➔)**: Separates menu and option names in instructions. Example: `Protocols➔APPN` identifies the APPN option in the Protocols menu.
- **brackets ([])**: Indicate optional elements. You can choose none, one, or all of the options.
- **user entry text**: Denotes text that you need to enter. Example: Start up the Windows environment by entering the following after the prompt: `win`
- **command text**: Denotes command names in text. Example: Use the `xmodem` command.
italic text Indicates variable values in command syntax descriptions, new terms, file and directory names, and book titles.

screen text Indicates data that appears on the screen. Example: Set Trap Monitor Filters

ellipsis points Horizontal (. . .) and vertical (:) ellipsis points indicate omitted information.

quotation marks (“ ”) Indicate the title of a chapter or section within a book.

vertical line (|) Indicates that you enter only one of the parts of the command. The vertical line separates choices. Do not type the vertical line when entering the command.

Example: If the command syntax is show at routes | nets, you enter either show at routes or show at nets, but not both.

Acronyms

- APPN Advanced Peer-to-Peer Networking
- COS class of service
- CP control point
- DLC data link control
- DLCI data link connection identifier
- DS directory services
- EN end node
- FDDI Fiber Distributed Data Interface
- ISR intermediate session routing
- LAN local area network
- LEN low-entry networking
- LLC logical link control
- LU logical unit
- MAC media access control
- MIB Management Information Base
- NCP Network Control Program
- NN network node
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNS</td>
<td>network node server</td>
</tr>
<tr>
<td>RSCV</td>
<td>route selection control vector</td>
</tr>
<tr>
<td>SAP</td>
<td>service access point</td>
</tr>
<tr>
<td>SATF</td>
<td>shared access transport facility</td>
</tr>
<tr>
<td>SDLC</td>
<td>Synchronous Data Link Control</td>
</tr>
<tr>
<td>SNA</td>
<td>Systems Network Architecture</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SRB</td>
<td>source routing bridge</td>
</tr>
<tr>
<td>TG</td>
<td>transmission group</td>
</tr>
<tr>
<td>VRN</td>
<td>virtual routing node</td>
</tr>
<tr>
<td>XID</td>
<td>exchange identification</td>
</tr>
</tbody>
</table>
Chapter 1
Advanced Peer-to-Peer Networking Overview

This chapter presents information about the IBM Advanced Peer-to-Peer Networking (APPN) architecture concepts and includes information on the following topics:

- APPN networking overview
- APPN node types
- Control points and logical units
- APPN interfaces, ports, and link stations
- APPN connection networks
- APPN services

You should read this chapter if you are responsible for configuring APPN on one or more Wellfleet router APPN nodes in your network. If you are already familiar with APPN concepts, you can go directly to Chapter 2, “Enabling APPN Services,” for information about getting APPN started on Wellfleet routers.
APPN Networking Overview

Advanced Peer-to-Peer Networking (APPN) is an architectural extension to the IBM Systems Network Architecture (SNA). APPN provides a set of distributed network services for nodes participating in an IBM SNA network. APPN nodes use these services to maintain routing, connection, topology, and directory information dynamically, simplifying the task of configuring and maintaining an accurate definition of the network.

Wellfleet routers participate as APPN network nodes (NNs) in IBM SNA network environments (with or without the presence of an IBM mainframe computer) and communicate with adjacent network nodes, end nodes (ENs), and low-entry networking (LEN) nodes. APPN runs on all Wellfleet router platforms using local and wide area network facilities, including

- LLC2 media, including Ethernet, Token Ring, and Frame Relay
- LLC2 using Source Routing Bridge (SRB) encapsulation formats over Ethernet, FDDI, SMDS, Frame Relay, and Point-to-Point (PPP) protocols
- SDLC links in point-to-point and multipoint configurations

Our implementation of APPN adheres to Version 2 of the IBM APPN NN specification with advanced optional APPN function sets.

APPN Node Types

APPN supports the following node types:

- Network nodes (routers)
- End nodes
- Low-entry networking nodes
Network Nodes

Network nodes (NNs) provide routing and networking services to other network nodes and end nodes. These services include location of network resources, route calculation, and session routing. The network node uses configured or dynamic control point-to-control point (CP-CP) sessions with adjacent nodes to manage, communicate, and exchange network topology and resource information. Any adjacent node that does not have control point sessions (such as a low-entry networking node) cannot participate in this exchange and must rely on static definitions. A network node that provides control services to end nodes is called a Network Node Server (NNS).

End Nodes

End nodes (ENs) have control points that allow them to register and share network information (using CP-CP sessions) with the NNS. End nodes provide APPN services to local users and applications and can operate independently in simple network configurations. In most configurations, end nodes are application hosts and workstations that register their resources with their network node server.

Low-Entry Networking Nodes

Low-entry networking (LEN) nodes are the simplest type of node in an APPN network. LEN nodes communicate with each other as adjacent peers only.

LEN nodes do not have control point sessions and cannot exchange resource information with a network node. Therefore, the resource information for LEN nodes is pre-configured and supported at the NN. LEN nodes can include personal computers and workstations.

Figure 1-1 illustrates a simple APPN network with the three APPN node types.
Figure 1-1. APPN Network with Different Node Types
Control Points and Logical Units

APPN uses control points (CPs) to manage nodes and network resources by establishing CP-CP sessions between nodes. All CP-CP sessions use logical unit (LU) 6.2 sessions.

During a CP-CP session (Figure 1-2), adjacent nodes exchange network information. Network nodes use CP-CP sessions to keep track of the network topology and directory information. Adjacent end nodes use CP-CP sessions to register resources and to request directory searches from the NNS.

Figure 1-2. CP-CP and LU-LU Sessions

In Figure 1-2, APPN.C registers its local resources with APPN.B, and sends requests to APPN.B for information about the network and its resources. Since APPN end nodes (for example, APPN.C) have limited directory and routing services, APPN.B functions as a network node server (NNS) for APPN.C.

APPN.B has CP-CP sessions with APPN.A and APPN.C. In this example, APPN.A and APPN.B exchange network topology and cooperate in directory searches.
APPN Interfaces, Ports, and Link Stations

APPN configurations comprise interfaces, ports, and link stations. Figure 1-3 illustrates the relationship of interfaces, ports, and link stations in a simple APPN network.

Note: In this manual, the term "interface" assumes the same meaning as data link control (DLC) in IBM-related publications.

![Diagram of Interface, Port, and Link Station Relationship](image)

Figure 1-3. Interface, Port, and Link Station Relationship
Interfaces

Interfaces provide data link control (DLC) processes that ensure the reliable delivery of information between adjacent stations using a specific data link protocol such as LLC or SDLC.

Each APPN interface can support one or more ports.

APPN interfaces on Wellfleet network nodes are identified by a system-assigned DLC number (such as DLC00008).

For information on adding and enabling APPN interfaces on Wellfleet network nodes, refer to Chapter 2, "Enabling APPN Services."

Ports

A port represents a unique access point (such as MAC/SAP address pair) used by the local Wellfleet network node. A port is also associated with a DLC process and has a set of configurable parameters in an APPN network.

Link Stations

A link station is associated with a port and represents a connection to an adjacent node. Multiple link stations can exist on a single port, and multiple link stations can exist between the same two nodes. A link station entry can be configured or created dynamically as a result of connection initiated by a remote node.

Note: The term *link* often refers to the physical components that enable two adjacent link stations to communicate. Within APPN, a link is considered a logical connection between two nodes. The term *transmission group* (TG) is also used throughout this manual and assumes the same meaning as *link*.
Link stations have a set of configurable parameters, such as
- Link station name and the name of the adjacent node
- Adjacent link station role: primary, secondary, or negotiable
- Adjacent link station definitions, such as MAC and SAP addresses

Connection Networks

APPN nodes on a *shared access transport facility* (SATF), such as a Token Ring network, have direct connectivity with each other. Nodes with direct connections can communicate with each other without having to route traffic through an intermediate network node. However, these nodes still require definitions to other nodes if communication is to take place. A *connection network* (CN) simplifies APPN configurations by reducing the number of connections that must be configured between nodes on a SATF.

When two nodes on the same SATF are configured on the same connection network, these nodes are unaware that they have a direct connection to each other. The NNS calculates a route between the two nodes so that they can communicate directly. Therefore, connection networks are defined at the NNS without requiring that all data be routed through the NNS. This means that the nodes will establish a connection with each other using a Virtual Routing Node (VRN) to represent attachment to the network.

Figure 1-4 illustrates a sample connection network. Any connection network, such as the connection between EN2 and EN3, may use resources at the network node (NN1) to establish sessions with each other.
Virtual Routing Node

Figure 1-4. Sample APPN Connection Network
APPN Services

The APPN services implemented by the network node include

- Session services
- Directory services
- Topology and route services
- Intermediate session routing
- Configuration services
- Management services

Session Services

Session services (SS) generates unique session identifiers, activates and deactivates CP-CP sessions that the CP components use to exchange network information, and assists LUs in initiating and activating LU-LU sessions. Session services invokes directory services to locate a partner LU, invokes topology and routing services (TRS) to calculate the optimum route between the origin and destination node, and informs management services (MS) about newly activated or deactivated CP-CP sessions.

Directory Services

Directory services (DS) manages the directory database and locates network resources throughout an APPN network. To locate network resources, directory services at each node collects resource information and maintains the information in a local directory database. Through a CP-CP session between an APPN network node and an adjacent APPN end node, the APPN network node registers (by end node request) the APPN end node’s resources in its local directory database.
An APPN network node maintains database entries for
- Local resources (LUs and the CP)
- End node resources within the APPN network node’s domain
- End node or network node resources outside the APPN network node’s domain, called cross-domain resources

An APPN end node or low-entry networking node maintains database entries for
- Local resources
- Local resources on adjacent nodes that have peer-to-peer communications sessions (without the presence of an APPN network node or control point, in the case of a peer-to-peer end node and low-entry networking node)

Topology and Routing Services

Topology and routing services (TRS) resides in every APPN network node and, in lesser form, in every APPN end node and low-entry networking node. In APPN network nodes, TRS collects and exchanges information on other network nodes and the links between them. For LU-LU sessions, TRS provides the best route between the two LUs. In APPN end nodes and low-entry networking nodes, TRS collects information on links and adjacent nodes.

In APPN network nodes, TRS creates and maintains the class-of-service (COS) database and a copy of the network topology database. The network topology database contains information on APPN network node connections to connection networks and other network nodes. (A connection network is a way of defining an APPN node attachment to a shared-access transport facility, reducing intermediate node routing and definition requirements.)
In APPN end nodes, TRS creates and maintains the COS database, and maintains the *local topology database* (also maintained by TRS at the network node). The local topology database contains information on connections involving the local end nodes: end node-to-end node, end node-to-network node, and end node-to-virtual routing node.

For LU-LU sessions, TRS computes the optimal route through an APPN network between the two nodes on which the LUs reside. A route in an APPN network is an ordered sequence of nodes and transmission groups (TGs) that represents a path from an origin to a destination, called a Route Selection Control Vector (RSCV). In APPN end nodes, TRS uses the local database to select possible transmission groups from the end node to an adjacent node. In APPN network nodes, TRS uses the information provided by the two end nodes, together with the information in the network node’s COS and topology database, to select a route.

Intermediate Session Routing

Intermediate session routing (ISR) provides a reliable, connection-oriented, LU-LU session path between nonadjacent APPN nodes. ISR uses session connectors (SCs) and a session connection manager (SCM) for sessions passing through the intermediate network node.

At session endpoints, the LU, with control point services, establishes a session with a session partner and routes session data back and forth with the partner LU. When session partners reside on nonadjacent nodes, session data passes through intermediate network nodes (Figure 1-5). Intermediate network nodes do not control the LU endpoints, and LU services cannot be invoked on these nodes. ISR forwards session data to the next node along the session path.
Advanced Peer-to-Peer Networking Overview

Figure 1-5. Nonadjacent LU-LU Session through an Intermediate Node

In Figure 1-5, LU-A and LU-C are nonadjacent session partners. ISR at NNB forwards session data between the nonadjacent nodes, LU-A and LU-C. NNB creates a session connector (SC) for each session passing through it.

Configuration Services

Configuration services (CS) manages links to adjacent APPN nodes. The APPN node operator facility (NOF) initializes configuration services and is implemented through the Wellfleet Site Manager.

The basic configuration functions are

- Node definition
- Interfaces
- Ports
- Adjacent link stations
- Connection networks
- Directory services
Refer to Chapter 3, “Configuring and Editing APPN Parameters” for detailed information on configuring APPN nodes.

Management Services

Management services (MS) controls and monitors the node’s resources. If an error condition occurs, APPN receives or generates event messages about resources and conditions. For information on the APPN event messages, refer to Event Messages for Wellfleet Routers.

For More Information about APPN

IBM Publications

For more information about APPN, IBM SNA, and related subjects, refer to the following IBM publications:

- IBM Systems Network Architecture: APPN Architecture Reference (SC30-3422)
- IBM Systems Network Architecture: Management Services (SC30-3346)
- IBM APPN Architecture and Product Implementation Tutorial (GG24-3669)
- IBM AS/400 Advanced Peer-to-Peer Networking (GG24-3287)
- IBM Systems Network Architecture: Technical Overview (GC30-3073)
- IBM Systems Network Architecture: Concepts and Products (GC30-3072)
- IBM System Network Architecture: Introduction to Sessions between Logical Units (GC20-1869)
Bay Networks Publications

For information about Wellfleet products that relate to APPN, refer to the following manuals:

- Customizing Frame Relay Services (110057, A)
- Customizing LLC Services (110051, A)
- Customizing SDLC Services (110055, A)
- Customizing SMDS Services (110058, A)
- Configuring Wellfleet Routers (110073, A)
- Event Messages for Wellfleet Routers (110071, A)
- Release Notes for Wellfleet Router Software Version 8.10 (110041, A)
- Release Notes for Wellfleet Site Manager Software Version 2.10 (110042, A)
- Using Technician Interface Scripts (110075, A)
This chapter shows you how to use Wellfleet Configuration Manager to initially configure APPN on your Wellfleet router. It contains information about

- Enabling APPN on Logical Link Control 2 (LLC2) media, including Ethernet, Token Ring, and Frame Relay
- Enabling APPN on LLC2 using Source Routing Bridge (SRB) encapsulation formats over Ethernet, FDDI, SMDS, Frame Relay, and Point-to-Point (PPP)
- Enabling APPN on Synchronous Data Link Control (SDLC) links in point-to-point and multipoint networks
Enabling APPN over LLC2 Interfaces

When you configure APPN on LLC2 interfaces, such as Ethernet and Token Ring, the Wellfleet Configuration Manager requests media access control (MAC) and service access point (SAP) addresses. On synchronous interfaces where you are configuring APPN over Frame Relay, Configuration Manager requests a data link connection identifier (DLCI) address and a SAP address.

To enable APPN on Ethernet, Token Ring, or Wellfleet synchronous interfaces using Frame Relay, perform the following steps:

1. Start at the Wellfleet Configuration Manager window (Figure 2-1) and select a connection on one of the installed modules. For example, position the screen cursor and click on a connector such as the one labeled XCVR1. The Add Circuit window (Figure 2-2) appears.
2. On the Add Circuit window, click OK to add the default circuit name indicated in the Circuit Name box. The Select Protocols window may appear (Figure 2-3).
Enabling APPN over LLC2 Interfaces

Figure 2-3. Select Protocols Window

3. Scroll down the Select Protocols window and select the APPN option. Configuration Manager automatically selects the LLC2 option. Click OK. For Frame Relay and Ethernet networks, the “Use Source Route Encapsulation?” dialog box appears (Figure 2-4).
Enabling APPN Services

4. Select Cancel if you are configuring standard LLC over Ethernet, or if you are configuring Frame Relay using the RFC 1490 Routing Standard. If you want to configure Wellfleet proprietary SRB over Ethernet or Frame Relay using the RFC 1490 Bridging Standard, click on OK and refer to the next section, “Enabling APPN over LLC2 Interfaces Using SRB,” for information on the additional screens that appear. In this example, click Cancel. The APPN Local Node Name Configuration window appears (Figure 2-5).

5. At the APPN Configuration window, specify the Local Node Name parameter, as follows:
Enabling APPN over LLC2 Interfaces

Parameter: Local Node Name

- **Default:** None
- **Options:** Any valid name with up to 17 characters in the format `<NETID.CPNAME>`, where NETID is the global network name with up to 8 characters followed by a period, and CPNAME is the control point name with up to 8 characters.
- **Function:** The Local Node Name parameter identifies the unique name of the network and the Wellfleet router node name.
- **Instructions:** Enter the node name by first specifying up to 8 characters in the network ID name, type a period, then enter a control point name with up to 8 characters. Names must be specified in uppercase characters only and must start with a non-numeric character. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, NETWORKA.SYSTEMA is a valid entry for the Local Node Name parameter.
- **MIB Object ID:** 1.3.6.1.4.1.18.3.5.14.1.1.4

6. Click OK to add the Local Node Name. The APPN Configuration window appears (Figure 2-6).
7. Specify the MAC Address and SAP parameters, as follows:

Parameter: MAC Address
Default: None
Options: Any unique 48-bit 12-digit hexadecimal MAC-level address
Function: Specifies a unique MAC-level address for this port connecting the adjacent link station.
Instructions: Enter a 12-digit hexadecimal MAC-level address in most significant bit (MSB) non-canonical format, regardless of the media.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.38
Enabling APPN over LLC2 Interfaces

Parameter: SAP (hex)

Default: None

Options: Any unique service access point (SAP) 2-digit hexadecimal value, typically 04.

Function: Specifies a service access point (SAP) address that lets multiple applications and protocol entities in a single computer share a MAC address.

Instructions: Enter a 2-digit hexadecimal value.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.38

If you are configuring a Wellfleet synchronous interface (a connector labeled COM# on the Wellfleet Configuration Manager window in Figure 2-1) with the Frame Relay protocol, the APPN Configuration Window displays the Data Link Connection Identifier (DLCI) parameter instead of the MAC Address parameter. The DLCI is the Frame Relay permanent virtual circuit (PVC) identification number. The Frame Relay network uses the DLCI to direct basic data flow. Specify the DLCI parameter as follows:

Parameter: DLCI

Default: None

Options: Valid range changes based on the Frame relay address length as follows:

<table>
<thead>
<tr>
<th>Address Length</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Byte</td>
<td>16-1007</td>
</tr>
<tr>
<td>3 Byte</td>
<td>1024-64511</td>
</tr>
<tr>
<td>4 Byte</td>
<td>131072-8257535</td>
</tr>
</tbody>
</table>

Function: This number is the PVC identification number that the Frame Relay network uses to direct data.

Instructions: Enter a decimal number within the valid range.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.38

2-8
8. Click the OK button on the APPN Configuration Manager window. The Adjacent Link Station dialog box appears (Figure 2-7).

![Site Manager dialog box](image)

Figure 2-7. Adjacent Link Station Dialog Box

9. If you wish to configure APPN adjacent link station parameters at this time, go the section in Chapter 3 entitled “Editing APPN Adjacent Link Stations.” Otherwise, click the Cancel button and proceed to Chapter 3 for information on configuring APPN.

Enabling APPN over LL2 Interfaces Using SRB

If you are configuring LLC2 interfaces such as Ethernet, FDDI, SMDS, Frame Relay, and Point-to-Point (PPP) and you want to use source routing bridge (SRB) encapsulation formats, select the appropriate connector and protocols, as described in the previous section. For Ethernet (Wellfleet proprietary SRB over Ethernet) and Frame Relay (RFC1490 Bridging Standard), start at the Source Route Encapsulation Dialog Box (Figure 2-8) and proceed as follows:
1. Click the OK button. The Source Routing Global Parameters window appears (Figure 2-9).
2. Edit the parameters in the Source Routing Global Parameters window. The SR Bridge Internal LAN ID and the SR Bridge ID are mandatory parameters that you must specify before you can proceed.
Enabling APPN over LL2 Interfaces Using SRB

Parameter: SR Bridge Internal LAN ID

Default: 0x1
Range: 0x1 to 0xffff
Function: Specifies this bridge's internal LAN ID.
Instructions: Assign an internal LAN ID that is unique among all other internal LAN IDs and ring IDs in the network.
MIB Object ID: 1.3.6.1.4.1.18.3.5.1.1.2.1.4

Parameter: SR Bridge ID

Default: 0x1
Range: 0x1 to 0xf
Function: Specifies this bridge's bridge ID and identifies the Wellfleet source routing bridges in the network.
Instructions: Assign the same value to all Wellfleet source routing bridges in the network (unless two bridges operate in parallel; see the following note). The SR bridge ID must be unique among any other third-party bridge IDs in the network.
MIB Object ID: 1.3.6.1.4.1.18.3.5.1.1.2.1.5

For details on how to configure the source routing parameters on this window, refer to *Customizing Bridging Services.*

3. When you have specified the parameters on the Source Routing Global Parameters window, click the OK button. The Edit SR Interface window appears (Figure 2-10).
4. Edit the parameters in the Edit SR Interface window. The Source Routing Ring Number is the only parameter that you must specify before you can proceed. This is the unique ring number on the interface you are configuring.
Parameter: Source Routing Ring Number

Default: 0x0

Range: 0x0 to 0xffff

Function: Identifies the ring number (ring ID) of this source routing circuit.

Instructions: Assign a ring number (ring ID) to this source routing circuit that is unique among any other ring IDs, group LAN IDs, or internal LAN IDs in the network.

MIB Object ID: 1.3.6.1.4.1.18.3.5.1.1.2.2.1.6

For details on how to configure the source routing parameters on this window, refer to *Customizing Bridging Services*.

5. When you have specified the parameters on the Edit SR Interface window, click the OK button. The APPN Virtual Ring Number window appears (Figure 2-11).

![APPN Virtual Ring Number Window](image)

Figure 2-11. APPN Virtual Ring Number Window

6. Edit the Virtual Ring Number parameter, as follows:
Parameter: Virtual Ring Number (hex)
- **Default:** None
- **Range:** 1 to 4095
- **Function:** Specifies the unique SRB ring number to be used by APPN if the encapsulation technique is SRB. It must be unique in the SRB network. This means that Virtual Ring Number must be different from the ring IDs specified in the SRB configuration, as well as different from other Wellfleet routers running APPN on LLC2/SRB media.
- **Instructions:** Specify the unique LLC ring number in the range 1 to 4095.
- **MIB Object ID:** 1.3.6.1.4.1.18.3.5.1.6.2.25

7. Click the OK button. If this is the first interface for which you are configuring APPN, the APPN Local Node Name Configuration window appears (Figure 2-5). If this is not the first interface for which you are configuring APPN, the Adjacent Link Station dialog box appears (Figure 2-7). Refer to these figures for information on completing the remaining APPN configuration steps.

Enabling APPN Interfaces over SDLC

If you are configuring APPN on synchronous interfaces (COM1, COM2, etc.) using the SDLC protocol, the Configuration Manager displays the SDLC Line Parameters window (Figure 2-12).
Configuration Mode: local
SNMP Agent: LOCAL FILE

Clock Source
Internal Clock Speed 19200
Sync Line Coding NRZ
Cable Type RS232

Figure 2-12. SDLC Line Parameters Window

1. Edit the Clock Source, Internal Clock Speed, Sync Line Coding, and Cable Type parameters, as follows:
Parameter: Clock Source

- **Default:** External
- **Options:** External | Internal

Function: Specifies the origin of the synchronous timing signals. If you set this parameter to Internal, this router supplies the required timing signals. If you set this parameter to External, an external network device supplies the required timing signals. In most cases, this parameter should be set to External.

Instructions: Set this parameter to either Internal or External, as appropriate for your network.

MIB Object ID: 1.3.6.1.4.1.18.3.4.5.1.13

Parameter: Internal Clock Speed

- **Default:** 64 KB
- **Options:** 1200 B | 2400 B | 4800 B | 7200 B | 9600 B | 19200 B | 32000 B | 38400 B | 56 KB | 64 KB | 125 KB | 230 KB | 420 KB | 625 KB | 833 KB | 1.25 MB | 2.5 MB | 5 MB

Function: Sets the clock speed of an internally supplied clock when the Clock Source parameter is set to Internal.

Instructions: Click on Values and set the clock speed for the internal clock to the desired data transmission rate across the synchronous line. The Internal Clock Speed parameter is unavailable when the Clock Source parameter is set to External.

MIB Object ID: 1.3.6.1.4.1.18.3.4.5.1.14
Parameter: Sync Line Coding

Default: NRZ

Options: NRZ | NRZI | NRZI Mark

Function: This parameter specifies the line coding of the physical synchronous line. You can change the value of this parameter to match the line coding of a device at the other end of the line.

This parameter is relevant only for the AN and the ASN. Other Wellfleet router platforms use NRZ encoding.

- **NRZ**
 - Indicates Non-Return to Zero coding

- **NRZI**
 - Indicates Non-Return to Zero Inverted coding

- **NRZI Mark**
 - Indicates Non-Return to Zero Inverted Mark coding.

Instructions: Select the appropriate value for synchronous line coding.

MIB Object ID: 1.3.6.1.4.1.18.3.4.5.1.88

Parameter: Cable Type

Default: Null

Options: Null | RS232 | RS422 | V35 | X21

Function: Specifies the cable interface type of the device.

Instructions: Set to reflect the cable interface type being used to connect the dial unit if you are using one.

MIB Object ID: 1.3.6.1.4.1.18.3.4.5.1.83
2. Click the OK button to display the Select Protocols window (Figure 2-13).

![Select Protocols Window](image)

Figure 2-13. Select Protocols Window

3. Select APPN and click OK. If this is the first interface for which you are configuring APPN, the APPN Local Node Name Configuration window appears (Figure 2-14). Otherwise, the APPN Configuration window appears (Figure 2-15).

![APPN Configuration Window](image)

Figure 2-14. APPN Local Node Name Configuration Window
4. At the APPN Local Node Name Configuration window, specify the Local Node Name parameter, as follows:

Parameter: Local Node Name

Default: None

Options: Any valid name with up to 17 characters in the format <NETID.CPNAME>, where NETID is the global network name with up to 8 characters followed by a period, and CPNAME is the control point name with up to 8 characters.

Function: The Local Node Name parameter identifies the unique name of the network and the Wellfleet router node name.

Instructions: Enter the node name by first specifying up to 8 characters in the network ID name, type a period, then enter a control point name with up to 8 characters. Names must be specified in uppercase characters only and must start with a non-numeric character. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, NETWORKA.SYSTEMA is a valid entry for the Local Node Name parameter.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4

5. Click OK to add the Local Node Name. The APPN Configuration window appears (Figure 2-15).
Enabling APPN Services

Figure 2-15. APPN Configuration Window

6. Specify the SDLC address for the interface, as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SDLC Address (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Options</td>
<td>Any unique 2-digit hexadecimal SDLC-level address</td>
</tr>
<tr>
<td>Function</td>
<td>Specifies a unique SDLC address for this circuit.</td>
</tr>
<tr>
<td>Instructions</td>
<td>Enter a 2-digit hexadecimal address.</td>
</tr>
<tr>
<td>MIB Object ID</td>
<td>1.3.6.1.4.1.18.3.5.14.1.3.1.38</td>
</tr>
</tbody>
</table>
7. Click the OK button on the APPN Configuration Manager window. The Adjacent Link Station dialog box appears (Figure 2-16).

Figure 2-16. Adjacent Link Station Dialog Box

8. If you wish to configure APPN adjacent link station parameters at this time, go the section in Chapter 3 entitled “Editing APPN Adjacent Link Stations.” Otherwise, click the Cancel button and proceed to Chapter 3 for information on configuring APPN.
Chapter 3
Configuring and Editing APPN Parameters

This chapter provides information on how to use the Wellfleet router Configuration Manager to access, configure, and edit
- APPN global and advanced parameters
- APPN interface and port parameters
- APPN adjacent link station parameters
- APPN connection networks parameters
- APPN static directory services entries

Once you successfully enable an APPN interface on the router, you can use Configuration Manager to edit APPN parameters and customize APPN services, as presented in this chapter.

This section assumes that you have already added one or more interfaces to a router configuration file that you now want to edit for APPN. (Refer to Chapter 2, “Enabling APPN Services,” or refer to Configuring Wellfleet Routers if you need to add interfaces to the configuration file.)
Accessing APPN Parameters

You can access all APPN operational parameters from the Wellfleet Configuration Manager window (Figure 3-1). (Refer to Configuring Wellfleet Routers if you need instructions on how to access this window.)

Figure 3-1. Wellfleet Configuration Manager Window

This chapter presents information on each APPN parameter, provides the default setting, all valid setting options, the parameter function, and instructions for setting the parameter.
Editing APPN Global Parameters

To edit APPN Global parameters, begin at the Wellfleet Configuration Manager window (Figure 3-1) and proceed as follows:

1. Select the Protocols→APPN→Global option.
 The Edit APPN Global Parameters window appears (Figure 3-2).
2. Edit the parameters you want to change.
3. Click on the OK button to save your changes and exit the window, or select Advanced to edit additional APPN global parameters.

![Edit APPN Global Parameters Window](image)

Figure 3-2. Edit APPN Global Parameters Window

A description of the parameters on the Edit APPN Global Parameters window (Figure 3-2) follows.
Parameter: APPN Enable/Disable

<table>
<thead>
<tr>
<th>Default:</th>
<th>Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options:</td>
<td>Enable</td>
</tr>
<tr>
<td>Function:</td>
<td>Globally enables or disables APPN on the router. Disable – Forces every APPN interface existing on the node into the “down” (inoperative) state. Enable – Reinitializes every APPN interface existing on the node, with each interface maintaining the most recent setting of its own Interface Enable/Disable parameter. The actual up/down operating state of each interface at the time of global reinitialization further depends on the current up/down state of the associated circuit.</td>
</tr>
</tbody>
</table>

Instructions: Select Disable to force every APPN interface existing on the node into the “down” (inoperative) state.

Select Enable to globally reinitialize all APPN interfaces configured on the node, with each interface maintaining the most recent setting of its own Interface Enable/Disable parameter.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.2
Parameter: Local Node Name

Default: None

Options: Any valid name with up to 17 characters in the format <NETID.CPNAME>, where NETID is the global network name with up to 8 characters followed by a period, and CPNAME is the control point name with up to 8 characters.

Function: The Local Node Name parameter identifies the unique name of the network and the Wellfleet router node name.

Instructions: Enter the node name by first specifying up to 8 characters in the network ID name, type a period, then enter a control point name with up to 8 characters. Names must be specified in uppercase characters only and must start with a non-numeric character. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, NETWORKA.SYSTEMA is a valid entry for the Local Node Name parameter.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.4
Parameter: Local ID Block

Default: None

Options: A valid string of 3 hexadecimal digits

Function: The Local ID Block parameter is a unique hexadecimal value that identifies the APPN product in this network node (NN). The number is the first three digits of the node identification.

Instructions: Accept the default value or enter 3 hexadecimal digits in this field.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.6

Parameter: Local ID Number

Default: None

Options: A valid string of 5 hexadecimal digits (0 to 9, A,B,C,D,E,F)

Function: The Local ID Number identifies the local APPN network node and is included in APPN alerts and exchange identifications (XIDs). These five digits are combined with the 3-digit Local ID Block to form a unique XID node identification. The APPN network node and the adjacent node exchange node identifications when the nodes are establishing a connection.

Instructions: Enter 5 hexadecimal digits.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.7
APPN Global Advanced Parameters

To edit the APPN global advanced parameters from the Edit APPN Global Parameters window (Figure 3-2), proceed as follows:

1. Click on the Advanced button. The Advanced APPN Global Parameters window appears (Figure 3-3). This window contains general parameters associated with APPN directory services, intermediate session routing, and topology and routing services.

![Advanced APPN Global Parameters Window](image)

2. Click on each parameter value that you want to change, then enter a new value.

3. Click on the OK button to save your changes and to exit the Advanced APPN Global Parameters window.
A description of the parameters on the Advanced APPN Global Parameters window follows.

Parameter: Route Addition Resistance

Default: 128
Options: 0 to 255
Function: Route Addition Resistance is a value that indicates the relative desirability of using this network node for intermediate session routing (ISR) when multiple paths exist.
Instructions: Enter a value in the range 0 to 255. The lower the value, the more desirable the node becomes for ISR.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.21
Parameter: **Endpoint Session RSCV Storage**

Default: Enable

Options: Enable | Disable

Function: The Endpoint Session RSCV Storage parameter (when enabled) stores route selection control vector information used by the network node when it is the endpoint (origin or destination) node in the route. The Endpoint Session RSCV Storage parameter is useful for debugging purposes using the Technician Interface software. Refer to *Using Technician Interface Scripts* for information on using the `show appn` command.

When enabled, the Endpoint Session RSCV Storage parameter consumes additional memory for each endpoint session.

Instructions: Select Enable to enable Endpoint Session RSCV Storage. Select Disable to disable Endpoint Session RSCV Storage.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.29

Parameter: **Max Directory Entries**

Default: 0

Options: A value of 0 indicates an unlimited number of entries; otherwise, any positive numeric value.

Function: Specifies the maximum number of entries that can be stored in the directory database at the network node. The directory database stores network resources and their location in the APPN network.

Instructions: Enter a value large enough for the network being managed, or specify 0 for unlimited entries.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.32
Parameter: Max Cached Directory Entries

Default: 100
Options: Any positive numeric value
Function: Specifies the maximum number of cached directory entries that can be stored in the local directory database at any one time. The information received through caching may ultimately result in large local directory databases and may include resource entries that are no longer in use or up to date. If the maximum number is reached and if all entries are in use, new entries to be cached will replace the oldest cache entries.

Instructions: Enter a value large enough for the network being managed. Increase the current value if the oldest valid entries are being replaced on a regular basis.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.31

Parameter: Network Locate Timeout (in seconds)

Default: 60 seconds
Options: Specify 0 to indicate no timeouts.
Function: Specifies the time (in seconds) to elapse before a network search times out. The network search function locates network resources and controls the flow of search requests and replies throughout the network.

Instructions: Enter a positive time value in seconds. If directory services at the local network node does not receive a search response at the completion of this timeout value, the search is terminated. When the local network node receives the search response, the search completes.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.33
Parameter: TRS Route Tree Cache Size

- **Default:** 8 (minimum)
- **Options:** Specify any positive numeric value 8 or larger.
- **Function:** Specifies the size of the topology and routing services (TRS) tree database. The tree database allows a network node to cache optimal routes from the local APPN node to other network nodes (tree caching).

Enter a positive numeric value to indicate the maximum number of routing trees to be stored in the database.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.34

Parameter: TRS Route Tree Cache Usage Limit

- **Default:** 8
- **Options:** Any positive numeric value, with 1 being the minimum
- **Function:** Specifies the maximum number of times a route tree will be used before RSS calculates a new route tree for that class of service (COS).
- **Instructions:** Enter any positive numeric value, 1 or larger.
- **MIB Object ID:** 1.3.6.1.4.1.18.3.5.14.1.1.35
Parameter: Max NNs in Topology DB (0=unlimited)
Default: 0
Options: Any positive number; specify 0 to indicate an unlimited number of network nodes.
Function: Specifies the maximum number of network nodes (routers) in the network topology database.
Instructions: Specify 0 to include all network nodes.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.36

Parameter: Max TGs in Topology DB (0=unlimited)
Default: 0
Options: Any valid positive number; specify 0 to indicate an unlimited number of transmission groups (TGs).
Function: Specifies the maximum number of TGs in the local topology database. A TG represents a single unidirectional connection (or link) to an adjacent link station.
Instructions: Specify 0 to include all TGs.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.37
<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Max Number of ISR Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>1000</td>
</tr>
<tr>
<td>Options:</td>
<td>100 is the minimum value for this parameter; any valid positive number 100 or greater.</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the maximum number of intermediate session routing (ISR) sessions that the local network node can support concurrently.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>The Max Number of ISR Sessions parameter controls the maximum number of ISR sessions. Enter a value of 100 or greater.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.1.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>ISR Congestion Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>900</td>
</tr>
<tr>
<td>Options:</td>
<td>Any positive numeric value less than the Max Number of ISR Sessions parameter setting</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the maximum number of ISR sessions before the node considers itself congested, causing new sessions to be directed away from this network node. A network node is no longer congested when the number of ISR sessions drops to the ISR Decongestion Threshold.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter any positive numeric value less than the setting for the Max Number of ISR Sessions parameter. In most cases, a value equal to 90% of the Max Number of ISR Sessions parameter is an acceptable value.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.1.39</td>
</tr>
</tbody>
</table>
Parameter: **ISR Decongestion Threshold**

Default: 800

Options: Any positive numeric value less than the ISR Congestion Threshold setting

Function: Specifies the number of active ISR sessions that the local network node must drop to before it is no longer considered congested. A network node is congested when the number of ISR sessions reaches the ISR Congestion Threshold.

Instructions: Enter any positive numeric value that is less than the current ISR Congestion Threshold parameter setting. In most cases, a value equal to 80% of the Max Number of ISR Sessions parameter is an acceptable value.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.40

Parameter: **Max RU Size for ISR Sessions**

Default: 1024

Range: 256 to 4096 inclusive

Function: Specifies the maximum request unit (RU) size for the segmentation and reassembly of session and nonsession traffic during ISR sessions.

Instructions: Enter a positive number in range 256 to 4096. The lower value, 256, is the minimum value for an RU; 4096 is the maximum value.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.41
Parameter: ISR Receive Pacing Window

Default: 7

Range: 1 to 63 inclusive

Function: Specifies the maximum number of messages that the network node can receive in one pacing window during an ISR session.

Instructions: Enter a positive number in the range 1 to 63 inclusive. Entering higher values may improve performance, but will consume more memory.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.42

Parameter: ISR Session RSCV Storage

Default: Enable

Options: Enable | Disable

Function: Enables or disables the storage of route selection control vectors (RSCVs) during ISR sessions. The ISR Session RSCV Storage parameter is useful for debugging purposes. When enabled, the ISR Session RSCV Storage parameter will consume additional memory for each ISR session.

Function: The intermediate network node uses RSCV information to obtain the next node and a transmission group (TG) to the node along a route. The maximum number of APPN nodes and TGs a session may traverse is limited to the size of the RSCV.

Instructions: Select Enable to enable ISR Session RSCV Storage. Select Disable to disable ISR Session RSCV Storage.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.1.43
Editing APPN Interfaces and Ports

To edit APPN Interface parameters, begin at the Wellfleet Configuration Manager window (Figure 3-1) and proceed as follows:

1. Select the Protocols→APPN→Interfaces option.

 The APPN Interface List window appears (Figure 3-4).

2. Edit those parameters you want to change.

3. Click on the Apply button to save your changes.

Figure 3-4. APPN Interface List Window
4. Click on the Done button to exit the APPN Interface List window. If you want to delete an interface listed in this window, select/highlight the interface that you want to delete and click on the Delete button (described in the next section).

If you want to display and enable (or disable) the current port(s) on an interface, to add additional ports to the interface, to delete ports, or to edit advanced port parameters, click on the Ports button.

The parameters shown on the APPN Interface List window follow.

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Interface Enable/Disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>Enable</td>
</tr>
<tr>
<td>Options:</td>
<td>Enable</td>
</tr>
<tr>
<td>Function:</td>
<td>Enables or disables APPN routing on this interface.</td>
</tr>
<tr>
<td></td>
<td>Enable – Initializes the selected APPN interface. Use the Enable setting also to initialize an existing APPN interface earlier disabled. The actual up/down operating state of each interface at the time of initialization further depends on the current up/down state of the associated circuit.</td>
</tr>
<tr>
<td></td>
<td>Disable – Forces the APPN interface into the “down” (inoperative) state.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Select Disable only if you want to disable APPN routing over this interface. Select Enable if you want to re-enable APPN routing over this interface.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.2.1.2</td>
</tr>
</tbody>
</table>
Deleting APPN Interfaces

If you want to delete an interface from the APPN Interface List window (Figure 3-4), select the interface to highlight it, then click on the Delete button. The system software deletes the interface entry from the APPN configuration.

Editing APPN Ports

The APPN Interface List window (Figure 3-4) allows you to enable or disable APPN ports, add and delete APPN ports on existing interfaces, and edit advanced port parameters. From the APPN Interface List window, proceed as follows:

1. Select the Ports option to display the APPN Port List window (Figure 3-5).
2. Highlight the port you want to modify. The parameter values associated with that interface appear (lower right) in the parameters window and change dynamically with each port that you select.
3. Click on the Apply button to save your changes.
Figure 3-5. APPN Port List Window

4. Click on the Done button to exit the APPN Port List window. If you want to delete a port listed in this window, select/highlight the interface that you want to delete and click on the Delete button (described in the next section).

A description of the parameters shown on the APPN Port List window follows.
Parameter: Port Enable/Disable

Default: Enable
Options: Enable | Disable
Function: Enables or disables APPN routing on this port.

Enable – Initializes the selected APPN port. Use the Enable setting also to initialize an existing APPN port earlier disabled. The actual up/down operating state of each port at the time of initialization further depends on the current up/down state of the associated circuit.

Disable – Forces the APPN port into the “down” (inoperative) state.

Instructions: Select Disable only if you want to disable APPN routing over this port.
Select Enable if you want to re-enable APPN routing over this port.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.2

Parameter: Port Address

Default: None
Options: None
Function: Specifies the interface address to be used by this port.

Instructions: This is the MAC address, SDLC address, or DLCI and SAP address that you specified when you added the original circuit to the interface. A MAC address starts with the 0x prefix, and ends with the SAP value.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.38
Configuring and Editing APPN Parameters

Parameter: Local Link Station Role

Default: Negotiable
Options: Negotiable | Primary | Secondary
Function: Specifies the initial role of the local network node when activating adjacent link stations through this port. Negotiable means that the local network node can be either primary or secondary and the actual role is determined during link activation. A link between the two nodes may require that one link station takes the role of primary link station and one link station takes the role of secondary link station.

Instructions: Click on Values to display the Local Link Station Role options and select the parameter, either Negotiable, Primary, or Secondary

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.8

Deleting APPN Ports

If you want to delete a port from an interface on the APPN Port List window (Figure 3-5), select the port to highlight it, then click on the Delete button. The system software deletes the interface entry from the APPN configuration.

Adding Ports to an APPN Interface

To add a port to an APPN interface, display the APPN Port List window (Figure 3-5) and proceed as follows:

1. Click on the Add button. The Port Configuration window appears (Figure 3-6).
2. Enter values for the Port Name, Port Number, Port MAC Address, Port SAP, and Local Link Station Role parameters. If you configuring SDLC, the SDLC Address parameter appears instead of the Port MAC address parameter. If you are configuring Frame Relay on an LLC2 interface, the DLCI parameter appears in the Port Configuration window.

3. Click on the OK button to save your entries to the configuration file.

The APPN Port List window (Figure 3-5) reappears after you click on the OK button.

A description of the parameters shown on the Port Configuration window follows.
Configuring and Editing APPN Parameters

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Port Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>None</td>
</tr>
<tr>
<td>Options:</td>
<td>Up to 8 alphanumeric uppercase characters</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the name of the newly added port.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter up to 8 alphanumeric uppercase characters with no blank spaces (leading, trailing, or embedded).</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.3.1.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>None</td>
</tr>
<tr>
<td>Options:</td>
<td>Any unique 3-digit number</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies a unique number to identify this port, if more that one port is configured on an interface.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter any 3-digit value.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.3.1.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Port MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>None</td>
</tr>
<tr>
<td>Options:</td>
<td>Any unique 48-bit 12-digit hexadecimal MAC-level address</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies a unique MAC-level address, DLCI (for frame relay), or SDLC address.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter a 12-digit MAC hexadecimal address in MSB non-canonical form (regardless of the media), a DLCI address, or SDLC address.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.3.1.38</td>
</tr>
</tbody>
</table>
Parameter: Port SAP (hex)
 Default: None
 Options: Any unique service access point (SAP) 2-digit hexadecimal value, usually 04
 Function: Specifies a service access point (SAP) address that lets multiple applications and protocol entities in a single computer share a MAC address.
 Instructions: Enter a 2-digit hexadecimal value.
 MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.38

Parameter: Local Link Station Role
 Default: Negotiable
 Options: Negotiable | Primary | Secondary
 Function: Specifies the initial role of the local network node when activating adjacent link stations through this port. Negotiable means that the local network node can be either primary or secondary and the actual role is determined during link activation. A link between the two nodes may require that one link station takes the role of primary link station and one link station takes the role of secondary link station.
 Instructions: Click on Values to display the Local Link Station Role options and select the parameter, Negotiable, Primary, or Secondary.
 MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.8
Editing the APPN Advanced Port Parameters

To edit the APPN advanced port parameters, display the APPN Port List window (Figure 3-5) and proceed as follows:

1. Click on the Advanced button. The APPN Port window appears (Figure 3-7).

![APPN Port Window](image)

Figure 3-7. APPN Port Window
2. Click on each parameter value that you want to change, then enter a new value.

3. Click on the OK button to save your changes and return to the APPN Port List window (Figure 3-5).

A description of the parameters shown on the APPN Port window follows.

Parameter: Max Receive BTU Size
Default: 2057
Range: 256 to 4105
Function: Specifies the maximum Basic Transmission Unit (BTU) that this network node can receive. Each link station determines its own maximum BTU size. It is based on local node definitions and exchange identification (XID) information received from the interface and the adjacent link station.

Instructions: Enter a number in the range 256 to 4105 that the node can handle.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.9
Parameter: Max Send BTU Size

Default: 2057

Range: 256 to 4105

Function: Specifies the maximum Basic Transmission Unit (BTU) that can be sent over this port. Each link station determines its own maximum send BTU size. It is based on local node definitions and exchange identification (XID) information received from the interface and the adjacent link station.

Instructions: Enter a number in the range 256 to 4105.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.24

Parameter: Max I-Frame Window

Default: 7

Range: A numeric value not exceeding 127

Function: Specifies the maximum number of information frames (I-frames) that the local network node can receive before an acknowledgment is sent.

Instructions: Enter a number in the range 1 to 127.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.10
Parameter: Total Link Activation Limits

Default: 256

Range: 0 to 256. See Table 3-1.

Function: Specifies the maximum link activation limit for this port. The value is the maximum number of inbound and outbound link stations that the port will allow in this configuration. The maximum value depends on the Local Link Station Role and the type of port, as listed in Table 3-1.

Instructions: Specify a value in the range 0 to 255. The value must be greater than or equal to the combined settings for the Inbound Link Activation Limits and Outbound Link Activation Limits parameters.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.17

Parameter: Inbound Link Activation Limits

Default: 128

Range: 0 to 256. See Table 3-1.

Function: Specifies the maximum inbound link activation limit for this port. The value is the maximum number of inbound link stations that the port will allow in this configuration.

Instructions: Specify a value in the range 0 to 255. This value plus the current setting for the Outbound Link Activation Limits parameter must be less than or equal to the current Total Link Activation Limits parameter setting.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.18
Parameter: Outbound Link Activation Limits

Default: 128

Range: 0 to 256. See Table 3-1.

Function: Specifies the maximum outbound link activation limit for this port. The value is the maximum number of outbound link stations that the port will allow in this configuration.

Instructions: Specify a value in the range 0 to 255. This value plus the current setting for the Inbound Link Activation Limits parameter must be less than or equal to the Total Link Activation Limits parameter setting.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.19

Table 3-1. Link Activation Limit Default Values

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Local Link Station Role</th>
<th>Total Activation Limit</th>
<th>Inbound Link Activation Limits</th>
<th>Outbound Link Activation Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leased</td>
<td>Secondary</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Leased</td>
<td>Negotiable</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leased</td>
<td>Primary</td>
<td>256</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>SATF</td>
<td>any</td>
<td>256(x+y)</td>
<td>128(x)</td>
<td>128(y)</td>
</tr>
</tbody>
</table>
Parameter: Implicit CP Sessions
Default: Yes
Options: Yes | No
Function: Specifies whether CP-to-CP sessions are permitted for dynamic link stations. Dynamic link stations are those link stations that are not defined on this port, but are those that are activated by the adjacent node.
Instructions: Click on Values and select Yes or No.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.25

Parameter: Implicit Limited Resource
Default: Yes
Options: Yes | No
Function: Specifies whether dynamic link stations on this port should be defined as limited resources. A link station defined as limited resource is deactivated after the number of sessions using the port drops to zero.
Instructions: Click on Values and select Yes or No.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.26
Configuring and Editing APPN Parameters

Parameter: Implicit Effective Capacity

Default: 133

Options:
- 24 (Capacity: 1200)
- 32 (Capacity: 2400)
- 40 (Capacity: 4800)
- 44 (Capacity: 7200)
- 48 (Capacity: 9600)
- 52 (Capacity: 14400)
- 56 (Capacity: 19200)
- 66 (Capacity: 48000)
- 67 (Capacity: 56000)
- 69 (Capacity: 64000)
- 117 (Capacity: 4M)
- 128 (Capacity: 10M)
- 133 (Capacity: 16M)
- 255 (Capacity: Maximum)

Function: The Effective Capacity is the highest bit-transmission rate that the transmission group (TG) can obtain before being considered overloaded. The link bandwidth and maximum load factor determine this value. TGs to dynamic link stations on this port use this value.

Instructions: Click on Values and select a number from the list.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.27
<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Implicit Connection Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>128</td>
</tr>
<tr>
<td>Range:</td>
<td>0 to 255 inclusive</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the relative cost (per connect time) of using a transmission group (TG) to dynamic link stations on this port. A value of 0 indicates no cost, and a value of 255 indicates maximum cost. The cost per connect time is typically based on the applicable tariffs for the transmission facility this TG uses. An X.25 network, for example, may have a high connection cost for dynamic link stations.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter a number in the range 0 to 255.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.3.1.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Implicit Byte Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>128</td>
</tr>
<tr>
<td>Range:</td>
<td>0 to 255 inclusive</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the relative cost of transmitting a byte over this transmission group (TG) to an dynamic link station on this port. A value of 0 indicates no cost, and a value of 255 indicates maximum cost. An X.25 network, for example, may have a high byte cost for dynamic link stations.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter a number in the range 0 to 255.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.3.1.29</td>
</tr>
</tbody>
</table>
Parameter: Implicit Security
Default: 1
Range: 1 to 255
Options:
- 1 (Non-secure)
- 32 (Public-Switched)
- 64 (Underground)
- 128 (Conduit)
- 160 (Encrypted)
- 192 (Guarded radiation)
- 255 (Maximum)

Function: Specifies the security level of the transmission group (TG) to the dynamic link stations on this port.

Instructions: Enter a value in the range 1 to 255; use the common definitions indicated under Options.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.30

Parameter: Implicit Delay
Default: 0
Range: 0 to 255
Options:
- 76 (Negligible)
- 113 (Terrestrial)
- 145 (Packet)
- 153 (Long)
- 255 (Maximum)

Function: Specifies the propagation delay or the relative amount of time that it takes for a signal to travel the length of a transmission group (TG) to dynamic link stations on this port.

Instructions: Enter a value in the range 0 to 255; use the common definitions indicated under Options.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.31
Parameter: **Implicit User-Defined 1**

Default: 128

Range: 0 to 255

Function: Specifies the first user-defined transmission group characteristic to a dynamic link station on this port.

Instructions: Enter a value in the range 0 to 255.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.32

Parameter: **Implicit User-Defined 2**

Default: 128

Range: 0 to 255

Function: Specifies the second user-defined transmission group characteristic to a dynamic link station on this port.

Instructions: Enter a value in the range 0 to 255.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.33

Parameter: **Implicit User-Defined 3**

Default: 128

Range: 0 to 255

Function: Specifies the third user-defined transmission group characteristic to a dynamic link station on this port.

Instructions: Enter a value in the range 0 to 255.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.3.1.34
Editing APPN Adjacent Link Stations

To edit APPN Adjacent Link Station parameters, begin at the Wellfleet Configuration Manager window (Figure 3-1) and proceed as follows:

1. Select the Protocols→APPN→Adjacent Link Stations option.

 The APPN Adjacent Link Station List window appears (Figure 3-8).

![Figure 3-8. APPN Adjacent Link Station List Window](image)
2. Edit those parameters you want to change. If the window appears without any adjacent link stations in the list, go to the section “Adding Adjacent Link Stations.”

3. Click on the Apply button to save your changes.

4. Click on the Done button to exit the APPN Interface List window. If you want to delete an adjacent link station listed in this window, select/highlight the adjacent link station name that you want to delete and click on the Delete button (described in the next section). If you want to edit the advanced adjacent link station parameters, click on the Advanced button and go to the section “Editing the Advanced Adjacent Link Station Parameters.”

A description of the parameters shown on the APPN Adjacent Link Station List window follows.
Configuring and Editing APPN Parameters

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Enable/Disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>Enable</td>
</tr>
<tr>
<td>Options:</td>
<td>Enable</td>
</tr>
<tr>
<td>Function:</td>
<td>Enable or disables the adjacent link station highlighted in the APPN Adjacent Link Station List window.</td>
</tr>
</tbody>
</table>

Enable – Initializes the selected adjacent link station. Use the Enable setting also to initialize an existing adjacent link station port earlier disabled. The actual up/down operating state of each adjacent link station port at the time of initialization further depends on the current up or down state of the associated circuit.

Disable – Forces the adjacent link station into the “down” (inoperative) state.

Instructions: Click on Values and select Enable or Disable. Select Disable only if you want to disable the adjacent link station. Select Enable if you want to re-enable the adjacent link station.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.2

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Port Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>None</td>
</tr>
<tr>
<td>Options:</td>
<td>Up to 8 alphanumeric uppercase characters.</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the name of the port supporting the adjacent link station.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter up to 8 alphanumeric uppercase characters with no blank spaces (leading, trailing, or embedded).</td>
</tr>
</tbody>
</table>

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.4
Parameter: Adjacent Node Name

Default: None

Options: Any valid name with up to 17 characters in the format <NETID.CPNAME>, where NETID is the unique network name with up to 8 characters followed by a period, and CPNAME is the control point name with up to 8 characters.

Function: The Adjacent Node Name parameter identifies the name of the network and the adjacent node name.

Instructions: Enter the adjacent node name by first specifying up to 8 characters in the network ID name, type a period, then enter a control point name with up to 8 characters. Names must be specified in uppercase characters only and must start with an alphabetic character. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, APPNNODE.CPONE is a valid entry for the Adjacent Node Name parameter.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.6

Parameter: Adjacent Node Type

Default: Learned

Options: Network Node (NN) | End Node (EN) | Low-entry Networking Node (LEN) | Learned.

Function: Specifies the type of adjacent link station node.

Instructions: Click on Values and select NN, EN, LEN, or Learned. If you specify Learned, APPN automatically learns the type of adjacent link station.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.23
Parameter: **Link Address (hex)**

Default: None
Options: None
Function: Specifies the MAC/SAP, DLCI/SAP (for frame relay), or SDLC address that this adjacent link station will use. This field displays the address that you specified when you added the adjacent link station. The MAC address starts with the Ox prefix and ends with the service access point (SAP) value.

Instructions: If you choose to specify a new link data address, specify the MAC address in MSB non-canonical format with the Ox prefix, and end the address with the SAP value. For frame relay, specify a valid DLCI and SAP value. For SDLC, specify a valid SDLC address.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.27

Parameter: **Max Send BTU Size**

Default: 2057
Range: 256 to 4105
Function: Specifies the maximum Basic Transmission Unit (BTU) that can be sent over this transmission group to an adjacent link station. Each link station determines its own maximum send BTU size. It is based on local node definitions and exchange identification (XID) information received from the interface and the adjacent link station.

Instructions: Enter a number in the range 256 to 4103.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.14
Parameter: Target Pacing Count

Default: 4

Range: 0 to 32767

Function: Specifies the pacing window size for session requests (BINDs) on this transmission group to the adjacent link station. This value is only used for fixed BIND pacing. Pacing windows control the number of session requests to prevent memory consumption at the adjacent link station.

Instructions: Enter a value in the range 0 to 32767.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.13

Deleting Adjacent Link Stations

If you want to delete an adjacent link station from the APPN Adjacent Link Station List window (Figure 3-8), select the adjacent link station name to highlight it, then click on the Delete button. The system software deletes the interface entry from the APPN configuration.

Adding Adjacent Link Stations

To add a connection to an adjacent link station to an APPN interface, display the APPN Adjacent Link Station List window (Figure 3-8) and proceed as follows:

1. Click on the Add button. The Adjacent Link Station Port Configuration window appears (Figure 3-9).
Figure 3-9. Adjacent Link Station Port Configuration Window

2. Specify the Port Name parameter, as follows:

Parameter: Port Name
Default: None
Options: Up to 8 alphanumeric uppercase characters.
Function: Specifies the name of the port supporting the adjacent link station.
Instructions: Enter up to 8 alphanumeric uppercase characters with no blank spaces (leading, trailing, or embedded).

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.4

3. When you specify the Port Name parameter, click on the OK button to proceed to the next Adjacent Link Station Configuration window (Figure 3-10).
4. Enter the Adjacent Link Station Name, Adjacent Node Name, MAC Address, and SAP parameters. If you configuring SDLC, the SDLC Address parameter appears instead of the Port MAC address parameter. If you are configuring Frame Relay on an LLC2 interface, the DLCI parameter appears in the Port Configuration window.

5. Click on the OK button to save your entries to the configuration file.

The APPN Adjacent Link Station List window (Figure 3-8) reappears immediately after you click on the OK button.

A description of the parameters shown on the Adjacent Link Station Configuration window follows.
Parameter: Adjacent Link Station Name

Default: None

Options: Any name with up to 8 uppercase alphabetic characters

Function: Specifies a unique name for the link station (control point) in the adjacent node. This name differentiates this link station from other defined link stations.

Instructions: Specify the link station name with up to 8 uppercase characters. Do not specify numbers in the name.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.3
Parameter: Adjacent Node Name

Default: Configuration Manager uses the local NETID for the NETID portion of the Adjacent Node Name parameter. You can change the name if the adjacent node had a different NETID.

Options: Any valid name with up to 17 characters in the format <NETID.CPNAME>, where NETID is the unique network name with up to 8 characters followed by a period, and CPNAME is the control point name with up to 8 characters.

Function: The Adjacent Node Name parameter identifies the user-specified name of the network and the adjacent node name.

Instructions: Enter the adjacent node name by first specifying up to 8 characters in the network ID name, type a period, then enter a control point name with up to 8 characters. Names must be specified in uppercase characters only, starting with an alphabetic characters. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, APPNNODE.CPONE is a valid entry for the Adjacent Node Name parameter.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.6
Configuring and Editing APPN Parameters

Parameter: MAC Address
- Default: None
- Options: Any unique 48-bit 12-digit hexadecimal MAC-level address
- Function: Specifies a unique MAC-level address for this port connecting the adjacent link station.
- Instructions: Enter a 12-digit hexadecimal MAC-level address in MSB non-canonical format.
- MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.27

Parameter: SAP (hex)
- Default: None
- Options: Any unique service access point (SAP) 2-digit hexadecimal value
- Function: Specifies a service access point (SAP) address that lets multiple applications and protocol entities in a single computer share a MAC address.
- Instructions: Enter a 2-digit hexadecimal value.
- MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.27

Editing the Advanced Adjacent Link Station Parameters

To edit the APPN Advanced Adjacent Link Station parameters, display the APPN Adjacent Link Station List window (Figure 3-8) and proceed as follows:

1. Click on the Advanced button. The APPN Adjacent Link Station window appears (Figure 3-11).
Figure 3-11. APPN Adjacent Link Station Window

2. Click on each parameter value that you want to change, then enter a new value.

3. Click on the OK button to save your changes and exit the APPN Connection window.

A description of the parameters shown on the APPN Adjacent Link Station window follows.
Parameter: Limited Resource TG

Default: No
Options: Yes | No
Function: Specifies whether the adjacent link station is classified as limited resources. If you specify Yes, the transmission group to the adjacent link station is deactivated when the number of active sessions drops to zero.

Instructions: Click on Values and specify Yes or No.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.8

Parameter: Down-level Adjacent Node

Default: No
Options: Yes | No
Function: Specifies whether the adjacent link station will be used for connections to down-level partners.

Instructions: Click on Values and specify Yes or No.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.9

Parameter: Adjacent Node Block Number

Default: None
Options: None
Function: The Adjacent Node Block Number parameter is a unique hexadecimal value that identifies the APPN product in this adjacent node. The number is the first three digits of the node ID.

Instructions: Accept the default value.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.10
Parameter: Adjacent Node ID Number

Default: None
Options: Optional: if specified, a valid string of 5 hexadecimal digits (0 to 9, A,B,C,D,E,F)
Function: The local ID number identifies the local APPN adjacent node and is included in APPN alerts and exchange identifications (XIDs). These five digits are combined with the 3-digit block number to form a unique XID node identification for the adjacent node. Node identifications are exchanged between the APPN network node and the adjacent node when the nodes are establishing a connection.
Instructions: Enter 5 hexadecimal digits.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.11

Parameter: CP-CP Session Support

Default: Yes
Options: Yes | No
Function: Specifies whether the adjacent link station supports control point sessions (CP-CP). APPN nodes (network nodes and end nodes) that support control points can communicate, register, and share network resources. The CP-CP Session Support parameter can reduce traffic (if you specify No) across the TG.
Instructions: Click on Values and select Yes or No.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.12
Parameter: Automatic Activation

Default: Disable
Options: Enable | Disable
Function: Specifies whether APNN should automatically activate the link to the adjacent link station when a session is established.

Instructions: If the CP-CP Session Support parameter is Yes, then this parameter is not modifiable. Otherwise, specify Enable to automatically activate the link when there is a session to the adjacent link station.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.24

Parameter: Use Default TG Characteristics

Default: No
Options: Yes | No
Function: Specifies whether the default transmission group (TG) characteristics should be used on the port connecting the adjacent link station, or if the configured TG characteristics should be used. The configurable TG characteristics are: Effective Capacity, Connection Cost, Byte Cost, Security, Delay, User 1, User 2, and User 3.

Instructions: Click on Values and specify Yes or No.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.26
Parameter: Effective Capacity

Default: 133

Options: 24 (Capacity: 1200)
32 (Capacity: 2400)
40 (Capacity: 4800)
44 (Capacity: 7200)
48 (Capacity: 9600)
52 (Capacity: 14400)
56 (Capacity: 19200)
66 (Capacity: 48000)
67 (Capacity: 56000)
69 (Capacity: 64000)
117 (Capacity: 4M)
128 (Capacity: 10M)
133 (Capacity: 16M)
255 (Capacity: Maximum)

Function: The Effective Capacity represents the highest bit-transmission rate allowed on the TG to adjacent link stations on this port. The effective capacity is derived from the link bandwidth.

Instructions: Click on Values and select a number that reflects the link bandwidth.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.15
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Cost</td>
<td></td>
</tr>
<tr>
<td>Default:</td>
<td>128</td>
</tr>
<tr>
<td>Range:</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the relative cost (per connect time) of using a transmission group (TG) to the adjacent link station on this port. A value of 0 indicates no cost, and a value of 255 indicates maximum cost. The cost per connect time is typically based on the applicable tariffs for the transmission facility that this TG uses.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter a number in the range 0 to 255.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.4.1.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
</tr>
<tr>
<td>Range:</td>
</tr>
<tr>
<td>Function:</td>
</tr>
<tr>
<td>Instructions:</td>
</tr>
<tr>
<td>MIB Object ID:</td>
</tr>
</tbody>
</table>
Editing APPN Adjacent Link Stations

Parameter: Security

Default: 1

Options: 1 (Non-secure)
32 (Public-Switched)
64 (Underground)
128 (Conduit)
160 (Encrypted)
192 (Guarded radiation)
255 (Maximum)

Function: Specifies the security level of the transmission group (TG) to the adjacent link station on this port.

Instructions: Enter a value in the range 1 to 255; use the common definitions indicated under Options.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.18

Parameter: Delay

Default: 0

Options: 76 (Negligible)
113 (Terrestrial)
145 (Packet)
153 (Long)
255 (Maximum)

Function: Indicates the propagation delay or the relative amount of time that it takes for a signal to travel the length of a transmission group (TG) to the adjacent link station on this port.

Instructions: Enter a value in the range 0 to 255; use the common definitions indicated under Options.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.19
Parameter: Implicit User-Defined 1
 Default: 128
 Range: 0 to 255
 Function: Specifies the first user-defined transmission group characteristic using this link station.
 Instructions: Enter a value in the range 0 to 255.
 MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.20

Parameter: Implicit User-Defined 2
 Default: 128
 Range: 0 to 255
 Function: Specifies the second user-defined transmission group characteristic using this link station.
 Instructions: Enter a value in the range 0 to 255.
 MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.21

Parameter: Implicit User-Defined 3
 Default: 128
 Range: 0 to 255
 Function: Specifies the third user-defined transmission group characteristic using this link station.
 Instructions: Enter a value in the range 0 to 255.
 MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.4.1.22
Editing APPN Connection Networks

An APPN connection network allows direct connectivity between any pair of link stations. Direct connectivity avoids session traffic being routed through intermediate network nodes. Connection networks require link definitions at a network node for any nodes with a direct connection.

To edit APPN Connection Networks parameters, begin at the Wellfleet Configuration Manager window (Figure 3-1) and proceed as follows:

1. Select the Protocols→APPN→Connection Networks option.

The APPN Connection Networks window appears (Figure 3-12).

![Figure 3-12. APPN Connection Networks Window](image)
2. If the window appears without any connection networks in the list, click on Add and go to the section “Adding APPN Connection Networks” to define one or more new connection networks. If the window displays one or more connection networks, you can change the setting of the Enable/Disable parameter to activate or deactivate an existing connection network.

If you want to delete a connection network listed in this window, select/highlight the connection network name that you want to delete and click on the Delete button (described in the next section).

If you want to add and configure the ports associated with the connection networks listed in the window, click on Ports and go to the section, “Editing the APPN Connection Networks Ports.” To edit the advanced connection networks parameters, click on the Advanced button and go the section, “Editing the Advanced Adjacent Link Station Parameters.”

3. Click on the Apply button to save your changes.

4. Click on the Done button to exit the APPN Connection Networks window.

The APPN Connection Networks window contains the following parameter.
Editing APPN Connection Networks

Parameter: Enable/Disable
Default: Enable
Options: Enable | Disable
Function: Enables or disables APPN routing on the selected connection network.

Enable – Initializes routing on the selected APPN connection network. Use the Enable setting also to initialize routing on an existing connection networks earlier disabled.

Disable – Brings down routing on the APPN connection network.

Instructions: Select Disable only if you want to disable APPN routing over this connection network.
Select Enable if you want to re-enable APPN routing over this connection network.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.6.1.2

Deleting APPN Connection Networks

If you want to delete a connection network from the APPN Connection Networks window (Figure 3-12), select the network name to highlight it, then click on the Delete button. The system software deletes the interface entry from the APPN configuration.

Adding APPN Connection Networks

To add a connection network to an APPN configuration, display the APPN Connection Networks window (Figure 3-12) and proceed as follows:

1. Click on the Add button. The Connection Network Parameters window appears (Figure 3-13).
2. Enter the Connection Network Name and the Connection Network Port Name parameters.
3. Click on the OK button to save your entries to the configuration file.

The APPN Connection Networks window (Figure 3-12) reappears immediately after you click on the OK button.

![Connection Network Parameters Window](image)

Figure 3-13. Connection Network Parameters Window

A description of the parameters shown on the Connection Network Parameters window follows.
Parameter: Connection Network Name

Default: None

Options: Any valid name with up to 17 characters in the format <NETID.CPNAME>, where NETID is the unique network name with up to 8 characters followed by a period, and CPNAME is any name with up to 8 characters.

Function: The Connection Network Name parameter identifies the arbitrary user-specified name of the connection network. By default, the NETID portion of the network name is the previously configured Local Node Name NETID parameter, as specified on the Edit APPN Global Parameters window (Figure 3-2).

Instructions: Following the default NETID name and the period(.), enter any name with up to 8 characters. Names must be specified in uppercase characters only, starting with an alphabetic character. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, APPNNODE.THIRE is a valid entry for the Connection Network Name parameter.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.6.1.3

Parameter: Connection Network Port Name

Default: None

Options: Up to 8 alphanumeric uppercase characters

Function: Specifies the name of the port for the connection network.

Instructions: Enter up to 8 alphanumeric uppercase characters with no blank spaces (leading, trailing, or embedded).

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.7.1.4
Configuring and Editing APPN Parameters

Editing APPN Connection Network Ports

The APPN Connection Networks window (Figure 3-12) allows you to enable or disable connection network ports, add and delete ports on existing connection networks, and edit advanced connection network parameters. From the APPN Connection Networks window, proceed as follows:

1. Select the Ports option to display the APPN Connection Network Ports window (Figure 3-14).

![APPN Connection Network Ports Window](image)

2. Highlight the port you want to modify. Change the setting of the Enable/Disable parameter if necessary. (Refer to the Enable/Disable parameter described in this section.)

 If you want to delete a port listed in this window, select/highlight the port that you want to delete and click on the Delete button (described in the next section).
If you want to add additional ports to a connection network, click on the Add button and go to the section “Adding APPN Connection Network Ports.”

3. If you are finished with this window, click on the Apply button to save your changes.

4. Click on the Done button to exit the APPN Connection Network Ports window.

Parameter: Enable/Disable

- **Default:** Enable
- **Options:** Enable | Disable
- **Function:** Enables or disables APPN routing on this connection network port.

 Enable – Initializes the selected APPN connection network port. Use the Enable setting also to initialize an existing port earlier disabled.

 Disable – Forces the APPN connection network port into the “down” (inoperative) state.

Instructions:

- Select Disable only if you want to disable APPN routing over this connection network port.
- Select Enable if you want to re-enable APPN routing over this connection network port.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.7.1.2

Deleting APPN Connection Network Ports

If you want to delete a port from a connection network on the APPN Connection Network Ports window (Figure 3-14), select the port to highlight it, then click on the Delete button. The system software deletes the entry from the APPN configuration.
Adding APPN Connection Network Ports

To add a port to an APPN connection network, display the APPN Connection Network Ports window (Figure 3-14) and proceed as follows:

1. Click on the Add button. The Connection Network Port Parameters window appears (Figure 3-15).

![Figure 3-15. Connection Network Port Parameters Window](image)

2. Enter a Connection Network Port Name.

3. Click on the OK button to save the port name to the configuration file.

The APPN Connection Network Ports window (Figure 3-14) reappears immediately after you click on the OK button.
Parameter: Connection Network Port Name

Default: None

Options: Up to 8 alphanumeric uppercase characters

Function: Specifies the name of the new port for the connection network.

Instructions: Enter up to 8 alphanumeric uppercase characters with no blank spaces (leading, trailing, or embedded).

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.7.1.4

Editing the APPN Advanced Connection Networks Parameters

To edit the APPN Advanced Connection Network parameters, display the APPN Connection Networks window (Figure 3-12) and proceed as follows:

1. Select/highlight the connection network that you want to edit and click on the Advanced button. The APPN Connection Network Advanced Parameters window appears (Figure 3-16). The connection network name that you selected appears in the title bar.
2. Click on each parameter value that you want to change, then enter a new value.

3. Click on the OK button to save your changes and exit the Connection Network Advanced Parameters window.
Parameter: Effective Capacity

<table>
<thead>
<tr>
<th>Default: 133</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options: 24 (Capacity: 1200)</td>
</tr>
<tr>
<td>32 (Capacity: 2400)</td>
</tr>
<tr>
<td>40 (Capacity: 4800)</td>
</tr>
<tr>
<td>44 (Capacity: 7200)</td>
</tr>
<tr>
<td>48 (Capacity: 9600)</td>
</tr>
<tr>
<td>52 (Capacity: 14400)</td>
</tr>
<tr>
<td>56 (Capacity: 19200)</td>
</tr>
<tr>
<td>66 (Capacity: 48000)</td>
</tr>
<tr>
<td>67 (Capacity: 56000)</td>
</tr>
<tr>
<td>69 (Capacity: 64000)</td>
</tr>
<tr>
<td>117 (Capacity: 4M)</td>
</tr>
<tr>
<td>128 (Capacity: 10M)</td>
</tr>
<tr>
<td>133 (Capacity: 16M)</td>
</tr>
<tr>
<td>255 (Capacity: Maximum)</td>
</tr>
</tbody>
</table>

Function: The Effective Capacity represents the highest bit transmission rate value allowed on connection network transmission groups (TGs) over configured connection network ports. The Effective Capacity is derived from the link bandwidth.

Instructions: Click on Values and select a number that reflects the link bandwidth.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.6.1.5
<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Connection Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>128</td>
</tr>
<tr>
<td>Range:</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the relative cost (per connect time) of using a connection network transmission group (TG) over configured connection network ports. A value of 0 indicates no cost, and a value of 255 indicates maximum cost. The cost per connect time is typically based on the applicable tariffs for the transmission facility that this TG uses.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter a number in the range 0 to 255.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.6.1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Byte Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>128</td>
</tr>
<tr>
<td>Range:</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the relative cost of transmitting a byte over this connection network transmission group (TG) using configured connection network ports. A value of 0 indicates no cost, and a value of 255 indicates maximum cost.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Enter a number in the range 0 to 255.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.1.6.1.7</td>
</tr>
</tbody>
</table>
Parameter: Security

Default: 1

Options: 1 (Non-secure)
32 (Public-Switched)
64 (Underground)
128 (Conduit)
160 (Encrypted)
192 (Guarded radiation)
255 (Maximum)

Function: Specifies the security level of the connection network transmission group (TG) over configured connection network ports.

Instructions: Enter a value in the range 1 to 255; use the common definitions indicated under Options.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.6.1.8

Parameter: Delay

Default: 0

Options: 76 (Negligible)
113 (Terrestrial)
145 (Packet)
153 (Long)
255 (Maximum)

Function: Represents the propagation delay or the relative amount of time that it takes for a signal to travel the length of a connection network transmission group (TG) over configured connection network ports.

Instructions: Enter a value in the range 0 to 255; use the common definitions indicated under Options.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.6.1.9
Parameter: Implicit User-Defined 1

Default: 128

Range: 0 to 255

Function: Specifies the first user-defined transmission group characteristic for this connection network.

Instructions: Enter a value in the range 0 to 255.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.6.1.10

Parameter: Implicit User-Defined 2

Default: 128

Range: 0 to 255

Function: Specifies the second user-defined transmission group characteristic for this connection network.

Instructions: Enter a value in the range 0 to 255.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.6.1.11

Parameter: Implicit User-Defined 3

Default: 128

Range: 0 to 255

Function: Specifies the third user-defined transmission group characteristic for this connection network.

Instructions: Enter a value in the range 0 to 255.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.1.6.1.12
Editing APPN Directory Entries Parameters

APPN directory entries are defined for resources in the network that cannot be dynamically located, such as LUs or a LEN node. Directory entries can be defined so that network searches for commonly used resources are avoided. The directory is hierarchical in structure. For example, to configure directory entries for LUs on an adjacent LEN node, the LEN is first configured as an end node control point (ENCP) with the local NN as the parent. LUs can then be defined with the LEN as the parent.

Directory entries can specify the full name of the resource, or can include an asterisk (*) to indicate a wildcard entry. Wildcard entries can simplify the definition of many similarly-named resources. For example, if a node contains LUs named APPN.LUX1, APPN.LUX2, and so on, a single wildcard entry APPN.LUX* can be used.

To edit APPN directory entry parameters, begin at the Wellfleet Configuration Manager window (Figure 3-1) and proceed as follows:

1. Select the Protocols→APPN→Directory Entries option.

 The APPN Directory Entries window appears (Figure 3-17). The window displays the qualified LU name(s) of any APPN nodes currently configured for directory services in the local directory database.
2. If the window appears without any APPN resource names, click on Add and refer to “Adding APPN LU Names to Directory Services.”

3. If the window contains one or more directory services LU names, you can edit the Enable/Disable, Resource Type, Parent Name, and Parent Type parameters.

 If you want to delete a directory services LU name listed in this window, select/highlight the resource name that you want to delete and click on the Delete button (described in the next section).

4. Click on the Apply button to save your changes.
5. Click on the Done button to exit the APPN Connection Networks window.

A description of the parameters shown on the APPN Directory Entries window follows.

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Enable/Disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>Enable</td>
</tr>
<tr>
<td>Options:</td>
<td>Enable</td>
</tr>
<tr>
<td>Function:</td>
<td>Enables or disables APPN directory services on the selected LU name.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Select Disable only if you want to disable APPN directory services on this LU.</td>
</tr>
</tbody>
</table>

Select Enable if you want to re-enable APPN directory services on this LU.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.4.3.1.2
<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Resource Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>LU (logical unit)</td>
</tr>
<tr>
<td>Options:</td>
<td>LU (logical unit)</td>
</tr>
<tr>
<td></td>
<td>ENCP (end node control point)</td>
</tr>
<tr>
<td></td>
<td>NNCP (network node control point)</td>
</tr>
<tr>
<td></td>
<td>Wildcard (*)</td>
</tr>
</tbody>
</table>

Function: Specifies the type of resource for this directory services entry. With a resource type of LU, the local directory services database contains pointers to the CP name of the node owning the LU and the CP name of the network node server.

Instructions: Click on Values and select LU, ENCP, NNCP or Wildcard (*). Specify Wildcard to instruct APPN that the entry uses the asterisk (*) wildcard. Refer to the beginning of this section for information on using the wildcard with directory entries.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.4.3.1.4
Parameter: Parent Name

Default: None
Options: None
Function: Specifies the fully qualified APPN node name (NETID.CPNAME) that owns the selected LU name from the list. By default, the NETID portion of the parent name is the previously configured Local Node Name NETID parameter, as specified on the Edit APPN Global Parameters window (Figure 3-2).

Instructions: Enter the fully qualified APPN node name in the format (NETID.CPNAME). Enter the node name by first specifying up to 8 characters in the unique network name, type a period, then enter a control point name with up to 8 characters. Names must be specified in uppercase characters only, starting with an alphabetic character. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, NETWORKA.SYSTEMA is a valid entry for the Parent Name parameter.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.4.3.1.5

Parameter: Parent Type

Default: ENCP (END Node Control Point)
Options: NNCP (Network Node Control Point)
ENCP (End Node Control Point)
Function: Specifies the node type of the parent.
Instructions: Click on Values and specify NNCP or ENCP.
MIB Object ID: 1.3.6.1.4.1.18.3.5.14.4.3.1.6
Adding APPN LU Names to Directory Services

To add a qualified LU name to the directory services list, display the APPN Directory Entries window (Figure 3-17) and proceed as follows:

1. Click on the Add button. The Directory Entry Parameters window appears (Figure 3-18).

2. Edit the Resource Name and Parent Name parameters.

3. Click on OK to return to the APPN Directory Services window.
<table>
<thead>
<tr>
<th>Parameter: Resource Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default: None</td>
<td></td>
</tr>
<tr>
<td>Options: None</td>
<td></td>
</tr>
<tr>
<td>Function: Specifies the fully qualified name (NETID.CPNAME) of the resource to be added to the local directory. By default, the NETID portion of the name is the previously configured Local Node Name NETID parameter, as specified on the Edit APPN Global Parameters window (Figure 3-2).</td>
<td></td>
</tr>
<tr>
<td>Instructions: Enter the fully qualified APPN resource (node or LU) name in the format (NETID.CPNAME). Enter the node name by first specifying up to 8 characters in the network ID name, type a period, then enter a control point name with up to 8 characters. Names must be specified in uppercase characters only, starting with an alphabetic character. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, NETWORKA.SYSTEMA is a valid entry for the Parent Name parameter.</td>
<td></td>
</tr>
<tr>
<td>Use the asterisk (*) wildcard to indicate a wildcard entry. Refer to beginning of this section for information on using the wildcard with directory entries.</td>
<td></td>
</tr>
<tr>
<td>MIB Object ID: 1.3.6.1.4.1.18.3.5.14.4.3.1.3</td>
<td></td>
</tr>
<tr>
<td>Parameter:</td>
<td>Resource Type</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Default:</td>
<td>LU (logical unit)</td>
</tr>
<tr>
<td>Options:</td>
<td>LU (logical unit)</td>
</tr>
<tr>
<td></td>
<td>ENCP (end node control point)</td>
</tr>
<tr>
<td></td>
<td>NNCP (network node control point)</td>
</tr>
<tr>
<td></td>
<td>Wildcard (*)</td>
</tr>
<tr>
<td>Function:</td>
<td>Specifies the type of resource that this directory entry describes.</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Click on Values and select LU, ENCP, NNCP or Wildcard (). Specify Wildcard to instruct APPN that the entry uses the asterisk () wildcard. Refer to the beginning of this section for information on using the wildcard with directory entries.</td>
</tr>
<tr>
<td>MIB Object ID:</td>
<td>1.3.6.1.4.1.18.3.5.14.4.3.1.4</td>
</tr>
</tbody>
</table>
Parameter: Parent Name
Default: None
Options: None
Function: Specifies the fully qualified APPN node name (NETID.CPNAME) that owns the resource being defined. By default, the NETID portion of the name is the previously configured Local Node Name NETID parameter, as specified on the Edit APPN Global Parameters window (Figure 3-2).

Instructions: Enter the fully qualified APPN node name in the format (NETID.CPNAME). Enter the node name by first specifying up to 8 characters in the network ID name, type a period, then enter a control point name with up to 8 characters. Names must be specified in upper case characters only, starting with an alphabetic character. Blank spaces (leading, trailing, and embedded) are not allowed in the node name. For example, NETWORKA.SYSTEMA is a valid entry for the Parent Name parameter.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.4.3.1.5

Parameter: Parent Type
Default: ENCP (END Node Control Point)
Options: NNCP (Network Node Control Point)
ENCP (End Node Control Point)
Function: Specifies the parent node type owning this resource.

Instructions: Click on Values and specify NNCP or ENCP.

MIB Object ID: 1.3.6.1.4.1.18.3.5.14.4.3.1.6
Index

A

Add Circuit window, 2-3

Adding

Adjacent Link Stations, 3-40 to 3-45
APPN connection network ports, 3-61 to 3-62
APPN connection networks, 3-56 to 3-58
APPN LU names to directory services, 3-73 to 3-76
APPN ports, 3-21 to 3-24

Adjacent Link Station Configuration window, 3-42

Adjacent Link Station Dialog Box, 2-9, 2-22

Adjacent Link Station Name parameter, 3-43

Adjacent Link Station Port Configuration window, 3-41

Adjacent Node Block Number parameter, 3-47

Adjacent Node ID Number parameter, 3-48

Adjacent Node Name parameter, 3-38, 3-44

Adjacent Node Type parameter, 3-38

Advanced Peer-to-Peer Networking
See APPN

APPN

accessing parameters, 3-2
connection networks
description of, 1-8
control points, 1-5
enabling on LLC2 using SRB, 2-9 to 2-15
enabling over LLC2, 2-2 to 2-9

enabling over SDLC, 2-15 to 2-22

end nodes
description of, 1-3
interfaces
description of, 1-7
link stations
description of, 1-7

LLC2 media support, 1-2
logical units (LUs), 1-5

low-Entry networking nodes
description of, 1-3

network nodes
description of, 1-3
node types, 1-2

overview of, 1-2

ports
description of, 1-7

related publications, 1-14 to 1-15

sample network, 1-4

SDLC media, 1-2

services, 1-10

Source Routing Bridge encapsulation on, 1-2

APPN Adjacent Link Station List window, 3-35

APPN adjacent link stations
adding, 3-40 to 3-45

Adjacent Link Station Name parameter, 3-43

Adjacent Node Block Number parameter, 3-47
Adjacent Node ID Number parameter, 3-48
Adjacent Node Name parameter, 3-38, 3-44
Adjacent Node Type parameter, 3-38
Automatic Activation parameter, 3-49
Byte Cost parameter, 3-51
Connection Cost parameter, 3-51
CP-CP Session Support parameter, 3-48
Delay parameter, 3-52
deleting, 3-40
Down-level Adjacent Node parameter, 3-47
ing, 3-35 to 3-53
ing advanced parameters, 3-45 to 3-53
Effective Capacity parameter, 3-50
Enable/Disable parameter, 3-37
Implicit User-Defined 1 parameter, 3-53
Implicit User-Defined 2 parameter, 3-53
Implicit User-Defined 3 parameter, 3-53
Limited Resource TG parameter, 3-47
Link Address (hex) parameter, 3-39
MAC Address parameter, 3-45
Max Send BTU Size parameter, 3-39
Port Name parameter, 3-37, 3-41
SAP (hex) parameter, 3-45
Security parameter, 3-52
Target Pacing Count parameter, 3-40
Use Default TG Characteristics parameter, 3-49
APPN Configuration window, 2-21
APPN Connection Network Ports window, 3-59

APPN connection networks
adding, 3-56 to 3-58
adding ports, 3-61 to 3-62
Byte Cost parameter, 3-65
Connection Cost parameter, 3-65
Connection Network Name parameter, 3-58

Connection Network Port Name parameter, 3-58, 3-62
Delay parameter, 3-66
deleting, 3-56
deleting ports, 3-60
ing, 3-54 to 3-67
ing advanced parameters, 3-62 to 3-67
ing ports, 3-59 to 3-60
Effective Capacity parameter, 3-64
Enable/Disable parameter, 3-56, 3-60
Implicit User-Defined 1 parameter, 3-67
Implicit User-Defined 2 parameter, 3-67
Implicit User-Defined 3 parameter, 3-67
Security parameter, 3-66

APPN Connection Networks window, 3-54

APPN directory services
adding LU names to, 3-73 to 3-76
ing, 3-68 to 3-76
Enable/Disable parameter, 3-70
Parent Name parameter, 3-72, 3-76
Parent Type parameter, 3-72, 3-76
Resource Name parameter, 3-74
Resource Type parameter, 3-71, 3-75

APPN Enable/Disable parameter, 3-4

APPN global advanced parameters
ing, 3-7 to 3-15
Endpoint Session RSCV Storage, 3-9
ISR Congestion Threshold, 3-13
ISR Decongestion Threshold, 3-14
ISR Receive Pacing Window, 3-15
ISR Session RSCV Storage, 3-15
Max Cached Directory Entries, 3-10
Max Directory Entries, 3-9
Max NNs in Topology DB, 3-12
Max Number of ISR Sessions, 3-13
Max RU Size for ISR Sessions, 3-14
Max TGs in Topology DB, 3-12
Network Locate Timeout, 3-10
Route Addition Resistance, 3-8
TRS Route Tree Cache Size, 3-11
TRS Route Tree Cache Usage Limit, 3-11

APPN global parameters
 editing, 3-3 to 3-6
 Enable/Disable, 3-4
 Local ID Block, 3-6
 Local ID Number, 3-6
 Local Node Name, 3-5

APPN Interface List window, 3-16

APPN interfaces
 deleting, 3-18
 editing, 3-16 to 3-18
 Interface Enable/Disable parameter, 3-17

APPN Local Node Name Configuration window, 2-5, 2-19

APPN parameters
 accessing, 3-2

APPN Port List window, 3-19

APPN Port window, 3-25

APPN ports
 adding, 3-21 to 3-24
 deleting, 3-21
 editing, 3-18 to 3-34
 editing advanced parameters, 3-25 to 3-34
 Implicit Byte Cost parameter, 3-32
 Implicit Connection Cost parameter, 3-32
 Implicit CP Sessions parameter, 3-30
 Implicit Delay parameter, 3-33
 Implicit Effective Capacity parameter, 3-31
 Implicit Limited Resource parameter, 3-30
 Implicit Security parameter, 3-33
 Implicit User-Defined 1 parameter, 3-34
 Implicit User-Defined 2 parameter, 3-34
 Implicit User-Defined 3 parameter, 3-34
 Inbound Link Activation Limits parameter, 3-28

Link Activation Limit Default Values (table), 3-29
 Local Link Station Role parameter, 3-21, 3-24
 Max I-Frame Window parameter, 3-27
 Max Receive BTU Size parameter, 3-26
 Max Send BTU Size parameter, 3-27
 Outbound Link Activation Limits parameter, 3-29
 Port Address parameter, 3-20
 Port Enable/Disable parameter, 3-20
 Port MAC Address parameter, 3-23
 Port Name parameter, 3-23
 Port Number parameter, 3-23
 Port SAP (hex) parameter, 3-24
 Total Link Activation Limits parameter, 3-28

APPN Virtual Ring Number window, 2-14

Automatic Activation parameter, 3-49

B

Bridge ID
 assigning a, 2-12

Byte Cost parameter, 3-51, 3-65

C

Cable Type parameter, 2-18

Clock Source parameter, 2-17

configuration notes, 2-1

Configuration services, 1-10
 overview of, 1-13 to 1-14

Connection Cost parameter, 3-51, 3-65

Connection Network Advanced Parameters window, 3-63

Connection Network Name parameter, 3-58
Connection Network Parameters window, 3-57
Connection Network Port Name parameter, 3-58, 3-62
Connection Network Port Parameters window, 3-61
Connection networks
description of APPN, 1-8
Control points
in APPN networks, 1-5
CP-CP Session Support parameter, 3-48

D
Data link connection identifier, 2-8
purpose of, 2-8
Delay parameter, 3-52, 3-66
Deleting, 3-21
adjacent link stations, 3-40
APPN connection network ports, 3-60
APPN connection networks, 3-56
APPN interfaces, 3-18
APPN ports, 3-21
Directory Entry Parameters window, 3-73
Directory services, 1-10
overview, 1-10 to 1-11
DLCI parameter, 2-8
Down-level Adjacent Node parameter, 3-47

E
Edit APPN Global Parameters window, 3-3
Edit SR Interface window, 2-13
Editing
advanced adjacent link station parameters, 3-45 to 3-53

APPN adjacent link stations, 3-35 to 3-53
APPN advanced connection networks parameters, 3-62 to 3-67
APPN advanced port parameters, 3-25 to 3-34
APPN connection network ports, 3-59 to 3-60
APPN connection networks, 3-54 to 3-67
APPN directory entries, 3-68 to 3-76
APPN global advanced parameters, 3-7 to 3-15
APPN global parameters, 3-3 to 3-6
APPN interfaces and ports, 3-16 to 3-34
APPN ports, 3-18 to 3-21
Effective Capacity parameter, 3-50, 3-64
Enable/Disable parameter, 3-37, 3-56, 3-60, 3-70
Enabling
APPN over LLC2 interfaces, 2-2 to 2-9
APPN over LLC2 interfaces using SRB, 2-9 to 2-15
APPN over SDLC interfaces, 2-15 to 2-22
End nodes
description of, 1-3
Endpoint Session RSCV Storage parameter, 3-9
Ethernet, 1-2

F
FDDI, 1-2
Frame Relay, 1-2

I
implementation notes, 2-1
Implicit Byte Cost parameter, 3-32
Implicit Connection Cost parameter, 3-32
Implicit CP Sessions parameter, 3-30
Implicit Delay parameter, 3-33
Implicit Effective Capacity parameter, 3-31
Implicit Limited Resource parameter, 3-30
Implicit Security parameter, 3-33
Implicit User-Defined 1 parameter, 3-34,
3-53, 3-67
Implicit User-Defined 2 parameter, 3-34,
3-53, 3-67
Implicit User-Defined 3 parameter, 3-34,
3-53, 3-67
Inbound Link Activation Limits parameter, 3-28
Interface Enable/Disable parameter, 3-17
Interfaces
description of APPN, 1-7
Intermediate Session Routing, 1-10
overview of, 1-12 to 1-13
Internal Clock Speed parameter, 2-17
Internal LAN ID, 2-12
ISR Congestion Threshold parameter, 3-13
ISR Decongestion Threshold parameter, 3-14
ISR Receive Pacing Window parameter, 3-15
ISR Session RSCV Storage parameter, 3-15

L
Limited Resource TG parameter, 3-47
Link Address (hex) parameter, 3-39
Link stations
description of APPN, 1-7
LLC2
enabling APPN over, 2-2 to 2-9

LLC2/SRB
enabling APPN over, 2-10 to 2-15
Local ID Block parameter, 3-6
Local ID Number parameter, 3-6
Local Link Station Role parameter, 3-21,
3-24
Local Node Name parameter, 2-6, 2-20, 3-5
Logical units (LUs)
in APPN networks, 1-5
low-entry networking nodes
description of, 1-3

M
MAC Address parameter, 2-7, 3-45
Management services
overview of, 1-14
management services, 1-10
Max Cached Directory Entries parameter,
3-10
Max Directory Entries parameter, 3-9
Max I-Frame Window parameter, 3-27
Max NNs in Topology DB parameter, 3-12
Max Number of ISR Sessions parameter,
3-13
Max Receive BTU Size parameter, 3-26
Max RU Size for ISR Sessions parameter,
3-14
Max Send BTU Size parameter, 3-27, 3-39
Max TGs in Topology DB parameter, 3-12

N
Network Locate Timeout parameter, 3-10
network nodes
description of, 1-3

O
Outbound Link Activation Limits
parameter, 3-29

P
Parent Name parameter, 3-72, 3-76
Parent Type parameter, 3-72, 3-76
Point-to-Point (PPP) protocol, 1-2
Port Address parameter, 3-20
Port Configuration window, 3-22
Port Enable/Disable parameter, 3-20
Port MAC Address parameter, 3-23
Port Name parameter, 3-23, 3-37, 3-41
Port Number parameter, 3-23
Port SAP (hex) parameter, 3-24
Ports
description of APPN, 1-7

R
Related publications
listed, 1-14 to 1-15
Resource Name parameter, 3-74
Resource Type parameter, 3-71, 3-75
Ring ID
of source routing circuit, 2-14
Route Addition Resistance parameter, 3-8

S
SAP (hex) parameter, 2-8, 3-45

SDLC
enabling APPN over, 2-15 to 2-22
SDLC Address (hex) parameter, 2-21
SDLC Line Parameters window, 2-16
Security parameter, 3-52, 3-66
Select Protocols window, 2-4, 2-19
Session services, 1-10
overview, 1-10
SMDS, 1-2
Source Route Encapsulation Dialog Box,
2-5, 2-10
Source routing bridge
enabling APPN over LLC2 using, 2-9 to 2-15
Source Routing Ring Number
parameter, 2-14
SR Bridge ID global parameter, 2-12
SR Bridge ID parameter, 2-12
SR Bridge Internal LAN ID parameter,
2-12
Source Routing Bridge (SRB), 1-2
Source Routing Global Parameters
window, 2-11
Source Routing Ring Number parameter,
2-14
SR Bridge ID parameter, 2-12
SR Bridge Internal LAN ID parameter,
2-12
Sync Line Coding parameter, 2-18
Synchronous
parameters
Cable Type, 2-18
Clock Source, 2-17
Internal Clock Speed, 2-17
Sync Line Coding, 2-18
T
Target Pacing Count parameter, 3-40
Token Ring, 1-2
Topology and route services, 1-10
 overview, 1-11 to 1-12
Total Link Activation Limits parameter,
 3-28
TRS Route Tree Cache Size parameter,
 3-11
TRS Route Tree Cache Usage Limit
 parameter, 3-11

U
Use Default TG Characteristics parameter,
 3-49

V
Virtual Ring Number parameter, 2-15

W
Wellfleet Configuration Manager window,
 2-2, 3-2
wildcards
 using with directory entries, 3-68
Bay Networks
The Merged Company of SynOptics and Wellfleet
8 Federal Street
Billerica, MA 01821